
[image:]
Introduction to JAVA™
Introduction to Java™ Programming and Data Structures

Comprehensive Version

Eleventh Edition

Y. Daniel Liang

Armstrong State University

330 Hudson Street, NY NY 10013

To Samantha, Michael, and Michelle

Senior Vice President Courseware Portfolio ­Management: Marcia J. Horton

Director, Portfolio Management: Engineering, ­Computer Science & Global Editions: Julian Partridge

Higher Ed Portfolio Management: Tracy Johnson (Dunkelberger)

Portfolio Management Assistant: Kristy Alaura

Managing Content Producer: Scott Disanno

Content Producer: Robert Engelhardt

Web Developer: Steve Wright

Rights and Permissions Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications Inc (LSC): Maura Zaldivar-Garcia

Inventory Manager: Ann Lam

Marketing Manager: Demetrius Hall

Product Marketing Manager: Bram Van Kempen

Marketing Assistant: Jon Bryant

Cover Designer: Marta Samsel

Cover Photography: Germano Poli/123RF.com

Full-Service Project Management: Shylaja Gattupalli, SPi Global

Java™ and Netbeans™ screenshots ©2017 by Oracle Corporation, all rights reserved. Reprinted with permission.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information ­contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential ­damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of ­information ­available from the services. The documents and related graphics contained herein could include technical ­inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Copyright © 2018, 2015, 2013, 2011 by Pearson Education, Inc., Hoboken, New Jersey 07030. All rights reserved. Printed in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or ­transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, ­Pearson Education, Inc., Hoboken, New Jersey 07030.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Names: Liang, Y. Daniel, author.

Title: Introduction to Java programming and data structures / Y. Daniel

 Liang, Armstrong State University.

Other titles: Introduction to Java programming

Description: Eleventh edition. Comprehensive version. | New York, NY :

 Pearson Education, 2017. | Revised edition of: Introduction to Java

 programming / Y. Daniel Liang, Armstrong Atlantic State University. Tenth

 edition. Comprehensive version. 2015. | Includes index.

Identifiers: LCCN 2017002082| ISBN 9780134670942 | ISBN 0134670949

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 L52 2017 | DDC 005.13/3--dc23 LC record available at https://lccn.loc.gov/2017002082

1–17

[image:]

ISBN-10: 0-13-467094-9

ISBN-13: 978-0-13-467094-2

Preface

 Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and suggestions have greatly improved the book. This edition has been substantially enhanced in presentation, organization, examples, exercises, and supplements.

The book is fundamentals first by introducing basic programming concepts and techniques before designing custom classes. The fundamental concepts and techniques of selection statements, loops, methods, and arrays are the foundation for programming. Building this strong foundation prepares students to learn object-oriented programming and advanced Java programming.

fundamentals-first

This book teaches programming in a problem-driven way that focuses on problem solving rather than syntax. We make introductory programming interesting by using thought-­provoking problems in a broad context. The central thread of early chapters is on problem solving. Appropriate syntax and library are introduced to enable readers to write programs for solving the problems. To support the teaching of programming in a problem-driven way, the book provides a wide variety of problems at various levels of difficulty to motivate students. To appeal to students in all majors, the problems cover many application areas, including math, science, business, financial, gaming, animation, and multimedia.

problem-driven

The book seamlessly integrates programming, data structures, and algorithms into one text. It employs a practical approach to teach data structures. We first introduce how to use various data structures to develop efficient algorithms, and then show how to implement these data structures. Through implementation, students gain a deep understanding on the efficiency of data structures and on how and when to use certain data structures. Finally, we design and implement custom data structures for trees and graphs.

data structures

The book is widely used in the introductory programming, data structures, and algorithms courses in the universities around the world. This comprehensive version covers fundamentals of programming, object-oriented programming, GUI programming, data structures, algorithms, concurrency, networking, database, and Web programming. It is designed to prepare students to become proficient Java programmers. A brief version (Introduction to Java Programming, Brief Version, Eleventh Edition) is available for a first course on programming, commonly known as CS1. The brief version contains the first 18 chapters of the comprehensive version. An AP version of the book is also available for high school students taking an AP Computer Science course.

comprehensive version

brief version

AP Computer Science

The best way to teach programming is by example, and the only way to learn ­programming is by doing. Basic concepts are explained by example and a large number of exercises with various levels of difficulty are provided for students to practice. For our programming courses, we assign programming exercises after each lecture.

examples and exercises

Our goal is to produce a text that teaches problem solving and programming in a broad context using a wide variety of interesting examples. If you have any comments on and ­suggestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang

y.daniel.liang@gmail.com

www.cs.armstrong.edu/liang

www.pearsonhighered.com/liang

ACM/IEEE Curricular 2013 and ABET Course Assessment

The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge organized into 18 Knowledge Areas. To help instructors design the courses based on this book, we provide sample syllabi to identify the Knowledge Areas and Knowledge Units. The ­sample syllabi are for a three semester course sequence and serve as an example for institutional ­customization. The sample syllabi are accessible from the Instructor Resource Website.

Many of our users are from the ABET-accredited programs. A key component of the ABET accreditation is to identify the weakness through continuous course assessment against the course outcomes. We provide sample course outcomes for the courses and sample exams for measuring course outcomes on the ­Instructor Resource Website.

What’s New in This Edition?

This edition is completely revised in every detail to enhance clarity, presentation, content, examples, and exercises. The major improvements are as follows:

	The book’s title is changed to Introduction to Java Programming and Data Structures with new enhancements on data structures. The book uses a practical approach to introduce design, implement, and use data structures and covers all topics in a typical data structures course. Additionally, it provides bonus chapters that cover advanced data structures such as 2-4 trees, B-trees, and red-black trees.

	Updated to the latest Java technology. Examples and exercises are improved and simplified by using the new features in Java 8.

	The default and static methods are introduced for interfaces in Chapter 13.

	The GUI chapters are updated to JavaFX 8. The examples are revised. The user interfaces in the examples and exercises are now resizable and displayed in the center of the window.

	Inner classes, anonymous inner classes, and lambda expressions are covered using practical examples in Chapter 15.

	More examples and exercises in the data structures chapters use lambda expressions to simplify coding. Method references are introduced along with the Comparator interface in Section 20.6.

	The forEach method is introduced in Chapter 20 as a simple alternative to the foreach loop for applying an action to each element in a collection.

	Use the default methods for interfaces in Java 8 to redesign and simplify MyList, ­MyArrayList, MyLinkedList, Tree, BST, AVLTree, MyMap, MyHashMap, MySet, MyHashSet, Graph, UnweightedGraph, and WeightedGraph in Chapters 24–29.

	Chapter 30 is brand new to introduce aggregate operations for collection streams.

	FXML and the Scene Builder visual tool are introduced in Chapter 31.

	The Companion Website has been redesigned with new interactive quiz, CheckPoint questions, animations, and live coding.

	More than 200 additional programming exercises with solutions are provided to the instructor on the Instructor Resource Website. These exercises are not printed in the text.

Please visit www.pearsonhighered.com/liang for a complete list of new features as well as correlations to the previous edition.

Pedagogical Features

The book uses the following elements to help students get the most from the material:

	The Objectives at the beginning of each chapter list what students should learn from the chapter. This will help them determine whether they have met the objectives after ­completing the chapter.

	The Introduction opens the discussion with a thought-provoking question to motivate the reader to delve into the chapter.

	Key Points highlight the important concepts covered in each section.

	Check Points provide review questions to help students track their progress as they read through the chapter and evaluate their learning.

	Problems and Case Studies, carefully chosen and presented in an easy-to-follow style, teach problem solving and programming concepts. The book uses many small, simple, and stimulating examples to demonstrate important ideas.

	The Chapter Summary reviews the important subjects that students should understand and remember. It helps them reinforce the key concepts they have learned in the chapter.

	Quizzes are accessible online, grouped by sections, for students to do self-test on ­programming concepts and techniques.

	Programming Exercises are grouped by sections to provide students with opportunities to apply the new skills they have learned on their own. The level of difficulty is rated as easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning programming is practice, practice, and practice. To that end, the book provides a great many exercises. Additionally, more than 200 programming exercises with solutions are provided to the instructors on the Instructor Resource Website. These exercises are not printed in the text.

	Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer valuable advice and insight on important aspects of program development.

Note

Provides additional information on the subject and reinforces important concepts.

 Tip

Teaches good programming style and practice.

 Caution

Helps students steer away from the pitfalls of programming errors.

Design Guide

Provides guidelines for designing programs.

Flexible Chapter Orderings

The book is designed to provide flexible chapter orderings to enable GUI, exception ­handling, recursion, generics, and the Java Collections Framework to be covered earlier or later. The ­diagram on the next page shows the chapter dependencies.

Organization of the Book

The chapters can be grouped into five parts that, taken together, form a comprehensive introduction to Java programming, data structures and algorithms, and database and Web programming. Because knowledge is cumulative, the early chapters provide the conceptual basis for understanding programming and guide students through simple examples and exercises; subsequent chapters progressively present Java programming in detail, culminating with the development of comprehensive Java applications. The appendixes contain a mixed bag of topics, including an introduction to number systems, bitwise operations, regular expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapter 1–8)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning Java. You will begin to learn about Java (Chapter 1) and fundamental programming ­techniques with primitive data types, variables, constants, assignments, expressions, and operators (­Chapter 2), selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4), loops (Chapter 5), methods (Chapter 6), and arrays (Chapters 7–8). After ­Chapter 7, you can jump to Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 9–13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming language that uses abstraction, encapsulation, inheritance, and polymorphism to provide great flexibility, modularity, and reusability in developing software. You will learn programming with objects and classes (Chapters 9–10), class inheritance (Chapter 11), polymorphism (­Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces (Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14–16 and Bonus Chapter 31)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for developing GUI programs, but also an excellent pedagogical tool for learning object-oriented programming. This part introduces Java GUI programming using JavaFX in Chapters 14–16. Major topics include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes (Chapter 14), event-driven programming (Chapter 15), animations (Chapter 15), and GUI ­controls (Chapter 16), and playing audio and video (Chapter 16). You will learn the ­architecture of JavaFX GUI programming and use the controls, shapes, panes, image, and video to develop useful applications. Chapter 31 covers advanced features in JavaFX.

Part IV: Data Structures and Algorithms (Chapter 18–30 and Bonus Chapters 42–43)

This part covers the main subjects in a typical data structures and algorithms course. Chapter 18 introduces recursion to write methods for solving inherently recursive problems. Chapter 19 presents how generics can improve software reliability. Chapters 20 and 21 introduce the Java Collection Framework, which defines a set of useful API for data structures. Chapter 22 discusses measuring algorithm efficiency in order to choose an appropriate algorithm for applications. Chapter 23 describes classic sorting algorithms. You will learn how to implement several classic data structures lists, queues, and priority queues in Chapter 24. Chapters 25 and 26 introduce binary search trees and AVL trees. Chapter 27 presents hashing and implementing maps and sets using hashing. Chapters 28 and 29 introduce graph applications. Chapter 30 introduces aggregate operations for collection streams. The 2-4 trees, B-trees, and red-black trees are covered in Bonus Chapters 42–43.

Part V: Advanced Java Programming (Chapters 32-41, 44)

This part of the book is devoted to advanced Java programming. Chapter 32 treats the use of multithreading to make programs more responsive and interactive and introduces parallel programming. Chapter 33 discusses how to write programs that talk with each other from different hosts over the Internet. Chapter 34 introduces the use of Java to develop database projects. Chapter 35 delves into advanced Java database programming. Chapter 36 covers the use of internationalization support to develop projects for international audiences. Chapters 37 and 38 introduce how to use Java servlets and JavaServer Pages to generate dynamic content from Web servers. Chapter 39 introduces modern Web application development using JavaServer Faces. Chapter 40 introduces remote method invocation and Chapter 41 discusses Web services. Chapter 44 introduces testing Java programs using JUnit.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords. ­Appendix B gives tables of ASCII characters and their associated codes in decimal and in hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers and their usage. Appendix E discusses special floating-point values. Appendix F introduces number systems and conversions among binary, decimal, and hex numbers. Finally, Appendix G introduces bitwise operations. Appendix H introduces regular expressions. Appendix I covers enumerated types.

Java Development Tools

You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs and to compile and run the programs from the command window. You can also use a Java development tool, such as NetBeans or Eclipse. These tools support an integrated development environment (IDE) for developing Java programs quickly. Editing, compiling, building, executing, and debugging programs are integrated in one graphical user interface. Using these tools effectively can greatly increase your programming productivity. NetBeans and Eclipse are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found in the supplements on the Companion Website www.pearsonhighered.com/liang.

IDE tutorials

Student Resource Website

The Student Resource Website (www.pearsonhighered.com/liang) contains the following resources:

	Answers to CheckPoint questions

	Solutions to majority of even-numbered programming exercises

	Source code for the examples in the book

	Interactive quiz (organized by sections for each chapter)

	Supplements

	Debugging tips

	Video notes

	Algorithm animations

	Errata

Supplements

The text covers the essential subjects. The supplements extend the text to introduce additional topics that might be of interest to readers. The supplements are available from the Companion Website.

Instructor Resource Website

The Instructor Resource Website, accessible from www.pearsonhighered.com/liang, contains the following resources:

	Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted source code and to run programs without leaving the slides.

	Solutions to majority of odd-numbered programming exercises.

	More than 200 additional programming exercises and 300 quizzes organized by ­chapters. These exercises and quizzes are available only to the instructors. Solutions to these ­exercises and quizzes are provided.

	Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a large database of more than two thousand questions.)

	Sample exams. Most exams have four parts:

	Multiple-choice questions or short-answer questions

	Correct programming errors

	Trace programs

	Write programs

	Sample exams with ABET course assessment.

	Projects. In general, each project gives a description and asks students to analyze, design, and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of programming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab improves the programming competence of beginning students who often struggle with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of small practice problems organized around the structure of this textbook. For students, the system automatically detects errors in the logic and syntax of their code submissions and offers targeted hints that enable students to figure out what went wrong—and why. For instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the makers of the CodeLab interactive programming exercise system. For a full demonstration, to see feedback from instructors and students, or to get started using MyProgrammingLab in your course, visit www.myprogramminglab.com.

Video Notes

We are excited about the new Video Notes feature that is found in this new edition. These videos provide additional help by presenting examples of key topics and showing how to solve problems completely from design through coding. Video Notes are available from www.pearsonhighered.com/liang.

Algorithm Animations

Animation

We have provided numerous animations for algorithms. These are valuable pedagogical tools to demonstrate how algorithms work. Algorithm animations can be accessed from the Companion Website.

Acknowledgments

I would like to thank Armstrong State University for enabling me to teach what I write and for supporting me in writing what I teach. Teaching is the source of inspiration for continuing to improve the book. I am grateful to the instructors and students who have offered comments, suggestions, corrections, and praise. My special thanks go to Stefan Andrei of Lamar University and William Bahn of University of Colorado Colorado Spring for their help to improve the data structures part of this book.

This book has been greatly enhanced thanks to outstanding reviews for this and previous editions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North ­Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Stefan Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre (Rochester Institute of Technology), Aaron Braskin (Mira Costa High School), David Champion (DeVry Institute), James Chegwidden (Tarrant County College), Anup Dargar (University of North Dakota), Daryl Detrick (Warren Hills Regional High School), Charles Dierbach (Towson University), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of Wisconsin at Parkside), Summer Ehresman (Center Grove High School), Deena Engel (New York University), Henry A. Etlinger (Rochester Institute of Technology), James Ten Eyck (Marist College), Myers Foreman (Lamar University), Olac Fuentes (University of Texas at El Paso), Edward F. Gehringer (North Carolina State University), Harold Grossman (Clemson University), Barbara Guillot (Louisiana State University), Stuart Hansen (University of Wisconsin, Parkside), Dan Harvey (Southern Oregon University), Ron Hofman (Red River College, Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic (Georgia Southern University), Deborah Kabura Kariuki (Stony Point High School), Edwin Kay (Lehigh University), Larry King (University of Texas at Dallas), Nana Kofi (Langara College, Canada), George Koutsogiannakis (Illinois Institute of Technology), Roger Kraft (Purdue University at Calumet), Norman Krumpe (Miami University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong State University), James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton College), Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield (Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California State University, Long Beach), Jun Ni (University of Iowa), Benjamin ­Nystuen (University of Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson (Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli (Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana University), Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State University), David Scuse (University of Manitoba), Ashraf Shirani (San Jose State University), Daniel Spiegel (Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin Tao (Pace University), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser University), Deborah ­Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent Vidrine (George Washington University), and Bahram Zartoshty (California State University at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy Johnson and her colleagues Marcia Horton, Demetrius Hall, Yvonne Vannatta, Kristy Alaura, Carole Snyder, Scott Disanno, Bob Engelhardt, Shylaja Gattupalli, and their colleagues for organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Brief Contents

		1	Introduction to Computers, Programs, and Java™ 	1

		2	Elementary Programming 	33

		3	Selections 	75

		4	Mathematical Functions, Characters, and Strings 	119

		5	Loops 	159

		6	Methods 	205

		7	Single-Dimensional Arrays 	247

		8	Multidimensional Arrays 	289

		9	Objects and Classes 	323

		10	Object-Oriented Thinking 	367

		11	Inheritance and Polymorphism 	411

		12	Exception Handling and Text I/O 	453

		13	Abstract Classes and Interfaces 	499

		14	JavaFX Basics 	541

		15	Event-Driven Programming and Animations 	593

		16	JavaFX UI Controls and Multimedia 	643

		17	Binary I/O 	691

		18	Recursion 	719

		19	Generics 	751

		20	Lists, Stacks, Queues, and Priority Queues 	775

		21	Sets and Maps 	815

		22	Developing Efficient Algorithms 	839

		23	Sorting 	881

		24	Implementing Lists, Stacks, Queues, and Priority Queues 	917

		25	Binary Search Trees 	953

		26	AVL Trees 	989

		27	Hashing 	1009

		28	Graphs and Applications 	1039

		29	Weighted Graphs and Applications 	1085

		30	Aggregate Operations for Collection Streams 	1123

CHAPTER 31–44 are available from the Companion Website at www.pearsonhighered.com/liang

		31	Advanced JavaFX and FXML 	

		32	Multithreading and Parallel ­Programming 	

		33	Networking 	

		34	Java Database Programming 	

		35	Advanced Database Programming 	

		36	Internationalization 	

		37	Servlets 	

		38	JavaServer Pages 	

		39	JavaServer Faces 	

		40	RMI 	

		41	Web Services 	

		42	2-4 Trees and B-Trees 	

		43	Red-Black Trees 	

		44	Testing Using JUnit 	

	Appendixes 	1155

		A	Java Keywords 	1157

		B	The ASCII Character Set 	1158

		C	Operator Precedence Chart 	1160

		D	Java Modifiers 	1162

		E	Special Floating-Point Values 	1164

		F	Number Systems 	1165

		G	Bitwise Operations 	1169

		H	Regular Expressions 	1170

		I	Enumerated Types 	1175

	Quick Reference 	1181

	Index 	1183

Contents

		Chapter 1	Introduction to Computers, ­Programs, and Java™	1

		1.1	Introduction	2

		1.2	What Is a Computer?	2

		1.3	Programming Languages	7

		1.4	Operating Systems	9

		1.5	Java, the World Wide Web, and Beyond	10

		1.6	The Java Language Specification, API, JDK, JRE, and IDE	11

		1.7	A Simple Java Program	12

		1.8	Creating, Compiling, and Executing a Java Program	15

		1.9	Programming Style and Documentation	18

		1.10	Programming Errors	20

		1.11	Developing Java Programs Using NetBeans	23

		1.12	Developing Java Programs Using Eclipse	25

		Chapter 2	Elementary Programming	33

		2.1	Introduction	34

		2.2	Writing a Simple Program	34

		2.3	Reading Input from the Console	37

		2.4	Identifiers	40

		2.5	Variables	40

		2.6	Assignment Statements and Assignment Expressions	42

		2.7	Named Constants	43

		2.8	Naming Conventions	44

		2.9	Numeric Data Types and Operations	45

		2.10	Numeric Literals	48

		2.11	Evaluating Expressions and Operator Precedence	50

		2.12	Case Study: Displaying the Current Time	52

		2.13	Augmented Assignment Operators	54

		2.14	Increment and Decrement Operators	55

		2.15	Numeric Type Conversions	57

		2.16	Software Development Process	59

		2.17	Case Study: Counting Monetary Units	63

		2.18	Common Errors and Pitfalls	65

		Chapter 3	Selections	75

		3.1	Introduction	76

		3.2	boolean Data Type	76

		3.3	if Statements	78

		3.4	Two-Way if-else Statements	80

		3.5	Nested if and Multi-Way if-else Statements	81

		3.6	Common Errors and Pitfalls	83

		3.7	Generating Random Numbers	87

		3.8	Case Study: Computing Body Mass Index	89

		3.9	Case Study: Computing Taxes	90

		3.10	Logical Operators	93

		3.11	Case Study: Determining Leap Year	97

		3.12	Case Study: Lottery	98

		3.13	switch Statements	100

		3.14	Conditional Operators	103

		3.15	Operator Precedence and Associativity	104

		3.16	Debugging	106

		Chapter 4	Mathematical Functions, Characters, and Strings	119

		4.1	Introduction	120

		4.2	Common Mathematical Functions	120

		4.3	Character Data Type and Operations	125

		4.4	The String Type	130

		4.5	Case Studies	139

		4.6	Formatting Console Output	145

		Chapter 5	Loops	159

		5.1	Introduction	160

		5.2	The while Loop	160

		5.3	Case Study: Guessing Numbers	163

		5.4	Loop Design Strategies	166

		5.5	Controlling a Loop with User Confirmation or a Sentinel Value	168

		5.6	The do-while Loop	170

		5.7	The for Loop	173

		5.8	Which Loop to Use?	176

		5.9	Nested Loops	178

		5.10	Minimizing Numeric Errors	180

		5.11	Case Studies	182

		5.12	Keywords break and continue	186

		5.13	Case Study: Checking Palindromes	189

		5.14	Case Study: Displaying Prime Numbers	191

		Chapter 6	Methods	205

		6.1	Introduction	206

		6.2	Defining a Method	206

		6.3	Calling a Method	208

		6.4	void vs. Value-Returning Methods	211

		6.5	Passing Parameters by Values	214

		6.6	Modularizing Code	217

		6.7	Case Study: Converting Hexadecimals to Decimals	219

		6.8	Overloading Methods	221

		6.9	The Scope of Variables	224

		6.10	Case Study: Generating Random Characters	225

		6.11	Method Abstraction and Stepwise Refinement	227

		Chapter 7	Single-Dimensional Arrays	247

		7.1	Introduction	248

		7.2	Array Basics	248

		7.3	Case Study: Analyzing Numbers	255

		7.4	Case Study: Deck of Cards	256

		7.5	Copying Arrays	258

		7.6	Passing Arrays to Methods	259

		7.7	Returning an Array from a Method	262

		7.8	Case Study: Counting the Occurrences of Each Letter	263

		7.9	Variable-Length Argument Lists	266

		7.10	Searching Arrays	267

		7.11	Sorting Arrays	271

		7.12	The Arrays Class	272

		7.13	Command-Line Arguments	274

		Chapter 8	Multidimensional Arrays	289

		8.1	Introduction	290

		8.2	Two-Dimensional Array Basics	290

		8.3	Processing Two-Dimensional Arrays	293

		8.4	Passing Two-Dimensional Arrays to Methods	295

		8.5	Case Study: Grading a Multiple-Choice Test	296

		8.6	Case Study: Finding the Closest Pair	298

		8.7	Case Study: Sudoku	300

		8.8	Multidimensional Arrays	303

		Chapter 9	Objects and Classes	323

		9.1	Introduction	324

		9.2	Defining Classes for Objects	324

		9.3	Example: Defining Classes and Creating Objects	326

		9.4	Constructing Objects Using Constructors	331

		9.5	Accessing Objects via Reference Variables	332

		9.6	Using Classes from the Java Library	336

		9.7	Static Variables, Constants, and Methods	339

		9.8	Visibility Modifiers	344

		9.9	Data Field Encapsulation	346

		9.10	Passing Objects to Methods	349

		9.11	Array of Objects	353

		9.12	Immutable Objects and Classes	355

		9.13	The Scope of Variables	357

		9.14	The this Reference	358

		Chapter 10	Object-Oriented Thinking	367

		10.1	Introduction	368

		10.2	Class Abstraction and Encapsulation	368

		10.3	Thinking in Objects	372

		10.4	Class Relationships	375

		10.5	Case Study: Designing the Course Class	378

		10.6	Case Study: Designing a Class for Stacks	380

		10.7	Processing Primitive Data Type Values as Objects	382

		10.8	Automatic Conversion between Primitive Types and Wrapper Class Types	385

		10.9	The BigInteger and BigDecimal Classes	386

		10.10	The String Class	388

		10.11	The StringBuilder and StringBuffer Classes	394

		Chapter 11	Inheritance and Polymorphism	411

		11.1	Introduction	412

		11.2	Superclasses and Subclasses	412

		11.3	Using the super Keyword	418

		11.4	Overriding Methods	421

		11.5	Overriding vs. Overloading	422

		11.6	The Object Class and Its toString() Method	424

		11.7	Polymorphism	425

		11.8	Dynamic Binding	425

		11.9	Casting Objects and the instanceof Operator	429

		11.10	The Object’s equals Method	433

		11.11	The ArrayList Class	434

		11.12	Useful Methods for Lists	440

		11.13	Case Study: A Custom Stack Class	441

		11.14	The protected Data and Methods	442

		11.15	Preventing Extending and Overriding	445

		Chapter 12	Exception Handling and Text I/O	453

		12.1	Introduction	454

		12.2	Exception-Handling Overview	454

		12.3	Exception Types	459

		12.4	More on Exception Handling	462

		12.5	The finally Clause	470

		12.6	When to Use Exceptions	471

		12.7	Rethrowing Exceptions	472

		12.8	Chained Exceptions	473

		12.9	Defining Custom Exception Classes	474

		12.10	The File Class	477

		12.11	File Input and Output	480

		12.12	Reading Data from the Web	486

		12.13	Case Study: Web Crawler	488

		Chapter 13	Abstract Classes and Interfaces	499

		13.1	Introduction	500

		13.2	Abstract Classes	500

		13.3	Case Study: the Abstract Number Class	505

		13.4	Case Study: Calendar and GregorianCalendar	507

		13.5	Interfaces	510

		13.6	The Comparable Interface	513

		13.7	The Cloneable Interface	518

		13.8	Interfaces vs. Abstract Classes	523

		13.9	Case Study: The Rational Class	526

		13.10	Class-Design Guidelines	531

		Chapter 14	JavaFX Basics	541

		14.1	Introduction	542

		14.2	JavaFX vs Swing and AWT	542

		14.3	The Basic Structure of a JavaFX Program	542

		14.4	Panes, Groups, UI Controls, and Shapes	545

		14.5	Property Binding	548

		14.6	Common Properties and Methods for Nodes	551

		14.7	The Color Class	553

		14.8	The Font Class	554

		14.9	The Image and ImageView Classes	556

		14.10	Layout Panes and Groups	558

		14.11	Shapes	567

		14.12	Case Study: The ClockPane Class	580

		Chapter 15	Event-Driven Programming and Animations	593

		15.1	Introduction	594

		15.2	Events and Event Sources	596

		15.3	Registering Handlers and Handling Events	597

		15.4	Inner Classes	601

		15.5	Anonymous Inner Class Handlers	602

		15.6	Simplifying Event Handling Using Lambda Expressions	605

		15.7	Case Study: Loan Calculator	609

		15.8	Mouse Events	611

		15.9	Key Events	613

		15.10	Listeners for Observable Objects	616

		15.11	Animation	618

		15.12	Case Study: Bouncing Ball	626

		15.13	Case Study: US Map	630

		Chapter 16	JavaFX UI Controls and Multimedia	643

		16.1	Introduction	644

		16.2	Labeled and Label	644

		16.3	Button	646

		16.4	CheckBox	648

		16.5	RadioButton	651

		16.6	TextField	654

		16.7	TextArea	655

		16.8	ComboBox	659

		16.9	ListView	662

		16.10	ScrollBar	665

		16.11	Slider	668

		16.12	Case Study: Developing a Tic-Tac-Toe Game	671

		16.13	Video and Audio	676

		16.14	Case Study: National Flags and Anthems	679

		Chapter 17	Binary I/O	691

		17.1	Introduction	692

		17.2	How Is Text I/O Handled in Java?	692

		17.3	Text I/O vs. Binary I/O	693

		17.4	Binary I/O Classes	694

		17.5	Case Study: Copying Files	704

		17.6	Object I/O	706

		17.7	Random-Access Files	711

		Chapter 18	Recursion	719

		18.1	Introduction	720

		18.2	Case Study: Computing Factorials	720

		18.3	Case Study: Computing Fibonacci Numbers	723

		18.4	Problem Solving Using Recursion	726

		18.5	Recursive Helper Methods	728

		18.6	Case Study: Finding the Directory Size	731

		18.7	Case Study: Tower of Hanoi	733

		18.8	Case Study: Fractals	736

		18.9	Recursion vs. Iteration	740

		18.10	Tail Recursion	740

		Chapter 19	Generics	751

		19.1	Introduction	752

		19.2	Motivations and Benefits	752

		19.3	Defining Generic Classes and Interfaces	754

		19.4	Generic Methods	756

		19.5	Case Study: Sorting an Array of Objects	758

		19.6	Raw Types and Backward Compatibility	760

		19.7	Wildcard Generic Types	761

		19.8	Erasure and Restrictions on Generics	764

		19.9	Case Study: Generic Matrix Class	766

		Chapter 20	Lists, Stacks, Queues, and Priority Queues	775

		20.1	Introduction	776

		20.2	Collections	776

		20.3	Iterators	780

		20.4	Using the forEach Method	781

		20.5	Lists	782

		20.6	The Comparator Interface	787

		20.7	Static Methods for Lists and Collections	791

		20.8	Case Study: Bouncing Balls	794

		20.9	Vector and Stack Classes	798

		20.10	Queues and Priority Queues	799

		20.11	Case Study: Evaluating Expressions	803

		Chapter 21	Sets and Maps	815

		21.1	Introduction	816

		21.2	Sets	816

		21.3	Comparing the Performance of Sets and Lists	824

		21.4	Case Study: Counting Keywords	827

		21.5	Maps	828

		21.6	Case Study: Occurrences of Words	833

		21.7	Singleton and Unmodifiable Collections and Maps	835

		Chapter 22	Developing Efficient Algorithms	839

		22.1	Introduction	840

		22.2	Measuring Algorithm Efficiency Using Big O Notation	840

		22.3	Examples: Determining Big O	842

		22.4	Analyzing Algorithm Time Complexity	846

		22.5	Finding Fibonacci Numbers Using Dynamic Programming	849

		22.6	Finding Greatest Common Divisors Using Euclid’s Algorithm	851

		22.7	Efficient Algorithms for Finding Prime Numbers	855

		22.8	Finding the Closest Pair of Points Using Divide-and-Conquer	861

		22.9	Solving the Eight Queens Problem Using Backtracking	864

		22.10	Computational Geometry: Finding a Convex Hull	867

		Chapter 23	Sorting	881

		23.1	Introduction	882

		23.2	Insertion Sort	882

		23.3	Bubble Sort	884

		23.4	Merge Sort	887

		23.5	Quick Sort	890

		23.6	Heap Sort	894

		23.7	Bucket and Radix Sorts	901

		23.8	External Sort	903

		Chapter 24	Implementing Lists, Stacks, Queues, and Priority Queues	917

		24.1	Introduction	918

		24.2	Common Operations for Lists	918

		24.3	Array Lists	922

		24.4	Linked Lists	929

		24.5	Stacks and Queues	943

		24.6	Priority Queues	947

		Chapter 25	Binary Search Trees	953

		25.1	Introduction	954

		25.2	Binary Search Trees	954

		25.3	Deleting Elements from a BST	967

		25.4	Tree Visualization and MVC	973

		25.5	Iterators	976

		25.6	Case Study: Data Compression	978

		Chapter 26	AVL Trees	989

		26.1	Introduction	990

		26.2	Rebalancing Trees	990

		26.3	Designing Classes for AVL Trees	993

		26.4	Overriding the insert Method	994

		26.5	Implementing Rotations	995

		26.6	Implementing the delete Method	996

		26.7	The AVLTree Class	996

		26.8	Testing the AVLTree Class	1002

		26.9	AVL Tree Time Complexity Analysis	1005

		Chapter 27	Hashing	1009

		27.1	Introduction	1010

		27.2	What Is Hashing?	1010

		27.3	Hash Functions and Hash Codes	1011

		27.4	Handling Collisions Using Open Addressing	1013

		27.5	Handling Collisions Using Separate Chaining	1017

		27.6	Load Factor and Rehashing	1017

		27.7	Implementing a Map Using Hashing	1019

		27.8	Implementing Set Using Hashing	1028

		Chapter 28	Graphs and Applications	1039

		28.1	Introduction	1040

		28.2	Basic Graph Terminologies	1041

		28.3	Representing Graphs	1042

		28.4	Modeling Graphs	1048

		28.5	Graph Visualization	1058

		28.6	Graph Traversals	1061

		28.7	Depth-First Search (DFS)	1062

		28.8	Case Study: The Connected Circles Problem	1066

		28.9	Breadth-First Search (BFS)	1068

		28.10	Case Study: The Nine Tails Problem	1071

		Chapter 29	Weighted Graphs and Applications	1085

		29.1	Introduction	1086

		29.2	Representing Weighted Graphs	1087

		29.3	The WeightedGraph Class	1089

		29.4	Minimum Spanning Trees	1097

		29.5	Finding Shortest Paths	1103

		29.6	Case Study: The Weighted Nine Tails Problem	1112

		Chapter 30	Aggregate Operations for Collection Streams	1123

		30.1	Introduction	1124

		30.2	Stream Pipelines	1124

		30.3	IntStream, LongStream, and DoubleStream	1130

		30.4	Parallel Streams	1133

		30.5	Stream Reduction Using the reduce Method	1135

		30.6	Stream Reduction Using the collect Method	1138

		30.7	Grouping Elements Using the groupingby Collector	1141

		30.8	Case Studies	1144

	Chapter 31–44 are available from the Companion Website at www.pearsonhighered.com/liang

	Chapter 31	Advanced JavaFX and FXML	

		Chapter 32	Multithreading and Parallel Programming	

		Chapter 33	Networking	

		Chapter 34	Java Database Programming	

		Chapter 35	Advanced Database Programming	

		Chapter 36	Internationalization	

		Chapter 37	Servlets	

		Chapter 38	JavaServer Pages	

		Chapter 39	JavaServer Faces	

		Chapter 40	RMI	

		Chapter 41	Web Services	

		Chapter 42	2-4 Trees and B-Trees	

		Chapter 43	Red-Black Trees	

		Chapter 44	Testing Using JUnit	

	Appendixes1155

	Appendix A Java Keywords	1157

	Appendix B The ASCII Character Set	1158

	Appendix C Operator Precedence Chart	1160

	Appendix D Java Modifiers	1162

	Appendix E Special Floating-Point Values	1164

	Appendix F Number Systems	1165

	Appendix G Bitwise Operations	1169

	Appendix H Regular Expressions	1170

	Appendix I Enumerated Types	1175

	Quick Reference	1181

	Index			1183

VideoNotes

Locations of VideoNotes

http://www.pearsonhighered.com/liang

	Chapter 1	Introduction to Computers, Programs, and Java™ 	1

	Your first Java program 	12

	Compile and run a Java program 	17

	NetBeans brief tutorial 	23

	Eclipse brief tutorial 	25

	Chapter 2	Elementary Programming 	33

	Obtain input 	37

	Use operators / and % 	52

	Software development process 	59

	Compute loan payments 	60

	Compute BMI 	72

	Chapter 3	Selections 	75

	Program addition quiz 	77

	Program subtraction quiz 	87

	Use multi-way if-else statements 	90

	Sort three integers 	110

	Check point location 	112

	Chapter 4	Mathematical Functions, Characters, and Strings 	119

	Introduce Math functions 	120

	Introduce strings and objects 	130

	Convert hex to decimal 	143

	Compute great circle distance 	151

	Convert hex to binary 	154

	Chapter 5	Loops 	159

	Use while loop 	160

	Guess a number 	163

	Multiple subtraction quiz 	166

	Use do-while loop 	170

	Minimize numeric errors 	180

	Display loan schedule 	197

	Sum a series 	198

	Chapter 6	Methods 	205

	Define/invoke max method 	208

	Use void method 	211

	Modularize code 	217

	Stepwise refinement 	227

	Reverse an integer 	236

	Estimate π 239

	Chapter 7	Single-Dimensional Arrays 	247

	Random shuffling 	252

	Deck of cards 	256

	Selection sort 	271

	Command-line arguments 	275

	Coupon collector’s problem 	282

	Consecutive four 	284

	Chapter 8	Multidimensional Arrays 	289

	Find the row with the largest sum 	294

	Grade multiple-choice test 	296

	Sudoku 	300

	Multiply two matrices 	309

	Even number of 1s 	316

	Chapter 9	Objects and Classes 	323

	Define classes and objects 	324

	Use classes 	336

	Static vs. instance 	339

	Data field encapsulation 	346

	The this keyword 	358

	The Fan class 	364

	Chapter 10	Object-Oriented Thinking 	367

	The Loan class 	369

	The BMI class 	372

	The StackOfIntegers class 	380

	Process large numbers 	386

	The String class 	388

	The MyPoint class 	402

	Chapter 11	Inheritance and Polymorphism 	411

	Geometric class hierarchy 	412

	Polymorphism and dynamic binding demo 	426

	The ArrayList class 	434

	The MyStack class 	441

	New Account class 	448

	Chapter 12	Exception Handling and Text I/O 	453

	Exception-handling advantages 	454

	Create custom exception classes 	474

	Write and read data 	480

	HexFormatException 	493

	Chapter 13	Abstract Classes and Interfaces 	499

	Abstract GeometricObject class 	500

	Calendar and Gregorian Calendar classes 	507

	The concept of interface 	510

	Redesign the Rectangle class 	536

	Chapter 14	JavaFX Basics 	541

	Getting started with JavaFX 	542

	Understand property binding 	548

	Use Image and ImageView 	556

	Use layout panes 	558

	Use shapes 	567

	Display a tic-tac-toe board 	586

	Display a bar chart 	588

	Chapter 15	Event-Driven Programming and Animations 	593

	Handler and its registration 	600

	Anonymous handler 	603

	Move message using the mouse 	612

	Animate a rising flag 	618

	Flashing text 	624

	Simple calculator 	634

	Check mouse-point location 	636

	Display a running fan 	639

	Chapter 16	JavaFX UI Controls and Multimedia 	643

	Use ListView 	662

	Use Slider 	668

	Tic-Tac-Toe 	671

	Use Media, MediaPlayer, and MediaView 	676

	Use radio buttons and text fields 	683

	Set fonts 	685

	Chapter 17	Binary I/O 	691

	Copy file 	704

	Object I/O 	706

	Split a large file 	716

	Chapter 18	Recursion 	719

	Binary search 	730

	Directory size 	731

	Fractal (Sierpinski triangle) 	736

	Search a string in a directory 	747

	Recursive tree 	750

Animations

	Chapter 7	Single-Dimensional Arrays 	247

	linear search animation on Companion Website 	268

	binary search animation on Companion Website 	268

	selection sort animation on Companion Website 	271

	Chapter 8	Multidimensional Arrays 	289

	closest-pair animation on the Companion Website 	298

	Chapter 22	Developing Efficient Algorithms 	839

	binary search animation on the Companion Website 	846

	selection sort animation on the Companion Website 	846

	closest-pair animation on Companion Website 	861

	Eight Queens animation on the Companion Website 	864

	convex hull animation on the Companion Website 	867

	Chapter 23	Sorting 	881

	insertion-sort animation on Companion Website 	882

	bubble sort animation on the Companion Website 	885

	merge animation on Companion Website 	889

	partition animation on Companion Website 	893

	heap animation on Companion Website 	895

	radix sort animation on Companion Website 	902

	Chapter 24	Implementing Lists, Stacks, Queues, and Priority Queues 	917

	list animation on Companion Website 	918

	stack and queue animation on Companion Website 	943

	Chapter 25	Binary Search Trees 	953

	BST animation on Companion Website 	954

	Chapter 26	AVL Trees 	989

	AVL tree animation on Companion Website 	990

	Chapter 27	Hashing 	1009

 	linear probing animation on Companion Website 	1014

	quadratic probing animation on Companion Website 	1015

	separate chaining animation on Companion Website 	1018

	Chapter 28	Graphs and Applications 	1039

	graph learning tool on Companion Website 	1042

	U.S. Map Search 	1064

	Chapter 29	Weighted Graphs and Applications 	1085

	weighted graph learning tool animation on Companion Website 	1086

CHAPTER 1 Introduction to Computers, Programs, and Java™

Objectives

	To understand computer basics, programs, and operating systems (§§1.2–1.4).

	To describe the relationship between Java and the World Wide Web (§1.5).

	To understand the meaning of Java language specification, API, JDK™, JRE™, and IDE (§1.6).

	To write a simple Java program (§1.7).

	To display output on the console (§1.7).

	To explain the basic syntax of a Java program (§1.7).

	To create, compile, and run Java programs (§1.8).

	To use sound Java programming style and document programs properly (§1.9).

	To explain the differences between syntax errors, runtime errors, and logic errors (§1.10).

	To develop Java programs using NetBeans™ (§1.11).

	To develop Java programs using Eclipse™ (§1.12).

1.1 Introduction

	The central theme of this book is to learn how to solve problems by writing a program.

what is programming?

programming

program

This book is about programming. So, what is programming? The term programming means to create (or develop) software, which is also called a program. In basic terms, software contains instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices you might not think would need it. Of course, you expect to find and use software on a personal computer, but software also plays a role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you use word processors to write documents, web browsers to explore the Internet, and e-mail programs to send and receive messages. These programs are all examples of software. Software developers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language. There are many programming languages, some of which are decades old. Each language was invented for a specific purpose—to build on the strengths of a previous language, for example, or to give the programmer a new and unique set of tools. Knowing there are so many programming languages available, it would be natural for you to wonder which one is best. However, in truth, there is no “best” language. Each one has its own strengths and weaknesses. Experienced programmers know one language might work well in some situations, whereas a different language may be more appropriate in other situations. For this reason, seasoned programmers try to master as many different programming languages as they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other languages. The key is to learn how to solve problems using a programming approach. That is the main theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is helpful to review computer basics, programs, and operating systems (OSs). If you are already familiar with such terms as central processing unit (CPU), memory, disks, operating systems, and programming languages, you may skip Sections 1.2–1.4.

1.2 What Is a Computer?

	A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible, physical elements of the computer, and software provides the invisible instructions that control the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential to learning a programming language, but it can help you better understand the effects that a program’s instructions have on the computer and its components. This section introduces computer hardware components and their functions.

hardware

software

A computer consists of the following major hardware components (see Figure 1.1):

	A central processing unit (CPU)

	Memory (main memory)

	Storage devices (such as disks and CDs)

	Input devices (such as the mouse and the keyboard)

	Output devices (such as monitors and printers)

	Communication devices (such as modems and network interface cards (NIC))

[image: A diagram of a computer’s components, linked by the bus.]
Figure 1.1

A computer consists of a CPU, memory, storage devices, input devices, output devices, and communication devices.

Description

bus

A computer’s components are interconnected by a subsystem called a bus. You can think of a bus as a sort of system of roads running among the computer’s components; data and power travel along the bus from one part of the computer to another. In personal computers, the bus is built into the computer’s motherboard, which is a circuit case that connects all of the parts of a computer together.

motherboard

1.2.1 Central Processing Unit

The central processing unit (CPU) is the computer’s brain. It retrieves instructions from the memory and executes them. The CPU usually has two components: a control unit and an arithmetic/logic unit. The control unit controls and coordinates the actions of the other components. The arithmetic/logic unit performs numeric operations (addition, subtraction, multiplication, and division) and logical operations (comparisons).

CPU

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny electric switches, called transistors, for processing information.

Every computer has an internal clock that emits electronic pulses at a constant rate. These pulses are used to control and synchronize the pace of operations. A higher clock speed enables more instructions to be executed in a given period of time. The unit of measurement of clock speed is the hertz (Hz), with 1 Hz equaling 1 pulse per second. In the 1990s, computers measured clock speed in megahertz (MHz), but CPU speed has been improving continuously; the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest processors run at about 3 GHz.

speed

hertz

megahertz

gigahertz

CPUs were originally developed with only one core. The core is the part of the processor that performs the reading and executing of instructions. In order to increase the CPU processing power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore CPU is a single component with two or more independent cores. Today’s consumer computers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even hundreds of cores will be affordable.

core

1.2.2 Bits and Bytes

Before we discuss memory, let’s look at how information (data and programs) are stored in a computer.

A computer is really nothing more than a series of switches. Each switch exists in two states: on or off. Storing information in a computer is simply a matter of setting a sequence of switches on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These 0s and 1s are interpreted as digits in the binary number system and are called bits (binary digits).

bits

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A small number such as 3 can be stored as a single byte. To store a number that cannot fit into a single byte, the computer uses several bytes.

byte

encoding scheme

Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As a programmer, you don’t need to worry about the encoding and decoding of data, which the computer system performs automatically, based on the encoding scheme. An encoding scheme is a set of rules that govern how a computer translates characters and numbers into data with which the computer can actually work. Most schemes translate each character into a predetermined string of bits. In the popular ASCII encoding scheme, for example, the character C is represented as 01000011 in 1 byte.

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

	A kilobyte (KB) is about 1,000 bytes.

kilobyte (KB)

	A megabyte (MB) is about 1 million bytes.

megabyte (MB)

	A gigabyte (GB) is about 1 billion bytes.

gigabyte (GB)

	A terabyte (TB) is about 1 trillion bytes.

terabyte (TB)

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages of documents, and 1 GB can store 50,000 pages of documents. A typical two-hour high-­resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory

A computer’s memory consists of an ordered sequence of bytes for storing programs as well as data with which the program is working. You can think of memory as the computer’s work area for executing a program. A program and its data must be moved into the computer’s memory before they can be executed by the CPU.

memory

Every byte in the memory has a unique address, as shown in Figure 1.2. The address is used to locate the byte for storing and retrieving the data. Since the bytes in the memory can be accessed in any order, the memory is also referred to as random-access memory (RAM).

unique address

RAM

[image: A list of memory addresses.]
Figure 1.2

Memory stores data and program instructions in uniquely addressed memory locations.

Description

Today’s personal computers usually have at least 4 GB of RAM, but they more commonly have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program. The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transistors embedded on their surface. Compared to CPU chips, memory chips are less complicated, slower, and less expensive.

1.2.4 Storage Devices

storage devices

A computer’s memory (RAM) is a volatile form of data storage: Any information that has been saved in memory is lost when the system’s power is turned off. Programs and data are permanently stored on storage devices and are moved, when the computer actually uses them, to memory, which operates at much faster speeds than permanent storage devices can.

