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Chapter 1. Overview and Descriptive Statigtics

CHAPTER 1

Section 1.1

a.  Houston Chronicle, Des Moines Register, Chicago Tribune, Washington Post
b. Capital One, Campbell Soup, Merrill Lynch, Pulitzer
c. Bill Jasper, Kay Reinke, Helen Ford, David Menedez

d. 178,244,35304

2.
a 29.1yd., 28.3yd., 24.7 yd., 31.0 yd.
b. 432,196, 184, 321
c. 21403263
d. 0079,158¢9,719,27.2¢g
3.

a. Inasampleof 100 VCRs, what are the chances that more than 20 need service while
under warrantee? What are the chances than none need service while still under
warrantee?

b. What proportion of all VCRs of this brand and mode!l will need service within the
warrantee period?
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a.  Concrete: All living U.S. Citizens, all mutual funds marketed in the U.S,, al books
published in 1980.

Hypothetical: All grade point averages for University of California undergraduates
during the next academic year. Page lengthsfor all books published during the next
calendar year. Batting averagesfor all major |eague players during the next baseball
season.

b. Concrete: Probability: In a sample of 5 mutual funds, what is the chance that all 5 have
rates of return which exceeded 10% last year?

Statistics:  If previous year rates-of-return for 5 mutual funds were 9.6, 14.5, 8.3, 9.9
and 10.2, can we conclude that the average rate for all funds wasbelow 10%?

Conceptual: Probability: In asample of 10 books to be published next year, how likely is
it that the average number of pagesfor the 10 is between 200 and 2507

Statistics:  If the sample average number of pages for 10 booksis 227, can we be
highly confident that the average for all books is between 200 and 245?

a. No, therelevant conceptual populationisall scores of all students who participate in the
Sl in conjunction with this particular statistics course.

b. Theadvantage to randomly choosing studentsto participate in the two groupsis that we
aremore likely to get a sample representative of the population at large. If it wereleft to
students to choose, there may be adivision of abilitiesin the two groups which could
unnecessarily affect the outcome of the experiment.

c. If al studentswere put in the treatment group there would be no results with which to
compare the treatments.

One could take a simple random sample of students from all studentsin the California State
University system and ask each student in the sample to report the distance form their
hometown to campus. Alternatively, the sample could be generated by taking a stratified
random sample by taking a simple random sample from each of the 23 campuses and again
asking each student in the sample to report the distance from their hometown to campus.
Certain problems might arise with self reporting of distances, such as recording error or poor
recall. Thisstudy isenumerative because there exists afinite, identifiable population of
objects from which to sample.

One could generate a simple random sample of all single family homesin the city or a
stratified random sample by taking a simple random sample from each of the 10 district
neighborhoods. From each of the homesin the sample the necessary variables would be
collected. Thiswould be an enumerative study because there exists afinite, identifiable
population of objects from which to sample.
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8.

a.  Number observationsequal 2x2x2=8

b. Thiscould be called an analytic study because the data would be collected on an existing
process. Thereisno sampling frame.

9.

a. Therecould be several explanations for the variability of the measurements. Among
them could be measuring error, (due to mechanical or technical changes across
measurements), recording error, differencesin weather conditions at time of
measurements, etc.

b. Thiscould be called an analytic study because there is no sampling frame.

Section 1.2
10.

a.  Minitab generates the following stem-and-leaf display of thisdata:

9

33588

00234677889

127

o77 stem: ones
1017 leaf: tenths
11/368

© 00~ & N

What constitutes large or small variation usually depends on the application at hand, but
an often-used rule of thumb is: the variation tends to be large whenever the spread of the
data (the difference between the largest and smallest observations) islarge compared to a
representative value. Here, 'large’ means that the percentage is closer to 100% than it isto
0%. For thisdata, the spread is 11 - 5= 6, which constitutes 6/8 = .75, or, 75%, of the
typical datavalue of 8. Most researchers would call this alarge amount of variation.

b. Thedatadisplay isnot perfectly symmetric around some middle/representative value.
There tends to be some positive skewnessin this data.

c. InChapter 1, outliers are data points that appear to be very different from the pack.
Looking at the stem-and-leaf display in part (a), there appear to be no outliersin this data.
(Chapter 2 gives amore precise definition of what constitutes an outlier).

d. Fromthe stemand-leaf display in part (a), there are 4 values greater than 10. Therefore,
the proportion of datavaluesthat exceed 10is4/27 = .148, or, about 15%.



11.

12.
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6l |034

6h 1667899
71 |00122244

7h

8 001111122344

Stem=Tens
Leaf=Ones

8h |5557899

9 |03
% (58

This display brings out the gap in the data:
There are no scoresin the high 70's.

One method of denoting the pairs of stems having equal valuesisto denote the first stem by
L, for 'low', and the second stem by H, for 'high'. Using this notation, the stem-and-leaf
display would appear asfollows:

3L
3H
a
4H
5L
5H
6L
6H
7L
7H

1

56678

000112222234

5667888

144

58 stem: tenths

2 leaf: hundredths
6678

5

The stem-and-leaf display on the previous page shows that .45 is a good representative value
for thedata. In addition, the display is not symmetric and appears to be positively skewed.

The spread of the datais.75 - .

31 = .44, whichis.44/.45 = .978, or about 98% of the typical

value of .45. This constitutes areasonably large amount of variation in the data. The data

value.75isapossible outlier
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12| 2 Leaf = ones
12 | 445 Stem = tens
12 | 6667777

12 | 889999

13 | 00011111111

13 | 2222222222333333333333333

13 | 44444444444444444455555555555555555555
13 | 6666666666667777777777

13 | 888888888888999999

14 | 0000001111

14 | 2333333

14 | 444

14 | 77

The observations are highly concentrated at 134 — 135, where the display suggests the
typical valuefalls.

30 —

20 —

Frequency

10 —

o

T T T T T T T T T T T T T T
122 124 126 128 130 132 134 136 138 140 142 144 146 148

strength

The histogram is symmetric and unimodal, with the point of symmetry at approximately
135.
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2|23 stem units: 1.0
3| 2344567789 leaf units: .10
4 | 01356889
5| 00001114455666789
6 | 0000122223344456667789999
7 | 00012233455555668
8| 02233448
9 | 012233335666788
10 | 2344455688
11 | 2335999
12 | 37
13 8
14 | 36
15 | 0035

b. A representative value could be the median, 7.0.
c. Thedataappear to be highly concentrated, except for afew values on the positive side.
d. No, thedataisskewed to theright, or positively skewed.

e. Thevalue 18.9 appearsto be an outlier, being more than two stem units from the previous
value.

Crunchy Creamy
2 |2
644 3 (69
77220 4 |145
6320| 5 |3666

222| 6 (258
55| 7
o 8

Both sets of scores are reasonably spread out. There appear to be no
outliers. Thethree highest scores are for the crunchy peanut butter, the
three lowest for the creamy peanut butter.
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16.
a
beams cylinders
9 5 |8
88533 6 |16
988776432000 7 |012488
721 8 (13359
700 9 (278
71 10
863 11 (2
12 |6
13
14 |1
The data appears to be slightly skewed to theright, or positively skewed. The value of
14.1 appearsto be an outlier. Three out of the twenty, 3/20 or .15 of the observations
exceed 10 Mpa.

b. Themajority of observations are between 5 and 9 Mpa for both beams and cylinders,
with the modal classinthe 7 Mparange. The observationsfor cylinders are more
variable, or spread out, and the maximum value of the cylinder observationsishigher.

c. Dot Plot

- [ TS —— [ TS —— [ TS —— [ TS —— +- - - - -
cyl i nder
6.0 7.5 9.0 10.5 12.0 13.5
17.
a
Number
Nonconforming Freguency Rel ativeFrequency(Frea/60)
0 7 0117
1 12 0.200
2 13 0.217
3 14 0.233
4 6 0.100
5 3 0.050
6 3 0.050
7 1 0.017
8 1 0.017

doesn't add exactly to 1 because relative frequencies have been rounded 1.001

The number of batches with at most 5 nonconforming itemsis 7+12+13+14+6+3 = 55,
which isa proportion of 55/60 = .917. The proportion of batches with (strictly) fewer
than 5 nonconforming itemsis 52/60 = .867. Notice that these proportions could also
have been computed by using the relative frequencies: e.g., proportion of batcheswith 5
or fewer nonconforming items = 1- (.05+.017+.017) = .916; proportion of batcheswith
fewer than 5 nonconforming items = 1 - (.05+.05+.017+.017) = .866.

7
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c. ThefollowingisaMinitab histogram of thisdata. The center of the histogramis
somewhere around 2 or 3 and it shows that there is some positive skewnessin the data.
Using the rule of thumb in Exercise 1, the histogram also shows that thereisalot of
spread/variation in this data.

Relative
Frequency

.20 7

.10

.00

1 T T T T T T 1T
o 1 2 3 4 5 6 7 8

Number
18.

a.
The followina histogram was constructed using Minitab:

800 — —
700 —
600 —
500 —
400 —|
300 —

200 —
] hﬁr—v—*
0 —
T T T T T T T T T T

O 2 4 6 8 10 12 14 16 18
Number of papers

Frequency

The most interesting feature of the histogram isthe heavy positive skewness of the data.

Note: One way to have Minitab automatically construct a histogram from grouped data
such asthisisto use Minitab's ability to enter multiple copies of the same number by
typing, for example, 784(1) to enter 784 copies of the number 1. The frequency datain
this exercise was entered using the following Minitab commands:

MTB > set cl

DATA> 784(1) 204(2) 127(3) 50(4) 33(5) 28(6) 19(7) 19(8)
DATA> 6(9) 7(10) 6(11) 7(12) 4(13) 4(14) 5(15) 3(16) 3(17)
DATA> end
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From the frequency distribution (or from the histogram), the number of authors who
published at least 5 papersis 33+28+19+...+5+3+3 = 144, so the proportion who
published 5 or more papersis 144/1309 = .11, or 11%. Similarly, by adding frequencies
and dividing by n = 1309, the proportion who published 10 or more papersis 39/1309 =
.0298, or about 3%. The proportion who published more than 10 papers (i.e., 11 or more)
iS32/1309 = .0245, or about 2.5%.

No. Strictly speaking, the class described by ' 3 15 ' has no upper boundary, soitis
impossible to draw arectangle aboveit having finite area (i.e., frequency).

The category 15-17 does have afinite width of 2, so the cumulated frequency of 11 can
be plotted as arectangle of height 6.5 over thisinterval. The basic ruleisto make the
area of the bar equal to the class frequency, so area = 11 = (width)(height) = 2(height)
yieldsaheight of 6.5.

From this freguency distribution, the proportion of wafers that contained at |east one
particleis (100-1)/100 = .99, or 99%. Note that it ismuch easier to subtract 1 (whichis
the number of wafers that contain O particles) from 100 than it would be to add all the
frequenciesfor 1, 2, 3,... particles. Inasimilar fashion, the proportion containing at |east
5 particlesis (100 - 1-2-3-12-11)/100 = 71/100 = .71, or, 71%.

The proportion containing between 5 and 10 particlesis (15+18+10+12+4+5)/100 =
64/100 = .64, or 64%. The proportion that contain strictly between 5 and 10 (meaning
strictly more than 5 and strictly less than 10) is (18+10+12+4)/100 = 44/100 = .44, or
44%.

The following histogram was constructed using Minitab. The data was entered using the
same technique mentioned in the answer to exercise 8(a). The histogram isal most
symmetric and unimodal; however, it has afew relative maxima (i.e., modes) and has a
very slight positive skew.

Relative frequency

20 —

.00 —1

T T T T
0 5 10 15
Number of particles
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a. Thefollowing stem-and-leaf display was constructed:

123334555599

00122234688 stem: thousands
1112344477 leaf: hundreds
0113338

37

23778

A D WN = O

A typical datavalueis somewhereinthelow 2000's. Thedisplay isamost unimodal (the
stem at 5 would be considered a mode, the stem at 0 another) and has a positive skew.

b. A histogram of this data, using classes of width 1000 centered at 0, 1000, 2000, 6000 is
shown below. The proportion of subdivisions with total length lessthan 2000 is
(12+11)/47 = .489, or 48.9%. Between 200 and 4000, the proportionis (7 + 2)/47 = .191,
or 19.1%. The histogram shows the same general shape as depicted by the stem-and-leaf
in part (a).

Frequency

10 —

10
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21.

a. A histogram of they data appears below. From this histogram, the number of
subdivisions having no cul-de-sacs (i.e., y = 0) is 17/47 = .362, or 36.2%. The proportion
having at least one cul-de-sac (y 3 1) is (47-17)/47 = 30/47 = .638, or 63.8%. Note that

subtracting the number of cul-de-sacs with y = 0 from the total, 47, is an easy way to find
the number of subdivisionswithy?3 1.

Frequency

20 —

10 -

b. A histogram of the z data appears below. From this histogram, the number of

subdivisions with at most 5 intersections (i.e., z £ 5) is42/47 = .894, or 89.4%. The
proportion having fewer than 5 intersections (z < 5) is 39/47 = .830, or 83.0%.

Frequency

10 —

1
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22. A very large percentage of the data values are greater than O, which indicates that most, but
not all, runners do slow down at the end of therace. The histogram is also positively skewed,
which means that some runners slow down alot compared to the others. A typical valuefor
this data would be in the neighborhood of 200 seconds. The proportion of the runners who
ran thelast 5 km faster than they did thefirst 5 km isvery small, about 1% or so.

23.

30 —

20 —

Percent

10 —

0 — _|_|_| —

T T T T T T T T T T

0 100 200 300 400 500 600 700 800 900
brkstgth

The histogram is skewed right, with amajority of observations between 0 and 300 cycles.
The class holding the most observationsis between 100 and 200 cycles.
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b.
0.004 | ]
0.003
=y
2 0.002
[
a
0.001 —
0.000 —
L T T T T T
0 501005@00 300 400 500 600 900
brkstgth
c [proportion 3 100] = 1—[proportion<100] =1-.21=.79
24,
20 — | ]
€
3
= 10 —
&
0 — —

T T T T T T T T T T T
4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

weldstrn

13
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25. Histogram of original data:

15 —

10 —

Frequency

Histogram of transformed data:

Frequency

7 ]

11 12 13 14 15 16 17 18 19
log(IDT)

The transformation creates amuch more symmetric, mound-shaped histogram.

14
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ClassIntervals Frequency Rd.Freq.
15-<.25 8 0.02192
25-<.35 14 0.03836
35-< 45 28 0.07671
A45-< 50 24 0.06575
50-<.55 39 0.10685
55-<.60 51 0.13973
60-<.65 106 0.29041
65-<.70 84 0.23014
70-<.75 1 0.03014
n=365 1.00001
6 — —
5 -
4 -
)
2.
[
[a) 2
1 -
T =
T T T T T T T

0.15 0.25 0.35

0.45 0.500.550.60 0.650.700.75

clearness

b. The proportion of dayswith aclearnessindex smaller than .35is

15

(8+4)
365

c. Theproportion of dayswith aclearnessindex of at least .65is M

= .06, 0r 6%.

= .26, or 26%.
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a. Theendpoints of the classintervals overlap. For example, the value 50 fallsin both of the
intervals‘0—50" and 50— 100'.

b.
Class Interval Frequency Relative Frequency
0-< 50 9 0.18
50 - < 100 19 0.38
100 - < 150 11 0.22
150 - < 200 4 0.08
200 - < 250 2 0.04
250 - < 300 2 0.04
300 - < 350 1 0.02
350 - < 400 1 0.02
>= 400 1 0.02
50 1.00
20 - —
>
2
g 10 -

g

L
0 [ T B —

é SIO 1(I)O lEiO 2(!J0 2;:0 3(IJO 3;)0 4(;0 45IO 5(I)0 5510 6(I)0
lifetime

Thedistribution is skewed to the right, or positively skewed. Thereisagapinthe
histogram, and what appearsto be an outlier in the ‘500 — 550" interval.

16
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Class Interval

Frequency Relative Frequency

225-< 2.75
2.75-<3.25
3.25-<3.75
3.75-<4.25
425 -<4.75
475 -<5.25
5.25-<5.75
5.75-<6.25

2
2
3
8
18
10
4
3

0.04
0.04
0.06
0.16
0.36
0.20
0.08
0.06

20 —

Frequency
5
]

11 |

—

0 —

T T
225 275

325 3.75 425 475 525 575 625

In lifetime

The distribution of the natural logs of the original data is much more symmetric than the

original.

d. Theproportion of lifetime observationsin this sample that are lessthan 100 is .18 + .38
= .56, and the proportion that isat least 200is.04 + .04 + .02 + .02 + .02 =.14.

28. There are seasonal trends with lows and highs 12 months apart.

radtn

16 —

Index

10

20 30 40

17
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Complaint  Frequency Relative Frequency
B 7 01167
C 3 0.0500
F 9 0.1500
J 10 0.1667
M 4 0.0667
N 6 0.1000
0] 21 0.3500
60 1.0000
20 — ]
:
o 10 —
U0 Hjugs
B ¢ F 3 M N

s wdhpE

Count of prodprob

complaint

o

200 —

prodprob

incorrect comp onent
mi ssing component
failed component
insufficient solder
excess solder

18
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Rdative Cumulative Rdative
Class Frequency Frequency Frequency

0.0 - under 4.0 2 2 0.050

4.0-under 8.0 14 16 0.400

8.0 - under 12.0 11 27 0.675

12.0 - under 16.0 8 35 0.875

16.0 - under 20.0 4 39 0.975

20.0 - under 24.0 0 39 0.975

24.0 - under 28.0 1 40 1.000

a. Thefrequency distributionis:
Rdative Rdative
Class Frequency Class Frequency

0<150 193 900-<1050 .019
150-< 300 183 1050-<1200 .029
300-< 450 251 1200-<1350 .005
450-< 600 .148 1350-<1500 .004
600-< 750 097 1500-<1650 .001
750-< 900 .066 1650-<1800 .002
1800-<1950 .002

Therelative frequency distribution is almost unimodal and exhibits alarge positive
skew. Thetypical middlie value is somewhere between 400 and 450, although the
skewness makesit difficult to pinpoint more exactly than this.

b. The proportion of the fireloads lessthan 600 is.193+.183+.251+.148 = .775. The
proportion of loads that are at least 1200 is .005+.004+.001+.002+.002 = .014.

c. Theproportion of loads between 600 and 1200is1-.775-.014 = .211.

19
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1.3

X=19257, X =189. The mean islarger than the median, but they are still
fairly close together.

Changing the onevalue, X =189.71, X =189. The mean islowered, the
median stays the same.

X, =191.0. %4 =.07 or 7% trimmed from each tail.

For n= 13, Sx = (119.7692) x 13 = 1,557
For n=14, Sx = 1,557 + 159 =1,716

X = % =122.5714 or 1226

The sum of the n = 11 data pointsis 514.90, so X =514.90/11 = 46.81.

The sample size (n=11) isodd, so there will be amiddle value. Sorting from smallest to
largest: 44 164 222 300 331 36.6 404 66.7 737 8L5 109.9. Thesixth

value, 36.6 isthe middle, or median, value. The mean differsfrom the median because
the largest sample observations are much further from the median than are the smallest
values.

Deleting the smallest (x = 4.4) and largest (x = 109.9) values, the sum of the remaining 9
observations is 400.6. The trimmed mean X, is400.6/9 = 44.51. Thetrimming

percentageis 100(1/11) » 9.1%. X,, lies between the mean and median.

The sample mean is X = (100.4/8) = 12.55.

The samplesize (n = 8) iseven. Therefore, the sample median is the average of the (n/2)
and (n/2) + 1 values. By sorting the 8 valuesin order, from smallest to largest: 8.0 8.9
11.0 12.0 13.0 145 15.0 18.0, theforth andfifth valuesare 12 and 13. The sample
medianis(12.0 + 13.0)/2=125.

The 12.5% trimmed mean requires that we first trim (.125)(n) or 1 value from the ends of
the ordered data set. Then we average the remaining 6 values. The 12.5% trimmed mean

X (125) 1STANB =124,

All three measures of center are similar, indicating little skewness to the data set.

The smallest value (8.0) could be increased to any number below 12.0 (a change of less
than 4.0) without affecting the value of the sample median.

20
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c. Thevaluesobtainedin part (a) can be used directly. For example, the sample mean of
12.55 psi could be re-expressed as
e lks O .
(1255 ps) x -+=5.70ksi .
2.2ps g

a. A stemand leaf display of this data appears below:

55 stem: ones
49 leaf: tenths

6699
34469
03345
9
392347
40,23

4]
424

BUBHRRBY

Thedisplay isreasonably symmetric, so the mean and median will be close.

b. Thesamplemeanis X =9638/26 = 370.7. The sample medianis
X = (369+370)/2 = 369.50.

c. Thelargest value (currently 424) could be increased by any amount. Doing so will not
change the fact that the middle two observations are 369 and 170, and hence, the median
will not change. However, the value x = 424 can not be changed to a number less than
370 (achange of 424-370 = 54) since that will lower the values(s) of the two middle
observations.

d. Expressedin minutes, the mean is(370.7 sec)/(60 sec) = 6.18 min; the median is6.16

min.

X=12.01, X =11.35, X, 0, =11.46. Themedian or the trimmed mean would be good
choices because of the outlier 21.9.

a. Thereported values are (in increasing order) 110, 115, 120, 120, 125, 130, 130, 135, and
140. Thus the median of the reported valuesis 125.

b. 127.6isreported as 130, so the median is now 130, avery substantial change. When there
isrounding or grouping, the median can be highly sensitive to small change.

21
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16475

a Sx =16.475s0X = =1.0297

_ (LO07+1011) _, o0

X

b. 1.394 can be decreased until it reaches 1.011(the largest of the 2 middle values) —i.e. by
1.394-1.011=.383, If itisdecreased by more than .383, the median will change.

X = 60.8
%.,(25 = 59.3083
%, 10) = 58.3475

X =58.54
All four measures of center have about the same value.

a %02.70

b. X =.70= proportion of successes

S
c. — =.80 s0s=(0.80)(25)=20
5 (0.80)(25)

total of 20 successes
20— 7 = 13 of the new cars would have to be successes

Sy, S(x.+c) Sx

n n n n

y =themedianof (X, +C, X, +C,..., X, +C) =median of
(X, X5y X, ) FC=X +C

a y=

Sy, _ S(x,>x) _cSx

b. Y= =cX
n n n
y = (CX, CXy,..., €X,,) = CXMEdiAN(X], Xy .00 X, ) = CX
. (57+79) _ . .
median = —— = = 68.0 , 20% trimmed mean = 66.2, 30% trimmed mean = 67.5.



Section 1.4

44,

45,

a

b.
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range=49.3-235=258

S

S

2

X, (% - X) (% - X)? X;
295 -153 2.3409 870.25
493 18.27 333.7929 2430.49
30.6 -043 0.1849 936.36
28.2 -2.83 8.0089 795.24
280 -3.03 9.1809 784.00
26.3 -4.73 22.3729 691.69
339 2.87 8.2369 1149.21
24 -1.63 2.6569 864.36
235 -753 56.7009 552.25
316 057 0.3249 998.56
Sx=3103 S(x, - X) =0 S(x - X)? =443.801 S(x?) =10,072.41
X =31.03

A _ w)2
,_ o~ X)" 443801

S

n-1

- o7 -

7.0222

Sx? - (Sx)2/n _10,072.41- (310.3)?/10

=49.3112

n-1

9

I
1164 - 11558 = .82, 115.9 - 115.58 = .32, 114.6 -115.58 = -.98,
115.2 - 11558 = -.38, and 115.8-115.58 = .22.

S2 =[(:82)% + (:32)? + (-.98) + (-.38) + (.22)]/(5-1) = 1.928/4 =482,

S0 S=.694.

A x° =6679561, 005 =
i

D~

A

>

o

'®

X -

[66,795.61 - (577.9)%/5]/4 = 1.928/4 = .A82.
Subtracting 100 from all values gives X =15.58, all deviations are the same asin
part b, and the transformed variance isidentical to that of part b.
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X = %é X, =577.9/5=11558. Deviationsfrom the mean:

=49.3112
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a X = Fé X, =14438/5=2887.6. Thesorted datais: 2781 2856 2888 2900 3013,

so the sample median is X = 2888.

b. Subtracting a constant from each observation shifts the data, but does not change its
sample variance (Exercise 16). For example, by subtracting 2700 from each observation
we get the values 81, 200, 313, 156, and 188, which are smaller (fewer digits) and easier
towork with. The sum of squares of thistransformed datais 204210 and its sumis 938,
so the computational formulafor the variance gives s? =[204210-(938)%/5]/(5-1) =
7060.3.

The sample mean, i:lé X :1—]6(1,162):Y:116.2.
n

5 - @xF [ 560, 11627

The sample standard deviation, S= n 10~ 25.75
n-1 9

On average, we would expect afracture strength of 116.2. In general, the size of atypical

deviation from the sample mean (116.2) is about 25.75. Some observations may deviate from

116.2 by more than this and some by less.

éo 2 o8] 620
Using the computational formula, s*= 7.3 89 X~ - 5¢@ X%~ U=
gi ei a4

[3,587,566-(9638)%/26]/(26-1) =593.3415, s0s=24.36. Ingenera, thesize of atypical
deviation from the sample mean (370.7) is about 24.4. Some observations may deviate from
370.7 by alittle more than this, some by less.

a SX=275+..+3.01=56.80, SX? = (2.75) +... + (3.01)? = 197.8040

& - 197.8040- (56.80)/17 _ 8.0252
16

=.5016, s=.708

24
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First, we need X= e a x :2—17 (20,179) =747.37. Then we need the sample standard
n
2
24.657,511- M
deviation S= %6 27 = 606.89. The maximum award should be

X + 25 = 747.37 + 2(606.89) =1961.16, or in dollar units, $1,961,160. Thisisquitea
bit less than the $3.5 million that was awarded originally.

a Sx=2563 and Sx* = 368,501, so

_ 2
57 = 1308301 (2569 119 _ 1564 766 ang 5= 35.564

18
b. Ify=timeinminutes, theny = cx where C =$, S0
52 =¢?s? = 2204700 _ a5 g s, =Cs, = 35564 _ 503

Y X 3600

Let d denote the fifth deviation. Then .3+.9+1.0+1.3+d=00r 35+d =0, so

d = - 3.5. Onesample for which these are the deviationsis X, = 3.8, X, = 4.4,

X; =45, X, =4.8, X, = 0. (obtained by adding 3.5 to each deviation; adding any other
number will produce adifferent sample with the desired property)

a. lowerhaf: 2342432622742742752.783.01346
upper half: 3.46 3.56 3.65 3.85 3.88 3.93 4.21 4.33 4.52
Thusthe lower fourth is 2.74 and the upper fourth is 3.88.

b. f,=3.88-274=114
C. fS wouldn’t change, since increasing the two largest val ues does not affect the upper
fourth.

d. By at most .40 (that is, to anything not exceeding 2.74), since then it will not change the
lower fourth.

e. Sincenisnow even, the lower half consists of the smallest 9 observations and the upper
half consists of the largest 9. With the lower fourth = 2.74 and the upper fourth = 3.93,

f =119,

25
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a. Thelower half of thedataset: 4.4 16.4 22.2 30.0 33.1 36.6, whose median, and

22.2+30.0

therefore, the lower quartile, is ¥+ 26.1.

The top half of thedataset: 36.6 40.4 66.7 73.7 81.5 109.9, whose median, and
(66.7+73.7)

=70.2.

therefore, the upper quartile, is

S0, the IQR = (70.2— 26.1) = 4.1

A boxplot (created in Minitab) of this data appears below:

T T T
0 50 100

sheer strength

Thereisaslight posttive skew to the data. The variation seems quite large. There are no
outliers.

An observation would need to be further than 1.5(44.1) = 66.15 units below the lower
quartile [(26.1- 66.15) =- 40.05 units] or above the upper quartile

[(70.2+66.15) =136.35 units] to be classified asamild outlier. Notice that, in this
case, an outlier on the lower side would not be possible since the sheer strength variable
cannot have anegative value.

An extreme outlier would fall (3)44.1) = 132.3 or more units below the lower, or above
the upper quartile. Since the minimum and maximum observationsin the data are 4.4
and 109.9 respectively, we conclude that there are no outliers, of either type, in this data
set.

Not until the value x = 109.9 islowered below 73.7 would there be any change in the

value of the upper quartile. That is, the value x = 109.9 could not be decreased by more
than (109.9 — 73.7) = 36.2 units.

26



55.

Chapter 1. Overview and Descriptive Statigtics

Lower half of thedataset: 325 325 334 339 356 356 359 359 363 364 364
366 369, whose median, and therefore the lower quartile, is 359 (the 7" observation in
the sorted list).

Thetop half of thedatais370 373 373 374 375 389 392 393 394 397 402
403 424, whose median, and therefore the upper quartileis 392. So, the IQR =392 -
359=33.

1.5(IQR) = 1.5(33) =49.5 and 3(IQR) = 3(33) = 99. Observationsthat are further than
49.5 below the lower quartile (i.e., 359-49.5 = 309.5 or less) or more than 49.5 units
above the upper quartile (greater than 392+49.5 = 441.5) are classified as 'mild' outliers.
'‘Extreme’ outliers would fall 99 or more units below the lower, or above the upper,
quartile. Since the minimum and maximum observationsin the data are 325 and 424, we
conclude that there are no mild outliersin this data (and therefore, no ‘extreme’ outliers
either).

A boxplot (created by Minitab) of this data appears below. Thereisaslight positive
skew to the data, but it is not far from being symmetric. The variation, however, seems
large (the spread 424-325 = 99 is alarge percentage of the median/typical value)

T
320 370 420

Escapetime

d. Not until thevalue x =424 islowered below the upper quartile value of 392 would there

be any change in the value of the upper quartile. That is, the value x = 424 could not be
decreased by more than 424-392 = 32 units.
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56. A boxplot (created in Minitab) of this data appears below.

T T T T T T
0 100 200 300 400 500

aluminum

Thereisasdlight positive skew to thisdata. Thereis one extreme outler (x=511). Even when
removing the outlier, the variation is still moderately large.

57.
a.  15(0R)=15(216.8-196.0) = 31.2 and 3(IQR) = 3(216.8-196.0) = 62.4.
Mild outliers:  observations below 196-31.2 = 164.6 or above 216.8+31.2 = 248,
Extreme outliers: observations below 196-62.4 = 133.6 or above 216.8+62.4 = 279.2. Of
the observations given, 125.8 is an extreme outlier and 250.2 isamild outlier.

b. A boxplot of thisdata appears below. Thereisahit of positive skew to the data but,
except for thetwo outliersidentified in part (a), the variation in the dataisrelatively
small.

120 140 160 180 200 220 240 260

58. The most noticeable feature of the comparative boxplotsis that machine 2's sample values
have considerably more variation than does machine 1' s sample values. However, atypical
value, as measured by the median, seemsto be about the same for the two machines. The
only outlier that existsisfrom machine 1.
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a. ED: median = .4 (the 14" valuein the sorted list of data). Thelower quartile (median of

the lower half of the data, including the median, sincen isodd) is
(.1+.1)/2= .1. Theupper quartileis(2.7+2.8)/2 = 2.75. Therefore,
IQR= 2.75-.1=265.

Non-ED: median = (1.5+1.7)/2 = 1.6. Thelower quartile (median of the lower 25
observations) is.3; the upper quartile (median of the upper half of the data) is 7.9.
Therefore, IQR=7.9-.3=7.6.

ED: mild outliersarelessthan .1 - 1.5(2.65) = -3.875 or greater than 2.75 + 1.5(2.65) =
6.725. Extremeoutliersarelessthan .1 - 3(2.65) = -7.85 or greater than 2.75 + 3(2.65) =
10.7. So, thetwo largest observations (11.7, 21.0) are extreme outliers and the next two
largest values (8.9, 9.2) are mild outliers. There are no outliers at the lower end of the
data.

Non-ED: mild outliers are lessthan .3 - 1.5(7.6) =-11.1 or greater than 7.9 + 1.5(7.6) =
19.3. Notethat there are no mild outliersin the data, hence there can not be any extreme
outliers either.

A comparative boxplot appears below. Theoutliersin the ED dataare clearly visible.
Thereis noticeable positive skewnessin both samples; the Non-Ed data has more
variability then the Ed data; the typical values of the ED datatend to be smaller than
those for the Non-ED data.

Non-ED — A1

T T
o 10 20

Concentration (mg/L)
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60. A comparative boxplot (created in Minitab) of this data appears below.

test — —_— —

cannister — * ~|:|:|~ *

T T T T
5000 6000 7000 8000

burst strength

type

The burst strengths for the test nozzle closure welds are quite different from the burst
strengths of the production canister nozzle welds.

The test welds have much higher burst strengths and the burst strengths are much more
variable.

The production welds have more consistent burst strength and are consistently lower than the
test welds. The production welds data does contain 2 outliers.

61. Outliers occur inthe 6 am. data. The distributions at the other times are fairly symmetric.
Variability and the 'typical' valuesin the dataincrease alittle at the 12 noon and 2 p.m. times.
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Supplementary Exercises

62.

To somewhat simplify the algebra, begin by subtracting 76,000 from the original data. This
transformation will affect each date value and the mean. It will not affect the standard
deviation.

X, =683, x,=1048, y=831

nX =(4)(831) =3,324 so, X, + X, + X, +X, =3,324

and X, +X; = 3,324- X, - X, =1,593 and x3:(1,593- xz)
25 2. (3324)° U

i u

Next, s° =(180)° =& 44
e 3

g H

S0, & X2 =2,859,444 , x? + X2 +x2 + X2 =2,859,444 and
X2 + X2 =2,859,444- xZ +x; =1,294,651

By substituting X; = (1593- X, ) we obtain the equation

x2 +(1,593- x,)* - 1,294,651=0.

xZ - 1593x, +621,499=0

Evaluating for X, we obtain X, =682.8635 and X, =1,593- 682.8635=910.1365.
Thus, X, =76,683 X, =76,910.
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Flow Lower  Upper

rate Median quartile quartile IQR 15(IQR) 3(IQR)
125 3.1 2.7 3.8 11 1.65 3
160 4.4 4.2 4.9 7 105 1
200 3.8 34 4.6 1.2 180 36

There are no outliersin the three data sets. However, as the comparative boxplot below
shows, the three data sets differ with respect to their central values (the medians are different)
and the datafor flow rate 160 is somewhat |ess variable than the other data sets. Flow rates
125 and 200 a so exhibit asmall degree of positive skewness.

Flow rate

200 — —| | |_
os o ] -

T
3 4 5

Uniformity (26)
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A stem=ones
17 |eaf=tenths

© 00 N O

10| 12667789
11 | 122499
12| 2

13|11

X =9.9556,X =10.6
s=1.7594

n=27

f,=23

8.85- (1.5)(2.3) =54
11.15+ (1.5)(2.3) =14.6

lower fourth = 8.85, upper fourth = 11.15

no outliers

T T T T T T T T
6 7 8 9 10 11 12 13

Radiation

There are no outliers. Thedistribution is skewed to the | eft.
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HCdatar & x° =261842 and § X = 9658,
i i

s0 5% =[2618.42 - (96.8)%/4)/3 = 91.953

and the sample standard deviation is s=9.59.

COdata § x° =145645and § X =735, 505> = [145645 - (735)%/4]/3 =
i i

3529.583 and the sampl e standard deviationis s=59.41.

The mean of the HC dataiis 96.8/4 = 24.2; the mean of the CO datais 735/4 =
183.75. Therefore, the coefficient of variation of the HC datais 9.59/24.2 = .3963,

or 39.63%. The coefficient of variation of the CO datais 59.41/183.75 = .3233, or
32.33%. Thus, even though the CO data has alarger standard deviation than does
the HC data, it actually exhibitsless variability (in percentage terms) around its
average than does the HC data.

The histogram appears below. A representative value for this datawould be x = 90.
The histogram is reasonably symmetric, unimodal, and somewhat bell-shaped. The
variation in the datais not small since the spread of the data (99-81 = 18) constitutes
about 20% of the typical value of 90.

Relative frequency

T ) T T ) T T T T T
81 83 85 87 89 91 93 95 97 99

Fracture strength (MPa)

The proportion of the observationsthat are at least 85is 1 - (6+7)/169 = .9231. The
proportion lessthan 95is 1 - (22+13+3)/169 = .7751.

x =90 isthe midpoint of the class 89-<91, which contains 43 observations (arelative
frequency of 43/169 = .2544. Therefore about half of this frequency, .1272, should
be added to the relative frequencies for the classes to the left of x =90. That is, the
approximate proportion of observationsthat are lessthan 90 is.0355 + .0414 + .1006
+.1775+ 1272 = 4822.
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67.
a x =163.2
1002 Btrimmedmean = 2232285156 _ 15 44
eldog 13
100?3 Sy rirmegimeen < 1632 85- 88-166-137 _
el5g 11
\ L00)BLO+ L (10022 0= 1008‘337- 10%trimmedmean
2 elsSg 2 el5g €l0g
= 1(10.70)+1(10.60) = 10.65
2 2
68.
[¢]
d a d o o}
f Y= =-2a (x-¢)=0P g (x-¢)=0
. WAk dx-or @ a
p [¢} [¢} _ [¢} _ _ 9 _ é_ )(| _ =
ax-ac=0P gx-nc=0pP nc=g x b C—T—X.
b. & (x- X)issmallerthang (x - m)’.
69.
a
- +b +b
godv_alx+b)_aax+b_ .
n n n
Si:é(yi-v)zzé(awb- ax+b))° _ g (ax - ax)’
n-1 n- n-1
— aza (Xi - )_()2 = a%g?
n-1
b.
x=C, y=°F

y= 9(87 3)+32=189.14

s, = f = /35044 =1.872
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Oxygen Consumption

° ‘

T T
Treadmill Weight
Exercise Type

Thereisasignificant differencein the variability of the two samples. The weight training
produced much higher oxygen consumption, on average, than the treadmill exercise,
with the median consumptions being approximately 20 and 11 liters, respectively.

Subtracting they from the x for each subject, the differencesare 3.3, 9.1, 10.4, 9.1, 6.2,
25,22,84,87,144,25,-2.8,-04,5.0,and 11.5.

T T T T
0 5 10 15

Difference

The majority of the differences are positive, which suggests that the weight training
produced higher oxygen consumption for most subjects. The median differenceis about 6
liters.
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71.

a.  Themean, median, and trimmed mean are virtually identical, which suggests symmetry.

If there are outliers, they are balanced. The range of valuesisonly 25.5, but half of the
values are between 132.95 and 138.25.

150 —

140

strength

130 —

x

120 —

Theboxplot also displays the symmetry, and adds a visual of the outliers, two on the
lower end, and one on the upper.
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72. A table of summary statistics, astem and leaf display, and a comparative boxplot are below.
The healthy individuals have higher receptor binding measure on average than the individuals
with PTSD. Thereisalso morevariationin the healthy individuals' values. The distribution
of valuesfor the healthy isreasonably symmetric, while the distribution for the PTSD
individualsis negatively skewed. The box plot indicates that there are no outliers, and
confirms the above comments regarding symmetry and skewness.

PTSD Healthy 1]0 stem = tens
Mean | 32.92 52.23 3|2 |058 leaf = ones
Median 37 51 9| 3 | 1578899
Std Dev 9.93 14.86
Min 10 23 7310 | 4 | 26
Max | 46 72 8115
9763 | 6
217
PTSD —
K%
©
=]
S
=
©
k=
Healthy — —_— —
I I I I I I I
10 20 30 40 50 60 70
Receptor Binding
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73.
0.7|8 stem=tenths

0.8]11556 |eaf=hundredths
0.9 2233335566
1.0/0566

X =.9255,5 =.0809, X =.93
lowerfourth = .855,upperfourth =.96

T T T
0.8 0.9 1.0

Cadence
The data appears to be a bit skewed toward smaller values (negatively skewed).
There are no outliers. The mean and the median are closein value.
74.

a Mode = .93. It occursfour timesin the data set.

b. The Modal Category isthe one in which the most observations occur.
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a.  Themedian isthe same (371) in each plot and al three data sets are very symmetric. In
addition, all three have the same minimum value (350) and same maximum value (392).
Moreover, al three data sets have the same lower (364) and upper quartiles (378). So, all
three boxplots will beidentical.

b. A comparative dotplot is shown below. These graphs show that there are differencesin
the variability of the three data sets. They also show differencesin the way the values are
distributed in the three data sets.

+ + + + + +- Typel

----- + + + + + +- Type 2
_____ + + + + + +- Type 3

3520 3600 3680 3760 3840 3920

c. Theboxplotin (a) isnot capable of detecting the differences among the data sets. The
primary reason is that boxplots give up some detail in describing data because they use
only 5 summary numbers for comparing datasets. Note: The definition of lower and
upper quartile used in thistext is slightly different than the one used by some other
authors (and software packages). Technically speaking, the median of the lower half of
the datais not really the first quartile, although it is generally very close. Instead, the
medians of the lower and upper halves of the data are often called the lower and upper
hinges. Our boxplots use the lower and upper hinges to define the spread of the middle
50% of the data, but other authors sometimes use the actual quartilesfor this purpose.
The differenceisusually very slight, usually unnoticeable, but not always. For example
in the data sets of this exercise, a comparative boxplot based on the actual quartiles (as
computed by Minitab) is shown below. The graph shows substantially the same type of
information as those described in (@) except the graphs based on quartiles are able to
detect the slight differences in variation between the three data sets.

Type of wire

T T T
350 360 370 380 390
MPa
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The measures that are sensitive to outliersare: the mean and the midrange. The mean is
sensitive because all values are used in computing it. The midrange is sensitive because it
uses only the most extreme valuesin its computation.