There are three main types of storage devices:

	Magnetic disk drives

	Optical disc drives (CD and DVD)

	Universal serial bus (USB) flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium physically stores data and program instructions. The drive reads data from the medium and writes data onto the medium.

drive

Disks

A computer usually has at least one hard disk drive. Hard disks are used for permanently storing data and programs. Newer computers have hard disks that can store from 500 GB to 1 TB of data. Hard disk drives are usually encased inside the computer, but removable hard disks are also available.

hard disk

CDs and DVDs

CD stands for compact disc. There are three types of CDs: CD-ROM, CD-R, and CD-RW. A CD-ROM is a prepressed disc. It was popular for distributing software, music, and video. Software, music, and video are now increasingly distributed on the Internet without using CDs. A CD-R (CD-Recordable) is a write-once medium. It can be used to record data once and read any number of times. A CD-RW (CD-ReWritable) can be used like a hard disk; that is, you can write data onto the disc, then overwrite that data with new data. A single CD can hold up to 700 MB.

CD-ROM

CD-R

CD-RW

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and you can use either to store data. A DVD can hold more information than a CD; a standard DVD’s storage capacity is 4.7 GB. There are two types of DVDs: DVD-R (Recordable) and DVD-RW (ReWritable).

DVD

USB Flash Drives

Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral devices to the computer. You can use an USB to connect a printer, digital camera, mouse, external hard disk drive, and other devices to the computer.

An USB flash drive is a device for storing and transporting data. A flash drive is small—about the size of a pack of gum. It acts like a portable hard drive that can be plugged into your computer’s USB port. USB flash drives are currently available with up to 256 GB storage capacity.

1.2.5 Input and Output Devices

Input and output devices let the user communicate with the computer. The most common input devices are the keyboard and mouse. The most common output devices are monitors and printers.

The Keyboard

A keyboard is a device for entering input. Compact keyboards are available without a numeric keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F. Their functions depend on the software currently being used.

function key

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the normal action of another key when the two are pressed simultaneously.

modifier key

The numeric keypad, located on the right side of most keyboards, is a separate set of keys styled like a calculator to use for quickly entering numbers.

numeric keypad

Arrow keys, located between the main keypad and the numeric keypad, are used to move the mouse pointer up, down, left, and right on the screen in many kinds of programs.

arrow keys

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other programs for inserting text and objects, deleting text and objects, and moving up or down through a document one screen at a time.

Insert key

Delete key

Page Up key

Page Down key

The Mouse

A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of an arrow) called a cursor around the screen, or to click on-screen objects (such as a button) to trigger them to perform an action.

The Monitor

The monitor displays information (text and graphics). The screen resolution and dot pitch determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and 768 pixels high. The resolution can be set manually. The higher the resolution, the sharper and clearer the image is.

screen resolution

pixels

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller the dot pitch, the sharper is the display.

dot pitch

1.2.6 Communication Devices

Computers can be networked through communication devices, such as a dial-up modem ­(modulator/demodulator), a digital subscriber line (DSL) or cable modem, a wired network interface card, or a wireless adapter.

	A dial-up modem uses a phone line to dial a phone number to connect to the Internet and can transfer data at a speed up to 56,000 bps (bits per second).

dial-up modem

	A digital subscriber line (DSL) connection also uses a standard phone line, but it can transfer data 20 times faster than a standard dial-up modem.

digital subscriber line (DSL)

	A cable modem uses the cable line maintained by the cable company and is generally faster than DSL.

cable modem

	A network interface card (NIC) is a device that connects a computer to a local area network (LAN). LANs are commonly used to connect computers within a limited area such as a school, a home, and an office. A high-speed NIC called 1000BaseT can transfer data at 1,000 million bits per second (mbps).

network interface card (NIC)

local area network (LAN)

	Wireless networking is now extremely popular in homes, businesses, and schools. Every laptop computer sold today is equipped with a wireless adapter that enables the computer to connect to the LAN and the Internet.

million bits per second (mbps)

 Note

Answers to the CheckPoint questions are available at www.pearsonhighered.com/liang. Choose this book and click Companion Website to select CheckPoint.

	1.2.1 What are hardware and software?

	1.2.2 List the five major hardware components of a computer.

	1.2.3 What does the acronym CPU stand for? What unit is used to measure CPU speed?

	1.2.4 What is a bit? What is a byte?

	1.2.5 What is memory for? What does RAM stand for? Why is memory called RAM?

	1.2.6 What unit is used to measure memory size? What unit is used to measure disk size?

	1.2.7 What is the primary difference between memory and a storage device?

1.3 Programming Languages

	Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a computer can use. There are hundreds of programming languages, and they were developed to make the programming process easier for people. However, all programs must be converted into the instructions the computer can execute.

1.3.1 Machine Language

A computer’s native language, which differs among different types of computers, is its machine language—a set of built-in primitive instructions. These instructions are in the form of binary code, so if you want to give a computer an instruction in its native language, you have to enter the instruction as binary code. For example, to add two numbers, you might have to write an instruction in binary code as follows:

machine language

1101101010011010

1.3.2 Assembly Language

Programming in machine language is a tedious process. Moreover, programs written in machine language are very difficult to read and modify. For this reason, assembly language was created in the early days of computing as an alternative to machine languages. Assembly language uses a short descriptive word, known as a mnemonic, to represent each of the machine-language instructions. For example, the mnemonic add typically means to add numbers, and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you might write an instruction in assembly code as follows:

assembly language

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the computer cannot execute assembly language, another program—called an assembler—is used to translate assembly-language programs into machine code, as shown in Figure 1.3.

assembler

[image: The assembler translates descriptive instructions from the assembly source file into strings of numbers in the machine code file. Example: the instruction, add 2 comma 3 comma result, translates into the code, 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0.]
Figure 1.3

An assembler translates assembly-language instructions into machine code.

Writing code in assembly language is easier than in machine language. However, it is still tedious to write code in assembly language. An instruction in assembly language essentially corresponds to an instruction in machine code. Writing in assembly language requires that you know how the CPU works. Assembly language is referred to as a low-level language, because assembly language is close in nature to machine language and is machine dependent.

low-level language

1.3.3 High-Level Language

In the 1950s, a new generation of programming languages known as high-level languages emerged. They are platform independent, which means that you can write a program in a high-level language and run it in different types of machines. High-level languages are similar to English and easy to learn and use. The instructions in a high-level programming language are called statements. Here, for example, is a high-level language statement that computes the area of a circle with a radius of 5:

high-level language

statement

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific purpose. Table 1.1 lists some popular ones.

Table 1.1 Popular High-Level Programming Languages

	Language

	Description

	Ada

	Named for Ada Lovelace, who worked on mechanical general-purpose computers. ­Developed for the Department of Defense and used mainly in defense projects.

	BASIC

	Beginner’s All-purpose Symbolic Instruction Code. Designed to be learned and used easily by beginners.

	C

	Developed at Bell Laboratories. Combines the power of an assembly language with the ease of use and portability of a high-level language.

	C++

	An object-oriented language, based on C

	C#

	Pronounced “C Sharp.” An object-oriented programming language developed by Microsoft.

	COBOL

	COmmon Business Oriented Language. Used for business applications.

	FORTRAN

	FORmula TRANslation. Popular for scientific and mathematical applications.

	Java

	Developed by Sun Microsystems, now part of Oracle. An object-oriented programming language, widely used for developing platform-independent Internet applications.

	JavaScript

	A Web programming language developed by Netscape

	Pascal

	Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. A simple, structured, general-purpose language primarily for teaching programming.

	Python

	A simple general-purpose scripting language good for writing short programs.

	Visual Basic

	Visual Basic was developed by Microsoft. Enables the programmers to rapidly develop Windows-based applications.

A program written in a high-level language is called a source program or source code. Because a computer cannot execute a source program, a source program must be translated into machine code for execution. The translation can be done using another programming tool called an interpreter or a compiler.

source program

source code

interpreter

compiler

	An interpreter reads one statement from the source code, translates it to the machine code or virtual machine code, then executes it right away, as shown in ­Figure 1.4a. Note a statement from the source code may be translated into several machine instructions.

[image: Figures ay and b show two methods for translating the same high-level source file statement into output on a computer monitor.]
Figure 1.4

(a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the entire source program into a machine-language file for execution.

Description

	A compiler translates the entire source code into a machine-code file, and the machine-code file is then executed, as shown in Figure 1.4b.

	1.3.1 What language does the CPU understand?

	1.3.2 What is an assembly language? What is an assembler?

	1.3.3 What is a high-level programming language? What is a source program?

	1.3.4 What is an interpreter? What is a compiler?

	1.3.5 What is the difference between an interpreted language and a compiled language?

1.4 Operating Systems

	The operating system (OS) is the most important program that runs on a computer. The OS manages and controls a computer’s activities.

The popular operating systems for general-purpose computers are Microsoft Windows, Mac OS, and Linux. Application programs, such as a web browser or a word processor, cannot run unless an operating system is installed and running on the computer. Figure 1.5 shows the interrelationship of hardware, operating system, application software, and the user.

operating system (OS)

[image: The flow chart has 4 boxes, and 4 connections. Top to bottom, box 1 represents user, connected to box 2, application programs, connected to box 3, operating system, connected to box 4, and hardware. Note, box 1 also connects to box 3.]
Figure 1.5

Users and applications access the computer’s hardware via the operating system.

The major tasks of an operating system are as follows:

	Controlling and monitoring system activities

	Allocating and assigning system resources

	Scheduling operations

1.4.1 Controlling and Monitoring System Activities

Operating systems perform basic tasks, such as recognizing input from the keyboard, sending output to the monitor, keeping track of files and folders on storage devices, and controlling peripheral devices such as disk drives and printers. An operating system must also ensure different programs and users working at the same time do not interfere with each other. In addition, the OS is responsible for security, ensuring unauthorized users and programs are not allowed to access the system.

1.4.2 Allocating and Assigning System Resources

The operating system is responsible for determining what computer resources a program needs (such as CPU time, memory space, disks, and input and output devices) and for allocating and assigning them to run the program.

1.4.3 Scheduling Operations

The OS is responsible for scheduling programs’ activities to make efficient use of system resources. Many of today’s operating systems support techniques such as multiprogramming, multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs such as Microsoft Word, E-mail, and web browser to run simultaneously by sharing the same CPU. The CPU is much faster than the computer’s other components. As a result, it is idle most of the time—for example, while waiting for data to be transferred from a disk or waiting for other system resources to respond. A multiprogramming OS takes advantage of this situation by allowing multiple programs to use the CPU when it would otherwise be idle. For example, multiprogramming enables you to use a word processor to edit a file at the same time as your web browser is downloading a file.

multiprogramming

Multithreading allows a single program to execute multiple tasks at the same time. For instance, a word-processing program allows users to simultaneously edit text and save it to a disk. In this example, editing and saving are two tasks within the same program. These two tasks may run concurrently.

multithreading

Multiprocessing is similar to multithreading. The difference is that multithreading is for running multithreads concurrently within one program, but multiprocessing is for running multiple programs concurrently using multiple processors.

multiprocessing

	1.4.1 What is an operating system? List some popular operating systems.

	1.4.2 What are the major responsibilities of an operating system?

	1.4.3 What are multiprogramming, multithreading, and multiprocessing?

1.5 Java, the World Wide Web, and Beyond

	Java is a powerful and versatile programming language for developing software running on mobile devices, desktop computers, and servers.

This book introduces Java programming. Java was developed by a team led by James Gosling at Sun Microsystems. Sun Microsystems was purchased by Oracle in 2010. Originally called Oak, Java was designed in 1991 for use in embedded chips in consumer electronic appliances. In 1995, renamed Java, it was redesigned for developing web applications. For the history of Java, see www.java.com/en/javahistory/index.jsp.

Java has become enormously popular. Its rapid rise and wide acceptance can be traced to its design characteristics, particularly its promise that you can write a program once and run it ­anywhere. As stated by its designer, Java is simple, object oriented, distributed, ­interpreted, robust, secure, architecture neutral, portable, high performance, multithreaded, and dynamic. For the anatomy of Java characteristics, see liveexample.pearsoncmg.com/etc/JavaCharacteristics.pdf.

Java is a full-featured, general-purpose programming language that can be used to develop robust mission-critical applications. Today, it is employed not only for web programming but also for developing stand-alone applications across platforms on servers, desktop computers, and mobile devices. It was used to develop the code to communicate with and control the robotic rover on Mars. Many companies that once considered Java to be more hype than substance are now using it to create distributed applications accessed by customers and partners across the Internet. For every new project being developed today, companies are asking how they can use Java to make their work easier.

The World Wide Web is an electronic information repository that can be accessed on the Internet from anywhere in the world. The Internet, the Web’s infrastructure, has been around for more than 40 years. The colorful World Wide Web and sophisticated web browsers are the major reason for the Internet’s popularity.

Java initially became attractive because Java programs can run from a web browser. Such programs are called applets. Today applets are no longer allowed to run from a Web browser in the latest version of Java due to security issues. Java, however, is now very popular for developing applications on web servers. These applications process data, perform computations, and generate dynamic webpages. Many commercial Websites are developed using Java on the backend.

Java is a versatile programming language: You can use it to develop applications for desktop computers, servers, and small handheld devices. The software for Android cell phones is developed using Java.

	1.5.1 Who invented Java? Which company owns Java now?

	1.5.2 What is a Java applet?

	1.5.3 What programming language does Android use?

1.6 The Java Language Specification, API, JDK, JRE, and IDE

	Java syntax is defined in the Java language specification, and the Java library is defined in the Java application program interface (API). The JDK is the software for compiling and running Java programs. An IDE is an integrated development environment for rapidly developing programs.

Computer languages have strict rules of usage. If you do not follow the rules when writing a program, the computer will not be able to understand it. The Java language specification and the Java API define the Java standards.

The Java language specification is a technical definition of the Java programming ­language’s syntax and semantics. You can find the complete Java language specification at docs.oracle.com/javase/specs/.

Java language specification

The application program interface (API), also known as library, contains predefined classes and interfaces for developing Java programs. The API is still expanding. You can view and download the latest version of the Java API at download.java.net/jdk8/docs/api/.

API

library

Java is a full-fledged and powerful language that can be used in many ways. It comes in three editions:

	Java Standard Edition (Java SE) to develop client-side applications. The applications can run on desktop.

Java SE, EE, and ME

	Java Enterprise Edition (Java EE) to develop server-side applications, such as Java servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

	Java Micro Edition (Java ME) to develop applications for mobile devices, such as cell phones.

This book uses Java SE to introduce Java programming. Java SE is the foundation upon which all other Java technology is based. There are many versions of Java SE. The latest, Java SE 8, is used in this book. Oracle releases each version with a Java Development Toolkit (JDK). For Java SE 8, the Java Development Toolkit is called JDK 1.8 (also known as Java 8 or JDK 8).

Java Development Toolkit (JDK)

JDK 1.8 = JDK 8

The JDK consists of a set of separate programs, each invoked from a command line, for compiling, running, and testing Java programs. The program for running Java programs is known as JRE (Java Runtime Environment). Instead of using the JDK, you can use a Java development tool (e.g., NetBeans, Eclipse, and TextPad)—software that provides an integrated development environment (IDE) for developing Java programs quickly. Editing, compiling, building, debugging, and online help are integrated in one graphical user interface. You simply enter source code in one window or open an existing file in a window, and then click a button or menu item or press a function key to compile and run the program.

Java Runtime Environment (JRE)

Integrated development environment

	1.6.1 What is the Java language specification?

	1.6.2 What does JDK stand for? What does JRE stand for?

	1.6.3 What does IDE stand for?

	1.6.4 Are tools like NetBeans and Eclipse different languages from Java, or are they dialects or extensions of Java?

1.7 A Simple Java Program

	A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the console. (The word console is an old computer term that refers to the text entry and display device of a computer. Console input means to receive input from the keyboard, and console output means to display output on the monitor.) The program is given in Listing 1.1.

what is a console?

console input

console output

Listing 1.1 Welcome.java

class				1 public class Welcome {
main method			2 public static void main(String[] args) {
display message			3 // Display message Welcome to Java! on the console
				4 System.out.println("Welcome to Java!");
				5 }
				6 }

Welcome to Java!

Your first Java program

Note the line numbers are for reference purposes only; they are not part of the program. So, don’t type line numbers in your program.

line numbers

Line 1 defines a class. Every Java program must have at least one class. Each class has a name. By convention, class names start with an uppercase letter. In this example, the class name is Welcome.

class name

Line 2 defines the main method. The program is executed from the main method. A class may contain several methods. The main method is the entry point where the program begins execution.

main method

A method is a construct that contains statements. The main method in this program contains the System.out.println statement. This statement displays the string Welcome to Java! on the console (line 4). String is a programming term meaning a sequence of characters. A string must be enclosed in double quotation marks. Every statement in Java ends with a semicolon (;), known as the statement terminator.

string

statement terminator

Reserved words, or keywords, have a specific meaning to the compiler and cannot be used for other purposes in the program. For example, when the compiler sees the word class, it understands that the word after class is the name for the class. Other reserved words in this program are public, static, and void.

reserved word

keyword

Line 3 is a comment that documents what the program is and how it is constructed. Comments help programmers to communicate and understand the program. They are not programming statements, and thus are ignored by the compiler. In Java, comments are preceded by two slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several lines, called a block comment or paragraph comment. When the compiler sees //, it ignores all text after // on the same line. When it sees /*, it scans for the next */ and ignores any text between /* and */. Here are examples of comments:

comment

line comment

block comment

// This application program displays Welcome to Java!
/* This application program displays Welcome to Java! */
/* This application program
 displays Welcome to Java! */

A pair of braces in a program forms a block that groups the program’s components. In Java, each block begins with an opening brace ({) and ends with a closing brace (}). Every class has a class block that groups the data and methods of the class. Similarly, every method has a method block that groups the statements in the method. Blocks can be nested, meaning that one block can be placed within another, as shown in the following code:

block

match braces

[image: Unnumbered code diagram Identifying blocks in code.]

Description

 Tip

An opening brace must be matched by a closing brace. Whenever you type an opening brace, immediately type a closing brace to prevent the missing-brace error. Most Java IDEs automatically insert the closing brace for each opening brace.

 Caution

Java source programs are case sensitive. It would be wrong, for example, to replace main in the program with Main.

case sensitive

You have seen several special characters (e.g., { }, //, ;) in the program. They are used in almost every program. Table 1.2 summarizes their uses.

special characters

Table 1.2 Special Characters

	Character

	Name

	Description

	{}

	Opening and closing braces

	Denote a block to enclose statements.

	()

	Opening and closing parentheses

	Used with methods.

	[]

	Opening and closing brackets

	Denote an array.

	//

	Double slashes

	Precede a comment line.

	""

	Opening and closing quotation marks

	Enclose a string (i.e., sequence of characters).

	;

	Semicolon

	Mark the end of a statement.

common errors

The most common errors you will make as you learn to program will be syntax errors. Like any programming language, Java has its own syntax, and you need to write code that conforms to the syntax rules. If your program violates a rule—for example, if the semicolon is missing, a brace is missing, a quotation mark is missing, or a word is misspelled—the Java compiler will report syntax errors. Try to compile the program with these errors and see what the compiler reports.

syntax rules

 Note

You are probably wondering why the main method is defined this way and why ­System.out.println(...) is used to display a message on the console. For the time being, simply accept that this is how things are done. Your questions will be fully answered in subsequent chapters.

The program in Listing 1.1 displays one message. Once you understand the program, it is easy to extend it to display more messages. For example, you can rewrite the program to display three messages, as shown in Listing 1.2.

Listing 1.2 WelcomeWithThreeMessages.java

class			1 public class WelcomeWithThreeMessages {
main method		2 public static void main(String[] args) {
display message		3 System.out.println("Programming is fun!");
			4 System.out.println("Fundamentals First");
			5 System.out.println("Problem Driven");
			6 }
			7 }

Programming is fun!
Fundamentals First
Problem Driven

Further, you can perform mathematical computations and display the result on the console. Listing 1.3 gives an example of evaluating 10.5+2×345−3.5.

Listing 1.3 ComputeExpression.java

class			1 public class ComputeExpression {
main method		2 public static void main(String[] args) {
compute expression	3 System.out.print("(10.5 + 2 * 3) / (45 – 3.5) = ");
			4 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
			5 }
			6 }

(10.5 + 2 * 3) / (45 – 3.5) = 0.39759036144578314

The print method in line 3

System.out.print("(10.5 + 2 * 3) / (45 – 3.5) = ");

print vs. println

is identical to the println method except that println moves to the beginning of the next line after displaying the string, but print does not advance to the next line when completed.

The multiplication operator in Java is *. As you can see, it is a straightforward process to translate an arithmetic expression to a Java expression. We will discuss Java expressions fur­ther in Chapter 2.

	1.7.1 What is a keyword? List some Java keywords.

	1.7.2 Is Java case sensitive? What is the case for Java keywords?

	1.7.3 What is a comment? Is the comment ignored by the compiler? How do you denote a comment line and a comment paragraph?

	1.7.4 What is the statement to display a string on the console?

	1.7.5 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 System.out.println("3.5 * 4 / 2 – 2.5 is ");
 System.out.println(3.5 * 4 / 2 – 2.5);
 }
}

1.8 Creating, Compiling, and Executing a Java Program

	You save a Java program in a .java file and compile it into a .class file. The .class file is executed by the Java Virtual Machine (JVM).

You have to create your program and compile it before it can be executed. This process is repetitive, as shown in Figure 1.6. If your program has compile errors, you have to modify the program to fix them, then recompile it. If your program has runtime errors or does not produce the correct result, you have to modify the program, recompile it, and execute it again.

[image: A flow chart shows the process for creating and modifying source code.]
Figure 1.6

The Java program-development process consists of repeatedly creating/modifying source code, compiling, and executing programs.

Description

You can use any text editor or IDE to create and edit a Java source-code file. This section demonstrates how to create, compile, and run Java programs from a command window. Sections 1.11 and 1.12 will introduce developing Java programs using NetBeans and Eclipse. From the command window, you can use a text editor such as Notepad to create the Java source-code file, as shown in Figure 1.7.

command window

[image: A Notepad window titled, Welcome, displays the code from listing 1.1.]
Figure 1.7

You can create a Java source file using Windows Notepad.

 Note

The source file must end with the extension .java and must have the same exact name as the public class name. For example, the file for the source code in Listing 1.1 should be named Welcome.java, since the public class name is Welcome.

file name Welcome.java,

A Java compiler translates a Java source file into a Java bytecode file. The following command compiles Welcome.java:

compile

javac Welcome.java

 Note

You must first install and configure the JDK before you can compile and run programs. See Supplement I.B, Installing and Configuring JDK 8, for how to install the JDK and set up the environment to compile and run Java programs. If you have trouble compiling and running programs, see Supplement I.C, Compiling and Running Java from the Command Window. This supplement also explains how to use basic DOS commands and how to use Windows Notepad to create and edit files. All the supplements are accessible from the Companion Website.

Supplement I.B

Supplement I.C

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class extension. Thus, the preceding command generates a file named Welcome.class, as shown in Figure 1.8a. The Java language is a high-level language, but Java bytecode is a low-level language. The bytecode is similar to machine instructions but is architecture neutral and can run on any platform that has a Java Virtual Machine (JVM), as shown in Figure 1.8b. Rather than a physical machine, the virtual machine is a program that interprets Java bytecode. This is one of Java’s primary advantages: Java bytecode can run on a variety of hardware platforms and operating systems. Java source code is compiled into Java bytecode, and Java bytecode is interpreted by the JVM. Your Java code may use the code in the Java library. The JVM executes your code along with the code in the library.

.class bytecode file

bytecode

Java Virtual Machine (JVM)

[image: Two figures show the relationships between bytecode, virtual machines, and computers.]
Figure 1.8

(a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any computer with a Java Virtual Machine.

Description

To execute a Java program is to run the program’s bytecode. You can execute the bytecode on any platform with a JVM, which is an interpreter. It translates the individual instructions in the bytecode into the target machine language code one at a time, rather than the whole program as a single unit. Each step is executed immediately after it is translated.

interpret bytecode

The following command runs the bytecode for Listing 1.1:

run

java Welcome

Figure 1.9 shows the javac command for compiling Welcome.java. The compiler generates the Welcome.class file, and this file is executed using the java command.

javac command

java command

 Note

For simplicity and consistency, all source-code and class files used in this book are placed under c:\book unless specified otherwise.

c:\book

[image: A window titled, command prompt, showing output for multiple commands.]
Figure 1.9

The output of Listing 1.1 displays the message “Welcome to Java!”

Description

Compile and run a Java program

 Caution

Do not use the extension .class in the command line when executing the program. Use java ClassName to run the program. If you use java ClassName.class in the command line, the system will attempt to fetch ClassName.class.class.

java ClassName

 Tip

If you execute a class file that does not exist, a NoClassDefFoundError will occur. If you execute a class file that does not have a main method or you mistype the main method (e.g., by typing Main instead of main), a NoSuchMethodError will occur.

NoClassDefFoundError

NoSuchMethodError

 Note

When executing a Java program, the JVM first loads the bytecode of the class to memory using a program called the class loader. If your program uses other classes, the class loader dynamically loads them just before they are needed. After a class is loaded, the JVM uses a program called the bytecode verifier to check the validity of the bytecode and to ensure that the bytecode does not violate Java’s security restrictions. Java enforces strict security to make sure Java class files are not tampered with and do not harm your computer.

class loader

bytecode verifier

 Pedagogical Note

Your instructor may require you to use packages for organizing programs. For example, you may place all programs in this chapter in a package named chapter1. For instructions on how to use packages, see Supplement I.F, Using Packages to Organize the Classes in the Text.

use package

	1.8.1 What is the Java source filename extension, and what is the Java bytecode filename extension?

	1.8.2 What are the input and output of a Java compiler?

	1.8.3 What is the command to compile a Java program?

	1.8.4 What is the command to run a Java program?

	1.8.5 What is the JVM?

	1.8.6 Can Java run on any machine? What is needed to run Java on a computer?

	1.8.7 If a NoClassDefFoundError occurs when you run a program, what is the cause of the error?

	1.8.8 If a NoSuchMethodError occurs when you run a program, what is the cause of the error?

1.9 Programming Style and Documentation

	Good programming style and proper documentation make a program easy to read and help programmers prevent errors.

Programming style deals with what programs look like. A program can compile and run properly even if written on only one line, but writing it all on one line would be bad programming style because it would be hard to read. Documentation is the body of explanatory remarks and comments pertaining to a program. Programming style and documentation are as important as coding. Good programming style and appropriate documentation reduce the chance of errors and make programs easy to read. This section gives several guidelines. For more detailed guidelines, see Supplement I.D, Java Coding Style Guidelines, on the Companion Website.

programming style

documentation

1.9.1 Appropriate Comments and Comment Styles

Include a summary at the beginning of the program that explains what the program does, its key features, and any unique techniques it uses. In a long program, you should also include comments that introduce each major step and explain anything that is difficult to read. It is important to make comments concise so that they do not crowd the program or make it difficult to read.

In addition to line comments (beginning with //) and block comments (beginning with /*), Java supports comments of a special type, referred to as javadoc comments. javadoc comments begin with /** and end with */. They can be extracted into an HTML file using the JDK’s javadoc command. For more information, see Supplement III.Y, javadoc Comments, on the Companion Website.

javadoc comment

Use javadoc comments (/** . . . */) for commenting on an entire class or an entire method. These comments must precede the class or the method header in order to be extracted into a javadoc HTML file. For commenting on steps inside a method, use line comments (//). To see an example of a javadoc HTML file, check out liveexample.pearsoncmg.com/javadoc/Exercise1.html. Its corresponding Java code is shown in liveexmple.pearsoncmg.com/javadoc/Exercise1.txt.

1.9.2 Proper Indentation and Spacing

A consistent indentation style makes programs clear and easy to read, debug, and maintain. Indentation is used to illustrate the structural relationships between a program’s components or statements. Java can read the program even if all of the statements are on the same long line, but humans find it easier to read and maintain code that is aligned properly. Indent each subcomponent or statement at least two spaces more than the construct within which it is nested.

indent code

A single space should be added on both sides of a binary operator, as shown in (a), rather in (b).

	System.out.println(3 + 4 * 4);

	System.out.println(3+4*4);

	(a) Good style

	(b) Bad style

1.9.3 Block Styles

A block is a group of statements surrounded by braces. There are two popular styles, next-line style and end-of-line style, as shown below.

	public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Block Styles");
 }
}

	public class Test {
 public static void main(String[] args) {
 System.out.println("Block Styles");
 }
}

	Next-line style

	End-of-line style

The next-line style aligns braces vertically and makes programs easy to read, whereas the end-of-line style saves space and may help avoid some subtle programming errors. Both are acceptable block styles. The choice depends on personal or organizational preference. You should use a block style consistently—mixing styles is not recommended. This book uses the end-of-line style to be consistent with the Java API source code.

	1.9.1 Reformat the following program according to the programming style and documentation guidelines. Use the end-of-line brace style.

public class Test
{
 // Main method
public static void main(String[] args) {
 /** Display output */
 System.out.println("Welcome to Java");
	 }
}

1.10 Programming Errors

	Programming errors can be categorized into three types: syntax errors, runtime errors, and logic errors.

1.10.1 Syntax Errors

Errors that are detected by the compiler are called syntax errors or compile errors. Syntax errors result from errors in code construction, such as mistyping a keyword, omitting some necessary punctuation, or using an opening brace without a corresponding closing brace. These errors are usually easy to detect because the compiler tells you where they are and what caused them. For example, the program in Listing 1.4 has a syntax error, as shown in Figure 1.10.

syntax errors

compile errors

[image: A command prompt, with output for a compile command.]
Figure 1.10

The compiler reports syntax errors.

Description

Listing 1.4 ShowSyntaxErrors.java

1 public class ShowSyntaxErrors {
2 public static main(String[] args) {
3 System.out.println("Welcome to Java);
4 }
5 }

Four errors are reported, but the program actually has two errors:

	The keyword void is missing before main in line 2.

	The string Welcome to Java should be closed with a closing quotation mark in line 3.

Since a single error will often display many lines of compile errors, it is a good practice to fix errors from the top line and work downward. Fixing errors that occur earlier in the program may also fix additional errors that occur later.

 Tip

If you don’t know how to correct an error, compare your program closely, character by character, with similar examples in the text. In the first few weeks of this course, you will probably spend a lot of time fixing syntax errors. Soon you will be familiar with Java syntax, and can quickly fix syntax errors.

fix syntax errors

1.10.2 Runtime Errors

Runtime errors are errors that cause a program to terminate abnormally. They occur while a program is running if the environment detects an operation that is impossible to carry out. Input mistakes typically cause runtime errors. An input error occurs when the program is waiting for the user to enter a value, but the user enters a value that the program cannot handle. For instance, if the program expects to read in a number, but instead the user enters a string, this causes data-type errors to occur in the program.

runtime errors

Another example of runtime errors is division by zero. This happens when the divisor is zero for integer divisions. For instance, the program in Listing 1.5 would cause a runtime error, as shown in Figure 1.11.

Listing 1.5 ShowRuntimeErrors.java

1 public class ShowRuntimeErrors {
2 public static void main(String[] args) {
3 System.out.println(1 / 0);
4 }
5 }

runtime error

[image: A command prompt, with output for a run command.]
Figure 1.11

The runtime error causes the program to terminate abnormally.

Description

1.10.3 Logic Errors

Logic errors occur when a program does not perform the way it was intended to. Errors of this kind occur for many different reasons. For example, suppose you wrote the program in ­Listing 1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

logic errors

Listing 1.6 ShowLogicErrors.java

1 public class ShowLogicErrors {
2 public static void main(String[] args) {
3 System.out.print("Celsius 35 is Fahrenheit degree ");
4 System.out.println((9 / 5) * 35 + 32);
5 }
6 }

Celsius 35 is Fahrenheit degree 67

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java, the division for integers is the quotient—the fractional part is truncated—so in Java 9 / 5 is 1. To get the correct result, you need to use 9.0 / 5, which results in 1.8.

In general, syntax errors are easy to find and easy to correct because the compiler gives indications as to where the errors came from and why they are wrong. Runtime errors are not difficult to find, either, since the reasons and locations for the errors are displayed on the console when the program aborts. Finding logic errors, on the other hand, can be very challenging. In the upcoming chapters, you will learn the techniques of tracing programs and finding logic errors.

1.10.4 Common Errors

Missing a closing brace, missing a semicolon, missing quotation marks for strings, and misspelling names are common errors for new programmers.

Common Error 1: Missing Braces

The braces are used to denote a block in the program. Each opening brace must be matched by a closing brace. A common error is missing the closing brace. To avoid this error, type a closing brace whenever an opening brace is typed, as shown in the following example:

public class Welcome {
}

}← Type this closing brace right away to match the opening brace.

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing brace for each opening brace typed.

Common Error 2: Missing Semicolons

Each statement ends with a statement terminator (;). Often, a new programmer forgets to place a statement terminator for the last statement in a block, as shown in the following example:

public static void main(String[] args) {
 System.out.println("Programming is fun!");
 System.out.println("Fundamentals First");
 System.out.println("Problem Driven")
} ↑
 Missing a semicolon

Common Error 3: Missing Quotation Marks

A string must be placed inside the quotation marks. Often, a new programmer forgets to place a quotation mark at the end of a string, as shown in the following example:

System.out.println("Problem Driven);
 ↑
 Missing a semicolon

If you use an IDE such as NetBeans and Eclipse, the IDE automatically inserts a closing quotation mark for each opening quotation mark typed.

Common Error 4: Misspelling Names

Java is case sensitive. Misspelling names is a common error for new programmers. For example, the word main is misspelled as Main and String is misspelled as string in the following code:

1 public class Test {
2 public static void Main(string[] args) {
3 System.out.println((10.5 + 2 * 3) / (45 – 3.5));
4 }
5 }

	1.10.1 What are syntax errors (compile errors), runtime errors, and logic errors?

	1.10.2 Give examples of syntax errors, runtime errors, and logic errors.

	1.10.3 If you forget to put a closing quotation mark on a string, what kind error of will be raised?

	1.10.4 If your program needs to read integers, but the user entered strings, an error would occur when running this program. What kind of error is this?

	1.10.5 Suppose you write a program for computing the perimeter of a rectangle and you mistakenly write your program so it computes the area of a rectangle. What kind of error is this?

	1.10.6 Identify and fix the errors in the following code:

1 public class Welcome {
2 public void Main(String[] args) {
3 System.out.println('Welcome to Java!);
4 }
5)

 Note

Section 1.8 introduced developing programs from the command line. Many of our ­readers also use an IDE. The following two sections introduce two most popular Java IDEs: NetBeans and Eclipse. These two sections may be skipped.

1.11 Developing Java Programs Using NetBeans

	You can edit, compile, run, and debug Java Programs using NetBeans.

NetBeans brief tutorial

NetBeans and Eclipse are two free popular integrated development environments for developing Java programs. They are easy to learn if you follow simple instructions. We recommend that you use either one for developing Java programs. This section gives the essential instructions to guide new users to create a project, create a class, compile, and run a class in NetBeans. The use of Eclipse will be introduced in the next section. For instructions on downloading and installing latest version of NetBeans, see Supplement II.B.

1.11.1 Creating a Java Project

Before you can create Java programs, you need to first create a project. A project is like a folder to hold Java programs and all supporting files. You need to create a project only once. Here are the steps to create a Java project:

	Choose File, New Project to display the New Project dialog box, as shown in Figure 1.12.

[image: The New Project dialog, in Net Beans.]
Figure 1.12

The New Project dialog is used to create a new project and specify a project type.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	Select Java in the Categories section and Java Application in the Projects section, and then click Next to display the New Java Application dialog box, as shown in Figure 1.13.

[image: The New Java Application dialog, in Net Beans.]
Figure 1.13

The New Java Application dialog is for specifying a project name and location.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	Type demo in the Project Name field and c:\michael in Project Location field. Uncheck Use Dedicated Folder for Storing Libraries and uncheck Create Main Class.

	Click Finish to create the project, as shown in Figure 1.14.

[image: A Net Beans window titled, demo, dash, Net Beans I D E, D e v, 201304132301.]
Figure 1.14

A New Java project named demo is created.

Source: Copyright © 1995–2016 ­Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

1.11.2 Creating a Java Class

After a project is created, you can create Java programs in the project using the following steps:

	Right-click the demo node in the project pane to display a context menu. Choose New, Java Class to display the New Java Class dialog box, as shown in Figure 1.15.

	Type Welcome in the Class Name field and select the Source Packages in the Location field. Leave the Package field blank. This will create a class in the default package.

	Click Finish to create the Welcome class. The source-code file Welcome.java is placed under the <default package> node.

	Modify the code in the Welcome class to match Listing 1.1 in the text, as shown in Figure 1.16.

[image: The New Java Class dialog, in Net Beans.]
Figure 1.15

The New Java Class dialog box is used to create a new Java class.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

[image: A Net Beans window titled, demo.]
Figure 1.16

You can edit a program and run it in NetBeans.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

1.11.3 Compiling and Running a Class

To run Welcome.java, right-click Welcome.java to display a context menu and choose Run File, or simply press Shift + F6. The output is displayed in the Output pane, as shown in ­Figure 1.16. The Run File command automatically compiles the program if the program has been changed.

1.12 Developing Java Programs Using Eclipse

	You can edit, compile, run, and debug Java Programs using Eclipse.

Eclipse brief tutorial

The preceding section introduced developing Java programs using NetBeans. You can also use Eclipse to develop Java programs. This section gives the essential instructions to guide new users to create a project, create a class, and compile/run a class in Eclipse. For instructions on downloading and installing latest version of Eclipse, see Supplement II.D.

1.12.1 Creating a Java Project

Before creating Java programs in Eclipse, you need to first create a project to hold all files. Here are the steps to create a Java project in Eclipse:

	Choose File, New, Java Project to display the New Project wizard, as shown in Figure 1.17.

[image: The New Java Project dialog, in Eclipse.]
Figure 1.17

The New Java Project dialog is for specifying a project name and the properties.

Source: Eclipse Foundation, Inc.

Description

	Type demo in the Project name field. As you type, the Location field is automatically set by default. You may customize the location for your project.

	Make sure you selected the options Use project folder as root for sources and class files so the .java and .class files are in the same folder for easy access.

	Click Finish to create the project, as shown in Figure 1.18.

[image: An Eclipse window titled, Java dash book, forward slash, Server dot Java dash Eclipse S D K.]
Figure 1.18

A New Java project named demo is created.

Source: Eclipse Foundation, Inc.

Description

1.12.2 Creating a Java Class

After a project is created, you can create Java programs in the project using the following steps:

	Choose File, New, Class to display the New Java Class wizard.

	Type Welcome in the Name field.

	Check the option public static void main(String[] args).

	Click Finish to generate the template for the source code Welcome.java, as shown in Figure 1.19.

[image: The New Java Class dialog, in Eclipse.]
Figure 1.19

The New Java Class dialog box is used to create a new Java class.

Source: Eclipse Foundation, Inc.

Description

1.12.3 Compiling and Running a Class

To run the program, right-click the class in the project to display a context menu. Choose Run, Java Application in the context menu to run the class. The output is displayed in the Console pane, as shown in Figure 1.20. The Run command automatically compiles the program if the program has been changed.

[image: The Eclipse window titled, Java dash demo, forward slash, Welcome dot java. The top middle pane is the edit pane, currently displaying the code from listing 1.1. The bottom pane is the output pane, currently displaying the following text: Welcome to Java!]
Figure 1.20

You can edit a program and run it in Eclipse.

Source: Eclipse Foundation, Inc.

Key Terms

	Application Program Interface (API) 11

	assembler 7

	assembly language 7

	bit 3

	block 13

	block comment 13

	bus 2

	byte 3

	bytecode 16

	bytecode verifier 18

	cable modem 6

	central processing unit (CPU) 3

	class loader 18

	comment 13

	compiler 8

	console 12

	dot pitch 6

	DSL (digital subscriber line) 6

	encoding scheme 3

	hardware 2

	high-level language 8

	integrated development environment (IDE) 12

	interpreter 8

	java command 17

	Java Development Toolkit (JDK) 12

	Java language specification 11

	Java Runtime Environment (JRE) 12

	Java Virtual Machine (JVM) 16

	javac command 17

	keyword (or reserved word) 13

	library 11

	line comment 13

	logic error 21

	low-level language 8

	machine language 7

	main method
 13

	memory 4

	dial-up modem 6

	motherboard 3

	network interface card (NIC) 6

	operating system (OS) 9

	pixel 6

	program 2

	programming 2

	runtime error 21

	screen resolution 6

	software 2

	source code 8

	source program 8

	statement 8

	statement terminator 13

	storage devices 4

	syntax error 20

 Note

The above terms are defined in this chapter. Supplement I.A, Glossary, lists all the key terms and descriptions in the book, organized by chapters.

Supplement I.A

Chapter Summary

	A computer is an electronic device that stores and processes data.

	A computer includes both hardware and software.

	Hardware is the physical aspect of the computer that can be touched.

	Computer programs, known as software, are the invisible instructions that control the hardware and make it perform tasks.

	Computer programming is the writing of instructions (i.e., code) for computers to perform.

	The central processing unit (CPU) is a computer’s brain. It retrieves instructions from memory and executes them.

	Computers use zeros and ones because digital devices have two stable states, referred to by convention as zero and one.

	A bit is a binary digit 0 or 1.

	A byte is a sequence of 8 bits.

	A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about 1 billion bytes, and a terabyte about 1,000 gigabytes.

	Memory stores data and program instructions for the CPU to execute.

	A memory unit is an ordered sequence of bytes.

	Memory is volatile, because information is lost when the power is turned off.

	Programs and data are permanently stored on storage devices and are moved to memory when the computer actually uses them.

	The machine language is a set of primitive instructions built into every computer.

	Assembly language is a low-level programming language in which a mnemonic is used to represent each machine-language instruction.

	High-level languages are English-like and easy to learn and program.

	A program written in a high-level language is called a source program.

	A compiler is a software program that translates the source program into a machine-language program.

	The operating system (OS) is a program that manages and controls a computer’s activities.

	Java is platform independent, meaning you can write a program once and run it on any computer.

	The Java source file name must match the public class name in the program. Java source-code files must end with the .java extension.

	Every class is compiled into a separate bytecode file that has the same name as the class and ends with the .class extension.

	To compile a Java source-code file from the command line, use the javac command.

	To run a Java class from the command line, use the java command.

	Every Java program is a set of class definitions. The keyword class introduces a class definition. The contents of the class are included in a block.

	A block begins with an opening brace ({) and ends with a closing brace (}).

	Methods are contained in a class. To run a Java program, the program must have a main method. The main method is the entry point where the program starts when it is executed.

	Every statement in Java ends with a semicolon (;), known as the statement terminator.

	Reserved words, or keywords, have a specific meaning to the compiler and cannot be used for other purposes in the program.

	In Java, comments are preceded by two slashes (//) on a line, called a line comment, or enclosed between /* and */ on one or several lines, called a block comment or paragraph comment. Comments are ignored by the compiler.

	Java source programs are case sensitive.

	Programming errors can be categorized into three types: syntax errors, runtime errors, and logic errors. Errors reported by a compiler are called syntax errors or compile errors. Runtime errors are errors that cause a program to terminate abnormally. Logic errors occur when a program does not perform the way it was intended to.

 Quiz

Answer the quiz for this chapter at www.pearsonhighered.com/liang. Choose this book and click Companion Website to select Quiz.

 Programming Exercises

 Pedagogical Note

We cannot stress enough the importance of learning programming through exercises. For this reason, the book provides a large number of programming exercises at various levels of difficulty. The problems cover many application areas, including math, science, business, financial, gaming, animation, and multimedia. Solutions to most even-­numbered programming exercises are on the Companion Website. Solutions to most odd-numbered programming exercises are on the Instructor Resource Website. The level of difficulty is rated easy (no star), moderate (*), hard (**), or challenging (***).

level of difficulty

	1.1 (Display three messages) Write a program that displays Welcome to Java, Welcome to Computer Science, and Programming is fun.

	1.2 (Display five messages) Write a program that displays Welcome to Java five times.

	*1.3 (Display a pattern) Write a program that displays the following pattern:

 J A V V A
 J A A V V A A
J J AAAAA V V AAAAA
 J J A A V A A

	1.4 (Print a table) Write a program that displays the following table:

	a

	a^2

	a^3

	1

	1

	1

	2

	4

	8

	3

	9

	27

	4

	16

	64

	1.5 (Compute expressions) Write a program that displays the result of

9.5×4.5−2.5×345.5−3.5.

	1.6 (Summation of a series) Write a program that displays the result of

1+2+3+4+5+6+7+8+9.

	1.7 (Approximate π) π can be computed using the following formula:

π = 4 × (

1 − 
1
3

 + 
1
5

 − 
1
7

 + 
1
9

 − 
1

11

 + … 
)

Write a program that displays the result of 4×(1−13+15−17+19−111) and 4×(1−13+15−17+19−111+113). Use 1.0 instead of 1 in your program.

	1.8 (Area and perimeter of a circle) Write a program that displays the area and perimeter of a circle that has a radius of 5.5 using the following formulas:

perimeter=2×radius×π
area=radius×radius×π

	1.9 (Area and perimeter of a rectangle) Write a program that displays the area and perimeter of a rectangle with a width of 4.5 and a height of 7.9 using the following formula:

area=width×height

	1.10 (Average speed in miles) Assume that a runner runs 14 kilometers in 45 minutes and 30 seconds. Write a program that displays the average speed in miles per hour. (Note 1 mile is equal to 1.6 kilometers.)

		*1.11	(Population projection) The U.S. Census Bureau projects population based on the following assumptions:

	One birth every 7 seconds

	One death every 13 seconds

	One new immigrant every 45 seconds

Write a program to display the population for each of the next five years. Assume that the current population is 312,032,486, and one year has 365 days. Hint: In Java, if two integers perform division, the result is an integer. The fractional part is truncated. For example, 5 / 4 is 1 (not 1.25) and 10 / 4 is 2 (not 2.5). To get an accurate result with the fractional part, one of the values involved in the division must be a number with a decimal point. For example, 5.0 / 4 is 1.25 and 10 / 4.0 is 2.5.

	1.12 (Average speed in kilometers) Assume that a runner runs 24 miles in 1 hour, 40 minutes, and 35 seconds. Write a program that displays the average speed in kilometers per hour. (Note 1 mile is equal to 1.6 kilometers.)

	*1.13 (Algebra: solve 2×2 linear equations) You can use Cramer’s rule to solve the following 2×2 system of linear equation provided that ad – bc is not 0:

ax + by = e

cx + dy = f

 x = 

ed − bf

ad − bc 

 y = 

af − ec

ad − bc

Write a program that solves the following equation and displays the value for x and y: (Hint: replace the symbols in the formula with numbers to compute x and y. This exercise can be done in Chapter 1 without using materials in later chapters.)

3.4x+50.2y=44.52.1x+.55y=5.9

 Note

More than 200 additional programming exercises with solutions are provided to the instructors on the Instructor Resource Website.

CHAPTER 2 Elementary Programming

Objectives

	To write Java programs to perform simple computations (§2.2).

	To obtain input from the console using the Scanner class (§2.3).

	To use identifiers to name variables, constants, methods, and classes (§2.4).

	To use variables to store data (§§2.5 and 2.6).