The median, the trimmed mean, and the midhinge are not sensitive to outliers.

The median is the most resistant to outliers because it uses only the middle value (or values)
in its computation.

The trimmed mean is somewhat resistant to outliers. The larger the trimming percentage, the
more resistant the trimmed mean becomes.

The midhinge, which uses the quartiles, is reasonably resistant to outliers because both
quartiles are resistant to outliers.

2355566777888
0000135555
00257

stem: ones
leaf: tenths

O© O ~N O AD WD E O
£g 5

5
Bwoooa

L

0245
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Interval Freguency Rd. Freg. Density
0-<2 23 500 250
2-<4 9 196 .098
4-<6 7 152 076
6-<10 4 .087 022
10<20 1 022 .002
20-<30 2 043 .004
025 ——
020 —
> 015 —
‘n
c
8 o010
005 —
000 —
| | | | | | |
0 2 46 10 20 30
Repair Time

a  Sincetheconstant X issubtracted from each x valueto obtain eachy value, and

addition or subtraction of aconstant doesn’t affect variability, sf, = Si and S, =S,

b. Let c=1/s, wheresisthe sample standard deviation of the x’sand also (by a) of they’s.
Thens,=csy = (1/s)s=1, and s, =1. Thatis, the“standardized” quantities z, ... , z,
have a sample variance and standard deviation of 1.

4?2
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' g _ _ %+ x,]
= Xy = NX, + X4y, SOXpyy = ———n
e.l X Ia:i X 1 Xn+1 1 (n+1)

n+l n+l

I"|S§+1 = é (X| - )_(n+1)2 :é Xiz - (n+1))_(nz+1
i=1 i=l

= é Xi2 - nif +X§+1+n)_(nz - (n+1))_(n2+1
i=1
= (n- D +{x¢, + %2 - (n+DX,}

When the expression for X,,,, from ais substituted, the expression in braces simplifies to

r](Xn+1 - )_(n)z

the following, as desired:

(n+1
% = 15(1258) +118 _ 2005 _ . .,
16
- IEVAY i 5
§a =0 s Boa X)W g0, AL 1259
(n+1) 15 (16)

=.245+.038 =.238. So the standard deviation S,,; =+/.238 =.532
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Bus Route Length

0.06 — ]
0.05 — T
0.04 — __
§ 0.03 —
fa
0.02 —
0.01 —H
0.00 —H
T T T T T
5 15 25 35 45
length
16 s
Proportion lessthan 20= 8@?_9: .552
@39 g
0 s
Proportion at least 30 2864—2:.102
2391 g

First compute (.90)(391 + 1) = 352.8. Thus, the 90" percentile should be about the 352"
ordered value. The 351% ordered valueliesin theinterval 28 - < 30. The352™ ordered
valueliesin theinterval 30 - < 35. Thereare 27 valuesin theinterval 30 - < 35. Wedo
not know how these values are distributed, however, the smallest value (i.e., the 352"
valuein the data set) cannot be smaller than 30. So, the 90" percentile isroughly 30.

First compute (.50)(391 + 1) = 196. Thusthe median (50" percentile) should be the 196
ordered value. The 174" ordered value liesin the interval 16-<18. Thenext 42
observation lieintheinterval 18 - < 20. So, ordered observation 175to 216 lieinthe
intervals 18 - < 20. The 196" observation is about in the middle of these. Thus, we
would say, the median is roughly 19.

Assuming that the histogram is unimodal, then there is evidence of positive skewnessin the
data since the median lies to the left of the mean (for a symmetric distribution, the mean and
median would coincide). For more evidence of skewness, compare the distances of the 5th
and 95th percentiles from the median: median - 5th percentile = 500 - 400 =100 while 95th
percentile -median = 720 - 500 = 220. Thus, the largest 5% of the values (above the 95th
percentile) are further from the median than are the lowest 5%. The same skewnessis evident
when comparing the 10th and 90th percentiles to the median: median - 10th percentile = 500 -
430 =70 while 90th percentile -median = 640 - 500 = 140. Finally, note that the largest

value (925) is much further from the median (925-500 = 425) than is the smallest value (500 -
220 = 280), again an indication of positive skewness.
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Thereis some evidence of acyclical pattern.

60 —

.
50 — - v . . v

Temperature

40 —|

Index 5 10

X, = .1x, +.9% = (.1)(54) +(.9)(47) = 47.7
X, =.1x, +.9%, = (.1)(53) +(.9)(47.7) = 48.23 » 48.2,€tc.

—

xfora=.1 Xfora=.5

1 47.0 47.0
2 47.7 50.5
3 482 51.8
4 484 50.9
5 482 484
6 480 47.2
7 479 471
8 481 48.6
9 484 498
10 485 499
11 48.3 47.9
12 48.6 50.0
13 48.8 50.0
14 48.9 50.0

a=.1 gives asmoother series.
Z =ax +(1' a))_<t—l
=ax +(1' a)[axt-l"'(l' a)X-z]
=ax +a(1‘ a)xt-l+(1- a)z[axt-z +(1‘ a)X-s]
=..=ax +a(l- a)x +a(l- a)’x ,+..+a(l-a) *x+(1-a)"'x

Thus, (x bar); depends on x; and all previousvalues. Ask increases, the coefficient on x.
k decreases (further back in timeimplieslessweight).

Not very sensitive, since (1-a)"™" will be very small.

45



83.

Chapter 1. Overview and Descriptive Statigtics

When there is perfect symmetry, the smallest observation y; and the largest

observationy, will be equidistant from the median, so Y, - X =X- Y, .
Similarly, the second smallest and second largest will be equidistant from

themedian,so y, ;- X=X- Y,

and so on. Thus, thefirst and second numbersin each pair will be equal, so that

each point in the plot will fall exactly on the 45 degree line. When the datais

positively skewed, y, will be much further from the median thanisyq, so Y, - X

will considerably exceed X - Y, and the point (Y, - X,X- ;) will fal

considerably below the 45 degreeline. A similar comment apliesto other pointsin
the plot.

Thefirst pointinthe plot is (2745.6 — 221.6, 221.6 0- 4.1) = (2524.0, 217.5). The
othersare: (1476.2, 213.9), (1434.4, 204.1), ( 756.4, 190.2), ( 481.8, 188.9), ( 267.5,
181.0), (2084, 129.2), (1125, 106.3), ( 81.2, 103.3), ( 53.1, 102.6), ( 53.1, 92.0),

(33.4, 23.0), and (20.9, 20.9). Thefirst number in each of thefirst seven pairs
greatly exceed the second number, so each point falls well below the 45 degreeline.
A substantial positive skew (stretched upper tail) isindicated.



CHAPTER 2

Section 2.1

a  S={ 1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214,
3241, 4213, 4231}

b. Event A containsthe outcomeswhere 1isfirst inthelist:
A ={1324,1342, 1423, 1432}

c. Event B containsthe outcomeswhere 2 isfirst or second:
B ={ 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231 }

d. The compound event A E B contains the outcomesin A or B or both:
AEB ={1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}

a EventA={RRR,LLL,SSS}
b. EventB={RLS RSL,LRS LSR SRL,SLR}
c. EventC={RRL, RRS RLR RSR LRR, SRR}

d. EvetD={RRL,RRS RLR,RSR LRR, SRR,LLR,LLS LRL,LS.,RLL, SLL, SSR,
SSL, SRS, SLS, RSS, LSS}

e. Event D¢contains outcomeswhere all cars go the same direction, or they all go different
directions:
D¢={ RRR,LLL,SSS RLS RS,LRS LSR,SRL,SLR}

Because Event D totally encloses Event C, the compound event CED = D:
CED={RRL,RRS RLR,RSR,LRR, SRR, LLR, LLS,LRL,LS.,RLL,SLL, SSR,
SSL, SRS, SLS RSS, LSS}

Using similar reasoning, we see that the compound event CCD =C:
CCD ={ RRL,RRS RLR,RSR,LRR, SRR}

a7
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Event A ={ SSF, SFS, FSS}
Event B = { SSS, SSF, SFS, FSS}

For Event C, the system must have component 1 working ( Sin thefirst position), then at
least one of the other two components must work (at least one Sin the 2" and 3"
positions: Event C ={ SSS, SSF, SFS}

Event C¢={ SFF, FSS, FSF, FFS, FFF}
Event AEC={ SSS, SSF, SFS, FSS}
Event ACC ={ SSF, SFS}
Event BE C ={ SSS, SSF, SFS, FSS}
Event BCC ={ SSSSSF, SFS}

Home Mortgage Number
Outcome 1 2 3 4
1 F F F F
2 F F F \%
3 F F \Y, F
4 F F \Y, \%
5 F Y F F
6 F V F \%
7 F Y V F
8 F Y V \%
9 V F F F
10 V F F Vv
1 Vv F V F
120V F \Y, \Y
13 Vv vV F F
4 Vv vV F \%
15 Vv V \Y, F
16 V Y \Y, \%

Outcome numbers 2, 3,5,9
Outcome numbers 1, 16
Outcomenumbers 1, 2, 3,5,9

In words, the UNION described is the event that either all of the mortgages are variable,
or that at most al of them are variable: outcomes 1,2,3,5,9,16. TheINTERSECTION
described isthe event that all of the mortgages are fixed: outcome 1.

The UNION described is the event that either exactly three are fixed, or that all four are
the same: outcomes 1, 2, 3,5, 9, 16. The INTERSECTION in wordsisthe event that
exactly three are fixed AND that all four are the same. This cannot happen. (There are no
outcomesin common) : bC c= /A&
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a
Outcome
Number | Outcome
1 111
2 112
3 113
4 121
5 122
6 123
7 131
8 132
9 133
10 211
11 212
12 213
13 221
14 222
15 223
16 231
17 232
18 233
19 311
20 312
21 313
22 321
23 322
24 323
25 331
26 332
27 333

b. OutcomeNumbers1, 14, 27
c. Outcome Numbers6, 8, 12, 16, 20, 22

d. OutcomeNumbersl, 3,7,9,19, 21, 25, 27
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Outcome
Number | Outcome

1 123
2 124
3 125
4 213
5 214
6 215
7 13

8 14
9 15
10 23
11 24
12 25
13 3

14 4

15 5

Outcomes 13, 14, 15
Outcomes 3,6, 9,12, 15

Outcomes 10, 11, 12, 13, 14, 15

S={BBBAAAA,BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA,
BABABAA, BABAABA, BABAAAB, BAABBAA, BAABABA, BAABAAB,
BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA, ABBAABA,
ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB,
ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB,
AABAABB, AAABBBA, AAABBAB, AAABABB, AAAABBB}

{AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB}
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d. (A1CACAZ;QE (A1CCACAZQE (ALGC AL (C Asg)

FS

@

e A1E (A2CAy)

52
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a. Inthediagram on the left, the shaded areais (AEB)¢ On theright, the shaded areaisA¢

the striped areais B¢, and the intersection A ¢C B¢occurs where there is BOTH shading
and stripes. These two diagrams display the same area.

b. Inthediagram below, the shaded arearepresents (A CB)¢ Using the diagram on the right

above, theunion of Ac¢and Beisrepresented by the areas that have either shading or
stripes or both. Both of the diagrams display the same area.

10.

a. A ={Chev, Pont, Buick}, B ={Ford, Merc}, C = {Plym, Chrys} are three mutually
exclusive events.

b. No, let E={Chev, Pont}, F={Pont, Buick}, G = {Buick, Ford}. These events are not
mutually exclusive (e.g. E and F have an outcome in common), yet thereis no outcome
common to all three events.
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Section 2.2

11.
a .07

b. .15+.10+.05=.30

c. Letevent A = selected customer owns stocks. Then the probability that a selected
customer does not own a stock can be represented by
PA®=1-PA)=1-(18+.25)=1-.43=.57. Thiscould also have been done easily
by adding the probabilities of the funds that are not stocks.

12.

a PAEB)=50+.40-.25=.65

b. P(AE B)t=1-.65=.35

c. ACB¢;PACBY=PA)-PACB)=.50-.25=.25
13.

a. awarded either #1 or #2 (or both):
PALE A))=PA1) +PAy)-PALCAy)=.22+.25-11=.36

b. awarded neither #1 or #2: .
P(A1¢Q Azq) = P[(A]_ E Az) q =1- P(Al E Az)zl- 36=.64

c. awarded at least one of #1, #2, #3:
PALE Az E Ag)=P(A1) + P(A2) + P(A3) - P(A1 C Ag) - P(A1 C Ag) -
P(A2CA3)+PA1C A C Ag)
=.2+25+.28-.11-.05-.07+.01= .53
d. awarded none of the three projects:

P(A16C A,CC Ast)=1— P(awarded at least one) = 1 - 53= .47,

e. awarded #3 but neither #1 nor #2:
P(A1CC A¢C A3z)=P(A3)-P(A1 C A3)—PA>C Az)

+PA1C A C Aj)
=.28-.05-.0/+.01 =.17

=
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either (neither #1 nor #2) or #3:
P[(A1¢C A,¢) E As] = P(shaded region) = P(awarded none) + P(A 3)
= A47+.28=.75

A

AL

o

Alternatively, answersto a— f can be obtained from probabilities on the accompanying

A
£
o
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14.
a P(AEB)=PA)+PB)-PACB),
s0 P(A C B) = P(A) + P(B) - P(A E B)
=8+7-9=56

b. P(shaded region) = P(AE B)-P(AC B)=.9-.6=.3
Shaded region = event of interest = (A C B§ E (A¢C B)

15.

a. Letevent E bethe event that at most one purchases an electric dryer. Then E¢is the event
that at least two purchase electric dryers.

P(E)=1—P(E)=1- 428 =572

b. Letevent A betheevent that all five purchase gas. Let event B be the event that all five
purchase electric. All other possible outcomes are those in which at least one of each
typeispurchased. Thus, the desired probability =

1-P(A)-PB)=1-.116-.005=.879

16.
a. Therearesix simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD,
and PDC. The probability assigned to eachis ¢.

b. P(Cranked firs) = P({CPD,CDP} )= 1 +1 =2 =333

c. P(Crankedfirstand D last) = P({CPD}) = %



17.

18.

19.

20.
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a. The probabilities do not add to 1 because there are other software packages besides SPSS
and SA S for which requests could be made.

b. PAG=1-PA)=1-.30=.70

c. PAE B)=PA)+PB)=.30+.50=.80
(since A and B are mutually exclusive events)

d. P(ACC Bf=P[(AE B)q (DeMorgan'slaw)
=1-P(A E B)
=1-.80=.20

This situation requires the complement concept. The only way for the desired event NOT to
happenisif a75W bulbis selected first. Let event A bethat a75W bulb is selected first,

and P(A) = 3. Then the desired event isevent A
SoPAG=1-PA)=1- £ =2=60

15 15

Let event A be that the sel ected joint was found defective by inspector A. P(A) = 555 . Let

event B be analogous for inspector B. P(B) = 13055 Compound event AEB is the event that

the sel ected joint was found defective by at least one of the two inspectors. P(AEB) = 75555 -

a.  Thedesired event is (A E B)¢; so we use the complement rule:
PAEB)¢=1- P(AEB) =1- 15505 = 10005 = 8841

b. ThedesiredeventisBC A¢ PBC A® =PB)- P(A C B).

P(A G B) =P(A) + P(B) - MAEB),
= 0724+ 0751 - .1159 = 0316

SoPBCAG=PFB)-PACB)
=.0751- .0316 = .0435

Let S1, S2 and S3 represent the swing and night shifts, respectively. Let C1 and C2 represent
the unsafe conditions and unrelated to conditions, respectively.

a. Thesmpleeventsare{S1,C1}, {S1,C2}, { S2,C1}, { S2,C2} {S3,C1}, {S3,C2}.

b. P{C1})=P{SL1C1}{S2,C1} {S3C1})=.10+.08 +.05=.23

c. P{SL}¢=1-PESLC1},{S1,C2})=1—(.10+.35) =55

57
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22.

23.

Assume that the computers are numbered 1 — 6 as described. Also assume that computers 1

Chapter 2: Probability

P{M,H}) = .10

P(low auto) = P[{(L,N}, (L.L), (L,M), (L,H)}] =.04+.06 + .05+ .03 =.18 Following a
similar pattern, P(low homeowner's) =.06 + .10 + .03 =.19

P(same deductiblefor both) = P[{ LL, MM, HH}]=.06 +.20+.15= 41
P(deductibles are different) = 1 — P(same deductibles) = 1 - .41 = .59

P(at least one low deductible) = P[{ LN, LL, LM, LH, ML, HL }]
=.04+.06+.05+.03+.10+.03=.31

P(neither low) =1 — P(at least onelow) =1 - .31=.69

PA1C A2 =P(A1) +P(Ay)-PALE Ap)=4+5-6=3
PAA1C A0 =P(A1)-P(A1CAz)=4-3=1

P(exactly one) = P(A1 E A,)-P(A; C Ay)=.6-.3=.3

and 2 arethe laptops. Possible outcomesare (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6)
(34) (3,5 (3,6) (4,5 (4,6) and (5,6).

a

P(both are laptops) = P[{ (1,2)}] = +-=.067

P(both are desktops) = PI{ (34) (3,5) (3,6) (4,5) (46) (5,6)}] = & = 40

P(at least one desktop) = 1 — P(no desktops)
=1- P(both are laptops)
=1-.067=.933

P(at least one of each type) = 1 — P(both are the same)
= 1—P(both |aptops) — P(both desktops)
=1-.067-.40=.533
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25.
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Since A is contained in B, then B can be written as the union of A and
(B C A®, two mutually exclusive events. (See diagram).

@ )
From Axiom 3, PIAE (B C A®] =P(A) + P(B C Ad). Substituting P(B),
PB)=PA)+PBC AQorPB)-PA)=PBC AQ. FromAxiom1,

PBC AQ3 0,s0P(B)3 P(A) or P(A) £ P(B). For general events A and B, P(A C B) £ P(A),
and P(A E B)3 P(A).

P(A C B) = P(A) + P(B) - (AEB) = .65

P(A C C)=.55, P(BC C)=.60

P(ACBC C)=PAE BE C)-P(A) - P(B) - P(C)
+PACB)+PACC)+PBC C)

98-.7- 8- .75+ .65+ .55+ .60

53

a. P(AE BE C)=.98, asgiven.
b. P(noneselected)=1-P(AEBE C)=1-.98=.02
c. P(only automatic transmission selected) = .03 from the Venn Diagram

d. P(exactly oneof thethree) =.03+.08 +.13=.24

59
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27.

28.
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P(Alq):l—P(Al):].'.lZ:.SS
P(A1CA)=PA)+PA,)-PALE Ay)=.12+.07-.13= 06

P(AlgAZCASG):P(Al(;Az)' P(A1CA2QA3):.06-.01:.05

d. P(at mosttwo errors) =1—P(all threetypes)
=1-PA1CA2CA3)
=1-.01=.99

Outcomes: (A,B) (A,C) (A,Cy) (AF) (BA) (B,C)) BC) (BF

(C1,A) (C1,B) (C1,C) (C1,F) (C2,A) (C2,B) (C2,Cy) (CoF)
(FA) (FB) (FC1) (FCp)

Pl(AB)or(BA)=4%=+=.1
P(atleastoneC)= & =L =7
P(at least 15 years) = 1 — P(at most 14 years)

=1-PF[(3,6) or (6,3) or (3,7) or (7,3) or (3,10) or (10,3) or (6,7) or (7,6)]
=1- £=1- 4=6

There are 27 equally likely outcomes.

a

b.

P(al thesame) = P{(1,1,1) or (222 or (333)] = = = &

P(at most 2 are assigned to the same station) = 1 — P(all 3 are the same)

Pl different) = [{(1,2,3) (1,3,2) (21,3) (23,1) (3,1,2) (321)}]
-6 —2

27 9
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Section 2.3

29.
a.  (5)(4) =20 (5choicesfor president, 4 remain for vice president)

b.  (5)#)(3)=60

a0 b5l S .
C. +=——=10 (Noordering isimplied in the choice)
€22 a3
30.
a. Because order isimportant, we'll use Pg 3= 8(7)(6) = 336.
b. Order doesn’'t matter here, so we use Czp =593,775.
B0 200 2820
c. From each group we choose 2: g T g T g £=83160
2p 825 &2
. 83160
d. Thenumerator comes from part ¢ and the denominator from part b; —— =.
593,775
e.  We usethe same denominator asin part d. We can have all zinfandel, all merlot, or all
cabernet, so P(all same) = P(al z) + P(al m) + P(all c) =
280, 8006, B20
=tg =tg =
S6; 565 £65_ 1162 _
2806 593,775
&6 5
31

a  (n)(nz) = (9)(27) =243

b. (ny)(n2)(n3) =(9)(27)(15) = 3645, so such apolicy could be carried out for 3645
successive nights, or approximately 10 years, without repeating exactly the same

program.

61
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33.
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54 3 4=240

1134=12

4 3 3 3=108

#with at least on Sony = total #- # with no Sony = 240 — 108 = 132
_ 132 —

P(at least one Sony) = 55 =.55

P(exactly one Sony) = P(only Sony isreceiver)
+ P(only Sony is CD player)
+ P(only Sony is deck)

_1"33 3+4' 1" 3 3+4' 3731_27+36+36

240 240 240 240
- a3
240
55
200 A a9
€5 520
285 BT6
g 2 g 221190
4g &l g
aBEd 70
P(exactly 4 have cracks) = g4£ 1 2_ 1190 =.022
2250 53130
55
P(at least 4) = P(exactly 4) + P(exactly 5)
aBEATO BEEdT0
- §4£ Lo, gsﬁ 00_ 122+.001=.023
2250 2250
55§55

62
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22086250
aQog‘38,760. P(all from day shift) = 56£0¢= 38,760 _
°5 o450 8,145,060

£6 5

20250 a5@300 &0@S850

P(aIIfrom&ameshift):g 650, §6£0g+§ goz
50

- %59 +
€65 o 565
=.0048 + .0006 + .0000 = .004

P(at |east two shifts represented) = 1 — P(all from same shift)
=1-.0054=.9946

Let A; = day shift unrepresented, A , = swing shift unrepresented, and A 3 = graveyard
shift unrepresented. Thenwewish P(A1E A, E Aj).
P(A 1) = P(day unrepresented) = P(all from swing and graveyard)

250 300 5850
A %’ PA) = E,%;, P(As) = aé ‘g
800
P(A1 G A) = P(all from graveyard) = &5
850
865
B850 5805
P(Al(;As’):iB' p(AZ(;Ag)_g_E" PAL C Ay C A)=0,
50 450

1¥ 65

35259 8509 3659 aéOQ aéSQ a@OQ
565+§65+§65_§66_§65_g65
865 865 £65 £6) 865 865

=.2939 - .0054 = .2885

SOP(AlEAQEAg):




35.

36.

37.

38.
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(o]

There are 10 possible outcomes-- 2; ways to select the positions for B’svotes: BBAAA,
(7]

BABAA, BAABA, BAAAB, ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.

Only thelast two have A ahead of B throughout the vote count. Since the outcomes are

equally likely, the desired probability is % = .20.

a n;=3,n=4n3=5sn;" n, nz3=60runs

b. ni=1, (just onetemperature), n, =2, n3 = 5impliesthat there are 10 such runs.

(o]
Thereare Tways to select the 5 runs. Each catalyst is used in 12 different runs, so the
7]
number of ways of selecting one run from each of these 5 groupsis 12°. Thus the desired
5

probability is 12 =.0456
a®00

855

90
27815,
a  P(sdlecting 2- 75 watt bulbs) = 2_"’: 159 _ 2067
aé59 455
3%
Ao 59 8806
§33+§33+ gfu 4+10+20
b. P(all three are the same) = — = =.0747
2250 455

io:

45060 _ 120 _
C. glglﬁlg_ 455 .2637
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d. Toexamineexactly one, a 75 watt bulb must be chosen first. (6 ways to accomplish this).
To examine exactly two, we must choose another wattagefirst, thena75watt. (9~ 6
ways). Following the pattern, for exactly three, 9~ 8~ 6 ways; for four,9” 8" 7” 6;
forfive, 9” 8" 77 6” 6.

P(examine at least 6 bulbs) = 1 — P(examine 5 or |ess)
=1-P(examineexactly 1 or 2or 3or 4 or 5)
=1-[P(one) + P(two) + ... + P(five)]

é6 9" 6 9°8" 6 9°8° 76 9°"8 76”6 |
=1- xz—+ + + + p
85 15°14 15" 1413 15" 14" 13 12 15" 14" 13" 12" 114

=1-[4+.2571 +.1582 +.0923 + .0503]

=1-.9579=.0421
39.
a.  Wewant to choose al of the 5 cordless, and 5 of the 10 others, to be among thefirst 10
252800
E5k55_ 252

serviced, so the desired probability is =.0839

2450 3003
105
b. Isolating one group, say the cordless phones, we want the other two groups represented in

thelast 5 serviced. So we choose 5 of the 10 others, except that we don’t want to include
the outcomes where the |ast five are all the same.

O P
X
So we have —QS . But we have three groups of phones, so the desired probability is
0
§s5
é&300 _U
3¢ = 20
0 0_320) _ 5498
2850 3003

55

c. Wewant to choose 2 of the 5 cordless, 2 of the 5 cellular, and 2 of the corded phones:

BBy
8282 1000 _ oo
250 5005

865
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If the A’ s are distinguishable from one another, and similarly for theB’s, C'sand D’s,
then there are 12! Possible chain molecules. Six of these are:

A1A2A3B2C3C1D3CD1D2B3By, A 1A 3AB,C3C D3C,D1D2B3B;

A2A1A3B>C3C D3C,D1D2B3B;, A2A3A 1B2C3CD3C,D;1D2B3B;

A3zA1A,B,C3C D3C,D1D2B3B;, AzA LA 1B2C3CD3C,D;1D2B3B;
These 6 (=3!) differ only with respect to ordering of the 3 A’s. In general, groups of 6
chain molecules can be created such that within each group only the ordering of the A’s
isdifferent. When the A subscripts are suppressed, each group of 6 “collapses” into a
singlemolecule (B's, C'sand D’s are still distinguishable). At this point there are

% molecules. Now suppressing subscriptsontheB’s, C'sand D’sin turn gives

ultimately (;2)'4 = 369,600 chain molecules.

Think of the group of 3 A’sasasingle entity, and similarly for theB’s, C's,and D’s.
Then there are 4! Waysto order these entities, and thus 4! Moleculesin whichthe A’sare
contiguous, theB's, C's, and D’sare also. Thus, P(all together) =

-2 =.00006494 .

369.600

P(at least one F among 1% 3) = 1 — P(no F'samong 1% 3)
4" 3 2 24
=1- ——=1- =1- .0714 =.9286
8 7 6 336
An aternative method to cal culate P(no F's among 1% 3)
would be to choose none of the females and 3 of the 4 males, asfollows:

Efescle

S0E35_ 4 _

=— =.0714, obviously producing the same result.

80 56
&35
ot
P(al F'samong 1% 5) = g‘gglg = % =.0714
55

P(orderings are different) = 1 — P(orderings are the same for both semesters)
=1— (# orderings such that the orders are the same each semester)/(total # of
possible orderings for 2 semesters)
87654321
e o e 5 o o o o - 99997520
(87 6543 21) @B 7654321
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43.
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Seats:

£ [N | EN [ ER [N

poepiniey) = 2 4 3 211 _ 4e7
654321 15

P(J& P next to each other) =P(J&Pin1&2)+ ... + P(J&Pin 5&6)
1 1

P(at least one H next to hisW) = 1 — P( no H next to his W)

We count the # of ways of no H next to hisW asfollows:

# if orderings without a H-W pair in seats#1 and 3and no H next to hisw =6*~ 4~ 1* "~ 2*
"1 1=48

*= pair, ¥ =can’t put the mate of seat #2 here or else aH-W pair would bein#5 and 6.

# of orderings without a H-W pair in seats#1 and 3, and noH nexttohisw =6~ 4~ 2" 2~
27 1=192

#= can’t be mate of person in seat #1 or #2.

So, # of seating arrangements with no H next to W = 48 + 192 = 240

240 1
=—,s0
65 4321 3

1 2
P(at least one H next to hisW) =1 - 5 = 5

And P(noH nextto hisW) = =

#of 10 highstraights=4" 4 4 4 4(4-10's,4-9's, €etc)

5
P(10 high straight) = 4 - = 1024 =.000394
3529 2,598,960
5%

5

P(straight) = 10” =.003940 (Multiply by 10 because there are 10 different card

&5
values that could be high: Ace, King, etc.) There are only 40 straight flushes (10 in each suit),
S0

P(straight flush) = 4_0__ =.00001539
6@29
§s55

67
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LB o o _®@n?
&G KO-k (-KIK En- K

The number of subsets of size k = the number of subsets of size n-k, because to each subset of
size k there corresponds exactly one subset of size n-k (the n-k objects not in the subset of

sizek).
Section 2.4
45,
a  P(A)= .106+.141+ 200 = 447, P(C) =.215 + .200 + .065 + .020 = .500 P(A C C) =
.200
b. PAIC) = P(AGC) = 200 =.400. If we know that the individual came from ethnic
P(C) .500
group 3, the probability that he hastype A blood is.40. P(C|A) =
P(ACC) _.200 _ - _
= =.447 . 1f aperson hastype A blood, the probability that heis
P(A) 447

from ethnic group 3is.447

c. Defineevent D ={ethnic group 1 selected}. We are asked for P(D|B§) =
P(BC BY = 200 =.400. P(DCB®=.082 + .106 +.004 = .192, P(B® = 1— P(B) =
P(B9 00 . i . . 192,
1-[.008 +.018 + .065] = .909

46. Let event A bethat the individual ismorethan 6 feet tall. Let event B bethat the individual is
aprofessional basketball player. Then P (A¥%B) = the probability of theindividual being more
than 6 feet tall, knowing that the individual is aprofessional basketball player, and P (BYA) =
the probability of theindividual being a professional basketball player, knowing that the
individual ismorethan 6 feet tall. P (AYB) will belarger. Most professional BB players are
tall, so the probability of an individual in that reduced sample space being more than 6 feet
tall isvery large. The number of individualsthat are pro BB playersissmall in relation to the
# of malesmore than 6 feet tall.
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C,

e}

P(BYA) = m = é =.50
P(A) 50
PB&A) = w = é =.50
P(A) 50
PAYB) = m = E =.6125
P(B) 40
P(A&/B) = w = E =.3875
P(B) 40
P(AYAEB) = PIAG (AE Bl =0 .71692
P(AE B) .65
PAVAL) = PAAGA) _.06_ .50

P(A) .12
.01
P(Al Q A2 (; A31/A1) = E = 0833

We want P[(exactly one) ¥2(at least one)].
P(at least one) =P(ALE ALE Ay
=.12+.07+.05-.06-.03-.02+.01=.14
Also notice that the intersection of the two eventsisjust the 1% event, since “ exactly one”
istotally contained in “at least one.”

04+.01 _

So P[(exactly one) Y2(at |east one)]= =.3571

The pieces of this equation can be found in your answersto exercise 26 (section 2.2):

P(A$|ACA)= P(f}(zgi)@ = % =.833
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Thefirst desired probability is P(both bulbs are 75 watt¥/#t least oneis 75 watt).
P(at least oneis 75watt) =1- P(noneare 75 watt)

290

525__1 36 _ 69

456 105 105

25
Notice that P[(both are 75 watt)C (at least oneis 75 watt)]
260
o5 _ 15
=P(bothare 75 watt) = —— = ——.
50 105
825
15
105 15
So P(both bulbs are 75 watt¥#t least oneis 75 watt) = 105 -2 2174
69 69
105

Second, we want P(same rating“zat least one NOT 75 watt).
P(at least one NOT 75 watt) = 1 — P(both are 75 watt)

15 0
105 105
Now, P[(same rating)C (at least one not 75 watt)] = P(both 40 watt or both 60 watt).
B0 a0
=te =
2y gzb _16
P(both 40 watt or both 60 watt) = =
é59 105
§25
16
. " o105 _ 16 _
Now, the desired conditional probability is 2 ~ 50" 1778
105

a P(M C LSC PR)=.05, directly from the table of probabilities
b. P(M C Pr)=PM,PrLS) + P(M,Pr,SS) = .05+.07=.12
c. P(SS)=sumof 9 probabilitiesin SStable=56, P(LS) =1=.56=.44

d.  P(M) = .08+07+.12+.10+05+.07 = 49
P(Pr) = .02+.07+.07+02+.05+02 = .25
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e. PMISSC P)= PMG SSC¢ Pl): .08 =.533
P(SSC PI) .04+.08+.03
P(SSCM C PI .08
( PesMcpy- PSSCMCPD _

PMCPl)  .08+.10
PILSM P)=1-P(SSM Pl)=1- .444= 556

a  PRfrom1™* C Rfrom2") =PR from 2" |Rfrom 1% ) - P(R from 1%)

= 8. 6 = 436
11 10
b. P(same numbers) = P(both selected balls are the same color)

= P(both red) + P(both green) = .436 +i . i =.581
11 10

Let A, bethe event that #1 failsand A, bethe event that #2 fails. We assumethat P(A 1) =
P(A;) =g and that P(A1 |A,) =P(A;| A1) =r. Then one approach isasfollows:

P(A1C A2)=P(Az|A1) - P(A1)=rq=.01

P(A1E A2)=P(A1 C Az) + P(ALIC Ap) +P(A1 C A9 =rq+2(1-r)q=.07

These two equations give 2g- .01 = .07, fromwhichg=.04 andr = .25. Alternatively, witht

=PAL@C Ax)=PA;C A9, t+.01+t=.07,implyingt=.03 and thus q = .04 without
reference to conditional probability.

vy - PAACB) _ P(B)

(sinceBiscontainedin A, AC B=B)

P(A)  P(A)
-0 0833
.60
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P(Al) =.22, P(Az) =.25, P(Ag) =.28, P(Al Q A2) =.11, P(Aj_ C A3) = .05, P(A2 C A3) =.07,
P(A1CA2C A3)=.01

PAGA) _11_

v ORRAIT TRy T 2
b. PA2C AsYA;) = PA E(Z)Q A = % =.0455
. P E P E
P ia)-TACUEA) FACAIEGGA)
_P(ACA)+P(AGA)-P(ACACA) _15_
P(A) 2

0 PACACAIAEAEA)=CACACA) Ol ;4

P(AEAEA) 53

Thisisthe probability of being awarded all three projects given that at |east one project
was awarded.

271, 21
A B)=P(BIA) P(A)= — ——=.0111
a M )F’(I)F’()4,3 -

[EEN

b. P(two other H’s next to their wives | Jand M together in the middle)
P[(H - W.orW - H)and(J - M.orM - J)and(H - W.orW - H)]
P(J - M.or.M - Jinthemiddle)
412121 16
654321 6
43 2°12°1_48
654321 6

numerator =

denominator =

. 16 _1
so the desired probability = — =—.
48 3
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c. Pl H'snexttoW’'s|J& M together)
=P(al H s next to W’s—including J& M)/P(J& M together)

614121
_ 6l _ 48_2
_51 2/11 4/3/211_240_-
6l

If P(BJA) > P(B), then P(B’|A) < P(B’).

Proof by contradiction.

Assume P(B’|A)3 R(B).

Then 1-P(BJA)3 1-P(B).
-PBIA)® —H(B).

P(BIA) £ P(B).
This contradicts theinitial condition, therefore P(B’|A) < P(B’).

P(ACB), P(ACB) _ P(AGB) +P(AGB) _P(B) _,
P(B) P(B) P(B) P(B)

P(A|B) +P(A¢B) =

P(AEB)GC) _ PI(ACC)E (BCC)]

P(AEB|C) = PC) O
_P(ACC)+P(BCC)- P(ACBCC)
P(C)

=P(AIC) + R(BIC)-P(AC B|C)
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4" .3=12=P(A,CB)=P(A)- P(B| A

35" .6=.21=P(A, G B)

25" 5=.125=P(A, G B)

a PA,CB)=.21

b. P(B)=MA1C B)+PA;C B)+PA;C B)=.455

_P(A,GB) _ .12
~ P(B) 455

P(A,[B) = % = .462 ,P(A3B) = 1- 264 - 462 = 274

c. PAB) = .264

42

haz loc
4

hasnt 28

P(not.disc C hasloc) __ 038
P(hasloc) .03+.42

a. P(notdisc|hasloc) = =.067

P(disc C noloc) _ .28

b. P(disc|noloc) =
P(no.loc) .55

=.509
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P(0 def in sample | O def in batch) = 1

&0
P(0 def in sample | 1 def in baich) = &25

290
P(L def in sample| 1 def inbatch) = $1p
200
825
s

=.200

(0]
PO def in sample | 2 def in batch) = 25
o
€25
22880
P(L def in sample | 2 def in batch) = E12815 55
2805
f25
P(2 def insample| 2 def inbatch) = _ 1 _ 1o,
200
€25

.622

. _ 5
a.  P(Odef inbatch | 0 def in sample) = =.578
b5+.24+.1244
P(1 def in batch | O def in sample) = .24 =.278
5+.24+.1244
1244

P(2 def in batch | O def in sample) = . =.144
5+.24+.1244
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b. P(0definbatch|1def insample) =0

.06
P(1 def in batch | 1 def in sample) = ——— =
.06 +.0712
. _ 0712
P(2 def in batch | 1 def in sample) = ———— =..
.06+.0712
62. Using atree diagram, B = basic, D = deluxe, W = warranty purchase, W' = no warranty

4" 3=12=P(BCW)

4 7=28=P(BCWY
6" .5=.30=P(DCW)

6" .5=.30=P(DC WY

PBCW) _ 12 _.12
PW)  .30+.12 42

=.2857

Wewant P(B|W) =
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PACBCC)=.75" .9  .8=.5400

PBG C)=PACBC O)+PACCBC C)
=5400+.25 .8 .7=.6800

P(C)=P(AC BC C)+P(A¢C B C C) + P(A C BEC C) + P(ACC BEC C)
= 54+045+.14+.015= .74

P(AGBGC) _.54
P(BCC) .68

PABCC) = =.7941



Chapter 2: Probability

64.
D4 x 99 = 0396
9« 02 = 0192
a P(+)=.0588
b, Plhasd|+)= 250 = 6735
.0588
c. P(doesn'thaved|-)= ﬂ =.9996
9412
65.

P(satis) = .51
2
mean | satis) = — = .3922
P( | satis) =
P(median | satis) = .2941

P(mode | satis) = .3137
So Mean (and not Mode!) isthe most likely author, while Median is least.
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Defineevents Al, A2, and A3 asflying with airline 1, 2, and 3, respectively. EventsO, 1, and
2are0, 1, and 2 flights are late, respectively. Event DC = the event that the flight to DC is
late, and event LA =the event that the flight to LA islate. Creating atree diagram as
described in the hint, the probabilities of the second generation branches are calculated as

follows. Forthe Al branch, P(OJA1) = PIDCICLA G = AIDCE xP[LAQ = (.7)(.9) = .63,
P(1JA1) = P[(DCICLA) E (DCCLA @] = (.7)(.1) + (.:3)(.9) = .07 + .27 = .34; P(2JA1) =
PIDCCLA] =P[DC] xP[LA] = (.3)(.1) =.03

Follow asimilar pattern for A2 and A3.

From the law of total probability, we know that
M1) =PAICT) + P(AZCL) + PACY)
= (from tree diagram below) .170 + .105 + .09 = .365.

Wewish to find P(A1[1), P(A2]1), and P(A2]1).

PO = 53
| PO a0 - (51039 - 10
PR = 03
PO = 0
| PO et o -
PIEJAZ] = 05
PO = 6
[ PRSI ® g )= (2008 = 0
PIEjA3] = 10
P(AL/1) = P(ALC ] = 170 =.466;
P()  .365
PAZ/1) = P(A2C1 _ .105 = 288
PQ)  .365
PATL) = P(A3C1) _ .090 = 247
PQ)  .365
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PU G F G Cr)=.1260

P(Pr C NFC Cr)= .05

P(Pr C Cr) = .0625 + .05= 1125

P(F G Cr) = .0840 + .1260 + .0625 = .2725
P(Cr) = 5325

R |y PPCCN) _ 1125 _ ) 0
P(Cr) 5325
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Section 2.5

68.

69.

70.

71.

72.

73.

Using the definition, two events A and B are independent if P(A|B) = P(A);
P(A|B) = .6125; P(A) = .50; .6125* .50, so A and B are dependent.

Using the multiplication rule, the events are independent if

P(A C B)=P(A)- P(B);

P(A C B)=.25;P(A) - P(B)=(5)(4)=.2. 251 .2, s0 A and B are dependent.

a. Sincethe events are independent, then A ¢and B¢are independent, too. (see paragraph
below equation 2.7. P(B4A® =. PBY=1-.7=.3

b. P(AE B)=P(A) + P(B) — P(AYP(B) = 4+ .7 + (4)(7) = .82

P(AB(C (AE B)) _ P(AB) _.12 _

c. P(ABYAE B)= - -
P(AE B) P(AE B) .82

P(A1C Ay)=.11 P(A;) - P(A2) =.055. A; and A ; are not independent.
P(A1 C A3)=.05P(A;) - P(A3)=.0616. A; and A 3 are not independent.
P(A, C A3)=.07,P(Ay) - P(A3)=.07. A, and A3 areindependent.

P(A¢C B) =P(B)— P(A C B)=P(B)- P(A) - P(B)=[1-P(A)] - P(B) =P(A®- P(B).
Altemaiively, P(AG|B) =~ A CB) _ P(B)- P(AGB)
P(B) P(B)

_P(B)- P(A):P(B)
P(B)

=1- P(A) = P(AQ).