	To program with assignment statements and assignment expressions (§2.6).

	To use constants to store permanent data (§2.7).

	To name classes, methods, variables, and constants by following their naming conventions (§2.8).

	To explore Java numeric primitive data types: byte, short, int, long, float, and double (§2.9.1).

	To read a byte, short, int, long, float, or double value from the keyboard (§2.9.2).

	To perform operations using operators +, -, *, /, and % (§2.9.3).

	To perform exponent operations using Math.pow(a, b) (§2.9.4).

	To write integer literals, floating-point literals, and literals in scientific notation (§2.10).

	To write and evaluate numeric expressions (§2.11).

	To obtain the current system time using System.currentTimeMillis() (§2.12).

	To use augmented assignment operators (§2.13).

	To distinguish between postincrement and preincrement and between postdecrement and predecrement (§2.14).

	To cast the value of one type to another type (§2.15).

	To describe the software development process and apply it to develop the loan payment program (§2.16).

	To write a program that converts a large amount of money into smaller units (§2.17).

	To avoid common errors and pitfalls in elementary programming (§2.18).

2.1 Introduction

	The focus of this chapter is on learning elementary programming techniques to solve problems.

In Chapter 1, you learned how to create, compile, and run very basic Java programs. You will learn how to solve problems by writing programs. Through these problems, you will learn elementary programming using primitive data types, variables, constants, operators, expressions, and input and output.

Suppose, for example, you need to take out a student loan. Given the loan amount, loan term, and annual interest rate, can you write a program to compute the monthly payment and total payment? This chapter shows you how to write programs like this. Along the way, you will learn the basic steps that go into analyzing a problem, designing a solution, and implementing the solution by creating a program.

2.2 Writing a Simple Program

	Writing a program involves designing a strategy for solving the problem then using a programming language to implement that strategy.

Let’s first consider the simple problem of computing the area of a circle. How do we write a program for solving this problem?

problem

Writing a program involves designing algorithms and translating algorithms into programming instructions, or code. An algorithm lists the steps you can follow to solve a problem. Algorithms can help the programmer plan a program before writing it in a programming ­language. Algorithms can be described in natural languages or in pseudocode (natural language mixed with some programming code). The algorithm for calculating the area of a circle can be described as follows:

algorithm

pseudocode

	Read in the circle’s radius.

	Compute the area using the following formula:

area=radius×radius×π

	Display the result.

 Tip

It’s always a good practice to outline your program (or its underlying problem) in the form of an algorithm before you begin coding.

When you code—that is, when you write a program—you translate an algorithm into a program. You already know every Java program begins with a class definition in which the keyword class is followed by the class name. Assume you have chosen ComputeArea as the class name. The outline of the program would look as follows:

public class ComputeArea {
 // Details to be given later
}

As you know, every Java program must have a main method where program execution begins. The program is then expanded as follows:

public class ComputeArea {
 public static void main(String[] args) {
 // Step 1: Read in radius
 // Step 2: Compute area
 // Step 3: Display the area
 }
}

The program needs to read the radius entered by the user from the keyboard. This raises two important issues:

	Reading the radius

	Storing the radius in the program

Let’s address the second issue first. In order to store the radius, the program needs to declare a symbol called a variable. A variable represents a value stored in the computer’s memory.

variable

Rather than using x and y as variable names, choose descriptive names: in this case, radius for radius and area for area. To let the compiler know what radius and area are, specify their data types. That is the kind of data stored in a variable, whether an integer, real number, or something else. This is known as declaring variables. Java provides simple data types for representing integers, real numbers, characters, and Boolean types. These types are known as primitive data types or fundamental types.

descriptive names

data type

declare variables

primitive data types

Real numbers (i.e., numbers with a decimal point) are represented using a method known as floating-point in computers. Therefore, the real numbers are also called floating-point ­numbers. In Java, you can use the keyword double to declare a floating-point variable. Declare radius and area as double. The program can be expanded as follows:

floating-point

public class ComputeArea {
 public static void main(String[] args) {
 double radius;
 double area;
 // Step 1: Read in radius

 // Step 2: Compute area

 // Step 3: Display the area
 }
}

The program declares radius and area as variables. The reserved word double indicates that radius and area are floating-point values stored in the computer.

The first step is to prompt the user to designate the circle’s radius. You will soon learn how to prompt the user for information. For now, to learn how variables work, you can assign a fixed value to radius in the program as you write the code. Later, you’ll modify the program to prompt the user for this value.

The second step is to compute area by assigning the result of the expression radius * radius * 3.14159 to area.

In the final step, the program will display the value of area on the console by using the System.out.println method.

Listing 2.1 shows the complete program, and a sample run of the program is shown in Figure 2.1.

Listing 2.1 ComputeArea.java

 1 public class ComputeArea {
 2 public static void main(String[] args) {
 3 double radius; // Declare radius
 4 double area; // Declare area
 5
 6 // Assign a radius
 7 radius = 20; // radius is now 20
 8
 9 // Compute area
10 area = radius * radius * 3.14159;
11
12 // Display results
13 System.out.println("The area for the circle of radius " +
14 radius + " is " + area);
15 }
16 }

[image: A command prompt. To compile, enter the command, java c, Compute Area dot java. To run, enter the command, java, Compute Area. The window displays the following output: The area for the circle of radius 20 is 1256.636.]

Figure 2.1

The program displays the area of a circle.

Variables such as radius and area correspond to memory locations. Every variable has a name, a type, and a value. Line 3 declares that radius can store a double value. The value is not defined until you assign a value. Line 7 assigns 20 into the variable radius. Similarly, line 4 declares the variable area, and line 10 assigns a value into area. The following table shows the value in the memory for area and radius as the program is executed. Each row in the table shows the values of variables after the statement in the corresponding line in the program is executed. This method of reviewing how a program works is called tracing a program. Tracing programs are helpful for understanding how programs work, and they are useful tools for finding errors in programs.

declare variable

assign value

tracing program

	line#

	radius

	area

	

	 3

	no value

	

	

	 4

	

	no value

	

	 7

	20

	

	

	10

	

	1256.636

	

The plus sign (+) has two meanings: one for addition, and the other for concatenating (combining) strings. The plus sign (+) in lines 13–14 is called a string concatenation operator. It combines two strings into one. If a string is combined with a number, the number is converted into a string and concatenated with the other string. Therefore, the plus signs (+) in lines 13–14 concatenate strings into a longer string, which is then displayed in the output. Strings and string concatenation will be discussed further in Chapter 4.

concatenate strings

concatenate strings with numbers

break a long string

 Caution

A string cannot cross lines in the source code. Thus, the following statement would result in a compile error:

System.out.println("Introduction to Java Programming, by Y. Daniel Liang");

To fix the error, break the string into separate substrings, and use the concatenation operator (+) to combine them:

System.out.println("Introduction to Java Programming, " +
 "by Y. Daniel Liang");

 2.2.1 Identify and fix the errors in the following code:

 1 public class Test {
 2 public void main(string[] args) {
 3 double i = 50.0;
 4 double k = i + 50.0;
 5 double j = k + 1;
 6
 7 System.out.println("j is " + j + " and
 8 k is " + k);
 9 }
10 }

2.3 Reading Input from the Console

	Reading input from the console enables the program to accept input from the user.

In Listing 2.1, the radius is fixed in the source code. To use a different radius, you have to modify the source code and recompile it. Obviously, this is not convenient, so instead you can use the Scanner class for console input.

Obtain input

Java uses System.out to refer to the standard output device, and System.in to the ­standard input device. By default, the output device is the display monitor, and the input device is the keyboard. To perform console output, you simply use the println method to display a ­primitive value or a string to the console. To perform console input, you need to use the ­Scanner class to create an object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

The syntax new Scanner(System.in) creates an object of the Scanner type. The syntax Scanner input declares that input is a variable whose type is Scanner. The whole line Scanner input = new Scanner(System.in) creates a Scanner object and assigns its reference to the variable input. An object may invoke its methods. To invoke a method on an object is to ask the object to perform a task. You can invoke the nextDouble() method to read a double value as follows:

double radius = input.nextDouble();

This statement reads a number from the keyboard and assigns the number to radius.

Listing 2.2 rewrites Listing 2.1 to prompt the user to enter a radius.

Listing 2.2 ComputeAreaWithConsoleInput.java

import class	 1 import java.util.Scanner; // Scanner is in the java.util package
		 2
		 3 public class ComputeAreaWithConsoleInput {
		 4 public static void main(String[] args) {
		 5 // Create a Scanner object
create a Scanner 6 Scanner input = new Scanner(System.in);
		 7
		 8 // Prompt the user to enter a radius
		 9 System.out.print("Enter a number for radius: ");
read a double 10 double radius = input.nextDouble(); 			 			
		11
		12 // Compute area
		13 double area = radius * radius * 3.14159;
		14
		15 // Display results
		16 System.out.println("The area for the circle of radius " +
		17 radius + " is " + area);
		18 }
		19 }

Enter a number for radius: 2.5
The area for the circle of radius 2.5 is 19.6349375

Enter a number for radius: 23
The area for the circle of radius 23.0 is 1661.90111

The Scanner class is in the java.util package. It is imported in line 1. Line 6 creates a Scanner object. Note the import statement can be omitted if you replace Scanner by java.util.Scanner in line 6.

Line 9 displays a string "Enter a number for radius: " to the console. This is known as a prompt, because it directs the user to enter an input. Your program should always tell the user what to enter when expecting input from the keyboard.

prompt

Recall that the print method in line 9 is identical to the println method, except that println moves to the beginning of the next line after displaying the string, but print does not advance to the next line when completed.

Line 6 creates a Scanner object. The statement in line 10 reads input from the keyboard.

double radius = input.nextDouble();

After the user enters a number and presses the Enter key, the program reads the number and assigns it to radius.

More details on objects will be introduced in Chapter 9. For the time being, simply accept that this is how we obtain input from the console.

The Scanner class is in the java.util package. It is imported in line 1. There are two types of import statements: specific import and wildcard import. The specific import specifies a single class in the import statement. For example, the following statement imports Scanner from the package java.util.

specific import

import java.util.Scanner;
The wildcard import imports all the classes in a package by using the asterisk as the wildcard. For example, the following statement imports all the classes from the package java.util.

wildcard import

import java.util.*;
The information for the classes in an imported package is not read in at compile time or runtime unless the class is used in the program. The import statement simply tells the compiler where to locate the classes. There is no performance difference between a specific import and a wildcard import declaration.

no performance difference

Listing 2.3 gives an example of reading multiple inputs from the keyboard. The program reads three numbers and displays their average.

Listing 2.3 ComputeAverage.java

import class 1 import java.util.Scanner; // Scanner is in the java.util package
		 2
		 3 public class ComputeAverage {
		 4 public static void main(String[] args) {
		 5 // Create a Scanner object
create a Scanner 6 Scanner input = new Scanner(System.in);
		 7
		 8 // Prompt the user to enter three numbers
		 9 System.out.print("Enter three numbers: ");
read a double 10 double number1 = input.nextDouble();
	 11 double number2 = input.nextDouble();
		12 double number3 = input.nextDouble();
		13
		14 // Compute average
		15 double average = (number1 + number2 + number3) / 3;
		16
		17 // Display results
		18 System.out.println("The average of " + number1 + " " + number2
		19 + " " + number3 + " is " + average);
		20 }
		21 }

Enter three numbers: 1 2 3
The average of 1.0 2.0 3.0 is 2.0

enter input in one line

Enter three numbers: 10.5
11
11.5
The average of 10.5 11.0 11.5 is 11.0

enter input in multiple lines

The codes for importing the Scanner class (line 1) and creating a Scanner object (line 6) are the same as in the preceding example, as well as in all new programs you will write for reading input from the keyboard.

Line 9 prompts the user to enter three numbers. The numbers are read in lines 10–12. You may enter three numbers separated by spaces, then press the Enter key, or enter each number followed by a press of the Enter key, as shown in the sample runs of this program.

If you entered an input other than a numeric value, a runtime error would occur. In ­Chapter 12, you will learn how to handle the exception so the program can continue to run.

runtime error

 Note

Most of the programs in the early chapters of this book perform three steps— input, process, and output—called IPO. Input is receiving input from the user; process is producing results using the input; and output is displaying the results.

IPO

 Note

If you use an IDE such as Eclipse or NetBeans, you will get a warning to ask you to close the input for preventing a potential resource leak. Ignore the warning for the time being because the input is automatically closed when your program is terminated. In this case, there will be no resource leaking.

Warning in IDE

	2.3.1 How do you write a statement to let the user enter a double value from the ­keyboard? What happens if you entered 5a when executing the following code?

double radius = input.nextDouble();

	2.3.2 Are there any performance differences between the following two import statements?

import java.util.Scanner;
import java.util.*;

2.4 Identifiers

	Identifiers are the names that identify the elements such as classes, methods, and ­variables in a program.

As you see in Listing 2.3, ComputeAverage, main, input, number1, number2, number3, and so on are the names of things that appear in the program. In programming terminology, such names are called identifiers. All identifiers must obey the following rules:

identifiers

identifier naming rules

	An identifier is a sequence of characters that consists of letters, digits, underscores (_), and dollar signs ($).

	An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot start with a digit.

	An identifier cannot be a reserved word. (See Appendix A for a list of reserved words.)

	An identifier cannot be true, false, or null.

	An identifier can be of any length.

For example, $2, ComputeArea, area, radius, and print are legal identifiers, whereas 2A and d+4 are not because they do not follow the rules. The Java compiler detects illegal identifiers and reports syntax errors.

 Note

Since Java is case sensitive, area, Area, and AREA are all different identifiers.

case sensitive

 Tip

Identifiers are for naming variables, methods, classes, and other items in a program. Descriptive identifiers make programs easy to read. Avoid using abbreviations for identifiers. Using complete words is more descriptive. For example, numberOfStudents is better than numStuds, numOfStuds, or numOfStudents. We use descriptive names for complete programs in the text. However, we will occasionally use variable names such as i, j, k, x, and y in the code snippets for brevity. These names also provide a generic tone to the code snippets.

descriptive names

 Tip

Do not name identifiers with the $ character. By convention, the $ character should be used only in mechanically generated source code.

the $ character

	2.4.1 Which of the following identifiers are valid? Which are Java keywords?

	
miles, Test, a++, ––a, 4#R, $4, #44, apps
class, public, int, x, y, radius

2.5 Variables

	Variables are used to represent values that may be changed in the program.

As you see from the programs in the preceding sections, variables are used to store values to be used later in a program. They are called variables because their values can be changed. In the program in Listing 2.2, radius and area are variables of the double type. You can assign any numerical value to radius and area, and the values of radius and area can be reassigned. For example, in the following code, radius is initially 1.0 (line 2) then changed to 2.0 (line 7), and area is set to 3.14159 (line 3) then reset to 12.56636 (line 8).

why called variables?

1 // Compute the first area
2 radius = 1.0;	 	 radius: 1.0 
3 area = radius * radius * 3.14159;	 	area: 3.14159 
4 System.out.println("The area is " + area + " for radius " + radius);
5
6 // Compute the second area
7 radius = 2.0;	 	 radius: 2.0 
8 area = radius * radius * 3.14159;		 area: 12.56636 
9 System.out.println("The area is " + area + " for radius " + radius);

Variables are for representing data of a certain type. To use a variable, you declare it by telling the compiler its name as well as what type of data it can store. The variable declaration tells the compiler to allocate appropriate memory space for the variable based on its data type. The syntax for declaring a variable is

datatype variableName;

Here are some examples of variable declarations:

declare variable

int count;	 // Declare count to be an integer variable
double radius;	 // Declare radius to be a double variable
double interestRate;	// Declare interestRate to be a double variable

These examples use the data types int and double. Later you will be introduced to ­additional data types, such as byte, short, long, float, char, and boolean.

If variables are of the same type, they can be declared together, as follows:

datatype variable1, variable2, …, variablen;
The variables are separated by commas. For example,

int i, j, k; // Declare i, j, and k as int variables
Variables often have initial values. You can declare a variable and initialize it in one step. Consider, for instance, the following code:

int count = 1;
This is equivalent to the next two statements:

initialize variables

int count;
count = 1;

You can also use a shorthand form to declare and initialize variables of the same type together. For example,

int i = 1, j = 2;

 Tip

A variable must be declared before it can be assigned a value. A variable declared in a method must be assigned a value before it can be used.

Whenever possible, declare a variable and assign its initial value in one step. This will make the program easy to read and avoid programming errors.

Every variable has a scope. The scope of a variable is the part of the program where the variable can be referenced. The rules that define the scope of a variable will be gradually introduced later in the book. For now, all you need to know is that a variable must be declared and initialized before it can be used.

	2.5.1 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = k + 2;
4 System.out.println(i);
5 }
6 }

2.6 Assignment Statements and Assignment Expressions

	An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java.

After a variable is declared, you can assign a value to it by using an assignment statement. In Java, the equal sign (=) is used as the assignment operator. The syntax for assignment statements is as follows:

assignment statement

assignment operator

variable = expression;

An expression represents a computation involving values, variables, and operators that, taking them together, evaluates to a value. For example, consider the following code:

expression

int y = 1;	 // Assign 1 to variable y
double radius = 1.0;	// Assign 1.0 to variable radius
int x = 5 * (3 / 2);	// Assign the value of the expression to x
x = y + 1;	 // Assign the addition of y and 1 to x
double area = radius * radius * 3.14159;	// Compute area

You can use a variable in an expression. A variable can also be used in both sides of the = operator. For example,

x = x + 1;

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the ­statement is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus, the following statement is wrong:

1 = x; // Wrong

 Note

In mathematics, x = 2 * x + 1 denotes an equation. However, in Java, x = 2 * x + 1 is an assignment statement that evaluates the expression 2 * x + 1 and assigns the result to x.

In Java, an assignment statement is essentially an expression that evaluates to the value to be assigned to the variable on the left side of the assignment operator. For this reason, an assignment statement is also known as an assignment expression. For example, the following statement is correct:

assignment expression

System.out.println(x = 1);

which is equivalent to

x = 1;
System.out.println(x);

If a value is assigned to multiple variables, you can use the following syntax:

i = j = k = 1;

which is equivalent to

k = 1;
j = k;
i = j;

 Note

In an assignment statement, the data type of the variable on the left must be compatible with the data type of the value on the right. For example, int x = 1.0 would be illegal, because the data type of x is int. You cannot assign a double value (1.0) to an int variable without using type casting. Type casting will be introduced in Section 2.15.

	2.6.1 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = j = k = 2;
4 System.out.println(i + " " + j + " " + k);
5 }
6 }

2.7 Named Constants

	A named constant is an identifier that represents a permanent value.

The value of a variable may change during the execution of a program, but a named constant, or simply constant, represents permanent data that never changes. A constant is also known as a final variable in Java. In our ComputeArea program,
π
 is a constant. If you use it frequently, you don’t want to keep typing 3.14159; instead, you can declare a constant for
 π.

 Here is the syntax for declaring a constant:

constant

final datatype CONSTANTNAME = value;

A constant must be declared and initialized in the same statement. The word final is a Java keyword for declaring a constant. By convention, all letters in a constant are in uppercase. For example, you can declare
π
 as a constant and rewrite Listing 2.2, as in Listing 2.4.

final keyword

Listing 2.4 ComputeAreaWithConstant.java

 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAreaWithConstant {
 4 public static void main(String[] args) {
 5 final double PI = 3.14159; // Declare a constant
 6
 7 // Create a Scanner object
 8 Scanner input = new Scanner(System.in);
 9
10 // Prompt the user to enter a radius
11 System.out.print("Enter a number for radius: ");
12 double radius = input.nextDouble();
13
14 // Compute area
15 double area = radius * radius * PI;
16
17 // Display result
18 System.out.println("The area for the circle of radius " +
19 radius + " is " + area);
20 }
21 }

There are three benefits of using constants: (1) you don’t have to repeatedly type the same value if it is used multiple times; (2) if you have to change the constant value (e.g., from 3.14 to 3.14159 for PI), you need to change it only in a single location in the source code; and (3) a descriptive name for a constant makes the program easy to read.

benefits of constants

	2.7.1 What are the benefits of using constants? Declare an int constant SIZE with value 20.

2.8 Naming Conventions

	Sticking with the Java naming conventions makes your programs easy to read and avoids errors.

Make sure you choose descriptive names with straightforward meanings for the variables, constants, classes, and methods in your program. As mentioned earlier, names are case sensitive. Listed below are the conventions for naming variables, methods, and classes.

	Use lowercase for variables and methods—for example, the variables radius and area, and the method print. If a name consists of several words, concatenate them into one, making the first word lowercase and capitalizing the first letter of each subsequent word—for example, the variable numberOfStudents. This naming style is known as the camelCase because the uppercase characters in the name resemble a camel’s humps.

	Capitalize the first letter of each word in a class name—for example, the class names ComputeArea and System.

	Capitalize every letter in a constant, and use underscores between words—for example, the constants PI and MAX_VALUE.

name variables and methods

name classes

name constants

It is important to follow the naming conventions to make your programs easy to read.

 Caution

Do not choose class names that are already used in the Java library. For example, since the System class is defined in Java, you should not name your class System.

name classes

	2.8.1 What are the naming conventions for class names, method names, constants, and variables? Which of the following items can be a constant, a method, a variable, or a class according to the Java naming conventions?

MAX_VALUE, Test, read, readDouble

	2.8.2 Translate the following algorithm into Java code:

	Step 1: Declare a double variable named miles with an initial value 100.

	Step 2: Declare a double constant named KILOMETERS_PER_MILE with value 1.609.

	Step 3: Declare a double variable named kilometers, multiply miles and ­KILOMETERS_PER_MILE, and assign the result to kilometers.

	Step 4: Display kilometers to the console.

What is kilometers after Step 4?

2.9 Numeric Data Types and Operations

	Java has six numeric types for integers and floating-point numbers with operators +, -, *, /, and %.

2.9.1 Numeric Types

Every data type has a range of values. The compiler allocates memory space for each variable or constant according to its data type. Java provides eight primitive data types for numeric values, characters, and Boolean values. This section introduces numeric data types and operators.

Table 2.1 lists the six numeric data types, their ranges, and their storage sizes.

Table 2.1 Numeric Data Types

	Name

	Range

	Storage Size

	

	byte

	

 −
2
7

 to

2
7

 −1 (

 −128 to 127

)

	8-bit signed

	byte type

	short

	

 −
2

 15

 to

2

 15

 −1 (

 −32768 to 32767

)

	16-bit signed

	short type

	int

	

 −
2

 31

 to

2

 31

 −1 (

 −2147483648 to 2147483647

)

	32-bit signed

	int type

	long

	

 −
2

 63

 to

2

 63

 −1

(i.e.,

 −9223372036854775808

 to 9223372036854775807)

	64-bit signed

	long type

	float

	Negative range:

 −3.4028235E+38

 to

 −1.4E −45

Positive range:

1.4E −45

 to

3.4028235E+38

	32-bit IEEE 754

	float type

	double

	Negative range:

 −1.7976931348623157E+308

 to

 −4.9E −324

Positive range:

4.9E −324

 to

1.7976931348623157E+308

	64-bit IEEE 754

	double type

 Note

IEEE 754 is a standard approved by the Institute of Electrical and Electronics Engineers for representing floating-point numbers on computers. The standard has been widely adopted. Java uses the 32-bit IEEE 754 for the float type and the 64-bit IEEE 754 for the double type. The IEEE 754 standard also defines special floating-point values, which are listed in Appendix E.

Java uses four types for integers: byte, short, int, and long. Choose the type that is most appropriate for your variable. For example, if you know an integer stored in a variable is within a range of a byte, declare the variable as a byte. For simplicity and consistency, we will use int for integers most of the time in this book.

integer types

Java uses two types for floating-point numbers: float and double. The double type is twice as big as float, so the double is known as double precision, and float as single precision. Normally, you should use the double type, because it is more accurate than the float type.

floating-point types

2.9.2 Reading Numbers from the Keyboard

You know how to use the nextDouble() method in the Scanner class to read a double value from the keyboard. You can also use the methods listed in Table 2.2 to read a number of the byte, short, int, long, and float type.

Table 2.2 Methods for Scanner Objects

	Method

	Description

	nextByte()

	reads an integer of the byte type.

	nextShort()

	reads an integer of the short type.

	nextInt()

	reads an integer of the int type.

	nextLong()

	reads an integer of the long type.

	nextFloat()

	reads a number of the float type.

	nextDouble()

	reads a number of the double type.

Here are examples for reading values of various types from the keyboard:

 1 Scanner input = new Scanner(System.in);
 2 System.out.print("Enter a byte value: ");
 3 byte byteValue = input.nextByte();
 4
 5 System.out.print("Enter a short value: ");
 6 short shortValue = input.nextShort();
 7
 8 System.out.print("Enter an int value: ");
 9 int intValue = input.nextInt();
10
11 System.out.print("Enter a long value: ");
12 long longValue = input.nextLong();
13
14 System.out.print("Enter a float value: ");
15 float floatValue = input.nextFloat();

If you enter a value with an incorrect range or format, a runtime error would occur. For example, if you enter a value 128 for line 3, an error would occur because 128 is out of range for a byte type integer.

2.9.3 Numeric Operators

The operators for numeric data types include the standard arithmetic operators: addition (+), subtraction (–), multiplication (*), division (/), and remainder (%), as listed in Table 2.3. The operands are the values operated by an operator.

Table 2.3 Numeric Operators

	Name

	Meaning

	Example

	Result

	+

	Addition

	

34+1

	35

	-

	Subtraction

	

34.0−0.1

	33.9

	*

	Multiplication

	300*30

	9000

	/

	Division

	1.0 / 2.0

	0.5

	%

	Remainder

	20 % 3

	2

operators +, -, *, /, and %

operands

When both operands of a division are integers, the result of the division is the quotient and the fractional part is truncated. For example, 5 / 2 yields 2, not 2.5, and –5 / 2 yields –2, not –2.5. To perform a floating-point division, one of the operands must be a floating-point number. For example, 5.0 / 2 yields 2.5.

integer division

The % operator, known as remainder, yields the remainder after division. The operand on the left is the dividend, and the operand on the right is the divisor. Therefore, 7 % 3 yields 1, 3 % 7 yields 3, 12 % 4 yields 0, 26 % 8 yields 2, and 20 % 13 yields 7.

[image: Performing long division.]

Description
The bracket used in long division is formed by a horizontal bar, with a downward curve falling away from the bar’s left side. Place the dividend under and inside the bracket, with the divisor outside the bracket, to the left of the dividend, and place the quotient above the bracket, aligned to the 1’s place in the dividend. Multiply the divisor by the quotient, and subtract the product from the dividend to find the remainder.

The % operator is often used for positive integers, but it can also be used with negative integers and floating-point values. The remainder is negative only if the dividend is negative. For example, -7 % 3 yields -1, -12 % 4 yields 0, -26 % -8 yields -2, and 20 % -13 yields 7.

Remainder is very useful in programming. For example, an even number % 2 is always 0 and a positive odd number % 2 is always 1. Thus, you can use this property to determine whether a number is even or odd. If today is Saturday, it will be Saturday again in 7 days. Suppose you and your friends are going to meet in 10 days. What will be the day in 10 days? You can find that the day is Tuesday using the following expression:

[image: Noting that a week has 7 days, and designating Sunday as day 0, Tuesday as day 2, and Saturday as day 6, the expression is written as follows: opening parenthesis, 6 + 10, closing parenthesis, % 7 is 2.]
The program in Listing 2.5 obtains minutes and remaining seconds from an amount of time in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

Listing 2.5 DisplayTime.java

import Scanner 1 import java.util.Scanner;
		 2
		 3 public class DisplayTime {
		 4 public static void main(String[] args) {
create a Scanner 5 Scanner input = new Scanner(System.in);
		 6 // Prompt the user for input
		 7 System.out.print("Enter an integer for seconds: ");
read an integer 8 int seconds = input.nextInt();
		 9
divide		10 int minutes = seconds / 60; // Find minutes in seconds
remainder	11 int remainingSeconds = seconds % 60; // Seconds remaining
	 12 System.out.println(seconds + " seconds is " + minutes +
		13 " minutes and " + remainingSeconds + " seconds");
		14 }
		15 }

Enter an integer for seconds: 500
500 seconds is 8 minutes and 20 seconds

	line#

	seconds

	minutes

	remainingSeconds

	

	  8

	500

	

	

	

	10

	

	8

	

	

	11

	

	
	20

	

The nextInt() method (line 8) reads an integer for seconds. Line 10 obtains the minutes using seconds / 60. Line 11 (seconds % 60) obtains the remaining seconds after taking away the minutes.

The + and - operators can be both unary and binary. A unary operator has only one operand; a binary operator has two. For example, the – operator in –5 is a unary operator to negate number 5, whereas the – operator in 4 – 5 is a binary operator for subtracting 5 from 4.

unary operator

binary operator

2.9.4 Exponent Operations

The Math.pow(a, b) method can be used to compute

 a
 b

 .

 The pow method is defined in the Math class in the Java API. You invoke the method using the syntax Math.pow(a, b) (e.g., Math.pow(2, 3)), which returns the result of

 a

 b

 (

 2
 3

).

 Here, a and b are parameters for the pow method and the numbers 2 and 3 are actual values used to invoke the method. For example,

Math.pow(a, b) method

System.out.println(Math.pow(2, 3)); // Displays 8.0
System.out.println(Math.pow(4, 0.5)); // Displays 2.0
System.out.println(Math.pow(2.5, 2)); // Displays 6.25
System.out.println(Math.pow(2.5, –2)); // Displays 0.16

Chapter 6 introduces more details on methods. For now, all you need to know is how to invoke the pow method to perform the exponent operation.

	2.9.1 Find the largest and smallest byte, short, int, long, float, and double. Which of these data types requires the least amount of memory?

	2.9.2 Show the result of the following remainders:

 56 % 6
 78 % -4
-34 % 5
-34 % -5
 5 % 1
 1 % 5

	2.9.3 If today is Tuesday, what will be the day in 100 days?

	2.9.4 What is the result of 25 / 4? How would you rewrite the expression if you wished the result to be a floating-point number?

	2.9.5 Show the result of the following code:

System.out.println(2 * (5 / 2 + 5 / 2));
System.out.println(2 * 5 / 2 + 2 * 5 / 2);
System.out.println(2 * (5 / 2));
System.out.println(2 * 5 / 2);

	2.9.6 Are the following statements correct? If so, show the output.

System.out.println("25 / 4 is " + 25 / 4);
System.out.println("25 / 4.0 is " + 25 / 4.0);
System.out.println("3 * 2 / 4 is " + 3 * 2 / 4);
System.out.println("3.0 * 2 / 4 is " + 3.0 * 2 / 4);

	2.9.7 Write a statement to display the result of

2

3.5

.

	2.9.8 Suppose m and r are integers. Write a Java expression for

 mr

2

 to obtain a floating-point result.

2.10 Numeric Literals

	A literal is a constant value that appears directly in a program.

literal

For example, 34 and 0.305 are literals in the following statements:

int numberOfYears = 34;
double weight = 0.305;

2.10.1 Integer Literals

An integer literal can be assigned to an integer variable as long as it can fit into the variable. A compile error will occur if the literal is too large for the variable to hold. The statement byte b = 128, for example, will cause a compile error, because 128 cannot be stored in a variable of the byte type. (Note the range for a byte value is from –128 to 127.)

An integer literal is assumed to be of the int type, whose value is between

 −
2

31

 (

 −2147483648

)

 and

2

31

 −1 (

2147483647

)

. To denote an integer literal of the long type, append the letter L or l to it. For example, to write integer 2147483648 in a Java program, you have to write it as 2147483648L or 2147483648l, because 2147483648 exceeds the range for the int value. L is preferred because l (lowercase L) can easily be confused with 1 (the digit one).

 Note

By default, an integer literal is a decimal integer number. To denote a binary integer literal, use a leading 0b or 0B (zero B); to denote an octal integer literal, use a leading 0 (zero); and to denote a hexadecimal integer literal, use a leading 0x or 0X (zero X). For example,

binary, octal, and hex literals

System.out.println(0B1111); // Displays 15
System.out.println(07777); // Displays 4095
System.out.println(0XFFFF); // Displays 65535

Hexadecimal numbers, binary numbers, and octal numbers will be introduced in Appendix F.

 Note

To improve readability, Java allows you to use underscores between two digits in a number literal. For example, the following literals are correct.

long ssn = 232_45_4519;
long creditCardNumber = 2324_4545_4519_3415L;

However, 45_ or _45 is incorrect. The underscore must be placed between two digits.

underscores in numbers

2.10.2 Floating-Point Literals

Floating-point literals are written with a decimal point. By default, a floating-point literal is treated as a double type value. For example, 5.0 is considered a double value, not a float value. You can make a number a float by appending the letter f or F, and you can make a number a double by appending the letter d or D. For example, you can use 100.2f or 100.2F for a float number, and 100.2d or 100.2D for a double number.

suffix f or F

suffix d or D

 Note

The double type values are more accurate than the float type values. For example,

double vs. float

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);
displays 1.0 / 3.0 is 0 .3333333333333333︸16 digits
System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);
displays 1.0F / 3.0F is 0 .33333334︸8 digits

A float value has 7–8 numbers of significant digits, and a double value has 15–17 numbers of significant digits.

2.10.3 Scientific Notation

Floating-point literals can be written in scientific notation in the form of
 a×

10

 b

 .

 For example, the scientific notation for 123.456 is

1.23456×

10

2

 and for 0.0123456 is

1.23456×

10

  −2

 .

 A special syntax is used to write scientific notation numbers. For example,

1.23456×

10

2

 is written as 1.23456E2 or 1.23456E+2 and

1.23456×

10

  −2

 as 1.23456E-2. E (or e) represents an exponent, and can be in either lowercase or uppercase.

 Note

The float and double types are used to represent numbers with a decimal point. Why are they called floating-point numbers? These numbers are stored in scientific notation internally. When a number such as 50.534 is converted into scientific notation, such as 5.0534E+1, its decimal point is moved (i.e., floated) to a new position.

why called floating-point?

	2.10.1 How many accurate digits are stored in a float or double type variable?

	2.10.2 Which of the following are correct literals for floating-point numbers?

12.3, 12.3e+2, 23.4e-2, –334.4, 20.5, 39F, 40D

	2.10.3 Which of the following are the same as 52.534?

5.2534e+1, 0.52534e+2, 525.34e-1, 5.2534e+0

	2.10.4 Which of the following are correct literals?

5_2534e+1, _2534, 5_2, 5_

2.11 Evaluating Expressions and Operator Precedence

	Java expressions are evaluated in the same way as arithmetic expressions.

Writing a numeric expression in Java involves a straightforward translation of an arithmetic expression using Java operators. For example, the arithmetic expression

3+4x

5

 −

10(

 y−5

)(

 a+b+c

)

 x

 +9(

 4
 x

 +

 9+x

 y

)

can be translated into a Java expression as follows:

(3 + 4 * x) / 5 – 10 * (y - 5) * (a + b + c) / x +

  9 * (4 / x + (9 + x) / y)

Although Java has its own way to evaluate an expression behind the scene, the result of a Java expression and its corresponding arithmetic expression is the same. Therefore, you can safely apply the arithmetic rule for evaluating a Java expression. Operators contained within pairs of parentheses are evaluated first. Parentheses can be nested, in which case the expression in the inner parentheses is evaluated first. When more than one operator is used in an expression, the following operator precedence rule is used to determine the order of evaluation:.

evaluating an expression

operator precedence rule

	Multiplication, division, and remainder operators are applied first. If an expression contains several multiplication, division, and remainder operators, they are applied from left to right.

	Addition and subtraction operators are applied last. If an expression contains several addition and subtraction operators, they are applied from left to right.

Here is an example of how an expression is evaluated:

[image: An expression is evaluated, in 6 steps.]

Description
The expression begins in this form: 3 + 4, asterisk, 4 + 5 *, opening parenthesis, 4 + 3, closing parenthesis, minus 1. Step 1, inside parentheses first. New expression: 3 + 4, asterisk, 4 + 5, asterisk, 7 minus 1. Step 2, multiplication. New expression: 3 + 16 + 5, asterisk, 7 minus 1. Step 3, multiplication. New expression: 3 + 16 + 35 minus 1. Step 4, addition. New expression: 19 + 35 minus 1. Step 5, addition. New expression: 54 minus 1. Step 6, subtraction. Final expression: 53

Listing 2.6 gives a program that converts a Fahrenheit degree to Celsius using the formula

 Celsius=(

 5
 9

) (

 Fahrenheit−32

).

Listing 2.6 FahrenheitToCelsius.java

	 1 import java.util.Scanner;
	 2
	 3 public class FahrenheitToCelsius {
	 4 public static void main(String[] args) {
	 5 Scanner input = new Scanner(System.in);
	 6
	 7 System.out.print("Enter a degree in Fahrenheit: ");
	 8 double fahrenheit = input.nextDouble();
	 9
	10 // Convert Fahrenheit to Celsius
divide 11 double celsius = (5.0 / 9) * (fahrenheit - 32);
	12 System.out.println("Fahrenheit " + fahrenheit + " is " +
	13 celsius + " in Celsius");
	14 }
	15 }

Enter a degree in Fahrenheit: 100
Fahrenheit 100.0 is 37.77777777777778 in Celsius

	line#

	fahrenheit

	celsius

	 8

	100

	

	11

	

	37.77777777777778

Be careful when applying division. Division of two integers yields an integer in Java.

5
9

 is coded 5.0 / 9 instead of 5 / 9 in line 11, because 5 / 9 yields 0 in Java.

integer vs. floating-point division

	2.11.1 How would you write the following arithmetic expressions in Java?

	

4

3(

 r+34

)

 −9(

 a+bc

)+

3+d(

 2+a

)

 a+bd

	

5.5×

 (

 r+2.5

)

2.5+t

2.12 Case Study: Displaying the Current Time

	You can invoke System.currentTimeMillis() to return the current time.

The problem is to develop a program that displays the current time in GMT (Greenwich Mean Time) in the format hour:minute:second, such as 13:19:8.

The currentTimeMillis method in the System class returns the current time in milliseconds elapsed since the time midnight, January 1, 1970 GMT, as shown in Figure 2.2. This time is known as the UNIX epoch. The epoch is the point when time starts, and 1970 was the year when the UNIX operating system was formally introduced.

Use operators / and %

currentTimeMillis

UNIX epoch

[image: A timeline. Elapsed time extends left to right, from the beginning of the U N I X epoch, to, current time, System dot current Time M i l l i s, opening parenthesis, closing parenthesis.]
Figure 2.2

The System.currentTimeMillis() returns the number of milliseconds since the UNIX epoch.

You can use this method to obtain the current time, then compute the current second, minute, and hour as follows:

	Obtain the total milliseconds since midnight, January 1, 1970, in totalMilliseconds by invoking System.currentTimeMillis() (e.g., 1203183068328 milliseconds).

	Obtain the total seconds totalSeconds by dividing totalMilliseconds by 1000 (e.g., 1203183068328 milliseconds / 1000 = 1203183068 seconds).

	Compute the current second from totalSeconds % 60 (e.g., 1203183068 seconds % 60 = 8, which is the current second).

	Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (e.g., 1203183068 seconds / 60 = 20053051 minutes).

	Compute the current minute from totalMinutes % 60 (e.g., 20053051 minutes % 60 = 31, which is the current minute).

	Obtain the total hours totalHours by dividing totalMinutes by 60 (e.g., 20053051 minutes / 60 = 334217 hours).

	Compute the current hour from totalHours % 24 (e.g., 334217 hours % 24 = 17, which is the current hour).

Listing 2.7 gives the complete program.

Listing 2.7 ShowCurrentTime.java

 		 1 public class ShowCurrentTime {
		 2 public static void main(String[] args) {
		 3 // Obtain the total milliseconds since midnight, Jan 1, 1970
totalMilliseconds 4 long totalMilliseconds = System.currentTimeMillis();
		 5
		 6 // Obtain the total seconds since midnight, Jan 1, 1970
totalSeconds 7 long totalSeconds = totalMilliseconds / 1000;
		 8
		 9 // Compute the current second in the minute in the hour
currentSecond 10 long currentSecond = totalSeconds % 60;
		 11
		 12 // Obtain the total minutes
totalMinutes	 13 long totalMinutes = totalSeconds / 60;
		 14
		 15 // Compute the current minute in the hour
currentMinute	 16 long currentMinute = totalMinutes % 60;
		 17
		 18 // Obtain the total hours
totalHours	 19 long totalHours = totalMinutes / 60;
		 20
		 21 // Compute the current hour
currentHour 22 long currentHour = totalHours % 24;
		 23
display output 24 // Display results
		 25 System.out.println("Current time is " + currentHour + ":"
		 26 + currentMinute + ":" + currentSecond + " GMT");
		 27 }
		 28 }

Current time is 17:31:8 GMT

Line 4 invokes System.currentTimeMillis() to obtain the current time in milliseconds as a long value. Thus, all the variables are declared as the long type in this program. The seconds, minutes, and hours are extracted from the current time using the / and % operators (lines 6–22).

	variables
	line#
	4

	7

	10

	13

	16

	19

	22

	totalMilliseconds

	1203183068328

	

	

	

	

	

	

	totalSeconds

	

	1203183068

	

	

	

	

	

	currentSecond

	

	

	8

	

	

	

	

	totalMinutes

	

	

	

	20053051

	

	

	

	currentMinute

	

	

	

	

	31

	

	

	totalHours

	

	

	

	
	

	334217

	

	currentHour

	

	

	

	

	

	

	17

In the sample run, a single digit 8 is displayed for the second. The desirable output would be 08. This can be fixed by using a method that formats a single digit with a prefix 0 (see Programming Exercise 6.37).

The hour displayed in this program is in GMT. Programming Exercise 2.8 enables to display the hour in any time zone.

Java also provides the System.nanoTime() method that returns the elapse time in nanoseconds. nanoTime() is more precise and accurate than currentTimeMillis().

nanoTime

	2.12.1 How do you obtain the current second, minute, and hour?

2.13 Augmented Assignment Operators

	The operators +, -, *, /, and % can be combined with the assignment operator to form augmented operators.

Very often, the current value of a variable is used, modified, then reassigned back to the same variable. For example, the following statement increases the variable count by 1:

count = count + 1;
Java allows you to combine assignment and addition operators using an augmented (or compound) assignment operator. For example, the preceding statement can be written as

count += 1;
The += is called the addition assignment operator. Table 2.4 shows other augmented assignment operators.

addition assignment operator

Table 2.4 Augmented Assignment Operators

	Operator

	Name

	Example

	Equivalent

	+=

	Addition assignment

	i += 8

	i = i + 8

	-=

	Subtraction assignment

	i -= 8

	i = i – 8

	*=

	Multiplication assignment

	i *= 8

	i = i * 8

	/=

	Division assignment

	i /= 8

	i = i / 8

	%=

	Remainder assignment

	i %= 8

	i = i % 8

The augmented assignment operator is performed last after all the other operators in the expression are evaluated. For example,

x /= 4 + 5.5 * 1.5;

is same as

x = x / (4 + 5.5 * 1.5);

 Caution

There are no spaces in the augmented assignment operators. For example, + = should be +=.

 Note

Like the assignment operator (=), the operators (+=, -=, *=, /=, and %=) can be used to form an assignment statement as well as an expression. For example, in the following code, x += 2 is a statement in the first line, and an expression in the second line:

x += 2; // Statement
System.out.println(x += 2); // Expression

	2.13.1 Show the output of the following code:

double a = 6.5;
a += a + 1;
System.out.println(a);
a = 6;
a /= 2;
System.out.println(a);

2.14 Increment and Decrement Operators

	The increment operator (+ +) and decrement operator (- -) are for incrementing and decrementing a variable by 1.

The ++ and -- are two shorthand operators for incrementing and decrementing a variable by 1. These are handy because that’s often how much the value needs to be changed in many programming tasks. For example, the following code increments i by 1 and decrements j by 1.

increment operator (++)

decrement operator (--)

int i = 3, j = 3;
i++; // i becomes 4
j--; // j becomes 2

i++ is pronounced as "i plus plus" and i-- as "i minus minus." These operators are known as postfix increment (or postincrement) and postfix decrement (or postdecrement), because the operators ++ and -- are placed after the variable. These operators can also be placed before the variable. For example,

postincrement

postdecrement

int i = 3, j = 3;
++i; // i becomes 4
--j; // j becomes 2

++i increments i by 1 and --j decrements j by 1. These operators are known as prefix increment (or preincrement) and prefix decrement (or predecrement).

preincrement

predecrement

As you see, the effect of i++ and ++i or i-- and --i are the same in the preceding examples. However, their effects are different when they are used in statements that do more than just increment and decrement. Table 2.5 describes their differences and gives examples.

Table 2.5 Increment and Decrement Operators

	Operator

	Name

	Description

	Example

 (

 assume i=1

)

	++var

	preincrement

	Increment var by 1, and use the new var value in the statement

	int j = ++i;
// j is 2, i is 2

	var++

	postincrement

	Increment var by 1, but use the original var value in the statement

	int j = i++;
// j is 1, i is 2

	--var

	predecrement

	Decrement var by 1, and use the new var value in the statement

	int j = --i;
// j is 0, i is 0

	var--

	postdecrement

	Decrement var by 1, and use the original var value in the statement

	int j = i--;
// j is 1, i is 0

Here are additional examples to illustrate the differences between the prefix form of ++ (or --) and the postfix form of ++ (or --). Consider the following code:

[image: Performing long division.]

i is 11, newNum is 100

In this case, i is incremented by 1, then the old value of i is used in the multiplication. Thus, newNum becomes 100. If i++ is replaced by ++i, then it becomes as follows:

[image: Performing long division.]

i is 11, newNum is 110

i is incremented by 1, and the new value of i is used in the multiplication. Thus, newNum becomes 110.

Here is another example:

double x = 1.0;
double y = 5.0;
double z = x–– + (++y);

After all three lines are executed, y becomes 6.0, z becomes 7.0, and x becomes 0.0.

Operands are evaluated from left to right in Java. The left-hand operand of a binary operator is evaluated before any part of the right-hand operand is evaluated. This rule takes precedence over any other rules that govern expressions. Here is an example:

int i = 1;
int k = ++i + i * 3;
++i is evaluated and returns 2. When evaluating i * 3, i is now 2. Therefore, k becomes 8.

 Tip

Using increment and decrement operators makes expressions short, but it also makes them complex and difficult to read. Avoid using these operators in expressions that modify multiple variables or the same variable multiple times, such as this one: int k = ++i + i * 3.

	2.14.1 Which of these statements are true?

	Any expression can be used as a statement.

	The expression x++ can be used as a statement.

	The statement x = x + 5 is also an expression.

	The statement x = y = x = 0 is illegal.

	2.14.2 Show the output of the following code:

int a = 6;
int b = a++;
System.out.println(a);
System.out.println(b);
a = 6;
b = ++a;
System.out.println(a);
System.out.println(b);

2.15 Numeric Type Conversions

	Floating-point numbers can be converted into integers using explicit casting.

Can you perform binary operations with two operands of different types? Yes. If an integer and a floating-point number are involved in a binary operation, Java automatically converts the integer to a floating-point value. Therefore, 3 * 4.5 is the same as 3.0 * 4.5.