Using subscriptsto differentiate between the selected individual s,

PO: C Oy) = P(Oy)- P(O;) = (44)(:44) = .1936

P(two individuals match) = P(A;CA,)+P(B;CB,) + P(AB,CAB,) + P(O,C0,)
= 427 + 107 + 08 + 44° = 3816

Let event E be the event that an error was signaled incorrectly. We want P(at |east one
signaled incorrectly) =P(E, E K E ...E Ej) =1-P(E¢C Ex¢C ...C Ejof). P(E)=1-.05
=.95. For 10 independent points, P(E;¢C E¢C ...C E o0 = P(E¢)P(E:S)...P(E1p® so = P(E;
EEE .. .EEQ=1- [95=.401. Similarly, for 25 points, the desired probability is=1 -
[P(EQ]® =1- (.95)*°=.723
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P(no error on any particular question) = .9, so P(no error on any of the 10 questions) =(.9)*° =
.3487. Then P(at least one error) = 1 — (.9)'° = .6513. For preplacing .1, the two probabilities
are (1-p)" and 1 — (1-p)".

Let g denote the probability that arivet is defective.

a.  P(seam need rework) = .20 = 1 — P(seam doesn’t need rework)
=1-P(norivets are defective)
=1-P(1™isn't def C ... C 25" isn’t def)
=1-(1-qg)*° 50.80=(1-q)*°,1—q=(.80)"?°, and thusq =1 -
.99111 = .00889.

b. Thedesired conditionis.10=1—(1-q)%,i.e. (1—q)* = .90, from which q =1 - .99579
=.00421.

P(at least one opens) = 1 — P(none open) = 1 — (.05)° = .99999969
P(at least one failsto open) = 1 = P(all open) = 1 — (.95)° = .2262

Let A1 = older pump fails, A, = newer pump fails, andx = P(A; C Ay). Then P(A1) =.10+X,
P(A2)=.05+x,andXx=P(A; C Az) =P(A1) - P(A2) = (10 + x)( .05+ x) . Theresulting
quadratic equation, x° - .85x +.005 = 0, has roots x = .0059 and x = .8441. Hopefully the
smaller root isthe actual probability of system failure.

P(system works) = P( 1 — 2 worksE 3— 4 works)
=P(1-2works) + P(3—4works) - P(1— 2 worksC 3—4 works)
= P(1 worksE 2 works) + P(3worksC 4 works) —P(1-2) - P(3—4)
= (.9+.9-81) + (.9)(.9) — (.9+.9-.81)(.9)(.9)
=.99+.81-.8019 =.9981
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{12_

i §

Using the hints, let P(A;) = p, and x = p, then P(system lifetime exceedsty) =p? +p®—p*=

2p? — p*=2x— . Now, set thisequal t0.99, or 2x —x¢ =.99p » — 2x +.99=0. Usethe

_ 2% (4)(%9) _2:.2

quadratic formulato solvefor x: = > > =1+.1=90r101

Since the value we want is a probability, and has to be = 1, we use the value of .99.

Event A: { (3, 1)(3,2)(3,3)(34)(3,5)(36) }, P(A) = %;
Event B: { (1,4)(24)(34)(4,4)(54)(6/4) },P(B) =

1.
L
Event C: { (16)25)BA(43(5:2(6,1)}, PO = 1;

Event AGB:{ (34)}; PACB) =

Event AGC:{ (34) }; PACC) = =;

Event BGC: { (34) }; MAGC) = % ;

Event ACBCC:{ (34)}; PIACBCC) = % :

PAYPB)= %5 = 35=PACB)

6 6 36
PAYP(C)= %5 =35 =PIACC)
PE)PC)= § %5 = 35=PBCO)

The events are pairwise independent.

PAYREB) PC)= § % % =315 " 3= PMACBGO)

The events are not mutually independent
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P(both detect the defect) = 1 — P(at least onedoesn’'t) =1-.2=.8

a  P(1* detects C 2" doesn’'t) = P(1% detects) — P(1¥ does C 2" does)

=9-8=1
Similarly, P(1 doesn’t C 2" does) = .1, so P(exactly one does)= .1+.1= .2

b. P(neither detects adefect) = 1 — [P(both do) + P(exactly 1 does)]

=1-[8+2]=0
so P(all 3 escape) = (0)(0)(0) = 0.

P(pass) = .70

a. (.70)(.70)(.70)=.343

b. 1—P(all pass) = 1-.343= 657

c. P(exactly one passes) = (.70)(.30)(.30) + (.30)(.70)(.30) + (.30)(.30)(.70) = .189

d. P(# pass£ 1) = P(0 pass) + P(exactly one passes) = (.3)° +.189 = .216

e. P(3pass|1ormorepass) =

_ P(3.passC 3 1.pass) _ P(3.pass) _ 343
P 1.pass) P(® l.pass) .973

=.353

a. LetD; = detection on 1% fixation, D, = detection on 2" fixation.
P(detection in at most 2 fixations) = P(D;) + P(D1¢C D)
=P(D,) + P(D2| D1¢)P(D,)
=p+p(l-p) =p2-p).

b. DefineDq, D,,...,Dyasina Then P(at most n fixations)

=P(D;) + P(D1¢C D;) + P(D1¢C Do¢C D3) + ...+ P(D1¢C D2¢C ... C Dp1¢C Dy)

=p+p(l-p)+pL-pY +...+pL-p)"*
1- (- p)"° ]
1-@-p" _,. (1- p)

1-1- p)
Alternatively, P(at most n fixations) = 1 — P(at least n+1 arereq’ d)

=p[1+(1-p+@A-py+..+@-p)"]=Pp-

=1— P(no detection in 1% n fixations)

=1—P(D1¢C Dy¢C ... C Dyt)
=1-(1-p)"

c.  P(no detection in 3 fixations) = (1—p)°
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d. P(passesinspection) = P({ not flawed} E {flawed and passes})
= P(not flawed) + P(flawed and passes)
= .9 + P(passes | flawed)- P(flawed) = .9+(1 - p)*(.2)

P(flawed C passed) _ .11- p)°

e. P(flawed | passed) =

P( passed) 9+.11- p)®
3
Forp=.5, P(fla/ved|passed):&=.0137
9+.1(.5)?
a P(A)—&: 02, P(B) = P(A C B) + P(ACC B)
10,000

1999 2000

=P(BJA) P(A) + P(B AG=—"".(2)+——- (.8)=.2
P(BIA) P(A) + P(BIAG P(AQ 9999 (.2 9999 (.8)

P(A C B) =.039984; since P(A C B) * P(A)P(B), the events are not independent.
b. P(A C B)=.04. Very littledifference. Yes.

c. P(A)=P(B)=.2 P(A)P(B) = .04, but (A C B) = P(BIA)P(A) = 1 X2 =.0222, so the
two numbers are quite different.
In a, the sample sizeis small relative to the “ population” size, while hereit is not.

P(system works) = P(1— 2 worksC 3—4—5— 6 worksC 7 works)
=P(1-2works) - P(3—4-5-6works) - P( 7 works)
=(.99) (.9639) (.9) = .8588

With the subsystem in figure 2.14 connected in parallel to this subsystem,

P(system works) = .8588+.927 — (.8588)(.927) = .9897
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86.
a. Forroute#1, P(late) = P(stopped at 2 or 3 or 4 crossings)
= 1— P(stopped at 0 or 1) = 1 —[.9* + 4(.9)*(.1)]
=.0523
For route #2, P(late) = P(stopped at 1 or 2 crossings)
=1-P(stopped at none) =1-.81=.19
thus route #1 should be taken.

P(4crossn g C late)
P(late)

b. P(4crossing route | late) =

(50523  _
" (5)(.0523) + (.5)(.19)

87.

1-p
P(at most 1Lislost) = 1 — P(both | ost)
=1- p2
P(exactly 1 lost) = 2p(1 - p)

P(exactlyl) _2p(1-p)
P(at.mostl) 1-p°?

P(exactly 1|atmost1) =
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Supplementary Exercises

88.

89.

90.

#having at least 1 of the 10 best = 1140 - # of crews having none of 10 best = 1140 -

iy
2901140 120- 1020

2

. 969
P(best will not work) = —— =.85
1140

500
linel) = —— =.333;
A ) 1500

50(500) +.44(400) +.40(600) _ 666 _
1500 1500

P(Crack) =

P(Blemish |line1) = .15

10(500) +.08(400) +.15(600) _ 172

P(Surface Defect) =- =
1500 1500
: .10(500) _ 50
P(line 1 and Surface Defect) = =
1500 1500

50,
So P(line 1 | Surface Defect) = = lfﬂ =.291
1500

The only way he will have one type of forms|eft isif they are all course substitution

forms. He must choose al 6 of the withdrawal formsto passto asubordinate. The
260

desired probability is §6E _

éOg
€65

He can start with the wd forms: W-C-W-C or with the csforms. C-W-C-W:
#ofways.6” 4° 5" 3+4° 6° 3" 5=2(360) =720,
Thetotal #waysto arrangethefour forms: 10° 9° 8" 7=5040.
The desired probability is 720/5040 = .1429

.00476
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P(AEB) = P(A) + P(B) — P(A)P(B)
626 = P(A)+P(B)-.144

So P(A) + P(B) =.770 and P(A)P(B) = .144.

Let x = P(A) and y = P(B), then using the first equation, y = .77 — x, and substituting thisinto
the second eguation, we get x (.77 —x) =.144or

% - .TTx +.144=0. Usethe quadratic formulato solve:

74772 - (4)(.144) _ 7713

2 2
SoP(A) = .45and P(B) = .32

=.32 or .45

a (8)(9)(8) =512

b.

j 032

<
032

/{ 032

B
8
s
ﬁf
8

Sz

.512+,032+.023+.023 = .608

c. P(lsent|1received) = PAsent ¢ k_ecaved) = 4256 =.7835
P(1received 5432
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a. Thereare5 4 3 2 1 =120 possible orderings, so ((BCDEF) = -1~ = .0083

1
120

b. #orderingsinwhichFis39=4 3 1*" 2 1 =24, (* because F must be here), so

dy — 24 —
PF3%)=2=2

43211
120

c. P(Flast)= 2

P(F hasn’t heard after 10 times) = P(not on #1 C not on #2 C...C not on #10)

.10
o

=¢=* = 1074
edg

When three experiments are performed, there are 3 different ways in which detection can
occur on exactly 2 of the experiments: (i) #1 and #2 and not #3 (ii) #1 and not #2 and #3;
(i) not#1 and #2 and #3. If the impurity is present, the probability of exactly 2 detectionsin
three (independent) experimentsis (.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384. If the
impurity is absent, the analogous probability is 3(.1)(.1)(.9) = .027. Thus
P(present | detected in exactly 2 out of 3) =

P(det ected.inexactly.2 C present)

P(det ected.in.exactly.2)
(.384)(.4)

" (384)(4) + (027)(6)

P(exactly 1 selects category #1 | al 3 are different)
_ P(exactly.l.selects#1 C all .aredifferent)
B P(all are.different)
Denominator = 65 4 = > =.5556
666 9

Numerator = 3 P(contestant #1 selects category #1 and the other two select two different
categories)
e 1 5'4:5' 4" 3

666 666

5 47
The desired probability isthen 6 5

Nlw
N |-
I
Ul
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Chapter 2: Probability

a. P(passinspection) = P(passinitially E passes after recrimping) = P(passinitially) + P(
fallsinitialy C goesto recrimping C is corrected after recrimping)
=.95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram)

=974
o _ _ P( passed.initially)
b. P(needed no recrimping | passed inspection) = - -
P( passed .inspection)
= ) =.97%4
974

a. P(both +) = P(carrier C both +) + P(not acarrier C both +)
=P(both + | carrier) x P(carrier)
+ P(both + | not acarrier) x P(not acarrier)
= (.90)%(.01) + (.05)%(.99) = .01058
P(both — ) = (.10)%(.01) + (.95)%(.99) = .89358
P(tests agree) = .01058 + .89358 = .90416
. .. 5
b Plcarrier | both + ve) = P(carrier C both !oosmve) _ (.90)°(.01) — 7656
P (both positive) .01058

Let A = 1 functions, B = 2" functions, so P(B) =.9, P(AE B) = .96, P(A C B)=.75. Thus,
P(A E B)=P(A) + P(B) - P(A C B) =P(A) +.9-.75= .96, implying P(A) = .81.
PBCA) _.75 _

ThisgivesP(B | A) =
WSPEIN=—5 N Tl

P(E C late) = P(late| E; )P(E;) = (.02)(:40) = .008
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Chapter 2: Probability

a. Thelaw of total probability gives

3
P(late) = é_ P(late| E; ) xP(E;)
i=1
= (.02)(.40) + (.01)(.50) + (.05)(.10) = .018

b. P(E¢|ontime) =1—P(E; | ontime)

_ 1 P(E, C o.n.time _1. (.98)(.4) — 601
P(ontime .982

Let B denote the event that a component needs rework. Then

3
PB)=a P(B A)xXP(A) = (.05)(.50) + (.08)(.30) + (.10)(.20) = .069

i=1

(05)(50) _

Th A.|B)= 62
us P(A1]B) 069
(.08)(.30) _
A,|B)= ~—2" = 348
P(A2|B) 069
(.10)(.20)
As|B)= ~—2 = 290
P(A3|B) 069
a Pl different) = (365)(364)..(3%6) _ ggs

(365) 10
P(at |east two the same) = 1 - .883=.117

b. P(at least two the same) = .476 for k=22, and = .507 for k=23

c. P(at least two have the same SS number) = 1 — P(all different)
_1- (1000)(999)...(991)

(1000)"
=1-.956=.044

Thus P(at least one “ coincidence”) = P(BD coincidence E SS coincidence)
=.117 + .044 — (.117)(.044) = .156
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Chapter 2: Probability

104.
A3

o e 0625
Rl =R3=R2

A5

523

15
a G|Ri <R, <Ry)= —————— = .67, P(B|R; <R, <R3) = .33, classify as granite.
PG|R <R, <R3) 15+ 075 P(B|R; <R, <R3) yasg

.0625
b. PG|R; <R3<Ry)= —— =.2941 < .05, so classify as basalt.
PG|R1<Rs<Ry) 195 y

.0375
G|R;<R; <R,) = —— =.0667, so classify as basalt.
PG|R3 <Ry <Ry) =625 y

c. P(erroneousclassif) = P(B classif as G) + P(G classif asB)
= P(classif as G | B)P(B) + P(classif asB | G)P(G)
=P(R; <R; <R3 |B)(.75) + PRy <R3 <Ry or R3 <Ry <R, | G)(.25)
=(.10)(.75) + (.25 + .15)(.25) = .175
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Chapter 2: Probability

d. For what valuesof pwill P(G | R;<R,<R3) > .5 P(G|R; <R3 <Ry) > .5,
PG|Rs <R <Ry) > 5?

6p _ .bp . 1
PGIR <R; <Rg) = = > .5 iff p>—=
6p+.21- p) .1+.5p 7
PG|RL<R3<Ry) = -25p >5iffp>il
T 25p+21- p) 9
PG|Rs<R; <Ry) = -15p > 5iff p >E (most restrictive)
YT 15p+.7(1- p) 17

14
If p> E always classify as granite.

P(detection by the end of the nth glimpse) = 1 — P(not detected in 1% n)
=1-P(GtC GC ... C G¢) =1- P(GOPEY ... P(G,Y

=1-(1-p)1-pz) .. A-pn)=1-p(1- P;)

a. P(walkson 4™ pitch) = P(1* 4 pitches are balls) = (.5)* = .0625

b. Pwakson 6™ = P(2 of the 1% 5 are strikes, #6 is aball)
= P(2 of the 1® 5 are strikes)P(#6 is a ball)
=[10(.5)°](5) = .15625

c. P(Batter walks) = P(walks on 4™ + P(walks on 5) + P(walks on 6'™)
=.0625 + .15625 + .15625 = .375
d. P(first batter scoreswhile no oneis out) = P(first 4 batters walk)
=(.375)* = .0198

1 1
a. Pl incorrectroom) = ——— = — =.0417
43 2°1 24
b. The9 outcomeswhich yield incorrect assignments are; 2143, 2341, 2413, 3142, 3412,

_ 9
3421, 4123, 4321, and 4312, so P(all incorrect) = 2 =.375
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a P@Elfull)=P(AC BC C)=(.6)(5)(4)=.12
P(at least oneisn't full) =1— P@l full) =1-.12=.88

b. P(only NY isfull) = P(A C B¢ C C) = P(A)P(BOP(CH = .18
Similarly, P(only Atlantaisfull) = .12 and P(only LA isfull) =.08
So P(exactly onefull) =.18 + .12 + .08 = .38

Note: s= 0 meansthat the very first candidate interviewed ishired. Each entry below isthe
candidate hired for the given policy and outcome.

Outcome s0 s1 s2 s3| Outcome s0 s1 s2 s3
1234 1 4 4 4 3124 3 1 4 4
1243 1 3 3 3 3142 3 1 4 2
1324 1 4 4 4 3214 3 2 1 4
1342 1 2 2 2 3241 3 2 1 1
1423 1 3 3 3 3412 3 1 1 2
1432 1 2 2 2 3421 3 2 2 1
2134 2 1 4 4 4123 4 1 3 3
2143 2 1 3 3 4132 4 1 2 2
2314 2 1 1 4 4213 4 2 1 3
2341 2 1 1 1 4231 4 2 1 1
2413 2 1 1 3 4312 4 3 1 2
2431 2 1 1 1 4321 4 3 2 1

S ‘ 0 1 2 3
P(hire#1) ‘ 6 1 10 6
24 24 24 24

Sos=1isbest.

P(at least one occurs) = 1 — P(none occur)
=1-(1-p1) (1-p2) (1—p3) (1—pas)
=p1P2(1—ps) (1—pa) + ...+ (1—p1) (1 - P2)P3Pa
+(1—pP1) P2P3Pa + ... + P1 P2P3(1— Pa) + P1P2P3P4

P(A 1) = P(draw dlip 1 or 4) = %% P(A ) = P(draw dip 2 or 4) = %%;
P(A3) =P(draw dip3or 4) =%; P(A1 C A,) =P(draw dip 4) =¥
P(A, C A3) =P(draw dip4) =%; P(A; C Az) =P(draw dip4) =Y
Hence P(A1 C A2) = P(A1)P(A2) = %4 P(A2 C Ag) = P(A2)P(Az) = ¥4,
P(A1 C A3z) = P(A1)P(A3) = Y4, thus there exists pairwise independence

P(A1 C A, C A3)=P(draw dip4) =¥ 1 1/8=P(A1)p(A2)P(A3), so the events are not
mutually independent.

A



CHAPTER 3

Section 3.1

S FFF  SFF FSF FFS FSS SFS  SSF SSS

0 1 1 1 2 2 2 3

2. X =1if arandomly selected book is non-fiction and X = O otherwise
X =1if arandomly selected executive isafemale and X = 0 otherwise
X =1if arandomly selected driver has automobile insurance and X = 0 otherwise

3. M = the difference between the large and the smaller outcome with possible values 0, 1, 2, 3,
4, or 5; W = 1if the sum of the two resulting numbersis even and W = 0 otherwise, a
Bernoulli random variable.

4, In my perusal of azip codedirectory, | found no 00000, nor did | find any zip codes with four
zeros, afact which was not obvious. Thus possible X valuesare 2, 3,4, 5 (andnot O or 1). X
=5 for the outcome 15213, X = 4 for the outcome 44074, and X = 3 for 94322.

5. No. Inthe experiment in which acoin istossed repeatedly until aH results, let Y = 1if the
experiment terminates with at most 5 tossesand Y = 0 otherwise. The sample spaceis
infinite, yet Y has only two possible values.

6. Possible X valuesarel, 2, 3, 4, ... (al positive integers)
Outcome: RL AL RAARL RRRRL  AARRL
X: 2 2 5 5 5
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10.

Chapter 3: Discrete Random Variables and Probability Digtributions

a. Possiblevaluesare 0,1, 2, ..., 12; discrete
b. WithN=#onthelist, valuesare0, 1, 2, ... , N; discrete
c. Possiblevaluesarel, 2, 3,4, ... ; discrete

d. {xO<x<¥ } if weassume that arattlesnake can be arbitrarily short or long; not
discrete

e.  With ¢ = amount earned per book sold, possible valuesare 0, c, 2c, 3c, ... , 10,000c;
discrete

f. {y:0<y<14} sinceOisthe smallest possible pH and 14 is the largest possible pH; not
discrete

g. Withmand M denoting the minimum and maximum possible tension, respectively,
possiblevaluesare{ x: m<x <M }; not discrete

h. Possiblevauesare3, 6,9, 12,15, ... -- i.e. 3(1), 3(2), 3(3), 3(4), ...giving afirst
element, etc,; discrete

3:SSS; Y =4 FSSS; Y =5. FFSSS, SFSSS,
6. SSFSSS, SFFSSS, FSFSSS, FFFSSS;,
7: SSFFS, SFSFSSS, SFFFSSS, FSSFSSS, FSFFSSS, FFSFSSS, FFFFSSS

Y
Y
Y

a.  Returnsto 0 can occur only after an even number of tosses; possible Svaluesare 2, 4, 6,
8, ...(i.e. 2(1), 2(2), 2(3), 2(4),...) aninfinite sequence, so X isdiscrete.

b. Now areturnto 0 is possible after any number of tosses greater than 1, so possible values
ae2, 3,4,5, ... (1+1,1+2, 1+3, 1+4, ..., aninfinite sequence) and X is discrete

a. T =total number of pumpsin use at both stations. Possiblevalues: 0, 1, 2, 3,4, 5, 6, 7,
8,910

b. X:-4,-3,-2,-1,0,1,2,3,4,5,6

c. U:0,1,23456

d 2012



Chapter 3: Discrete Random Variables and Probability Digtributions

Section 3.2
11.
a.
X | 4 6 8
P(X) | 45 40 15
b.
0os 4
04
03 -
0z -+
o1 -
oo - I
4 E 8
0
c. Px=6)=.40+.15= 55 P(x>6)=.15
12.

a. Inorder for the flight to accommodate all the ticketed passengers who show up, no more
than 50 can show up. We need y = 50.
P(y=50)=.05+.10+.12+ .14+ .25+ .17=.83

b. Usingtheinformationin a. above, Py >50) =1- P(y=50)=1-.83=.17
c. Foryouto get ontheflight, at most 49 of the ticketed passengers must show up. P(y =

49) = 05+.10+ .12+ .14+ .25 = 66. For the 3" person on the standby list, at most 47
of the ticketed passengers must show up. P(y =44) =.05+.10+.12= 27
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Chapter 3: Discrete Random Variables and Probability Digtributions

P(X £3) = p(0) + p(1) + p(2) + p(3) = .10+.15+.20+.25 = .70
P(X <3)=P(X £2) =p(0) +p(1) + p(2) = 45

PGB £ X) =p(3) + p(4) + p(5) + p(6) = .55

P(2EXES) =p(2) +p(3) +p(4) +p(5) =.71

The number of linesnotinuseis6—X,s06—X =2isequivalenttoX =4,6—-X =3to

X=3,and6—-X =4toX =2. Thuswedesire P( 2 £XE 4) =p(2) + p(3) + p(4) = .65

6—X3 4if6—-43 X,i.e 23 X,or X £2,and P(X £ 2) =.10+.15+.20= 45

5
é P(Yy) =K[1+2+3+4+5=15K=1P K =31
y=1

PY £3)=p(1) +p(2) +p(3) = = = .4
P(2EYE ) =p(2) +p(3) +p(d) = 1= = .6

s 520 1 55
3 e S 1+4+9+16+25 =21 1N
A €505 50 50

(1,2 (1,3) (1,4 (1,5 (2.3) (24) (25) (34) (35) (4,5

P(X =0) = p(0) = PI{ (34) (35) (45} = 3 =.

PX=2=p@=P{(12}=3=.1
PX=1)=p@)=1-[p(0) + p(2)] =.60,andp(x) =0ifx* 0,1, 2

F(O) =P(X £0)=P(X =0)=.30
F(1)=P(X £1)=P(X =00r 1) =.90
FQ) =PX£2)=1

Thec.df.is
| 0 x<0
130  0£x<1
Fx) =i
{90 1£ x<2
{1 2£ X
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Chapter 3: Discrete Random Variables and Probability Digtributions

X Outcomes p(X)

0 FFFF n* =.2401
1 FFFSFFSFFSFF,SFFF 4733 =4116
2  FFSSFSFS,SFFSFSSF,SFSF,SSFF 6[(.7)%(3)?] =2646
3 FSSS, SFSS,SSFS,SSSF 4(ND3° =076
4  SSSS 3* =.0081

40 _|

.30

Relative
Frequency

.20

.10

Insured

p(x) islargestfor X =1

P(X 3 2) =p(2) + p(3) + p(4) = .2646+.0756+.0081 = .3483
This could also be done using the complement.

P(2) = P(Y = 2) = P(1* 2 batteries are acceptable)
= P(AA) = (9)(9) = 81

p(3) = P(Y =3) = P(UAA or AUA) = (.1)(.9)* + (.1)(.9)% = 2[(1)(.9)?] = .162

Thefifth battery must bean A, and one of the first four must also bean A. Thus, p(5) =
P(AUUUA or UAUUA or UUAUA or UUUAA) = 4[(.1)*(.9)] = .00324

P(Y =y) = p(y) = P(they" isan A and so is exactly one of thefirsty — 1)
=(y - (D97, y=2345,...



Chapter 3: Discrete Random Variables and Probability Digtributions

a p)=PM=1)=P(11)]=
p2) =PM =2)=P(12) or 1) or (22)] = =
p3)=PM=3)=P(13)or(23)or (31 or (32 or (33)] = =

Similarly, p4) = &, p(5) = &, and p(6) =1

b. Fm)= Oform<1, & forLEm<2,

i0 m<1
i
0% 1£m<2
1% 2£Em<3

Rm)= |2 3Em<4
i
.I% 4£m<5
2 5£m<6
%1 m3 6

1.0 ———

0.9 —

0.8 —

0.7 — —

0.6 —

0.5 —

0.4 — —

0.3 —

0.2 —

0.1 — —

0.0 - cmml—

Let A denote the type O+ individual ( type O positive blood) and B, C, D, the other 3
individuals. Thenp(1) —P(Y =1) = P(A first) = + = .25

p(2) =P(Y =2) =P(B, C, or D first and A next) =
PA)=P(Y=3)=PAlast) = 33 xt =1 =25
Sop(3) = 1— (.25+.25+.25) = .25

INTRREL

=.25

xl =
3

IN

P(0) = P(Y = 0) = P(both arrive on Wed.) = (.3)(.3) = .09
P(1) = P(Y = 1) = F[(W,Th)or(Th,W)or(Th,Th)]
=(3)(4) + (4)(3) + (4)(4) = .40
P(2) = P(Y =2) = F[(W,F)or(Th,For(F,W) or (F,Th) or (F,F)] =.32
P3)=1-[.09+.40+.32] =.19
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22.

23.

24,

Chapter 3: Discrete Random Variables and Probability Digtributions

Thejumpsin F(x) occuratx =0, 1, 2, 3, 4, 5, and 6, so wefirst calculate F() at each of these

values:
FO)=PX £0)=P(X =0)=.10
F(1) =P(X £1) =p(0) + p(1) = .25
F(2) = P(X £2) =p(0) + p(1) + p(2) = 45
F(3) = .70, F(4) = .90, F(5) = .96, and F(6) = 1.
Thec.df.is
i .00 Xx<0
} 10  0f£ x<1
i .25 1£x<2
! 45  2£x<3
F)= |
i 70 3Ex<4
.90 4£x<5
|
i 96 B5Ex<6
11.00 6 £ X

Then P(X £ 3) = F(3) = .70, P(X < 3) = P(X £ 2) = F(2) = .45,
PBEX)=1-PX£2)=1-F2)=1-.45= 55,
andP(2EX £5)=F(5) - F(1)=.96- .25=.71

P(X =2)=.39-.19= .20
PX>3)=1-.67=.33
PREXE5)=.92-.19=78

PR2<X <5)=.92-.39= 53

Possible X values are those values at which F(x) jumps, and the probability of any
particular value is the size of the jump at that value. Thuswe have:

4 6 12

x
=
w

px) ‘ 30 10 05 15 40

PBE£ X £6)=F(6)— F(3) = .60-.30=.30
PUEX)=1-P(X<4)=1-F4)=1-.40=.60

P(0) =P(Y =0) =P(B fird) =p

P(1) =P(Y = 1) = P(Gfirg, then B) = P(GB) = (1 - p)p

P2) = PY =2) = (GGB) = (1— p)?p

Continuing, p(y) = P(Y=y) = P(y G'sand thenaB) = (1-p)’pfory =0,1,23,...
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Chapter 3: Discrete Random Variables and Probability Digtributions

a. PossibleX valuesarel, 2,3, ...
P(1) = P(X = 1) = P(return home after just one visit) = %
P(2) = P(X = 2) = P(second visit and then return home) = £ %
P(3) = P(X = 3) = P(three visits and then return home) = (3)2 %
In general p(x) = (%)Xl(%) forx=1,23, ...

b. Thenumber of straight line segmentsisY =1 + X (sincethe last segment traversed
retuns Alvieto O), soasin a, p(y) = (%)y 2(%) fory= 23, ...

c. Possiblezvauesare0,1,2,3, ...

p(0) = P(male first and then home) =5 >¢ = <,
p(1) = P(exactly one visit to afemale) = P(female 1%, then home) + P(F, M, home) +
P(M, F, home) + F)?M, F, M, home

= (3)0)+ ()& )y)+ (%)(%)(%)L (2)E)E)E)
=E]%)(1:—§%_X%)+ (%)(%)(%ﬂg(%) _:_(2@(_%)__+ (%)E%)(i)(%)d -

0= ()2 (€)) +e) (). o,
= B8P+ I () = () -2

a. Thesample space consists of all possible permutations of the four numbers1, 2, 3, 4:

outcome y value outcome y value outcome y value
1234 4 2314 1 3412 0
1243 2 2341 0 3421 0
1324 2 2413 0 4132 1
1342 1 2431 1 4123 0
1423 1 3124 1 4213 1
1432 2 3142 0 4231 2
2134 2 3214 2 4312 0
2143 0 3241 1 4321 0

b. Thusp(0)=P(Y =0)= =, p)=PY=1)=2 p@=PY=2=2Z,
P =RY =3 =0,p3) =P(Y =3 = 4.
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Chapter 3: Discrete Random Variables and Probability Digtributions

27, Ifx <%, F(x) =PX £x%) = P({X £x} E { xs <X £})
=P(XE£x)+P(x1 <X E£x%)3 P(XEx)=F(x).
F(x.) = F(x) when P(x; < X £%) =0.

Section 3.3

28.

4
a EX)= é_ X Xp(X)
x=0

=(0)(.08) + (1)(.15) + (2)(.45) + (3)(.27) + (4)(.05) = 2.06

4
b. V(X)= Q (X- 2.06)% xp(X) = (0 206/%(08) + ...+ (4— 2.06)(.05)
x=0

= .339488+.168540+.001620+.238572+.188180 = .9364

c. s=+.9364 =.9677

i .
d. V)= & X2 Xp(x)g- (2.06)%=5.1800— 4.2436 = 9364
=0 u

D

®

®

29.

4
a E(Y)=g yxp(y)=(0)(60)+(1)(:25) + (2(.10) + (3)(.05) = .60

x=0

4
b. E(100¥)= § 100y? xp(y) = (0)(60) + (100)(.25)

x=0
+ (400)(.10) + (900)(.05) = 110
30. E(Y)= 60,
E(Y)=11
V(Y) = E(Y?) - [E(Y)]? = 11— (60)* =.74
s,= .74 = .8602

E(Y)+s,= .60+ 8602 = (-.2602, 1.4602) or ( 0, 1).
P(Y =0) +P(Y =1) = .85
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Chapter 3: Discrete Random Variables and Probability Digtributions

31.
a  E(X)=(135)(.2) + (159)(5) + (19.1)(.3) = 16.38,
E (X?) = (135)%(.2) + (15.9)%(.5) + (19.1)%(:3) = 272.298,
V(X) = 272.298 — (16.38)% = 3.9936

b. E(25X—85)=25E (X)—85=(25)(16.38) — 85=401
c. V(25X —85) =V(25X) = (25)2V(X) = (625)(3.9936) = 2496

d. E[h(X)] =E[X - .01X?] = E(X) - .01E(X?) = 16.38— 2.72 = 1366

32.

1
a Ex)= g x* xp(x)=(@(@-p)+ (@)@ = O/ =p

x=0
b. V(X)=EX*)-[EX)]* = p-p°=p(1-p)

¢ EX®)=(0")1-p+1*)p)=p

¥ ¥ ¥
33. EX)= Q Xxp(X) = Q X X% =cd iz , but it is awell-known result from the theory of
x=1 x=1 x=1
s 1
infinite seriesthat Q — <¥,s0 E(X) isfinite.

x=1

34. Let h(X) denote the net revenue (sales revenue — order cost) as afunction of X. Then hz(X)
and h4(X) arethe net revenue for 3 and 4 copies purchased, respectively. Forx =1or 2,
h3(X) =2x — 3, but at x = 3,4,5,6 the revenue plateaus. Following similar reasoning, h4(X) =
X —4forx=1,2,3, but plateaus at 4 for x = 4,5,6.

X 1 2 3 4 5 6
ha(X) 1 1 3 3 3 3
ha(X) 2 0 2 4 4 4

1 2 3 4 3 2
p(x) is i 15 1 15 i

6
Elhs(X)] = & hy (X) Xp(X) = (1)(&) + ... + (3(Z) = 24667
x=1

6
similarly, E[ns ()] = & h, (X) Xp(X) = (D(&) + ... + (4)(Z ) = 26667

x=1
Ordering 4 copies gives slightly higher revenue, on the average.
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PX) ‘ 8 1 08 02
X 0 1,000 5,000 10,000
HX) 0 500 4,500 9,500

E[h(X)] = 600. Premium should be $100 plus expected value of damage minus deductible or
$700.

s &Aoo aaod 1en(n+l)u n+1
EX)= @ XX—== c—= X =
21 Enﬂ gnéxa—.l n8 2 H 2

8 , Ao adod o len(n+])(2n+1)u (n+D(2n+1)

EX)=q x° X—==¢=1q X
X Ens &ngn Tné 6 H 6
o 2
SOV(X) = (n+1)(2n+1) €¢q+19 _n-1
6 e 2 g 12
E[h(X)] = Egeig—a (i:;é-—gxp(x) ——a — =.408, Whereasi— .286, so you
X 9 =1EeX g x—l X 3 5

expect to win moreif you gamble.

4
EX) = é_ XxXp(X) =23, E(X%)=6.1,0V(X)=6.1-(23)>=.81
x=1

Each lot weighs 5 Ibs, so weight left = 100 — 5x.
Thus the expected weight left is 100 — 5E(X) = 88.5,

and the variance of the weight left is
V(200 — 5X) = V(-5X) = 25V (x) = 20.25.

a. Thelinegraph of the p.m.f. of =X isjust the line graph of the p.m.f. of X reflected about
zero, but both have the same degree of spread about their respective means, suggesting
V(-X) =V(X).

b. Witha=-1,b=0,V(aX +b) = V(-X) = &V(X).

V@ +b)= § [aX +b- E(aX +b)]? xp(x) = § [aX +b- (am+b)]? p(x)

= [aX - (am)]? p(x) =a’§ [X -m? p(x) = a?V(X).

105



41.

42.

43.

Chapter 3: Discrete Random Variables and Probability Digtributions

E[X(X-1)] = E(X?) — E(X), b E(X?) = E[X(X-1)] + E(X) =325
V(X)=325-(5°=75

V(X) = E[X(X-1)] + E(X) — [E(X)]?

Witha=1landb=c, E(X —c)=E(@X +b) = aE(X) +b=E(X)—c. When c=m E(X-n)
= E(X) - m=m- m= 0, so the expected deviation from the mean is zero.

=

= | 25 A1 .06 04 01

6 A 6
m=Q xxp(x) =2.64, s?2= géx ><p(x)LI n’ =2.37,s =154
x=0 ex=0

Thusm-2s =-.44, and m+ 2s =5.72,
s0 P(x-m3 2s) = P(X islat least 2 s.d."sfrom )
=P(x iseither £-44 0r3 572)=P(X =6) =.04
Chebyshev’ s bound of .025 is much too conservative. For K = 3,4,5, and 10, P(|x-n}3

ks) = 0, here again pointing to the very conservative nature of thebound 1 .
k2

m=0andS =%, s0P(pn3 3s)=P(X |3 1)

= P(X =-lor+l)= E % =1 identical to the upper bound.

Letp(-1) = &, p(+1) =&, p(0) = 2.
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Section 3.4
44,
£O 3 5
a b(3;8,.6):g3::(.6) (.4)> =(56)(.00221184) = .124
2

45,

46.

b.

C.

d.

a

b.

C.

d.

e

f.

g.

X ~

a

b.

C.

d.

€.

b(5;8,.6) = gg(ﬁ)f’ (.4)? = (56)(.00497664) = .279
2}
P(3£ X £5) =h(3;8,.6) + b(4;8,.6) + b(5;8,.6) = .635

.
PLEX)=1-P(X=0)=1- ?0 g(-J)"(S)12 =1-(9%=718
g

B(4;10,.3) = .850

b(4;10,.3) = B(4;10,.3) - B(3,10,.3) = .200

b(6;10,.7) = B(6;10,.7) - B(5;10,.7) = .200

P(2£ X £ 4) = B(4,10,.3) - B(1;10,3) = .701
P2<X)=1-P(XX £1)=1-B(1;10,3) = .851

P(X £ 1) = B(1;10,.7) =.0000

P2 <X <6) = (3£ X £5) = B(5;10,3) - B(2,10,.3) = 570
Bin(25, .05)

P(X £ 2) = B(2,25,.05) = .873

P(X? 5)=1-P(X £4)=1— B(4,25,05) = .1-.993= 007
P(1£ X £4)=P(X £4)— P(X £0) = 993- .277 = 716
P(X =0) = P(X £ 0) = .277

E(X) = np=(25)(.05) = 1.5

V(X) = np(1 - p) = (25)(.05)(.95) =1.1875
S, = 1.0897
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X ~ Bin(6, .10)

a PX=1)= gig( p)*@- p)™*= E?g(.l)l(.g)?’ = 3543

b. P(X22)=1—[PXX =0)+PX=1)].
Froma, weknow P(X = 1) = 3543, and P(X = 0) :Ef;g(.l)" (.9)° =.5314.
Hence P(X 3 2) = 1—[.3543+ .5314] = .1143
c. Either 4 or 5 goblets must be selected
i)  Select 4 gobletswith zero defects: P(X = 0) = Eig(.no (.9)* =.6561.
ii) Select 4 goblets, one of which has a defect, and the 5" is good:
g%.l)l(.g) E 9= 26244

So the desired probability is .6561 + .26244 = .91854

Let S= comesto acomplete stop, sop=.25,n=20

a  P(X £6)=B(6,20,25) =.786

b. P(X =6)=b(6;20,.20) = B(6;20,.25) - B(5,20,.25) = .786 - .617 = .169
c. P(X36)=1-P(X£5)=1-B(520,25)=1-.617=.383

d. E(X)=(20)(.25) =5. We expect 5 of the next 20 to stop.

Let S=hasat least onecitation. Thenp=.4,n=15

a. If atleast 10 have no citations (Failure), then at most 5 have had at least one (Success):
P(X £ 5) = B(5;15,.40) = 403

b. P(X£7)= B(7;15,40) = .787

c. P(5£X£10)=P(X £10)— P(X £4) = .991- .217= 774
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X ~Bin(10, .60)
a PX36)=1-PX£5)=1-B(520,60)=1-.367=.633
b. E(X)=np=(10)(.6) =6; V(X)=np(1l-p)=(10)(.6)(.4) =24
sy=155
E(X) + sx=(4.45,7.55).
WedesireP(5£ X £7)=PX £7)—P(X £ 4) =.833-.166 = .667
c. P(BEXET)=PXET7)—P(X£2)=.833-.012=.821
Let Srepresent atelephone that is submitted for service while under warranty and must be
replaced. Then p = P(S) = P(replaced | submitted)P(submitted) = (.40)(.20) = .08. ThusX,

the number among the company’ s 10 phones that must be replaced, has a binomial

o 200 12/ e
distribution with n = 10, p = .08, so p(2) = P(X=2) = g 5 H.08)°(.92)° =.1478
a

X ~Bin (25, .02)
a P(X=1)=25(.02)(.98)** = .308

b. P(X=1)=1-P(X=0)=1-(.98)° =1- .603=.397

. P(X=2)=1-P(X=1)=1-[.308+.397]

d. X=25(02)=.5;s =./npq =4/25(.02)(.98) = /49 = .7
X+2s =5+1.4=1.9 SOP0=X=19=P(X=1)=.705

5(4.5) +24.5(3)
25

= 3.03 hours

X =the number of flashlights that work.

Let event B = { battery has acceptable voltage} .

Then P(flashlight works) = P(both batteries work) = P(B)P(B) = (.9)(.9) = .81 We must
assume that the batteries’ voltage levels are independent.