You can always assign a value to a numeric variable whose type supports a larger range of values; thus, for instance, you can assign a long value to a float variable. You cannot, however, assign a value to a variable of a type with a smaller range unless you use type casting. Casting is an operation that converts a value of one data type into a value of another data type. Casting a type with a small range to a type with a larger range is known as widening a type. Casting a type with a large range to a type with a smaller range is known as narrowing a type. Java will automatically widen a type, but you must narrow a type explicitly.

casting

widening a type

narrowing a type

The syntax for casting a type is to specify the target type in parentheses, followed by the variable’s name or the value to be cast. For example, the following statement

System.out.println((int)1.7);

displays 1. When a double value is cast into an int value, the fractional part is truncated.

The following statement

System.out.println((double)1 / 2);
displays 0.5, because 1 is cast to 1.0 first, then 1.0 is divided by 2. However, the statement

System.out.println(1 / 2);
displays 0, because 1 and 2 are both integers and the resulting value should also be an integer.

 Caution

Casting is necessary if you are assigning a value to a variable of a smaller type range, such as assigning a double value to an int variable. A compile error will occur if casting is not used in situations of this kind. However, be careful when using casting, as loss of information might lead to inaccurate results.

possible loss of precision

 Note

Casting does not change the variable being cast. For example, d is not changed after casting in the following code:

double d = 4.5;
int i = (int)d; // i becomes 4, but d is still 4.5

 Note

In Java, an augmented expression of the form x1 op= x2 is implemented as x1 = (T)(x1 op x2), where T is the type for x1. Therefore, the following code is correct:

casting in an augmented expression

int sum = 0;
sum += 4.5; // sum becomes 4 after this statement
sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

 Note

To assign a variable of the int type to a variable of the short or byte type, explicit casting must be used. For example, the following statements have a compile error:

int i = 1;
byte b = i; // Error because explicit casting is required

However, so long as the integer literal is within the permissible range of the target variable, explicit casting is not needed to assign an integer literal to a variable of the short or byte type (see Section 2.10, Numeric Literals).

The program in Listing 2.8 displays the sales tax with two digits after the decimal point.

Listing 2.8 SalesTax.java

	 1 import java.util.Scanner;
	 2
	 3 public class SalesTax {
	 4 public static void main(String[] args) {
	 5 Scanner input = new Scanner(System.in);
	 6
	 7 System.out.print("Enter purchase amount: ");
	 8 double purchaseAmount = input.nextDouble();
	 9
casting 10 double tax = purchaseAmount * 0.06;
	 11 System.out.println("Sales tax is $" + (int)(tax * 100) / 100.0);
	 12 }
	 13 }

Enter purchase amount: 197.55
Sales tax is $11.85

	line#

	purchaseAmount

	tax

	Output

	  8

	197.55

	

	

	10

	

	11.853

	

	11

	

	

	11.85

Using the input in the sample run, the variable purchaseAmount is 197.55 (line 8). The sales tax is 6% of the purchase, so the tax is evaluated as 11.853 (line 10). Note

formatting numbers

tax * 100 is 1185.3

(int)(tax * 100) is 1185

(int)(tax * 100) / 100.0 is 11.85

Thus, the statement in line 11 displays the tax 11.85 with two digits after the decimal point. Note the expression (int)(tax * 100) / 100.0 rounds down tax to two decimal places. If tax is 3.456, (int)(tax * 100) / 100.0 would be 3.45. Can it be rounded up to two decimal places? Note any double value x can be rounded up to an integer using (int)(x + 0.5). Thus, tax can be rounded up to two decimal places using (int)(tax * 100 + 0.5) / 100.0.

	2.15.1 Can different types of numeric values be used together in a computation?

	2.15.2 What does an explicit casting from a double to an int do with the fractional part of the double value? Does casting change the variable being cast?

	2.15.3 Show the following output:

float f = 12.5F;
int i = (int)f;
System.out.println("f is " + f);
System.out.println("i is " + i);

	2.15.4 If you change (int)(tax * 100) / 100.0 to (int)(tax * 100) / 100 in line 11 in Listing 2.8, what will be the output for the input purchase amount of 197.556?

	2.15.5 Show the output of the following code:

double amount = 5;
System.out.println(amount / 2);
System.out.println(5 / 2);

	2.15.6 Write an expression that rounds up a double value in variable d to an integer.

2.16 Software Development Process

	The software development life cycle is a multistage process that includes requirements specification, analysis, design, implementation, testing, deployment, and maintenance.

Developing a software product is an engineering process. Software products, no matter how large or how small, have the same life cycle: requirements specification, analysis, design, implementation, testing, deployment, and maintenance, as shown in Figure 2.3.

[image: The 7 steps of the software development lifecycle are arranged as descending steps, with arrows pointing down and up from each step. The second and third steps, system analysis and system design, contribute to input, process, and output, or I P O.]
Figure 2.3

At any stage of the software development life cycle, it may be necessary to go back to a previous stage to correct errors or deal with other issues that might prevent the software from functioning as expected.

Software development process

Requirements specification is a formal process that seeks to understand the problem the software will address, and to document in detail what the software system needs to do. This phase involves close interaction between users and developers. Most of the examples in this book are simple, and their requirements are clearly stated. In the real world, however, problems are not always well defined. Developers need to work closely with their customers (the individuals or organizations that will use the software) and study the problem carefully to identify what the software needs to do.

requirements specification

System analysis seeks to analyze the data flow and to identify the system’s input and output. When you perform analysis, it helps to identify what the output is first, then figure out what input data you need in order to produce the output.

system analysis

System design is to design a process for obtaining the output from the input. This phase involves the use of many levels of abstraction to break down the problem into manageable components and design strategies for implementing each component. You can view each component as a subsystem that performs a specific function of the system. The essence of system analysis and design is input, process, and output (IPO).

system design

IPO

Implementation involves translating the system design into programs. Separate programs are written for each component then integrated to work together. This phase requires the use of a programming language such as Java. The implementation involves coding, self-testing, and debugging (that is, finding errors, called bugs, in the code).

implementation

Testing ensures the code meets the requirements specification and weeds out bugs. An independent team of software engineers not involved in the design and implementation of the product usually conducts such testing.

testing

Deployment makes the software available for use. Depending on the type of software, it may be installed on each user’s machine, or installed on a server accessible on the Internet.

deployment

Maintenance is concerned with updating and improving the product. A software product must continue to perform and improve in an ever-evolving environment. This requires periodic upgrades of the product to fix newly discovered bugs and incorporate changes.

maintenance

To see the software development process in action, we will now create a program that computes loan payments. The loan can be a car loan, a student loan, or a home mortgage loan. For an introductory programming course, we focus on requirements specification, analysis, design, implementation, and testing.

Compute loan payments

Stage 1: Requirements Specification

The program must satisfy the following requirements:

	It must let the user enter the interest rate, the loan amount, and the number of years for which payments will be made.

	It must compute and display the monthly payment and total payment amounts.

Stage 2: System Analysis

The output is the monthly payment and total payment, which can be obtained using the following formulas:

 monthlyPayment =

 loanAmount×monthlyInterestRate

1−
 1

 (

 1+monthlyInterestRate

)

 numberOfYears×12

 totalPayment=monthlyPayment×numberOfYears×12

Therefore, the input needed for the program is the monthly interest rate, the length of the loan in years, and the loan amount.

 Note

The requirements specification says the user must enter the annual interest rate, the loan amount, and the number of years for which payments will be made. During analysis, however, it is possible you may discover that input is not sufficient or some values are unnecessary for the output. If this happens, you can go back and modify the requirements specification.

 Note

In the real world, you will work with customers from all walks of life. You may develop software for chemists, physicists, engineers, economists, and psychologists, and of course you will not have (or need) complete knowledge of all these fields. Therefore, you don’t have to know how formulas are derived, but given the monthly interest rate, the number of years, and the loan amount, you can compute the monthly payment in this program. You will, however, need to communicate with customers and understand how a mathematical model works for the system.

Stage 3: System Design

During system design, you identify the steps in the program.

	Step 3.1. Prompt the user to enter the annual interest rate, the number of years, and the loan amount.

(The interest rate is commonly expressed as a percentage of the principal for a period of one year. This is known as the annual interest rate.)

	Step 3.2. The input for the annual interest rate is a number in percent format, such as 4.5%. The program needs to convert it into a decimal by dividing it by 100. To obtain the monthly interest rate from the annual interest rate, divide it by 12, since a year has 12 months. Thus, to obtain the monthly interest rate in decimal format, you need to divide the annual interest rate in percentage by 1200. For example, if the annual interest rate is 4.5%, then the monthly interest rate is

4.5/1200=0.00375.

	Step 3.3. Compute the monthly payment using the preceding formula.

	Step 3.4. Compute the total payment, which is the monthly payment multiplied by 12 and multiplied by the number of years.

	Step 3.5. Display the monthly payment and total payment.

Stage 4: Implementation

Implementation is also known as coding (writing the code). In the formula, you have to compute (1
 +
monthlyInterestRate)numberOfYears
 ×
12, which can be obtained using Math.pow(1 + monthlyInterestRate, numberOfYears * 12).

Math.pow(a, b) method

Listing 2.9 gives the complete program.

Listing 2.9 ComputeLoan.java

import class	 1 import java.util.Scanner;
		 2
		 3 public class ComputeLoan {
		 4 public static void main(String[] args) {
		 5 // Create a Scanner
create a Scanner 6 Scanner input = new Scanner(System.in);
		 7
		 8 // Enter annual interest rate in percentage, e.g., 7.25
		 9 System.out.print("Enter annual interest rate, e.g., 7.25: ");
enter interest rate 10 double annualInterestRate = input.nextDouble();
		 11
		 12 // Obtain monthly interest rate
		 13 double monthlyInterestRate = annualInterestRate / 1200;
		 14
		 15 // Enter number of years
		 16 System.out.print(
		 17 "Enter number of years as an integer, e.g., 5: ");
enter years 18 int numberOfYears = input.nextInt();
		 19
		 20 // Enter loan amount
		 21 System.out.print("Enter loan amount, e.g., 120000.95: ");
enter loan amount 22 double loanAmount = input.nextDouble();
		 23
		 24 // Calculate payment
monthlyPayment 25 double monthlyPayment = loanAmount * monthlyInterestRate / (1
		 26 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));
totalPayment	 27 double totalPayment = monthlyPayment * numberOfYears * 12;
		 28
		 29 // Display results
casting		 30 System.out.println("The monthly payment is $" +
		 31 (int)(monthlyPayment * 100) / 100.0);
casting		 32 System.out.println("The total payment is $" +
		 33 (int)(totalPayment * 100) / 100.0);
		 34 }
		 35 }

Enter annual interest rate, for example, 7.25: 5.75
Enter number of years as an integer, for example, 5: 15
Enter loan amount, for example, 120000.95: 250000
The monthly payment is $2076.02
The total payment is $373684.53

	variables
	line#

	10

	13

	18

	22

	25

	27

	annualInterestRate

	5.75

	

	

	

	

	

	monthlyInterestRate

	

	0.0047916666666

	

	

	

	

	numberOfYears

	

	

	15

	

	

	

	loanAmount

	

	

	

	250000

	

	

	monthlyPayment

	

	

	

	

	2076.0252175

	

	totalPayment

	

	

	

	

	

	373684.539

Line 10 reads the annual interest rate, which is converted into the monthly interest rate in line 13.

Choose the most appropriate data type for the variable. For example, numberOfYears is best declared as an int (line 18), although it could be declared as a long, float, or double. Note byte might be the most appropriate for numberOfYears. For simplicity, however, the examples in this book will use int for integer and double for floating-point values.

The formula for computing the monthly payment is translated into Java code in lines 25–27.

Casting is used in lines 31 and 33 to obtain a new monthlyPayment and totalPayment with two digits after the decimal points.

The program uses the Scanner class, imported in line 1. The program also uses the Math class, and you might be wondering why that class isn’t imported into the program. The Math class is in the java.lang package, and all classes in the java.lang package are implicitly imported. Therefore, you don’t need to explicitly import the Math class.

java.lang package

Stage 5: Testing

After the program is implemented, test it with some sample input data and verify whether the output is correct. Some of the problems may involve many cases, as you will see in later chapters. For these types of problems, you need to design test data that cover all cases.

 Tip

The system design phase in this example identified several steps. It is a good approach to code and test these steps incrementally by adding them one at a time. This approach makes it much easier to pinpoint problems and debug the program.

incremental code and test

	2.16.1 How would you write the following arithmetic expression?

  −b+

 b
 2

 −4ac

2a

2.17 Case Study: Counting Monetary Units

	This section presents a program that breaks a large amount of money into smaller units.

Suppose you want to develop a program that changes a given amount of money into smaller monetary units. The program lets the user enter an amount as a double value representing a total in dollars and cents, and outputs a report listing the monetary equivalent in the maximum number of dollars, quarters, dimes, nickels, and pennies, in this order, to result in the minimum number of coins.

Here are the steps in developing the program:

	Prompt the user to enter the amount as a decimal number, such as 11.56.

	Convert the amount (e.g., 11.56) into cents (1156).

	Divide the cents by 100 to find the number of dollars. Obtain the remaining cents using the cents remainder 100.

	Divide the remaining cents by 25 to find the number of quarters. Obtain the remaining cents using the remaining cents remainder 25.

	Divide the remaining cents by 10 to find the number of dimes. Obtain the remaining cents using the remaining cents remainder 10.

	Divide the remaining cents by 5 to find the number of nickels. Obtain the remaining cents using the remaining cents remainder 5.

	The remaining cents are the pennies.

	Display the result.

The complete program is given in Listing 2.10.

Listing 2.10 ComputeChange.java

import class 1 import java.util.Scanner;
	 2
	 3 public class ComputeChange {
	 4 public static void main(String[] args) {
	 5 // Create a Scanner
	 6 Scanner input = new Scanner(System.in);
	 7
	 8 // Receive the amount
	 9 System.out.print(
	 10 "Enter an amount in double, for example 11.56: ");
enter input 11 double amount = input.nextDouble();
	 12
	 13 int remainingAmount = (int)(amount * 100);
	 14
	 15 // Find the number of one dollars
 16 int numberOfOneDollars = remainingAmount / 100;
dollars	 17 remainingAmount = remainingAmount % 100;
	 18
	 19 // Find the number of quarters in the remaining amount
quarters 20 int numberOfQuarters = remainingAmount / 25;
	 21 remainingAmount = remainingAmount % 25;
	 22
	 23 // Find the number of dimes in the remaining amount
dimes	 24 int numberOfDimes = remainingAmount / 10;
	 25 remainingAmount = remainingAmount % 10;
	 26
	 27 // Find the number of nickels in the remaining amount
nickels 28 int numberOfNickels = remainingAmount / 5;
	 29 remainingAmount = remainingAmount % 5;
	 30
	 31 // Find the number of pennies in the remaining amount
pennies 32 int numberOfPennies = remainingAmount;
	 33
	 34 // Display results
output 35 System.out.println("Your amount " + amount + " consists of");
	 36 System.out.println(" " + numberOfOneDollars + " dollars");
	 37 System.out.println(" " + numberOfQuarters + " quarters ");
	 38 System.out.println(" " + numberOfDimes + " dimes");
	 39 System.out.println(" " + numberOfNickels + " nickels");
	 40 System.out.println(" " + numberOfPennies + " pennies");
	 41 }
	 42 }

Enter an amount in double, for example, 11.56: 11.56
Your amount 11.56 consists of
 11 dollars
 2 quarters
 0 dimes
 1 nickels
 1 pennies

	variables

	line#

	11

	13

	16

	17

	20

	21

	24

	25

	28

	29

	32

	amount

	11.56

	

	

	

	

	

	

	

	

	

	

	remainingAmount

	

	1156

	

	56

	

	6

	

	6

	

	1

	

	numberOfOneDollars

	

	

	11

	

	

	

	

	

	

	

	

	numberOfQuarters

	

	

	

	

	2

	

	

	

	

	

	

	numberOfDimes

	

	

	

	

	

	

	0

	

	

	

	

	numberOfNickels

	

	

	

	

	

	

	

	

	1

	

	

	numberOfPennies

	

	

	

	

	

	

	

	

	

	

	1

The variable amount stores the amount entered from the console (line 11). This variable is not changed, because the amount has to be used at the end of the program to display the results. The program introduces the variable remainingAmount (line 13) to store the changing remaining amount.

The variable amount is a double decimal representing dollars and cents. It is converted to an int variable remainingAmount, which represents all the cents. For instance, if amount is 11.56, then the initial remainingAmount is 1156. The division operator yields the integer part of the division, so 1156 / 100 is 11. The remainder operator obtains the remainder of the division, so 1156 % 100 is 56.

The program extracts the maximum number of singles from the remaining amount and obtains a new remaining amount in the variable remainingAmount (lines 16–17). It then extracts the maximum number of quarters from remainingAmount and obtains a new remainingAmount (lines 20–21). Continuing the same process, the program finds the maximum number of dimes, nickels, and pennies in the remaining amount.

One serious problem with this example is the possible loss of precision when casting a double amount to an int remainingAmount. This could lead to an inaccurate result. If you try to enter the amount 10.03, 10.03 * 100 becomes 1002.9999999999999. You will find that the program displays 10 dollars and 2 pennies. To fix the problem, enter the amount as an integer value representing cents (see Programming Exercise 2.22).

loss of precision

	2.17.1 Show the output of Listing 2.10 with the input value 1.99.

2.18 Common Errors and Pitfalls

	Common elementary programming errors often involve undeclared variables, ­uninitialized variables, integer overflow, unintended integer division, and round-off errors.

Common Error 1: Undeclared/Uninitialized Variables and Unused Variables

A variable must be declared with a type and assigned a value before using it. A common error is not declaring a variable or initializing a variable. Consider the following code:

double interestRate = 0.05;
double interest = interestrate * 45;

This code is wrong, because interestRate is assigned a value 0.05; but interestrate has not been declared and initialized. Java is case sensitive, so it considers interestRate and interestrate to be two different variables.

If a variable is declared, but not used in the program, it might be a potential programming error. Therefore, you should remove the unused variable from your program. For example, in the following code, taxRate is never used. It should be removed from the code.

double interestRate = 0.05;
double taxRate = 0.05;
double interest = interestRate * 45;
System.out.println("Interest is " + interest);

If you use an IDE such as Eclipse and NetBeans, you will receive a warning on unused variables.

Common Error 2: Integer Overflow

Numbers are stored with a limited numbers of digits. When a variable is assigned a value that is too large (in size) to be stored, it causes overflow. For example, executing the following statement causes overflow, because the largest value that can be stored in a variable of the int type is 2147483647. 2147483648 will be too large for an int value:

what is overflow?

int value = 2147483647 + 1;
// value will actually be -2147483648

Likewise, executing the following statement also causes overflow, because the smallest value that can be stored in a variable of the int type is -2147483648. -2147483649 is too large in size to be stored in an int variable.

int value = –2147483648 – 1;
// value will actually be 2147483647

Java does not report warnings or errors on overflow, so be careful when working with integers close to the maximum or minimum range of a given type.

When a floating-point number is too small (i.e., too close to zero) to be stored, it causes underflow. Java approximates it to zero, so normally you don’t need to be concerned about underflow.

what is underflow?

Common Error 3: Round-off Errors

A round-off error, also called a rounding error, is the difference between the calculated approximation of a number and its exact mathematical value. For example, 1/3 is approximately 0.333 if you keep three decimal places, and is 0.3333333 if you keep seven decimal places. Since the number of digits that can be stored in a variable is limited, round-off errors are inevitable. Calculations involving floating-point numbers are approximated because these numbers are not stored with complete accuracy. For example,

floating-point approximation

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are stored precisely. Therefore, calculations with integers yield a precise integer result.

Common Error 4: Unintended Integer Division

Java uses the same divide operator, namely /, to perform both integer and floating-point division. When two operands are integers, the / operator performs an integer division. The result of the operation is an integer. The fractional part is truncated. To force two integers to perform a floating-point division, make one of the integers into a floating-point number. For example, the code in (a) displays that average as 1 and the code in (b) displays that average as 1.5.

	int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2;
System.out.println(average);

	
	int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2.0;
System.out.println(average);

	(a)

	
	(b)

Common Pitfall 1: Redundant Input Objects

New programmers often write the code to create multiple input objects for each input. For example, the following code reads an integer and a double value:

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in); BAD CODE
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

The code is not good. It creates two input objects unnecessarily and may lead to some subtle errors. You should rewrite the code as follows:

Scanner input = new Scanner(System.in); GOOD CODE
System.out.print("Enter an integer: ");
int v1 = input.nextInt();
System.out.print("Enter a double value: ");
double v2 = input.nextDouble();

	2.18.1 Can you declare a variable as int and later redeclare it as double?

	2.18.2 What is an integer overflow? Can floating-point operations cause overflow?

	2.18.3 Will overflow cause a runtime error?

	2.18.4 What is a round-off error? Can integer operations cause round-off errors? Can floating-point operations cause round-off errors?

Key Terms

	algorithm 34

	assignment operator (=) 42

	assignment statement 42

	byte type  45

	casting 57

	constant 43

	data type 35

	declare variables 35

	decrement operator (– –) 55

	double type  45

	expression 42

	final keyword 43

	float type  45

	floating-point number 35

	identifier 40

	increment operator (++) 55

	incremental code and testing 63

	int type  45

	IPO 39

	literal 48

	long type  45

	narrowing a type 57

	operand 46

	operator  46

	overflow  65

	postdecrement 55

	postincrement 55

	predecrement  55

	preincrement 55

	primitive data type 35

	pseudocode 34

	requirements specification 59

	scope of a variable 41

	short type 45

	specific import 38

	system analysis 59

	system design 60

	underflow 66

	UNIX epoch 52

	variable 35

	widening a type 57

	wildcard import 38

Chapter Summary

	Identifiers are names for naming elements such as variables, constants, methods, classes, and packages in a program.

	An identifier is a sequence of characters that consists of letters, digits, underscores (_), and dollar signs ($). An identifier must start with a letter or an underscore. It cannot start with a digit. An identifier cannot be a reserved word. An identifier can be of any length.

	Variables are used to store data in a program. To declare a variable is to tell the compiler what type of data a variable can hold.

	There are two types of import statements: specific import and wildcard import. The specific import specifies a single class in the import statement. The wildcard import imports all the classes in a package.

	In Java, the equal sign (=) is used as the assignment operator.

	A variable declared in a method must be assigned a value before it can be used.

	A named constant (or simply a constant) represents permanent data that never changes.

	A named constant is declared by using the keyword final.

	Java provides four integer types (byte, short, int, and long) that represent integers of four different sizes.

	Java provides two floating-point types (float and double) that represent floating-point numbers of two different precisions.

	Java provides operators that perform numeric operations: + (addition), – (subtraction), * (multiplication), / (division), and % (remainder).

	Integer arithmetic (/) yields an integer result.

	The numeric operators in a Java expression are applied the same way as in an arithmetic expression.

	Java provides the augmented assignment operators += (addition assignment), –= (subtraction assignment), *= (multiplication assignment), /= (division assignment), and %= (remainder assignment).

	The increment operator (++) and the decrement operator (––) increment or decrement a variable by 1.

	When evaluating an expression with values of mixed types, Java automatically converts the operands to appropriate types.

	You can explicitly convert a value from one type to another using the (type)value notation.

	Casting a variable of a type with a small range to a type with a larger range is known as widening a type.

	Casting a variable of a type with a large range to a type with a smaller range is known as narrowing a type.

	Widening a type can be performed automatically without explicit casting. Narrowing a type must be performed explicitly.

	In computer science, midnight of January 1, 1970, is known as the UNIX epoch.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

Programming Exercises

 Debugging Tip

The compiler usually gives a reason for a syntax error. If you don’t know how to correct it, compare your program closely, character by character, with similar examples in the text.

learn from examples

 Pedagogical Note

Instructors may ask you to document your analysis and design for selected exercises. Use your own words to analyze the problem, including the input, output, and what needs to be computed, and describe how to solve the problem in pseudocode.

document analysis and design

 Pedagogical Note

The solution to most even-numbered programming exercises are provided to students. These exercises serve as additional examples for a variety of programs. To maximize the benefits of these solutions, students should first attempt to complete the even-numbered exercises and then compare their solutions with the solutions provided in the book. Since the book provides a large number of programming exercises, it is sufficient if you can complete all even-numbered programming exercises.

even-numbered programming exercises

Sections 2.2–2.12

	2.1 (Convert Celsius to Fahrenheit) Write a program that reads a Celsius degree in a double value from the console, then converts it to Fahrenheit, and displays the result. The formula for the conversion is as follows:

		fahrenheit = (9 / 5) * celsius + 32

Hint: In Java, 9 / 5 is 1, but 9.0 / 5 is 1.8.

Here is a sample run:

Enter a degree in Celsius: 43.5
43.5 Celsius is 110.3 Fahrenheit

	2.2 (Compute the volume of a cylinder) Write a program that reads in the radius and length of a cylinder and computes the area and volume using the following formulas:

area = radius * radius * π
volume = area * length
Here is a sample run:

Enter the radius and length of a cylinder: 5.5 12
The area is 95.0331
The volume is 1140.4

	2.3 (Convert feet into meters) Write a program that reads a number in feet, converts it to meters, and displays the result. One foot is 0.305 meter. Here is a sample run:

Enter a value for feet: 16.5
16.5 feet is 5.0325 meters

	2.4 (Convert pounds into kilograms) Write a program that converts pounds into kilograms. The program prompts the user to enter a number in pounds, converts it to kilograms, and displays the result. One pound is 0.454 kilogram. Here is a sample run:

Enter a number in pounds: 55.5
55.5 pounds is 25.197 kilograms

	*2.5 (Financial application: calculate tips) Write a program that reads the subtotal and the gratuity rate, then computes the gratuity and total. For example, if the user enters 10 for subtotal and 15% for gratuity rate, the program displays $1.5 as gratuity and $11.5 as total. Here is a sample run:

Enter the subtotal and a gratuity rate: 10 15
The gratuity is $1.5 and total is $11.5

	**2.6 (Sum the digits in an integer) Write a program that reads an integer between 0 and 1000 and adds all the digits in the integer. For example, if an integer is 932, the sum of all its digits is 14.

Hint: Use the % operator to extract digits, and use the / operator to remove the extracted digit. For instance, 932 % 10 = 2 and 932 / 10 = 93.

Here is a sample run:

Enter a number between 0 and 1000: 999
The sum of the digits is 27

	*2.7 (Find the number of years) Write a program that prompts the user to enter the minutes (e.g., 1 billion), and displays the number of years and remaining days for the minutes. For simplicity, assume that a year has 365 days. Here is a sample run:

Enter the number of minutes: 1000000000
1000000000 minutes is approximately 1902 years and 214 days

	*2.8 (Current time) Listing 2.7, ShowCurrentTime.java, gives a program that displays the current time in GMT. Revise the program so it prompts the user to enter the time zone offset to GMT and displays the time in the specified time zone. Here is a sample run:

Enter the time zone offset to GMT: -5
The current time is 4:50:34

	2.9 (Physics: acceleration) Average acceleration is defined as the change of velocity divided by the time taken to make the change, as given by the following formula:

 a=

 v
 1

 −
 v
 0

 t

Write a program that prompts the user to enter the starting velocity

 v
0

 in meters/second, the ending velocity

 v
1

 in meters/second, and the time span t in seconds, then displays the average acceleration. Here is a sample run:

Enter v0, v1, and t: 5.5 50.9 4.5
The average acceleration is 10.0889

	2.10 (Science: calculating energy) Write a program that calculates the energy needed to heat water from an initial temperature to a final temperature. Your program should prompt the user to enter the amount of water in kilograms and the initial and final temperatures of the water. The formula to compute the energy is

Q = M * (finalTemperature – initialTemperature) * 4184

where M is the weight of water in kilograms, initial and final temperatures are in degrees Celsius, and energy Q is measured in joules. Here is a sample run:

Enter the amount of water in kilograms: 55.5
Enter the initial temperature: 3.5
Enter the final temperature: 10.5
The energy needed is 1625484.0

	2.11 (Population projection) Rewrite Programming Exercise 1.11 to prompt the user to enter the number of years and display the population after the number of years. Use the hint in Programming Exercise 1.11 for this program. Here is a sample run of the program:

Enter the number of years: 5
The population in 5 years is 325932969

	2.12 (Physics: finding runway length) Given an airplane’s acceleration a and take-off speed v, you can compute the minimum runway length needed for an airplane to take off using the following formula:

 length=

 v
 2

2a

Write a program that prompts the user to enter v in meters/second (m/s) and the acceleration a in meters/second squared

 (

 m/s

 2

)

, then, displays the minimum runway length. Here is a sample run:

Enter speed and acceleration: 60 3.5
The minimum runway length for this airplane is 514.286

		**2.13	(Financial application: compound value) Suppose you save $100 each month into a savings account with an annual interest rate 5%. Thus, the monthly interest rate is

0.05/12=0.00417.

 After the first month, the value in the account becomes

100 * (1 + 0.00417) = 100.417

		After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter a monthly saving amount and displays the account value after the sixth month. (In Programming Exercise 5.30, you will use a loop to simplify the code and display the account value for any month.)

Enter the monthly saving amount: 100
After the sixth month, the account value is $608.81

	*2.14 (Health application: computing BMI) Body Mass Index (BMI) is a measure of health on weight. It can be calculated by taking your weight in kilograms and dividing, by the square of your height in meters. Write a program that prompts the user to enter a weight in pounds and height in inches and displays the BMI. Note one pound is 0.45359237 kilograms and one inch is 0.0254 meters. Here is a sample run:

Compute BMI

Enter weight in pounds: 95.5
Enter height in inches: 50
BMI is 26.8573

	2.15 (Geometry: distance of two points) Write a program that prompts the user to enter two points (x1, y1) and (x2, y2) and displays their distance. The formula for computing the distance is

 (

 x
 2

 −
 x
 1

)

 2

 +

 (

 y
 2

 −
 y
 1

)

 2

 .

 Note you can use Math.pow(a, 0.5) to compute

 a

 .

 Here is a sample run:

Enter x1 and y1: 1.5 -3.4
Enter x2 and y2: 4 5
The distance between the two points is 8.764131445842194

	2.16 (Geometry: area of a hexagon) Write a program that prompts the user to enter the side of a hexagon and displays its area. The formula for computing the area of a hexagon is

 Area=

3
 3

2

 s
2

 ,

where s is the length of a side. Here is a sample run:

Enter the length of the side: 5.5
The area of the hexagon is 78.5918

		*2.17	(Science: wind-chill temperature) How cold is it outside? The temperature alone is not enough to provide the answer. Other factors including wind speed, relative humidity, and sunshine play important roles in determining coldness outside. In 2001, the National Weather Service (NWS) implemented the new wind-chill temperature to measure the coldness using temperature and wind speed. The formula is

 t

 wc

 =35.74+0.6215
 t
 a

 −35.75
 v

0.16

 +0.4275
 t
 a

 v

0.16

		where

 t
 a

 is the outside temperature measured in degrees Fahrenheit, v is the speed measured in miles per hour, and

 t

 wc

 is the wind-chill temperature. The formula cannot be used for wind speeds below 2 mph or temperatures below

 −58°F

 or above 41°F.

Write a program that prompts the user to enter a temperature between

 −58°F

 and 41°F and a wind speed greater than or equal to 2 then displays the wind-chill temperature. Use Math.pow(a, b) to compute

 v

0.16

. Here is a sample run:

Enter the temperature in Fahrenheit between

 −58°F

 and 41°F: 5.3
Enter the wind speed

 (

 >= 2

)

 in miles per hour: 6
The wind chill index is

 −5.56707

	2.18 (Print a table) Write a program that displays the following table. Cast floating-point numbers into integers.

a  b  pow(a, b)
1  2  1
2  3  8
3  4  81
4  5  1024
5  6  15625

		*2.19	(Geometry: area of a triangle) Write a program that prompts the user to enter three points, (x1, y1), (x2, y2), and (x3, y3), of a triangle then displays its area. The formula for computing the area of a triangle is

 s=(

 side1+side2+side3

)/2;

 area=

 s(

 s−side1

)(

 s−side2

)(

 s−side3

)

Here is a sample run:

Enter the coordinates of three points separated by spaces like x1 y1 x2 y2 x3 y3: 1.5 -3.4 4.6 5 9.5 -3.4
The area of the triangle is 33.6

Sections 2.13–2.17

	
	*2.20	(Financial application: calculate interest) If you know the balance and the annual percentage interest rate, you can compute the interest on the next monthly payment using the following formula:

 interest=balance×(annualInterestRate/1200)

Write a program that reads the balance and the annual percentage interest rate and displays the interest for the next month. Here is a sample run:

Enter balance and interest rate (e.g., 3 for 3%): 1000 3.5
The interest is 2.91667

	*2.21 (Financial application: calculate future investment value) Write a program that reads in investment amount, annual interest rate, and number of years and displays the future investment value using the following formula:

 futureInvestmentValue =

 investmentAmount ×

 (1 + monthlyIntrestRate)

 numberOfYears*12

For example, if you enter amount 1000, annual interest rate 3.25%, and number of years 1, the future investment value is 1032.98.

		Here is a sample run:

Enter investment amount: 1000.56
Enter annual interest rate in percentage: 4.25
Enter number of years: 1
Future value is $1043.92

		*2.22	(Financial application: monetary units) Rewrite Listing 2.10, ComputeChange.java, to fix the possible loss of accuracy when converting a double value to an int value. Enter the input as an integer whose last two digits represent the cents. For example, the input 1156 represents 11 dollars and 56 cents.

		*2.23	(Cost of driving) Write a program that prompts the user to enter the distance to drive, the fuel efficiency of the car in miles per gallon, and the price per gallon then displays the cost of the trip. Here is a sample run:

Enter the driving distance: 900.5
Enter miles per gallon: 25.5
Enter price per gallon: 3.55
The cost of driving is $125.36

 Note

More than 200 additional programming exercises with solutions are provided to the instructors on the Instructor Resource Website.

CHAPTER 3 Selections

Objectives

	To declare boolean variables and write Boolean expressions using relational operators (§3.2).

	To implement selection control using one-way if statements (§3.3).

	To implement selection control using two-way if-else statements (§3.4).

	To implement selection control using nested if and multi-way if statements (§3.5).

	To avoid common errors and pitfalls in if statements (§3.6).

	To generate random numbers using the Math.random() method (§3.7).

	To program using selection statements for a variety of examples (SubtractionQuiz, BMI, ComputeTax) (§§3.7–3.9).

	To combine conditions using logical operators (!, &&, ||, and ^) (§3.10).

	To program using selection statements with combined conditions (LeapYear, Lottery) (§§3.11 and 3.12).

	To implement selection control using switch statements (§3.13).

	To write expressions using the conditional operator (§3.14).

	To examine the rules governing operator precedence and associativity (§3.15).

	To apply common techniques to debug errors (§3.16).

3.1 Introduction

	The program can decide which statements to execute based on a condition.

If you enter a negative value for radius in Listing 2.2, ComputeAreaWithConsoleInput.java, the program displays an invalid result. If the radius is negative, you don’t want the program to compute the area. How can you deal with this situation?

problem

Like all high-level programming languages, Java provides selection statements: statements that let you choose actions with alternative courses. You can use the following selection statement to replace lines 12–17 in Listing 2.2:

selection statements

if (radius < 0) {
 System.out.println("Incorrect input");
}
else {
 double area = radius * radius * 3.14159;
 System.out.println("Area is " + area);
}

Boolean expression

Boolean value

Selection statements use conditions that are Boolean expressions. A Boolean expression is an expression that evaluates to a Boolean value: true or false. We now introduce the boolean type and relational operators.

3.2 boolean Data Type

	The boolean data type declares a variable with the value either true or false.

How do you compare two values, such as whether a radius is greater than 0, equal to 0, or less than 0? Java provides six relational operators (also known as comparison operators), shown in Table 3.1, which can be used to compare two values (assume radius is 5 in the table).

boolean data type

relational operators

Table 3.1 Relational Operators

	Java Operator

	Mathematics Symbol
	Name

	Example (radius is 5)

	Result

	<

	<

	Less than

	radius < 0

	false

	<=

	≤

	Less than or equal to

	radius <= 0

	false

	>

	>

	Greater than

	radius > 0

	true

	>=

	≥

	Greater than or equal to

	radius >= 0

	true

	==

	=

	Equal to

	radius == 0

	false

	!=

	≠

	Not equal to

	radius != 0

	true

 Caution

The equality testing operator is two equal signs (==), not a single equal sign (=). The latter symbol is for assignment.

== vs. =

The result of the comparison is a Boolean value: true or false. For example, the following statement displays true:

double radius = 1;
System.out.println(radius > 0);

Boolean variable

A variable that holds a Boolean value is known as a Boolean variable. The boolean data type is used to declare Boolean variables. A boolean variable can hold one of the two values: true or false. For example, the following statement assigns true to the variable lightsOn:

boolean lightsOn = true;

true and false are literals, just like a number such as 10. They are treated as reserved words and cannot be used as identifiers in the program.

Boolean literals

Suppose you want to develop a program to let a first-grader practice addition. The program randomly generates two single-digit integers, number1 and number2, and displays to the student a question such as “What is 1+7?, ” as shown in the sample run in Listing 3.1. After the student types the answer, the program displays a message to indicate whether it is true or false.

Program addition quiz

There are several ways to generate random numbers. For now, generate the first integer using System.currentTimeMillis() % 10 (i.e., the last digit in the current time) and the second using System.currentTimeMillis() / 10 % 10 (i.e., the second last digit in the current time). Listing 3.1 gives the program. Lines 5–6 generate two numbers, number1 and number2. Line 14 obtains an answer from the user. The answer is graded in line 18 using a Boolean expression number1 + number2 == answer.

Listing 3.1 AdditionQuiz.java

			1 import java.util.Scanner;
			2
			3 public class AdditionQuiz {
			4 public static void main(String[] args) {
generate number1	5 int number1 = (int)(System.currentTimeMillis() % 10);
generate number2	6 int number2 = (int)(System.currentTimeMillis() / 10 % 10);
			7
			8 // Create a Scanner
			9 Scanner input = new Scanner(System.in);
		 10
		 11 System.out.print(
show question	 12 "What is " + number1 + " + " + number2 + "? ");
		 13
receive answer	 14 int answer = input.nextInt();
		 15
display result	 16 System.out.println(
		 17 number1 + " + " + number2 + " = " + answer + " is " +
		 18 (number1 + number2 == answer));
		 19 }
		 20 }

What is 1 + 7? 8
1 + 7 = 8 is true

What is 4 + 8? 9
4 + 8 = 9 is false

	
	line#

	number1

	number2

	answer

	output

	

	
	 5

	4

	
	
	
	

	
	 6

	
	8

	
	
	

	
	14

	
	
	9

	
	

	
	16

	
	
	
	4 + 8 = 9 is false

	

	3.2.1 List six relational operators.

	3.2.2 Assuming x is 1, show the result of the following Boolean expressions:

(x > 0)
(x < 0)
(x != 0)
(x >= 0)
(x != 1)

	3.2.3 Can the following conversions involving casting be allowed? Write a test program to verify it.

boolean b = true;
i = (int)b;

int i = 1;
boolean b = (boolean)i;

3.3 if Statements

	An if statement is a construct that enables a program to specify alternative paths of execution.

The preceding program displays a message such as “6+2=7 is false.” If you wish the ­message to be “6+2=7 is incorrect,” you have to use a selection statement to make this minor change.

why if statement?

Java has several types of selection statements: one-way if statements, two-way if-else statements, nested if statements, multi-way if-else statements, switch statements, and conditional operators.

A one-way if statement executes an action if and only if the condition is true. The syntax for a one-way if statement is as follows:

if statement if (boolean-expression) {
 statement(s);
 }

flowchart

The flowchart in Figure 3.1a illustrates how Java executes the syntax of an if statement. A flowchart is a diagram that describes an algorithm or process, showing the steps as boxes of various kinds, and their order by connecting these with arrows. Process operations are represented in these boxes, and the arrows connecting them represent the flow of control. A diamond box denotes a Boolean condition, and a rectangle box represents statements.

[image: Figures ay and b show a simple flow chart, and a more detailed flow chart, respectively.]
Figure 3.1

An if statement executes statements if the boolean-expression evaluates to true.

Description

If the boolean-expression evaluates to true, the statements in the block are executed. As an example, see the following code:

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
}

The flowchart of the preceding statement is shown in Figure 3.1b. If the value of radius is greater than or equal to 0, then the area is computed and the result is displayed; otherwise, the two statements in the block will not be executed.

The boolean-expression is enclosed in parentheses. For example, the code in (a) is wrong. It should be corrected, as shown in (b).

[image: Boxes ay and b contain code diagrams.]

Description

The block braces can be omitted if they enclose a single statement. For example, the following statements are equivalent:

[image: Boxes ay and b contain equivalent code.]

Description

 Caution

Omitting braces makes the code shorter, but it is prone to errors. It is a common mistake to forget the braces when you go back to modify the code that omits the braces.

Omitting braces or not

Listing 3.2 gives a program that prompts the user to enter an integer. If the number is a multiple of 5, the program displays HiFive. If the number is divisible by 2, it displays HiEven.

Listing 3.2 SimpleIfDemo.java

			1 import java.util.Scanner;
			2
			3 public class SimpleIfDemo {
			4 public static void main(String[] args) {
			5 Scanner input = new Scanner(System.in);
			6 System.out.print("Enter an integer: ");
enter input		7 int number = input.nextInt();
			8
check 5			9 if (number % 5 == 0)
		 10 System.out.println("HiFive");
		 11
check even	 12 if (number % 2 == 0)
		 13 System.out.println("HiEven");
		 14 }
		 15 }

Enter an integer: 4
HiEven

Enter an integer: 30
HiFive
HiEven

The program prompts the user to enter an integer (lines 6–7) and displays HiFive if it is divisible by 5 (lines 9–10) and HiEven if it is divisible by 2 (lines 12–13).

	3.3.1 Write an if statement that assigns 1 to x if y is greater than 0.

	3.3.2 Write an if statement that increases pay by 3% if score is greater than 90.

	3.3.3 What is wrong in the following code?

if radius >= 0
{
 area = radius * radius * PI;
 System.out.println("The area for the circle of " +
 " radius " + radius + " is " + area);
}

3.4 Two-Way if-else Statements

	An if-else statement decides the execution path based on whether the condition is true or false.

A one-way if statement performs an action if the specified condition is true. If the condition is false, nothing is done. But what if you want to take alternative actions when the condition is false? You can use a two-way if-else statement. The actions that a two-way if-else statement specifies differ based on whether the condition is true or false.

Here is the syntax for a two-way if-else statement:

if (boolean-expression) {
 statement(s)-for-the-true-case;
}
else {
 statement(s)-for-the-false-case;
}

The flowchart of the statement is shown in Figure 3.2.

[image: A flow chart for an if-else expression.]
Figure 3.2

An if-else statement executes statements for the true case if the boolean-expression evaluates to true; otherwise, statements for the false case are executed.

Description

If the boolean-expression evaluates to true, the statement(s) for the true case are executed; otherwise, the statement(s) for the false case are executed. For example, consider the following code:

two-way if-else statement

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
}
else {
 System.out.println("Negative input");
}

If radius >= 0 is true, area is computed and displayed; if it is false, the message "Negative input" is displayed.

As usual, the braces can be omitted if there is only one statement within them. The braces enclosing the System.out.println("Negative input") statement can therefore be omitted in the preceding example.

Here is another example of using the if-else statement. The example checks whether a number is even or odd, as follows:

if (number % 2 == 0)
 System.out.println(number + " is even.");
else
 System.out.println(number + " is odd.");

	3.4.1 Write an if statement that increases pay by 3% if score is greater than 90, otherwise increases pay by 1%.

	3.4.2 What is the output of the code in (a) and (b) if number is 30? What if number is 35?

if (number % 2 == 0)
 System.out.println(number + " is even.");

System.out.println(number + " is odd.");

(a)

if (number % 2 == 0)
 System.out.println(number + " is even.");
else
 System.out.println(number + " is odd.");

(b)

3.5 Nested if and Multi-Way if-else Statements

	An if statement can be inside another if statement to form a nested if statement.

The statement in an if or if-else statement can be any legal Java statement, including another if or if-else statement. The inner if statement is said to be nested inside the outer if statement. The inner if statement can contain another if statement; in fact, there is no limit to the depth of the nesting. For example, the following is a nested if statement:

nested if statement

if (i > k) {
 if (j > k)
 System.out.println("i and j are greater than k");
}
else
 System.out.println("i is less than or equal to k");

The if (j > k) statement is nested inside the if (i > k) statement.

The nested if statement can be used to implement multiple alternatives. The statement given in Figure 3.3a, for instance, prints a letter grade according to the score, with multiple alternatives.

[image: Boxes ay and b contain equivalent code.]
Figure 3.3

A preferred format for multiple alternatives is shown in (b) using a multi-way if-else statement.

Description

The execution of this if statement proceeds as shown in Figure 3.4. The first condition (score >= 90) is tested. If it is true, the grade is A. If it is false, the second condition (score >= 80) is tested. If the second condition is true, the grade is B. If that condition is false, the third condition and the rest of the conditions (if necessary) are tested until a ­condition is met or all of the conditions prove to be false. If all of the conditions are false, the grade is F. Note a condition is tested only when all of the conditions that come before it are false.

[image: A flow chart for assigning grades.]
Figure 3.4

You can use a multi-way if-else statement to assign a grade.

Description

The if statement in Figure 3.3a is equivalent to the if statement in Figure 3.3b. In fact, Figure 3.3b is the preferred coding style for multiple alternative if statements. This style, called multi-way if-else statements, avoids deep indentation and makes the program easy to read.

multi-way if statement

	3.5.1 Suppose x = 3 and y = 2; show the output, if any, of the following code. What is the output if x = 3 and y = 4? What is the output if x = 2 and y = 2? Draw a flowchart of the code.

if (x > 2) {
 if (y > 2) {
 z = x + y;
 System.out.println("z is " + z);
 }
}
else
 System.out.println("x is " + x);

	3.5.2 Suppose x = 2 and y = 3. Show the output, if any, of the following code. What is the output if x = 3 and y = 2? What is the output if x = 3 and y = 3?

if (x > 2)
 if (y > 2) {
 int z = x + y;
 System.out.println("z is " + z);
 }
else
 System.out.println("x is " + x);

	3.5.3 What is wrong in the following code?

if (score >= 60)
 System.out.println("D");
else if (score >= 70)
 System.out.println("C");
else if (score >= 80)
 System.out.println("B");
else if (score >= 90)
 System.out.println("A");
else
 System.out.println("F");

3.6 Common Errors and Pitfalls

	Forgetting necessary braces, ending an if statement in the wrong place, mistaking == for =, and dangling else clauses are common errors in selection statements. Duplicated statements in if-else statements and testing equality of double values are common pitfalls.

The following errors are common among new programmers.

	Common Error 1: Forgetting Necessary Braces 

The braces can be omitted if the block contains a single statement. However, forgetting the braces when they are needed for grouping multiple statements is a common programming error. If you modify the code by adding new statements in an if statement without braces, you will have to insert the braces. For example, the following code in (a) is wrong. It should be written with braces to group multiple statements, as shown in (b).

if (radius >= 0)
 area = radius * radius * PI;
 System.out.println(“The area "
 + " is " + area);

(a) Wrong

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

(b) Correct

In (a), the console output statement is not part of the if statement. It is the same as the following code:

if (radius >= 0)
 area = radius * radius * PI;

System.out.println(“The area "
 + “ is " + area);

Regardless of the condition in the if statement, the console output statement is always executed.