X~ Bin (10, .81). P(X=9) = P(X=9) + P(X=10)

?52(.81)9 (19)+ gg 2(.81)10 = .285+.122 = 407
(%] (%]
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54. L et p denote the actual proportion of defectivesin the batch, and X denote the number of
defectivesin the sample.

a.  P(the batch isaccepted) = P(X £ 2) = B(2;10,p)

p | 01 05 10 20 25

P(accept) | 1.00 983 930 678 526

1.0 —

P(accept)

05 —

0.0 —

T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

p

c. P(thebatchisaccepted) = P(X £ 1) = B(1;10,p)
p 01 .05 10 20 25

P(accept) ‘ 99 914 736 376 244

d. P(thebatchisaccepted) = P(X £ 2) =B(2;15,p)
p 01 05 10 20 25

P(accept) ‘ 1.00 964 816 398 236

e. Wewant aplan for which P(accept) ishigh for p£ .1 and low forp>.1
The plan in d seems most satisfactory in these respects.
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a.  P(rejecting claim when p = .8) = B(15;25,.8) = .017

b. P(notregectingclaimwhenp=.7) =P(X 3 16 whenp=.7)
=1- B(15;25,.7) = 1 - .189 = .811, for p = .6, this probability is
=1-B(1525,6) =1- .575=.425.

c. Theprobability of rejecting the claim when p = .8 becomes B(14;25,.8) = .006, smaller
than inaabove. However, the probabilities of b above increase to .902 and .586,
respectively.

h(x) = 1 XX + 2.25(25— X) = 62.5— 1.5X, s0 E(h(X)) = 62.5— 15E(X)
=625— 1.5np— 62.5— (1.5)(25)(.6) = $40.00

If topic A ischosen, whenn =2, P(at least half received)

=P(X3 1)=1-P(X =0)=1-(.1)*=.99

If B is chosen, when n = 4, P(at least half received)

=P(X3 2)=1-PXX £1) = 1—(0.1)* — 4.1)3(.9) = .9963

Thus topic B should be chosen.

If p=".5, the probabilitiesare .75 for A and .6875 for B, so now A should be chosen.

a. np(l-p)=0if either p=0 (whenceevery tria isafailure, sothereisno variability in
X) or if p=1 (whenceevery trial isasuccess and again there is no variability in X)

d o
b. d_[np(l' p)] =n(1-p) +p(D]=n1-2p=0 p p=.5, whichiseasly
P

seen to correspond to a maximum value of V(X).

amo 2en o
a b(x;n,l—p):gxzf(l- |o)*(|o)”'*=gn Xi(p)”'x(l- p)* =b(n-x; n, p)
4] A )

Alternatively, P(x S swhen P(S) = 1 - p) = P(n-x F'swhen P(F) = p), sincethetwo
events areidentical), but the labels Sand F are arbitrary so can be interchanged (if P(S)
and P(F) are also interchanged), yielding P(n-x S swhen P(S) = 1 - p) asdesired.

b. B(x;nl—p) =Pl@mostx SswhenP(S)=1-p)
= P(at least n-x F'swhen P(F) = p)
= P(at least n-x S'swhen P(S) =p)
=1-P(at most n-x-1 S'swhen P(S) = p)
=1-B(n-x1;n,p)

c. Whenever p>.5, (1-p) <.5so probabilitiesinvolving X can be calculated using the
results a and b in combination with tables giving probabilities only for p£ .5
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Proof of E(X) = np:

8 aﬂO X n- x 0n n! X n- x
EX) =a X>§ =p*1- p)" =a X*———p (1- p)
x=0 Xg

w1 X(n-x)!
) n X n- x g (n - 1)' x-1 n-x
= a————p (1- =n - 1-
A G &P Eea T (- )
Y (n- D! y n1
=NPA P (- P)" T (yreplacesx-1)
& Mi(n-1- y)
i %tam- 10 b3
=mpia g p’(L- p)"y
1 vy=0 Y g %
The expression in bracesis the sum over all possiblevaluesy =0, 1, 2, ..., n-1 of abinomia

p.m.f. based on n-1 trials, so equals 1, leaving only np, as desired.

a.  Although there are three payment methods, we are only concerned with S = uses a debit
card and F = does not use adebit card. Thuswe can use the binomial distribution. Son
=100andp=.5. E(X) =np=100(.5) =50, and V(X) = 25.

b. With S=doesn’t pay with cash, n=100and p=.7, E(X) = np = 100(.7) = 70, and V(X)
=21

a. Let X =the number with reservations who show, abinomial r.v. withn=6andp=.8.
The desired probability is
P(X =5or 6) = b(5;6,.8) + b(6;6,.8) = .3932 + .2621 = .6553

b. Let h(X) =the number of available spaces. Then
Whenxiss 0 1 2 3 4 5 6

Hxis 4 3 2 1 0 0 0

6
E[h(X)] = é h(x) %(x;6,.8) =4(.000) + 3(.002) = 2(.015 + 3(.082) = .277
x=0

c. Possible X valuesare0, 1, 2, 3, and 4. X =0if there are 3 reservations and none show or
...0r 6 reservations and none show, so
P(X =0) =b(0;3,.8)(.1) + b(0;4,.8)(.2) + b(0;5,.8)(.3) + b(0;6,.8)(.4)
=.0080(.1) +.0016(.2) +.0003(.3) +.0001(.4) = .0013
P(X =1) =b(1;3,.8)(.1) + ... + b(1;6,.8)(.4) =.0172
P(X = 2) =.0906, P(X = 3) =.2273,
P(X=4)=1-[.0013+ ... +.2273] = .6636
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63. Whenp=.5 m=10ands =2.236, s0 2s =4.472 and 3s = 6.708.
Theinequality [X —10|3 4.472 issatisfied if either X £50r X 3 15, or P(X - m3 2s) = P(X
£50r X3 15)=.021+.021 =.042.

Inthecasep=.75 m=15ands = 1.937, s02s = 3.874 and 3s =5.811. P(|X - 15|3 3.874) =
P(X £110r X 3 19) =.041 +.024 = .065, whereas P(|X - 153 5.811) = P(X £ 9) =.004. All
these probabilities are considerably less than the upper bounds .25(for k = 2) and .11 (for k =
3) given by Chebyshev.

Section 3.5

64.
a. X~ Hypergeometric N=15, n=5, M=6

a® B0
b. PX=2)= Z%ﬂ 840 _ 280
56 3003

€55
P(X=2) = P(X=0) + P(X=1) + P(X=2)

8o adEdo
& g@% 840 _126+756+840 _ 1722 _
@55 o450 3003 3003 3003

§55 s
P(X=2) = 1— P(X=1) = 1— [P(X=0) + P(X=1)] = 1- 126+ 756 _

3003
60 ad5- 56 _ a6 6 66
R T v Tt

V(X) =.926
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X~h(x; 6,12, 7)

a@cséo

P(X=5) = =— =114

P(X=4) = 1-P(X=5) = 1 - [AX=5) + A(X=6)] =

eagcséo aaou
5kly &6
$ g, gﬂu =1- 105_+7:1- .121=.879
eézo @_Zou 924
@nga g6ﬂg

7
= E79=35. 5 = [EYONENE) = /7% - 002
P(X > 3.5+ .892) = P(X > 4.392) = P(X=5) = .121 (see part b)

We can approximate the hypergeometric distribution with the binomial if the population
size and the number of successes are large: h(x;15,40,400) approaches b(x;15,.10). So
P(X=5) " B(5; 15, .10) from the binomial tables=.998

230200

§1 é So_ 2070
22006
g15ﬂ
P(X 3 10) = h(10;15,30,50) + h(11;15,30,50) + ... + h(15;15,30,50)
=.2070+.1176+.0438+.0101+.0013+.0001 = .3799

P(X = 10) = h(10;15,30,50) =

P(at least 10 from the same class) = P(at least 10 from second class [answer from b)) +
P(at least 10 from first class). But “at least 10 from 1% class” isthe same as“at most 5

fromthe second” or P(X £5).

P(X £ 5) = h(0;15,30,50) + h(1;15,30,50) + ... + h(5;15,30,50)
= 11697+.002045+.000227+.000150+.000001+.000000
=.01412
So the desired probability = P(x 3 10) + P(X £5)
=.3799 +.01412 = .39402
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E(X) = an 15@ 9
N 50

Vo= 2290) é"i- §9_ 25714
e49¢g
Sx = 1.6036

LetY =15-X. ThenE(Y) =15—E(X)=15—9=6
V(Y) =V(15— X) — V(X) = 25714, s0sy = 1.6036

Possible values of X are5, 6, 7, 8, 9, 10. (In order to have lessthan 5 of the granite, there
would have to be more than 10 of the basaltic).

280306
5 X105
P(X =5) =h(5; 15,10,20) = ——— = .0163.
a200
s
Following the same pattern for the other values, we arrive at the pmf, in table form
below.

X | 5 6 7 8 9 10
() |.0163 1354 3483 3483 1354 0163

P(all 10 of onekind or the other) = P(X = 5) + P(X = 10) = .0163 + .0163 = .0326

M 10
EX)=nNx—=15x—=75;v(X)=¢c—47.5 -———9868
*) N 20 0= 9 9( gi 20g
Sy =.9934

m+ s = 7.5+ .9934 = (6.5066, 8.4934), so we want
P(X =7) + P(X = 8) =.3483 + .3483 = .6966

h(x; 6,4,11)

682018

ellg
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h(x; 10,10,20) (the successes here are the top 10 pairs, and asample of 10 pairsisdrawn
from among the 20)

Let X = the number among the top 5 who play E-W. Then P(all of top 5 play the same
direction) = P(X = 5) + P(X = 0) = h(5;10,5,20) + h(5;10,5,20)
235 §59
55 05
= _E 2+ 2= 033
00 a200

N=2n;M=n;n=n

h(x;n,n,2n)

n 1
EX)=N>*>—=—n;

2n 2
V(X) =
an- ngo n Ng sah §n Ng_ae n oNnao
¢ Xl =6 +x—’€i' 52T € XX~
e2n-1g 2né 2ng é2n-1g2 é 2ng eé2n-1g 2 é2g

h(x;10,15,50)

M s
When N islargerelative to n, h(x; n,M,N) &b@(; n,Wg,
e

o
0 h(x10,150,500) &b(x:10,.3)

Using the hypergeometric model, E(X) = 10 >€§'5i009 =3 and
e

(7]
V(X) = 3—2(3(10)(.3)(.7) =.982(2.1) = 2.06
Using the binomial model, E(X) = (10)(.3) = 3, and
V(X)=10(.3)(.7) =21
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a. WithS=afemalechild and F = amale child, let X = the number of F' sbefore the s,
Then P(X = x) = nb(x;2, .5)

b. P(exactly 4 children) = P(exactly 2 males)
=nb(2;2,.5) = (3)(.0625) =.188

c. P(at most 4 children) =P(X £ 2)

2
= & nb(x:2,.5) = .25+2(25)(5) + 3(0625) = 688
x=0

()(5)_

d EX)= 2, so the expected number of children = E(X + 2)

—E(X)+2 4

Theonly possible values of X are 3, 4, and 5.
p(3) = P(X = 3) = P(first 3are B'sor first 3are G's) = 2(.5)° = .250
p(4) = P(two among the 1% three are B’ s and the 4th isa B) + P(two among the 1% three are

a30
G'sandthe4thisaG) = 2 >§2i(.5)4 =.375
a

p(5) = 1—p(3) - p(4) = .375

Thisisidentical to an experiment in which a single family has children until exactly 6 females
have been born( since p = .5 for each of the three families), so p(x) = nb(x;6,.5) and E(X) =6
(=2+2+2, the sum of the expected number of males born to each one.)

Theinterpretation of “roll” hereisapair of tosses of asi ngle player’ s die(two tosses by A or
two by B). With S=doubles on aparticular roll, p= <. Furthermore, A and B areredlly

identical (each dieisfair), so we can equivaently i |mag| neA rolling until 10 doubl&sappear.
The P(x rolls) = P(9 doubles among thefirst x — 1 rolls and a double on the X' M roll =
x-10 x-10 10

1Qaé30 aelo aelo 1Ca—50 ael_
§ 9 geﬁz e6z e6z g 9 geﬁra eGra
E(X) = r(lio P) =10(€) ~10(5) =50 v(x)= rd- p) _ 10( )

G p° 2y

=10(5)(6) = 300
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Section 3.6

75.
a P(X£8)=F@85) =932

b. P(X=8)=F@85)- F7;5)=.065

c. P(X39=1-PXX£8)=.068

d. P(BEX£8)=F(@85)— F(45) = 492

e PB<X<8)=F75)—F(55) = .867-.616=.251
76.

a PXX£5)=F58)=.191

b. P6EX £9)=F9;8)-F(58)=.526

c. P(X3®10)=1-P(X£9)=.283

d. E(X)=1=10, sy= /| =2.83,s0P(X >12.83)=P(X ® 13)= 1— P(X £ 12) =1-
936 = 064

77.
a  P(X £10) = F(10;20) = .011

b. P(X>20)=1—F(20;20)=1-.550= 441

c. PAOE X £ 20) = F(20;20) — F(9;20) = .559 - .005 = 554
P(10< X < 20) = F(19;20) — F(10;20) = .470 - .011 = .459

d. EX)=1=20, sy=+ =4.472
P(m- 25 <X <m+ 25 ) = P(20—8.944< X < 20 + 8944)
= P(11.056 < X < 28.944)
= P(X £ 28) - P(X £ 11)
= F(28:20) - F(12:20)]
= 966- 021 = 945

78.
a PXX=1)=F12)-F02) =.982- .819= 163
b. P(X32)=1-PXE£1)=1-F12)=1-.982=.018

c. P(1% doesn’'t C 2" doesn’t) = P(1% doesn’ t) xP(2" doesn’t)
= (819)(819) = 671
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1
p=——;n=1000; =np=5

a

b.

200
P(5£ X £ 8) = F(8;5) — F(4;5) = .492

P(X® 8=1-P(X£7)=1-.867=.133

The experiment is binomial with n= 10,000 and p =.001,
som=np=10ands = 4/Npq =3.161.

X has approximately a Poisson distribution with| =10,
soP(X >10)" 1 - F10;10) = 1- 583 = 417

PX=0)"0

| =8whent =1, so P(X = 6) = F(6;8) — F(5;8) =.313- .191 =.122,
P(X 3 6)=1- F(5;8) =.809, and P(X 2 10) = 1- F(9;8) = .283

t=90min =15 hours, sol = 12; thus the expected number of arrivalsis 12 and the SD
=412 =3.464

t=2.5hoursimplies that | =20; inthiscase, P(X 3 20) =1—F(19;20) =.530 and P(X £
10) = K(10;20) = .011.

P(X = 4) = F(4;5) — F(3;5) = .440 - 265= 175
P(X3 4)=1-PX £3)=1-.265=.735

Arrivals occur at therate of 5 per hour, so for a45 minute period therateis | = (5)(.75)
= 3.75, which is also the expected number of arrivalsin a45 minute period.

For atwo hour period the parameter of the distributionis |t =(4)(2) =8,
0 P(X =10) = F(10;8) — F(9;8) = .099.

For a30 minute period, | t = (4)(.5) = 2,50 P(X =0) =F(0,2) =.135

EX)=It=2
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Let X = the number of diodes on aboard that fail.
a.  E(X)=np=(200)(.01) = 2, V(X) = npg = (200)(.01)(.99) = 1.98, sx = 1.407

b. X hasapproximately a Poisson distribution withl =np=2,
SOP(X3 4)=1-PX£3)=1-F3;2)=1-.857=.143

c. P(board works properly) = P(all diodeswork) = P(X = 0) = F(0;2) = .135
Let Y = the number among the five boards that work, abinomial r.v. withn=5and p =
A135. ThenP(Y 3 4)=P(Y =4)+P(Y =5) =

?%.135)4(.865) ¥ gg(iss) 5 (.865)° = 00144 + 00004 = 00148
Ay P

1

a = 1/(mean time between occurrences) = —5 =2
a at=(Q@2=4
b. PX>5)1-P(X£5)=1-.785=.215
c. Solvefort,givena=2

1=¢e™

In(.1) =-at

2.3026

t= » 1.15years

§ el & el & e'l* & e'lY
EX)= g X =a X =l g x =l g x =1

x=0 x=1 X x=1 y=0

a. For aone-quarter acre plot, the parameter is (80)(.25) = 20,
so P(X £ 16) = F(16;20) =.221

b. The expected number of treesis| Xarea) = 80(85,000) = 6,800,000.

c. Theareaof thecircleispr® = 031416 sq. miles or 20.106 acres. Thus X has a Poisson
distribution with parameter 20.106
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a.  P(X =10and noviolations) = P(no violations | X = 10) xP(X =10)
= (.5)1° q[F(10;10) — F(9;10)]
= (.000977)(.125) =.000122

b. P(y arrive and exactly 10 have no violations)
= P(exactly 10 have no violations |y arrive) xP(y arrive)

Vi
:%- (. 10(_5)y 10e.1o (10)y _ e (5)y
Oc Yy 10(y- 10)

= P(10 successesiny triallswhen p = .5) xe

_ o § €)Y
c. P(exactly 10without aviolation)= @ ———————
y21010 (y - 10)!

lO

_ e g (5)y 10 —10 >610 é¥. (5)u —10 >610 )es
100 yo(y - 10)' 10 S 10
e—5 >610
= 10 =p(10;5).

In fact, generalizing this argument shows that the number of “no-violation” arrivals

within the hour has a Poisson distribution with parameter 5; the 5 results froml p =
10(.5).

a  Noeventsin (0O, t+Dt) if and only if no eventsin (o, t) and no eventsin (t, t+Dt). Thus, Py
(t+Dt) = Py(t) P(no eventsin (t, t+Dt))
=Po()[1-1 xDt—o(Dt)]

Py(t+D0) - Ry(t) _ Dt .. oD
b. s IP(t) Po(t)=

c. %[e"t]:-Ie"t:-IPo(t),asdesired.

dée''(l)u -le''()* Ke'(nk?
d. —é 0= +
ag kK 4 Kl K

e—lt(l t)k e—lt(l t)k—l

=- | ” +1 k-1 = - P(t) + | Pea(t) asdesired.
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Supplementary Exercises

90.

Outcomes are(1,2,3)(1,2,4) (1,2,5) ... (5,6,7); there are 35 such outcomes. Each having

probability ?%5 . The W valuesfor these outcomes are 6 (=1+2+3), 7, 8, ..., 18. Sincethereis
just one outcome with W value 6, p(6) = P(W = 6) = 3%.) . Similarly, there are three outcomes
with W value 9[(1,2,6) (1,3,5) and 2,3,4)], so p(9) = 315 . Continuing in this manner yields

the following distribution:

W ‘ 6 7 8 9 10 11 12 13 14 15 16 17 18

91.

w
ml“
w
(41
w
G
w
(41
w
&
w
G
w
(41
w
G

1 1 2 4

P(W) ‘ B B B BB
]68

Since the distribution is symmetric about 12, m= 12, ands * = g (w- 12)* p(w)

w=6

= L[(6°() + B +... + B +(6°(1) =8

a.  p(1) = P(exactly one suit) = P(all spades) + P(all hearts) + P(all diamonds)
2830

£
+ P(all clubs) = 4P(all spades) = 4 xaé—? = 00198

20
855
p(2) = P(all hearts and spades with at least one of each) + ...+ P(all diamonds and clubs
with at least one of each)

=6 P(all hearts and spades with at |east one of each)
=6[P(1hand4s)+P(2hand3s)+P(3hand2s) +P(4hand1s)]

#3830  30ed30l

.~ €, U
421 382 x 5 + 44,6160
yg g fa+2¥g 3_@1;:6218’590 6 6H:,14592
8529 u g 259890

6529 ¢
855 855 8
3 I
4 aé2 213)(13(13)
p(4) = 4P(2 spades, 1h, 1d, 1¢) = gaéz _ = 26375
0
§55

=6

oD CD%D) D D

P(3) =1—[p(1) + p(2) + p(4)] = .58835

1 z 4 N
b, m= & xxp(x) =3.114,5 * = & X* xp(X)§- (3.114)% = .405,s =.636
Ex=1 u

x=1
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p(y) = P(Y =y) = P(y tridlsto achiever S's) = P(y-r F'sbeforer™ S)
-1

=p' (- p)Y L y=rr+Lr2,
- 1ﬂ

= nb(y -r;r,p) -
§r

a  b(x;15,.75)

b. P(X>10)=1-B(9;15,.75) = 1-.148

c. B(10,15,.75) - B(5,15, .75) = .314 - .001 = .313

d. m=(15)(.75) = 11.75, s>= (15)(.75)(.25) = 2.81

e. Requestscanall bemetif andonly if X £10,and 15- X £8,i.e.if 7£ X £ 10, so P(dl

requests met) = B(10; 15,.75) - B(6; 15,.75) = .310

P( 6-v light works) = P(at least one 6-v battery works) = 1 — P(neither works)

=1-(1-p)% P(D light works) = P(at least 2 d batterieswork) = 1 — P(at most 1 D battery
works) =1— g(l —p)* +4(1—p)®]. The6-v should betakenif 1—(1—p)? 3 1-[(1-
p)* +4(1—p)’.

Simplifying, 1£(-p)’+4p(l-p) P 0£2p-3p> b pE 2.

Let X ~Bin(5,.9). ThenP(X 3 3)=1—P(X £2) = 1-B(25,9) =.991

a P(X3 5)=1-B(425,05)=.007
b. P(X3 5)=1-B(425,10) = .098
c. P(X35)=1-B(425,20)=.579

d. All would decrease, which is bad if the % defectiveislarge and good if the % is small.
a. N =500, p=.005, sonp=2.5and b(x; 500, .005) Ep(x; 2.5), a Poisson p.m.f.

b. P(X =5)=p(5; 25) - p(4; 2.5) = .9580 - .8912 = .0663

c. P(X®5)=1-p(4;25)=1-.8912=.1088
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X ~B(x; 25, p).
a. B(18; 25,.5)—B(6; 25, .5) =.986

b. B(18; 25, .8) — B(6; 25, .8) = .220

c. Withp=.5 P(rgectingtheclam)=P(X £7) + P(X 3 18) = .022+[1-.978] =.022 +
022=.044

d. Theclaimwill not berejected when8£ X £ 17.
With p=.6, P(8 £ X £ 17) = B(17;25,.6) — B(7;25,.6) = .846 - .001 = .845.
With p=.8, P(8 £ X £ 17) = B(17;25,.8) — B(7;25,.8) = .109 - .000 = .109.

e. Wewant P(rejecting the claim) = .01. Using thedecisionrule“rejectif X =6o0r X 3
19" givesthe probability .014, which istoo large. We should use“rejectif X =5o0r X 3
20" whichyields P(rejecting the claim) =.002 + .002 = .004.

Let Y denote the number of testscarried out. For n= 3, possibleY valuesare1and 4. P(Y =
1) = P(no one has the disease) = (.9)% = .729 and P(Y = 4) = .271, 0 E(Y) = (1)(.729) +
(4)(.271) = 1.813, as contrasted with the 3 tests necessary without group testing.

Regard any particular symbol being received as constituting atrial. Thenp=P(S) =
P(symbol is sent correctly or is sent incorrectly and subsequently corrected) = 1 — p; + pip2.
The block of n symbols gives abinomial experiment with ntrialsand p= 1—p; + p1p>.

p(2) = P(X = 2) =P(Son#1 and Son#2) = p?

p(3) = P(Son#3 and Son #2 and F on #1) = (1 — p)p?

p(4) = P(Son #4 and Son #3 and F on #2) = (1 — p)p?

p(5) = P(Son#5and Son#4 and F on #3 and no 2 consecutive S'sontrialsprior to#3) =[ 1
-p(2) 11 -p)p?

p(6) = P(Son #6 and S on #5 and F on #4 and no 2 consecutive S'son trials prior to#4) = [ 1
-p(2) - P3N -p)p?

Ingenerd,forx:S, 6,7,... p(x) = [ 1_p(2) - —p(X _3)](1_p)p2

Forp=.9,
x | 2 3 4 5 6 7 8
Px) | 8L 08l 08l 0154 0088 0023 .0010

SOP(X £8)=p(2) + ... + p(8) = 9995

a  With X ~Bin(25,.1),P2 £ X £ 6) = B(6;25,1 — B(1;25,.1) = .991 - 271 =720

E(X) = np=25(1) = 25, 55 = ;/NPQ = 4/25(.1)(.9) =/2.25 =1.50

=

o

P(X ® 7whenp=.1)=1—-B(6;25.1) = 1- .991 = .009

d. P(X £6whenp=.2)=B(6;25,.2) ==.780, whichisquite large
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a. Letevent C = seed carries single spikelets, and event P = seed produces ears with single
spikelets. Then P(PC C)=P(P|C) xP(C) = .29 (.40) = .116. Let X =the number of
seeds out of the 10 selected that meet the condition P C C. Then X ~Bin(10, .116).

i
PX =5) = ?5 (116)°(:884)° = 002857
a

b. For 1 seed, the event of interest isP = seed produces ears with single spikelets.
P(P)= P(PC C) + P(PC Cd =.116 (from a) + P(P | C xP(C9)
=.116 + (.26)(.40) = .272.
Let Y = the number out of the 10 seeds that meet condition P.
ThenY ~Bin(10, .272), and P(Y =5) = .0767.
(Y £5) =b(0;10,.272) + ... + b(5;10,.272) = .041813 + ... + .076719 = .97024

With S = favored acquittal, the population sizeis N = 12, the number of population S'sisM =
4, the sample sizeis n = 4, and the p.m.f. of the number of interviewed jurors who favor

acquittal isthe hypergeometric p.m.f. h(x;4,4,12). E(X) = 4 >{?i9— 1.33

29

a P(X=0)=F0;2) 0.135
b. LetS=anoperator who receives no requests. Thenp=.135andwewishP(4 Ssin5

trials) = b(4;5,. 135)_5 ;( 135)*(.884)" =.00144

AA-2 X N

c. P(all receivex) = P(first receivesx) x... xP(fifth receives x) = éTU' , and P(all
e u

receive the same number ) isthe sum fromx =0to¥.
0
P(at least one) = 1 — P(none) = 1 - €"'PF° x% 1-e'"PR = g9p 'R =1
-1n(.0
p R :# = .7329p R=.8561
p

¥
The number sold ismin (X, 5), so E[ min(x, 5)] = é_ min( x,5) p(x;4)

¥
= (OP(0:4) + (1) p(Li4) + (2) p(2:4) + (3) P3:A) + (4) p4:4) + 5Q P(x;4)
x=5
=1735+ 51— F(4;4)] = 359
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108.
a  P(X =x)=P(A winsinx games) + P(B winsin x games)
=POSsin1%x1C Sonthex™) + PO Fsin 1% x1 C F on the X"

ax- 10 ax- 10
zg 9 :pg(l- p)x—lO p +g 9 :(1_ p)g px—lo(l_ p)
(4] (%]

=§(;)1%p1°(1- p)* 10+ (L- p)°p*¥]

b. Possiblevaluesof X arenow 10, 11, 12, ...( al positive integers® 10). Now

16
P(x:x):ée(9 %plo(l- p) ' +qg"(1- q)“"] forx=10, ..., 19,
@
19

SoP(X® 20)=1—P(X <20) and P(X <20) = § P(X = x)
x=10

109.
a.  No; probahility of successis not the samefor all tests

b. Therearefour ways exactly three could have positive results. Let D represent those with
the disease and D¢represent those without the disease.

Combination Probability

D¢
0 3 Lo N N
€20 u é&80 u
22 (8 g L9 ('
2} G [} G

=(.32768)(.0729) = .02389

1 2 P . < P . N
55200 u é50 U
%1.2)1(.8)4gxgzzg(.Q)Z(.l)sg

(%] u (%) u
=(.4096)(.0081) = .00332
i b8 e e 00
- . u . . u
g% 0%125 0
=(.2048)(.00045) = 00009216
3 0

&80 u éd0 u

gsi(-Z)?’(-8)29%025(-9)0(-1)59
1 0 &V Q
=(.0512)(.00001) = 000000512

Adding up the probabilities associated with the four combinations yields 0.0273.
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(X+r-1(x+r-2)..(x+r- X
X

Withr=25andp=.3,p(4) =

110.  Kk(rX)=

(5.5)(4.5)41(3.5)(2.5) (.3)2_5 (_7)4 = 1068

Using k(r,0) = 1, P(X 3 1) =1—p(0) = 1— (.3)*° = .9507

111.
a pxlm=1p(xl)+3 p(x;m)whereboth p(xl) and p(x; m are Poisson p.m.f.'s
and thus3 0, sop(x I rr)3 0. Further
1
a p(x;1,m = a D(X|)+ a IO(Xm)‘ +5=1
x=0 x=0
b. .6p(x1)+.4p(xm)
c EX)= a X[ p(X | )+— p(x; M) ——a xp(x;| )+ a Xp(x; m)
x=0 x=0 x 0
—1| l :l il
2 2
d EX%)== a x*p(x; | )+ a X p(x; m)——(l +1 )+%(m2 + ) (sincefor a
x 0 x=0
Poisson r.v., E(X )—V(X)+[E(X)]2 | +12),
1 g +my’ _g -mg” | +m
viX)= =12 +1 +m? +m|- ) 4
2V 2[ §20 &2 95 2
112.

a b(x+1n, p) — (n- x) %P >1 if np—(1-p) > x, from which the stated
b(x;n,p)  (x+1) (1- p)

conclusion follows.

p(x+L1) | _ _ _
b. = >1 if x<I| -1, fromwhich the stated conclusion follows. If
p(xl)  (x+)
| isaninteger, then| - 1isamode, but p(,|)=p(1-1,1) sol isasoamode[p(x;!)]
achievesitsmaximum for bothx =1 -1andx =1.
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10 10
113. PX=j)= 601 P (amontracki ¢ X =j) = é P(X=jlamoni ) xp
i=1 i=1
(]).O (]).O
= A P(extseekat l+j+1or15-1)>p = Q (Pisjsr T B-j.1) Pi
i=1 i=1
wherepg =0if k<0ork>10.

M o - M 5 M! - Mg
a EN-Xg & (X-DI(M-x)! &n- X 4
114, E(X)zaxygxé Xo_g eI X)§ e
x=0 &\Ig x=1 é\lg
NG NG
aN- Mg aN-1- (M- Do
Mga-108n- x5 mpaM-1o§ n-l-y 3
nx>—a T - =nx—a T ”
NG Ex-15a0- 19 NAE y g aN - 19
gn-lg n-1g
n-1
anéh(y;n-l,M-l,N-l)=an
N <, N

115,  LeA={x[x-n? ks}. Thens?= g (x- M2 p(x)3 (ks )?Q p(x). But
A

A

é p(X) =P(X isin A) = P(IX - M3 ks), so 5?3 k’s?xP(|X - M3 ks), as desired.
A

116.
N $ et
a For[04], | = Q€ dt =123.44, whereasfor [2,6],| = Q¢ dt =409.82

0.9907
b. | = @ e”%dt =9.9996 » 10, so the desired probability is F(15, 10) = .951.
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CHAPTER 4

Section 4.1

a PX£1)= é f(X)dx = é%xdx:%xz]; =25

b, P(5£X£15)—Q *Lxdx=1x 2]15

e Rx>19= ) f (9= ) axdx=2xC], =L » 438

2. F(X) = 45 for -5£x£5, and = 0 otherwise
a PX<0)= Qlodx_
25, o _
b. P(-25<X<25)= Q.15 dx=.5
3 1
C. P(-2£X£3):Ozﬁdx:.5

k+4 ]k+4 _

d. P(k<X<k+4)—Q =ax = (k+4)- K] =

7ol

a. Graphof f(x)=.09375(4 - %)

/N

f(x1)
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2

3
(X >0)= (§.09375(4- X*)dx = 09375(4x - X?)ﬂ =5
Uo

Pl<X <1)= (‘3.09375(4- x?)dx = .6875

S5

Px<-50RX>5=1-P-5£X£.5)=1- 05.09375(4- x%)dx
=1-3672=6328

N ¥ X - x2 2 B 2 [¥
Q, f(xa)dx=g—e "™ dx=-e X2 ]O =0-(-) =1

e
q

200 X

_ 200 . _ X2/ 292
PX £200)= Q, f(x,q)dx—Q q—ze dx

= e7/m [, 1353+1= 8647

P(X <200) =P(X £ 200) » .8647, since x is continuous.
P(X3 200)=1- P(X £ 200) » .1353

P(100 £ X £ 200) = é(;o f(xq)dx=- e’ 2°v°°°]f§§ » 4712
Forx>0,P(X £x)=

X

Q. f(y,q)dy = 6_3;e-y2/zqzdxz_ e_yz/ZqZ]: . g
€

1= §, T 00dx = Qe =k(Z)f =k(2)p k=3

o

64

2xdx =1 x3]1'5 =1 (i)3 - %(1)3 =19 5 2069

Sxedx =1 =1- [2(8)- o]:l- 2. =315 5781

64 64
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1= (‘Sk[l- (x- 3)2]dx = qlk[l- u?]du :%p K :%

P(X>3)—Q3[1 (x- 3)?]dx =.5 by symmetry of the p.d.f

PEE X £5)= § 51- (x- 371dx =3 [1- ()2]du =L » 367
4 4]~ Q5 4Q4 128

P([X-3> 5)=1—P(|X-3£ 5)=1— P(25£ X £35)
<5 _5
=1- 05%[1' (U)z]du - 1_6 » 313

f(x) = 5 for 25 £x £ 35 and = 0 otherwise

P(X >33) = éi—tdx =2

2 035

E(X) = x%dx =—qg =30
Qs 208,

30+ 2isfrom 28 to 32 minutes:

32
PB<X<B)= Q5 =% X2 =4

atr2

P(aExE at2) = % , sincetheinterval haslength 2.
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10
\¥ \5 \10 y2 ﬁ d]
f(VAV = ALvay + A (2- L - +& . =2
Q, f(Y)dy =Qzydy +Q (5- =y)dy 504 "5V 50 A
1 é 10 1 1
=Z+44-2)- (2- D)p==+==1
2 é‘ )= ( 2)H 2 2
3 yzu5 o]
m£3)=@%5ydy=5—t.b:5».18

RYES == Qdydy + §(2- Ly)dy=§» 92
QZS Q 5 25 25

P(3£Y£8)‘P(Y£8)-P(Y<3)—@-i:ﬁ: 74
50 50 50

3 10 2
Y<2oY>6)==Q=ydy+ (4- 2y)dy=—=4
RV <20rv>6)== Qzydy +Q (5 V) =

PX£6)= = (‘S.lse‘ A30¢9) gy = .15(5'5 e ™du (afteru=x - 5
— e- 15u ]25 - 1_ e— .825 » 562
1- 562 = .438; 438

P(5E£Y £6)=P(Y £6)-P(Y £5)» 562- .491 = 071
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10.
A
| >
q
\ k 2 10 _q-
=0¥f(xkq)dx Q k+1 k&‘:?&j}q =q_=1
1oub mok
HXEb)‘WdX q _k&jq =1- gBB
kg * 10 a8 o810
EXED) = O _x = U _®o HOo
P(a ) = Q k+1 q >qe2 ngﬂa gag gbg
Section 4.2
11.

PXE£D)=F1=+=.25
P(5EX£1)=F1)-F(5) = % =.1875

P(X>5=1-PX £ 5)=1-F5)= 12 =.9375

b M =2b Mm=4+/2»1414

m’
5=F(M=—2">,
(m ==

f(x) = Fx) = 5 for 0£ x <2, and = 0 otherwise

EX)= &, XXT (x)dx :6x><%xdx: %6x2dx - %ﬂ =§ »1.333
U,

2
E(X)—QX f(x)dx = Qx —xdx-—Qx dX—ggo—Z,

Sovar(X) = EX?) - [EX)P = 2- (&) =& » 222,5,» 471
Fromg , E(X?) =2
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. PX<0)=F0)=5

. PLLEXE£1)=F1)-F-1)= 1 =.6875

P(X>5)=1-P(X £ .5 =1-F(5)=1-.6836=.3164

3a& 3x%0

. Fe= qu__§_+_ e X8 0, 37 X0 2=.003754- x*)
3 %

2% 34

F () = .5 by definition. F(0) = .5 from aabove, which s as desired.

k

v K k
p 1=0- (-2)QPb 1=—b k=3
(-3 3

1 QFpr 1:_X

i _ \X _\X -4 __§ -3)(__ -3 — _i
cdf: F(x)-Qf(y)dy—QSy dy = 3y 1- X +1=1 X3.SO
i 0, x£1
FIx)=i
) 1. x% x>1

Px>2)=1-F@=1-(1- 3)=1 or 125
PR<x<3=F@3)- F(2=(1- £)- (1- 1)=.963- .875=.088

®30,  *&30 32 3

E(X) = ) Xc—-dx = Hx=- = =0+_-=—

()= Qxe k=g ez ix=-5X 7| 2

coy = e § B o 3¢ 4 -0vana
ex' g ex g

_3.80 5 9_3
V(X) = E(x?) - [E(X)]? =3 ; 3- 2 =2oTs

= Nx) =% =.866

P(L5- .866 <x <1.5+.866) = P(x < 2.366) = F(2.366)
=1- (2.366°%) =.9245
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Chapter 4: Continuous Random Variables and Probability Digtributions

If X isuniformly distributed on the interval from A to B, then
B 1 A+B A’ + AB+B?
E(X) = x* dx = E(X)=—«——
(X)=Q 5 A > (X%) 3

2
V(X) = E(X?) — [E(X)] = w .
With A = 7.5 and B = 20, E(X) = 13.75, V(X) = 13.02

10 X<75
FO) = [ 2= 'S 75£x<20

+ 125

% 1 x3 20

P(X £ 10) = F(10) = .200; P(10 £ X £ 15) = F(15) — F(10) = .4

s =361, som+ s = (10.14, 17.36)
Thus, P(m- s £ X £ m+ s) = F(17.36) — F(10.14) = 5776
Smilarly, (m-s £X £m+s) = P(653£ X £2097) =1

F(X)=0forx £0,=1forx 3 1,andfor0< X <1,
X

F(X)=Q, f(Y)dy = 990y°(L- y)dy =90Q)(y*- y°)dy
ooty - 4 y° ) =10%° - 9x°

1.0

F()
I

0.0

0.0 0.5 1.0

F(5) = 10(.5)° — 9(.5)*° » .0107

P(.25£ X £ .5) = F(.5) — F(.25) » .0107 — [10(.25)° — 9(.25)7]
» 0107 — .0000 » .0107

The 75" percentileis the value of x for which F(x) = .75
b .75=10(x)° — 9x)° P Xx».9036
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Chapter 4: Continuous Random Variables and Probability Digtributions

e EX)= C‘i x xf (X)dx :le>90x8(1- X)dx = 90(:1)x9 (1- x)dx
—ox- o1 = 8 5 8182
E(X?) = Q x? xf (x)dx —Qx x90x° (1- X)dx = 90(‘9x1°(1- X)dx
=20y sl ae1g
V(X) » .6818— (.8182)? = .0124, sy, =.11134.

f.  mts =(.7068,.9295). Thus, P(m- s £ X £ m+ s) = F(.9295) — F(.7068)
= .8465 - .1602 = .6863

a FX)=0forx<OandF(x)=1forx>2 ForOE£XE?2,
— 1,3

F9= Q3 y°dy=3y°]s =4

1.0 -

0.0 —

o
P
N

b. PxES5=F5=1(1) =&

c. P(25EX £ .5)=F(5) - F(.25) =L (1) =L ».0137

d. 75=Fx)=1x°p ¥=6pP x» 18171

e EX)= ciXXf (x)dx —Qx>(3 2)dx g :g(%x“)]z =3=1
€)= X ADC k=3 = (8] = £ =24

V)= 2- (2)?=2=.15 s,=3873

f. mts=(1.1127, 1.8873). Thus, P(m- s £ X £ m+s) = F(1.8873) — F(1.1127) = .8403 -
1722 = 6681
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Chapter 4: Continuous Random Variables and Probability Digtributions

a For2£XE4, F(X):c‘if(y)dy @%1 (y- 32]dy (etu=y-3)
, X-3
%, o _3€ WU _3é 7 (x-3)°U
=q 2l-vldu="@u- —py ==
Q al-wldi=gai- 50 =83 3 ¢
i 0 X< 2
F():}%[SX 7- (x- 3 2E XE 4
{ 1 X >4

(a- Thus

b. By symmetry of f(x), T =3

¢ EX)= xx%[l- (x- 3)2]dx=%é(y+3)(1- y?)dx

2 4

O/

@ ‘Pu
1
<
<
CDC c
11
I
S
w

1 B Br‘l+1 _ An+l
dx =
A (n+1(B- A

¢ E(X") = (‘fx” -
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Chapter 4: Continuous Random Variables and Probability Digtributions

a  PXXE£1)=F1)=.251+In()] » 597
b. PLEXE£3)=F3)—F(1)».966- 597 » .369

c. f(x)=Fqx)=.25In(4) - .25In(x) foro<x <4

y2
50

5

For 5£y £ 10, F(y) = é f(u)du = (‘9 f (u)du +Qy f (u)du

a ForO£y£5 F(y)—éiudu
Y ¥os

:%+ c—- __du =—Vy- -— -1

1.0 4

0.5 —

F(x1)

0.0 H

b. For0<p£.5,p:F(yp):)é—;|3 y, = (50p)"?

For 5<p£1 p—gy -y—rz’-lb y, =10- 5/2(1- p)
' " 57" 50 P

c. E(Y)=5Dby straightforward integration (or by symmetry of f(y)), and similarly V(Y)=
50
— = 4.1667. For thewaiting time X for asingle bus,

E(X)=25and V(X) = 2
' 12

E(eres) = E(pR%) = (), pr f (r)dr = 5lpr2§gl- (10~ r)? Jar

-39, O r(L- (100~ 20r +1r%) ki =3, Q- 99r?+20r" - r'dr =100
edg 4
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Chapter 4: Continuous Random Variables and Probability Digtributions

a ForlfEx£2 F(X):QXZg[- iz?jjy=2§+l$ —2€e +i9- 4, so
Y o Ya, € Xo
i 0 x<1
Fo=12(x+1)-4 1Ex£2
1|. 1 X>2

=

Zéx +—;-4 PP 2%°—(4—px +2=0P %= 1[4+ p+\,p +8p] To
find rr,setp—.5b m =164

2

e E0= e =9 =28%- %=X - (% =1614
O X g O™ X5 2 oA,

s
EXX?) = Z(i;(x2 - 1)dxzzaei- x% _8 P Va(X)=.0626
3 a3
d. Amount left = max(1.5- X, 0), so
2 15 1
E(amountleft) = (ymax(15- x,0) f ()dx=2() (L5~ 0)&- —
e

2

0
=dx
X @

, . , 9
With X = temperature in °C, temperature in °F = g X +32, so

19 9 &9
ES X +320=2(120) +32=248, Var& x +32%=2 290

g5 H 5 &5 i &g

sos =36

X(2)? =12.96,

139



Chapter 4: Continuous Random Variables and Probability Digtributions

¥
kq k\i _qux—k+lg B kq
E(X)—QX X— - dx=kq kadx— -k+1Hq_k-l
E(X) =¥
EX?) = k et 1 dx = ka so
- q Q k-1 k 2’
aekq’ 0 aekq o _ kg ®

V”‘X)‘ék 25 &-1p (k- 2k-1

Va(x) =¥, since E(X?) = ¥.

M Ly kS n- (k+D) L o o
EX" =kq Q X dx , which will befiniteif n— (k+1) <-1, i.e. if n<k.

PY £181T +32) = P(L8X + £ 18T +32)=P(X £ T)= 5

90" for Y = 1.8n(.9) + 32 where h(.9) is the 90" percentile for X, since
Y £ 1.80(.9) +32) = P(L8X + 32 £ 1.8n(9) + 32)
= (X £h(.9)) = .9 as desired.

The (100p)th percentilefor Y is 1.8h(p) + 32, verified by substituting p for .9 in the
argument of b. When'Y =aX + b, (i.e. alinear transformation of X), and the (100p)th
percentile of the X distribution ish(p), then the corresponding (100p)th percentile of the
Y distributionis ah(p) + b. (same linear transformation applied to X’ s percentile)

140



Chapter 4: Continuous Random Variables and Probability Digtributions

Section 4.3

26.
a PO£ZE£217)=F(217)- F(0)=.48%0

b. F@)- F(0)=.3413
c. F(0)- F(-250)=.4938
d. F(250)- F(-250)=.9876
e F(1.37)=.9147
f. P(-175<Z)+[1—P(Z<-175)] =1-F (-1.75) = .9599
g. F(2-F(-150)=.9104
h. F(250)- F(1.37)=.0791
i. 1-F(150) =.0668
i. P(|]Z|£250)=P(-250£ Z £ 2.50) = F (250) - F (-2.50) = .9876
27.
a.  .9838isfoundin the 2.1 row and the .04 column of the standard normal table so ¢ = 2.14.
b. POE£Z£c)=.291b F(c)=.7910p c=.81
c. P(c£EZ)=.121bp 1-P(CE£Z)=P(Z<c)=F()=1-.121=.8790pP c=117

d PcEZE£c)=F(c)-F(-c)=F()—(1-F(c)=2F(c)—-1
b F(c)=.9920b c=.97

e P(c£|Z])=.016 b 1-.016=.9840=1-P(c£|Z|)=P(|Z]| <c)

=P(-c<Z<c¢)=F()-F(c)=2F(c)-1
P F(c)=.9920 b c=241
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30.

Chapter 4: Continuous Random Variables and Probability Digtributions

F(c)=.9100 b c» 1.34 (.9099 isthe entry in the 1.3 row, .04 column)

9" percentile = -91% percentile=-1.34

F(c)=.7500 b c¢» .675since.7486 and .7517 arein the .67 and .68 entries,

respectively.

25" = 75" = _ 675

F(c)=.06 b c».-1.555 (both.0594 and .0606 appear asthe—1.56 and—1.55 entries,

respectively).

Areaunder Z curve above zggss is.0055, which implies that
F (Zooss) = 1-.0055 = .9945, 0 Zgps5 = 2.54

F(zg9)=.9100 b z=1.34(since .9099 appears as the 1.34 entry).

F ( Ze33) = areabelow zg33 = .3370 P Zg33 » -.42

P(X £ 100) = p?fz £ %9: P(Z £2) =F (200) = .9772
e

2

PX £80)= PEZE 80-806_psc0=F00)=5
& P

P65 £ X £ 100) = Pgﬁﬁ_—g.o £, £100- 806 P(-150£ Z £2)
e 10 10 g

= F (200) - F (-1L50) = .9772 - 0668 = .9104

P(70£ X) = P(-LO0£ Z) = 1 - F (-1.00) = .8413

P85 £ X £ 95) = P(50 £ Z £ 1.50) = F (150) - F (.50) = .2417

P(]X —80|£ 10) = P(-10£ X - 80 £ 10) = P(70 £ X £ 90)
P(-1L00£ Z £ 1.00) = .6826
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33.

34.

Chapter 4: Continuous Random Variables and Probability Digtributions

18- 15¢%
T=P(Z £24)=F (24) = 9452

2

a Rx£19=PEZE
e

b. POEX £12)=P(-400£ Z £ -2.40) » P(Z £ -2.40) = F (-2.40) = 0082

c. P(X-10/£2(125))=P(-250£ X-15£ 2.50) = P(125£ X £ 17.5)
P(-2.00£ Z £ 2.00) = .9544

a P(X>.25)=P(Z>-83)=1-.2033=.7967
b. P(X £.10) = F(-3.33) =.0004

c. Wewant thevalue of the distribution, c, that isthe 95" percentile (5% of the values are
higher). The 95t percentile of the standard normal distribution =1.645. Soc=.30+
(1.645)(.06) = .3987. Thelargest 5% of all concentration values are above .3987 mg/cnt.

a P(X310)=PZ3 43)=1-F(43)=1-.6664=.3336.
P(X >10) = P(X 3 10) =.3336, since for any continuous distribution, P(x = a) = 0.

b. PX>20)=PZ>4)»0
c. PGEXE£10)=P(-136£Z£ 43)=F(43)-F(-1.36) =.6664 - .0869 = .5795

d. P@B8-CcE£XE£88+c)=.98 5088—cand8.8+careat the 1 and the 99" percentile
of the given distribution, respectively. The 1% percentile of the standard normal
distribution has the value —2.33, so
88— c=m+(-2.33)s =8.8—-233(2.8) b ¢=2.33(2.8) =6.524.

e. Froma, P(x > 10) =.3336. Define event A as{diameter > 10}, then P(at least one A;) =
1-P(no A;)=1- P(A‘)4 =1- (1- .3336)4 =1- .1972 =.8028

Let X denote the diameter of arandomly selected cork made by the first machine, and let Y be
defined analogously for the second machine.
P29E£X £31)=P-1.00£ Z £ 1.00) = .6826

PRI9EY £31)=P(-7.00£ Z £ 3.00) =.9987
So the second machine wins handily.
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38.

39.

40.

Chapter 4: Continuous Random Variables and Probability Digtributions

a  m+sx91% percentilefrom std normal) = 30 + 5(1.34) = 36.7
b. 30+5(-1.555)=22225
c. m=3000nm;s = 0.140. We desirethe 90" percentile: 30 + 1.28(0.14) = 3.179
m=43;s =45
40- 439
a P(X<40)= sz£ 25 ——P(Z<-0667) 2514
. 2

P(x>60):Pgez>M9_P(z >3.778)» 0
- 45 g

b. 43+ (-067)(45)=39.985

P& 100 2000 _

P(damage) =P(X <100) = PCZ < ———+= P(Z -3.33) =.0004
e 300

P(at |east one among fiveis damaged) = 1 P(none damaged)

=1-(.9996)° =1-.998 = .002

From Table A.3, P(-(196£ Z £ 1.96) =.95. ThenP(m-.1£ X £ m+.1) =
1 16 A A
Pge_ <z< ——|mp||esthat—- 1.96, and thusthat S =—— =.0510
S g S 1.96

Since 1.28 isthe 90" z percentile (z; = 1.28) and—1.645 isthe 5" z percentile (205 = 1.645),
the given information implies that m+ s(1.28) = 10.256 and m+ s(-1.645) = 9.671, from
which s(-2.925) = - 585, s = .2000, and m= 10.

a P(m-15s £X£m+15s)=P(-1L5£Z £ 15) = F (L50) - F (-1.50) = .8664

b. P(X<m-25so0rX>m+25s)=1-P(m-25s £ X £ m+25s)
=1-P(-25£Z £25)=1-.9876=.0124

c. PMm-2s £EXEm-sorm+s £X £ m+2s)=P(within 2 sd’'s) — P(within 1 sd) = P(m-

2s EXEM+2s)-P(m-s £X£m+5s)
=.9544 - 6826 =.2718
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44,

45,

Chapter 4: Continuous Random Variables and Probability Digtributions

With m=.500 inches, the acceptable range for the diameter is between .496 and .504 inches,
S0 unacceptable bearings will have diameters smaller than .496 or larger than .504. The new

distribution hasm=.499 and s =.002. P(x < .496 or x >.504) =

496- .499 ¢ 504 - .4994
pgez< MQ+ pgez > MQ: P(z <- 1.5)+ P(z > 2.5)
e 002 g e 002 g

F (-1.5)+(1- F(2.5)) =.0068 +.0062 =.073, or 7.3% of the bearingswill be

unacceptable.

a  PB7EXET75)=P(-L00E Z £ 1.67) = 7938
C CO C C
b. P(70-c EXE70+0)= Pe— £7 £ -2=2F(Z)- 1=.95b F(<) =.9750
e 3 3g 3 3
§=1.96I3 c=588

c. 10P(asingleoneisacceptable) = 9.05
d. p=P(X<7384)=P(Z<128)=.9, s0P(Y £8)=B(810,9) =.264
The stated condition implies that 99% of the area under the normal curve withm= 10 ands =

2istotheleftof c—1,soc—1isthe 99" percentile of the distribution. Thusc—1=m+
$(2.33) =20.155, and c = 21.155.

a Bysymmetry, P(-L72£ Z £-55) = P(55£ Z £ 1.72) = F (L.72) - F (55)

b. P(-1L72£Z £ 55)=F(55)-F(-1.72) =F (55)—[1- F (1.72)]
No, symmetry of the Z curve about 0.

X ~N(3432, 482)

4000- 3432 5
a  P(x>4000)= PEZ 5, 4000- 34329
& 182 4

=1- F (1.18) =1- .8810=.1190
000- 3432 4000- 34325

P(3000< x < 4000) = P& <zZ< 2
& 482 482 g

=F (L.18)- F (- .90) = .8810- .1841=.6969

=P(z>1.18)

2000 - 23 - 34324
b. P(x < 20000rx > 5000) = PEZ < 2000- 34329, PeZ > 5000- 34329
e

g & 482 g
= F (- 2.97)+[1- F(3.25) =.0015 +.0006 = .0021
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c. Wewill usethe conversion 1 1b = 454 g, then 7 Ibs = 3178 grams, and we wish to find

P(x >3178)= P"’% 3178- 34329

+=1- F(-.53)=.7019
482 g

d. We need the top .0005 and the bottom .0005 of the distribution. Using the Z table, both
.9995 and .0005 have multiple z values, so we will use amiddievalue, £3.295. Then
3432+(482)3.295 = 1844 and 5020, or the most extreme .1% of al birth weights areless
than 1844 g and more than 5020 g.

e. Convertingto Ibs yields mean 7.5595 and s.d. 1.0608. Then

=1- F(-.53) =.7019 Thisyieldsthe same
1.0608

answer asin part C.

We use aNormal approximation tothe Binomial distribution: X ~ b(x;1000,.03) ~
N(30,5.394)

a  P(x3 40)=1- P(x£39)=1- PaPZEMO

5394 g4
=1- F (1.76) =1- .9608 = 0302
50.5- 30
b, Sof 1000=50 P(x£50)= P& £ 2> 9= F(3,80) » 1.00
& " 5304 4

P(X-m[3s)=P(X£m-s orX3 m+s)
=1-PM-sEXEM+s)=1-P(-1£Z£1)=.3174
Smilaly, P([X-m|3 2s)=1-P(-2£ Z £ 2) =.0456
AndP(|X -m|3 3s)=1—-P(-3£ Z £ 3) =.0026

a P@20-5E£XE£30+.5)=P195£X £305) =P-L1£Z £1.1)=.7286

b. P(at most 30) = P(X £ 30+ .5) = P(Z £ 1.1) = .8643.
P(less than 30) = P(X <30 - .5) = P(Z < .9) = .8159
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P: 5 6 8
m 125 15 20
S: 250 245 2.00
a
P(15€ X £20) P(14.5 £ norma £ 20.5)
5 212 P(.B0£Z £3.20) =.2112
6 577 P(-20£ Z £ 2.24) = .5668
8 573 P(-275£Z £ .25) =.5957
b.
P(X £15) P(normd £ 15.5)
885 P(z £ 1.20) =.8349
575 P(Z £ .20) =.5793
017 P(Z £-225) =.0122
C.
P(20 £X) P(19.5 £ normal)
002 .0026
029 0329
617 5987
P=.10; n=200; np =20, npq =18
a30+.5- 20¢ o
a P(X£30)—Fg =F (247)=.9932
V18 ﬂ
&9 +.5- 20¢ o

b. P(X <30)=P(X £29) = Fg = F (2.24) = 9875
N

C. PASEXE2D)=PXE£25)-PXE£14)=

ﬂ

&5+.5- 200 F314 5-200

S s 5§ vo

F (1.30) - F (-1.30) = .9032 - .0968 = .8064

N =500, p=.4,m=200, s =109545
a  P(180£ X £ 230) = P(1795 £ normal £ 230.5) = P(-1.87 £ Z £ 2.78) = .9666

b. P(X <175) = P(X £ 174) = P(normdl £ 174.5) = P(Z £ -2.33) = 0099
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Chapter 4: Continuous Random Variables and Probability Digtributions

P(X £m+ s[(lOOp)th percentile for std normal])

P(Z£[ .]) = pasdesired

a FRy)=RYLy)= P(aX+b£y)—Pa3X£(ya )Q(fora>0)
(4]

Now differentiate with respect to y to obtain
- 1 - 2
1 o W{y (am+b)]

¢
y(y) = Fy =
fy(y) (y) T2nas

and variance &’s>.

s0Y isnorma with mean am+b

b. Normal, mean 2 (115) + 32 = 239, variance = 12.96

3+351+562¢
o PEZ® D> Sxepd 0= 1587
@ 703+165 g
ae- 2362 §
b. Z>3)» 5xexpc——==.0013
Ae>3) P&300.3333,
s 32944

c. PZ>4)».5xexpc +=.0000317, so

€340.75g
P(-4 < Z < 4) » 1— 2(.0000317) = .999937

e 43929
d. PZ>5» 5xex 9_ 00000029
Az>9) P 3056 5
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Section 4.4

55.

56.

57.

58.

a Qg6)=5=

20_3 do_3 1 o aé-’:_\/—
p
e2g 2 lea 2 2 e2z e [7]

» 1.329

c. K45 =.371fromrow 4, column5of Table A .4
d. FG54)=.735

e FO4)=PXE£0,a=4)=0

a PX£5)=F57)=.238

b. P(X<5)=P(X £5)=.238

c. P(X>8=1-PXX<8=1-F@87)=.313
d. P(3EX£8)=F87)—F(37)=.653

e P(3<X<8)=653

f. PX<40rX>6)=1-PAEXE6)=1-[F67)—F(47)]=.713

a m=20,s°=80 b ab=20,ab’=80 b b= a=5

b. PXE£24)= Fgg—4;59: F(6:5) =.715
ed g

c. P@20E£XE40)=F105) - F(55) = 411

m=24, s?=144 b ab=24,ab’=144b b=6,a=4
a PA2E£XE£24)=F44)—-FH24) =.424

b. P(XE£24)=F(4;4) =.567, so whilethe mean is 24, the median islessthan 24. (P(X £
IT) = .5); Thisisaresult of the positive skew of the gamma distribution.
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c. Wewant avalue of X for which F(X;4)=.99. In table A.4, we see F(10;4)=.990. So with
b = 6, the 99" percentile = 6(10)=60.

d. Wewant avaueof X for which F(X;4)=.995. Inthetable, F(11;4)=.995, sot =
6(11)=66. At 66 weeks, only .5% of all transistors would still be operating.

=1

1
a. E(X) = I—

=1

1
b. S :|—

c. PXE£4)=1- eP® =1. ¢* = 982

d. PREXES=1- e WO . [1- e‘(l’(z)]:e‘2 -e°=.129

a PX£100)=1- (100001389 = 1. g 13% = 7499

P(X £200) = 1- @ (20001380 = 1_ o272 = 9375
P(100 £ X £ 200) = P(X £ 200) - P(X £ 100) = .9375 - .7499 = .1876

1

" 01386
P(X > m+ 25) = P(X > 72.15 + 2(72.15)) = P(X > 216.45) =

1- |.1_ e (21645)(.01386)] = @299 — 0408

=72.15,s=7215

c. 5=PXE£M)p 1- (MO0 = 5p g (MOXG = g

- 7(.01386) = In(.5) =.693P i =50

Mean = Il = 25,000 impliesl =.00004

a P(X>20000) = 1- P(X £ 20,000) = 1— F(20,000; .00004) = g (%9209 = 449
P(X £ 30,000) = F(30,000; .00004) = " -2 = 699
P(20,000 £ X £ 30,000) = .699- 551 =.148
1
b. S =I— = 25,000, so P(X > m+ 2s) = P(x > 75,000) =

1— F(75,000;.00004) = .05.
Similarly, P(X > m+ 3s) = P( x > 100,000) = .018
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63.

64.

65.

Chapter 4: Continuous Random Variables and Probability Digtributions

1 n
a EX)=ab= nl_ = l—; forl =.5n=10,E(X)=20
b. PX£30)= FE@;mQ: F(15;10) =.930

e2 g

c. PXEt)=Paleastneventsintimet) =P(Y 3 n)whenY ~ Poisson with parameter I t .

o ste't(it)
ThusP(X £f)=1-P(Y <) =1-RY£n-1) =1- § e
k=0 :

a {X*4=A1CA2CA3CA4CAs

b, POX® ) =P(A1) XP(A2) P(Az) P(As) (As)= (€1 =€ soR)=RXE

=1- €% ft)=.05e %" fort® 0. ThusX also haan exponential distribution , but

with parameter | =.05.

c. Bythesamereasoning, PX £f)=1- e "
parameter nl .

, S0 X has an exponential distribution with

With x, = (100p)th percentile, p=F(x)=1-€ ' ** b €' =1- p,
P -1x,=In1- p)P X, =M. Forp=5,xs = m:f’;ﬁ.

a {X2£y}:{- ﬁﬁXEﬁ}

b. PX?£y)= e Zz/2dZ . Now differentiate with respect to y to obtain the chi-

S5 1
On 20

squared p.d.f. withn =1

151



Chapter 4: Continuous Random Variables and Probability Digtributions

Section 4.5

66.

a E(X)= 3G€'i+—$— 3 ><38@—19— 2.66,

Var(X)—QeG(1+1 GZEL_T =1.926

b. PXE 6)=1- e ®P" =1- ®¥ =1. ¢4 = 982

¢ PL5EX£6)=1- ¢ . ll- e (1'5’3)2J =e®-e*=.760

67.
a  P(X£250)=F(250:25, 200) = 1- @ (®0/200%° —1_ o175 5, 8057
P(X < 250) = P(X £ 250) » 8257
P(X > 300) = 1— F(300; 25, 200) = & ®*° = 0636
b. P(L00£ X £ 250) = F(250;25, 200) - F(100;25, 200) » .8257 - 162 = 6637
c. Themedian IT isrequested. Theequation F( IT) = .5 reduces to
~ 25
e m & _
5= ™207 o 15 - B9 o i = (6931)%(200) = 172727,
2200 g
68.

(x- 35)

a Forx>35FX =P(X£X)=P(X-35£x-35)=1-¢€

b. EX-35=15 ®0_1329% E(X) = 4.829
e2g

Va(X) = Va(x - 35) = (L5)’ gG(Z) G 853 O 483
€ 24

c. PX>5=1-PX£5)=1- [1- e‘lj =e'=.368

d PGEXEG=1-e°-|l- e!|=¢?- e°=.3679- .0001=.3678
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69.

70.

71.

72.

a

b.

C.

d.

X

a

b.

C.

a

b.

C.

— a a1 (}’b)a _ _a(i.ja _
m—Qxxb—ax e dX—(aftery—gEE,dy—

Chapter 4: Continuous Random Variables and Probability Digtributions

¥

\

ax??!

a

dx)

‘¥ ) 1 .
b Q y%e Ydy =b >G?.+ a—%ﬂby definition of the gamma function.

5=F(M=1-e™¥ p
e™'®=5p ii?=-9In(5) =6.2383P =250

1- el®3915° = 5p (M- 35)2=-2251n(5)=15506b 7 =475

P=F(x)=1-€ (x% )a P (%/b)* =-In(L—p) P x,=b[-In(L-p)]"

The desired value of t isthe 90" percentile (since 90% will not be refused and 10% will
be). From c, the 90" percentile of the distribution of X — 35is 1.5] -In(.1)]Y? = 2.27661,
0t=35+22761=5.7761

~ Weibull: a=20,0=100

F(x,20,b)=1- ¢ Iy e ®" =1. 070=.930

F(105)- F(100)=.930- (- e*)=.930- .632=.298

X

50=1-e® p ¢ = 50p -(x)? =In(50)

100

a"%é?:zom(. 50) b - x =100{%in(50) )b x =98.18
e (%]

s 20
E(X)=e® ?o=¢*2=123.97
V(X) = (6249+#) e # - 1)= (15,367.34)(8964) = 13,776.53
s =117.373

F(0.13)=.5517

I(100) - 4.5
P(x£100) = P& £ %9:
e .

7]

P(x3 200) = P&z wgzl- F(1.00) =1- .8413 =.1587 = P(x > 200)
e E a
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EX) = e35+(1.2)2/2: 68,0835 V(X) = e2(3.5)+(1.2)2 >{e(1.2)2 - 1): 14907168:

Sy = 122.0949
& . In(250) - 3506 In(50) - 3.56
e x £250) = PRy £ 2207 330 b8 ¢ ING0) - 350
e 12 g e 12 I}
P(Z £ 1.68) — P(Z £ .34) = .9535 - .6331 =.3204.
g . In(680339 - 3.5¢
P(X £680335) = PcZ £ +=P(Z £ .60) = .7257. Thelognormal
e 1.2 2
distribution is not a symmetric distribution.
(- pEN(M - m )
S5=KI)= (where I refersto the lognormal distribution and mand
ﬂ
s tothe normal distri bution). Since the median of the standard normal distributionis0,
In(m)-m _ ~ ~ N
————=0,s0In(T)=mp M =e™. For the power distribution,
S
im=e* =3312

1.a:|:(z‘,i):|:’(z£za):gﬁrMEZG1 Q- P(n( X) £ m+sz,)
e S (%]

=P(X £ €™°%), sothe 100(1 - a)th percentileis €™ . For the power distribution,
the 951 percentileis @351:699(1-2) = 5474 = 93841

E(x) = €%(%0/? = g5%% = 149,157; var(x) = €*® e - 1) = 223,504

P(X > 125) = 1— P(X £ 125) =
1P & 1129 - 56_

=1- F(- 1.72) = 9573
e 1l o

aén(llO) 50
¢ 1
e - 2

P10£ X £125) =F (- 1.72) - =.0427- .0013=.0414

if =e> =148.41 (continued)
P(any particular onehas X > 125) = .9573 b expected # = 10(.9573) = 9.573

We wish the 5™ percentile, which is €% 169 = 12590
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76.
a EX)=e¥%'? =10024; va(x) = €38+ ><(e-81 - 1) =125.395, 5,=11.20

b. P(X £10) = P(In(X) £ 2.3026) = P(Z £ .45) = 6736
P(5£ X £ 10) = P(1.60% £ In(X) £2.3026)
=P(-32£Z £ 45) = 6736 - .3745= 2001

77. The point of symmetry must be 3, so we require that f (% - m) =f (% + m) e,

B-m ' E+m = +m (- M whichintum impliesthata =b.

78.
10

* RO @6

===.714,V(X)= 0255

~Nlo

(5+2)
b. f(X):a§%§5XX4 >(]_- X)=30(X4- xs)for0£X£1,

SOP(X £.2) = Q'Z:%o(x4 - x5)1|x =.0016
c. P(2EXE 4= (530(x4 - x5)dx=.03936

d EQ-X)=1-EX)=1- 3252.286

79.

e GogE o GRc be  a
cla+b) Cla+1cb) _ ac) _ ca+b) _ a

da+b) a+b

~—

Ga)db) Ga +b+1) Gla)db) @ +b

b. E@1-X)"= é(l- x)" %x“(l- x)°*dx

mb1 . Cla+b):Gm+b)

A A Ny ()
b

a+b

- G(a +b) xlxa-1
ca)db)?

Form=1E1-X)=
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80.
a EY)=10p EEEY 0_1__ 3 .\am=19, Vargiézﬁzi
620 2 a+b 7 é20g 2800 28
zab P a =3, b =3, after some agebra
(@ +b)*fa +b +1)
b. RBEXE1)= Fz 330 F&0 530-F(s39-F4:39).
€20 g é20 g
The standard density function hereis 30y2(1—y)?,
SOPBEXE£12) = (‘530y2(1- y)dy=.365.
c. Weexpectittosnapat 10,s0P(Y <8orY >12)=1-PB£ X £12)
=1-.365=.665.
Section 4.6

81. The given probability plot is quite linear, and thusit is quite plausible that the tension
distribution is normal.

82. The z percentiles and observations are as follows:

percentile observation

-1.645 152. 7

-1.040 172.0 -
-0.670 172.5 400

-0. 390 173.3

-0.130 193.0

0. 130 204.7 E w0

0. 390 216.5 = L

0. 670 234.9 200 <’

1. 040 262.6 . e

1. 645 422. 6 — . . . .

z %ile

The accompanying plot is quite straight except for the point corresponding to the largest
observation. Thisobservation is clearly much larger than what would be expected in anormal
random sample. Because of thisoutlier, it would be inadvisable to analyze the data using any
inferential method that depended on assuming anormal population distribution.
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83.

84.

Chapter 4: Continuous Random Variables and Probability Digtributions

The z percentile values are as follows: -1.86, -1.32, -1.01, -0.78, -0.58, -0.40, -0.24,-0.08,

0.08, 0.24, 0.40, 0.58, 0.78, 1.01, 1.30, and 1.86. The accompanying probability plot is
reasonably straight, and thus it would be reasonabl e to use estimating methods that assume a
normal population distribution.

1.8 —

13 — a®

thickness

0.8 —

z %ile

The Weibull plot uses In(observations) and the z percentiles of the p; values given. The
accompanying probability plot appears sufficiently straight to lead us to agree with the
argument that the distribution of fracture toughness in concrete specimens could well be
modeled by aWeibull distribution.

w
0.0 — L
]
-0.1 —H . « [}
»
-0.2 —H ab
»
a®
-0.3 — a”
=
< a
c 04 — -
_05 -
w
-0.6 —
-0.7 —
w
-0.8 —
T T T T T
2 1 0 1 2
z %ile
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86.
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The (z percentile, observation) pairs are (-1.66, .736), (-1.32, .863), (-1.01, .865), (-.78,
913), (-.58, .915), (-.40, .937), (-.24, .983), (-.08, 1.007), (.08, 1.011), (.24, 1.064), (.40,

1.109), (.58, 1.132), (.78, 1.140), (1.01, 1.153), (1.32, 1.253), (1.86, 1.394). The

accompanying probability plot is very straight, suggesting that an assumption of population
normality is extremely plausible.

1.4 — »

1.3 —

1.2 —

11 — | ]

obsvn

1.0 — "

0.9 — Dl

0.8 —

0.7 —

a.  ThelOlargest z percentilesare 1.96, 1.44, 1.15, .93, .76, .60, .45, .32, .19 and .06; the
remaining 10 are the negatives of these values. The accompanying normal probability
plot isreasonably straight. Anassumption of population distribution normality is

plausible.
500 — [
400 —| . ®
a
2 300 —| e ®
% «®®
S 200
-l
100 —| R
[ ] a
L]
0
T T T T T
2 1 0 1 2
Z %ile
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b. ForaWeibull probability plot, the natural logs of the observations are plotted against
extreme value percentiles; these percentiles are -3.68, -2.55, -2.01, -1.65, -1.37,-1.13, -
.93, -.76, -.59, -.44, -.30, -.16, -.02, .12, .26, .40, .56, .73, .95, and 1.31. The
accompanying probability plot isroughly as straight as the one for checking normality (a
plot of In(x) versusthe z percentiles, appropriate for checking the plausibility of a
lognormal distribution, is also reasonably straight - any of 3 different families of
population distributions seems plausible.)

In(loadiife)
o
|

W %ile

To check for plausibility of alognormal population distribution for the rainfall data of
Exercise 81 in Chapter 1, take the natural logs and construct anormal probability plot. This
plot and anormal probability plot for the original data appear below. Clearly the log
transformation gives quite astraight plot, so lognormality is plausible. The curvaturein the
plot for the original dataimplies apositively skewed population distribution - like the
lognormal distribution.

3000 — 8 —

2000 —

rainfall
1 ]
«
In(rainfall)
N

1000 — » S .

,uﬂ"'. 1
0— » v mase®I" 2
T T T T T
2 -1 0 1 2

z %ile

z %ile
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a. Theplot of theoriginal (untransformed) data appears somewhat curved.

precip

z %iles

b. Thesquareroot transformation resultsin avery straight plot. It is reasonable that this
distribution is normally distributed.

2.0 1
e
L
1.5 °
A t”
a __l'
-
niw
1.0 - N
amn
»
.
-
0.5
T T T T T
2 1 0 1 2
z Yiles

C. The cube root transformation also results in avery straight plot. It isvery reasonable that
the distribution is normally distributed.

16 —

=
2
— o
3 11 pus®
pan
_—
-
06 —
T T T T T
2 1 0 1 2
z %iles
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89. The pattern in the plot (below, generated by Minitab) is quite linear. It
is very plausible that strength is normally distributed.

Normal Probability Plot

.999 1
.99 A
.95

.80
.50 A

Probability

20
.05 4
01
001 4

Average: 134.902
StDev: 4.54186
N:153

125 135

strength

145

Anderson-Darling Normality Test

A-Squared: 1.065
P-Value: 0.008

90. We use the data (table below) to create the desired plot.

ordered absolute z
values (w's) probabilities values
0.89 0.525 0.063
1.15 0.575 0.19
1.27 0.625 0.32
1.44 0.675 0.454
2.34 0.725 0.6
3.78 0.775 0.755
3.96 0.825 0.935
12.38 0.875 1.15
30.84 0.925 1.44
43.4 0.975 1.96
2 [ ]
e
1]
% [ ]
Ele
N [
[ ]
[ )
[ ]
o le
T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45

Thishalf-normal plot reveals some extreme values, without which the distribution may appear

to be normal.
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The (100p)th percentile h(p) for the exponential distribution with| = 1 satisfies F(h(p)) = 1—
155

expl-h(p)] =p.i.e, h(p) =-In(1-p). Withn=16, weneedh(p) forp= =,32,...,22.

These are .032, .398, .170, .247, .330, .421, .521, .633, .758, .901, 1.068, 1.269, 1.520, 1.856,
2.367, 3.466. this plot exhibits substantial curvature, casting doubt on the assumption of an
exponential population distribution. Becausel isascale parameter (asiss for the normal
family), | = 1 can be used to assess the plausibility of the entire exponential family.

600 —
L J
500 — »
400 —
u @ .
Q
£ 300 o ®a
8 v
200 —| 21"
100 4
0o— &
T T T T T T T T
00 05 1.0 15 20 25 3.0 35
percentile

Supplementary Exercises

92.

10
a PIOEXE2)= —=4
25

b. PX:3 10)=P(10£X£25)=§=.6

X

c. For 0EXE£25 KX = Q%dyzz—);. F(x)=0for x <Oand=1for x> 25,

2
0 oo AtB)_(0+2) oy (B A 85 o
2 2 12 12
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93.

94,

C.
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i 0
- . y<0
| 3
=118 Y% opyen
148 185 o
i1 Y

P(Y £ 4)=F(4) = 259, (Y >6)=1-F(6) = 5
P(4£X £6)=F6)— F(4)=.5-.259= 241

_le yo, 167 yiu_
EY)= = y*el- 22dy=— & =6
=20V 5" uEs 8%
E(Y?) = iéz y3$'i- lgdy=43.2,soV(Y):43.2—36:7.2
24 e 12g

PY <4orY >8)=1-PAE£X £8) =518

the shorter segment has length min(Y, 12-Y) so
Emin(y, 12- V)] = & min( y12- y) xf (y)dy= min(y.12- y) xf (y)dy

K

i -3 X 2 - X :@:
+Q Min(y12- y) xt (y)dy=QyxT(y)dy+@ (12- y)xf(y)dy = —-=.375

Clearly f(x) 2 0. Thec.df.is,forx>0,

. e 2 1 3 U 16
R iR o S e

(F(x)=0forx £0.)
Since F(¥) = (‘i f (y)dy =1, f(x) isalegitimate pdf.

See above

16 166_
2EXEB)=F5)-F2)=1- —- = =247
¢ 5 =F5-F?2 a1 ? B,

(continued)
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96.
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o

E(x):c‘iXXf(x)dx:&xxidxzé(x+4— )2

e o
¥ 32 ¥ 32 _ _
_Q(X+4)2dX- 4Q(X+4)3dx—8-4—4
¥ 100 32 ¥ 1 3200
. E(sa aug)= =) ——x———dx=3200¢ dx= =16.67
e 2 Ea ] 2 e T

a. By differentiation,

i x? 0f x<1
=113 1gyel

i4 4 3

i O otherwise

3
b. P(5EXE=F2)—F(5)=1- E88—7-2‘3"€-§>Q9-ﬂ:£=.917
2e3 @4 4 g 3

c. EX)= lexxzdx+(;)%x>€4- %xgdx—%—lﬂs
e a

m=40V; s=15V

aéLZ 400 8(39 400
$15 5 ' § 15 5
= F(1.33) - F (-.67) = .9082 - .2514 = 6568

a PBE9<X<42)=F

b. Wedesirethe 85" percentile: 40+ (1.04)(1.5) = 41.56

c. PX>42)=1-P(X£42)=1 - Fged'z 400_,. F (1.33) =.0918

(%]
Let D represent the number of dlod&e out of 4 with voltage exceeding 42.

PD3 1)=1-PD=0)=1- gg(.ogls)"(.gosz)“:l- 6803= 3197
a
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98.

99.
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m=137.20z.; s=1.60z

2 Prx>139-1- FE35- 13726,

2=1- F(-1.38)=1- .0838=.9162
é o

b. WithY =the number among ten that contain more than 135 oz,
Y ~Bin(10, .9162, so P(Y 3 8) =h(8; 10, .9162) + h(9; 10, .9162)
+b(10; 10, .9162) =.9549.

c. m=1372: 1%-137.2_ 165b s =1.33

S

a Let S=defective. Thenp=P(S)=.05;n=250p m=np=125,s =3.446. The
random variable X = the number of defectivesin the batch of 250. X ~ Binomial. Since
np =12.53 10, and nq = 237.53 10, we can use the normal approximation.

POXoin® 25)» 1 - FEor>" 12901 £ (3.48)=1- .9997 = 0003
e 3446 gy

b.  P(Xpin = 10) » P(Xporm £ 10.5) - P(Xnorm £ 9.5)
=F(- .58)- F(- .87)=.2810- .1922= 0888

a PXX>100)=1- Fgé%?:l- F(29)=1- .6141=.3859
e %)

b, P(50<X<80):|:§0' %Q_Fgéo' %66
e 14 g ¢ 14 g

=F (-15) - F (-3.29) = .1271 - .0005 = .1266.

c. a=5" percentile= 96 + (-1.645)(14) = 72.97.
b=95" percentile= 96 + (1.645)(14) = 119.03. Theinterval (72.97, 119.03) containsthe
central 90% of all grain sizes.

165



Chapter 4: Continuous Random Variables and Probability Digtributions

100.
a FX)=0forx<land=1forx>3. Forl£xX£3, F(x)=c‘i f(y)dy
= O0dy+ ¢ —x—dy 151¢1- —=
= 0,0+ 9 g 0
b. P(X£25)=F25)=151-.4)=.9; (L5£x£25)=
F(25) - F15)= 4
3 31 331 3
c. EX)==Qx*=x—=dx=—0n—dx=1.5In(x)|, =1.648
®==0 2 x° 7 9% M)]
N 31 33
d E(X)—=Qx x—x—dx-—de 3,20 V(X) = E(X?) - [E(X)]* = 284,
2 x°
s =553
i 0 1£X£15
e h}=1x-15 15£XE25
g 25EXE3
25 3 1 3. 3 1 _
0 E[h(X)] = = ). (x- 1.5) Xz O QL dx = 267
101.

(%)

b. FX)=0forx<-lor==1forx>2 For-1£X£2,

x1 5 le x*0 11
F(X)=—\4- =—CAX- —3+—
) QQ( y )dy 9§ 3g 27

c. ThemedianisOiff F(0) = 5. Since F(0) = 3, thisisnot the case. Because 1< .5, the
median must be greater than 0.

d. Yisabinomia r.v.withn=10andp=P(X>1)=1- F(l)——
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103.

104.
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=1075

PBO<X)=1-P(XX £30)=1-F30) =339 = o614
P(LOE X £ 3.0) = F3.0)— F(1.0)=.333

The 90" percentile is requested; denoting it by ¢, we have

9=F()=1-e"9* whencec = (Y _ 2.476
-.93)
P(X £ 150) = exp3~ ap?%% exp[- exp(0)] = exp(- 1) =.368 , where
e e

exp(u) = €". P(X £300) = exp| - exp(- 1.6667)] =.828,
and P(150 £ X £ 300) = .828 - .368 = .460.

The desired value c is the 90" percentile, so ¢ satisfies
é c- 150) & . . . .
9= eXpa enga(T)i Taking the natural log of each side twice in succession
e e

- (c- 150)

yieldsIn[ In(.9)] = , S0 ¢ = 90(2.250367) + 150 = 352.53.

x) = FIX) = ixexpg expe (x- a)%mxpae (x-a)
b g CPET T AeRET

We wish the value of x for which f(x) is amaximum; thisisthe same asthe value of x for
din{f(x ,
In(f N _ g gives

which In[f(x)] isamaximum. The equation of q
X

2 (x-a)o - (x-a)

expngzl, so

E(X) =.5772b + a = 201.95, whereas the mode is 150 and the median is
—(90)In[-In(.5)] + 150 = 182.99. Thedistribution is positively skewed.

=0, whichimpliesthat x =a. Thusthe modeisa.

c

E(cX) =cE(X) = |

d.5 - a

¥
Elc1- 5™ = cll- .5e™ |4 e *dx =
ot 5] = )k P e =2
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105.
a.  Fromagraph of f(x; ms) or by differentiation, x* =m
b. No; the density function has constant height for A £ X £ B.
c. Hxl)islargest for x = 0 (the derivative at 0 does not exist since f is not continuous
there) so x* = 0.
a X
d. I f(xa,b)=-In(b?)- In(Gla))+(a - )In(x)- o
d a-1 1
—In fixa,b)]=——-—b x=xX=(@ -1b
S fxa,b)l==—=-— @-1
e. Fromd x* =(°:;e—‘- 15(2)=n - 2.
€2 g
106.

a  Q f(¥dx=,ledx+ ().1e dx=5+ 5=1

010 —
0.09 —
0.08 —
0.07 —
0.06 —
0.05 —

fx

0.04 —
0.03 —
002 —
0.01 —

0.00 —

X

b. Forx<O,FXx)= Q Je?dy = % e*.

1 X .2 1 .2
Forx3 O,FX) ==+ .1le “Ydy=1- —e “*.
2 Q y 2

c. PX<0)=F0)= %:,5, P(X <2)=F(2)=1- .5 = 665,

P(1EX £2)—F(2)— F(-1)=.256,1- (2£ X £2) = 670
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107.
¥
a. Clearly f(x;11,15,p)3 Oforal x, and Q f(xl 4,15, p)dx

—Q[pl ' +(1- p)le' ]dx pQIle " dlx + (1 - p)QIZe 2 dix
=pt(1-p=1

b. Forx>0,Fxl,12, p)=éf(w Lo, p)dy=p- e') +(1- p)d- e'?).

e EX= xdpl ')+ p)l e H)x
v oo Yoo 1- p)

— N\ I led + 1_ hY XI |2Xd — p +(
pQ Xl & “dx+(1- p)g X & “dx T

1 l 2

2 2p . 21- ép (1- p)u
d. E(X)__p+ (lzli)),sovar(x):_f+ (Izp)_é|£+(| p)Lj
1 2 1 2 €1 2 U
e. For anexponential r.v.,CV = }/ =1. For X hyperexponential,
é u}/z
é2p,2(-p) G
é 2 2 , N
Cv_g'l—'zz_lu _§2(pI§+(1- D)l f) 197
Tgep o) g & )
e+ &pl ,+@- pI,)" g
gala 120 H

2 2
(pl 2+ (- p)l 12 . But straightforward algebra shows that r >
(pl 2 +(1' p)| 1)

1provided | ; 1 | ,,sothat CV > 1.