	Common Error 2: Wrong Semicolon at the if Line 

Adding a semicolon at the end of an if line, as shown in (a) below, is a common mistake.

[image: Boxes ay and b contain equivalent code.]

Description

This mistake is hard to find, because it is neither a compile error nor a runtime error; it is a logic error. The code in (a) is equivalent to that in (b) with an empty block.

This error often occurs when you use the next-line block style. Using the end-of-line block style can help prevent this error.

	Common Error 3: Redundant Testing of Boolean Values 

To test whether a boolean variable is true or false in a test condition, it is redundant to use the equality testing operator like the code in (a):

[image: Boxes ay and b contain equivalent code.]

Description

Instead, it is better to test the boolean variable directly, as shown in (b). Another good reason for doing this is to avoid errors that are difficult to detect. Using the = operator instead of the == operator to compare the equality of two items in a test condition is a common error. It could lead to the following erroneous statement:

if (even = true)
 System.out.println("It is even.");

This statement does not have compile errors. It assigns true to even, so even is always true.

	Common Error 4: Dangling else Ambiguity 

The code in (a) below has two if clauses and one else clause. Which if clause is matched by the else clause? The indentation indicates that the else clause matches the first if clause. However, the else clause actually matches the second if clause. This situation is known as the dangling else ambiguity. The else clause always matches the most recent unmatched if clause in the same block. Therefore, the statement in (a) is equivalent to the code in (b).

dangling else ambiguity

[image: Boxes ay and b contain equivalent code.]

Description

Since (i > j) is false, nothing is displayed from the statements in (a) and (b). To force the else clause to match the first if clause, you must add a pair of braces:

int i = 1, j = 2, k = 3;

if (i > j) {
 if (i > k)
 System.out.println("A");
}
else
 System.out.println("B");

This statement displays B.

	Common Error 5: Equality Test of Two Floating-Point Values 

As discussed in Common Error 3 in Section 2.8, floating-pointFloating-point numbers have a limited precision and calculations; involving floating-point numbers can introduce round-off errors. Therefore, equality test of two floating-point values is not reliable. For example, you expect the following code to display true, but surprisingly, it displays false:

double x = 1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1;
System.out.println(x == 0.5);

Here, x is not exactly 0.5, but is 0.5000000000000001. You cannot reliably test equality of two floating-point values. However, you can compare whether they are close enough by testing whether the difference of the two numbers is less than some threshold. That is, two numbers x and y are very close if | x−y |<ε, for a very small value, ε. ε, a Greek letter pronounced "epsilon", is commonly used to denote a very small value. Normally, you set ε to 10 −14 for comparing two values of the double type, and to 10 −7 for comparing two values of the float type. For example, the following code

final double EPSILON = 1E-14;
double x = 1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1;
if (Math.abs(x - 0.5) < EPSILON)
 System.out.println(x + " is approximately 0.5");

will display

0.5000000000000001 is approximately 0.5.

The Math.abs(a) method can be used to return the absolute value of a.

	Common Pitfall 1: Simplifying Boolean Variable Assignment 

Often, new programmers write the code that assigns a test condition to a boolean variable like the code in (a):

[image: Boxes ay and b contain equivalent code.]

Description

This is not an error, but it should be better written as shown in (b).

	Common Pitfall 2: Avoiding Duplicate Code in Different Cases 

Often, new programmers write the duplicate code in different cases that should be combined in one place. For example, the highlighted code in the following statement is duplicated:

if (inState) {
 tuition = 5000;
 System.out.println("The tuition is " + tuition);
}
else {
 tuition = 15000;
 System.out.println("The tuition is " + tuition);
}

This is not an error, but it should be better written as follows:

if (inState) {
 tuition = 5000;
}
else {
 tuition = 15000;
}
System.out.println("The tuition is " + tuition);

The new code removes the duplication and makes the code easy to maintain, because you only need to change in one place if the print statement is modified.

	3.6.1 Which of the following statements are equivalent? Which ones are correctly indented?

[image: Boxes ay to d contain code diagrams.]

Description

	3.6.2 Rewrite the following statement using a Boolean expression:

if (count % 10 == 0)
 newLine = true;
else
 newLine = false;

	3.6.3 Are the following statements correct? Which one is better?

if (age < 16)
 System.out.println
 (“Cannot get a driver’s license");
if (age >= 16)
 System.out.println
 (“Can get a driver’s license");

(a)

if (age < 16)
 System.out.println
 (“Cannot get a driver’s license");
else
 System.out.println
 (“Can get a driver’s license");

(b)

	3.6.4 What is the output of the following code if number is 14, 15, or 30?

if (number % 2 == 0)
 System.out.println
 (number + “ is even");
if (number % 5 == 0)
 System.out.println
 (number + “ is multiple of 5");

(a)

if (number % 2 == 0)
 System.out.println
 (number + “ is even");
else if (number % 5 == 0)
 System.out.println
 (number + “ is multiple of 5");

(b)

3.7 Generating Random Numbers

	You can use Math.random() to obtain a random double value between 0.0 and 1.0, excluding 1.0.

Suppose you want to develop a program for a first-grader to practice subtraction. The program randomly generates two single-digit integers, number1 and number2, with number1 >= number2, and it displays to the student a question such as “What is 9−2?” After the student enters the answer, the program displays a message indicating whether it is correct.

Program subtraction quiz

The previous programs generate random numbers using System.currentTimeMillis(). A better approach is to use the random() method in the Math class. Invoking this method returns a random double value d such that 0.0≤d<1.0. Thus, (int)(Math.random() * 10) returns a random single-digit integer (i.e., a number between 0 and 9).

random() method

The program can work as follows:

	Generate two single-digit integers into number1 and number2.

	If number1 < number2, swap number1 with number2.

	Prompt the student to answer, "What is number1 − number2?"

	Check the student’s answer and display whether the answer is correct.

The complete program is given in Listing 3.3.

Listing 3.3 SubtractionQuiz.java

 1 import java.util.Scanner;
 2
 3 public class SubtractionQuiz {
 4 public static void main(String[] args) {
 5 // 1. Generate two random single-digit integers
random number 6 int number1 = (int)(Math.random() * 10);
 7 int number2 = (int)(Math.random() * 10);
 8
 9 // 2. If number1 < number2, swap number1 with number2
 10 if (number1 < number2) {
 11 int temp = number1;
 12 number1 = number2;
 13 number2 = temp;
 14 }
 15
 16 // 3. Prompt the student to answer "What is number1 – number2?"
 17 System.out.print
 18 ("What is " + number1 + " − " + number2 + "? ");
 19 Scanner input = new Scanner(System.in);
get answer 20 int answer = input.nextInt();
 21
 22 // 4. Grade the answer and display the result
check the answer 23 	 if (number1 − number2 == answer)
 24 System.out.println("You are correct!");
 25 else {
 26 System.out.println("Your answer is wrong.");
 27 System.out.println(number1 + " − " + number2 +
 28 " should be " + (number1 − number2));
 29 }
 30 }
 31 }

What is 6 − 6? 0
You are correct!

What is 9 − 2? 5

Your answer is wrong
9 − 2 is 7

	line#

	number1

	number2

	temp

	answer

	output

	6

	2

	
	
	
	

	7

	
	9

	
	
	

	11

	
	
	2

	
	

	12

	9

	
	
	
	

	13

	
	2

	
	
	

	20

	
	
	
	5

	

	26

	
	
	
	
	Your answer is wrong
 9 − 2 should be 7

To swap two variables number1 and number2, a temporary variable temp (line 11) is used to first hold the value in number1. The value in number2 is assigned to number1 (line 12), and the value in temp is assigned to number2 (line 13).

	3.7.1 Which of the following is a possible output from invoking Math.random()?

323.4, 0.5, 34, 1.0, 0.0, 0.234

	3.7.2

	How do you generate a random integer i such that 0≤i<20?

	How do you generate a random integer i such that 10≤i<20?

	How do you generate a random integer i such that 10≤i≤50?

	Write an expression that returns 0 or 1 randomly.

3.8 Case Study: Computing Body Mass Index

	You can use nested if statements to write a program that interprets body mass index.

Body mass index (BMI) is a measure of health based on height and weight. It can be calculated by taking your weight in kilograms and dividing it by the square of your height in meters. The interpretation of BMI for people 20 years or older is as follows:

	BMI
	Interpretation

	BMI<18.5

	Underweight

	18.5 ≤ BMI<25.0

	Normal

	25.0 ≤ BMI<30.0

	Overweight

	30.0 ≤ BMI

	Obese

Write a program that prompts the user to enter a weight in pounds and height in inches and displays the BMI. Note that one pound is 0.45359237 kilograms, and one inch is 0.0254 meters. Listing 3.4 gives the program.

Listing 3.4 ComputeAndInterpretBMI.java

		 1 import java.util.Scanner;
	 2
	 3 public class ComputeAndInterpretBMI {
	 4 public static void main(String[] args) {
	 5 Scanner input = new Scanner(System.in);
	 6
	 7 // Prompt the user to enter weight in pounds
	 8 System.out.print("Enter weight in pounds: ");
input weight	 9 double weight = input.nextDouble();
	 10
	 11 // Prompt the user to enter height in inches
	 12 System.out.print("Enter height in inches: ");
input height 13 double height = input.nextDouble();
	 14
	 15 final double KILOGRAMS_PER_POUND = 0.45359237; // Constant
	 16 final double METERS_PER_INCH = 0.0254; // Constant
	 17
	 18 // Compute BMI
	 19 double weightInKilograms = weight * KILOGRAMS_PER_POUND;
	 20 double heightInMeters = height * METERS_PER_INCH;
compute bmi	21 double bmi = weightInKilograms /
	 22 (heightInMeters * heightInMeters);
	 23
	 24 // Display result
display output	25 System.out.println("BMI is " + bmi);
	 26 if (bmi < 18.5)
	 27 System.out.println("Underweight");
	 28 else if (bmi < 25)
	 29 System.out.println("Normal");
	 30 else if (bmi < 30)
	 31 System.out.println("Overweight");
	 32 else
	 33 System.out.println("Obese");
	 34 }
	 35 }

Enter weight in pounds: 146
Enter height in inches: 70
BMI is 20.948603801493316
Normal

	line#

	weight

	height

	weightInKilograms

	heightInMeters

	bmi

	output

	9

	146

	
	
	
	
	

	13

	
	70

	
	
	
	

	19

	
	
	66.22448602

	
	
	

	20

	
	
	
	1.778

	
	

	21

	
	
	
	
	20.9486

	

	25

	
	
	
	
	
	BMI is
20.95

	29

	
	
	
	
	
	Normal

The constants KILOGRAMS_PER_POUND and METERS_PER_INCH are defined in lines 15–16. Using constants here makes programs easy to read.

test all cases

You should test the input that covers all possible cases for BMI to ensure that the program works for all cases.

3.9 Case Study: Computing Taxes

	You can use nested if statements to write a program for computing taxes.

The U.S. federal personal income tax is calculated based on filing status and taxable income. There are four filing statuses: single filers, married filing jointly or qualified widow(er), married filing separately, and head of household. The tax rates vary every year. Table 3.2 shows the rates for 2009. If you are single with a taxable income of $10,000, for example, the first $8,350 is taxed at 10% and the other $1,650 is taxed at 15%, so your total tax is $1,082.50.

Table 3.2 2009 U.S. Federal Personal Tax Rates

	Marginal Tax Rate

	Single

	Married Filing Jointly or Qualifying Widow(er)

	Married Filing Separately

	Head of Household

	10%

	$0–$8,350

	$0–$16,700

	$0–$8,350

	$0–$11,950

	15%

	$8,351–$33,950

	$16,701–$67,900

	$8,351–$33,950

	$11,951–$45,500

	25%

	$33,951–$82,250

	$67,901–$137,050

	$33,951–$68,525

	$45,501–$117,450

	28%

	$82,251–$171,550

	$137,051–$208,850

	$68,526–$104,425

	$117,451–$190,200

	33%

	$171,551–$372,950

	$208,851–$372,950

	$104,426–$186,475

	$190,201–$372,950

	35%

	$372,951+

	$372,951+

	$186,476+

	$372,951+

Use multi-way ­if-else statements

You are to write a program to compute personal income tax. Your program should prompt the user to enter the filing status and taxable income and compute the tax. Enter 0 for single filers, 1 for married filing jointly or qualified widow(er), 2 for married filing separately, and 3 for head of household.

Your program computes the tax for the taxable income based on the filing status. The filing status can be determined using if statements outlined as follows:

if (status == 0) {
 // Compute tax for single filers
}
else if (status == 1) {
 // Compute tax for married filing jointly or qualifying widow(er)
}
else if (status == 2) {
 // Compute tax for married filing separately
}
else if (status == 3) {
 // Compute tax for head of household
}
else {
 // Display wrong status
}

For each filing status there are six tax rates. Each rate is applied to a certain amount of taxable income. For example, of a taxable income of $400,000 for single filers, $8,350 is taxed at 10%, (33,950−8,350) at 15%, (82,250−33,950) at 25%, (171,550−82,250) at 28%, (372,950−171,550) at 33%, and (400,000−372,950) at 35%.

Listing 3.5 gives the solution for computing taxes for single filers. The complete solution is left as an exercise.

Listing 3.5 ComputeTax.java

 1 import java.util.Scanner;
 2
 3 public class ComputeTax {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter filing status
 9 System.out.print("(0-single filer, 1-married jointly or " +
 10 "qualifying widow(er), 2-married separately, 3-head of " +
 11 "household) Enter the filing status: ");
 12
input status 13 int status = input.nextInt();
 14
 15 // Prompt the user to enter taxable income
input income 16 System.out.print("Enter the taxable income: ");
 17 double income = input.nextDouble();
 18
compute tax 19 // Compute tax
 20 double tax = 0;
 21
 22 if (status == 0) { // Compute tax for single filers
 23 if (income <= 8350)
 24 tax = income * 0.10;
 25 else if (income <= 33950)
 26 tax = 8350 * 0.10 + (income − 8350) * 0.15;
 27 else if (income <= 82250)
 28 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
 29 (income − 33950) * 0.25;
 30 else if (income <= 171550)
 31 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
 32 (82250 - 33950) * 0.25 + (income − 82250) * 0.28;
 33 else if (income <= 372950)
 34 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
 35 (82250 - 33950) * 0.25 + (171550 − 82250) * 0.28 +
 36 (income - 171550) * 0.33;
 37 else
 38 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
 39 (82250 − 33950) * 0.25 + (171550 − 82250) * 0.28 +
 40 (372950 − 171550) * 0.33 + (income − 372950) * 0.35;
 41 }
 42 else if (status == 1) { // Left as an exercise
 43 // Compute tax for married file jointly or qualifying widow(er)
 44 }
 45 else if (status == 2) { // Compute tax for married separately
 46 // Left as an exercise in Programming Exercise 3.13
 47 }
 48 else if (status == 3) { // Compute tax for head of household
 49 // Left as an exercise in Programming Exercise 3.13
 50 }
 51 else {
 52 System.out.println("Error: invalid status");
exit program 53 System.exit(1);
 54 }
 55
 56 // Display the result
display output 57 System.out.println("Tax is " + (int)(tax * 100) / 100.0);
 58 }
 59 }

(0-single filer, 1-married jointly or qualifying widow(er),
2-married separately, 3-head of household)
Enter the filing status: 0
Enter the taxable income: 400000
Tax is 117683.5

	
	line#

	status

	income

	Tax

	output

	

	
	13

	0

	
	
	
	

	
	17

	
	400000

	
	
	

	
	20

	
	
	0

	
	

	
	38

	
	
	117683.5

	
	

	
	57

	
	
	
	Tax is 117683.5

	

The program receives the filing status and taxable income. The multi-way if-else statements (lines 22, 42, 45, 48, and 51) check the filing status and compute the tax based on the filing status.

System.exit(status)

System.exit(status) (line 53) is defined in the System class. Invoking this method terminates the program. The status 0 indicates that the program is terminated normally. A nonzero status code indicates abnormal termination.

An initial value of 0 is assigned to tax (line 20). A compile error would occur if it had no initial value, because all of the other statements that assign values to tax are within the if statement. The compiler thinks these statements may not be executed, and therefore reports a compile error.

test all cases

To test a program, you should provide the input that covers all cases. For this program, your input should cover all statuses (0, 1, 2, 3). For each status, test the tax for each of the six brackets. Thus, there are a total of 24 cases.

 Tip

For all programs, you should write a small amount of code and test it before moving on to add more code. This is called incremental development and testing. This approach makes testing easier, because the errors are likely in the new code you just added.

incremental development and testing

	3.9.1 Are the following two statements equivalent?

if (income <= 10000)
 tax = income * 0.1;
else if (income <= 20000)
 tax = 1000 +
 (income − 10000) * 0.15;

if (income <= 10000)
 tax = income * 0.1;
else if (income > 10000 &&
 income <= 20000)
 tax = 1000 +
 (income − 10000) * 0.15;

3.10 Logical Operators

	The logical operators !, &&, ||, and ^ can be used to create a compound Boolean expression.

Sometimes, whether a statement is executed is determined by a combination of several conditions. You can use logical operators to combine these conditions to form a compound Boolean expression. Logical operators, also known as Boolean operators, operate on Boolean values to create a new Boolean value. Table 3.3 lists the Boolean operators. Table 3.4 defines the not (!) operator, which negates true to false and false to true. Table 3.5 defines the and (&&) operator. The and (&&) of two Boolean operands is true if and only if both the operands are true. Table 3.6 defines the or (||) operator. The or (||) of two Boolean operands is true if at least one of the operands is true. Table 3.7 defines the exclusive or (^) operator. The exclusive or (^) of two Boolean operands is true if and only if the two operands have different Boolean values. Note p1 ^ p2 is the same as p1 != p2.

Table 3.3 Boolean Operators

	Operator

	Name

	Description

	!

	not

	Logical negation

	&&

	and

	Logical conjunction

	||

	or

	Logical disjunction

	^

	exclusive or

	Logical exclusion

Table 3.4 Truth Table for Operator !

	p

	!p

	Example (assume age = 24, weight = 140)

	true

	false

	!(age > 18) is false, because (age > 18) is true.

	false

	true

	!(weight == 150) is true, because (weight == 150) is false.

Table 3.5 Truth Table for Operator &&

	p1

	p2

	p1 && p2

	Example (assume age = 24, weight = 140)

	false

	false

	false

	

	false

	true

	false

	(age > 28) && (weight <= 140) is false, because (age > 28) is false.

	true

	false

	false

	

	true

	true

	true

	(age > 18) && (weight >= 140) is true, because (age > 18) and (weight >= 140) are both true.

Table 3.6 Truth Table for Operator ||

	p1

	p2

	p1 || p2

	Example (assume age = 24, weight = 140)

	false

	false

	false

	(age > 34) || (weight >= 150) is false, because (age > 34) and (weight >= 150) are both false.

	false

	true

	true

	

	true

	false

	true

	(age > 18) || (weight < 140) is true, because (age > 18) is true.

	true

	true

	true

	

Table 3.7 Truth Table for Operator ^

	p1

	p2

	p1 ^ p2

	Example (assume age = 24, weight = 140)

	false

	false

	false

	(age > 34) ^ (weight > 140) is false, because (age > 34) and (weight > 140) are both false.

	false

	true

	true

	(age > 34) ^ (weight >= 140) is true, because (age > 34) is false but (weight >= 140) is true.

	true

	false

	true

	

	true

	true

	false

	

Listing 3.6 gives a program that checks whether a number is divisible by 2 and 3, by 2 or 3, and by 2 or 3 but not both.

Listing 3.6 TestBooleanOperators.java

import class 1 import java.util.Scanner;
 2
 3 public class TestBooleanOperators {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Receive an input
 9 System.out.print("Enter an integer: ");
input 10 int number = input.nextInt();
 11
and 12 if (number % 2 == 0 && number % 3 == 0)
 13 System.out.println(number + " is divisible by 2 and 3.");
 14
or 15 if (number % 2 == 0 || number % 3 == 0)
 16 System.out.println(number + " is divisible by 2 or 3.");
 17
exclusive or 18 if (number % 2 == 0 ^ number % 3 == 0)
 19 System.out.println(number +
 20 " is divisible by 2 or 3, but not both.");
 21 }
 22 }

Enter an integer: 4
4 is divisible by 2 or 3.
4 is divisible by 2 or 3, but not both.

Enter an integer: 18
18 is divisible by 2 and 3.
18 is divisible by 2 or 3.

(number % 2 == 0 && number % 3 == 0) (line 12) checks whether the number is divisible by both 2 and 3. (number % 2 == 0 || number % 3 == 0) (line 15) checks whether the number is divisible by 2 or by 3. (number % 2 == 0 ^ number % 3 == 0) (line 18) checks whether the number is divisible by 2 or 3, but not both.

 Caution

In mathematics, the expression

28 <= numberOfDaysInAMonth <= 31

is correct. However, it is incorrect in Java, because 28 <= numberOfDaysInAMonth is evaluated to a boolean value, which cannot be compared with 31. Here, two operands (a boolean value and a numeric value) are incompatible. The correct expression in Java is
 28 <= numberOfDaysInAMonth && numberOfDaysInAMonth <= 31

incompatible operands

 Note

De Morgan’s law, named after Indian-born British mathematician and logician Augustus De Morgan (1806–1871), can be used to simplify Boolean expressions. The law states the following:

De Morgan’s law

!(condition1 && condition2) is the same as
 !condition1 || !condition2
!(condition1 || condition2) is the same as
 !condition1 && !condition2

For example,

!(number % 2 == 0 && number % 3 == 0)

can be simplified using an equivalent expression:

number % 2 != 0 || number % 3 != 0

As another example,

!(number == 2 || number == 3)

is better written as

number != 2 && number != 3

If one of the operands of an && operator is false, the expression is false; if one of the operands of an || operator is true, the expression is true. Java uses these properties to improve the performance of these operators. When evaluating p1 && p2, Java first evaluates p1 then, if p1 is true, evaluates p2; if p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first evaluates p1 then, if p1 is false, evaluates p2; if p1 is true, it does not evaluate p2. In programming language terminology, && and || are known as the short-circuit or lazy operators. Java also provides the & and | operators, which are covered in Supplement III.C for advanced readers.

short-circuit operator

lazy operator

	3.10.1 Assuming that x is 1, show the result of the following Boolean expressions:

(true) && (3 > 4)
 !(x > 0) && (x > 0)
 (x > 0) || (x < 0)
 (x != 0) || (x == 0)
 (x >= 0) || (x < 0)
 (x != 1) == !(x == 1)

	3.10.2 (a) Write a Boolean expression that evaluates to true if a number stored in variable num is between 1 and 100. (b) Write a Boolean expression that evaluates to true if a number stored in variable num is between 1 and 100 or the number is negative.

	3.10.3 (a) Write a Boolean expression for | x−5 |<4.5. (b) Write a Boolean expression for | x−5 |>4.5.

	3.10.4 Assume x and y are int type. Which of the following are legal Java expressions?

x > y > 0
x = y && y
x /= y
x or y
x and y
(x != 0) || (x = 0)

	3.10.5 Are the following two expressions the same?

	x % 2 == 0 && x % 3 == 0

	x % 6 == 0

	3.10.6 What is the value of the expression x >= 50 && x <= 100 if x is 45, 67, or 101?

	3.10.7 Suppose, when you run the following program, you enter the input 2 3 6 from the console. What is the output?

public class Test {
 public static void main(String[] args) {
 java.util.Scanner input = new java.util.Scanner(System.in);
 double x = input.nextDouble();
 double y = input.nextDouble();
 double z = input.nextDouble();

 System.out.println("(x < y && y < z) is " + (x < y && y < z));
 System.out.println("(x < y || y < z) is " + (x < y || y < z));
 System.out.println("!(x < y) is " + !(x < y));
 System.out.println("(x + y < z) is " + (x + y < z));
 System.out.println("(x + y > z) is " + (x + y > z));
 }
}

	3.10.8 Write a Boolean expression that evaluates to true if age is greater than 13 and less than 18.

	3.10.9	Write a Boolean expression that evaluates to true if weight is greater than 50 pounds or height is greater than 60 inches.

	3.10.10 Write a Boolean expression that evaluates to true if weight is greater than 50 pounds and height is greater than 60 inches.

	3.10.11 Write a Boolean expression that evaluates to true if either weight is greater than 50 pounds or height is greater than 60 inches, but not both.

3.11 Case Study: Determining Leap Year

	A year is a leap year if it is divisible by 4 but not by 100, or if it is divisible by 400.

A leap year has 366 days. The February of a leap year has 29 days. You can use the following Boolean expressions to check whether a year is a leap year:

// A leap year is divisible by 4
boolean isLeapYear = (year % 4 == 0);

// A leap year is divisible by 4 but not by 100
isLeapYear = isLeapYear && (year % 100 != 0);

// A leap year is divisible by 4 but not by 100 or divisible by 400
isLeapYear = isLeapYear || (year % 400 == 0);

Or you can combine all these expressions into one as follows:

isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);

Listing 3.7 gives the program that lets the user enter a year and checks whether it is a leap year.

Listing 3.7 LeapYear.java

		1 import java.util.Scanner;
		2
		3 public class LeapYear {
		4 public static void main(String[] args) {
		5 // Create a Scanner
		6 Scanner input = new Scanner(System.in);
input		7 System.out.print("Enter a year: ");
		8 int year = input.nextInt();
		9
	 10 // Check if the year is a leap year
leap year? 11 boolean isLeapYear =
	 12 (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
	 13
	 14 // Display the result
display result 15 System.out.println(year + " is a leap year? " + isLeapYear);
	 16 }
	 17 }

Enter a year: 2008
2008 is a leap year? true

Enter a year: 1900
1900 is a leap year? false

Enter a year: 2002
2002 is a leap year? false

	3.11.1 How many days in the February of a leap year? Which of the following is a leap year? 500, 1000, 2000, 2016, and 2020?

3.12 Case Study: Lottery

	The lottery program involves generating random numbers, comparing digits, and using Boolean operators.

Suppose you want to develop a program to play lottery. The program randomly generates a lottery of a two-digit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rules:

	If the user input matches the lottery number in the exact order, the award is $10,000.

	If all digits in the user input match all digits in the lottery number, the award is $3,000.

	If one digit in the user input matches a digit in the lottery number, the award is $1,000.

Note the digits of a two-digit number may be 0. If a number is less than 10, we assume that the number is preceded by a 0 to form a two-digit number. For example, number 8 is treated as 08, and number 0 is treated as 00 in the program. Listing 3.8 gives the complete program.

Listing 3.8 Lottery.java

 1 import java.util.Scanner;
 2
 3 public class Lottery {
 4 public static void main(String[] args) {
 5 // Generate a lottery number
generate a lottery number 6 int lottery = (int)(Math.random() * 100);
 7
 8 // Prompt the user to enter a guess
 9 Scanner input = new Scanner(System.in);
 10 System.out.print("Enter your lottery pick (two digits): ");
enter a guess 11 int guess = input.nextInt();
 12
 13 // Get digits from lottery
 14 int lotteryDigit1 = lottery / 10;
 15 int lotteryDigit2 = lottery % 10;
 16
 17 // Get digits from guess
 18 int guessDigit1 = guess / 10;
 19 int guessDigit2 = guess % 10;
 20
 21 System.out.println("The lottery number is " + lottery);
 22
 23 // Check the guess
exact match? 24 if (guess == lottery)
 25 System.out.println("Exact match: you win $10,000");
match all digits? 26 else if (guessDigit2 == lotteryDigit1
 27 && guessDigit1 == lotteryDigit2)
 28 System.out.println("Match all digits: you win $3,000");
match one digit? 29 else if (guessDigit1 == lotteryDigit1
 30 || guessDigit1 == lotteryDigit2
 31 || guessDigit2 == lotteryDigit1
 32 || guessDigit2 == lotteryDigit2)
 33 System.out.println("Match one digit: you win $1,000");
 34 else
 35 System.out.println("Sorry, no match");
 36 }
 37 }

Enter your lottery pick (two digits): 15
The lottery number is 15
Exact match: you win $10,000

Enter your lottery pick (two digits): 45
The lottery number is 54
Match all digits: you win $3,000

Enter your lottery pick: 23
The lottery number is 34
Match one digit: you win $1,000

Enter your lottery pick: 23
The lottery number is 14
Sorry: no match

	line#

variable

	6

	11

	14

	15

	18

	19

	33

	lottery

	34

	
	
	
	
	
	

	guess

	
	23

	
	
	
	
	

	lotteryDigit1

	
	
	3

	
	
	
	

	lotteryDigit2

	
	
	
	4

	
	
	

	guessDigit1

	
	
	
	
	2

	
	

	guessDigit2

	
	
	
	
	
	3

	

	Output

	
	
	
	
	
	
	Match one digit: you win $1,000

The program generates a lottery using the random() method (line 6) and prompts the user to enter a guess (line 11). Note guess % 10 obtains the last digit from guess and guess /10 obtains the first digit from guess, since guess is a two-digit number (lines 18 and 19).

The program checks the guess against the lottery number in this order:

	First, check whether the guess matches the lottery exactly (line 24).

	If not, check whether the reversal of the guess matches the lottery (lines 26 and 27).

	If not, check whether one digit is in the lottery (lines 29–32).

	If not, nothing matches and display "Sorry, no match" (lines 34 and 35).

	3.12.1 What happens if you enter an integer as 05?

3.13 switch Statements

	A switch statement executes statements based on the value of a variable or an expression.

The if statement in Listing 3.5, ComputeTax.java, makes selections based on a single true or false condition. There are four cases for computing taxes, which depend on the value of status. To fully account for all the cases, nested if statements were used. Overuse of nested if statements makes a program difficult to read. Java provides a switch statement to simplify coding for multiple conditions. You can write the following switch statement to replace the nested if statement in Listing 3.5:

switch (status) {
 case 0: compute tax for single filers;
 break;
 case 1: compute tax for married jointly or qualifying widow(er);
 break;
 case 2: compute tax for married filing separately;
 break;
 case 3: compute tax for head of household;
 break;
 default: System.out.println("Error: invalid status");
 System.exit(1);
}

The flowchart of the preceding switch statement is shown in Figure 3.5.

[image: A flow chart for a switch statement.]
Figure 3.5

The switch statement checks all cases and executes the statements in the matched case.

Description

This statement checks to see whether the status matches the value 0, 1, 2, or 3, in that order. If matched, the corresponding tax is computed; if not matched, a message is displayed. Here is the full syntax for the switch statement:

switch statement

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 ...
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The switch statement observes the following rules:

	The switch-expression must yield a value of char, byte, short, int, or String type and must always be enclosed in parentheses. (The char and String types will be introduced in Chapter 4.)

	The value1, ..., and valueN must have the same data type as the value of the switch-expression. Note that value1, ..., and valueN are constant expressions, meaning they cannot contain variables, such as 1 + x.

	When the value in a case statement matches the value of the switch-expression, the statements starting from this case are executed until either a break statement or the end of the switch statement is reached.

	The default case, which is optional, can be used to perform actions when none of the specified cases matches the switch-expression.

	The keyword break is optional. The break statement immediately ends the switch statement.

 Caution

Do not forget to use a break statement when one is needed. Once a case is matched, the statements starting from the matched case are executed until a break statement or the end of the switch statement is reached. This is referred to as fall-through behavior. For example, the following code displays Weekday for days 1–5 and Weekend for day 0 and day 6.

without break

fall-through behavior

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println(“Weekday"); break;
 case 0:
 case 6: System.out.println(“Weekend");
}

 Tip

To avoid programming errors and improve code maintainability, it is a good idea to put a comment in a case clause if break is purposely omitted.

Now let us write a program to find out the Chinese Zodiac sign for a given year. The Chinese Zodiac is based on a 12-year cycle, with each year represented by an animal—monkey, rooster, dog, pig, rat, ox, tiger, rabbit, dragon, snake, horse, or sheep—in this cycle, as shown in Figure 3.6.

[image: For the expression, year % 12, each year in a 12-year period is assigned a case number and a Chinese zodiac animal, as follows. Zero: monkey. 1: rooster. 2: dog. 3: pig. 4: rat. 5: ox. 6: tiger. 7: rabbit. 8: dragon. 9: snake. 10: horse. 11: sheep.]
Figure 3.6

The Chinese Zodiac is based on a 12-year cycle.

Note year % 12 determines the Zodiac sign. 1900 is the year of the rat because 1900 % 12 is 4. Listing 3.9 gives a program that prompts the user to enter a year and displays the animal for the year.

Listing 3.9 ChineseZodiac.java

 1 import java.util.Scanner;
 2
 3 public class ChineseZodiac {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter a year: ");
enter year 8 int year = input.nextInt();
 9
determine Zodiac sign 10 switch (year % 12) {
 11 case 0: System.out.println("monkey"); break;
 12 case 1: System.out.println("rooster"); break;
 13 case 2: System.out.println("dog"); break;
 14 case 3: System.out.println("pig"); break;
 15 case 4: System.out.println("rat"); break;
 16 case 5: System.out.println("ox"); break;
 17 case 6: System.out.println("tiger"); break;
 18 case 7: System.out.println("rabbit"); break;
 19 case 8: System.out.println("dragon"); break;
 20 case 9: System.out.println("snake"); break;
 21 case 10: System.out.println("horse"); break;
 22 case 11: System.out.println("sheep");
 23 }
 24 }
 25 }

Enter a year: 1963
rabbit

Enter a year: 1877
ox

	3.13.1 What data types are required for a switch variable? If the keyword break is not used after a case is processed, what is the next statement to be executed? Can you convert a switch statement to an equivalent if statement, or vice versa? What are the advantages of using a switch statement?

	3.13.2 What is y after the following switch statement is executed? Rewrite the code using an if-else statement.

x = 3; y = 3;
switch (x + 3) {
 case 6: y = 1;
 default: y += 1;
}

	3.13.3 What is x after the following if-else statement is executed? Use a switch statement to rewrite it and draw the flowchart for the new switch statement.

int x = 1, a = 3;
if (a == 1)
 x += 5;
else if (a == 2)
 x += 10;
else if (a == 3)
 x += 16;
else if (a == 4)
 x += 34;

	3.13.4 Write a switch statement that displays Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, if day is 0, 1, 2, 3, 4, 5, 6, respectively.

	3.13.5 Rewrite Listing 3.9 using an if-else statement.

3.14 Conditional Operators

	A conditional operator evaluates an expression based on a condition.

You might want to assign a value to a variable that is restricted by certain conditions. For example, the following statement assigns 1 to y if x is greater than 0 and -1 to y if x is less than or equal to 0:

if (x > 0)
 y = 1;
else
 y = −1;

Alternatively, as in the following example, you can use a conditional operator to achieve the same result.

conditional operator

y = (x > 0) ? 1 : −1;

The symbols ? and : appearing together is called a conditional operator (also known as a ternary operator because it uses three operands. It is the only ternary operator in Java. The conditional operator is in a completely different style, with no explicit if in the statement. The syntax to use the operator is as follows:

ternary operator

boolean-expression ? expression1 : expression2

The result of this expression is expression1 if boolean-expression is true; otherwise the result is expression2.

Suppose you want to assign the larger number of variable num1 and num2 to max. You can simply write a statement using the conditional operator:

max = (num1 > num2) ? num1 : num2;

For another example, the following statement displays the message “num is even” if num is even, and otherwise displays “num is odd.”

System.out.println((num % 2 == 0) ? "num is even" : "num is odd");

As you can see from these examples, the conditional operator enables you to write short and concise code.

	3.14.1 Suppose when you run the following program, you enter the input 2 3 6 from the console. What is the output?

public class Test {
 public static void main(String[] args) {
 java.util.Scanner input = new java.util.Scanner(System.in);
 double x = input.nextDouble();
 double y = input.nextDouble();
 double z = input.nextDouble();

 System.out.println((x < y && y < z) ? "sorted" : "not sorted");
 }
}

	3.14.2 Rewrite the following if statements using the conditional operator.

if (ages >= 16)
 ticketPrice = 20;
else
 ticketPrice = 10;

	3.14.3 Rewrite the following codes using if-else statements.

	score = (x > 10) ? 3 * scale : 4 * scale;

	tax = (income > 10000) ? income * 0.2 : income * 0.17 + 1000;

	System.out.println((number % 3 == 0) ? i : j);

	3.14.4 Write an expression using a conditional operator that returns randomly -1 or 1.

3.15 Operator Precedence and Associativity

	Operator precedence and associativity determine the order in which operators are evaluated.

Section 2.11 introduced operator precedence involving arithmetic operators. This section discusses operator precedence in more detail. Suppose you have this expression:

3 + 4 * 4 > 5 * (4 + 3) – 1 && (4 – 3 > 5)

What is its value? What is the execution order of the operators?

The expression within parentheses is evaluated first. (Parentheses can be nested, in which case the expression within the inner parentheses is executed first.) When evaluating an expression without parentheses, the operators are applied according to the precedence rule and the associativity rule.

The precedence rule defines precedence for operators, as shown in Table 3.8, which contains the operators you have learned so far. Operators are listed in decreasing order of precedence from top to bottom. The logical operators have lower precedence than the relational operators, and the relational operators have lower precedence than the arithmetic operators. Operators with the same precedence appear in the same group. (See Appendix C, Operator Precedence Chart, for a complete list of Java operators and their precedence.)

operator precedence

Table 3.8 Operator Precedence Chart

	Precedence

	Operator

	

	var++ and var−− (Postfix)

	+, − (Unary plus and minus), ++var and −−var (Prefix)

	(type) (Casting)

	!(Not)

	*, /, % (Multiplication, division, and remainder)

	+, − (Binary addition and subtraction)

	<, <=, >, >= (Relational)

	==, != (Equality)

	^ (Exclusive OR)

	&& (AND)

	|| (OR)

	=, +=, −=, *=, /=, %= (Assignment operators)

If operators with the same precedence are next to each other, their associativity determines the order of evaluation. All binary operators except assignment operators are left associative. For example, since + and − are of the same precedence and are left associative, the expression

operator associativity

a – b + c – d is equivalent to ((a – b) + c) - d
Assignment operators are right associative. Therefore, the expression

a = b += c = d is equivalent to a = (b += (c = 5))
Suppose a, b, and c are 1 before the assignment; after the whole expression is evaluated, a becomes 6, b becomes 6, and c becomes 5. Note left associativity for the assignment operator would not make sense.

 Note

Java has its own way to evaluate an expression internally. The result of a Java evaluation is the same as that of its corresponding arithmetic evaluation. Advanced readers may refer to Supplement III.B for more discussions on how an expression is evaluated in Java behind the scenes.

behind the scenes

	3.15.1 List the precedence order of the Boolean operators. Evaluate the following expressions:

true || true && false
true && true || false

	3.15.2 True or false? All the binary operators except = are left associative.

	3.15.3 Evaluate the following expressions:

2 * 2 – 3 > 2 && 4 – 2 > 5
2 * 2 – 3 > 2 || 4 – 2 > 5

	3.15.4 Is (x > 0 && x < 10) the same as ((x > 0) && (x < 10))?

		Is (x > 0 || x < 10) the same as ((x > 0) || (x < 10))?

		Is (x > 0 || x < 10 && y < 0) the same as (x > 0 ||   (x < 10 && y < 0))?

3.16 Debugging

	Debugging is the process of finding and fixing errors in a program.

As mentioned in Section 1.10, syntax errors are easy to find and easy to correct because the compiler gives indications as to where the errors came from and why they are there. Runtime errors are not difficult to find either, because the Java interpreter displays them on the console when the program aborts. Finding logic errors, on the other hand, can be very challenging.

Logic errors are called bugs. The process of finding and correcting errors is called debugging. A common approach to debugging is to use a combination of methods to help pinpoint the part of the program where the bug is located. You can hand-trace the program (i.e., catch errors by reading the program), or you can insert print statements in order to show the values of the variables or the execution flow of the program. These approaches might work for debugging a short, simple program, but for a large, complex program, the most effective approach is to use a debugger utility.

bugs

debugging

hand-traces

JDK includes a command-line debugger, jdb, which is invoked with a class name. jdb is itself a Java program, running its own copy of Java interpreter. All the Java IDE tools, such as Eclipse and NetBeans, include integrated debuggers. The debugger utilities let you follow the execution of a program. They vary from one system to another, but they all support most of the following helpful features.

	Executing a single statement at a time: The debugger allows you to execute one statement at a time so that you can see the effect of each statement.

	Tracing into or stepping over a method: If a method is being executed, you can ask the debugger to enter the method and execute one statement at a time in the method, or you can ask it to step over the entire method. You should step over the entire method if you know that the method works. For example, always step over system-supplied methods, such as System.out.println.

	Setting breakpoints: You can also set a breakpoint at a specific statement. Your program pauses when it reaches a breakpoint. You can set as many breakpoints as you want. Breakpoints are particularly useful when you know where your programming error starts. You can set a breakpoint at that statement, and have the program execute until it reaches the breakpoint.

	Displaying variables: The debugger lets you select several variables and display their values. As you trace through a program, the content of a variable is continuously updated.

	Displaying call stacks: The debugger lets you trace all of the method calls. This feature is helpful when you need to see a large picture of the program-execution flow.

	Modifying variables: Some debuggers enable you to modify the value of a variable when debugging. This is convenient when you want to test a program with different samples, but do not want to leave the debugger.

 Tip

If you use an IDE such as Eclipse or NetBeans, please refer to Learning Java Effectively with Eclipse/NetBeans in Supplements II.C and II.E on the Companion Website. The supplement shows you how to use a debugger to trace programs, and how debugging can help in learning Java effectively.

debugging in IDE

Key Terms

	Boolean expression 76

	boolean data type 76

	Boolean value 76

	conditional operator 103

	dangling else ambiguity 85

	debugging 106

	fall-through behavior 101

	flowchart 78

	lazy operator 96

	operator associativity 105

	operator precedence 104

	selection statement 76

	short-circuit operator 96

Chapter Summary

	A boolean-type variable can store a true or false value.

	The relational operators (<, <=, ==, !=, >, and >=) yield a Boolean value.

	Selection statements are used for programming with alternative courses of actions. There are several types of selection statements: one-way if statements, two-way if-else statements, nested if statements, multi-way if-else statements, switch statements, and conditional operators.

	The various if statements all make control decisions based on a Boolean expression. Based on the true or false evaluation of the expression, these statements take one of the two possible courses.

	The Boolean operators &&, ||, !, and ^ operate with Boolean values and variables.

	When evaluating p1 && p2, Java first evaluates p1 then evaluates p2 if p1 is true; if p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first evaluates p1 then evaluates p2 if p1 is false; if p1 is true, it does not evaluate p2. Therefore, && is referred to as the short-circuit or lazy AND operator, and || is referred to as the short-circuit or lazy OR operator.

	The switch statement makes control decisions based on a switch expression of type char, byte, short, int, or String.

	The keyword break is optional in a switch statement, but it is normally used at the end of each case in order to skip the remainder of the switch statement. If the break statement is not present, the next case statement will be executed.

	The operators in expressions are evaluated in the order determined by the rules of parentheses, operator precedence, and operator associativity.

	Parentheses can be used to force the order of evaluation to occur in any sequence.

	Operators with higher precedence are evaluated earlier. For operators of the same precedence, their associativity determines the order of evaluation.

	All binary operators except assignment operators are left associative; assignment operators are right associative.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

 Programming Exercises

 Pedagogical Note

For each exercise, carefully analyze the problem requirements and design strategies for solving the problem before coding.

think before coding

 Debugging Tip

Before you ask for help, read and explain the program to yourself, and trace it using several representative inputs by hand or using an IDE debugger. You learn how to program by debugging your own mistakes.

learn from mistakes

Section 3.2

	*3.1 (Algebra: solve quadratic equations) The two roots of a quadratic equation

a
x
2

 + bx + c = 0

 can be obtained using the following formula:

r
1

 = 

−b + 

b
2

 −4ac

2a

 and
r
2

 = 

−b − 

b

2 

 −4ac

2a

b2−4ac is called the discriminant of the quadratic equation. If it is positive, the equation has two real roots. If it is zero, the equation has one root. If it is negative, the equation has no real roots.

Write a program that prompts the user to enter values for a, b, and c and displays the result based on the discriminant. If the discriminant is positive, display two roots. If the discriminant is 0, display one root. Otherwise, display “The equation has no real roots.”

		Note you can use Math.pow(x, 0.5) to compute

x

.

 Here are some sample runs:

Enter a, b, c: 1.0 3 1
The equation has two roots -0.381966 and -2.61803

Enter a, b, c: 1 2.0 1
The equation has one root -1.0

Enter a, b, c: 1 2 3
The equation has no real roots

	3.2 (Game: add three numbers) The program in Listing 3.1 , AdditionQuiz.java, generates two integers and prompts the user to enter the sum of these two integers. Revise the program to generate three single-digit integers and prompt the user to enter the sum of these three integers.

Sections 3.3–3.7

	*3.3 (Algebra: solve 2×2 linear equations) A linear equation can be solved using Cramer’s rule given in Programming Exercise 1.13 . Write a program that prompts the user to enter a, b, c, d, e, and f and displays the result. If ad−bc is 0, report that “The equation has no solution.”

Enter a, b, c, d, e, f: 9.0 4.0 3.0 -5.0 -6.0 -21.0
x is -2.0 and y is 3.0

Enter a, b, c, d, e, f: 1.0 2.0 2.0 4.0 4.0 5.0
The equation has no solution

	**3.4 (Random month) Write a program that randomly generates an integer between 1 and 12 and displays the English month names January, February, . . . , December for the numbers 1, 2, . . . , 12, accordingly.

	*3.5 (Find future dates) Write a program that prompts the user to enter an integer for today’s day of the week (Sunday is 0, Monday is 1, . . . , and Saturday is 6). Also prompt the user to enter the number of days after today for a future day and display the future day of the week. Here is a sample run:

Enter today’s day: 1
Enter the number of days elapsed since today: 3
Today is Monday and the future day is Thursday

Enter today’s day: 0
Enter the number of days elapsed since today: 31
Today is Sunday and the future day is Wednesday

		*3.6	(Health application: BMI) Revise Listing 3.4 , ComputeAndInterpretBMI.java, to let the user enter weight, feet, and inches. For example, if a person is 5 feet and 10 inches, you will enter 5 for feet and 10 for inches. Here is a sample run:

Enter weight in pounds: 140
Enter feet: 5
Enter inches: 10
BMI is 20.087702275404553
Normal

	3.7 (Financial application: monetary units) Modify Listing 2.10 , ComputeChange.java, to display the nonzero denominations only, using singular words for single units such as 1 dollar and 1 penny, and plural words for more than one unit such as 2 dollars and 3 pennies.

	

Sort three integers

*3.8 (Sort three integers) Write a program that prompts the user to enter three integers and display the integers in non-decreasing order.