=[2r—1)Y? wherer=

n n n
—_, s?=— S0 S :I— andCV:i<1ifn>l.

| 2 Jn
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108.
¥ k 5la N
a 1:Q—adx kx——pb k= (a - 1)5 & wherewe must havea > 1.
X a-1
AY "a'l
b. Forx3 5 FXx)= Qidy g € 1. 119= . gé_59
& xty exg
¥ k ¥ k k
c. EX)= Qxx—dx= x*x—dx= , provideda > 2.
Q X2 Q N 5a-2 ><a _ 2)
N a-1
d. Pg’ng——E y2=pP2 e’ 0= P(x £5¢") = F(se’)=1- B0
ebg eb o} ese’ g
1- e - 1)y,the cdf of an exponential r.v. with parameter a - 1.
1009.
&, 0
a.  Alognormal distribution, since In g—: isanormal r.v.
li g
5 o
o, (1, >21)=pfe > 2% pdn e §>|n2——1 P ogglnz—
Ii o éli a || a
@n2-10_1 r( g14)=1
ﬂ

o) o]
c Eg; Q_gronsz _p7n Varg—: @2+0025 ><(e.0025 ) 1) - 0185
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110.

111.

112,

Chapter 4: Continuous Random Variables and Probability Digtributions

1.0

0.5 —

c2

0.0 —

T T T T T T
0 50 100 150 200 250

C1

(i
b. P(X>175)=1-F(175;9,180) = € & - 4602
P(150 £ X £ 175) = F(175; 9, 180) - F(150; 9, 180)
= 5398- .1762 = .3636

c. P(atleast one) = 1— P(none) = 1 — (1 - .3636)> = .5950

x o
d. Wewant the 10" percentile: .10=F(x; 9, 180)= 1- € ] . A small bit of algebra
leads usto x = 140.178. Thus 10% of all tensile strengths will be lessthan 140.178 MPa.

) s (ym L,
Fy)=P(Y £y)=P(sZ+mEy) = PRZ £ y-mo_ & L &%z Now
e S o J2p
differentiate with respect to y to obtain anormal pdf with parameters mand s.

=AY £y) =Peox £y) = PEX £ L= FEY :a? Thust
a K=K y) =H y) g 804 gﬁaﬂ us fy(y)

Y
&y . 9\/ 1 _ ya-1e60b

€600 5 600 ~(60b)* )
with parametersa and 60b.

=f , Which shows that Y has a gamma distribution

b. Withcreplacing60in a, the same argument showsthat cX has agammadistribution
with parametersa and cb.
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114.

115.

Chapter 4: Continuous Random Variables and Probability Digtributions

Y =-n(X) b x=¢Y =Kk(y), sokdy) =-€”. Thussincef(x) =1,
gly) =1x-e¥|=¢eY for0<y<¥, soy hasan exponential distribution with parameter |
=1

y=sZ+mb y=h()=sZ+mb z=k(y) = M andkd(y):i,fromwhichthe
S S

result follows easily.

1
y=hX)=cx b x=k(y) = Y and kq(y) = —, from which the result follows easily.
C C

Ifweleta =2 and b = +/2s , thenwecan manipulate f(v) asfollows:

f(n)zlze-nz/zs2 _ 2 ne s’ = 2 nz-le-(n/‘/_%)2 _4a
S

2g 2 («/_S)Z b?

whichisinthe Weibull family of distributions.

a1y (%)2

n

200 -2

F(n)ZQZS%e%dn;cdf: F(‘|;2,—\/_$):1- e_ 50=1-@™ g0

F(25:2,42)=1- ¥ =1- 458 = 542

Assuming independence, P(all 3 births occur on March 11) = (3—25)3 =.00000002

() (365) = 0000073
Let X = deviation from due date. X~N(0, 19.88). Then the baby due on March 15 was4
daysearly. P(x =-4)" P(-45<x<-35)

=p@350 2 450 (. 18). F(- 237)=.4286 - .4000 =.0196 .
€l9.88g &19.88g»

Similarly, the baby due on April 1 was 21 days early, and P(x = -21)

-F& 2050 g2 21-30_ (1 03)- F(- 1.08) =.1515 - 1401 =.0114.
21988 g ¢é19.88 g

The baby due on April 4 was 24 days early, and P(x =-24) ~ .0097

Again, assuming independence, P( al 3 births occurred on March 11) =
(.0196)(.0114)(0097) = .00002145

To calculate the probability of the three births happening on any day, we could make
similar calculationsasin part c for each possible day, and then add the probabilities.
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116.
| e
a Fx=le' adFx)=1- &' sor(x)= ——=| , aconstant (independent of X);
(S
thisis consistent with the memoryless property of the exponential distribution.
0
b. rx)= gb— x?"1: for a > 1 thisisincreasing, while for a < 1 it is adecreasing function.
(%]
X0 é x? u “age %3
c. In(l-FX)=- Oagl —xx=-aax- —P F(x)=1-e 2
b g € 2by
A
f6)=a —12e R 0E£XED
b g
117.
a F= PE Iiln(l- U)£x3=P(In(1- U) -1 x)=PL- U3 ')
e (%]
= P(U £1- e"x) =1- e '*since Fy(u) = u (U isuniformon [0, 1]). ThusX hasan
exponential distribution with parameter | .
. . . 1
b. By taking successive random numbers uy, Uy, Ug, ...and computing X, = - 1—|n(1- u, )
... we obtain a sequence of values generated from an exponential distribution with
parameter | =
118.

a. E(g(X)) » E[g(m +gqm(X - m] = E(g(m)) + g&m*E(X - m), but E(X) - m= 0 and E(g(M)
=g(m ( since g(M is constant), giving E(g(X)) » g(m.
V(g(X)) » Vg +gam(X - m] = V[gm(X - m] = (@m)>¥/(X - m) = (gm)*x/(X).

b. g(l):TV,gq.):'l_ZV,soE(g(.)):

.2

V(gu))»‘%v% W) S =
(%]

Y=Y
m 20

119.  g(m +gdqm(X - m £ g(X) impliesthat E[g() + g&m)(X - m] = E(g(M) = g(m £ E(9(X)). i.e.
that g(E(X)) £ E(9(X)).
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2 " 2 ® b )
120 For y>0, F(y) = P(Y £ y) = Peor—£ yo= PEX” £ 2 Y= pex E—\NT. Now
b 5 & 25 & 23

by

take the cdf of X (Weibull), replace x by T , and then differentiate with respect to y to
2

obtain the desired result fy (y).
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CHAPTER 5

Section 5.1

a PX=1Y=1)=pll)=.20
b. PX£1landY £1)=p(00)+p(0,1) +p(1,0) + p(L1) = .42

c. Atleastonehoseisinuseat bothislands. P(X* OandY 1 0)=p(1,1) +p(1,2) +p(2,1)
+p(2,2)=.70

d. By summing row probabilities, p«(x) = .16, .34, .50 for x =0, 1, 2, and by summing
column probabilities, py(y) = .24, .38, .38fory =0, 1, 2. P(X £ 1) = px(0) + px(1) = .50

e.  P(0,0) =.10, but py(0) x py(0) = (.16)(.24) =.0384* .10, so X and Y are not independent.

2.
a
y
p(x.y) 0 1 2 3 4
0 .30 05 025 025 10 5
X 1 18 .03 015 015 .06 3
2 12 02 01 01 04 2
.6 1 05 05 2
b. PX£1landY £1)=p(0,0)+p(0,1) +p(1,0) + p(1,1) = .56
=(8)(.7)=PXEL XY £1)
c. P(X+Y=0=PX=0andY =0)=p(0,0)=.30
d. PX+Y £1)=p(0,0)+p(0,1) +p(1,0)=.53
3.

a. p(1,1) = .15, theentry in the 1% row and 1% column of the joint probability table.
b. P(X1=X3)=p(0,0) +p(1,2) +p(2,2) + p(3,3) = .08+.15+.10+.07 = .40

C A={ (%) %3 2+%}E { (%)% 2+x}
P(A) =p(2,0) + p(3,0) + p(4,0) +p(3,1) + p(4,1) +p(4,2) +p(0,2) + p(0,3) + p(1,3) =.22

d. P(exactly4)=p(1,3) +p(2,2) +p(3,1) + p(4,0) = .17
P(at least 4) = P(exactly 4) + p(4,1) + p(4,2) + p(4,3) + p(3,2) + p(3,3) + p(2,3)=.46
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P1(0) = P(X1 =0) =p(0,0) + p(0,1) + p(0,2) + p(0,3) =.19
Py(1) = P(X1 = 1) = p(1,0) + p(L,1) + p(1,2) + p(1,3) = .30, etc.

X1 ‘ 0 1 2 3 4

P,(0) = P(X, = 0) = p(0,0) + p(1,0) + p(2,0) + p(3,0) + p(4,0) = .19, etc

X ‘ 0 1 2 3

p2(%) ‘ 19 .30 .28 23

p(4,0) =0, yet p1(4) =.12>0and pz(0) =.19>0, sop(x1 , %) * P1(xa) Xp2(%e) for every
(X1 , %), and the two variables are not independent.

P(X =3,Y =3) = P(3 customers, each with 1 package)
= P( each has 1 package | 3 customers) xP(3 customers)
=(.6)° x(.25) = .054

P(X =4,Y =11) = P(total of 11 packages | 4 customers) xP(4 customers)

Given that there are 4 customers, there are 4 different waysto have atotal of 11
packages. 3, 3,3,20r3,3,2,30r3,2,3,3 or 2, 3,3, 3. Eachway has probability
(:1%(:3), 0 p(4, 11) = 4(.1)*(:3)(.15) = .00018

P42 =P(Y =2|X =4) xP(X = 4) = %ig(ﬁ) 2(4)? E>(.15) =.0518
) Q

P(X =Y) =p(0,0) + p(1,1) + p(2,2) + p(3:3) + p(4.4) = .1+(.2)(:6) + (.3)(.6)> + (.25)(.6)°
+(.15)(.6)* = 4014
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p(x,y) =0unlessy =0, 1, ...,x;x=0, 1, 2, 3, 4. For any such pair,

a0
pixy) =P(Y =y [ X =X) xP(X =X) = gyé(ﬁ)y (:4)7 xp, (x)

py(4) = p(y = 4) = p(x = 4,y = 4) = p(4,4) = (:6)*X.15) = .0194

Ao
b3 =p(33) +pa3) = (.6)3(.25)+ gsgj.a) 3(.4)(.15) = .1058
4]
2 a0, .,
py(2 =p(2.2) +p(32) +p(4,2) = (.6) (-3)+g2;i-6) (.4)(.25)
4]
+ 29 6y (4)2(15) = 2678
£
a0
py(D) =p(LD) +p(22) +p(32) +p(4.1) = (.6)(.2) + gli(ﬁ)(-4)(-3)
/]

gg(ﬁ)(_4)2(_25) + g%.e)(.4)3(.15) =.3590
2 P

py(0) = 1— [.3590+.2678+.1058+.0194] = .2480

p(1,1) =.030
PX£1landY £1=p(0,0) +p(0,1) + p(1,0) + p(1,1) =.120
P(X =1) =p(1,0) + p(1,1) + p(1,2) =.100; (Y =1) =p(0,1) + ... + p(5,2) = .300

P(overflow) =P(X +3Y >5)=1-P(X +3Y £5) = 1-PF[(X,Y)=(0,0) or ...or (5,0) or
ODor(L1)or(21)]=1-.620=.380

The marginal probabilitiesfor X (row sumsfrom the joint probability table) are p«(0) =
05, px(1) =.10, p«(2) =.25, px(3) = .30, px(4) = .20, p«(5) = .10; thosefor Y (column
sums) are py(0) = .5, py(1) = .3, py(2) = .2. Itisnow easily verified that for every (x,y),
p(x,y) = px(X) *py(y), so X and Y are independent.
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a  numerator = gg Zogfo (56)(45)(12) 30,240
%]

30,240 _

300
denominator = + =593,775;p(3,2) =
€6 593,775

1 o820 12 0 X,y_are_non- negative

i gxé ygfi (x+ y) int egers_such_ that

b p(xy) =1 a306 O£ x+Yy£6
: g 6 5 .
f 0 otherwise

a 1= é&f(xy)dxdy Q}q}K(x + y*)dxdy

30 30

\ N\

Kq)Q)xzdydx+ KQQ)y dxdy = 1OKq)x2dx+1OKQ)y

= 20K >€Elg’0009b K=
& 3 g 380,000

26 26 2 2 _ 26 2
b. P(X<26andY <26)= Q)Q)K(x +y )dxdy-lZKQ)x dx

4Kx3|2z =38,304K =.3024

y=ez s y=x2

20

20 30

P(IX-Y[£2)= (@f (X,y)dxdy

region
11

1- @f (x y)dxdy - gf (x, y)dxdy
| 1l

2830 30
1- Q0. f (x, y)dydx - Q

= (after much algebra) .3593

-2

é) f (x, y)dydx
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fAX) = N _ 0 2 2 _ 2 y3 ?
M= Q, f(x y)dy—QJK(x +y?)dy =10Kx* + K?
20

= 10K + .05, 20£X£30

fy(y) is obtained by substituting y for x in (d); clearly f(x,y) * fy(X) xfy(y),so X and Y are
not independent.

il 5EXE£65L£YE6
f(xy) = | .
i0 otherwise

sincefy(x)=1,f,(y) =1for SEXE£6,5Ey£6

P(5.25£ X £5.75,525£ Y £5.75) = P(5.25 £ X £ 5.75) xP(5.25 £ Y £ 5.75) = (by
independence) (.5)(.5) = .25

y=x+1/6 [ y=x-1/6

5

5

R(XY)T A)= qjdxdy
A

—areaof A=1—(areaof | +areaof I1)

-l x - MY
Xx——forx=0,12,...;¥y=0,1,2, ...

y!

p(x,y) =

pO0) +pOY) +pLo)= e "[L+1 +m]

P(X+Y=m)= ém P(X =k,Y =m- k) —ém e"'mi ™
=0 ’ bl k! (m- K)!
e!™Mgang, . e +m"
ag 1 mT T = , o the total # of errors X+Y also hasa
I'T'I k=0 kg m

Poisson distribution with parameter | + 1 .
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_ NN - X(1+y) — N - X —
P(X>3) = QQXxe dydx = Q¢ dx =.050

¥
The marginal pdf of X is @ xe*®Ndy = e for 0£x; that of Y is

(S xe "N dy =

a )2 forO£y. Itisnow clear that f(x,y) is not the product of
ty

the marginal pdf’s, so thetwo r.v’s are not independent.

P( at least oneexceeds3) =1—-P(X £3andY £ 3)

=1- Qéxe'x(“”dydle- Qéxe'xe'xydy

-1- ée'x(l- e¥)dx =e? +.25- 2512 = 300

f(x,y) = fx(x) fy (y) e x20y?0
X)Y) =T X = .
Y ’ % 0 otherwise

PX£landY £1)=PX £1) <Y £1)=(1—¢?) (1-e™) = .400
22X 2 4 (2 X
RX+Y£2)= Q € dedx:Qe [1-e( ’]dx

2
=Qe”- e?)dx=1- e?- 2e% =504

PX+Y £1)= @le'x[l- e'(“)]dx:1- 2et =.264,
SOP(1EX+Y £2)=P(X+Y £2)—P(X +Y £1) = 594 - 264 =330

P(X1<t,Xo<t,...,X10<t) =P(Xy<t)... P(Xyg<t) = (1_ e—It)lO

If “success’ = {fail beforet}, then p = P(success) = 1- e'",

2209
and P(k successesamong 10trials) = & =1- ' (1) 10k
&k

P(exactly 5fail) = P( 5 of | 'sfail and other 5 don’t) + P(4 of | 'sfail, mfails, and other 5
90, 89

dont)=¢ o1- e Pe) le™)+g - et)'[1- em)e')
ks 2%
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Fy)=P(Y £y) =P[(X1£Y) E (X2£Y) C (X3 £Y))]
=PX1£Y)+P(X2£Y) C Xz £Y)] -P(X1 £Y) C (X2£Y) C (X3 £Y)]
= (L-e"Y)+@-e")*-(@1- ") fory3 0

fy)=Fay)= | €'Y +2(1- e")( €")- 31L- &) (1 &)
=4 e?-3e? fory:0

Ev)= gy Hdal e -3 e by = 235&9_ 1.2
a

N I-x-%
foa )= Q, T (XX, X5)d, =@ kX, (1- x,)dx,

72%,(1- % J1- X, - X5)° 0£x,0£36, % +x£1

P(X; + X3 £ 5) = 66%72@(1- X)L~ X - X5)2dx,dx,
= (after much agebra) .53125

f (%)= C‘i f (%, %;)dx, = (‘)72x1(1- % )1- X, - %, )" dx,

18x, - 48x7 +36x’ - 6X;  O0£x £l

P((X,Y) within acircle of radius %) = P(A) = @f (x, y)dxdy
A

. 2
PQ- EE X £_R _Egy EEQ_i _1
2 2
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)
A=

. 2
PQ-EEXE Reyg RO-R _2

2P RTRT P 2s PR b
f() Jdre 1 24 R? - x

Q f(x y)dy = Ompl-?z dy = pF<2 for—REX£R and
smilarly for fy(y). X andY are not independent since e.g. f4(.9R) =fy(.9R) > 0, yet
f(9R, .9R) =0since (.9R, .9R) isoutside the circle of radius R.

d.

18.
a  PRyx(y|1) resultsfrom dividing each entry in x = 1 row of the joint probability table by
px(1) = .34
.08
P,(0]1) == =.2353
34
20

(L] =< = 5882

ylx

@211 =2 = 1765
34

ylx

b. Pyx(x|2) isrequested; to obtain this divide each entry inthey = 2 row by
px(2) = .50:

y|0 1 2

Rx(Y[2) ‘ 12 28 60

c. PYE£1|x=2=RxOR) +P,x(12) =.12+.28= 40

d. Pxy(x[2) resultsfrom dividing each entry in they = 2 column by py(2) = .38:

X | 0 1 2

Pyy(X2) ‘ 0526 1579 7895
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20.

21.
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f(xy) _ KOC+y?)

; _ 20£y£30
w0 = T 100 +.05 ’
KO + y?) 3 9
fo(X|y)=———22L  20£X£30 & = -
X|Y( | y) 1oky2 +.05 X g 380,000ﬂ

30
RY? 5|x=2)= Q fvx (y]22)dy
2 2
- 2 1Y) o - 763
10k(22)2 +.05

R(Y 25)= ) Ty (y)dy = () (10ky? +.05)dy = .75
¥ 2 k(22 +y?)
E(Y |X=22)= xf 22)dy = x d
(Y] ) Q, y Y|X(y| )dy Qy 10k(22)2 + 05
=25.372912

e xezy = y2 KU +YY) 4 - e 028640
@7 “ok(22)? +.05 |

V(Y|X =22) = E(Y? | X=22) — [E(Y | X=22)]° = 8.243976

F (X0 %5, %3) -
frm, (X5 | %, %,) = ﬁ where f, . (X;,X,) = themarginal joint pdf
X1,Xp VL1 A2
¥

of (X1, X2) = (Q, f (X, %, X3 )oX,

(%%, %)
f, (%)

£ 00) = Q, Q, T 0% X X)X,y

fxz,x3|xl (X2,X3 | Xl) = where

For every x and y, fyx(yIx) = fy(y), since then f(x,y) = fyx(ylx) *fx(¥) =fy(y) *fx(x), as
required.

183



Chapter 5. Joint Probability Digtributions and Random Samples

Section 5.2

22.

23.

24,

25.

26.

a EX+Y)=d & (x+Yy)p(xy) = (0+0)(.02)
Xy

+(0+5)(.06) + ...+ (10 +15)(.01) =14.10

b. Emax(XY)]=Q & max(x+Yy)xp(x,y)
Xy

= (0)(.02) + (5)(.06) +...+ (15)(.02) =9.60

4 3
EXi-X)=aA a (X1 - X2)><p(x1,x2):

%1=0%,=0
(0—0)(.08) + (0— 1)(.07) + ... + (4—3)(.06) = .15
(which also equals E(X1) — E(X5) = 1.70— 1.55)

Let h(X,Y) = # of individuals who handle the message.

y

h(x,y) 1 2 3 4 5 6
1 2 3 4 3 2
2 2 2 3 4 3
X 3 3 2 2 3 4
4 4 3 2 2 3
5 3 4 3 2 2

6 2 3 4 3 2

Sincep(xy) = & for each possible (x), EINX,Y)] = § & h(x,y) x5 =& = 2.80
Xy

E(XY) = E(X) xE(Y) =L xL =L?

Revenue = 3X + 10Y, s0 E (revenue) = E (3X + 10Y)

5 2
= & & (3x+10y) xp(X, y) = 0xp(0,0) +...+ 35xp(5,2) =15.4

x=0 y=0

184



27.

28.

29.

30.

31
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X~ Y| 6x%ydxdy = Zéé(x - y)»6x?ydydx

o
O

E[h(X,Y)] =

5
12 3y - X2y )dydx = 128 —dx = =
[y - x?y?)ay 0

O
O/~

E(XY) = a a xyxp(x y)=a & xyxp,(¥ xp, (y) = a Xp, (X) >a yp, ()

y Xy
=E(X) ><E(Y) (replace S with - ¢ in the continuous case)

2 2 2 \1 2
Cov(X,Y) = - = and M =m, :E' E(X%) = QX xf_ (x)dx

! 12 1 1 4 1
=12x3(1- deX =_=—,SOVarX:—-—:—
@ ( ) 60 5 % 5 25 25
Similarly, Var(Y)—i sOr,y = s —-@2-667

JENE T

a  E(X)=555E(Y) =855 EXY)=(0)(.02) + (0)(.06) + ... + (150)(.01) = 44.25, 50
Cov(X,Y) = 44.25 — (5.55)(8.55) = -3.20

b. s%=1245s)=19.15s0r ,, = - 3.20 - 207

J(12.45)(19.15)

a EX= X, ()dx= ) x[10Kx? + 05|dx = 25.329 = E(Y)

E(XY) = é& Xy XK (x* + y?)dxdy = 641.447
b Cov(X,Y) =641.447 - (25.329) = - .111

b, EX?)= (‘Sj’xz[lonz + 05|k = 649.8246 = E(Y?),

0 Var (X) = Var(Y) = 649.8246 — (25.329)° = 8.2664
-.111

) |/ (8.2664)(8.2664)
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35.

36.

Chapter 5. Joint Probability Digtributions and Random Samples

Thereisadifficulty here. Existenceof r requiresthat both X and Y have finite means and

variances. Y et since the marginal pdf of Y is#2 fory3 0,
( | (L-y)
¥ oy Y(1l+y-1 ¥ 1 ¥y 1
E -nN—2 = = dv - dy, and th
) Q(1+ y)zdy Q (1+y)2 Q(1+y) / Q(1+ y)2 Y andine

firstintegral isnot finite. Thusr itself isundefined.

Since E(XY) = E(X) XE(Y), Cov(X,Y) = E(XY) — E(X) xE(Y) = E(X) xE(Y) - E(X) xE(Y) =

_ Cov(X,Y)
0, and since Corr(X,Y) = S— ,then Corr(X,Y) =0

Xy

a. Inthediscrete case, Var[h(X,Y)] = E{[h(X,Y) — E(h(X,Y))]*} =
a ah(xy)- E(h(X,Y)I*p(x y) =@ a [h(xy)* p(x, y)] - [E(h(X,Y))]*
Xy Xy

Y . o] ] . .
with g replacing @ @ in the continuous case.

b. E[h(X,Y)] = E[max(X,Y)] = 9.60, and E[h?(X,Y)] = E[(max(X,Y))?] = (0)*(.02)
+(5)2(.06) + ...+ (15)%(.01) = 105.5, s0 Var[max(X,Y)] = 1055 — (9.60)* = 13.34

a  Cov(aX +b,cY +d)=E[(aX +b)(cY +d)] — E(aX + b) xE(cY +d)
= E[acXY +adX +bcY + bd] — (aE(X) + b)(cE(Y) + d)
= acE(XY) — acE(X)E(Y) = acCov(X,Y)

b. Corr(@X +b,cY +d)=
Cov(aX +b,cY +d) _ acCov(X,Y)
JVar(aX +b)Var(cY +d) |a|xc|,Var(X)Nar(Y)
=Corr(X,Y) when aand c have the same signs.

¢c. Whenaand cdiffer in sign, Corr(aX + b, cY + d) =-Corr(X,Y).

Cov(X,Y) = Cov(X, aX+h) = E[XxaX+b)] — E(X) E(aX+b) = aVar(X),
aVar (X) _ aVar (X)

Nar (X)¥ar(Y) JVar (X)xa?Var (X)

so Corr(X,Y) =

=1lifa>0,and-1lifa<0
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Section 5.3
37.
Px) | 20 50
POo) | *Ix 25 40
20 25 04 10 06
50 40 10 25 15
30 65 06 15 09
a
X ‘ 25 25 40 45 525 65
p(X) ‘ 04 20 25 12 30 09

38.

Chapter 5. Joint Probability Digtributions and Random Samples

=

o

s? ‘ 0 1125 3125 800

P(s%) ‘ 38 20 30 12

P(To) | 04 20 37 30 09
m, = E(T,) =2.2=2xm

s+ =E(Ty)- E(T,)* =5.82- (22)* =.98=2>°
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39.
X 0 1 2 3 4 5 6 7 8 9 10
x/n 0 1 2 3 4 5 6 7 8 9 10
p(x/ny | OO 000 000 001 .005 .027 .08 .201 .302 .269 .107
X isabinomia random variablewithp =.8.
40.

a. Possiblevaluesof M are: 0,5, 10. M =0when all 3 envelopes contain O money, hence
p(M =0) = (.5)*=.125. M = 10 when thereisasingle envelope with $10, hence p(M =
10) = 1— p(no envelopes with $10) = 1 — (.8)° = .488.
p(M =5) = 1—[.125 + .488] = .387.

M | 0 5 10

p(M) | 125 387 488

An aternative solution would beto list all 27 possible combinations using atree diagram
and computing probabilities directly from the tree.

b. Thestatistic of interest is M, the maximum of X, X, or X3, sothat M =0, 5, or 10. The
population distribution isasfollows:

X ‘ 0 5 10

pX) ‘ 1/2 3/10 1/5

Write a computer program to generate the digits 0 — 9 fromauniform distribution.
Assign avalue of Oto thedigits0— 4, avalue of 5to digits5— 7, and avalue of 10 to
digits8 and 9. Generate samples of increasing sizes, keeping the number of replications
constant and compute M from each sample. Asn, the sasmple size, increases, p(M = 0)
goesto zero, p(M = 10) goesto one. Furthermore, p(M = 5) goesto zero, but at aslower
rate than p(M = 0).
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41.
Outcome 11 1,2 13 14 21 22 23 24
Probability 16 12 08 04 12 09 06 .03
X 1 15 2 25 15 2 25 3
r 0 1 2 3 1 0 1 2
Outcome 31 32 33 34 41 42 43 44
Probability = 08 06 .04 02 04 03 02 .01
X 2 25 3 35 25 3 35 4
r 2 1 0 1 3 2 1 2
a.
i‘ 1 15 2 25 3 35 4
p(x) ‘ 6 24 25 20 10 04 01
b. P(XE25)=8
C.
r ‘ 0 1 2 3
p(r) ‘ 30 40 22 .08
d. P(X£15=P1111)+PR1LY+... +P1112) +P1122) +... +P2211) +
PGLLL) +...+P(1,1,1,3)
= (4)* + 4(4)°(.3) + 6(4)(.3)% + 4(4)*(.2)* = .2400
42.
a
X 2775 280 297 2995 3165 319 336
W+ 5 5 5 % b b
b.
X | o 3165 3L9
I

c. dlthreevauesarethesame: 30.4333
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44,

45,
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The statistic of interest isthe fourth spread, or the difference between the medians of the
upper and lower halves of the data. The population distribution isuniform with A =8and B
=10. Useacomputer to generate samples of sizesn =5, 10, 20, and 30 from auniform
distribution with A = 8 and B = 10. Keep the number of replications the same (say 500, for
example). For each sample, compute the upper and lower fourth, then compute the
difference. Plot the sampling distributions on separate histograms for n =5, 10, 20, and 30.

Use a computer to generate samples of sizesn =5, 10, 20, and 30 from aWeibull distribution
with parameters as given, keeping the number of replications the same, asin problem 43
above. For each sample, calculate the mean. Below is ahistogram, and anormal probability
plot for the sampling distribution of X for n =5, both generated by Minitab. Thissampling
distribution appearsto be normal, so since larger sasmple sizes will produce distributions that
are closer to normal, the others will also appear normal.

Using Minitab to generate the necessary sampling distribution, we can see that as nincreases,
the distribution slowly moves toward normality. However, even the sampling distribution for
n=50isnot yet approximately normal.

n=10
Normal Probabiiity Plot
90 —f
80 5 .999
70 — .99 =
60 =1 .95
>
2 50 £ 80 —
2 w0 5
.50 4
§ 30 - -8
& .20 4
20 o 0
10 - .05
.01 4
00— S
T T T T T T T T T T .001 o+
o 10 20 30 QO 50 60 n 80 90
5 15 25 35 45 55 65 75 85
n=10
Anderson-Daring Normality Test
ASquared: 7406
P-\alue: 0.000
n=>50
Normal Probability Plot
70 999
99 o
60 — 95 -
2
50 — % 80 -
I o 504
S 40 — <]
g & 20+
o 30 05
w -
20 - oi
001 + 2
10 —
0 — = — =W} 20 30 40 50 60

15 25 35 45 55 65 Aderson-Darling Normality Test
ASquared: 428

P-valie: 0.000
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Section 5.4

46.

47.

48.

m= 12 cm s=.04cm

a n=16 E(X) =m=12cm s_:S—X:%:.omm

" dn
— .04
b. n=64 E(X) =m=12cm syz—X=?=_005cm

c. Xismore likely to be within .01 cm of the mean (12 cm) with the second, larger,
sample. Thisisdueto the decreased variability of X with alarger sample size.

m=12cm s=.04cm
a n=16 P(11.99£ X £1201)= ng 7 EMQ
e .01 01l g
=P(-1£Z£1)
=F(D)-F()
= 8413 - .1587
= 6826
b. n=25 R(X >1201)= PEZ S1201- 126 o010
e 04/5 g
=1-F(125)
=1-.8%44
=.1056
S 1
a =m=50,s,=-X=—-_=10
X Jn 4100
P(49.75£ X £50.25)= Pgé—g'?S_ 0 £ZE 50.25- %09
e .10 0 g
=P(-25£Z £25) = 9876
b, P(4975E X £5025)» Péé975- 49.8 7€ 50.25 - 49.89
e .10 .10 17}

=P(-5£Z £45)= 6915
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49.

50.

51.

52.
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a 11PM.-6:50P.M. =250 minutes. With Tg=Xj +... + X40 =total grading time,
m, =nm=(40)(6) =240 ands ; =s Jn=37.95 s P( To £ 250) »

PaJZ g 20- 2406_ (7 ¢ 26)= 6026

37.95 g
260- 240
b. P(T, >260)= P& > 2" 9 p(z > 53) = 2081
e 3795 g
m= 10,000 psi s =500 psi

a n=40
a9,900- 10,000 c7¢ 10,200- 10,0000

= e
é 500/ /40 500/4/40 g

=P(-126£Z £253)
=F(253)- F(-1.26)
=.9943 - .1038
=.8905
b. According to the Rule of Thumb given in Section 5.4, n should be greater than 30in
order to apply the C.L.T., thus using the same procedure for n = 15 aswas used for n =
40 would not be appropriate.

P(9,900£ X £10,200)»

X ~N(10,4). Forday 1,n=5

A X £11=PE £ 117290 b7 £119) = 8686
% 2//5

Forday 2,n=6

AX £1=P% £ 217190 b7 £129) = gass
g 2//6 g

For both days,
P( X £ 11)=(.8686)(.8888) =.7720

X ~N(10), n=4

m. =nm= (4 (10) =40 ands ;, =s Vn =(2)) =2,
We desire the 95! percentile: 40 + (1.645)(2) = 43.29
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55.

56.

m
a.

Chapter 5. Joint Probability Digtributions and Random Samples

=50, s=12
n=9
X sy=p& s 2100 b5 55 21. 9938 = 0062
g 1.2/-/9 %
n=40
X sn=P& s 2100 p7s557),0
E 1.2/-/40 5
S .85
=m=265,s; =—*%=—=.17
my 5
3.00- 2.65¢

R(X £300=PEZ £ =29 p(Z £ 2.06) =.9803
e A7 g

PR65£ X £300== P(X £ 3.00)- P(X £ 2.65) =.4803

3.00- 2.650_

85/\n 5
whichn=32.02. Thusn= 33 will suffice.

P(X £300)= P? £ .99 implies that o 35 2.33, from

5//n

m=np=20 s =./npq =3.464

a

P(25£ X ) » P?M
@ 3.464

£792= P(L.30£ Z) =.0968
a
45- 20 255- 20
M15£ X £25)»P€é' £Z£ 9
& 3.464 3.464 g
= P(- 1L.59£ Z £1.59) = .8882

With'Y =# of tickets, Y has approximately anormal distribution with m =1 =50,
T = 7071 oramev 1y RS0 T0S-50
e 7.071 7071 g

£27 £290)=.9838

Here M =250,s # = 250,s =15.811, soP(225£Y £275) »

P?M £ZE MQ =P(-161£Z £ 1.61) = .8926
e 15811 15811 g
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57. E(X) =100, Var(X) =200, S , =14.14,s0P(X £ 125) » pg:z EMQ
e 1414 g

= P(Z £1.77) = 9616

Section 5.5

58.
a  E(27Xy + 125X, +512X5 ) = 27 E(X4) + 125 E(X,) + 512 E(X3)
= 27(200) + 125(250) + 512(100) = 87,850
V(27X + 125X, + 512X3) = 272 V(X1) + 1257 V(X,) + 512% V(X3)
=277 (10)* + 1257 (12)* + 512% (8)* = 19,100,116

b. Theexpected valueisstill correct, but the variance is not because the covariances now
also contribute to the variance.

59.
a E(X1+X2+X3):180 V(X1+X2+X3):45 Sx+xz+x3 =6.708
200 - 180¢
P(x1+x2+x3£200)—PaJZ £ 20 200 b7 £ 2.98) =.9986
6.708 g
P50 £ X1 + Xs +x3£200) = P(- 4.47 £ Z £ 2.98) » .9986
b. M =m=60,s, _S. 5505
Jno /3
55- 60

P(X 3 55) = Pa% 3

2=p(z 3 - 2.236) =.9875
2.236 g

P(S8£ X £ 62) =P(- .89£ Z £.89) = .6266

C. E( X1 -.5X5-5X3 ) =0;

V(X1 -5Xy-5X3)=S [ +.255 2 + .25 2 = 22.5, d=4.7434
10- 0 £z 5-0 9
4.7434 4.7434
= P(- 211£ Z £1.05) = .8531- 0174= 8357

P(-10£ X - 5X5 -5X3 £5) = Pg
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61.

62.

63.
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d. E(X1+X2+X3):150, V(X1+X2+X3):36,S :6

160- 150
POy + X, + X3 £.200) = P37 ETQ: P(Z £1.67) =.9525
e 4]

Wewant P( X1 + X5, 3 2X3), or written another way, P( X1 + X5 - 2X33 0)
E(X1+X2-2X3):40+50—2(60):'30,
V(X; +X2-2X3)=S 7 +S . +4s 2 = 78,36, 50=8832, 50
0- (-30)¢
P(X1 + X, - 2Xs? 0)= PEZ 2 0-(396_ P(Z 3 3.40) =.0003
=) 8832 g

Y isnormally distributed with m, = %(ml +m,) 1(rr13 +m,+m)=-1,and

3
1 1 1 1 1
s 2 :ZS 2 +ZS 2 +§s z +§sj +§552 =3.167,s, =1.7795.

Thus, P(O £ Y) = P(;:;é) )
e1.7795

£72=P(56£ Z) =.2877 and
9

2 .
P-1£Y£1)=PROLZE Q- pP(0£Z £1.12) = .3686
& 1.779

a.  Themargina pmf’'sof X and Y are given in the solution to Exercise 7, from which E(X)

=28 E(Y)=.7,V(X) =166, V(Y) =.61. ThusE(X+Y)=E(X) + E(Y) =35, V(X+Y)
=V(X) +V(Y) = 2.27, and the standard deviation of X +Y is1.51

b. E(@BX+10Y) =3E(X) + 10E(Y) = 15.4, V(3X+10Y) = 9V(X) + 100V(Y) = 75.94, and the
standard deviation of revenueis8.71

E( Xy + Xz + X3 ) = E(X1) + E(Xz ) + E(X3) = 15+ 30+ 20 = 65 min,,
V(X1 +Xo +Xg) =12+ 2 +15° =758, , . =+/7.25=2.6926
60- 65¢_

2= P(Z £ - 1.86) =.0314
2.6926 g

Thus, P(Xl +Xo+ X3 £ 60) = Pa £
e

a  E(X:)=170,E(X;) = 155, EXuX2) = @ @ %X, P(X,,X,) = 3.33, 50 Cov(X.X2) =

X X

E(X]_Xz) - E(Xl) E(Xz) =3.33-2635=.695

b. V(X1 +X2)=V(Xy1) + V(Xp) +2 Cov(X1,X7)
= 1,50 + 1.0875 + 2(.695) = 4.0675
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65.

66.

Chapter 5. Joint Probability Digtributions and Random Samples

Let Xy, ..., X5 denote morning times and X, ..., X109 denote evening times.
a E(Xl + ...+ XlO) = E(Xl) +...+ E(XlO) =5 E(Xl) +5 E(XG)
=5(4) +5(5) =45

b. Var(Xl + ...+ XlO) —Va'(Xl) +...+ Va'(xlo) = SVH(X]_) + 5V3'(X6)
é64 . 100 100y _ 820

=55— =68.33
82 128 12
C. E(Xl—XG):E(Xl)-E(XG):4—5 -1
64 100 164
Va(X;—Xg) =Va(Xy) + Va(Xg) = — +— =——=13.67
a(X1—Xe) =Var(Xy) +Va(Xe) = 2 1 12

d. EXi+...+Xs)=(Xeg+... +X10)] =5(4) - 5(5) =-5
Var[(Xy +... +Xs5) = (Xg + ... + X10)]
=Va(Xy +... +Xg) + Var(Xg + ... + X10)] =68.33

m=5.00,s = .2

2 E(X-V)=0 V(X-V)=3-+5" = 0032, S 5 - =.0566
25 25

b P(-.1£X-Y£.1)» P(- L77£Z £1.77)=.9232 (by the CLT)

2 2
b V(X-V)=>_+3 = 0022222, s, . =.0471
36 36

p P(-.1£ X- Y£.1)» P(- 212 £ Z £ 2.12) =.9660

a  With M =5X; +10X,, E(M) = 5(2) + 10(4) = 50,
Var(M) =52 (.5)% + 10 (1)? = 106.25, s\ = 10.308.

255- 50
b. 75<M)= P
A )= Pe 0308

< 7%= p(2.43< 7) = .0075
(%]

c. M=AX;+AX,withthe A,'sand X,’s al independent, so
E(M) = E(A1X1) + E(A2X2) = E(A1)E(X1) + E(A2)E(X2) =50
d. Va(M)=EM?) —[EM)]>. Recall thatforanyr.v.Y,
E(Y?) = Var(Y) + [E(V)2. Thus, EM?) = E(AZX2 +2A X, A, X, + AZX?)
= E(A?)E(x2)+ 2E(A)E(X, )E(A, )E(X,) + E(A2 JE(X2)
(by independence)

=(.25+ 25)(.25 + 4) + 2(5)(2)(10)(4) + (.25 + 100)(1 + 16) = 2611.5625, so Var(M) =
2611.5625 — (50)% = 111.5625
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e. E(M)=50still, but now
Var(M) = a’Var(X,) + 2aa,Cov(X,, X,) +a:Var(X,)
= 6.25 + 2(5)(10)(-.25) + 100=81.25

Letting X1, X2, and X3 denote the lengths of the three pieces, the total length is

X1 + X5 - X3 Thishasanormal distribution with mean value 20 + 15— 1 = 34, variance
.25+.16+.01 = .42, and standard deviation .6481. Standardizing gives

P(345 £X1+X5-X3£35)=P(77£Z £154)=.1588

Let X, and X, denote the (constant) speeds of the two planes.

a. After two hours, the planes have traveled 2X; km. and 2X, km., respectively, so the
second will not have caught the first if 2X; + 10> 2X,,i.e if X, —X; <5. X, — X1 hasa
mean 500 — 520 = -20, variance 100 + 100 = 200, and standard deviation 14.14. Thus,

P(X, - X, <5) = P&Z < 5 C200_p7 <177) = o616,
e 1414 ¢

b. After two hours, #1 will be 10 + 2X; km from where #2 started, whereas #2 will be 2X
from whereit started. Thus the separation distance will bea most 10if |2X; — 10— 2X,|
£10,i.e.—10£ 2X, — 10— 2X; £ 10,
i.e.0£ X, — X1 £ 10. The corresponding probability is
PO£ X, — X1 £10)=P(141£ Z £ 2.12) = .9830 - .9207 = .0623.

a  E(Xy+ X+ X3) =800+ 1000 + 600 = 2400.

b. Assuming independence of X1, X2, X3 Var(Xy + Xz + X3)
=(16)* + (25)> + (18)> = 12.05

c. E(Xy+X;+X3)= 2400 asbefore, but now Var(X; + X5 + X3)
= Va’(Xl) + VH(Xz) + Va’(X3) + 2COV(X1,X2) + 2COV(X1, X3) + 2COV(X2, X3) = 1745,
withsd =41.77

a E(Y,)=.5 s E(\N):énixE(Yi):-5én. i :w
o, Var(Y) = .25 soVar (W) = éﬂ i2>«/ar(Yi)=.25§n. 2 n(n+1;E12n+])
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a M =aX,+a,X, +W{xix=aX, +2,X, + W, s0
E(M) = (5)(2) + (10)(4) + (72)(1.5) = 158m
s 2 =(5)*(:5) + (10)*(1)* +(72)*(25)* = 430.25, s ,, =20.74

200- 158¢
b. P(M £ 200)= P‘?fi g R0, P(Z £ 2.03) =.9788
e 2074 g

Thetotal elapsed time between leaving and returning is T, = X1 + X, + X3 + X4, with
E(T,) =40, s TZO =40, s T = 5.477 . T, isnormally distributed, and the desired value t

isthe 99" percentile of the lapsed time distribution added to 10 A.M.: 10:00 +
[40+(5.477)(2.33)] = 10:52.76

a. Both approximately normal by the C.L.T.

b. Thedifferenceof twor.v.’sisjust aspecial linear combination, and alinear combination
of normal r.v’s hasanormal distribution, so X-Y has approximately anormal

8  6°

distribution with My - =5 ands 2 ; = —+— =2.629,s - ; =1.621
rT‘)?—Y X-Y 40 35 X-Y
- 1- 5 1- 5 &
¢ Pl1EX-YEURPE 2z 20
€l.6213 1.6213 g
= P(- 3.70£ Z £ - 2.47) » .0068
— = 10- 59 : A
d. P(X-V310)8P%3 9= p(z 2 3.08) =.0010. This probability is
e 1.6213g
quite small, so such an occurrenceisunlikely if M - M, =5, and we would thus doubt

thisclaim.

X is approximately normal with M) =(50)(.7) =35 and s/ = (50)(.7)(.3) =10.5, as
isYwith m, =30 ands > =12. Thusm,_, =5 ands ;_, =225, so

10 0 4
p-5E£X-YES)»PE—£72e—2=P(-211£Z £0) = 4826
&4.74 4745
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Supplementary Exercises

75.

76.

77.

a.  px(x) isobtained by adding joint probabilities across the row labeled x, resulting in px(X)
=.2,.5, 3for x =12, 15, 20 respectively. Similarly, from column sums py(y) = .1, .35,
B5fory =12, 15, 20 respectively.

b. P(X£15andY £ 15) =p(12,12) + p(12,15) + p(15,12) + p(15,15) = .25

C. pPx(12) ¥py(12) =(.2)(.1)* .05=p(12,12),s0 X and Y are not independent. (Almost any
other (x,y) pair yields the same conclusion).

E(X+Y) =8 a (x+ y)p(x,y) = 33.35 (or = E(X) + E(Y) = 33.35)

o

®

E(X-Y)=a & |x+yp(xy) =385

Theroll-up procedureis not valid for the 750 percentileunless S ;| = Oors 5 = 0 or both
S, andS , =0, asdescribed below.
Sum of percentiles: m+(2)s,+m+(Z)s,=m+m +(Z)(s,+s,)

, _ 2 2
Percentile of sums: m +m, +(2)./s cts’

These are equal when Z = 0 (i.e. for the median) or in the unusual case when
S,+s, :4/sf+s f , which happenswhenS ; =0 or S, =0 or both S ; and
s, =0.

x+y=30

Xx+y=20

>

20 30- x 30 30-x

[
a 1=, 0, F(xYdxdy=¢) ), keydydx+ 3 Q) keydycx
_ 81250, _ 3

3 81250

30- x

b @ loydy = k(250x- 10x) O£ x£ 20
b F ()T 0,2
§Q loydy=k(450x- 30x*+1x% 20£Xx£30

and by symmetry fy(y) is obtained by substituting y for x in fx(x). Sincefx(25) > 0, and
fy(25) >0, but f(25, 25) = 0, fx(X) Xfy (y) * f(x,y) foral x,y so X andY arenot
independent.
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79.

Chapter 5. Joint Probability Digtributions and Random Samples

20 25 x 25 25 x
c. P(X+YE£25= @ Q) kxydydx+ QQ kxydydx
__ 3 230625 _ 355
8,250 24

d E(X+Y)= E(X)+E(Y)= 2{@2°xxk(250x- 102 Jox

+ X K(450x - 30x* +1 x3)dx} = 2k(351,666.67) = 25.969
e E(XY) =, xyxf(xy)ixdy =y § k¢ y’dydx

3030x 5 _ k33,250,000 _
+Q,0 kx?y2dydx = ng =136.4103, so

Cov(X,Y) = 136.4103 — (12.9845) = -32.19, and E(X?) = E(Y?) = 204.6154, s0

S =s7=2046154- (12.9845)" = 36.0182and I = - 3219 _
36.0182
f.  Va (X+Y)=Va(X)+ Var(Y) + 2Cov(X,Y) = 7.66
. ay-100¢'
A (y) =P(max(Xy, ..., Xp) £Y) =P(X1£Y, ..., Xs £Y) = [PX1 £Y)]" = ¢ + for
e 100 g
100 £ y £ 200.
n n-
Thusfy(y) = 100" (y- 100) ' for 100£ y £ 200.
\200 n n-1 n ‘100 n-1
E(Y) = x——(y- 100 =— u+100)u™-du
(V)= Q, ¥ (V- 200) o @ (u+100)
:100+L(§°°u“du - 100+100—" = 2" L 900
100" n+l n+1

E(X +Y + Z) =500+ 900 + 2000 = 3400
502 1007 . 1807
+ +
365 365 365
P(X +Y +Z £3500) = P(Z £9.0) » 1

Var(X+Y +2Z)= =123.014, and the std dev = 11.09.
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80.

81.

82.

83.

84.

85.

86.

Chapter 5. Joint Probability Digtributions and Random Samples

a LetXjy,..., X1, denote the weights for the business-class passengersand Yy, ..., Yso
denote the tourist-classweights. Then T = total weight
=X1+ ..+ X +HY+ .+ Y50=X+Y
E(X) = 12E(X ;) = 12(30) = 360; V(X) = 12V(X4) = 12(36) = 432.
E(Y) = 50E(Y;) = 50(40) = 2000; V(Y) = 50V (Y1) = 50(100) = 5000.
Thus E(T) = E(X) + E(Y) = 360 + 2000 = 2360
And V(T) =V(X) + V(Y) =432 + 5000 = 5432, std dev = 73.7021

2 2
P% c 500 - 3600

= P(z £1.90) =.9713
73.7021 g

b. P(T £ 2500) =

a.  E(N) xm=(10)(40) = 400 minutes

b. Weexpect 20 componentsto comein for repair during a4 hour period,
so E(N) xm=(20)(35) =70

X ~Bin (200, .45) and Y ~ Bin (300, .6). Because bothn's arelarge, both X and Y are
approximately normal, so X + Y is approximately normal with mean (200)(.45) + (300)(.6) =
270, variance 200(.45)(.55) + 300(.6)(.4) = 121.40, and standard deviation 11.02. Thus, P(X

249.5- 27
Pa% 2 2495- 2100 _ 175 1 gg) = o686
11.02 g

+Y 3 250) =

02 i

01/4/ng

Pl- 2/ £2 £ .2/n) but P(- 1.96 £7 £l.96) =95 50
2:/n=196p n=97. TheCLT.

095= P(m- .02£ X £ m+. 02)&Pg

| have 192 oz. The amount which | would consumeif therewereno limitisTyo =X + ...+
X14 Where each X, isnormally distributed withm= 13 ands = 2. Thus T, is normal with

m, = 182 and s T, = 7.483, 50 P(T, < 192) = P(Z < 1.34) =.9099.

The expected value and standard deviation of volume are 87,850 and 4370.37, respectively, so

100,000 - 87,850¢
PB% £ O- p(z £2.78) = .9973

P(volume£ 100,000) = 4370.37
%)

The student will not belateif X1 + X3 £ X5, i.e.if X1 —X,+ X3 £0. Thislinear combination

has mean —2, variance 4.25, and standard deviation 2.06, so

- - 2 I
0-(2¢_ P(Z £ .97) = .8340
(%]

P(X,- X, +X;£0)=PEZ £
e
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88.

89.

Chapter 5. Joint Probability Digtributions and Random Samples

a Var(aX+Y)=a’s}+2aCov(X,Y)+s =a’s}+2as,S,r +S ..

S
Substituting @ =— yieldsS { +25 Jr +s =25$(1- r)3 O,sor 3 -1
S
X

b. Sameargumentasina

c. Suppose I =1. Then Var(aX - Y)= 2s 3(1- r )= 0, which implies that
aX - Y =K (aconstant), so aX - Y =aX - k,whichisof theform aX +b.

1
~

1
E(X+Y-1t)?= QQ(X+ y - 1)% xf (X, y)dxdy. Tofind the minimizing valueof t,
take the derivative with respect to t and equateit to O:

0=Q20x+y- (- D (x y) =0P JQHf (x, y)dxdy =t

= éé(x+ y) Xf (X, y)dxdy = E(X +Y), so the best prediction isthe individual’s
expected score ( = 1.167).

a  WithY =X+ Xy,

1 Mmoo XX

FY(Y):Qy%CS_Xl 5 L X—0 X2 X2 e 2 dxydx,.
19 Egh 12) 29%Gh, 12) b

But the inner integral can be shown to be equal to

1 y[(n1+n2)/2]-1
20m)2Q{(n, +n,)/2)

-y /2

e , from which the result follows.

b. Bya Z7 +Z7 ischi-squared withn =2, s0 (le + ZZZ)+ Z?Z ischi-squared with
n =3, etc,until Z>+ ...+ Z> 9schi-squared withn =n

X -m

S
ischi-squared withn =nN.

ischi-squared withn =1, so the sum

oo S

_ ex,-m
is standard normal, so g—
S
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91.

92.

Chapter 5. Joint Probability Digtributions and Random Samples

Cov(X,Y +Z) =E[X(Y + Z)] — E(X) xE(Y +2Z)
= E(XY) + E(XZ) — E(X) xE(Y) — E(X) xE(2)
= E(XY) — E(X) xE(Y) + E(XZ) — E(X) XE(Z)
= Cov(X,Y) + Cov(X,2).

Cov(X1+ Xz, Y1+ Y2)=Cov(Xy, Yy) + Cov(Xy,Y2) + Cov(Xz, Y1) + Cov(X2,Y>)
(apply atwice) = 16.

V(X)) =VW +E) =s +s¢ =V(W +E,) =V(X,) and
Cov(X,, X,) =Cov(W + E,W +E,) = Cov(W,W) + Cov(W,E,) +
Cov(E,,W) +Cov(E,, E,) = Cov(W,W) =V(W) =s 2.

s s
Thus, I = W =— w >
JSC+six[sZ+s? Sy+sg
r= 1 =.9999
1+.0001

Cov(X,Y)  =Cov(A+D, B+E)
=Cov(A,B) + Cov(D,B) + Cov(A,E) + Cov(D,E)=Cov(A,B). Thus

_ Cov(A B)
o= Js 2+s? x\/s 2 +g2
A D B E

_ Cov(AB) s, S

B
prd
SiSs 5itsi Asits:

Thefirst factor in thisexpressionis Corr(A,B), and (by the result of exercise 70a) the

second and third factors are the square roots of Corr(X3, X3) and Corr(Yy, Y2),

respectively. Clearly, measurement error reduces the correlation, since both square-root

factors are between O and 1.

4/.8100 %/.9025 = .855. Thisisdisturbing, because measurement error substantially

reduces the correlation.
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94,

Chapter 5. Joint Probability Digtributions and Random Samples

E(Y) &h(m,m,,m, m) =120[% + & +-1]| = 26
The partial derivatives of h(m, m,,m,, m,) with respect to xy, X, Xs, and x, are - X—‘;,
X

X, X, 1 1 1 _ _

— T o and — +—+ — respectively. Substituting x; =10, % = 15, x3 = 20, and
X2 XS Xl X2 X3

X4 = 120 gives —1.2, - 5333, -.3000, and .2167, respectively, o V(Y) = (1)(-1.2)* + (1)(-

5333)% + (1.5)(-.3000)° + (4.0)(.2167)° = 2.6783, and the approximate sd of y is 1.64.

2X, 2%, 2X, . o

3 3 3 »andOrespectively. Substitution gives
X X X
E(Y) =26 +.1200 + .0356 + .0338 = 26.1894.

The four second order partialsare
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CHAPTER 6

Section 6.1
1.
a  Weusethe sample mean, X to estimate the population mean 17 .
=x= % = 21980 _g 1457
n

b. We usethe samplemedian, X = 7.7 (the middle observation when arranged in
ascending order).

1860.94 - (21281
26

=1.660

c. Weusethe sample standard deviation, S= NS = \/

d. With“success’ = observation greater than 10, x = # of successes = 4, and

p=X=-4=1481

n 27

e. Weusethe sample (std dev)/(mean), or § == =.2039
X .

A . 10
a  WithX =#of T'sin the sample, the estimator is p =2;X =10, so p =5,=.50.

. 16
b. Here, X =#insamplewithout TI graphing calculator, and x = 16, s0 P = 2—0 =.80
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Chapter 6: Point Estimation

We use the sample mean, X =1.3481

Because we assume normality, the mean = median, so we also use the sample mean
X =1.3481. We could also easily use the sample median.

We use the 90" percentile of the sample:

M+ (1.28)S = X +1.28s =1.3481 +(1.28)(.3385) =1.7814.

Since we can assume hormality,

15- X9 aaz 1.5-1.3481p

P(X <1.5)» PEZ < 0-pf7 « 2" —""-0-p(z < .45) = 6736
e ] e 3385 g
The estimated standard error of X = S -S- ﬁ =.0846
N T

2
N NG S S
b V(X-V)=V(X)+Vv(7)=s2+s2=21 432
n n
== s? s?
Sy =4VIX-Y)= ~1 +Z2: Theestimatewould be
n.
2 SZ ) 2 ) 2
S =J166 + 2104 _ a7
n n, 27 20
. 2100 a9
s, 21
d. V(X-Y)=V(X)+V(Y)=s 2 +s2 =166 +2.104° = 7.1824
N =5,000 T =1,761,300 _
y=3746 X=3406 d =340
g, = NX = (5,000)(340.6) = 1,703,000
q, =T - Nd =1,761,300- (5,000)(34.0) = 1,591,300
~ X 0 a340.60 _
ds =T —I= 1, Q
Vo 74.6ﬂ
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Chapter 6: Point Estimation

Let ¥, =In(Xx ) for1=1,.., 31 Itiseasly verified that the ssmple mean and sample sd
of the y;'S are Y = 5.102 and S, =.4961. Using the sample mean and sample sd
toestimate IT and S , respectively, gives M=5.102 and S =.4961 (whence

S? =5, =.2461).

é s?i . -
E(X)° expém+7Q. Itis natural to estimate E(X) by using M and S % in place of
e u
M andS 2in'[hisexpron:
- A 2461y
E(X) = exp §5.102 + a = exp(5.225) = 185.87
ax 1206
m=X= ax 1206 =120.6
n 10
" =10,000 i = 1,206,000

8 of 10 housesin the sample used at least 100 therms (the “ successes’), so
p=2==.80.
The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156, from

_ ) Lo - 118+122
which the two middle valuesare 118 and 122, so m= X = ———— =120.0

With g denoting the true proportion of defective components,
. _ (#defectivein.sample) _ 12
g=1 Ple) 12 150

sample.size 80

R 8¢
P(system works) = p?, so an estimate of this probability is p? Ig‘g—og =.723
eovg
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10.

11.

Chapter 6: Point Estimation

E(X) =m=E(X) =1 ,so X isanunbiased estimator for the Poisson parameter
| & % = (0)18) + (1)(37) +...+ (7)(1) = 317, sincen =150,

r=x=3Y o1
150

S5 =S— =£,sotheestimatedstandarderroris I— 211
n n n /150

2

2
E(X?) =Var (X) +[E(X)]? =5 5 M7, so the bias of the estimator )?ziss—;
n n

thus X ? tendsto overestimate M’ .

2
E(X? - ks?) = E(X?) - KE(S) = nf + S~ ks %, sowih k =+,
n n

E(X? - kS?) = .

&, X,0 1 1
Eet. Z2x= —g(x,)- —E(X,)== Sl =
n hi (X,) o (X2)= (nlpl) 2 = (0,p,) = p, -
6 1o @l ¢
Varg—t- 2+ —Var —+Var Zi= T Var(X,) +&—= Var(X,)
gm n, & 5 Eng Y TER S i
: ( 1|010ﬂ) 2 ( zpzqz) prlloﬂ Pl , and the standard error is the square

2 1 2
root of this quantity.

with p, 2%, G, =1- p.. P, 2%, g, =1- P,, theestimated standard error is
2
54 B
nl n2
. .. 127 176
- =—-—=.635- .880=-.245
(b~ P2)= S5 555
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12.

13.

14.

15.

&X 0 ~
a E(X?) =29 impliesthat Eg—i:q . Consider q =

Chapter 6: Point Estimation

(:635)(-365) , (880)(120) _ .
200

ol - 05 + (0, 9810 (1) (.- )

E 27D (g2
g- n+n,- 2 H n+n,-2 (8)+ n,+n,- 2 (%)
- (nl'l) s 2+ (nz'l) s2=g2
n+n,-2 n+n,- 2
E(X) = & x>&(1+ X)dX:X_ZJ,ﬁl -1 E(X):E
(0 RS ACaA®! 2 6 30 3q

-1

E(R) =30 G=3Xp E@)=EEX) =300 = =g
e3g

a. min(x) =202 and max(x) = 525, so the estimate of the number of planes manufactured is

max(%) - min(x) + 1=525— 202 + 1= 324,

b. Theestimatewill equal the true number of planes manufactured iff min(x) =a and

max(x) = b, i.e., iff the smallest serial number in the population and the largest serial
number in the population both appear in the sample. The estimator isnot unbiased. This
is because max(x;) never overestimatesb and will usually underestimate it ( unless

max(%) = b) , so that E[max(x)] <b. Similarly, Efmin(x)] > a ,s0 E[max(x) - min(x)] <
b-a+1; Theestimatewill usualy be smaller thanb - a + 1, and can never exceed it.

2 Q

Xi2
. Then

@) c &g X2 0 aE( ) an
§ 2n E 2n 2n
unbiased estimator for g .

_2nq _
=q, |mply|ngthatq isan
2n

1490.1058

b. Q@ X* =1490.1058, s0q = o = TAS05
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Chapter 6: Point Estimation

16.
a  EldX +(@1- d)¥]=dE(X) +(1- d)E(Y) =dm+(1- d)m=m
2 2 _d)2e 2
b Var[dX +(1- d)¥]=dVar (X)+ (- d)?Var(v) =35 4 4d-d)'s~
m n
2 ) 2
Setting the derivative with respect to d equal to 0 yields s +8(1 d)s =0,
m n
_ 4m
fromwhichd = .
A4m+n
17.
~_ ¢ r-1 ax+r-10
E =3 =xp" ¥1- X
» EP=a 7% )
g (x+r-2)_ ., L S aH+r-20 N
= A2 xp" Tt Aq1- = P (1
a o P {1- p) CYRNEE - p)
¥
= p& nb(x;r - 1, p) = p.
x=0
" 5-1 4
b. Forthegi X =5, = =—= 444
or the given sequence, X SOp 5+5_1 9
18.
Ex-m?/ ¢
1 g ASH 2 1
a f(xms?)= e 5 so f(Mms?) =———— and
J2ps J2ps
2 2
1 _2ps :Bxs—;sinceg>l Var (X) >Var (X).
AN[f(M]* 4n 2 n 2
_ 2
b, f(m) =< soVar(X)»P_ =247
p an n
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Chapter 6: Point Estimation

19.

a | =5p+.15p 2l =p+3,s0p=2 - 3and p=2 - .3=2€é—(9- 3

éng
the estimate is 2(?2—09- 3=.2.
€80 g
b. E(P)=E(2" - 3)=2E(")- 3=2 - 3= p, asdesred
c. Here | :7p+(3)(3)' SO p:E| -iandﬁzgﬁ_g- i
7 70 7éng 70

Section 6.2
20.

éam0 !
a.  Wewish to take the derivative of In ipx(l- p)n g

u
U, set it equal to zero and solve
SXX g 0

d é amo U X n-x
for p. —élng =+ xln(p)+(n- X)In(l- p)uZ—- —— setting thisequal to
dpg &Xgy g b 1-p
zero and solving for pyields P =—. Forn=20andx=3, p =— =.15
b. E(p)= EéﬁiQ:EE(X):l(np): p; thus P isan unbiased estimator of p.
eng n n

c. (1-.15)° =.4437
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22.

Chapter 6: Point Estimation

= b xc @+ 2 %ana E(X 2) =var (X) +[E(X)]? = b2CE +22 sothe
e ag e ag

" ~ _ ~ 1 .
moment estimators@ and b arethesolutionto X = b ><C;ﬁ_+ 79
e ag
1 ~ 26 ~ X .
—é Xi2 = bzcﬁ+79. Thus b = ————— ,soonce @ has been determined
n e ag + =9
¢ dg
1o V2 "2 2 106
G§+——|se\/aluatedand b then computed. Since X*=b%xG gf[+—A+,
e e ag
20
—aA oz " — , 0 this equation must be solved to obtain a .
X 5 10
G+
e ag
i+ 22 cf+ 29
1 &46,5000 e ag 1 @ ag
Froma, 2—0(; 2807 5 1.05 1o 1 G = T and
€ GZ$+79 ' +29
e ag e ag
1 - ~ X 280

fromthehint, —=.2P a =5. Then b =

a q12) dL2)

E(X) = éx(q +1)quX -+l =1- 1 , S0 the moment estimator Ci isthe
q+2 q+2

f (X0 %,30) = (@ +2)" (%, %,...X, )" , so the log likelihood is
nln(q +1)+qé In(>q). Takingdi and equating to O yields
q

q%lz-am(x.) q _-_OW 1. Taking |n(Xi)foreachgiven X;

yields ultimately q = 3.12.
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23.

24.

25.

26.

Chapter 6: Point Estimation

For a single sample from a Poisson distribution,

R | i ax
f (X X1 ) =2 et et
X! X! P ARS &
In[f (%, ;1 )] =-nl +& x In(1)- & In(x,1). Thus
dil[ln[f(xl,...,xn;l )]]=-n+ al A =0Pb |A=ﬂ=i. For our problem,
n

f(Xl,...,Xn,yl...yn;I ol 2) isaproduct of the x sample likelihood and they sample

likelihood, implying that | , =X,|", =y, and (by the invariance principle)
(Il' | 2):)_(' y.

& G- o)

We wish to take the derivative of In g ipr 1 with respect to p, set it equal
2

e en end

. X
d é ax+r-16 u r X

to zero, and solvefor p: — @n =+rin( p)+xIn(1- pg=—- — .
BEE x g a P 1-p

~ r
Setting this equal to zero and solving for pyields p = ——. Thisisthe number of
r+x

successes over the total number of trials, which is the same estimator for the binomial in

~ r
exercise 6.20. The unbiased estimator from exercise 6.17is P = —1 which is not the
r+x-

same as the maximum likelihood estimator.

a M=X=3844s>=39516,s0 lé (x - X =52 :%(395.16): 355.64
n

and S =+/355.64 =18.86 (thisisnot s).

b. The95" percentileis M +1.6455 , sothemleof thisis (by the invariance principle)
n+1.6455 =415.42.

Themleof P(X £ 400) is (by the invariance principle)
00- Mg 00- 384.44
p@O-Mo_ & 2= F(80)=.7881
e s ] e 1886 g
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Chapter 6: Point Estimation

27.
a-1_-Sx/b
XX, ... X e
a f(xl,...,xn;a,b):( 172 “)n , so the log likelihood is
b™G"()
[o]
: d d
(@-1q In(x)- aAX In(b)- ninGla ). Equating both — and — to
b da db
[¢]
d . _ha
oyields § In(x )- nin(b)- n—da) =0 and d 2(1 =—=0,avery
da b b
difficult system of equationsto solve.
ax
b. From the second equationina, T =na P X=ab =m,sothemleof IT is
m=X.
28.
ax O aX O expl- Sx*/2q
a g—lap[- X’ /2q]:..g—“e<p[— xn2/2q]f— (%%, ) | - J The
eq 2 eq a q
- - S
natural log of the likelihood function is In(Xi ...Xn)- nln(q)- . Taking the
o . . n i2 SXi2
derivative wrt ¢ and equating to O gives - — + > = 0,song = and
a 2
Sx? - 2
q= 2' . Themleistherefore ¢ = —— , whichisidentical to the unbiased
n
estimator suggested in Exercise 15.
, _ é- x%0 ,
b. For x> 0thecdf of X if F(x;q) = P(X £ X) isequal to 1- &Xpg——(- Equating
€2 q
é x%0
thisto .5 and solving for x givesthe medianintermsof : .5= eXp g——(implies
e
- X2
that In(.5) = , 50 X =M=4/1.38630. Themleof I istherefore
Zs|
(1.3863 )

214



Chapter 6: Point Estimation

29.
a.  Thejoint pdf (likelihood function) is

i|ne'sta) y s x 3
f(X, ., n’l’q) 1 q 'n q

| 0 otherwise
Noticethat X, 3 q,....X, 2 q iff min(x )3 q,
andthat - | S(x, - q)=-1Sx +nlq.

11 "exp(- | S Jexp(nl min (x )3

Thusl|kel|hood—| p( ') p( q) ) (X') d
7 0 min (x ) <g
Consider maximization wrt ( . Because the exponent Nl q is positive, increasing
will increase the likelihood provided that min ()(i ) 3 (; if wemake ( larger than
min (x, ), the likelihood dropsto 0. Thisimpliesthat themleof @ isq = min (x ).

Thelog likelihoodisnow nin(1 ) - | S(Xi - q). Equating the derivativewrt | to 0
n n

Sk-a) S -nd

. . 10
b. G =min(x)=.64, and Sx =55.80 50| =— 0 = 202
q (%) ana =% *' T55.80- 64

and solving yields | =

30.  Thelikelihoodis f (y; n, p):a&;gpy(l- p)"" where
2

— — 24 ix — 24 A_Y ; ;
p=P(X3 24)=1- Q | e “dx=¢e" . Weknow p =-=, soby theinvariance
n

principle e 2% = y P I [l ( )] =.0120 forn=20,y = 15.

Supplementary Exercises

-60

31. qu_rd>e):P()T- m>e)+P()T- m< - e Pg;/J_ S/«/_z+PgS /«/_ S/«/_ra
_\/ﬁe ,\/—e ¥ 1 Jrers 1

—PZ>——+PZ< e %z +

s 5 Sv(ke/s@ 04\/5

L e?ig=0,

Ny

2
e *'%dz.

¥
AsN® ¥  bothintegrals ® Osmcel (‘)
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32.

33.

34.

Chapter 6: Point Estimation

sp
a F(y)=PY£y)=P(X,£y,..X, £y)=P(X, £y)..P(X, £y)= %%

n-1
for OEy £(q,so fY(y)Z ny

n

", _.n oty _ n+l,
b. E(Y)= va dy—n q.Whlleq—Y|snotunb|ased,TY|s,smce

en+1 u_ n+1 () n+l n

, doesthetrick.
Sn H n n+1 n

Let x; = thetime until the first birth, x, = the elapsed time between the first and second births,
andsoon. Then f(X,,...,x,;l )=l e 2 Je?*%..(nl Je™* =nll "e’' % Thus

d
thelog likelihood is In(n!) + nin(l )- | Skx, . Taking T and equating to 0 yields

. Forthegivensample, n =6, x; =25.2, % =41.7—252=16.5x =9.5,% =

a kx
k=1
6
43,%=40,% =230 g kx =(1)(25.2) + (2)(16.5) +...+ (6)(2.3) =137.7 and
k=1
T=_% - o436
137.7

MSE(KS?) = Var (KS?) + Bias(KS?).
Bias(KS?) = E(KS?)-s 2 =Ks 2-s 2 =s 2(K - 1), and

Var (KS?) = K Var (S%) = KZ(E[(SZ)Z]- [E(Sz)]z)z 284n+1)5 4 ( )

Q- |O=

2U d
—g—+ (k - 1) (& - Tofindtheminimizing value of K, take d_K and equate to 0;
u

n-1
theresultis K = —1 ; thus the estimator which minimizes M SE is neither the unbiased
n+
- 1
estimator (K = 1) nor themle K = ——
n
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Chapter 6: Point Estimation

X 235 263 280 282 294 295 306 316 339 493
257 258 264 210 275
235 | 235 249 5 5 5 26.5 5 5 287 364
211 2712 278 284 289
26.3 26.3 5 5 5 279 5 5 301 378
280 280 281 287 2875 203 298 3%9 32'6
282 282 288 288 204 299 3]5"0 327
204 204 2945 300 305 3%6 32'3
295 295 3(5)'0 3%5 317 394
30.6 306 311 22 399
5 5
327 404
316 316 5 5
339 339 416
49.3 49.3

There are 55 averages, so the median isthe 28" in order of increasing magnitude. Therefore,
=295

With & x =555.86 and § X =15,490, s=+/s? =+/2.1570 =1.4687. The

X, - X|'s are, inincreasing order, .02, .02, .08, .22, .32, .42, 53, 54, .65, .81, 91, 1.15,
1.17,1.30,1.54, 1.54, 1.71, 2.35, 2.92, 3.50. The median of these valuesis
(81+.91)

= .86 . The estimate based on the resistant estimator is then 6325 =1.275.

Thisestimate isin reasonably close agreement with s.

)
dg)x[&H

squareroot in E(S), leavingjustS . Whenn=20, C =

LeaC= . Then E(cS) = cE(S), and ¢ cancels with thetwo C factors and the

G(9.5)

qlo) %2
d9.5) = (8.5)(7.5)...(1.5)(.5)d.5) , but G(.5) =/p . Straightforward calculation
givesc=1.0132.

. J10)=9 and
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Chapter 6: Point Estimation

Thelikelihood is
1 _(xi-mp) 1 _(yi-m) 1
7

e 2s X e 32

1 lzpsz \’2{)82 (2ps 2)”

- m B+S(y,- d
likelihood is thus - nIn(Zpsz)- (S()ﬂ mf f(y' m)z). Takingd— and equating to
m

Bli-m)?esly-m 28
e x* . Thelog

Us

2s

~ X Y, ~
zero gives M = Y . Substituting these estimates of the IM'S into the log
likelihood gives
Bw XtVO, g@® X+Y60
- nin{2ps ?)- 163 & - = +acy - T
- 2 g T8 2 g5
d
=- nIn(ZpS 2)- ( (X - y,) ) Now taking 02 , equating to zero, and
S

solving for S 2 givesthe desired result.

" 1
Els )=—
(s) 4n

E(s(xi - Y)z):%ﬁE(Xi - Y), but

E(X, - Y)* =V (X, - ¥) +[E(X, -
2

Els?)= iS(Zs ?) =L ons 2 =3 o themleisdefinitely not unbiased; the
4n 4n 2

Y)]2 =252+0=25 2. Thus

expected value of the estimator is only half the value of what is being estimated!
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CHAPTER 7
Section 7.1

a 2z, =28limpliesthat %% =1- F (2.81)=.0025, s0a =.005 and the confidence
level is 100(1- a )% = 99.5%.

b. 7, =144 fora = 2[1- F(L.44)]=.15, and 100(1- a }% = 85%.

c. 9.7% impliesthat a =.003, 24 =.0015, and z,,,; = 2.96. (Look for cumulative
area .9985 in the main body of table A.3, the Z table.)

d. 75%impliesa =.25, 3, =.125, and 2, =1.15.

2.
. . _ 114.4+115.6
a  Thesample mean isthe center of theinterval, so X = # =115.
b. Theinterval (114.4, 115.6) hasthe 90% confidence level. The higher confidence level
will produce awider interval.
3.

a. A 90% confidence interval will be narrower (See 2b, above) Also, the z critical valuefor
a90% confidence level is1.645, smaller than the z of 1.96 for the 95% confidence level,
thus producing a narrower interval.

b. Not acorrect statement. Once and interval has been created from a sample, the mean 1

is either enclosed by it, or not. The 95% confidence isin the general procedure, for
repeated sampling.

c. Not acorrect statement. Theinterval isan estimate for the population mean, not a
boundary for population val ues.

d. Notacorrect statement. Intheory, if the process were repeated an infinite number of
times, 95% of the intervals would contain the population mean 1.
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Chapter 7. Statigtica Intervals Based on a Single Sample

1.96(3) _
58.3+ ———=-/ = 58.3+1.18 = (57.1,59.5
o ( )
1.96(3) _
58.3+ ~—-/ =58.3+.59 = (57.7,58.9
/100 ( )
5g.3+ 2288) 5803) _ =58.3+.77 = (57.5,59.1)

82% confidence P 1-a =.82P a =.18P 3,=.09,s0 7, =7y, =1.34 and

1343 _(
1

theinterval is 58.3% =(57.9558.7).

62(2.58)30°

_e
- = 239.62 son=240.
& 1

(1.96)(.75)

4.85+ = 4.85+.33 = (452,518).

(2.39)(.75)

Z,, = Zy = Zy = 2.33, sotheinterval is 4.56 £ = (4.12,5.00).

e2(1 96)(.75)f
"8 a0 H

=54.02,son="55.

_ 62(2.58)(.75)u°

e
~—~ 7 - =03.61,s0n=94.
g 2 H

1.645)(100)

8439+ ( =8439+ 329 = (8406.1, 8471.9).

1-a =.92P a =.08P 34,=.04 502, =2, =175



Chapter 7. Statigtica Intervals Based on a Single Sample

S
If L= 2ny —— and we increase the sampl e size by afactor of 4, the new length is
) Jﬁ
S € S
L¢= 22"/ — eZ y Uaelo . Thus halving the length requires n to be
Adn @ «/—lpZﬂ

. L .
increased fourfold. If N(=25n, then L¢= E so thelength is decreased by afactor of 5.

a.  With probability 1- a , Z,, £ X mg\/—_ﬁz"l These inequalities can be
manipulated exactly aswas donein thetext toisolate IT; theresultis

X - z,, I£m£X+%1/_soa100(l a)%|nterva||s
R T

S
b. Theusual 95% interval has length 3.92—, while thisinterval will have length

/n
(z +2Z )T With Z, = Z4),5 =2.24 and Z, = Z 5,5 =1.78, thelength is
n
(2.24+ 1.78)% = 4.0257 , which islonger.
n n
a ée)'(- 1.6458—,¥g. From5a X =4.85,5 =.75,n=20;
«/ﬁ z
4.85- 1.645-— = 45741, sotheinterval is (4.5741,¥ ).
\/_
& _ s 0O
b. EX- 72 —,¥=
“ s
ae — 0
c X+ —: From4a, X =58.3,s =3.0,n=25
N
58.3+ 233 = (- ¥ 59.70)
J25
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Chapter 7. Statigtica Intervals Based on a Single Sample

10.
o]
a Whenn=15 2l @ X, hasachi-squared distribution with 30 d.f. From the 30 d.f. row

of Table A.6, the critical valuesthat capture lower and upper tail areas of .025 (and thus a
central areaof .95) are 16.791 and 46.979. An argument parallel to that givenin
22y x 2§ x 0 1
Example 7.5 gives € ax , a X ~asa9%%C.l.for m=—. Since
46.979 16.791 I

a X, = 63.2 theinterval is (2.69, 7.53).

b. A 99% confidencelevel requires using critical valuesthat capture area.005 in each tail of
the chi-sguared curve with 30 d.f.; these are 13.787 and 53.672, which replace 16.791
and 46.979 ina.

1 L o1
C. V(X ) = |—2 when X has an exponential distribution, so the standard deviationis —,

the same asthe mean. Thustheinterval of aisaso a95% C.I. for the standard deviation
of thelifetime distribution.

11. Y isabinomial r.v. with n=1000 and p = .95, so E(Y) = np = 950, the expected number of
intervalsthat capture IM, and S , =+/NPQ =6.892. Using the normal approximation to

the binomial distribution, P(940 £ Y £ 960) = P(939.5 £ Ynoma £ 960.5) = P(-1L52 £ Z £ 1.52)
= 9357 - 0643 = 8714,

Section 7.2

12, X+258-3 = 81+ 258% = g1+ 08=(73,89)
n 110

13.

a X2z, — =10282 1.96% =1.028+.038 = (.990,1.066)
n

2(1.96)(.16)

b. w=.05= p Jﬁz%zﬂ.%p n=(12.544)" »158



14.

15.

16.

17.

18.

19.

Chapter 7. Statigtica Intervals Based on a Single Sample

3.73
a 89.10+1.96——— =89.10+ .56 =(88.54,.89.66). Yes, thisisavery narrow
/169 ( )

interval. It appears quite precise.

, 2
= ME‘ =24586b n=246.

b.
g 5
a z, =.84,and F (84) =.7995 » .80, so the confidence level is 80%.
b. z, =2.05, and F (2.05) =.9798 » .98, so the confidence level is 98%.
c. z, =.67,and F (.67) =.7486 » .75, so the confidence level is 75%.

n=46, X = 382.1, s=31.5; The 95% upper confidence bound =

=382.1+1.645— 315 _ =382.1+7.64=389.74

7(+zdI T

X - =135.39- 2. 334—59 =135.39- .865=134.53 with aconfidence

Ol«/— «/ﬁ

level of 99%, the true average ultimate tensile strength is between (134.53, ¥).

1.30
90% lower bound: X - Z =4.25- 1.28——=4.06
10 —\/— _\/%
. 201 _
p= ﬁ =.5646 ; We calculate a 95% confidence interval for the proportion of all dies

that pass the probe:
2 2
(1.96) +1.96 (5646)(4354) , (1.96)
2(356) 356 4(356)° _ 5700+ .0518
(1.96)° 1.01079
+
356

5646 +

=(513,.615)
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Chapter 7. Statigtica Intervals Based on a Single Sample

20. Because the sample sizeis so large, the ssimpler formula (7.11) for the confidence interval for
p issufficient.
15+ 2.58, /—(15 \85) _ 15+ .013=(.137,.163)
4722
21. p= % =.2468 ; the 95% lower confidence bound is:
2 2
468 + (1.645)° Leds J (2468)(7532) , (1.645)2
2(539) 539 4(539)* _ .2493- .0307 _ 18
14 (1645) 1.005 '
539
22. P =.072; the 99% upper confidence bound is:
2 2
o072+ (2337 , )33 (072)(928) , (2:33) :
2(487) 487 4(487)° _ .0776+.0279 _ 1
141233 10111
487
23.
.24 _ _ :
a p= By =.6486; The 99% confidence interval for pis
2 2
486+ (2.25;)) 4258 J (.64863?&3514) . (2.58)2
2 4(37)° _.7386+.2216 _ (438.814)
(2.58) 1.1799
142
37

2(2.58)7(25)- (2.58)%(.01) £+/4(2.58)" (25)(.25- .01) +.01(2.58)*
01

_ 3.261636 + 3.3282 5
.01

659

24. n=56 X =8.17,s=1.42; Fora95%Cl.l., z, =1.96. Theinterval is

817+ 1.966‘1'—429 = (7.798,8.542). We make no assumptions about the distribution if

€ /56 5

percentage elongation.
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Chapter 7. Statigtica Intervals Based on a Single Sample

25.

2(1.96)%(:25)- (1.96)7(01)++/4(1.96)"(.25)(25- .01)+.01(1.96)" 5 381
.01

20,96 (3¢)- (L96)° (012 1/4(1.9)'(5 ¢3¢ - 0+ 0x0g)"
01

a nh=

b. n=

A

q

S | X|

ﬂ%l
0
o)
wn

26. with g =1 ,q =X and S = . Thelarge sample C.I. isthen

X

X o -
* Za,21,—. Wecaculate @ X; = 203, so X =4.06, anda95% interval for | is
n

2.
4.06+1.96, /% = 4.06+.56 =(3.50,4.62)

2
X+—

2 X+2
> , whichisroughly —— witha
n+z n+4

confidence level of 95% and approximating 1.96 » 2. The variance of this quantity is

27. Note that the midpoint of the new interval is

—np(l- pz) , or roughly M . Now replacingp with LZ , we have
(n + 22) +4 n+4

axX+ 20, X+20

C . :
&+ 20 n+4 n+4 _ * *
g—+izzy € z g;ForcIarlty,IetX =X+2andnN =n+4,then
en+4dg ”~ n+4
X s p g _ _
P =-— andtheformulareducesto P =* Z, —— , thedesired conclusion. For

n n

further discussion, seethe Agresti article.

N

Section 7.3

28.

a 1341
d. 1684

e 2704



29.

30.

31

32.

Chapter 7. Statigtica Intervals Based on a Single Sample

a o = 2.228
b. om0 = 2.086

C. logsp0 =2.845

8 tosio =2.228
b. topss = 2131

C. topsis = 2.947

a  tyy =1.812

b. toss =1.753

o

tonss = 2.602

tooss0 = 2.678

toups = 2485
- topes = - 2571
tooss = 4.604
to1pa = 2.492

toossr » 2.712

to., = 3.747
» tps 4 = 2.064

to s » 2,429

df.=n-1=7, sothecritical valuefora95% C.l.ist o5, = 2.365. Theinterval is

30.2 + (2.365)

3.10

—==30.2+ 2.6 =127.6,32.8).
£ 75 ( )
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34.