	**3.9 (Business: check ISBN-10) An ISBN-10 (International Standard Book Number) consists of 10 digits: d1d2d3d4d5d6d7d8d9d10. The last digit, d10, is a checksum, which is calculated from the other 9 digits using the following formula:

(
d

1 

 × 1 + 
d
2

 × 2 +d

3

 × 3 + 
d
4

 ×4 + 
d
5

 × 5 +

d

6 

 × 6 + 
d
7

 × 7 + 
d

8 

 × 8 + 
d
9

 × 9)%11

If the checksum is 10, the last digit is denoted as X according to the ISBN-10 convention. Write a program that prompts the user to enter the first 9 digits and displays the 10-digit ISBN (including leading zeros). Your program should read the input as an integer. Here are sample runs:

Enter the first 9 digits of an ISBN as integer: 013601267
The ISBN-10 number is 0136012671

Enter the first 9 digits of an ISBN as integer: 013031997
The ISBN-10 number is 013031997X

	3.10 (Game: addition quiz) Listing 3.3 , SubtractionQuiz.java, randomly generates a subtraction question. Revise the program to randomly generate an addition question with two integers less than 100.

Sections 3.8–3.16

		*3.11	(Find the number of days in a month) Write a program that prompts the user to enter the month and year and displays the number of days in the month. For example, if the user entered month 2 and year 2012, the program should display that February 2012 has 29 days. If the user entered month 3 and year 2015, the program should display that March 2015 has 31 days.

	3.12 (Palindrome integer) Write a program that prompts the user to enter a three-digit integer and determines whether it is a palindrome integer. An integer is palindrome if it reads the same from right to left and from left to right. A negative integer is treated the same as a positive integer. Here are sample runs of this program:

Enter a three-digit integer: 121
121 is a palindrome

Enter a three-digit integer: 123
123 is not a palindrome

		*3.13	(Financial application: compute taxes) Listing 3.5 , ComputeTax.java, gives the source code to compute taxes for single filers. Complete this program to compute taxes for all filing statuses.

	3.14 (Game: heads or tails) Write a program that lets the user guess whether the flip of a coin results in heads or tails. The program randomly generates an integer 0 or 1, which represents head or tail. The program prompts the user to enter a guess, and reports whether the guess is correct or incorrect.

		**3.15	(Game: lottery) Revise Listing 3.8 , Lottery.java, to generate a lottery of a three-digit integer. The program prompts the user to enter a three-digit integer and determines whether the user wins according to the following rules:

	If the user input matches the lottery number in the exact order, the award is $10,000.

	If all digits in the user input match all digits in the lottery number, the award is $3,000.

	If one digit in the user input matches a digit in the lottery number, the award is $1,000.

	3.16 (Random point) Write a program that displays a random coordinate in a rectangle. The rectangle is centered at (0, 0) with width 100 and height 200.

		*3.17	(Game: scissor, rock, paper) Write a program that plays the popular scissor–rock–paper game. (A scissor can cut a paper, a rock can knock a scissor, and a paper can wrap a rock.) The program randomly generates a number 0, 1, or 2 representing scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or 2 and displays a message indicating whether the user or the computer wins, loses, or draws. Here are sample runs:

scissor (0), rock (1), paper (2): 1
The computer is scissor. You are rock. You won

scissor (0), rock (1), paper (2): 2
The computer is paper. You are paper too. It is a draw

		*3.18	(Cost of shipping) A shipping company uses the following function to calculate the cost (in dollars) of shipping based on the weight of the package (in pounds).

c(w) = {

3.5, if 0 < w < = 1

5.5, if 1 < w < = 3

8.5, if 3 < w < = 10

10.5, if 10 < w < = 20

		Write a program that prompts the user to enter the weight of the package and displays the shipping cost. If the weight is negative or zero, display a message “Invalid input.” If the weight is greater than 20, display a message “The package cannot be shipped.”

		**3.19	(Compute the perimeter of a triangle) Write a program that reads three edges for a triangle and computes the perimeter if the input is valid. Otherwise, display that the input is invalid. The input is valid if the sum of every pair of two edges is greater than the remaining edge.

		*3.20	(Science: wind-chill temperature) Programming Exercise 2.17 gives a formula to compute the wind-chill temperature. The formula is valid for temperatures in the range between −58°F and 41°F and wind speed greater than or equal to 2. Write a program that prompts the user to enter a temperature and a wind speed. The program displays the wind-chill temperature if the input is valid; otherwise, it displays a message indicating whether the temperature and/or wind speed is invalid.

Comprehensive

		**3.21	(Science: day of the week) Zeller’s congruence is an algorithm developed by ­Christian Zeller to calculate the day of the week. The formula is

h=(q+26(m+1)10+k+k4+j4+5j),7

where

	h is the day of the week (0: Saturday, 1: Sunday, 2: Monday, 3: Tuesday, 4: Wednesday, 5: Thursday, and 6: Friday).

	q is the day of the month.

	m is the month (3: March, 4: April, ..., 12: December). January and February are counted as months 13 and 14 of the previous year.

	j is year100.

	k is the year of the century (i.e., year % 100).

		Note all divisions in this exercise perform an integer division. Write a program that prompts the user to enter a year, month, and day of the month, and displays the name of the day of the week. Here are some sample runs:

Enter year: (e.g., 2012): 2015
Enter month: 1-12: 1
Enter the day of the month: 1-31: 25
Day of the week is Sunday

Enter year: (e.g., 2012): 2012
Enter month: 1-12: 5
Enter the day of the month: 1-31: 12
Day of the week is Saturday

(Hint: January and February are counted as 13 and 14 in the formula, so you need to convert the user input 1 to 13 and 2 to 14 for the month and change the year to the previous year. For example, if the user enters 1 for m and 2015 for year, m will be 13 and year will be 2014 used in the formula.)

	**3.22 (Geometry: point in a circle?) Write a program that prompts the user to enter a point (x, y) and checks whether the point is within the circle centered at (0, 0) with radius 10. For example, (4, 5) is inside the circle and (9, 9) is outside the circle, as shown in Figure 3.7a .

[image: Figures ay and b respectively show a circle and a rectangle on x y planes, both centered on (0, 0). The circle contains point (4, 5), but not point (9, 9). The rectangle contains point (2, 2), but not point (6, 4).]
Figure 3.7

(a) Points inside and outside of the circle. (b) Points inside and outside of the rectangle.

Check point location

(Hint: A point is in the circle if its distance to (0, 0) is less than or equal to 10. The formula for computing the distance is (x2−x1)2+(y2−y1)2. Test your program to cover all cases.) Two sample runs are shown below:

Enter a point with two coordinates: 4 5
Point (4.0, 5.0) is in the circle

Enter a point with two coordinates: 9 9
Point (9.0, 9.0) is not in the circle

	**3.23 (Geometry: point in a rectangle?) Write a program that prompts the user to enter a point (x, y) and checks whether the point is within the rectangle centered at (0, 0) with width 10 and height 5. For example, (2, 2) is inside the rectangle and (6, 4) is outside the rectangle, as shown in Figure 3.7b . (Hint: A point is in the rectangle if its horizontal distance to (0, 0) is less than or equal to 10 / 2 and its vertical distance to (0, 0) is less than or equal to 5.0 / 2. Test your program to cover all cases.) Here are two sample runs:

Enter a point with two coordinates: 2 2
Point (2.0, 2.0) is in the rectangle

Enter a point with two coordinates: 6 4
Point (6.0, 4.0) is not in the rectangle

	**3.24	(Game: pick a card) Write a program that simulates picking a card from a deck of 52 cards. Your program should display the rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and suit (Clubs, Diamonds, Hearts, Spades) of the card. Here is a sample run of the program:

The card you picked is Jack of Hearts

	*3.25	(Geometry: intersecting point) Two points on line 1 are given as (x1, y1) and (x2, y2) and on line 2 as (x3, y3) and (x4, y4), as shown in Figure 3.8a and b.

[image: Figures ay, b, and c show graphs of plotted points and intersecting lines.]
Figure 3.8

Two lines intersect in (a and b) and two lines are parallel in (c).

Description

		The intersecting point of the two lines can be found by solving the following linear equations:

(
y
1

 − 
y
2

)x −(
x
1

 − 
x
2

)y = (
y
1

 − 
y
2

)
x
1

 − (
x
1

 − 
x
2

)
y
1

(
y
3

 − 
y
4

)x − (
x
3

 − 
x
4

)y = (
y

3 

 − 
y
4

)
x
3

 − (
x
3

 − 
x
4

)
y
3

		This linear equation can be solved using Cramer’s rule (see Programming Exercise 3.3). If the equation has no solutions, the two lines are parallel (see Figure 3.8c). Write a program that prompts the user to enter four points and displays the intersecting point. Here are sample runs:

Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 5 -1.0 4.0 2.0 -1.0 -2.0
The intersecting point is at (2.88889, 1.1111)

Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 7 6.0 4.0 2.0 -1.0 -2.0
The two lines are parallel

	3.26 (Use the &&, ||, and ^ operators) Write a program that prompts the user to enter an integer and determines whether it is divisible by 5 and 6, whether it is divisible by 5 or 6, and whether it is divisible by 5 or 6, but not both. Here is a sample run of this program:

Enter an integer: 10
Is 10 divisible by 5 and 6? false
Is 10 divisible by 5 or 6? true
Is 10 divisible by 5 or 6, but not both? true

	**3.27 (Geometry: points in triangle?) Suppose a right triangle is placed in a plane as shown below. The right-angle point is placed at (0, 0), and the other two points are placed at (200, 0) and (0, 100). Write a program that prompts the user to enter a point with x- and y-coordinates and determines whether the point is inside the triangle. Here are the sample runs:

[image: A right triangle is positioned on an x y plane, with its right angle at (0, 0). The hypotenuse falls from (0, 100) to (200, 0). Points p 1 and p 2 lie inside and outside the triangle, respectively.]

Enter a point’s x- and y-coordinates: 100.5 25.5
The point is in the triangle

Enter a point’s x- and y-coordinates: 100.5 50.5
The point is not in the triangle

	**3.28 (Geometry: two rectangles) Write a program that prompts the user to enter the center x-, y-coordinates, width, and height of two rectangles and determines whether the second rectangle is inside the first or overlaps with the first, as shown in Figure 3.9 . Test your program to cover all cases.

[image: Figures ay and b show graphs of differently sized rectangles.]
Figure 3.9

(a) A rectangle is inside another one. (b) A rectangle overlaps another one.

Description

Here are the sample runs:

Enter r1’s center x-, y-coordinates, width, and height: 2.5 4 2.5 43
Enter r2’s center x-, y-coordinates, width, and height: 1.5 5 0.5 3
r2 is inside r1

Enter r1’s center x-, y-coordinates, width, and height: 1 2 3 5.5
Enter r2’s center x-, y-coordinates, width, and height: 3 4 4.5 5
r2 overlaps r1

Enter r1’s center x-, y-coordinates, width, and height: 1 2 3 3
Enter r2’s center x-, y-coordinates, width, and height: 40 45 3 2
r2 does not overlap r1

	**3.29 (Geometry: two circles) Write a program that prompts the user to enter the center coordinates and radii of two circles and determines whether the second circle is inside the first or overlaps with the first, as shown in Figure 3.10 . (Hint: ­circle2 is inside circle1 if the distance between the two centers <= r1 - r2 and circle2 overlaps circle1 if the distance between the two centers <= r1 + r2. Test your program to cover all cases.)

[image: Figures ay and b show graphs of differently sized circles.]
Figure 3.10

(a) A circle is inside another circle. (b) A circle overlaps another circle.

Description

Here are the sample runs:

Enter circle1’s center x-, y-coordinates, and radius: 0.5 5.1 13
Enter circle2’s center x-, y-coordinates, and radius: 1 1.7 4.5
circle2 is inside circle1

Enter circle1’s center x-, y-coordinates, and radius: 3.4 5.7 5.5
Enter circle2’s center x-, y-coordinates, and radius: 6.7 3.5 3
circle2 overlaps circle1

Enter circle1’s center x-, y-coordinates, and radius: 3.4 5.5 1
Enter circle2’s center x-, y-coordinates, and radius: 5.5 7.2 1
circle2 does not overlap circle1

		*3.30	(Current time) Revise Programming Exercise 2.8 to display the hour using a 12-hour clock. Here is a sample run:

Enter the time zone offset to GMT: -5
The current time is 4:50:34 AM

		*3.31	(Financials: currency exchange) Write a program that prompts the user to enter the exchange rate from currency in U.S. dollars to Chinese RMB. Prompt the user to enter 0 to convert from U.S. dollars to Chinese RMB and 1 to convert from ­Chinese RMB to U.S. dollars. Prompt the user to enter the amount in U.S. dollars or Chinese RMB to convert it to Chinese RMB or U.S. dollars, respectively. Here are the sample runs:

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 0
Enter the dollar amount: 100
$100.0 is 681.0 yuan

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 1
Enter the RMB amount: 10000
10000.0 yuan is $1468.43

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 5
Incorrect input

		*3.32	(Geometry: point position) Given a directed line from point p0(x0, y0) to p1(x1, y1), you can use the following condition to decide whether a point p2(x2, y2) is on the left of the line, on the right, or on the same line (see Figure 3.11):

(x1 − x0)*(y2 − y0) − (x2 − x0)*(y1 − y0) {

>0 p2 is on the left side of the line

=0 p2 is on the same line

<0 p2 is on the right side of the line

[image: Three figures show a directed line rising from p 0 to p 1. In figures ay, b, and c, respectively, p 2 lies to the left of the line, to the right of the line, and on the line, between p 0 and p 1.]
Figure 3.11

(a) p2 is on the left of the line. (b) p2 is on the right of the line. (c) p2 is on the same line.

Write a program that prompts the user to enter the three points for p0, p1, and p2 and displays whether p2 is on the left of the line from p0 to p1, to the right, or on the same line. Here are some sample runs:

Enter three points for p0, p1, and p2: 4.4 2 6.5 9.5 -5 4
p2 is on the left side of the line

Enter three points for p0, p1, and p2: 1 1 5 5 2 2
p2 is on the same line

Enter three points for p0, p1, and p2: 3.4 2 6.5 9.5 5 2.5
p2 is on the right side of the line

		*3.33	(Financial: compare costs) Suppose you shop for rice in two different packages. You would like to write a program to compare the cost. The program prompts the user to enter the weight and price of each package and displays the one with the better price. Here is a sample run:

Enter weight and price for package 1: 50 24.59
Enter weight and price for package 2: 25 11.99
Package 2 has a better price.

Enter weight and price for package 1: 50 25
Enter weight and price for package 2: 25 12.5
Two packages have the same price.

		*3.34	(Geometry: point on line segment) Exercise 3.32 shows how to test whether a point is on an unbounded line. Revise Exercise 3.32 to test whether a point is on a line segment. Write a program that prompts the user to enter the three points for p0, p1, and p2 and displays whether p2 is on the line segment from p0 to p1. Here are some sample runs:

Enter three points for p0, p1, and p2: 1 1 2.5 2.5 1.5 1.5
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.5, 2.5)

Enter three points for p0, p1, and p2: 1 1 2 2 3.5 3.5
(3.5, 3.5) is not on the line segment from (1.0, 1.0) to (2.0, 2.0)

 Note

More than 200 additional programming exercises with solutions are provided to the instructors on the Instructor Resource Website.

CHAPTER 4 Mathematical Functions, Characters, and Strings

Objectives

	To solve mathematical problems by using the methods in the Math class (§4.2).

	To represent characters using the char type (§4.3).

	To encode characters using ASCII and Unicode (§4.3.1).

	To represent special characters using the escape sequences (§4.3.2).

	To cast a numeric value to a character and cast a character to an integer (§4.3.3).

	To compare and test characters using the static methods in the Character class (§4.3.4).

	To introduce objects and instance methods (§4.4).

	To represent strings using the String object (§4.4).

	To return the string length using the length() method (§4.4.1).

	To return a character in the string using the charAt(i) method (§4.4.2).

	To use the + operator to concatenate strings (§4.4.3).

	To return an uppercase string or a lowercase string and to trim a string (§4.4.4).

	To read strings from the console (§4.4.5).

	To read a character from the console (§4.4.6).

	To compare strings using the equals and the compareTo methods (§4.4.7).

	To obtain substrings (§4.4.8).

	To find a character or a substring in a string using the indexOf method (§4.4.9).

	To program using characters and strings (GuessBirthday) (§4.5.1).

	To convert a hexadecimal character to a decimal value (HexDigit2Dec) (§4.5.2).

	To revise the lottery program using strings (LotteryUsingStrings) (§4.5.3).

	To format output using the System.out.printf method (§4.6).

4.1 Introduction

	The focus of this chapter is to introduce mathematical functions, characters, string objects, and use them to develop programs.

The preceding chapters introduced fundamental programming techniques and taught you how to write simple programs to solve basic problems using selection statements. This chapter introduces methods for performing common mathematical operations. You will learn how to create custom methods in Chapter 6.

Suppose you need to estimate the area enclosed by four cities, given the GPS locations (latitude and longitude) of these cities, as shown in the following diagram. How would you write a program to solve this problem? You will be able to write such a program in this chapter.

problem

[image: A diagram, with the coordinates of 4 cities.]

Description
Line segments extend between the cities, forming a closed, 4-sided figure. Clockwise from the top, the cities and their coordinates are as follows: Charlotte, (35.2270869, negative 80.8431267); Savannah, (32.0835407, negative 81.0998342); Orlando, (28.5383355, negative 81.3792365); Atlanta, (33.7489954, negative 84.3879824).

Because strings are frequently used in programming, it is beneficial to introduce strings early so that you can begin to use them to develop useful programs. This chapter also gives a brief introduction to string objects; you will learn more on objects and strings in Chapters 9 and 10.

4.2 Common Mathematical Functions

	Java provides many useful methods in the Math lass for performing common mathematical functions.

A method is a group of statements that performs a specific task. You have already used the pow(a, b) method to compute ab in Section 2.9.4, Exponent Operations and the random() method for generating a random number in Section 3.7. This section introduces other useful methods in the Math class. They can be categorized as trigonometric methods, exponent methods, and service methods. Service methods include the rounding, min, max, absolute, and random methods. In addition to methods, the Math class provides two useful double constants, PI and E (the base of natural logarithms). You can use these constants as Math.PI and Math.E in any program.

Introduce Math functions

4.2.1 Trigonometric Methods

The Math class contains the following methods as listed in Table 4.1 for performing t­rigonometric functions:

Table 4.1 Trigonometric Methods in the Math Class

	Method

	Description

	sin(radians)

	Returns the trigonometric sine of an angle in radians.

	cos(radians)

	Returns the trigonometric cosine of an angle in radians.

	tan(radians)

	Returns the trigonometric tangent of an angle in radians.

	toRadians(degree)

	Returns the angle in radians for the angle in degrees.

	toDegrees(radians)

	Returns the angle in degrees for the angle in radians.

	asin(a)

	Returns the angle in radians for the inverse of sine.

	acos(a)

	Returns the angle in radians for the inverse of cosine.

	atan(a)

	Returns the angle in radians for the inverse of tangent.

	
The parameter for sin, cos, and tan is an angle in radians. The return value for asin and atan is an angle in radians in the range between −π/2 and π/2, and for acos is between 0 and π. One degree is equal to π/180 in radians, 90 degrees is equal to π/2 in radians, and 30 degrees is equal to π/6 in radians.

For example,

	Math.toDegrees(Math.PI / 2) returns 90.0

	Math.toRadians(30) returns 0.5236 (same as π/6)

	Math.sin(0) returns 0.0

	Math.sin(Math.toRadians(270)) returns −1.0

	Math.sin(Math.PI / 6) returns 0.5

	Math.sin(Math.PI / 2) returns 1.0

	Math.cos(0) returns 1.0

	Math.cos(Math.PI / 6) returns 0.866

	Math.cos(Math.PI / 2) returns 0

	Math.asin(0.5) returns 0.523598333 (same as π/6)

	Math.acos(0.5) returns 1.0472 (same as π/3)

	Math.atan(1.0) returns 0.785398 (same as π/4)

4.2.2 Exponent Methods

There are five methods related to exponents in the Math class as listed in Table 4.2.

Table 4.2 Exponent Methods in the Math Class

	Method

	Description

	exp(x)

	Returns e raised to power of x (ex).

	log(x)

	Returns the natural logarithm of x (ln(x)=loge(x)).

	log10(x)

	Returns the base 10 logarithm of x (log10(x)).

	pow(a, b)

	Returns a raised to the power of b (ab).

	sqrt(x)

	Returns the square root of x (x) for x >= 0.

For example,

	e3.5 is Math.exp(3.5), which returns 33.11545

	ln(3.5) is Math.log(3.5), which returns 1.25276

	log10 (3.5) is Math.log10(3.5), which returns 0.544

	23 is Math.pow(2, 3), which returns 8.0

	32 is Math.pow(3, 2), which returns 9.0

	4.52.5 is Math.pow(4.5, 2.5), which returns 42.9567

	4 is Math.sqrt(4), which returns 2.0

	10.5 is Math.sqrt(10.5), which returns 3.24

4.2.3 The Rounding Methods

The Math class contains four rounding methods as listed in Table 4.3.

Table 4.3 Rounding Methods in the Math Class

	Method

	Description

	ceil(x)

	x is rounded up to its nearest integer. This integer is returned as a double value.

	floor(x)

	x is rounded down to its nearest integer. This integer is returned as a double value.

	rint(x)

	x is rounded to its nearest integer. If x is equally close to two integers, the even one is returned as a double value.

	round(x)

	Returns (int)Math.floor(x+0.5) if x is a float and returns (long)Math.floor(x+0.5) if x is a double.

For example,

	Math.ceil(2.1) returns 3.0

	Math.ceil(2.0) returns 2.0

	Math.ceil(−2.0) returns −2.0

	Math.ceil(−2.1) returns −2.0

	Math.floor(2.1) returns 2.0

	Math.floor(2.0) returns 2.0

	Math.floor(−2.0) returns −2.0

	Math.floor(−2.1) returns −3.0

	Math.rint(2.1) returns 2.0

	Math.rint(−2.0) returns −2.0

	Math.rint(−2.1) returns −2.0

	Math.rint(2.5) returns 2.0

	Math.rint(4.5) returns 4.0

	Math.rint(−2.5) returns −2.0

	Math.round(2.6f) returns 3 // Returns int

	Math.round(2.0) returns 2 // Returns long

	Math.round(−2.0f) returns −2 // Returns int

	Math.round(−2.6) returns −3 // Returns long

	Math.round(−2.4) returns −2 // Returns long

4.2.4 The min, max, and abs Methods

The min and max methods return the minimum and maximum numbers of two numbers (int, long, float, or double). For example, max(4.4, 5.0) returns 5.0, and min(3, 2) returns 2.

The abs method returns the absolute value of the number (int, long, float, or double). For example,

	Math.max(2, 3) returns 3

	Math.min(2.5, 4.6) returns 2.5

	Math.max(Math.max(2.5, 4.6), Math.min(3, 5.6)) returns 4.6

	Math.abs(−2) returns 2

	Math.abs(−2.1) returns 2.1

4.2.5 The random Method

You used the random() method in the preceding chapter. This method generates a random double value greater than or equal to 0.0 and less than 1.0 (0 <= Math.random() < 1.0). You can use it to write a simple expression to generate random numbers in any range. For example,

	(int)(Math.random() * 10)

	⟶
	Returns a random integer between 0 and 9.

	50 + (int)(Math.random() * 50)

	⟶
	Returns a random integer between 50 and 99.

In general,

	a + Math.random() * b

	⟶
	Returns a random number between a and a + b, excluding a + b.

4.2.6 Case Study: Computing Angles of a Triangle

You can use the math methods to solve many computational problems. Given the three sides of a triangle, for example, you can compute the angles by using the following formulas:

[image: A triangle, and code to calculate its angles.]

A = acos((a * a − b * b − c * c) / (−2 * b * c))

B = acos((b * b − a * a − c * c) / (−2 * a * c))

C = acos((c * c − b * b − a * a) / (−2 * a * b))

Description

Don’t be intimidated by the mathematical formula. As we discussed early in Listing 2.9, ComputeLoan.java, you don’t have to know how the mathematical formula is derived in order to write a program for computing the loan payments. Here, in this example, given the length of three sides, you can use this formula to write a program to compute the angles without ­having to know how the formula is derived. In order to compute the lengths of the sides, we need to know the coordinates of three corner points and compute the distances between the points.

Listing 4.1 is an example of a program that prompts the user to enter the x- and y-coordinates of the three corner points in a triangle then displays the three angles.

Listing 4.1  ComputeAngles.java

 1 import java.util.Scanner;
 2
 3 public class ComputeAngles {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter three points
 8 System.out.print("Enter three points: ");
enter three points 9 double x1 = input.nextDouble();
 10 double y1 = input.nextDouble();
 11 double x2 = input.nextDouble();
 12 double y2 = input.nextDouble();
 13 double x3 = input.nextDouble();
 14 double y3 = input.nextDouble();
 15
 16 // Compute three sides
compute sides 17 double a = Math.sqrt((x2 − x3) * (x2 − x3)
 18 + (y2 − y3) * (y2 − y3));
 19 double b = Math.sqrt((x1 − x3) * (x1 − x3)
 20 + (y1 − y3) * (y1 − y3));
 21 double c = Math.sqrt((x1 − x2) * (x1 − x2)
 22 + (y1 − y2) * (y1 − y2));
 23
 24 // Compute three angles
 25 double A = Math.toDegrees(Math.acos((a * a − b * b − c * c)
 26 / (−2 * b * c)));
 27 double B = Math.toDegrees(Math.acos((b * b − a * a − c * c)
 28 / (−2 * a * c)));
 29 double C = Math.toDegrees(Math.acos((c * c − b * b − a * a)
 30 / (−2 * a * b)));
 31
 32 // Display results
display result 33 System.out.println("The three angles are " +
 34 Math.round(A * 100) / 100.0 + " " +
 35 Math.round(B * 100) / 100.0 + " " +
 36 Math.round(C * 100) / 100.0);
 37 }
 38 }

Enter three points: 1 1 6.5 1 6.5 2.5
The three angles are 15.26 90.0 74.74

The program prompts the user to enter three points (line 8). This prompting message is not clear. You should give the user explicit instructions on how to enter these points as follows:

System.out.print("Enter the coordinates of three points separated " + "by spaces like x1 y1 x2 y2 x3 y3: ");

Note that the distance between two points (x1, y1) and (x2, y2) can be computed using the formula (x2−x1)2+(y2−y1)2. The program computes the distances between two points (lines 17–22), and applies the formula to compute the angles (lines 25–30). The angles are rounded to display up to two digits after the decimal point (lines 34–36).

The Math class is used in the program, but not imported, because it is in the java.lang package. All the classes in the java.lang package are implicitly imported in a Java program.

	4.2.1 Evaluate the following method calls:

	Math.sqrt(4)

	Math.sin(2 * Math.PI)

	Math.cos(2 * Math.PI)

	Math.pow(2, 2)

	Math.log(Math.E)

	Math.exp(1)

	Math.max(2, Math.min(3, 4))

	Math.rint(−2.5)

	Math.ceil(−2.5)

	Math.floor(−2.5)

	Math.round(−2.5f)

	Math.round(−2.5)

	Math.rint(2.5)

	Math.ceil(2.5)

	Math.floor(2.5)

	Math.round(2.5f)

	Math.round(2.5)

	Math.round(Math.abs(−2.5))

	4.2.2 True or false? The argument for trigonometric methods is an angle in radians.

	4.2.3 Write a statement that converts 47 degrees to radians and assigns the result to a variable.

	4.2.4 Write a statement that converts PI to an angle in degrees and assigns the result to a variable.

	4.2.5 Write an expression that obtains a random integer between 34 and 55. Write an expression that obtains a random integer between 0 and 999. Write an expression that obtains a random number between 5.5 and 55.5.

	4.2.6 Why does the Math class not need to be imported?

	4.2.7 What is Math.log(Math.exp(5.5))?

What is Math.exp(Math.log(5.5))?

What is Math.asin(Math.sin(Math.PI / 6))?

What is Math.sin(Math.asin(Math.PI / 6))?

4.3 Character Data Type and Operations

	A character data type represents a single character.

In addition to processing numeric values, you can process characters in Java. The character data type, char, is used to represent a single character. A character literal is enclosed in single quotation marks. Consider the following code:

char type

char letter = 'A';
char numChar = '4';

The first statement assigns character A to the char variable letter. The second statement assigns digit character 4 to the char variable numChar.

 Caution

A string literal must be enclosed in double quotation marks (" "). A character literal is a single character enclosed in single quotation marks (' '). Therefore, "A" is a string, but 'A' is a character.

char literal

4.3.1 Unicode and ASCII code

Computers use binary numbers internally. A character is stored in a computer as a sequence of 0s and 1s. Mapping a character to its binary representation is called encoding. There are ­different ways to encode a character. How characters are encoded is defined by an encoding scheme.

encoding

Java supports Unicode, an encoding scheme established by the Unicode Consortium to support the interchange, processing, and display of written texts in the world’s diverse languages. Unicode was originally designed as a 16-bit character encoding. The primitive data type char was intended to take advantage of this design by providing a simple data type that could hold any character. However, it turned out that the 65,536 characters possible in a 16-bit encoding are not sufficient to represent all the characters in the world. The Unicode standard therefore has been extended to allow up to 1,112,064 characters. Those characters that go beyond the original 16-bit limit are called supplementary characters. Java supports the ­supplementary characters. The processing and representing of supplementary characters are beyond the scope of this book. For simplicity, this book considers only the original 16-bit Unicode characters. These characters can be stored in a char type variable.

Unicode

original Unicode

supplementary Unicode

A 16-bit Unicode takes two bytes, preceded by \u, expressed in four hexadecimal ­digits that run from \u0000 to \uFFFF. Hexadecimal numbers are introduced in Appendix F, ­Number Systems. For example, the English word welcome is translated into Chinese using two ­characters, . The Unicodes of these two characters are \u6B22\u8FCE. The ­Unicodes for the Greek letters α β γ
 are \u03b1 \u03b2 \u03b4 respectively.

Most computers use ASCII (American Standard Code for Information Interchange), an 8-bit encoding scheme, for representing all uppercase and lowercase letters, digits, punctuation marks, and control characters. Unicode includes ASCII code, with \u0000 to \u007F corresponding to the 128 ASCII characters. Table 4.4 shows the ASCII code for some commonly used characters. Appendix B, “The ASCII Character Set,” gives a complete list of ASCII characters and their decimal and hexadecimal codes.

ASCII

Table 4.4 ASCII Code for Commonly Used Characters

	Characters

	Code Value in Decimal

	Unicode Value

	'0' to '9'

	48 to 57

	\u0030 to \u0039

	'A' to 'Z'

	65 to 90

	\u0041 to \u005A

	'a' to 'z'

	97 to 122

	\u0061 to \u007A

You can use ASCII characters such as 'X', '1', and '$' in a Java program as well as Unicodes. Thus, for example, the following statements are equivalent:

char letter = 'A';
char letter = '\u0041'; // Character A’s Unicode is 0041

Both statements assign character A to the char variable letter.

 Note

The increment and decrement operators can also be used on char variables to get the next or preceding Unicode character. For example, the following ­statements display character b:

char ch = 'a';
System.out.println(++ch);

char increment and decrement

4.3.2 Escape Sequences for Special Characters

Suppose you want to print a message with quotation marks in the output. Can you write a statement like this?

System.out.println("He said "Java is fun"");
No, this statement has a compile error. The compiler thinks the second quotation character is the end of the string and does not know what to do with the rest of the characters.

To overcome this problem, Java uses a special notation to represent special characters, as listed in Table 4.5. This special notation, called an escape sequence, consists of a backslash (\) followed by a character or a combination of digits. For example, \t is an escape sequence for the Tab character, and an escape sequence such as \u03b1 is used to represent a Unicode. The symbols in an escape sequence are interpreted as a whole rather than ­individually. An escape sequence is considered as a single character.

Table 4.5 Escape Sequences

	Escape Sequence

	Name

	Unicode Code

	Decimal Value

	\b

	Backspace

	\u0008

	 8

	\t

	Tab

	\u0009

	 9

	\n

	Linefeed

	\u000A

	10

	\f

	Formfeed

	\u000C

	12

	\r

	Carriage Return

	\u000D

	13

	\\

	Backslash

	\u005C

	92

	\"

	Double Quote

	\u0022

	34

escape sequence

So, now you can print the quoted message using the following statement:

System.out.println("He said \"Java is fun\"");

The output is

He said "Java is fun"

Note the symbols \ and " together represent one character.

The backslash \ is called an escape character. It is a special character. To display this character, you have to use an escape sequence \\. For example, the following code

escape character

System.out.println("\\t is a tab character");

displays

\t is a tab character

4.3.3 Casting between char and Numeric Types

A char can be cast into any numeric type, and vice versa. When an integer is cast into a char, only its lower 16 bits of data are used; the other part is ignored. For example:

// Note a hex integer is written using prefix 0X
char ch = (char)0XAB0041; // The lower 16 bits hex code 0041 is
 // assigned to ch
System.out.println(ch); // ch is character A

When a floating-point value is cast into a char, the floating-point value is first cast into an int, which is then cast into a char.

char ch = (char)65.25; // Decimal 65 is assigned to ch
System.out.println(ch); // ch is character A

When a char is cast into a numeric type, the character’s Unicode is cast into the specified numeric type.

int i = (int)'A'; // The Unicode of character A is assigned to i
System.out.println(i); // i is 65

Implicit casting can be used if the result of a casting fits into the target variable. Otherwise, explicit casting must be used. For example, since the Unicode of 'a' is 97, which is within the range of a byte, these implicit castings are fine:

byte b = 'a';
int i = 'a';

But the following statement is incorrect, because the Unicode \uFFF4 cannot fit into a byte:

byte b = '\uFFF4';

To force this assignment, use explicit casting, as follows:

byte b = (byte)'\uFFF4';

Any positive integer between 0 and FFFF in hexadecimal can be cast into a character ­implicitly. Any number not in this range must be cast into a char explicitly.

All numeric operators can be applied to char operands. A char operand is automatically cast into a number if the other operand is a number or a character. If the other operand is a string, the character is concatenated with the string. For example, the following statements

numeric operators on characters
int i = '2' + '3'; // (int)'2' is 50 and (int)'3' is 51
System.out.println("i is " + i); // i is 101
int j = 2 + 'a'; // (int)'a' is 97
System.out.println("j is " + j); // j is 99
System.out.println(j + " is the Unicode for character ")
 + (char)j); // 99 is the Unicode for character c
System.out.println("Chapter " + '2');

display

i is 101
j is 99
99 is the Unicode for character c
Chapter 2

4.3.4 Comparing and Testing Characters

Two characters can be compared using the relational operators just like comparing two ­numbers. This is done by comparing the Unicodes of the two characters. For example,

	'a' < 'b' is true because the Unicode for 'a' (97) is less than the Unicode for 'b' (98).

	'a' > 'A' is false because the Unicode for 'a' (97) is greater than the Unicode for 'A' (65).

	'1' < '8' is true because the Unicode for '1' (49) is less than the Unicode for '8' (56).

Often in the program, you need to test whether a character is a number, a letter, an uppercase letter, or a lowercase letter. As given in Appendix B, the ASCII character set, that the Unicodes for lowercase letters are consecutive integers starting from the Unicode for 'a', then for 'b', 'c', . . . , and 'z'. The same is true for the uppercase letters and for numeric characters. This property can be used to write the code to test characters. For example, the following code tests whether a character ch is an uppercase letter, a lowercase letter, or a digital character:

if (ch >= 'A' && ch <= 'Z')
 System.out.println(ch + " is an uppercase letter");
else if (ch >= 'a' && ch <= 'z')
 System.out.println(ch + " is a lowercase letter");
else if (ch >= '0' && ch <= '9')
 System.out.println(ch + " is a numeric character");

For convenience, Java provides the following methods in the Character class for testing characters as listed in Table 4.6. The Character class is defined in the java.lang package.

Table 4.6 Methods in the Character Class

	Method

	Description

	isDigit(ch)

	Returns true if the specified character is a digit.

	isLetter(ch)

	Returns true if the specified character is a letter.

	isLetterOrDigit(ch)

	Returns true if the specified character is a letter or digit.

	isLowerCase(ch)

	Returns true if the specified character is a lowercase letter.

	isUpperCase(ch)

	Returns true if the specified character is an uppercase letter.

	toLowerCase(ch)

	Returns the lowercase of the specified character.

	toUpperCase(ch)

	Returns the uppercase of the specified character.

For example,

System.out.println("isDigit('a') is " + Character.isDigit('a'));
System.out.println("isLetter('a') is " + Character.isLetter('a'));
System.out.println("isLowerCase('a') is " + Character.isLowerCase('a'));
System.out.println("isUpperCase('a') is "
 + Character.isUpperCase('a'));
System.out.println("toLowerCase('T') is "
 + Character.toLowerCase('T'));
System.out.println("toUpperCase('q') is "
 + Character.toUpperCase('q'));

displays

isDigit('a') is false
isLetter('a') is true
isLowerCase('a') is true
isUpperCase('a') is false
toLowerCase('T') is t
toUpperCase('q') is Q

	4.3.1 Use print statements to find out the ASCII code for '1', 'A', 'B', 'a', and 'b'. Use print statements to find out the character for the decimal codes 40, 59, 79, 85, and 90. Use print statements to find out the character for the hexadecimal code 40, 5A, 71, 72, and 7A.

	4.3.2 Which of the following are correct literals for characters?

'1', '\u345dE', '\u3fFa', '\b', '\t'

	4.3.3 How do you display the characters \ and "?

	4.3.4 Evaluate the following:

int i = '1';
int j = '1' + '2' * ('4' − '3') + 'b' / 'a';
int k = 'a';
char c = 90;

	4.3.5 Can the following conversions involving casting be allowed? If so, find the ­converted result.

char c = 'A';
int i = (int)c;

float f = 1000.34f;
int i = (int)f;

double d = 1000.34;
int i = (int)d;

int i = 97;
char c = (char)i;

	4.3.6 Show the output of the following program:

public class Test {
 public static void main(String[] args) {
 char x = 'a';
 char y = 'c';
 System.out.println(++x);
 System.out.println(y++);
 System.out.println(x − y);
 }
}

	4.3.7 Write the code that generates a random lowercase letter.

	4.3.8 Show the output of the following statements:

System.out.println('a' < 'b');
System.out.println('a' <= 'A');
System.out.println('a' > 'b');
System.out.println('a' >= 'A');
System.out.println('a' == 'a');
System.out.println('a' != 'b');

4.4 The String Type

	A string is a sequence of characters.

The char type represents only one character. To represent a string of characters, use the data type called String. For example, the following code declares message to be a string with the value “Welcome to Java".

String message = "Welcome to Java";

String is a predefined class in the Java library, just like the classes System and Scanner. The String type is not a primitive type. It is known as a reference type. Any Java class can be used as a reference type for a variable. The variable declared by a reference type is known as a reference variable that references an object. Here, message is a reference variable that references a string object with contents Welcome to Java.

Introduce strings and objects

Reference data types will be discussed in detail in Chapter 9, Objects and Classes. For the time being, you need to know only how to declare a String variable, how to assign a string to the variable, and how to use the methods in the String class. More details on using strings will be covered in Chapter 10.

Table 4.7 lists the String methods for obtaining string length, for accessing characters in the string, for concatenating string, for converting string to uppercases or lowercases, and for trimming a string.

Table 4.7 Simple Methods for String Objects

	Method

	Description

	length()

	Returns the number of characters in this string.

	charAt(index)

	Returns the character at the specified index from this string.

	concat(s1)

	Returns a new string that concatenates this string with string s1.

	toUpperCase()

	Returns a new string with all letters in uppercase.

	toLowerCase()

	Returns a new string with all letters in lowercase.

	trim()

	Returns a new string with whitespace characters trimmed on both sides.

Strings are objects in Java. The methods listed in Table 4.7 can only be invoked from a specific string instance. For this reason, these methods are called instance methods. A noninstance method is called a static method. A static method can be invoked without using an object. All the methods defined in the Math class are static methods. They are not tied to a ­specific object instance. The syntax to invoke an instance method is ­referenceVariable.methodName(arguments). A method may have many arguments or no arguments. For example, the charAt(index)method has one argument, but the length() method has no arguments. Recall that the syntax to invoke a static method is ClassName.methodName(arguments). For example, the pow method in the Math class can be invoked using Math.pow(2, 2.5).

instance method

static method

4.4.1 Getting String Length

You can use the length() method to return the number of characters in a string. For example, the following code

String message = "Welcome to Java";
System.out.println("The length of " + message + " is "
 + message.length());

displays

The length of Welcome to Java is 15

 Note

When you use a string, you often know its literal value. For convenience, Java allows you to use the string literal to refer directly to strings without creating new variables. Thus, "Welcome to Java".length() is correct and returns 15. Note that "" denotes an empty string and "".length() is 0.

string literal

empty string

4.4.2 Getting Characters from a String

The s.charAt(index) method can be used to retrieve a specific character in a string s, where the index is between 0 and s.length()–1. For example, message.charAt(0) returns the character W, as shown in Figure 4.1. Note that the index for the first character in the string is 0.

charAt(index)

[image: The string content is diagrammed as an array.]

Figure 4.1

The characters in a String object can be accessed using its index.

Description

 Caution

Attempting to access characters in a string s out of bounds is a common pro­gramming error. To avoid it, make sure that you do not use an index beyond s.length()–1. For example, s.charAt(s.length()) would cause a StringIndexOutOfBoundsException.

string index range

4.4.3 Concatenating Strings

You can use the concat method to concatenate two strings. The statement given below, for example, concatenates strings s1 and s2 into s3:

String s3 = s1.concat(s2);

s1.concat(s2)

Because string concatenation is heavily used in programming, Java provides a convenient way to accomplish it. You can use the plus (+) operator to concatenate two strings, so the previous statement is equivalent to

String s3 = s1 + s2;

s1 + s2

The following code combines the strings message, " and ", and "HTML" into one string:

String myString = message + " and " + "HTML";

concatenate strings and numbers

Recall that the + operator can also concatenate a number with a string. In this case, the number is converted into a string then concatenated. Note at least one of the operands must be a string in order for concatenation to take place. If one of the operands is a nonstring (e.g., a number), the nonstring value is converted into a string and concatenated with the other string. Here are some examples:

// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

If neither of the operands is a string, the plus sign (+) is the addition operator that adds two numbers.

The augmented += operator can also be used for string concatenation. For example, the following code appends the string " and Java is fun" with the string "Welcome to Java" in message.

message += " and Java is fun";

So the new message is "Welcome to Java and Java is fun."

If i = 1 and j = 2, what is the output of the following statement?

System.out.println("i + j is " + i + j);

The output is "i + j is 12" because "i + j is" is concatenated with the value of i first. To force i + j to be executed first, enclose i + j in the parentheses, as follows:

System.out.println("i + j is " + (i + j));

4.4.4 Converting Strings

The toLowerCase() method returns a new string with all lowercase letters, and the ­toUpperCase() method returns a new string with all uppercase letters. For example,

"Welcome".toLowerCase() returns a new string welcome.

toLowerCase()
"Welcome".toUpperCase() returns a new string WELCOME.

toUpperCase()

The trim() method returns a new string by eliminating whitespace characters from both ends of the string. The characters ' ', \t, \f, \r, or \n are known as whitespace characters. For example,

whitespace character

"\t Good Night \n".trim() returns a new string Good Night.

trim()

4.4.5 Reading a String from the Console

To read a string from the console, invoke the next() method on a Scanner object. For example, the following code reads three strings from the keyboard:

read strings

Scanner input = new Scanner(System.in);
System.out.print("Enter three words separated by spaces: ");
String s1 = input.next();
String s2 = input.next();
String s3 = input.next();
System.out.println("s1 is " + s1);
System.out.println("s2 is " + s2);
System.out.println("s3 is " + s3);

Enter three words separated by spaces: Welcome to Java
s1 is Welcome
s2 is to
s3 is Java

The next() method reads a string that ends with a whitespace character. You can use the nextLine() method to read an entire line of text. The nextLine() method reads a string that ends with the Enter key pressed. For example, the following statements read a line of text:

Scanner input = new Scanner(System.in);
System.out.println("Enter a line: ");
String s = input.nextLine();
System.out.println("The line entered is " + s);

Enter a line: Welcome to Java
The line entered is Welcome to Java

For convenience, we call the input using the methods next(), nextByte(), ­nextShort(), nextInt(), nextLong(), nextFloat(), and nextDouble() the token-based input, because they read individual elements separated by whitespace characters rather than an entire line. The nextLine() method is called a line-based input.

token-based input

line-based input

 Important Caution

To avoid input errors, do not use a line-based input after a token-based input in the program. The reasons will be explained in Section 12.11.4, "How Does ­Scanner Work?"

avoid input errors

4.4.6 Reading a Character from the Console

To read a character from the console, use the nextLine() method to read a string and then invoke the charAt(0) method on the string to return a character. For example, the following code reads a character from the keyboard:

Scanner input = new Scanner(System.in);
System.out.print("Enter a character: ");
String s = input.nextLine();
char ch = s.charAt(0);
System.out.println("The character entered is " + ch);

4.4.7 Comparing Strings

The String class contains the methods, as listed in Table 4.8, for comparing two strings.

Table 4.8 Comparison Methods for String Objects

	Method

	Description

	equals(s1)

	Returns true if this string is equal to string s1.

	equalsIgnoreCase(s1)

	Returns true if this string is equal to string s1; it is case insensitive.

	compareTo(s1)

	Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether this string is greater than, equal to, or less than s1.

	compareToIgnoreCase(s1)

	Same as compareTo except that the comparison is case insensitive.

	startsWith(prefix)

	Returns true if this string starts with the specified prefix.

	endsWith(suffix)

	Returns true if this string ends with the specified suffix.

	contains(s1)

	Returns true if s1 is a substring in this string.

How do you compare the contents of two strings? You might attempt to use the == ­operator, as follows:

==

if (string1 == string2)
 System.out.println("string1 and string2 are the same object");
else
 System.out.println("string1 and string2 are different objects");

However, the == operator checks only whether string1 and string2 refer to the same object; it does not tell you whether they have the same contents. Therefore, you cannot use the == operator to find out whether two string variables have the same contents. Instead, you should use the equals method. The following code, for instance, can be used to compare two strings:

if (string1.equals(string2))
 System.out.println("string1 and string2 have the same contents");
else
 System.out.println("string1 and string2 are not equal");

string1.equals(string2)

For example, the following statements display true then false:

String s1 = "Welcome to Java";
String s2 = "Welcome to Java";
String s3 = "Welcome to C++";
System.out.println(s1.equals(s2)); // true
System.out.println(s1.equals(s3)); // false

The compareTo method can also be used to compare two strings. For example, consider the following code:

s1.compareTo(s2)

s1.compareTo(s2)

The method returns the value 0 if s1 is equal to s2, a value less than 0 if s1 is ­lexicographically (i.e., in terms of Unicode ordering) less than s2, and a value greater than 0 if s1 is lexicographically greater than s2.

The actual value returned from the compareTo method depends on the offset of the first two distinct characters in s1 and s2 from left to right. For example, suppose s1 is abc and s2 is abg, and s1.compareTo(s2) returns −4. The first two characters (a vs. a) from s1 and s2 are compared. Because they are equal, the second two characters (b vs. b) are compared. Because they are also equal, the third two characters (c vs. g) are compared. Since the character c is 4 less than g, the comparison returns −4.