Chapter 7. Statigtica Intervals Based on a Single Sample

The boxplot indicates avery slight positive skew, with no outliers. The data appearsto
center near 438.

T T T T T T
420 430 440 450 460 470

poymer

Based on anormal probability plot, it is reasonable to assume the sample observations
came from anormal distribution.

With d.f. = n—1=16, thecritical valuefor a95% C.l.ist s, = 2.120, and the

interval is 438.29 + (2.120 ?33‘ 0= 43829+ 7.785 = (430.51,446.08).

7]
Since 440 iswithin the interval, 440 is aplausible value for the true mean. 450, however,
isnot, sinceit lies outside the interval.

n=14, X =8.48,s=79; t s ,, =1.771

2e790_

a A 95% lower confidence bound: 8.48- 1.771¢——+=8.48- .37 =8.11. With

evld g
95% confidence, the value of the true mean proportional limit stress of all such jointslies
intheinterval (8.11,¥ ) If thisinterval is calculated for sample after sample, in the
long run 95% of these intervals will include the true mean proportional limit stress of all

such joints. We must assume that the sample observations were taken from a normally
distributed popul ation.

1
A 95% lower prediction bound: 8.48- 1.771(.79); /1+ 1; =848-145=7.03. i

thisbound is calculated for sample after sample, in the long run 95% of these bounds will
provide alower bound for the corresponding future values of the proportional limit stress
of asinglejoint of thistype.
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36.

37.

Chapter 7. Statigtica Intervals Based on a Single Sample

n=5, X =2887.6,s=840; t )., = 2.776

a A 95%C..forthemean: 2887.6 + + 2 776 gJ_ 2783 3,2991. 9)

b.

1
A 95% Prediction Interval: 2887.6+ 2.776(84), /1+ =P (2632.1,3143.1). The

P.I. isconsiderably larger than the C.I., about 2.5 times larger.

n=26, X =370.69,s=2436; t ,; ,, = 1.708

a

A 95% upper confidence bound:

370.69+ (1.708)%5@9_ 370.69+8.16 = 378.85

26 5

A 95% upper prediction bound:

370.69 +1.708(24.36), /1+ % = 370.69+ 42.45 = 413.14

Following asimilar argument as that on p. 300 of the text, we need to find the variance of
- X V(X - X )=V(X)+V(X,,) = v(x)+v( (X, + X))
=V X)+V( X27)+V(%X28)_V(x)"'%v(xﬂ)"'ZV(xza)

2 ' __ \Va
S ls2y1s2 =S g—+19 Weeventually arriveat T —iﬂ
n 4 4 e2 nNg i

><I

%‘ +
Sl She

distribution with n— 1 d.f., so the new prediction interval is X £t,,, ., X5/3++ . For

this situation, we have

1 1
370.69+1.708(24.36), /5 +os =370.69%3053= (39.47,400.53)

A 95%C..: 9255+ 2.093(.0181) = .9255+.0379 b (.8876,.9634)

A 95%P.. : 9255 + 2,093(.0809),/1+ 4 =.9255+.1735p (.7520,1.0990)

A toleranceinterval isrequested, with k =99, confidence level 95%, and n=20. The
tolerance critical value, from Table A.6, is3.615. Theinterval is

9255 + 3.615(.0809) b (.6330,1.2180).
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39.
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N =25 X =.0635, s=.0065
a  95%Pl.: 0635+ 2.064(.0065),/1+L =.0635+.0137 b (.0498,.0772).

b. 99% Tolerance Interval, with k = 95, critical value 2.972 (table A.6):
0635+ 2.972(.0065) b (.0442,.0828).

Normal Probability Plot

.999
.99 4

.95 4 .
2 .80 -
‘3 50 -
o
S 20
o
.05 4
.01 4
.001 4
T T T
30 50 70
volume
Average: 52.2308 Anderson-Darling Normality Test
StDev: 14.8557 A-Squared: 0.360
N: 13 P-Value: 0.392

Based on the above plot, generated by Minitab, it is plausible that the popul ation
distribution is normal.

b. Werequireatoleranceinterval. (from table A6, with 95% confidence, k = 95, and n=13,
thetcv = 3.081.

X *(tcv)s =52.231+ 3.081(14.856) =52.231+ 45.771b (6.460,98.002)

c. A predictioninterval, with t .., = 2.179:
52.231+ 2.179(14.856),/1+ & = 52.231+33.593b (18.638,85.824)
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Chapter 7. Statigtica Intervals Based on a Single Sample
40.
a.  Weneed to assume the samples came from anormally distributed popul ation.

b. A Normal Probability plot, generated by Minitab:
Normal Probability Plot

.999 4
.99 4 .
.95
2 .80
S 50
Qo
© 20
o
.05 4
.01 4
.001 4
T T T
125 135 145
strength
Average: 134.902 Anderson-Darling Normality Test
StDev: 4.54186 A-Squared: 1.065
N: 153 P-Value: 0.008

The very small p-value indicates that the population distribution from which this data was
taken is most likely not normal.

c. 95% lower prediction bound:

52.231+ 2.179(14.856),/1+ 4 = 52.231+33.593b (18.638,85.824)

41. The 20 d.f. row of Table A.5 showsthat 1.725 captures upper tail area .05 and 1.325 captures
uppertail area.10 The confidence level for each interval is 100(central area)%. For the first
interval, central area= 1 — sum of tail areas=1— (.25 + .05) = .70, and for the second and
third intervalsthe central areasare 1 — (.20+.10) =.70and 1— (.15 +.15) = 70. Thuseach
interval has confidence level 70%. Thewidth of thefirst interval is

s(.687 +1.725) _ .2412s _ -
= , Whereas the widths of the second and third intervals are 2.185

Jn Jn
and 2.128 respectively. Thethird interval, with symmetrically placed critical values, isthe
shortest, so it should be used. Thiswill alwaysbetruefor atinterval.
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Section 7.2
42,
a C_i15 = 22.307 (.1 column, 15 d. c_§05’25 =46.925
d.f. row)

43.

44,

45,

46.

e 0_59'25 =11.523 (from .99

2 _
b. €1, =34381 column, 25 d.f. row)

C. Copps =44.313 f.  Cogsss =10.519

a  C sy =18.307 b, C g0 =3.940

¢ Since10.987 =C2,,, and 36.78 = C 2, 5, P(C 2e 5, £ C2 £ C 20y ) =.95.
d. Since 14.61= 2, and 37.65= C %, Pc 2, £ C 2 £C 2 ) =.90.
n-1=8, 0_325’8 =17.543, 0_375,8 =2.180, sothe 95% interval for S * is

28(7.90) 8(7.90)5_

$17543' 2180 »

(V360,4/28.98)= (1.905.38).

(3.60,28_98). The95%interval for S is

n =22 impliesthat d.f. = n— 1 =21, so the .995 and .005 columns of Table A.7 givethe
necessary chi-squared critical values as 8.033 and 41.399. Sx, =1701.3 and

Sx? =132,097.35, so s = 25.368. Theinterval for S ° is

?1(25'368),21(25'368)9: (12.868,66.317) and that for s is (3.6,8.1) Validity of
e 41.399 8.033 g

thisinterval requires that fracture toughness be (at least approximately) normally distributed.

a.  Using anormal probability plot, we ascertain that it is plausible that this sample was
taken from anormal population distribution.

b. Withs=1579,n=15and c 3 ,, = 23.685 the 95% upper confidence bound for S

14(1.579)?
23.685

=1214
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Supplementary Exercises

47,

a n=48 X =8.079,s*=23.7017, and s = 4.868.
A 95% C.I. for M =thetrue average strengthis

s 4.868
X +1.96—— =8.079+1.96—— = 8.079+1.377 = (6.7029.456
Jn J48 ( )

b. P 13 .2708. A 95%C.l.is
48

2 2
708+ 19”11 06 \/(.2708)(.7292)+ 1.962
2(48) 48 4agf _ 310821310 _
, 1967 1.0800
48

.166,.410)

1

48. A 98%tCl. requirest, , , =t s =2.896. Theinterval is

188.0+ 2.896% =188.0+7.0=(181.0,195.0).

49,
a. Thereappearsto be aslight positive skew in the middle half of the sample, but the lower
whisker is much longer than the upper whisker. The extent of variability israther
substantial, although there are no outliers.

T T T T
20 30 40 50

%porevolume

b. The pattern of pointsin anormal probability plot isreasonably linear, so, yes, normality
isplausible.
c. n=18 X=38.66, s=8473,and t,;,, = 2.586. The98% confidenceinterval is
8.473

38.66 + 2.586—— =38.66 + 5.13 =(33.53,43.79).
s (32554379
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51.

52.

Chapter 7. Statigtica Intervals Based on a Single Sample

X = the middle of theinterval = 229.764 ; 233.502 = 231.633. Tofindsweuse

, s 0
width = 2(t_025’4 Eeﬁ; and solvefors. Here,n=5, t,;, = 2.776, and width = upper

imit - lower limit = 3738, 3.738 = 2(2776)—~ b s= 5(3.738) _ 1.5055. Sofor
5 2(2.776)
a99%Cl., ts, =4.604, and theinterval is
231.633+ 4.604 1'3%55 = 213.633+3.100 = (228.533,234.733).
a p _136 _ 680P a9%C..is
200
2 2
oL 410 (SOLE0) 155
. - BB LOA7 (.624,732)
1.645 1.01353
1+
200
L ne 2(1.64572(.25)- (L645%(.057 ++/4(1.645*(.25(.25- 0025) +.05*(1.645)"
' .0025
_ 1.3462+1.3530

=1079.7 P usen=1080

.0025

c. No,itgivesa95% upper bound.

a Assuming normality, t os .o =1.753, dos95%Cl.I. for IT is

036
21441753 = 214+ 016 = (198,230
= ( )

2
b. A 90% upper bound for S , with ¢ 2/, =1.341, is % =+.0145 =.120

c. A 95% predictioninterval, with t ., . = 2.131,is
214 + 2.131(.036 )\/1 + L = .214 +.0791 = (.1349,.2931).
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Chapter 7. Statigtica Intervals Based on a Single Sample

With qA:%()T +X,+X,)- X, s2=4%Var (X, + X, + X3 )+ Var (X,) =
1o 2 1 S S 3 9+ S 42 .

9§ n, nsz n,
squareroot. Thelarge-sampleinterval for g isthen

1% S s?
1 (= — — 1 2 3
E(X1+X2+X3) 4t a/Z\/ §_+ n_

“q. is obtained by replacing each 5™ > by s? and taking the

2
+ 34 For thegiven data, q =-.90,
I”14

Q I-1-O:

=.1718 , sotheinterval is- .50+ 1. 96( 1718) - .84.- .16) .
3) S 2P a9%0%Cl.is
55

2 2
oy 12645 1645 \/(.2)(.8)+1.645

55 55 4(55)° _.2246+.0887
1.6452 1.0492
55

= (.1295,.2986).

1+

The specified condition is that the interval belength .2, so N =

¢2(L.96)(8) 0"
& 2 H

n = 246 should be used.

a. A normal probability plot lends support to the assumption that pulmonary complianceis
normally distributed. Note also that the lower and upper fourths are 192.3 and 228,1, so
the fourth spread is 35.8, and the sample contains no outliers.

b. tgs5 =2.131, s0theCll.is
24.156
J16

c. K =95,n=16, andthetolerance critical valueis 2.903, so the 95% tolerance interval is

209.75 + 2.903(24.156) = 209.75+ 70.125 = (139.625,279.875).

209.75+2.131 = 209.75+12.87 =(196.88,222.62).

@2t 2, 9
2 a2 =
Ciapr Copr

wheret, =y, +...+y, +(n- r)y,. InExample6.7,n=20,r =10, and, = 1115. Wit

d.f. = 20, the necessary critical values are 9.591 and 34.170, giving theinterval (65.3, 232.5).
Thisisobviously an extremely wide interval. The censored experiment provides less

information about -+ than would an uncensored experiment with n = 20.

1 C
Proceeding asin Example 7.5 with T, replacing SX theC.l.for — is'
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Chapter 7. Statigtica Intervals Based on a Single Sample

P(min( X;) £ M£ max( X,)) =1- P(m<min( X,)or max( X,) < m)
=1- P(M<min( X;)) - P(max( X;) <m)

=1- P(M< X,,... m< X )- P(X; <m,..., X, <m)

=1- (.5)n - (.5)n =1- 2(.5)”’1,fromwhichtheconfidenceinterval follows.

Since min( %) =1.44 and max( x; ) = 3.54, theC.l.is(1.44, 3.54).

P(X(Z) £mE X(n_l)) =1- P(m< X(z)) - P(X(n_l) <m)
=1— P( at most one X, isbelow IT)— P(at most one X, exceeds IT)

1- (5)" - ?Ig(s)l(.s)”'l- (5)"- g%.s)n-l(.s).

=1- 2(n+12)(5)" =1- (n+1)(5)""
Thus the confidence coefficient is 1- (n + 1)(.5)”’ ' orinanother way, a
100(1 - (n+1)(5)"* )% confidenceinterval.

Qanpn _ aleary . a a _ -
@/2)1’” nu™idu=u ](alz)lln =1- E- E—l- a . From the probability
AL _a/Vh
statement, L £1£ M with probability 1- @ , so taking the
max Xi) g max Xi)

ax(X,) mex(X,)9

L% &Y 5

reciprocal of each endpoint and interchanging givesthe C.I. é

forg.

max( X.
a’ £#£1withprobabi|ityl-a,sol£ 9 ¢ L Lin
a max(X,) a*
max (X, )6

probability 1- & ,whichyieldstheinterval gemax(xi ),—yv.
e a”

Itiseasily verified that theinterval of bis shorter — draw agraph of fU (u) and verify

that the shortest interval which capturesarea 1- @ under the curve isthe rightmost such
interval, which leadstothe C.I. of b. Witha =.05, n=5, max(x)=4.2; thisyields (4.2,

7.65).
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. . S
Thelength of theinterval is (Zg +Z. )—

NP

minimized, i.e. when F '1(1- g)+ F '1(1- a +g) isminimized. Taking di and
g

where F ( ) isthe standard normal p.d.f.,

whichisminimized when Z, + 7, _, is

1
F(1-g) F(-a+g)

equating to O yields

whence g = a
>

X = 76.2, thelower and upper fourths are 73.5 and 79.7, respectively, and f_ = 6.2. The

robust interval is 76.2+ (LIS o= 2= 76 2.+ 2.6 = (73.6,78.8).

225

X =77.33,5=5037,and t s ,, = 2.080, sothetinterval is

77.33% (2. oso)aéoi9 =77.33+2.23=(75.1,79.6). Thetinterval iscentered at

eV22 g

X , whichispulled out to theright of X by the single mild outlier 93.7; the interval widths
are comparable.

a  Since 2| SX, hasa chi-squared distribution with 2n d.f. and the area under this chi-

squared curve to the right of 095 on 15.95, P( 9520 <2 SXi):.95. Thisimplies

2

.95,2

that isalower confidence bound for | with confidence coefficient 95%. Table

[
A.7 givesthe chi-squared critical value for 20 d.f. as 10.851, so the bound is
10.851

——————=.0098 . We can be 95% confident that | exceeds.0098.
2(550.87)

b. Arguingasina, P(Zl SX, < 0_35’2n)=.95. Thefollowing inequalities are equivalent
tothe onein parentheses:

é-tc2.,. U

b e <epa o520 o

8 25X, §

Replacing the SX; by SX in the expression on the right hand side of the last inequality

2 2
| C.os,zn b -lt< - tC.os,zn

<
25X, 25X

gives a95% lower confidence bound for € '* . Substituting t = 100, C_CZ)SV20 =31.410

and Sx, = 550.87 gives.058 asthe lower bound for the probability that time until
breakdown exceeds 100 minutes.
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CHAPTER 8

Section 8.1

a. Yes. Itisan assertion about the value of a parameter.

b. No. The sample median X isnot aparameter.
c. No. The sample standard deviation sis not a parameter.

d. Yes. Theassertionisthat the standard deviation of population #2 exceeds that of
population #1

e. No. X and Y arestatisticsrather than parameters, so cannot appear in ahypothesis.

f. Yes. Hisan assertion about the value of a parameter.

: a. These hypotheses comply with our rules.
b. H,isnotanequdlity claim (eg. S =20), so these hypotheses are not in compliance.
c. H, should contain the equality claim, whereas H, does here, so these are not |egitimate.
d. Theasserted valueof M - M, inH, should also appear in H,. It does not here, so our
conditions are not met.
e. Each S’ isastatistic, so does not belong in a hypothesis.
f.  Wearenot allowing both H, and H, to be equality claims (though thisis allowed in more
comprehensive treatments of hypothesistesting).
g. These hypotheses comply with our rules.
h. These hypotheses arein compliance.
3. In thisformulation, H, states the welds do not conform to specification. This assertion will

not be rejected unless there is strong evidence to the contrary. Thus the burden of proof ison
those who wish to assert that the specification is satisfied. Using Ha: ™ < 100 resultsin the

welds being believed in conformance unless provided otherwise, so the burden of proof ison
the non-conformance claim.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

When the alternativeisHy ™ < 5, the formulation is such that the water is believed unsafe

until proved otherwise. A typel error involved deciding that the water is safe (rejecting Ho)
whenitisn't (Ho is true). Thisisavery serious error, so atest which ensuresthat this error is
highly unlikely isdesirable. A typell error involvesjudging the water unsafe wheniitis
actually safe. Though aseriouserror, thisisless sothanthetypel error. It isgeneraly
desirable to formulate so that the type 1 error is more serious, so that the probability of this
error can be explicitly controlled. UsingHa: M > 5, thetypel error (now stating that the

water is safe when it isn't) isthe more serious of the two errors.

Let S denotethe population standard deviation. The appropriate hypotheses are
H,:s =.05vs H, :s <.05. Withthisformulation, the burden of proof ison the data

to show that the requirement has been met (the sheaths will not be used unless H,, can be
rejected infavor of H,. Typel error: Conclude that the standard deviation is < .05 mm when
itisreally equal to .05 mm. Typell error: Conclude that the standard deviationis.05 mm
whenitisredly <.05.

H,:m=40vs H_, : m* 40, where IT isthe true average burn-out amperage for this

type of fuse. The alternative reflectsthe fact that adeparture from 1 = 40 in either

direction isof concern. Noticethat inthisformulation, it isinitially believed that the value of
IT isthe design value of 40.

A typel error hereinvolves saying that the plant is not in compliance when infact it is. A
type Il error occurs when we conclude that the plant isin compliance when in fact itisn't.
Reasonabl e people may disagree as to which of the two errorsis more serious. If in your

judgement it isthe type |1 error, then thereformulation H, : m=150 vs H, : m<150
makes the type | error more serious.

Let M = the average amount of warpage for the regular laminate, and M, = the anal ogous

value for the special laminate. Thenthe hypothesesare H, :m =m, vs H, :m >m,.

Typel error: Conclude that the special |aminate produces less warpage than the regular,
when it really doesnot. Typell error: Conclude that there is no differencein the two
laminates when in reality, the special one produces less warpage.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

R; ismost appropriate, because x either too large or too small contradicts p = .5 and
supportsp 1 5,

A typel error consists of judging one of the tow candidates favored over the other when
in fact thereisa50-50 split in the population. A type Il error involves judging the split to
be 50-50 when it is not.

X hasabinomial distributionwithn=25and p=0.5. & =P(typel error) =
P(X £ 7orX 3 18 when X ~Bin(25, .5)) = B(7; 25,.5) + 1 - B(17, 25,.5) = .044

b(.4)=P(8£ X £17whenp=4)=B(17; 25,5) - B(7, 25,4) = 0.845, and
b(.6)=0.845 aiso. b(.3) = B(17;25,.3) - B(7;25,.3) =.488=b(.7)

X =6isinthergectionregion Ry , so Hy isrejected in favor of H,.

H, :m=1300 vs H, :m>1300

X isnormally distributed with mean E(X) = m and standard deviation
S 60

2
P(X 3 1331.26 when Hoistrue) =
, 1331.26- 1300

2=p(z3 2.33)=.01
13416 g

=13.416. WhenH, istrue, E()_() =1300. Thus

5
8l

bel

a

8

P

DO
N

When m =1350, X hasanormal distribution with mean 1350 and standard deviation
13.416, s0 b (1350) = P(X <1331.26 when nr = 1350) =
& . 1331.26- 1350 9

PCZE 2=P(z£ - 1.40) = .0808
& 13416 g

¢- 1300 =1.645 (since

Replace 1331.26 by ¢, where c satisfies
P(z 3 1.645) =.05). Thusc=1322.07. Increasing@ givesadecreasein b ; now
b(1350) = P(z £ - 2.08) =.0188.

5 1331.26- 1300 ieiff z3 2.33.
13.416

X3 1331.26 iff z
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H,:m=10vsH_ :m? 10

a = P( rgjecting H, when Hyistrue) = P(X 3 10.1032 or £ 9.8968whenr =10).
Since X isnormally distributed with standard deviation

S = 32 =.04,a = P(2°® 2.580r £ - 2.58) = .005+.005= .01

An

when =101, E(X) =10.1, so b(10.1) = P(9.8968 < X <10.1032 when
nm=10.1 = P(-5.08 < 2<.08) =.5319. Smilaly,

b(9.8) = P(2.42 < z<7.58) =.0078

c=x2.58
Now S - —2 =.0632. Thus 10.1032 is replaced by ¢, where c- 10 =
Jn  3.162 0632

and so ¢ =10.124. Similarly, 9.8968 is replaced by 9.876.

X =10.020. Since X isneither 3 10.124 nor £ 9.876, itisnot in the rejection
region. H, isnot rejected; it isstill plausible that I =10.

X2 10.1032 or £ 9.8968 iff z3 2.58 or £ - 2.58.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Let IM =true average braking distance for the new design at 40 mph. The hypotheses are
H, :m=120 vs H, :m<120.

R» should be used, since support for His provided only by an X value substantially
smaller than 120. ( E(Y) =120 when H, istrueand , 120 when H,istrue).

s 10

S; =——==—=16667,s0a =P (X3 115.20 when m =120) =
6 ( )

p‘é%g MQ: (z£ - 2,88)2 .002. Toobtaina =.001, replace
e 1.6667 g

11520 by ¢ =120- 3.08(1.6667) =114.87, so that P(X £ 114.87 when
m=120) = P(z £ - 3.08) =.001.

b(115) = P(X >115.2 when I = 115) = P(z >.12) = .4522

a =P(z £ -2.33) =.01, because when H, istrue Z has a standard normal

distribution ( X has been standardized using 120). Similarly P(z £ - 2.88) =.002,
so this second rejection region is equivalent to R,.

& g’m) 12335 %2

- - p% ng+
whenm=m)) = Pcz® S +
&

= P(Z 3 2.33) = .01, where Z isastandard normal r.v.

S

Jn

P(X3 m, +2.33

P(rejecting H, when i = 99) = P(X 3 102.33 when nr = 99)

= p&%e 102- 995 - P(z 3 3.33)=.0004. Similaly, a (98) = P(X 3 102.33
e (%]

when m=98) = P(z3 4.33) = 0. Ingeneral, we have P(typel error) < .01 when
this probability is calculated for avalue of " lessthan 100. The boundary value

nm =100 yieldsthelargest a .
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a Sy =.04,s0 P(X? 10.10040r £ 9.8940 when

m=10) = P(z * 2.51or £ - 2.65) =.006 +.004 = .01

b(10.1) = P(9.8940 < X <10.1004 when

nm=10.1) = P(- 5.15 < z <.01) =.5040, whereas

b (9.9) = P(-.15< z<5.01) =.5596. Since M =9.9 and i = 10.1 represent
equally serious departures from H,, one would probably want to use atest procedure for
which b (9.9) =b (10.1) . A similar result and comment apply to any other pair of
alternative values symmetrically placed about 10.

Section 8.2

15.

16.

a = P(z 3 1.88 whenzhasastandard normal distribution) =1- F (1.88) =.0301
a =P(z £-2.75 whenz~N(0,1) = F (- 2.75)=.003

a=F(-288)+(1- F(288))=.004

a = P(t 3 3.733 whent hasat distribution with 15 d.f.) =.001, because the 15 d.f.
row of Table A.5 showsthat t o115 =.3733

df.=n-1=23,s0a =P(t £ - 2.500) =.01

df.=30,and @ = P(t 3 1.697) + P(t £ - 1.697) =.05+.05=.10
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_ 20,960- 20,000

1500,
s

b(20,500): F ?33+

= 2.56 > 2.33 soreject H,.

20,000- 20,5000

Z=F (1.00)=.8413
1500/~/16 & (1.00)

_ €1500(2.33+ 1.645) 1

& 0 =142.2,sousen =143
& 20,000- 20,500

b(20,500)=.05:n

a =1- F(2.56)=.0052

72.3- 75 ) =
T =-15s0723is1.5SD's(of X ) beow 75.

Hoisrejectedif Z £ - 2.33;sincez=- 1.5 isnot £ - 2.33, don’t reject H,.
a = areaunder standard normal curve below —2.88 = F (- 2.88) =.0020

7 700_ (. 1)=.4602 so b(70) = 5398

(%]

F& 288+
e

, 2
= e9(2.88 hl 2'33)9 =87.95,s0usen =88

n=~~~ - 7
g8 75-70 H
a(76) = P(Z < - 2.33 when m=76) = P(X < 72.9 when r = 76)

—p @290 £ (L 344)= 0003
1]
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Reject H, if either 23 2,58 or Z £ - 258: —— =0.3, 50

Jn
94.32- 95 . . .
Z2=———=-2.27. Since—2.27 isnot < -2.58, don’t reject H,.
1 s 1 s
b(04)=F&58- —2 F& 258- —2=F(- .75)- F(- 5.91)=.2266
e 03g e 0.3g

z 52
n= 61.20(2.58+1.28)y" _ 21.46, sousen = 22.

8 095-94 f

With He: =750, and Hy 1M < 750 and asignificance level of .05, we rgject Ho if z< -
1.645; z=-2.14 <-1.645, so we reject the null hypothesis and do not continue with the
purchase. At asignificancelevel of .01, wergject H, if z<-2.33; z=-2.14>-2.33, sowe
don’t reject the null hypothesis and thus continue with the purchase.

WithHo: m=.5,andHa M1 .5 wereject Hoif t >t,,, yort<-t ,,

a 16<ts12=2.179,s0don’t reject Hy
b. -16>-tos12=-2.179, sodon't rgject Ho
C. —26>-tgps24=-2.797, s0don’t reject Hy
d. -3.9<thenegativeof al t valuesin the df = 24 row, so wereject H, in favor of H,.
a. It appearsthat the true average weight could be more than the production specification of
200 Ib per pipe.
b. Ho: m=200,andHs M > 200 wergject Hoif t>1,,4 =1.699.
206.73- 200 _ 6.73
t= = =5.80>1.699, soreject Ho. Thetest appearsto
6.35/4/30 1.16
substantiate the statement in part a.
X - 360
Ho: M =360 vs.Hy M > 360; t = ——— rgject Hy if t >t . =1.708;
s/</n ’
370.69- 360
t=—————=2.24>1.708. ThusH, should berejected. There appearsto bea
24.36/+/26

contradiction of the prior belief.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Ho: M =3000 vs. H; I 3000; t = X- 3000, reject Ho if [t| >t g5, = 2.776;
s/+/n '
t= M =-2.99<-2776,sowereject H, . Thisrequirement is not
84/./5
satisfied.

a Honm=55vs.Hs; ml 55; foralevel .01 test, (not specified in the problem

description), reject H,, if either 23 2.58 or Z £ - 258. Since

z _525-55_ 3.33£ - 2.58, reject Ho.
075

b. 1- b(5.6)=1- F&2.58+ Yo, F&E 258- s
é 075 & 075 g

=1- F(1.25)+F (- 3.91)=.105

. ¢3(2.58+2.33)i
g -1 H

= 216.97, sousen = 217.

Reject Hy 122 1.645; —= = 7155, so 7= 22/~ 20

Jn 7155

3 1.645, reject H, at level .05 and conclude that true average penetration exceeds 50 mils.

=3.77. Since3d.77is

Wewishtotest Hy: M =75 vs. Hy M <75; Usinga =.01,H, isrejected if
73.1- 75 _

9//42

t£ -ty ,, »-2.423 (fromthedf 40 row of thet-table). Since t = -2.09,

whichisnot £ - 2.423, H, isnot rejected. Thealloy is not suitable.

With IT = true average recumbency time, the hypothesesare Ho: ™ = 20 vsH, < 20.

- : X- 20 , .
The test statistic valueis Z = , and H, should berejected if Z£ - 2,, = - 1.28
s/</n
Since Z = w =-1.13, whichisnot £ - 1.28, H, isnot rejected. The sample
8.6/73

data does not strongly suggest that true average timeisless than 20.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

a Forn=8n-1=7andt,, =1.895,s0H,isreectedat level .05if t 3 1.895.
Since — = 15 442t = % =.498; thisdoes not exceed 1.895, so

Jno 8

Ho is not rejected.

J- m, - nj _[3:50- 4.00 _
s 1.25

40, andn=8, sofromtableA.17, b (4.0) » .72

n=115 X=113, s=6.43

1 Parameter of Interest: M = true average dietary intake of zinc among males aged 65
— 74 years.
Null Hypothesis: Ho: m =15

Alternative Hypothesis: Hy: Im <15

4 S = X-m _X-15
s/Jn s/n
5 Rejection Region: No value of a was given, so select areasonable level of
significance, such asa=.05. z£z orzE-1645
11.3-
6 z=—— 1 -.g17
6.43//115
7 —6.17 <-1.645, so rgject H,. The data does support the claim that average daily

intake of zinc for males aged 65 - 74 years falls below the recommended daily
allowance of 15 mg/day.

The hypotheses of interest are Hy: MW =7 vsH, M < 7, so alower-tailed test is appropriate;

ﬁ =-1.24. Because -1.24is
1.65/+/9

not£ - 1.397, H, (prior belief) is not rejected (contradicted) at level .01.

H, should berejected if t£-t,,=-1.397. t=
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Chapter 8: Tests of Hypotheses Based on a Single Sample

32. n=12, X =98.375, s=6.1095

a
1 Parameter of Interest: M = true average reading of this type of radon detector when
exposed to 100 pCi/L of radon.
Null Hypothesis: H,: m =100
Alternative Hypothesis: H,: Im1 100
4 = X-m _ X-100
s/An s/n
5 t£-2201ort3 2201
98.375- 100
6 t=———=-.9213
6.1095/4/12
7 Fail torglect Hy. The data does not indicate that these readings differ significantly
from 100.

b. s=75b=0.10. Fromtable A.17, df » 29, thus n»30.

33. b(rn)-D):F(g,z+D\/ﬁ/s)-F(- za,z-D\/ﬁ/s)
=1-|F( z,,- D/n/s )+F(z,,- DIn/s )| =b(m +D)

(sincel-F(c)=F(-c)).

34. For an upper-tailed test, = b(m) = F(Zﬂ1 +\/E(I’T1) - m)/s ) Sincein this case we are
considering M>m,, IM, - M is negative so «/ﬁ(m) - m)/s ® -¥ asn® ¥ . The

desired conclusion follows since F (- ¥) = 0. Theargumentsfor alower-tailed and tow-
tailed test are similar.

Section 8.3
35.
1 Parameter of interest: p = true proportion of carsin this particular county passing
emissionstesting on thefirst try.
2 Ho:p=.70
3 Ha pt .70
4 _ P- P — b - .70
Z= =
Jp.l- po)/n 70(30)/n
5 eitherz3 1.960rz £-1.96
124/200- .70
6 z= =-2.469
4/.701.30 )/ 200
7 Reject Hy. The dataindicates that the proportion of cars passing the first time on

emission testing or this county differs from the proportion of cars passing statewide.
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37.

b(15)=F &

200, b(.15)=F &

€1,
n:§
e

Chapter 8: Tests of Hypotheses Based on a Single Sample

1 p = true proportion of all nickel platesthat blister under the given
circumstances.
2 Ho:p=.10
3 Hq p>.10
4 _ P- P — b_ 10
zZ= =
Jp.(t- po)/n  /10(90)/n
5 Reject Ho if z3 1.645
14/100- .10
6 Z= —————=1.33
A /.10{.90 )/100
7 Fail to Reject Hy. The data does not give compelling evidence for

concluding that more than 10% of all plates blister under the
circumstances.

The possible error we could have madeisaType |l error: Failing to reject the null
hypothesiswhen it is actually true.

€10- .15+1.645,/.10(.90)/200 U
z 0=F (- .02)=.4920. whenn=

& ,J15(85)/100 g

€10- .15+1.645,/.10(.90)/ 200U
& u=F(- .60)=.2743

& |J15(.85)/200 §

2

.10(.90) +1.28,/.15(.85) U

645 0(90) 8 5(85)(1 =19.01° = 361.4, sousen =362
15- .10 G

p = true proportion of the population with type A blood
Ho: p=.40
Ha pt 40
L= p- P, __ p-40
Jpo(1- p,)/n  4.40(.60)/n
Reject Hy if z3 258 orz £-2.58
_82/150- .40 _ .147

Z= =
4/.40‘.605/150 .04

Reject Hy. The data does suggest that the percentage of the population with type A
blood differs from 40%. (at the .01 significancelevel). Sincethe z critical value for
asignificance level of .05 islessthan that of .01, the conclusion would not change.

= 3.667
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Chapter 8: Tests of Hypotheses Based on a Single Sample

38.
a Wewishtotest Hy: p=.02vsH, p<.02; only if Hy can be rejected will the inventory be
postponed. The lower-tailed test rejects H, if z £ -1.645. With P = £ =.015,z=
-1.01, which isnot £ -1.645. Thus, H, cannot be rejected, so the inventory should be
carried out.
€02- .01+1.645,/.02(.98)/1000U
b. b(01)=Feé G=F (5.49) »1
é ,/.01(.99)/1000 a
€02- .05+1.645,/.02(.98)/1000 U
c. b(05)=Feé 4= F (- 3.30)=.0005, soisp=
é \/-05(.95)/1000 g
.05 it ishighly unlikely that H, will be rejected and the inventory will almost surely be
carried out.
39.

L et p denote the true proportion of those called to appear for service who are black. We wish to
p-.25
test Ho: p=.25vsHy p<.25. Weuse Z= _P- , with therejection region z £ -
4/.25i.755/ n
177

Zo1 =-2.33. Wecalculate ﬁ = —=.1686,and Z= M —
1050

=-6.1. Because—
.0134
6.1<-2.33, H, isregjected. A conclusion that discrimination existsisvery compelling.

40.
a. P =trueproportion of current customerswho qualify. Ho: p=.05vsHg pt .05,
_ p-05 .
= ———rgectHyifz3 258 orz £-258. p =.08, so
J05(.95)/ n
.03 . o
=———=3.073 258, s0 H,isrejected. The company’spremiseisnot correct
.00975
€.05- .10+ 2.58,/.05(.95)/500 U
b. b(10)=Feé 4= F(- 1.85) =033
8 ,/.10(:90)/500 :

¢}
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41.

42.

43.

Chapter 8: Tests of Hypotheses Based on a Single Sample

a. Thealternative of interest hereisHy: p > .50 (which states that more than 50% of all
enthusiasts prefer gut), so the rejection region should consist of large values of X (an
upper-tailed test). Thus (15, 16, 17, 18, 19, 20) isthe appropriate region.

b. a =P(@U5£ X when p =.5) =1-B(14; 20, .05) = .021, so thisisalevel .05 test.

For R={14, 15, ..., 20}, a = .058, so this R does not specify alevel .05 test and the
region of aisthe best level .05 test. (a £ .05 along with smallest possible b).

c. b(:6)=B(14; 20, .6) = .874, and b(:8) = B(14; 20, .8) = .19%.

d. Thebest level .10test isspecified by R = (14, ..., 20} (witha =.052) Since 13isnotin
R, H, isnot rejected at thislevel.

The hypotheses are Hy: p=.10vs. Ha: p> .10, so R hastheform{c, ...,n}. Forn=10,c=3
(i.,e R={3,4,...,10}) yiddsa =1-B(2; 10, .1) =.07 whileno larger R hasa £ .10;
however b(.3) =B(2; 10, .3) =.383. Forn=20,c=5yieldsa =1- B(4; 20, .1) =.043, but
again b(.3) = B(4; 20, .3) =.238. Forn=25, c=5yieldsa =1—B(4; 25, .1) = .098 while
b(.7) = B(4; 25, .3) =.090 £ .10, so n = 25 should be used.

p-.035

4/.0351.9655/ n

Zo1=-2.33. With p = % =.03,z= _—005 =-.61. Because -.6lisn't£-233 H,

+/.0082

isnot rejected. Robots have not demonstrated their superiority.

Ho: p=.035vsH, p<.035. Weuse Z = , with therejection region z £ -

Section 8.4

44,

Using a = .05, H, should be rejected whenever p-value < .05.
a P-vaue=.001<.05, sorgect H,

b. .021<.05, soreject Ho.
c. .078isnot< .05, sodon't regject He.
d. .047<.05,sorgect Hy (aclosecal).

e. .148> .05 s0H, can't beregjected at level .05.
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46.

47.

48.

Chapter 8: Tests of Hypotheses Based on a Single Sample

p-value=.084>.05=a, so don't reject H,.
p-vaue=.003<.001=a, so reject H,.

498 >> .05, so H, can't beregjected at level .05
084 < .10, soreject H, at level .10

.039isnot < .01, sodon't reject H,.

p-value = .218 > .10, so H, cannot be rejected.

In each casethe p-value= 1- F (Z)

a

b.

C.

0778

d. .0066
1841

e. 4562
0250
.0358

d. .1586
.0802

e O
5824

Inthedf = 8row of table A.5, t = 2.0 is between 1.860 and 2.306, so the p-value is
between .025 and .05: .025 < p-value< .05.

2201 <|-24|<2718,50 .01 < p-value < .025.

1341<|-1.6|<1.753,50.05< P(t<-1.6) <.10. Thusatwo-tailed p-value: 2(.05 < P(t
<-1.6) <.10), or .10< p-vaue< .20

With an upper-tailed test and t = -.4, the p-value = P(t > -.4) > .50.
4.032 < t=5<5.893, 50.001 < p-value < .005

3551<|-4.8|, s0 P(t <-4.8) <.0005. A two-tailed p-value = 2[ P(t < -4.8)] < 2(.0005),
or p-vaue< .001.
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50.

51.

52.

53.

Chapter 8: Tests of Hypotheses Based on a Single Sample

An upper-tailed test
a Df=14,a=05 ty,, =1.761:32> 1761, soreject H,,.

b. ty,15 = 2.896; 1.8isnot > 2.896, so don't reject Ho..

c. Df=23 p-vaue> .50, sofail toreect Hy at any significance level.

The p-valueis greater than the level of significance a = .01, therefore fail to reject H, that
I = 5.63. The data does not indicate a difference in average serum receptor concentration

between pregnant women and all other women.

Here we might be concerned with departures above as well as below the specified weight of
5.0, so therelevant hypothesesareHy: M = 5.0 vsH, 1 5.0. Atlevel .01, rgject H,, if

S =035, 2= 32371 whichis
/n 035

£ - 2.58, so H, should be rejected. Because 3.71is*“off” the ztable, p-value < 2(.0002) =
.0004 (.0002 correspondsto z = -3.49).

gither z3 258 or Z £ - 258. Since

a. Fortesting Hy: p=.2VvsHg, p> .2, an upper-tailed test is appropriate. The computed Z is
z=.97,0p-vaue=1- F (.97) =.166. Becausethe p-valueisrather large, H, would

not be rejected at any reasonable a (it can't be rejected for any a < .166), SO ho
modification appears hecessary.

b. Withp=.5,1- b(5)=1- F[- 3+2330516))/.0645 =1- F(- 2.79)=.9974

p = proportion of all physicians that know the generic name for methadone.
Ho: p=.50VsHg p<.50; Wecan use alarge sampletest if both Np, 3 10 and

n(l- p,)?3 10;102(50) = 51, sowe can proceed. P =L so0

102
590 -.039 . , .
=-.79. Wewill rgject Hy if the p-value < .01. For thislower

a [ (50)(50) a 050
102

tailed test, the p-value = F (2) = F (-.79) =.2148, which isnot < .01, so we do not reject Hy at
significance level .01.
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56.

57.

58.

Chapter 8: Tests of Hypotheses Based on a Single Sample

IT = the true average percentage of organic matter in thistype of soil, and the hypotheses are

Ho: M =3 vsHy M1 3. Withn =30, and assuming normality, we use thet test:
_ X-3 _2481-3_ - 519
“s/dn 295 295

=.082. Atsignificancelevel .10, since .082 = .10, we would reject Hp and conclude that the
true average percentage of organic matter in thistype of soil is something other than 3. At
significance level .05, we would not have rejected Hy.

=-1.759. Thep-vaue=2[P(t>1.759)] = 2(.041)

The hypotheses to be tested are Hy: IT = 25 vsHy IT > 25, and H,, should be rejected if
t3 o, =1.782. Thecomputed summary statisticsare X = 27.923, s=15.619, so

S =155 andt = % =1.88. Fromtable A.8, P(t>1.88) " .041, whichis less

n

than .05, so H, isrejected at level .05.

a. Theappropriate hypothesesare Ho: Im =10 vsH, 