 Caution

Syntax errors will occur if you compare strings by using relational operators >, >=, <, or <=. Instead, you have to use s1.compareTo(s2).

 Note

The equals method returns true if two strings are equal, and false if they are not. The compareTo method returns 0, a positive integer, or a negative integer, depending on whether one string is equal to, greater than, or less than the other string.

The String class also provides the equalsIgnoreCase and ­compareToIgnoreCase methods for comparing strings. The equalsIgnoreCase and ­compareToIgnoreCase methods ignore the case of the letters when comparing two strings. You can also use str.startsWith(prefix) to check whether string str starts with a specified prefix, str.endsWith(suffix) to check whether string str ends with a specified suffix, and str.contains(s1) to check whether string str contains string s1. For example,

"Welcome to Java".startsWith("We") returns true.
"Welcome to Java".startsWith("we") returns false.
"Welcome to Java".endsWith("va") returns true.
"Welcome to Java".endsWith("v") returns false.
"Welcome to Java".contains("to") returns true.
"Welcome to Java".contains("To") returns false.

Listing 4.2 gives a program that prompts the user to enter two cities and displays them in alphabetical order.

Listing 4.2 OrderTwoCities.java

 1 import java.util.Scanner;
 2
 3 public class OrderTwoCities {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two cities
 8 System.out.print("Enter the first city: ");
input city1 9 String city1 = input.nextLine();
 10 System.out.print("Enter the second city: ");
input city2 11 String city2 = input.nextLine();
 12
compare two cities 13 if (city1.compareTo(city2) < 0)
 14 System.out.println("The cities in alphabetical order are " +
 15 city1 + " " + city2);
 16 else
 17 System.out.println("The cities in alphabetical order are " +
 18 city2 + " " + city1);
 19 }
 20 }

Enter the first city: New York
Enter the second city: Boston
The cities in alphabetical order are Boston New York

The program reads two strings for two cities (lines 9 and 11). If input.nextLine() is replaced by input.next() (line 9), you cannot enter a string with spaces for city1. Since a city name may contain multiple words separated by spaces, the program uses the nextLine method to read a string (lines 9 and 11). Invoking city1.compareTo(city2) compares two strings city1 with city2 (line 13). A negative return value indicates that city1 is less than city2.

4.4.8 Obtaining Substrings

You can obtain a single character from a string using the charAt method. You can also obtain a substring from a string using the substring method (see Figure 4.2) in the String class, as given in Table 4.9.

For example,

String message = "Welcome to Java";
String message = message.substring(0,11) + "HTML";
The string message now becomes Welcome to HTML.

Table 4.9 The String Class Contains the Methods for Obtaining Substrings

	Method

	Description

	substring(beginIndex)

	Returns this string’s substring that begins with the character at the specified beginIndex and extends to the end of the string, as shown in Figure 4.2.

	substring(beginIndex, endIndex)

	Returns this string’s substring that begins at the specified beginIndex and extends to the character at index endIndex – 1, as shown in Figure 4.2. Note the character at endIndex is not part of the substring.

[image: An array shows how code for substrings correspond to the elements in the array for the message.]

Figure 4.2

The substring method obtains a substring from a string.

Description

 Note

If beginIndex is endIndex, substring(beginIndex, endIndex) returns an empty string with length 0. If beginIndex > endIndex, it would be a runtime error.

beginIndex <= endIndex

4.4.9 Finding a Character or a Substring in a String

The String class provides several versions of indexOf and lastIndexOf methods to find a character or a substring in a string, as listed in Table 4.10.

Table 4.10 The String Class Contains the Methods for Finding Substrings

	Method

	Description

	index Of (ch)

	Returns the index of the first occurrence of ch in the string. Returns −1 if not matched.

	indexOf(ch, fromIndex)

	Returns the index of the first occurrence of ch after fromIndex in the string. Returns −1 if not matched.

	indexOf(s)

	Returns the index of the first occurrence of string s in this string. Returns −1 if not matched.

	indexOf(s, fromIndex)

	Returns the index of the first occurrence of string s in this string after fromIndex. Returns −1 if not matched.

	lastIndexOf(ch)

	Returns the index of the last occurrence of ch in the string. Returns −1 if not matched.

	lastIndexOf(ch, fromIndex)

	Returns the index of the last occurrence of ch before fromIndex in this string. Returns −1 if not matched.

	lastIndexOf(s)

	Returns the index of the last occurrence of string s. Returns −1 if not matched.

	lastIndexOf(s, fromIndex)

	Returns the index of the last occurrence of string s before fromIndex. Returns −1 if not matched.

For example,

	"Welcome to Java".indexOf('W') returns 0.

	"Welcome to Java".indexOf('o') returns 4.

	"Welcome to Java".indexOf('o', 5) returns 9.

	"Welcome to Java".indexOf("come") returns 3.

	"Welcome to Java".indexOf("Java", 5) returns 11.

	"Welcome to Java".indexOf("java", 5) returns −1.

indexOf

	"Welcome to Java".lastIndexOf('W') returns 0.

	"Welcome to Java".lastIndexOf('o') returns 9.

	"Welcome to Java".lastIndexOf('o', 5) returns 4.

	"Welcome to Java".lastIndexOf("come") returns 3.

	"Welcome to Java".lastIndexOf("Java", 5) returns −1.

	"Welcome to Java".lastIndexOf("Java") returns 11.

lastIndexOf

Suppose that a string s contains the first name and last name separated by a space. You can use the following code to extract the first name and last name from the string:

int k = s.indexOf(' ');
String firstName = s.substring(0, k);
String lastName = s.substring(k + 1);

For example, if s is Kim Jones, the following diagram illustrates how the first name and last name are extracted.

[image: A diagram shows how substrings combine to produce an output.]

Description

4.4.10 Conversion between Strings and Numbers

You can convert a numeric string into a number. To convert a string into an int value, use the Integer.parseInt method, as follows:

Integer.parseInt method

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as "123".

To convert a string into a double value, use the Double.parseDouble method, as follows:

Double.parseDouble method

double doubleValue = Double.parseDouble(doubleString);

where doubleString is a numeric string such as "123.45".

If the string is not a numeric string, the conversion would cause a runtime error. The ­Integer and Double classes are both included in the java.lang package, and thus they are automatically imported.

You can convert a number into a string; simply use the string concatenating operator as follows:

String s = number + "" ;

number to string

	4.4.1	Suppose s1, s2, and s3 are three strings, given as follows:

String s1 = "Welcome to Java";
String s2 = "Programming is fun";
String s3 = "Welcome to Java";

What are the results of the following expressions?

	s1 == s2

	s2 == s3

	s1.equals(s2)

	s2.equals(s3)

	s1.compareTo(s2)

	s2.compareTo(s3)

	s2.compareTo(s2)

	s1.charAt(0)

	s1.indexOf('j')

	s1.indexOf("to")

	s1.lastIndexOf('a')

	s1.lastIndexOf("o", 15)

	s1.length()

	s1.substring(5)

	s1.substring(5, 11)

	s1.startsWith("Wel")

	s1.endsWith("Java")

	s1.toLowerCase()

	s1.toUpperCase()

	s1.concat(s2)

	s1.contain(s2)

	"\t Wel \t".trim()

	4.4.2 Suppose s1 and s2 are two strings. Which of the following statements or expressions are incorrect?

String s = "Welcome to Java";
String s3 = s1 + s2;
String s3 = s1 − s2;
s1 == s2;
s1 >= s2;
s1.compareTo(s2);
int i = s1.length();
char c = s1(0);
char c = s1.charAt(s1.length());

	4.4.3 Show the output of the following statements (write a program to verify your results):

System.out.println("1" + 1);
System.out.println('1' + 1);
System.out.println("1" + 1 + 1);
System.out.println("1" + (1 + 1));
System.out.println('1' + 1 + 1);

	4.4.4 Evaluate the following expressions (write a program to verify your results):

1 + "Welcome " + 1 + 1
1 + "Welcome " + (1 + 1)
1 + "Welcome " + ('\u0001' + 1)
1 + "Welcome " + 'a' + 1

	4.4.5 Let s1 be " Welcome " and s2 be " welcome ". Write the code for the ­following statements:

	Check whether s1 is equal to s2 and assign the result to a Boolean variable isEqual.

	Check whether s1 is equal to s2, ignoring case, and assign the result to a Boolean variable isEqual.

	Compare s1 with s2 and assign the result to an int variable x.

	Compare s1 with s2, ignoring case, and assign the result to an int variable x.

	Check whether s1 has the prefix AAA and assign the result to a Boolean variable b.

	Check whether s1 has the suffix AAA and assign the result to a Boolean variable b.

	Assign the length of s1 to an int variable x.

	Assign the first character of s1 to a char variable x.

	Create a new string s3 that combines s1 with s2.

	Create a substring of s1 starting from index 1.

	Create a substring of s1 from index 1 to index 4.

	Create a new string s3 that converts s1 to lowercase.

	Create a new string s3 that converts s1 to uppercase.

	Create a new string s3 that trims whitespaces on both ends of s1.

	Assign the index of the first occurrence of the character e in s1 to an int ­variable x.

	Assign the index of the last occurrence of the string abc in s1 to an int ­variable x.

	4.4.6 Write one statement to return the number of digits in an integer i.

	4.4.7 Write one statement to return the number of digits in a double value d.

4.5 Case Studies

	Strings are fundamental in programming. The ability to write programs using strings is essential in learning Java programming.

You will frequently use strings to write useful programs. This section presents three examples of solving problems using strings.

4.5.1 Case Study: Guessing Birthdays

You can find out the date of the month when your friend was born by asking five questions. Each question asks whether the day is in one of the five sets of numbers.

[image: Sets 1 to 5 contain 4 by 4 grids of numbers, representing days of the month. The number 19 is the total of the first number taken from sets 1, 2, and 5, because 19 appears in those groups.]
The birthday is the sum of the first numbers in the sets where the day appears. For example, if the birthday is 19, it appears in Set1, Set2, and Set5. The first numbers in these three sets are 1, 2, and 16. Their sum is 19.

Listing 4.3 gives a program that prompts the user to answer whether the day is in Set1 (lines 41–44), in Set2 (lines 50–53), in Set3 (lines 59–62), in Set4 (lines 68–71), and in Set5 (lines 77–80). If the number is in the set, the program adds the first number in the set to day (lines 47, 56, 65, 74, and 83).

Listing 4.3 GuessBirthday.java

 1 import java.util.Scanner;
 2
 3 public class GuessBirthday {
 4 public static void main(String[] args) {
 5 String set1 =
 6 " 1 3 5 7\n" +
 7 " 9 11 13 15\n" +
 8 "17 19 21 23\n" +
 9 "25 27 29 31";
 10
 11 String set2 =
 12 " 2 3 6 7\n" +
 13 "10 11 14 15\n" +
 14 "18 19 22 23\n" +
 15 "26 27 30 31";
 16
 17 String set3 =
 18 " 4 5 6 7\n" +
 19 "12 13 14 15\n" +
 20 "20 21 22 23\n" +
 21 "28 29 30 31";
 22
 23 String set4 =
 24 " 8 9 10 11\n" +
 25 "12 13 14 15\n" +
 26 "24 25 26 27\n" +
 27 "28 29 30 31";
 28
 29 String set5 =
 30 "16 17 18 19\n" +
 31 "20 21 22 23\n" +
 32 "24 25 26 27\n" +
 33 "28 29 30 31";
 34
day to be determined 35 int day = 0;
 36
 37 // Create a Scanner
 38 Scanner input = new Scanner(System.in);
 39
 40 // Prompt the user to answer questions
 41 System.out.print("Is your birthday in Set1?\n");
 42 System.out.print(set1);
 43 System.out.print("\nEnter 0 for No and 1 for Yes: ");
 44 int answer = input.nextInt();
 45
in Set1? 46 if (answer == 1)
 47 day += 1;
 48
 49 // Prompt the user to answer questions
 50 System.out.print("\nIs your birthday in Set2?\n");
 51 System.out.print(set2);
 52 System.out.print("\nEnter 0 for No and 1 for Yes: ");
 53 answer = input.nextInt();
 54
in Set2? 55 if (answer == 1)
 56 day += 2;
 57
 58 // Prompt the user to answer questions
 59 System.out.print("\nIs your birthday in Set3?\n");
 60 System.out.print(set3);
 61 System.out.print("\nEnter 0 for No and 1 for Yes: ");
 62 answer = input.nextInt();
 63
in Set3? 64 if (answer == 1)
 65 day += 4;
 66
 67 // Prompt the user to answer questions
 68 System.out.print("\nIs your birthday in Set4?\n");
 69 System.out.print(set4);
 70 System.out.print("\nEnter 0 for No and 1 for Yes: ");
 71 answer = input.nextInt();
 72
in Set4? 73 if (answer == 1)
 74 day += 8;
 75
 76 // Prompt the user to answer questions
 77 System.out.print("\nIs your birthday in Set5?\n");
 78 System.out.print(set5);
 79 System.out.print("\nEnter 0 for No and 1 for Yes: ");
 80 answer = input.nextInt();
 81
in Set5? 82 if (answer == 1)
 83 day += 16;
 84
 85 System.out.println("\nYour birthday is " + day + "!");
 86 }
 87 }

Is your birthday in Set1?
  1   3   5   7
 9 11 13 15
17 19 21 23
25 27 29 31
Enter 0 for No and 1 for Yes: 1

Is your birthday in Set2?
 2   3   6   7
10 11 14 15
18 19 22 23
26 27 30 31
Enter 0 for No and 1 for Yes: 1

Is your birthday in Set3?
 4   5   6   7
12 13 14 15
20 21 22 23
28 29 30 31
Enter 0 for No and 1 for Yes: 0

Is your birthday in Set4?
 8   9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: 0

Is your birthday in Set5?
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: 1
Your birthday is 19!

	line#

	day

	answer

	output

	35

	0

	

	

	44

	

	1

	

	47

	1

	

	

	53

	

	1

	

	56

	3

	

	

	62

	

	0

	

	71

	

	0

	

	80

	

	1

	

	83

	19

	

	

	85

	

	

	Your birthday is 19!

This game is easy to program. You may wonder how the game was created. The mathematics behind the game is actually quite simple. The numbers are not grouped together by ­accident—the way they are placed in the five sets is deliberate. The starting numbers in the five sets are 1, 2, 4, 8, and 16, which correspond to 1, 10, 100, 1000, and 10000 in binary (binary numbers are introduced in Appendix F, Number Systems). A binary number for decimal integers between 1 and 31 has at most five digits, as shown in Figure 4.3a. Let it be b5b4b3b2b1. Thus, b5b4b3b2b1=b5 0000+b4 000+b3 00+b2 0+b1, as shown in Figure 4.3b. If a day’s binary number has a digit 1 in bk, the number should appear in Setk. For example, number 19 is binary 10011, so it appears in Set1, Set2, and Set5. It is binary 1 + 10 + 10000 = 10011 or decimal 1 + 2 + 16 = 19. Number 31 is binary 11111, so it appears in Set1, Set2, Set3, Set4, and Set5. It is binary 1 + 10 + 100 + 1000 + 10000 = 11111 or decimal 1 + 2 + 4 + 8 + 16 = 31.

mathematics behind the game

[image: Figures a and b contain aids for calculating binary numbers.]

Figure 4.3

(a) A number between 1 and 31 can be represented using a five-digit binary number. (b) A five-digit binary number can be obtained by adding binary numbers 1, 10, 100, 1000, or 10000.

Description

4.5.2 Case Study: Converting a Hexadecimal Digit to a Decimal Value

The hexadecimal number system has 16 digits: 0–9, A–F. The letters A, B, C, D, E, and F correspond to the decimal numbers 10, 11, 12, 13, 14, and 15. We now write a program that prompts the user to enter a hex digit and display its corresponding decimal value, as given in Listing 4.4.

Convert hex to decimal

Listing 4.4 HexDigit2Dec.java

			 1 import java.util.Scanner;
			 2
			 3 public class HexDigit2Dec {
			 4 public static void main(String[] args) {
			 5 Scanner input = new Scanner(System.in);
			 6 System.out.print("Enter a hex digit: ");
input string	 7 String hexString = input.nextLine();
			 8
			 9 // Check if the hex string has exactly one character
input string 10 if (hexString.length() != 1) {
			11 System.out.println("You must enter exactly one character");
			12 System.exit(1);
			13 }
			14
			15 // Display decimal value for the hex digit
			16 char ch = Character.toUpperCase(hexString.charAt(0));
is A-F?	 17 if ('A' <= ch && ch <= 'F') {
			18 int value = ch − 'A' + 10;
			19 System.out.println("The decimal value for hex digit "
			20 + ch + " is " + value);
			21 }
is 0-9?	 22 else if (Character.isDigit(ch)) {
			23 System.out.println("The decimal value for hex digit "
			24 + ch + " is " + ch);
			25 }
			26 else {
			27 System.out.println(ch + " is an invalid input");
			28 }
			29 }
			30 }

Enter a hex digit: AB7C
You must enter exactly one character

Enter a hex digit: B
The decimal value for hex digit B is 11

Enter a hex digit: 8
The decimal value for hex digit 8 is 8

Enter a hex digit: T
T is an invalid input

The program reads a string from the console (line 7) and checks if the string contains a single character (line 10). If not, report an error and exit the program (line 12).

The program invokes the Character.toUpperCase method to obtain the character ch as an uppercase letter (line 16). If ch is between 'A' and 'F' (line 17), the corresponding decimal value is ch – 'A' + 10 (line 18). Note ch – 'A' is 0 if ch is 'A', ch – 'A' is 1 if ch is 'B', and so on. When two characters perform a numerical operation, the characters' Unicodes are used in the computation.

The program invokes the Character.isDigit(ch) method to check if ch is between '0' and '9' (line 22). If so, the corresponding decimal digit is the same as ch (lines 23 and 24).

If ch is not between 'A' and 'F' nor a digit character, the program displays an error message (line 27).

4.5.3 Case Study: Revising the Lottery Program Using Strings

The lottery program in Listing 3.8, Lottery.java, generates a random two-digit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rule:

	If the user input matches the lottery number in the exact order, the award is $10,000.

	If all the digits in the user input match all the digits in the lottery number, the award is $3,000.

	If one digit in the user input matches a digit in the lottery number, the award is $1,000.

The program in Listing 3.8 uses an integer to store the number. Listing 4.5 gives a new program that generates a random two-digit string instead of a number, and receives the user input as a string instead of a number.

Listing 4.5 LotteryUsingStrings.java

 1 import java.util.Scanner;
 2
 3 public class LotteryUsingStrings {
 4 public static void main(String[] args) {
 5 // Generate a lottery as a two-digit string
generate a lottery 6 String lottery = "" + (int)(Math.random() * 10)
 7 + (int)(Math.random() * 10);
 8
 9 // Prompt the user to enter a guess
 10 Scanner input = new Scanner(System.in);
 11 System.out.print("Enter your lottery pick (two digits): ");
enter a guess 12 String guess = input.nextLine();
 13
 14 // Get digits from lottery
 15 char lotteryDigit1 = lottery.charAt(0);
 16 char lotteryDigit2 = lottery.charAt(1);
 17
 18 // Get digits from guess
 19 char guessDigit1 = guess.charAt(0);
 20 char guessDigit2 = guess.charAt(1);
 21
 22 System.out.println("The lottery number is " + lottery);
 23
 24 // Check the guess
exact match? 25 if (guess.equals(lottery))
 26 System.out.println("Exact match: you win $10,000");
match all digits? 27 else if (guessDigit2 == lotteryDigit1
 28 && guessDigit1 == lotteryDigit2)
 29 System.out.println("Match all digits: you win $3,000");
match one digit? 30 else if (guessDigit1 == lotteryDigit1
 31 || guessDigit1 == lotteryDigit2
 32 || guessDigit2 == lotteryDigit1
 33 || guessDigit2 == lotteryDigit2)
 34 System.out.println("Match one digit: you win $1,000");
 35 else
 36 System.out.println("Sorry, no match");
 37 }
 38 }

Enter your lottery pick (two digits): 00
The lottery number is 00
Exact match: you win $10,000

Enter your lottery pick (two digits): 45
The lottery number is 54
Match all digits: you win $3,000

Enter your lottery pick: 23
The lottery number is 34
Match one digit: you win $1,000

Enter your lottery pick: 23
The lottery number is 14
Sorry: no match

The program generates two random digits and concatenates them into the string lottery (lines 6 and 7). After this, lottery contains two random digits.

The program prompts the user to enter a guess as a two-digit string (line 12) and checks the guess against the lottery number in this order:

	First, check whether the guess matches the lottery exactly (line 25).

	If not, check whether the reversal of the guess matches the lottery (line 27).

	If not, check whether one digit is in the lottery (lines 30–33).

	If not, nothing matches and display “Sorry, no match” (line 36).

	4.5.1 If you run Listing 4.3 GuessBirthday.java with input 1 for Set1, Set3, and Set4 and 0 for Set2 and Set5, what will be the birthday?

	4.5.2 If you enter a lowercase letter such as b, the program in Listing 4.4 displays B is 11. Revise the code as to display b is 11.

	4.5.3 What would be wrong if lines 6 and 7 are in Listing 4.5 replaced by the following code?

String lottery = "" + (int)(Math.random() * 100);

4.6 Formatting Console Output

	You can use the System.out.printf method to display formatted output on the console.

Often, it is desirable to display numbers in a certain format. For example, the following code computes interest, given the amount and the annual interest rate:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is $" + interest);

Interest is $16.404674

Because the interest amount is currency, it is desirable to display only two digits after the decimal point. To do this, you can write the code as follows:

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.println("Interest is $"
 + (int)(interest * 100) / 100.0);

Interest is $16.4

However, the format is still not correct. There should be two digits after the decimal point: 16.40 rather than 16.4. You can fix it by using the printf method, as follows:

printf

[image: A diagram breaks down the code for changing the displayed number format.]

Description

double amount = 12618.98;
double interestRate = 0.0013;
double interest = amount * interestRate;
System.out.printf("Interest is $%4.2f",
 interest);

Interest is $16.40

The f in the printf stands for formatted, implying that the method prints an item in some format. The syntax to invoke this method is

System.out.printf(format, item1, item2, …, itemk);

where format is a string that may consist of substrings and format specifiers.

A format specifier specifies how an item should be formatted. An item may be a numeric value, a character, a Boolean value, or a string. A simple format specifier consists of a percent sign (%) followed by a conversion code. Table 4.11 lists some frequently used simple format specifiers.

format specifier

Table 4.11 Frequently Used Format Specifiers

	Format Specifier

	Output

	Example

	%b

	A Boolean value

	True or false

	%c

	A character

	‘a’

	%d

	A decimal integer

	200

	%f

	A floating-point number

	45.460000

	%e

	A number in standard scientific notation

	4.556000e+01

	%s

	A string

	“Java is cool”

Here is an example:

[image: A diagram breaks down the code for a format specifier.]

Description

Items must match the format specifiers in order, in number, and in exact type. For example, the format specifier for count is %d and for amount is %f. By default, a floating-point value is displayed with six digits after the decimal point. You can specify the width and precision in a format specifier, as shown in the examples in Table 4.12.

Table 4.12 Examples of Specifying Width and Precision

	Example

	Output

	%5c

	Output the character and add four spaces before the character item, because the width is 5.

	%6b

	Output the Boolean value and add one space before the false value and two spaces before the true value.

	%5d

	Output the integer item with width 5. If the number of digits in the item is

 < 5,

 add spaces before the number. If the number of digits in the item is

 > 5,

 the width is automatically increased.

	%10.2f

	Output the floating-point item with width 10 including a decimal point and two digits after the point. Thus, there are seven digits allocated before the decimal point. If the number of digits before the decimal point in the item is

 < 7,

 add spaces before the number. If the number of digits before the decimal point in the item is

 > 7,

 the width is automatically increased.

	%10.2e

	Output the floating-point item with width 10 including a decimal point, two digits after the point and the exponent part. If the displayed number in scientific notation has width

 < 10,

 add spaces before the number.

	%12s

	Output the string with width 12 characters. If the string item has fewer than 12 characters, add spaces before the string. If the string item has more than 12 characters, the width is automatically increased.

If an item requires more spaces than the specified width, the width is automatically increased. For example, the following code

System.out.printf("%3d#%2s#%4.2f\n", 1234, "Java", 51.6653);

displays

1234#Java#51.67

The specified width for int item 1234 is 3, which is smaller than its actual size 4. The width is automatically increased to 4. The specified width for string item Java is 2, which is smaller than its actual size 4. The width is automatically increased to 4. The specified width for double item 51.6653 is 4, but it needs width 5 to display 51.67, so the width is automatically increased to 5.

comma separators

You can display a number with comma separators by adding a comma in front of a number specifier. For example, the following code

System.out.printf("%,8d %,10.1f\n", 12345678, 12345678.263);

displays

12,345,678 12,345,678.3

leading zeros

You can pad a number with leading zeros rather than spaces by adding a 0 in front of a number specifier. For example, the following code

System.out.printf("%08d %08.1f\n", 1234, 5.63);

displays

00001234 000005.6

By default, the output is right justified. You can put the minus sign (−) in the format specifier to specify that the item is left justified in the output within the specified field. For example, the following statements

right justify

left justify

System.out.printf("%8d%8s%8.1f\n", 1234, "Java", 5.63);
System.out.printf("%−8d%−8s%−8.1f \n", 1234, "Java", 5.63);

display

[image: The output is two lines of 24 characters, as follows. Line 1: four square blocks, 1, 2, 3, 4, four square blocks, J, ay, v, ay, five square blocks, 5 point 6. Line 2: 1, 2, 3, 4, four blocks, J, ay, v, ay, four blocks, 5 point 6, five blocks.]
where the square box ([image:]) denotes a blank space.

 Caution

The items must match the format specifiers in exact type. The item for the format specifier %f or %e must be a floating-point type value such as 40.0, not 40. Thus, an int variable cannot match %f or %e. You can use %.2f to specify a floating-point value with two digits after the decimal point. However, %0.2f would be incorrect.

Tip

The % sign denotes a format specifier. To output a literal % in the format string, use %%. For example, the following code

 System.out.printf("%.2f%%\n", 75.234);

displays

75.23%

%%

Listing 4.6 gives a program that uses printf to display a table.

Listing 4.6 FormatDemo.java

 1 public class FormatDemo {
 2 public static void main(String[] args) {
 3 // Display the header of the table
display table header 4 System.out.printf("%−10s%−10s%−10s%−10s%−10s\n" "Degrees",
 5 "Radians", "Sine", "Cosine", "Tangent");
 6
 7 // Display values for 30 degrees
 8 int degrees = 30;
 9 double radians = Math.toRadians(degrees);
values for 30 degrees 10 System.out.printf("%−10d%−10.4f%−10.4f%−10.4f%−10.4f\n", degrees,
 11 radians, Math.sin(radians), Math.cos(radians),
 12 Math.tan(radians));
 13
 14 // Display values for 60 degrees
 15 degrees = 60;
 16 radians = Math.toRadians(degrees);
values for 60 degrees 17 System.out.printf("%−10d%−10.4f%−10.4f%−10.4f%−10.4f\n", degrees,
 18 radians, Math.sin(radians), Math.cos(radians),
 19 Math.tan(radians));
 20 }
 21 }

Degrees	Radians	Sine	Cosine	Tangent
30	0.5236	0.5000	0.8660	0.5774
60	1.0472	0.8660	0.5000	1.7321

The statements in lines 4 and 5 display the column names of the table. The column names are strings. Each string is displayed using the specifier %−10s, which left-justifies the string. The statements in lines 10–12 display the degrees as an integer and four float values. The integer is displayed using the specifier %−10d, and each float is displayed using the specifier %−10.4f, which specifies four digits after the decimal point.

	4.6.1 What are the format specifiers for outputting a Boolean value, a character, a decimal integer, a floating-point number, and a string?

	4.6.2 What is wrong in the following statements?

	System.out.printf("%5d %d", 1, 2, 3);

	System.out.printf("%5d %f", 1);

	System.out.printf("%5d %f", 1, 2);

	System.out.printf("%.2f\n%0.3f\n", 1.23456, 2.34);

	System.out.printf("%08s\n", "Java");

	4.6.3 Show the output of the following statements:

	System.out.printf("amount is %f %e\n", 32.32, 32.32);

	System.out.printf("amount is %5.2f%% %5.4e\n", 32.327, 32.32);

	System.out.printf("%6b\n", (1 > 2));

	System.out.printf("%6s\n", "Java");

	System.out.printf("%−6b%s\n", (1 > 2), "Java");

	System.out.printf("%6b%−8s\n", (1 > 2), "Java");

	System.out.printf("%,5d %,6.1f\n", 312342, 315562.932);

	System.out.printf("%05d %06.1f\n", 32, 32.32);

Key Terms

	char type 125

	encoding 125

	escape character 126

	escape sequence 126

	format specifier 146

	instance method 130

	line-based input 133

	specific import 130

	static method 130

	supplementary Unicode 125

	token-based input 133

	Unicode 125

	whitespace character 132

	

Chapter Summary

	Java provides the mathematical methods sin, cos, tan, asin, acos, atan, toRadians, toDegrees, exp, log, log10, pow, sqrt, ceil, floor, rint, round, min, max, abs, and random in the Math class for performing mathematical functions.

	The character type char represents a single character.

	An escape sequence consists of a backslash (\) followed by a character or a combination of digits.

	The character \ is called the escape character.

	The characters ' ', \t, \f, \r, and \n are known as the whitespace characters.

	Characters can be compared based on their Unicode using the relational operators.

	The Character class contains the methods isDigit, isLetter, isLetterOrDigit, isLowerCase, and isUpperCase for testing whether a character is a digit, letter, lowercase, or uppercase. It also contains the toLowerCase and toUpperCase methods for returning a lowercase or uppercase letter.

	A string is a sequence of characters. A string value is enclosed in matching double quotes ("). A character value is enclosed in matching single quotes (').

	Strings are objects in Java. A method that can only be invoked from a specific object is called an instance method. A noninstance method is called a static method, which can be invoked without using an object.

	You can get the length of a string by invoking its length() method, retrieve a character at the specified index in the string using the charAt(index) method, and use the indexOf and lastIndexOf methods to find a character or a substring in a string.

	You can use the concat method to concatenate two strings or the plus (+) operator to concatenate two or more strings.

	You can use the substring method to obtain a substring from the string.

	You can use the equals and compareTo methods to compare strings. The equals method returns true if two strings are equal, and false if they are not equal. The compareTo method returns 0, a positive integer, or a negative integer, depending on whether one string is equal to, greater than, or less than the other string.

	The printf method can be used to display a formatted output using format specifiers.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

 Programming Exercises

Section 4.2

	4.1 (Geometry: area of a pentagon) Write a program that prompts the user to enter the length from the center of a pentagon to a vertex and computes the area of the pentagon, as shown in the following figure.

[image: A line segment of length r extends from the center of a regular pentagon to one of the figure’s five vertices.]
The formula for computing the area of a pentagon is Area=5×s24×tan (π5), where s is the length of a side. The side can be computed using the formula s=2r sin π5, where r is the length from the center of a pentagon to a vertex. Round up two digits after the decimal point. Here is a sample run:

Enter the length from the center to a vertex: 5.5
The area of the pentagon is 71.92

	*4.2 (Geometry: great circle distance) The great circle distance is the distance between two points on the surface of a sphere. Let (x1, y1) and (x2, y2) be the ­geographical latitude and longitude of two points. The great circle distance between the two points can be computed using the following formula:

d=radius×arccos(sin (x1)×sin(x2)+cos(x1)×cos(x2)×cos(y1−y2))

Write a program that prompts the user to enter the latitude and longitude of two points on the earth in degrees and displays its great circle distance. The average radius of the earth is 6,371.01 km. Note you need to convert the degrees into radi­ans using the Math.toRadians method since the Java trigonometric methods use radians. The latitude and longitude degrees in the formula are for north and west. Use negative to indicate south and east degrees. Here is a sample run:

Enter point 1 (latitude and longitude) in degrees: 39.55 −116.25
Enter point 2 (latitude and longitude) in degrees: 41.5 87.37
The distance between the two points is 10691.79183231593 km

Compute great circle distance

	*4.3 (Geography: estimate areas) Use the GPS locations for Atlanta, Georgia; Orlando, Florida; Savannah, Georgia; and Charlotte, North Carolina in the figure in Section 4.1 to compute the estimated area enclosed by these four cities. (Hint: Use the formula in Programming Exercise 4.2 to compute the distance between two cities. Divide the polygon into two triangles and use the formula in Programming Exercise 2.19 to compute the area of a triangle.)

	4.4 (Geometry: area of a hexagon) The area of a hexagon can be computed using the following formula (s is the length of a side):

Area=6×s24×tan(π6)

Write a program that prompts the user to enter the side of a hexagon and displays its area. Here is a sample run:

Enter the side: 5.5
The area of the hexagon is 78.59

	*4.5 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon in which all sides are of the same length and all angles have the same degree (i.e., the polygon is both equilateral and equiangular). The formula for computing the area of a regular polygon is

Area=n×s24×tan(πn)

Here, s is the length of a side. Write a program that prompts the user to enter the number of sides and their length of a regular polygon and displays its area. Here is a sample run:

Enter the number of sides: 5
Enter the side: 6.5
The area of the polygon is 72.69017017488385

	*4.6 (Random points on a circle) Write a program that generates three random points on a circle centered at (0, 0) with radius 40 and displays three angles in a triangle formed by these three points, as shown in Figure 4.4a. (Hint: Generate a random angle α in radians between 0 and 2π, as shown in Figure 4.4b and the point determined by this angle is (rxcos (α), rxsin (α)).)

[image: Three figures show graphs of identical circles, with different points, lines, and angles graphed on each.]

Figure 4.4

(a) A triangle is formed from three random points on the circle. (b) A random point on the circle can be generated using a random angle α. (c) A pentagon is centered at (0, 0) with one point at the 0 o’clock position.

Description

	*4.7 (Corner point coordinates) Suppose a pentagon is centered at (0, 0) with one point at the 0 o’clock position, as shown in Figure 4.4c. Write a program that prompts the user to enter the radius of the bounding circle of a pentagon and displays the coordinates of the five corner points on the pentagon from p1 to p5 in this order. Use console format to display two digits after the decimal point. Here is a sample run:

Enter the radius of the bounding circle: 100.52
The coordinates of five points on the pentagon are
(95.60, 31.06)
(0.00, 100.52)
(−95.60, 31.06)
(−58.08, −81.32)
(59.08, −81.32)

Sections 4.3–4.6

	*4.8 (Find the character of an ASCII code) Write a program that receives an ASCII code (an integer between 0 and 127) and displays its character. Here is a sample run:

Enter an ASCII code: 69
The character for ASCII code 69 is E

	*4.9 (Find the Unicode of a character) Write a program that receives a character and displays its Unicode. Here is a sample run:

Enter a character: E
The Unicode for the character E is 69

	*4.10 (Guess birthday) Rewrite Listing 4.3 , GuessBirthday.java, to prompt the user to enter the character Y for Yes and N for No, rather than entering 1 for Yes and 0 for No.

	*4.11 (Decimal to hex) Write a program that prompts the user to enter an integer between 0 and 15 and displays its corresponding hex number. For an incorrect input number, display invalid input. Here are some sample runs:

Enter a decimal value (0 to 15): 11
The hex value is B

Enter a decimal value (0 to 15): 5
The hex value is 5

Enter a decimal value (0 to 15): 31
31 is an invalid input

	4.12 (Hex to binary) Write a program that prompts the user to enter a hex digit and displays its corresponding binary number. For an incorrect input, display invalid input. Here is a sample run:

Enter a hex digit: B
The binary value is 1011

Enter a hex digit: G
G is an invalid input

Convert hex to binary

	*4.13 (Vowel or consonant?) Write a program that prompts the user to enter a letter and check whether the letter is a vowel or consonant. For a nonletter input, display invalid input. Here is a sample run:

Enter a letter: B
B is a consonant

Enter a letter: a
a is a vowel

Enter a letter: #
is an invalid input

		*4.14 (Convert letter grade to number) Write a program that prompts the user to enter a letter grade A, B, C, D, or F and displays its corresponding numeric value 4, 3, 2, 1, or 0. For other input, display invalid grade. Here is a sample run:

Enter a letter grade: B
The numeric value for grade B is 3

Enter a letter grade: T
T is an invalid grade

	*4.15 (Phone key pads) The international standard letter/number mapping found on the telephone is shown below:

[image: A phone keypad.]

Description

		Write a program that prompts the user to enter a lowercase or uppercase letter and displays its corresponding number. For a nonletter input, display invalid input.

Enter a letter: A
The corresponding number is 2

Enter a letter: a
The corresponding number is 2

Enter a letter: +
+ is an invalid input

	4.16 (Random character) Write a program that displays a random uppercase letter using the Math.random() method.

	*4.17 (Days of a month) Write a program that prompts the user to enter the year and the first three letters of a month name (with the first letter in uppercase) and displays the number of days in the month. If the input for month is incorrect, display a message as presented in the following sample runs:

Enter a year: 2001
Enter a month: Jan
Jan 2001 has 31 days

Enter a year: 2016
Enter a month: jan
jan is not a correct month name

	*4.18 (Student major and status) Write a program that prompts the user to enter two characters and displays the major and status represented in the characters. The first character indicates the major and the second is a number character 1, 2, 3, or 4, which indicates whether a student is a freshman, sophomore, junior, or senior. Suppose that the following characters are used to denote the majors:

	M: Mathematics

	C: Computer Science

	I: Information Technology

Here are sample runs:

Enter two characters: M1
Mathematics Freshman

Enter two characters: C3
Computer Science Junior

Enter two characters: T3
Invalid input

	4.19 (Business: check ISBN-10) Rewrite Programming Exercise 3.9 by entering the ISBN number as a string.

	4.20 (Process a string) Write a program that prompts the user to enter a string and displays its length and its first character.

	*4.21 (Check SSN) Write a program that prompts the user to enter a Social Security number in the format DDD-DD-DDDD, where D is a digit. Your program should check whether the input is valid. Here are sample runs:

Enter a SSN: 232−23−5435
232−23−5435 is a valid social security number

Enter a SSN: 23−23−5435
23−23−5435 is an invalid social security number

	4.22 (Check substring) Write a program that prompts the user to enter two strings, and reports whether the second string is a substring of the first string.

Enter string s1: ABCD
Enter string s2: BC
BC is a substring of ABCD

Enter string s1: ABCD
Enter string s2: BDC
BDC is not a substring of ABCD

		*4.23	(Financial application: payroll) Write a program that reads the following information and prints a payroll statement:

	Employee’s name (e.g., Smith)

	Number of hours worked in a week (e.g., 10)

	Hourly pay rate (e.g., 9.75)

	Federal tax withholding rate (e.g., 20%)

	State tax withholding rate (e.g., 9%)

		A sample run is as follows:

Enter employee’s name: Smith
Enter number of hours worked in a week: 10
Enter hourly pay rate: 9.75
Enter federal tax withholding rate: 0.20
Enter state tax withholding rate: 0.09

Employee Name: Smith
Hours Worked: 10.0
Pay Rate: $9.75
Gross Pay: $97.5
Deductions:
 Federal Withholding (20.0%): $19.5
 State Withholding (9.0%): $8.77
 Total Deduction: $28.27
Net Pay: $69.22

	*4.24 (Order three cities) Write a program that prompts the user to enter three cities and displays them in ascending order. Here is a sample run:

Enter the first city: Chicago
Enter the second city: Los Angeles
Enter the third city: Atlanta
The three cities in alphabetical order are Atlanta Chicago Los Angeles

	*4.25 (Generate vehicle plate numbers) Assume that a vehicle plate number consists of three uppercase letters followed by four digits. Write a program to generate a plate number.

	*4.26 (Financial application: monetary units) Rewrite Listing 2.10 , ComputeChange.java, to fix the possible loss of accuracy when converting a float value to an int value. Read the input as a string such as "11.56". Your program should extract the dollar amount before the decimal point, and the cents after the decimal amount using the indexOf and substring methods.

 Note

More than 200 additional programming exercises with solutions are provided to the instructors on the Instructor Resource Website.

CHAPTER 5 Loops

Objectives

	To write programs for executing statements repeatedly using a while loop (§5.2).

	To write loops for the guessing number problem (§5.3).

	To follow the loop design strategy to develop loops (§5.4).

	To control a loop with the user confirmation or a sentinel value (§5.5).

	To obtain large input from a file using input redirection rather than typing from the keyboard (§5.5).

	To write loops using do-while statements (§5.6).

	To write loops using for statements (§5.7).

	To discover the similarities and differences of three types of loop ­statements (§5.8).

	To write nested loops (§5.9).

	To learn the techniques for minimizing numerical errors (§5.10).

	To learn loops from a variety of examples (GCD, FutureTuition, and Dec2Hex) (§5.11).

	To implement program control with break and continue (§5.12).

	To process characters in a string using a loop in a case study for ­checking palindrome (§5.13).

	To write a program that displays prime numbers (§5.14).

5.1 Introduction

	A loop can be used to tell a program to execute statements repeatedly.

problem

Suppose you need to display a string (e.g., Welcome to Java!) a hundred times. It would be tedious to have to write the following statement a hundred times:

100 times {

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

…

System.out.println("Welcome to Java!");

 

So, how do you solve this problem?

loop

Java provides a powerful construct called a loop that controls how many times an operation or a sequence of operations is performed in succession. Using a loop statement, you can simply tell the computer to display a string a hundred times without having to code the print statement a hundred times, as follows:

int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count++;
}

The variable count is initially 0. The loop checks whether count < 100 is true. If so, it executes the loop body to display the message Welcome to Java! and increments count by 1. It repeatedly executes the loop body until count < 100 becomes false. When count < 100 is false (i.e., when count reaches 100), the loop terminates, and the next statement after the loop statement is executed.

Loops are constructs that control repeated executions of a block of statements. The concept of looping is fundamental to programming. Java provides three types of loop statements: while loops, do-while loops, and for loops.

5.2 The while Loop

	A while loop executes statements repeatedly while the condition is true.

The syntax for the while loop is as follows:

while loop

while (loop-continuation-condition) {
 // Loop body
 Statement(s);
}

Use while loop

loop body

iteration

loop-continuation-­condition

Figure 5.1a shows the while loop flowchart. The part of the loop that contains the statements to be repeated is called the loop body. A one-time execution of a loop body is referred to as an iteration (or repetition) of the loop. Each loop contains a loop-continuation-condition, a Boolean expression that controls the execution of the body. It is evaluated each time to determine if the loop body is executed. If its evaluation is true, the loop body is executed; if its evaluation is false, the entire loop terminates and the program control turns to the ­statement that follows the while loop.

[image: Figures ay and b show a simple flow chart, and a more detailed flow chart, respectively.]
Figure 5.1

The while loop repeatedly executes the statements in the loop body when the loop-continuation-condition evaluates to true.

Description

The loop for displaying Welcome to Java! a hundred times introduced in the ­preceding section is an example of a while loop. Its flowchart is shown in Figure 5.1b. The loop-continuation-condition is count < 100 and the loop body contains two statements in the following code:

[image: A diagram of code for a loop.]

Description

In this example, you know exactly how many times the loop body needs to be executed because the control variable count is used to count the number of iterations. This type of loop is known as a counter-controlled loop.

counter-controlled loop

 Note

The loop-continuation-condition must always appear inside the parentheses. The braces enclosing the loop body can be omitted only if the loop body contains one or no statement.

Here is another example to help understand how a loop works.

int sum = 0, i = 1;
while (i < 10) {
 sum = sum + i;
 i++;
}
System.out.println("sum is " + sum); // sum is 45

If i < 10 is true, the program adds i to sum. Variable i is initially set to 1, then is incremented to 2, 3, and up to 10. When i is 10, i < 10 is false, so the loop exits. Therefore, the sum is 1 + 2 + 3 + ... + 9 = 45.

What happens if the loop is mistakenly written as follows?

int sum = 0, i = 1;
while (i < 10) {
 sum = sum + i;
}

This loop is infinite, because i is always 1 and i < 10 will always be true.

infinite loop

 Note

Make sure that the loop-continuation-condition eventually becomes false so that the loop will terminate. A common programming error involves infinite loops (i.e., the loop runs forever). If your program takes an unusually long time to run and does not stop, it may have an infinite loop. If you are running the program from the command window, press CTRL + C to stop it.

off-by-one error

 Caution

Programmers often make the mistake of executing a loop one more or less time. This is commonly known as the off-by-one error. For example, the following loop displays ­Welcome to Java 101 times rather than 100 times. The error lies in the condition, which should be count < 100 rather than count <= 100.

int count = 0;
while (count <= 100) {
 System.out.println("Welcome to Java!");
 count++;
}

Recall that Listing 3.1, AdditionQuiz.java, gives a program that prompts the user to enter an answer for a question on addition of two single digits. Using a loop, you can now rewrite the program to let the user repeatedly enter a new answer until it is correct, as given in Listing 5.1.

Listing 5.1 RepeatAdditionQuiz.java

 1 import java.util.Scanner;
 2
 3 public class RepeatAdditionQuiz {
 4 public static void main(String[] args) {
generate number1 5 int number1 = (int)(Math.random() * 10);
generate number2 6 int number2 = (int)(Math.random() * 10);
 7
 8 // Create a Scanner
 9 Scanner input = new Scanner(System.in);
 10
show question 11 System.out.print(
 12 "What is " + number1 + " + " + number2 + "? ");
get first answer 13 int answer = input.nextInt();
 14
check answer 15 while (number1 + number2 != answer) {
 16 System.out.print("Wrong answer. Try again. What is "
 17 + number1 + " + " + number2 + "? ");
read an answer 18 answer = input.nextInt();
 19 }
 20
 21 System.out.println("You got it!");
 22 }
 23 }

What is 5 + 9? 12
Wrong answer. Try again. What is 5 + 9? 34
Wrong answer. Try again. What is 5 + 9? 14
You got it!

The loop in lines 15–19 repeatedly prompts the user to enter an answer when number1 + number2 != answer is true. Once number1 + number2 != answer is false, the loop exits.

	5.2.1 Analyze the following code. Is count < 100 always true, always false, or sometimes true or sometimes false at Point A, Point B, and Point C?

int count = 0;
while (count < 100) {
 // Point A
 System.out.println("Welcome to Java!");
 count++;
 // Point B
}
// Point C

	5.2.2 How many times are the following loop bodies repeated? What is the output of each loop?

	
int i = 1;
while (i < 10)
 if (i % 2 == 0)
 System.out.println(i);

	int i = 1;
while (i < 10)
 if (i % 2 == 0)
 System.out.println(i++);

	int i = 1;
while (i < 10)
 if ((i++) % 2 == 0)
 System.out.println(i);

	(a)
	(b)
	(c)

	5.2.3 What is the output of the following code? Explain the reason.

int x = 80000000;
while (x > 0)
 x++;
System.out.println("x is " + x);

5.3 Case Study: Guessing Numbers

	This case study generates a random number and lets the user repeatedly guess a n­umber until it is correct.

Guess a number

The problem is to guess what number a computer has in mind. You will write a program that randomly generates an integer between 0 and 100, inclusive. The program prompts the user to enter a number continuously until the number matches the randomly generated number. For each user input, the program tells the user whether the input is too low or too high, so the user can make the next guess intelligently. Here is a sample run:

Guess a magic number between 0 and 100
Enter your guess: 50
Your guess is too high
Enter your guess: 25
Your guess is too low
Enter your guess: 42
Your guess is too high
Enter your guess: 39
Yes, the number is 39

The magic number is between 0 and 100. To minimize the number of guesses, enter 50 first. If your guess is too high, the magic number is between 0 and 49. If your guess is too low, the magic number is between 51 and 100. Thus, you can eliminate half of the numbers from further consideration after one guess.

intelligent guess

think before coding

How do you write this program? Do you immediately begin coding? No. It is important to think before coding. Think how you would solve the problem without writing a program. You need first to generate a random number between 0 and 100, inclusive, then to prompt the user to enter a guess, then to compare the guess with the random number.

code incrementally

It is a good practice to code incrementally one step at a time. For programs involving loops, if you don’t know how to write a loop right away, you may first write the code for executing the loop one time, then figure out how to repeatedly execute the code in a loop. For this program, you may create an initial draft, as given in Listing 5.2.

Listing 5.2 GuessNumberOneTime.java

 1 import java.util.Scanner;
 2
 3 public class GuessNumberOneTime {
 4 public static void main(String[] args) {
 5 // Generate a random number to be guessed
generate a number 6 int number = (int)(Math.random() * 101);
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.println("Guess a magic number between 0 and 100");
 10
 11 // Prompt the user to guess the number
 12 System.out.print("\nEnter your guess: ");
enter a guess 13 int guess = input.nextInt();
 14
 15 if (guess == number)
correct guess 16 System.out.println("Yes, the number is " + number);
 17 else if (guess > number)
too high 18 System.out.println("Your guess is too high");
 19 else
too low 20 System.out.println("Your guess is too low");
 21 }
 22 }

When you run this program, it prompts the user to enter a guess only once. To let the user enter a guess repeatedly, you may wrap the code in lines 11–20 in a loop as follows:

while(true) {
 // Prompt the user to guess the number
 System.out.print("\nEnter your guess: ");
 guess = input.nextInt();
 if (guess == number)
 System.out.println("Yes, the number is " + number);
 else if (guess > number)
 System.out.println("Your guess is too high");
 else
 System.out.println("Your guess is too low");
} // End of loop

This loop repeatedly prompts the user to enter a guess. However, this loop is not correct, because it never terminates. When guess matches number, the loop should end. Thus, the loop can be revised as follows:

while (guess != number) {
 // Prompt the user to guess the number
 System.out.print("\nEnter your guess: ");
 guess = input.nextInt();
 if (guess == number)
 System.out.println("Yes, the number is " + number);
 else if (guess > number)
 System.out.println("Your guess is too high");
 else
 System.out.println("Your guess is too low");
} // End of loop

The complete code is given in Listing 5.3.

Listing 5.3 GuessNumber.java

 1 import java.util.Scanner;
 2
 3 public class GuessNumber {
 4 public static void main(String[] args) {
 5 // Generate a random number to be guessed
generate a number 6 int number = (int)(Math.random() * 101);
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.println("Guess a magic number between 0 and 100");
 10
 11 intguess = –1;
 12 while (guess != number) {
 13 // Prompt the user to guess the number
 14 System.out.print("\nEnter your guess: ");
enter a guess 15 guess = input.nextInt();
 16
 17 if (guess == number)
 18 System.out.println("Yes, the number is " + number);
 19 else if (guess > number)
too high 20 System.out.println("Your guess is too high");
 21 else
too low 22 System.out.println("Your guess is too low");
 23 } // End of loop
 24 }
 25 }

	
	line#

	number

	guess

	output

	
	 6

	39

	
	

	
	11

	
	−1

	

	iteration 1 [image:]

	15

	
	50

	

	20

	
	
	Your guess is too high

	iteration 2 [image:]

	15

	
	25

	

	22

	
	
	Your guess is too low

	iteration 3 [image:]

	15

	
	42

	

	20

	
	
	Your guess is too high

	iteration 4 [image:]

	15

	
	39

	

	18

	
	
	Yes, the number is 39

The program generates the magic number in line 6 and prompts the user to enter a guess ­continuously in a loop (lines 12–23). For each guess, the program checks whether the guess is correct, too high, or too low (lines 17–22). When the guess is correct, the program exits the loop (line 12). Note that guess is initialized to −1. Initializing it to a value between 0 and 100 would be wrong, because that could be the number to be guessed.

	5.3.1 What is wrong if guess is initialized to 0 in line 11 in Listing 5.3?

5.4 Loop Design Strategies

	The key to designing a loop is to identify the code that needs to be repeated and write a condition for terminating the loop.

Writing a correct loop is not an easy task for novice programmers. Consider three steps when writing a loop.

	Step 1: Identify the statements that need to be repeated.

	Step 2: Wrap these statements in a loop as follows:

while (true) {
 Statements;
}

	Step 3: Code the loop-continuation-condition and add appropriate statements for controlling the loop.

while (loop-continuation-condition) {
 Statements;
 Additional statements for controlling the loop;
}

Multiple subtraction quiz

The Math subtraction learning tool program in Listing 3.3, SubtractionQuiz.java, generates just one question for each run. You can use a loop to generate questions repeatedly. How do you write the code to generate five questions? Follow the loop design strategy. First, identify the statements that need to be repeated. These are the statements for obtaining two random numbers, prompting the user with a subtraction question, and grading the question. Second, wrap the statements in a loop. Third, add a loop control variable and the loop-­continuation-condition to execute the loop five times.

get start time

Listing 5.4 gives a program that generates five questions and, after a student answers all five, reports the number of correct answers. The program also displays the time spent on the test and lists all the questions.

loop

Listing 5.4 SubtractionQuizLoop.java

 1 import java.util.Scanner;
 2
 3 public class SubtractionQuizLoop {
 4 public static void main(String[] args) {
 5 final int NUMBER_OF_QUESTIONS = 5; // Number of questions
 6 int correctCount = 0; // Count the number of correct answers
 7 int count = 0; // Count the number of questions
get start time 8 long startTime = System.currentTimeMillis();
 9 String output = " "; // output string is initially empty
 10 Scanner input = new Scanner(System.in);
 11
loop 12 while (count < NUMBER_OF_QUESTIONS) {
 13 // 1. Generate two random single-digit integers
 14 int number1 = (int)(Math.random() * 10);
 15 int number2 = (int)(Math.random() * 10);
 16
 17 // 2. If number1 < number2, swap number1 with number2
 18 if (number1 < number2) {
 19 int temp = number1;
 20 number1 = number2;
 21 number2 = temp;
 22 }
 23
 24 // 3. Prompt the student to answer "What is number1 – number2?"
 25 System.out.print(
display a question 26 "What is " + number1 + " – " + number2 + "? ");
 27 int answer = input.nextInt();
 28
 29 // 4. Grade the answer and display the result
grade an answer 30 if (number1 – number2 == answer) {
 31 System.out.println("You are correct!");
increase correct count 32 correctCount++; // Increase the correct answer count
 33 }
 34 else
 35 System.out.println("Your answer is wrong.\n" + number1
 36 + " – " + number2 + " should be " + (number1 — number2));
 37
 38 // Increase the question count
 39 count++;
increase control variable 40
prepare output 41 output += "\n" + number1 + "–" + number2 + "=" + answer +
 42 ((number1 – number2 == answer) ? " correct": " wrong");
end loop 43 }
 44
get end time 45 long endTime = System.currentTimeMillis();
test time 46 long testTime = endTime – startTime;
 47
display result 48 System.out.println("Correct count is " + correctCount +
 49 "\nTest time is " + testTime / 1000 + " seconds\n" + output);
 50 }
 51 }

 What is 9 – 2? 7
 You are correct!

 What is 3 – 0? 3
 You are correct!

 What is 3 – 2? 1
 You are correct!

 What is 7 – 4? 4
 Your answer is wrong.
 7 – 4 should be 3

 What is 7 – 5? 4
 Your answer is wrong.
 7 – 5 should be 2

 Correct count is 3
 Test time is 1021 seconds

 9–2=7 correct
 3–0=3 correct
 3–2=1 correct
 7–4=4 wrong
 7–5=4 wrong

The program uses the control variable count to control the execution of the loop. count is initially 0 (line 7) and is increased by 1 in each iteration (line 39). A subtraction question is displayed and processed in each iteration. The program obtains the time before the test starts in line 8 and the time after the test ends in line 45, then computes the test time in line 46. The test time is in milliseconds and is converted to seconds in line 49.

	5.4.1 Revise the code using the System.nanoTime() to measure the time in nano seconds.

5.5 Controlling a Loop with User Confirmation or a Sentinel Value

	It is a common practice to use a sentinel value to terminate the input.

The preceding example executes the loop five times. If you want the user to decide whether to continue, you can offer a user confirmation. The template of the program can be coded as follows:

char continueLoop = 'Y';
while (continueLoop == 'Y') {
 // Execute the loop body once
 ...
 // Prompt the user for confirmation
 System.out.print("Enter Y to continue and N to quit: ");
 continueLoop = input.getLine().charAt(0);
}

You can rewrite the program given in Listing 5.4 with user confirmation to let the user decide whether to advance to the next question.

sentinel value

sentinel-controlled loop

Another common technique for controlling a loop is to designate a special value when reading and processing a set of values. This special input value, known as a sentinel value, signifies the end of the input. A loop that uses a sentinel value to control its execution is called a ­sentinel-controlled loop.

Listing 5.5 gives a program that reads and calculates the sum of an unspecified number of integers. The input 0 signifies the end of the input. Do you need to declare a new variable for each input value? No. Just use one variable named data (line 12) to store the input value, and use a variable named sum (line 15) to store the total. Whenever a value is read, assign it to data and, if it is not zero, add it to sum (line 17).

Listing 5.5 SentinelValue.java

 1 import java.util.Scanner;
 2
 3 public class SentinelValue {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Read an initial data
 10 System.out.print(
 11 "Enter an integer (the input ends if it is 0): ");
input 12 int data = input.nextInt();
 13
 14 // Keep reading data until the input is 0
 15 int sum = 0;
loop 16 while (data != 0) {
 17 sum += data;
 18
 19 // Read the next data
 20 System.out.print(
 21 "Enter an integer (the input ends if it is 0): ");
 22 data = input.nextInt();
end of loop 23 }
 24
display result 25 System.out.println("The sum is " + sum);
 26 }
 27 }

Enter an integer (the input ends if it is 0): 2
Enter an integer (the input ends if it is 0): 3
Enter an integer (the input ends if it is 0): 4
Enter an integer (the input ends if it is 0): 0
The sum is 9

	
	line#

	data

	sum

	output

	
	12

	2

	
	

	15

	
	0

	

	iteration 1

	17

	
	2

	

	22

	3

	
	

	iteration 2

	17

	
	5

	

	22

	4

	
	

	iteration 3

	17

	
	9

	

	22

	0

	
	

	
	25

	
	
	The sum is 9

If data is not 0, it is added to sum (line 17) and the next item of input data is read (lines 20–22). If data is 0, the loop body is no longer executed and the while loop terminates. The input value 0 is the sentinel value for this loop. Note if the first input read is 0, the loop body never executes, and the resulting sum is 0.

 Caution

Don’t use floating-point values for equality checking in a loop control. Because ­floating-point values are approximations for some values, using them could result in imprecise counter values and inaccurate results.

Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

double item = 1; double sum = 0;
while (item != 0) { // No guarantee item will be 0
 sum += item;
 item −= 0.1;
}
System.out.println(sum);

numeric error

Variable item starts with 1 and is reduced by 0.1 every time the loop body is executed. The loop should terminate when item becomes 0. However, there is no guarantee that item will be exactly 0, because the floating-point arithmetic is approximated. This loop seems okay on the surface, but it is actually an infinite loop.

In the preceding example, if you have a large number of data to enter, it would be ­cumbersome to type from the keyboard. You can store the data separated by whitespaces in a text file, say input.txt, and run the program using the following command:

java SentinelValue < input.txt

input redirection

This command is called input redirection. The program takes the input from the file input.txt rather than having the user type the data from the keyboard at runtime. Suppose the contents of the file are as follows:

2 3 4 5 6 7 8 9 12 23 32
23 45 67 89 92 12 34 35 3 1 2 4 0

The program should get sum to be 518.

output redirection

Similarly, there is output redirection, which sends the output to a file rather than displaying it on the console. The command for output redirection is

java ClassName > output.txt

Input and output redirections can be used in the same command. For example, the following command gets input from input.txt and sends output to output.txt:

java SentinelValue < input.txt > output.txt

Try running the program to see what contents are in output.txt.

	5.5.1 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 int number, max;
 number = input.nextInt();
 max = number;

 while (number != 0) {
 number = input.nextInt();
 if (number > max)
 max = number;
 }

 System.out.println("max is " + max);
 System.out.println("number " + number);
 }
}

5.6 The do-while Loop

	A do-while loop is the same as a while loop except that it executes the loop body first then checks the loop continuation condition.

Use do-while loop

do-while loop

The do-while loop is a variation of the while loop. Its syntax is as follows:

do {
 // Loop body;
 Statement(s);
} while (loop-continuation-condition);

Its execution flowchart is shown in Figure 5.2a.

[image: Figures ay and b show a simple flow chart, and a more detailed flow chart, respectively.]
Figure 5.2

The do-while loop executes the loop body first then checks the l­oop-­continuation-condition to determine whether to continue or terminate the loop.

Description

The loop body is executed first, then the loop-continuation-condition is evaluated. If the evaluation is true, the loop body is executed again; if it is false, the do-while loop terminates. For example, the following while loop statement

int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count++;
}

can be written using a do-while loop as follows:

int count = 0;
do {
 System.out.println("Welcome to Java!");
 count++;
} while (count < 100);

The flowchart of this do-while loop is shown in Figure 5.2b.

The difference between a while loop and a do-while loop is the order in which the loop-continuation-condition is evaluated and the loop body is executed. In the case of a do-while loop, the loop body is executed at least once. You can write a loop using either the while loop or the do-while loop. Sometimes one is a more convenient choice than the other. For example, you can rewrite the while loop in Listing 5.5 using a do-while loop, as given in Listing 5.6.

Listing 5.6 TestDoWhile.java

		 1 import java.util.Scanner;
 2
 3 public class TestDoWhile {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 int data;
 7 int sum = 0;
		 8
 9 // Create a Scanner
		 10 Scanner input = new Scanner(System.in);
 11
 12 // Keep reading data until the input is 0
loop 13 do {
 14 // Read the next data
 15 System.out.print(
 16 "Enter an integer (the input ends if it is 0): ");
 17 data = input.nextInt();
 18
 19 sum += data;
end loop 20 } while (data != 0);
 21
 22 System.out.println("The sum is " + sum);
 23 }
 24 }

Enter an integer (the input ends if it is 0): 3
Enter an integer (the input ends if it is 0): 5
Enter an integer (the input ends if it is 0): 6
Enter an integer (the input ends if it is 0): 0
The sum is 14

 Tip

Use a do-while loop if you have statements inside the loop that must be executed at least once, as in the case of the do-while loop in the preceding TestDoWhile program. These statements must appear before the loop as well as inside it if you use a while loop.

	5.6.1 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;
public class Test {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int number, max;
 number = input.nextInt();
 max = number;
 do {
 number = input.nextInt();
 if (number > max)
 max = number;
 } while (number != 0);
 System.out.println("max is " + max);
 System.out.println("number " + number);
 }
}

	5.6.2 What are the differences between a while loop and a do-while loop? Convert the following while loop into a do-while loop:

Scanner input = new Scanner(System.in);
int sum = 0;
System.out.println("Enter an integer " +
 "(the input ends if it is 0)");
int number = input.nextInt();
while (number != 0) {
 sum += number;
 System.out.println("Enter an integer " +
 "(the input ends if it is 0)");
 number = input.nextInt();
}

5.7 The for Loop

	A for loop has a concise syntax for writing loops.

Often you write a loop in the following common form:

i = initialValue; // Initialize loop control variable
while (i < endValue) {
 // Loop body
 ...
 i++; // Adjust loop control variable
}

This loop is intuitive and easy for beginners to grasp. However, programmers often forget to adjust the control variable, which leads to an infinite loop. A for loop can be used to simplify the preceding loop as shown in (a), which is equivalent to (b)

In general, the syntax of a for loop is as follows:

for loop

for (initial-action; loop-continuation-condition;
 action-after-each-iteration) {
 // Loop body;
 Statement(s);
}

The flowchart of the for loop is shown in Figure 5.3a.

[image: Figures ay and b show a simple flow chart, and a more detailed flow chart, respectively.]
Figure 5.3

A for loop performs an initial action once, then repeatedly executes the ­statements in the loop body, and performs an action after an iteration when the loop-­continuation-condition evaluates to true.

Description

The for loop statement starts with the keyword for, followed by a pair of parentheses enclosing the control structure of the loop. This structure consists of initial-action, loop-continuation-condition, and action-after-each-iteration. The control structure is followed by the loop body enclosed inside braces. The initial-action, loop-continuation-condition, and action-after-each-iteration are separated by semicolons.

control variable

A for loop generally uses a variable to control how many times the loop body is executed and when the loop terminates. This variable is referred to as a control variable. The initial-action often initializes a control variable, the action-after-each-iteration usually increments or decrements the control variable, and the loop-continuation-condition tests whether the control variable has reached a termination value. For example, the following for loop prints Welcome to Java! a hundred times:

int i;
for (i = 0; i < 100; i++) {
 System.out.println("Welcome to Java!");
}

The flowchart of the statement is shown in Figure 5.3b. The for loop initializes i to 0, then repeatedly executes the println statement and evaluates i++ while i is less than 100.

initial-action

The initial-action, i = 0, initializes the control variable, i. The loop-­continuation-condition, i < 100, is a Boolean expression. The expression is evaluated right after the initialization and at the beginning of each iteration. If this condition is true, the loop body is executed. If it is false, the loop terminates and the program control turns to the line following the loop.

action-after-each-iteration

The action-after-each-iteration, i++, is a statement that adjusts the control v­ariable. This statement is executed after each iteration and increments the control variable. Eventually, the value of the control variable should force the loop-continuation-condition to become false; otherwise, the loop is infinite.

The loop control variable can be declared and initialized in the for loop. Here is an example:

for (int i = 0; i < 100; i++) {
 System.out.println("Welcome to Java!");
}

omitting braces

If there is only one statement in the loop body, as in this example, the braces can be omitted.

declare control variable

 Tip

The control variable must be declared inside the control structure of the loop or before the loop. If the loop control variable is used only in the loop, and not elsewhere, it is a good programming practice to declare it in the initial-action of the for loop. If the variable is declared inside the loop control structure, it cannot be referenced outside the loop. In the preceding code, for example, you cannot reference i outside the for loop, because it is declared inside the for loop.

 Note

for loop variations

The initial-action in a for loop can be a list of zero or more comma-separated variable declaration statements or assignment expressions. For example:

for (int i = 0, j = 0; i + j < 10; i++, j++) {
 // Do something
}

The action-after-each-iteration in a for loop can be a list of zero or more comma-separated statements. For example:

for (int i = 1; i < 100; System.out.println(i), i++) ;

This example is correct, but it is a bad example, because it makes the code difficult to read. Normally, you declare and initialize a control variable as an initial action, and ­increment or decrement the control variable as an action after each iteration.

 Note

If the loop-continuation-condition in a for loop is omitted, it is implicitly true. Thus, the statement given below in (a), which is an infinite loop, is the same as in (b). To avoid confusion, though, it is better to use the equivalent loop in (c).

[image: Boxes ay, b, and c contain code diagrams.]

Description

	5.7.1 Do the following two loops result in the same value in sum?

	for (int i = 0; i < 10; ++i) {
 sum += i;
}

	for (int i = 0; i < 10; i++) {
 sum += i;
}

	(a)
	(b)

	5.7.2 What are the three parts of a for loop control? Write a for loop that prints the numbers from 1 to 100.

	5.7.3 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;
public class Test {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int number, sum = 0, count;
 for (count = 0; count < 5; count++) {
 number = input.nextInt();
 sum += number;
 }
 System.out.println("sum is " + sum);
 System.out.println("count is " + count);
 }
}

	5.7.4 What does the following statement do?

for (; ;) {
 // Do something
}

	5.7.5 If a variable is declared in a for loop control, can it be used after the loop exits?

	5.7.6 Convert the following for loop statement to a while loop and to a do-while loop:

long sum = 0;
for (int i = 0; i <= 1000; i++)
 sum = sum + i;

	5.7.7 Count the number of iterations in the following loops.

	
int count = 0;
while (count < n) {
 count++;
}

	
for (int count = 0;
 count <= n; count++) {
}

	(a)
	(b)

	int count = 5;
while (count < n) {
 count++;
}

	int count = 5;
while (count < n) {
 count = count + 3;
}

	(c)
	(d)

5.8 Which Loop to Use?

	You can use a for loop, a while loop, or a do-while loop, whichever is convenient.

The while loop and do-while loop are easier to learn than the for loop. However, you will learn the for loop quickly after some practice. A for loop places control variable ­initialization, loop continuation condition, and adjustment after each iteration all together. It is more concise and enables you to write the code with less errors than the other two loops.

pretest loop

posttest loop

The while loop and for loop are called pretest loops because the continuation condition is checked before the loop body is executed. The do-while loop is called a posttest loop because the condition is checked after the loop body is executed. The three forms of loop statements—while, do-while, and for—are expressively equivalent; that is, you can write a loop in any of these three forms. For example, a while loop in (a) in the following figure can always be converted into the for loop in (b).

[image: Boxes ay and b contain equivalent code]

Description

A for loop in (a) in the next figure can generally be converted into the while loop in (b) except in certain special cases (see CheckPoint Question 5.12.2 in Section 5.12 for such a case).

[image: Boxes ay and b contain equivalent code.]

Description

Use the loop statement that is most intuitive and comfortable for you. In general, a for loop may be used if the number of repetitions is known in advance, as, for example, when you need to display a message a hundred times. A while loop may be used if the number of repetitions is not fixed, as in the case of reading the numbers until the input is 0. A do-while loop can be used to replace a while loop if the loop body has to be executed before the continuation condition is tested.

 Caution

Adding a semicolon at the end of the for clause before the loop body is a common mistake, as shown below in (a). In (a), the semicolon signifies the end of the loop ­prematurely. The loop body is actually empty, as shown in (b). (a) and (b) are equivalent. Both are incorrect.

[image: Boxes ay and b contain code diagrams.]

Description

Similarly, the loop in (c) is also wrong. (c) is equivalent to (d). Both are incorrect.

[image: Boxes c and d contain code diagrams.]

Description

These errors often occur when you use the next-line block style. Using the end-of-line block style can avoid errors of this type.

In the case of the do-while loop, the semicolon is needed to end the loop.

[image: A diagram of code for a correctly ending loop.]

Description

	5.8.1 Can you convert a for loop to a while loop? List the advantages of using for loops.

	5.8.2 Can you always convert a while loop into a for loop? Convert the following while loop into a for loop:

int i = 1;
int sum = 0;
while (sum < 10000) {
 sum = sum + i;
 i++;
}

	5.8.3 Identify and fix the errors in the following code:

 1 public class Test {
 2 public void main(String[] args) {
 3 for (int i = 0; i < 10; i++);
 4 sum += i;
 5
 6 if (i < j);
 7 System.out.println(i)
 8 else
 9 System.out.println(j);
10
11 while (j < 10);
12 {
13 j++;
14 }
15
16 do {
17 j++;
18 } while (j < 10)
19 }
20 }

	5.8.4 What is wrong with the following programs?

	1 public class ShowErrors {
2 public static void main(String[] args) {
3 int i = 0;
4 do {
5 System.out.println(i + 4);
6 i++;
7 }
8 while (i < 10)
8 }
9 }

	1 public class ShowErrors {
2 public static void main(String[] args) {
3 for (int i = 0; i < 10; i++);
4 System.out.println(i + 4);
5 }
6 }

	(a)
	(b)

5.9 Nested Loops

	A loop can be nested inside another loop.

nested loop

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is repeated, the inner loops are reentered, and started anew.

Listing 5.7 presents a program that uses nested for loops to display a multiplication table.

Listing 5.7 MultiplicationTable.java

 1 public class MultiplicationTable {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Display the table heading
table title 5 System.out.println(" Multiplication Table");
 6
 7 // Display the number title
 8 System.out.print(" ");
 9 for (int j = 1; j <= 9; j++)
 10 System.out.print(" " + j);
 11
 12 System.out.println("\n — — — — — — — — — — — — — — — —— — — — — — — — — — — — —");
 13
 14 // Display table body
outer loop 15 for (int i = 1; i <= 9; i++) {
 16 System.out.print(i + " | ");
inner loop 17 for (int j = 1; j <= 9; j++) {
 18 // Display the product and align properly
 19 System.out.printf("%4d", i * j);
 20 }
 21 System.out.println();
 22 }
 23 }
 24 }

	Multiplication Table

	
	1

	 2

	 3

	 4

	 5

	 6

	 7

	 8

	 9

	1 |

	1

	 2

	 3

	 4

	 5

	 6

	 7

	 8

	 9

	2 |

	2

	 4

	 6

	 8

	10

	12

	14

	16

	18

	3 |

	3

	 6

	 9

	12

	15

	18

	21

	24

	27

	4 |

	4

	 8

	12

	16

	20

	24

	28

	32

	36

	5 |

	5

	10

	15

	20

	25

	30

	35

	40

	45

	6 |

	6

	12

	18

	24

	30

	36

	42

	48

	54

	7 |

	7

	14

	21

	28

	35

	42

	49

	56

	63

	8 |

	8

	16

	24

	32

	40

	48

	56

	64

	72

	9 |

	9

	18

	27

	36

	45

	54

	63

	72

	81

The program displays a title (line 5) on the first line in the output. The first for loop (lines 9 and 10) displays the numbers 1–9 on the second line. A dashed (–) line is displayed on the third line (line 12).

The next loop (lines 15–22) is a nested for loop with the control variable i in the outer loop and j in the inner loop. For each i, the product i * j is displayed on a line in the inner loop, with j being 1, 2, 3, …, 9.

 Note

Be aware that a nested loop may take a long time to run. Consider the following loop nested in three levels:

for (int i = 0; i < 10000; i++)
 for (int j = 0; j < 10000; j++)
 for (int k = 0; k < 10000; k++)
 Perform an action

The action is performed one trillion times. If it takes 1 microsecond to perform the action, the total time to run the loop would be more than 277 hours. Note 1 microsecond is one-millionth (10 −6) of a second.

	5.9.1 How many times is the println statement executed?

for (int i = 0; i < 10; i++)
 for (int j = 0; j < i; j++)
 System.out.println(i * j)

	5.9.2 Show the output of the following programs. (Hint: Draw a table and list the variables in the columns to trace these programs.)

	
public class Test {
 public static void main(String[] args) {
 for (int i = 1; i < 5; i++) {
 int j = 0;
 while (j < i) {
 System.out.print(j + " ");
 j++;
 }
 }
 }
}

	public class Test {
 public static void main(String[] args) {
 int i = 0;
 while (i < 5) {
 for (int j = i; j > 1; j––)
 System.out.print(j + " ");
 System.out.println("****");
 i++;
 }
 }
}

	(a)
	(b)

	public class Test {
 public static void main(String[] args) {
 int i = 5;
 while (i >= 1) {
 int num = 1;
 for (int j = 1; j <= i; j++) {
 System.out.print(num + "xxx");
 num *= 2;
 }

 System.out.println();
 i--;
 }
 }
}

	public class Test {
 public static void main(String[] args) {
 int i = 1;
 do {
 int num = 1;
 for (int j = 1; j <= i; j++) {
 System.out.print(num + "G");
 num += 2;
 }
 System.out.println();
 i++;
 } while (i <= 5);
 }
}

	(c)
	(d)

5.10 Minimizing Numeric Errors

	Using floating-point numbers in the loop continuation condition may cause numeric errors.

Minimize numeric errors

Numeric errors involving floating-point numbers are inevitable, because floating-point numbers are represented in approximation in computers by nature. This section discusses how to minimize such errors through an example.

Listing 5.8 presents an example summing a series that starts with 0.01 and ends with 1.0. The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03, and so on.

loop

Listing 5.8 TestSum.java

 1 public class TestSum {
 2 public static void main(String[] args) {
 3 // Initialize sum
 4 float sum = 0;
 5
 6 // Add 0.01, 0.02, ..., 0.99, 1 to sum
loop 7 for (float i = 0.01f; i <= 1.0f; i = i + 0.01f)
 8 sum += i;
 9
 10 // Display result
 11 System.out.println("The sum is " + sum);
 12 }
 13 }

The sum is 50.499985

The for loop (lines 7 and 8) repeatedly adds the control variable i to sum. This variable, which begins with 0.01, is incremented by 0.01 after each iteration. The loop terminates when i exceeds 1.0.

The for loop initial action can be any statement, but it is often used to initialize a control variable. From this example, you can see a control variable can be a float type. In fact, it can be any data type.

double precision

The exact sum should be 50.50, but the answer is 50.499985. The result is imprecise because computers use a fixed number of bits to represent floating-point numbers, and thus they cannot represent some floating-point numbers exactly. If you change float in the program to double, as follows, you should see a slight improvement in precision, because a double variable holds 64 bits, whereas a float variable holds 32 bits.

// Initialize sum
double sum = 0;

// Add 0.01, 0.02, ..., 0.99, 1 to sum
for (double i = 0.01; i <= 1.0; i = i + 0.01)
 sum += i;

numeric error

However, you will be stunned to see the result is actually 49.50000000000003. What went wrong? If you display i for each iteration in the loop, you will see that the last i is slightly larger than 1 (not exactly 1). This causes the last i not to be added into sum. The fundamental problem is the floating-point numbers are represented by approximation. To fix the problem, use an integer count to ensure all the numbers are added to sum. Here is the new loop:

double currentValue = 0.01;

for (int count = 0; count < 100; count++) {
 sum += currentValue;
 currentValue += 0.01;
}

After this loop, sum is 50.50000000000003. This loop adds the numbers from smallest to biggest. What happens if you add numbers from biggest to smallest (i.e., 1.0, 0.99, 0.98, . . . , 0.02, 0.01 in this order) is as follows:

double currentValue = 1.0;

for (int count = 0; count < 100; count++) {
 sum += currentValue;
 currentValue –= 0.01;
}

avoiding numeric error

After this loop, sum is 50.49999999999995. Adding from biggest to smallest is less accurate than adding from smallest to biggest. This phenomenon is an artifact of the finite-precision arithmetic. Adding a very small number to a very big number can have no effect if the result requires more precision than the variable can store. For example, the inaccurate result of 100000000.0 + 0.000000001 is 100000000.0. To obtain more accurate results, carefully select the order of computation. Adding smaller numbers before bigger numbers to sum is one way to minimize errors.

5.11 Case Studies

	Loops are fundamental in programming. The ability to write loops is essential in learning Java programming.

If you can write programs using loops, you know how to program! For this reason, this section presents three additional examples of solving problems using loops.

5.11.1 Case Study: Finding the Greatest Common Divisor

gcd

think before you code

The greatest common divisor (gcd) of the two integers 4 and 2 is 2. The greatest common divisor of the two integers 16 and 24 is 8. How would you write this program to find the greatest common divisor? Would you immediately begin to write the code? No. It is important to think before you code. Thinking enables you to generate a logical solution for the problem without concern about how to write the code.

Let the two input integers be n1 and n2. You know that number 1 is a common divisor, but it may not be the greatest common divisor. Therefore, you can check whether k (for k = 2, 3, 4, and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. Store the common divisor in a variable named gcd. Initially, gcd is 1. Whenever a new common divisor is found, it becomes the new gcd. When you have checked all the possible common divisors from 2 up to n1 or n2, the value in variable gcd is the greatest common divisor.

logical solution

Once you have a logical solution, type the code to translate the solution into a Java program as follows:

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd
while (k <= n1 && k <= n2) {
 if (n1 % k == 0 && n2 % k == 0)
 gcd = k; // Update gcd
 k++; // Next possible gcd
}
// After the loop, gcd is the greatest common divisor for n1 and n2

Listing 5.9 presents the program that prompts the user to enter two positive integers and finds their greatest common divisor.

check divisor

gcd

input

input

Listing 5.9 GreatestCommonDivisor.java

 1 import java.util.Scanner;
 2
 3 public class GreatestCommonDivisor {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter two integers
 10 System.out.print("Enter first integer: ");
input 11 int n1 = input.nextInt();
 12 System.out.print("Enter second integer: ");
input 13 int n2 = input.nextInt();
 14
gcd 15 int gcd = 1; // Initial gcd is 1
 16 int k = 2; // Possible gcd
 17 while (k <= n1 && k <= n2) {
check divisor 18 if (n1 % k == 0 && n2 % k == 0)
 19 gcd = k; // Update gcd
 20 k++;
 21 }
 22
output 23 System.out.println("The greatest common divisor for " + n1 +
 24 " and " + n2 + " is " + gcd);
 25 }
 26 }

Enter first integer: 125
Enter second integer: 2525
The greatest common divisor for 125 and 2525 is 25

Translating a logical solution to Java code is not unique. For example, you could use a for loop to rewrite the code as follows:

think before you type

for (int k = 2; k <= n1 && k <= n2; k++) {
 if (n1 % k == 0 && n2 % k == 0)
 gcd = k;
}

A problem often has multiple solutions, and the gcd problem can be solved in many ways. Programming Exercise 5.14 suggests another solution. A more efficient solution is to use the classic Euclidean algorithm (see Section 22.6).

multiple solutions

You might think that a divisor for a number n1 cannot be greater than n1 / 2 and would attempt to improve the program using the following loop:

erroneous solutions

for (int k = 2; k <= n1 / 2 && k <= n2 / 2; k++) {
 if (n1 % k == 0 && n2 % k == 0)
 gcd = k;
}

This revision is wrong. Can you find the reason? See Checkpoint Question 5.11.1 for the answer.

5.11.2 Case Study: Predicting the Future Tuition

Suppose the tuition for a university is $10,000 this year and tuition increases 7% every year. In how many years will the tuition be doubled?

Before you can write a program to solve this problem, first consider how to solve it by hand. The tuition for the second year is the tuition for the first year * 1.07. The tuition for a future year is the tuition of its preceding year * 1.07. Thus, the tuition for each year can be computed as follows:

think before you code

double tuition = 10000; int year = 0; // Year 0
tuition = tuition * 1.07; year++; // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3
...

Keep computing the tuition for a new year until it is at least 20000. By then, you will know how many years it will take for the tuition to be doubled. You can now translate the logic into the following loop:

double tuition = 10000; // Year 0
int year = 0;
while (tuition < 20000) {
 tuition = tuition * 1.07;
 year++;
}

The complete program is given in Listing 5.10.

Listing 5.10 FutureTuition.java

 1 public class FutureTuition {
 2 public static void main(String[] args) {
 3 double tuition = 10000; // Year 0
 4 int year = 0;
loop 5 while (tuition < 20000) {
next year’s tuition 6 tuition = tuition * 1.07;
 7 year++;
 8 }
 9
 10 System.out.println("Tuition will be doubled in "
 11 + year + " years");
 12 System.out.printf("Tuition will be $%.2f in %1d years",
 13 tuition, year);
 14 }
 15 }

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

The while loop (lines 5–8) is used to repeatedly compute the tuition for a new year. The loop terminates when the tuition is greater than or equal to 20000.

5.11.3 Case Study: Converting Decimals to Hexadecimals

Hexadecimals are often used in computer systems programming (see Appendix F for an introduction to number systems). How do you convert a decimal number to a hexadecimal number? To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits hn, hn−1, hn−2, …, h2, h1, and h0 such that

d=hn×16n+hn−1×16n−1+hn−2×16n−2+…

+h2×162+h1×161+h0×160

These hexadecimal digits can be found by successively dividing d by 16 until the quotient is 0. The remainders are h0, h1, h2, …, hn−2, hn−1, and hn. The hexadecimal digits include the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus A, which is the decimal value 10; B, which is the decimal value 11; C, which is 12; D, which is 13; E, which is 14; and F, which is 15.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as follows. Divide 123 by 16. The remainder is 11 (B in hexadecimal) and the quotient is 7. Continue to divide 7 by 16. The remainder is 7 and the quotient is 0. Therefore, 7B is the hexadecimal number for 123.

[image: Two long division problems.]

Description

Listing 5.11 gives a program that prompts the user to enter a decimal number and converts it into a hex number as a string.

Listing 5.11 Dec2Hex.java

 1 import java.util.Scanner;
 2
 3 public class Dec2Hex {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a decimal integer
 10 System.out.print("Enter a decimal number: ");
input decimal 11 int decimal = input.nextInt();
 12
 13 // Convert decimal to hex
decimal to hex 14 String hex = "";
 15
 16 while (decimal != 0) {
 17 int hexValue = decimal % 16;
 18
 19 // Convert a decimal value to a hex digit
get a hex char 20 char hexDigit = (0 <= hexValue && hexValue <= 9) ?
 21 (char)(hexValue + '0') : (char)(hexValue – 10 + 'A');
 22
add to hex string 23 hex = hexDigit + hex;
 24 decimal = decimal / 16;
 25 }
 26
 27 System.out.println("The hex number is " + hex);
 28 }
 29 }

Enter a decimal number: 1234
The hex number is 4D2

	
	line#

	decimal

	hex

	hexValue

	hexDigit

	
	14

	1234
	""

	
	

	iteration 1

	17

	
	
	2

	

	23

	
	"2"

	
	2

	24

	77

	
	
	

	iteration 2

	17

	
	
	13

	

	23

	
	"D2"

	
	D

	24

	4

	
	
	

	iteration 3

	17

	
	
	4

	

	23

	
	"4D2"

	
	4

	24

	0

	
	
	

The program prompts the user to enter a decimal integer (line 11), converts it to a hex number as a string (lines 14–25), and displays the result (line 27). To convert a decimal to a hex number, the program uses a loop to successively divide the decimal number by 16 and obtain its remainder (line 17). The remainder is converted into a hex character (lines 20 and 21). The character is then appended to the hex string (line 23). The hex string is initially empty (line 14). Divide the decimal number by 16 to remove a hex digit from the number (line 24). The loop ends when the remaining decimal number becomes 0.

The program converts a hexValue between 0 and 15 into a hex character. If hexValue is between 0 and 9, it is converted to (char)(hexValue +'0') (line 21). Recall that when adding a character with an integer, the character’s Unicode is used in the evaluation. For example, if hexValue is 5, (char)(hexValue + '0') returns 5. Similarly, if hexValue is between 10 and 15, it is converted to (char)(hexValue – 10 + 'A') (line 21). For instance, if hexValue is 11, (char),(hexValue – 10 + 'A') returns B.

	5.11.1 Will the program work if n1 and n2 are replaced by n1 / 2 and n2 / 2 in line 17 in Listing 5.9?

	5.11.2 In Listing 5.11, why is it wrong if you change the code (char)(hexValue + '0') to hexValue + '0' in line 21?

	5.11.3 In Listing 5.11, how many times the loop body is executed for a decimal number 245, and how many times the loop body is executed for a decimal number 3245?

	5.11.4 What is the hex number after E? What is the hex number after F?

	5.11.5 Revise line 27 in Listing 5.11 so the program displays hex number 0 if the input decimal is 0.

5.12 Keywords break and continue

	The break and continue keywords provide additional controls in a loop.

 Pedagogical Note

Two keywords, break and continue, can be used in loop statements to provide additional controls. Using break and continue can simplify programming in some cases. Overusing or improperly using them, however, can make programs difficult to read and debug. (Note to instructors: You may skip this section without affecting students’ understanding of the rest of the book.)

break statement

You have used the keyword break in a switch statement. You can also use break in a loop to immediately terminate the loop. Listing 5.12 presents a program to demonstrate the effect of using break in a loop.

Listing 5.12 TestBreak.java

The number is 14
The sum is 105

The program in Listing 5.12 adds integers from 1 to 20 in this order to sum until sum is greater than or equal to 100. Without the if statement (line 9), the program calculates the sum of the numbers from 1 to 20. However, with the if statement, the loop terminates when sum becomes greater than or equal to 100. Without the if statement, the output would be as follows:

The number is 20
The sum is 210

continue statement

You can also use the continue keyword in a loop. When it is encountered, it ends the current iteration and program control goes to the end of the loop body. In other words, continue breaks out of an iteration, while the break keyword breaks out of a loop. Listing 5.13 presents a program to demonstrate the effect of using continue in a loop.

Listing 5.13 TestContinue.java

The sum is 189

The program in Listing 5.13 adds integers from 1 to 20 except 10 and 11 to sum. With the if statement in the program (line 8), the continue statement is executed when number becomes 10 or 11. The continue statement ends the current iteration so that the rest of the statement in the loop body is not executed; therefore, number is not added to sum when it is 10 or 11. Without the if statement in the program, the output would be as follows:

The sum is 210

In this case, all of the numbers are added to sum, even when number is 10 or 11. Therefore, the result is 210, which is 21 more than it was with the if statement.

 Note

The continue statement is always inside a loop. In the while and do-while loops, the loop-continuation-condition is evaluated immediately after the continue statement. In the for loop, the action-after-each-iteration is performed, then the loop-continuation-condition is evaluated immediately after the ­continue statement.

goto

 Note

Some programming languages have a goto statement. The goto statement indiscriminately transfers control to any statement in the program and executes it. This makes your program vulnerable to errors. The break and continue statements in Java are different from goto statements. They operate only in a loop or a switch statement. The break statement breaks out of the loop, and the continue statement breaks out of the current iteration in the loop.

You can always write a program without using break or continue in a loop (see CheckPoint Question 5.12.3). In general, though, using break and continue is appropriate if it simplifies coding and makes programs easier to read.

Suppose you need to write a program to find the smallest factor other than 1 for an integer n (assume n >= 2). You can write a simple and intuitive code using the break statement as follows:

int factor = 2;
while (factor <= n) {
 if (n % factor == 0)
 break;
 factor++;
}
System.out.println("The smallest factor other than 1 for "
 + n + " is " + factor);

You may rewrite the code without using break as follows:

boolean found = false;
int factor = 2;
while (factor <= n && !found) {
 if (n % factor == 0)
 found = true;
 else
 factor++;
}
System.out.println("The smallest factor other than 1 for "
 + n + " is " + factor);

Obviously, the break statement makes this program simpler and easier to read in this case. However, you should use break and continue with caution. Too many break and ­continue statements will produce a loop with many exit points and make the program difficult to read.

 Note

Programming is a creative endeavor. There are many different ways to write code. In fact, you can find a smallest factor using a rather simple code as follows:

int factor = 2;
while (n % factor != 0)
 factor++;
or
for (int factor = 2; n % factor != 0; factor++);

The code here finds the smallest factor for an integer n. Programming Exercise 5.16 writes a program that finds all smallest factors in n.

	5.12.1 What is the keyword break for? What is the keyword continue for? Will the following programs terminate? If so, give the output.

	int balance = 10;
while (true) {
 if (balance < 9)
 break;
 balance = balance – 9;
}
System.out.println("Balance is "
 + balance);

	int balance = 10;
while (true) {
 if (balance < 9)
 continue;
 balance = balance – 9;
}
System.out.println("Balance is "
 + balance);

	(a)
	(b)

	5.12.2 The for loop on the left is converted into the while loop on the right. What is wrong? Correct it.

[image: Two boxes contain incorrectly converted code.]

Description

	5.12.3 Rewrite the programs TestBreak and TestContinue in Listings 5.12 and 5.13 without using break and continue.

	5.12.4 After the break statement in (a) is executed in the following loop, which statement is executed? Show the output. After the continue statement in (b) is executed in the following loop, which statement is executed? Show the output.

	for (int i = 1; i < 4; i++) {
 for (int j = 1; j < 4; j++) {
 if (i * j > 2) 	
 break;	
 System.out.println(i * j);
 }
 System.out.println(i);
}

	for (int i = 1; i < 4; i++) {
 for (int j = 1; j < 4; j++) {
 if (i * j > 2)
 continue;
 System.out.println(i * j);
 }
 System.out.println(i);
}

	(a)
	(b)

5.13 Case Study: Checking Palindromes

	This section presents a program that checks whether a string is a palindrome.

A string is a palindrome if it reads the same forward and backward. The words “mom,” “dad,” and “noon,” for instance, are all palindromes.

The problem is to write a program that prompts the user to enter a string and reports whether the string is a palindrome. One solution is to check whether the first character in the string is the same as the last character. If so, check whether the second character is the same as the second-to-last character. This process continues until a mismatch is found or all the characters in the string are checked, except for the middle character if the string has an odd number of characters.

think before you code

Listing 5.14 gives the program.

Listing 5.14 Palindrome.java

 1 import java.util.Scanner;
 2
 3 public class Palindrome {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
 10 System.out.print("Enter a string: ");
input string 11 String s = input.nextLine();
 12
 13 // The index of the first character in the string
low index 14 int low = 0;
 15
 16 // The index of the last character in the string
highg index 17 int high = s.length() – 1;
 18
 19 boolean isPalindrome = true;
 20 while (low < high) {
 21 if (s.charAt(low) != s.charAt(high)) {
 22 isPalindrome = false;
 23 break;
 24 }
 25
update indices 26 low++;
 27 high––;
 28 }
 29
 30 if (isPalindrome)
 31 System.out.println(s + " is a palindrome");
 32 else
 33 System.out.println(s + " is not a palindrome");
 34 }
 35 }

Enter a string: noon
noon is a palindrome

Enter a string: abcdefgnhgfedcba
abcdefgnhgfedcba is not a palindrome

The program uses two variables, low and high, to denote the positions of the two ­characters at the beginning and the end in a string s (lines 14 and 17), as shown in the following figure.

[image: An array with 16 elements, or boxes, containing the following letters, left to right: ay, b, c, d, e, f, g, n, h, g, f, e, d, c, b, ay. No specific indices are assigned to the elements, but the leftmost and rightmost elements are marked low, and high, respectively.]
Initially, low is 0 and high is s.length() – 1. If the two characters at these positions match, increment low by 1 and decrement high by 1 (lines 26–27). This process continues until (low >= high) or a mismatch is found (line 21).

The program uses a boolean variable isPalindrome to denote whether the string s is a palindrome. Initially, it is set to true (line 19). When a mismatch is discovered (line 21), isPalindrome is set to false (line 22) and the loop is terminated with a break statement (line 23).

	5.13.1 What happens to the program if (low < high) in line 20 is changed to (low <= high)?

5.14 Case Study: Displaying Prime Numbers

	This section presents a program that displays the first 50 prime numbers in 5 lines, each containing 10 numbers.

An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3, 5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

The problem is to display the first 50 prime numbers in 5 lines, each of which contains 10 numbers. The problem can be broken into the following tasks:

	Determine whether a given number is prime.

	For number = 2, 3, 4, 5, 6, …, test whether it is prime.

	Count the prime numbers.

	Display each prime number and display 10 numbers per line.

Obviously, you need to write a loop and repeatedly test whether a new number is prime. If the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50, the loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be printed as
 a constant NUMBER_OF_PRIMES;
Use count to track the number of prime numbers and
 set an initial count to 0;
Set an initial number to 2;
while (count < NUMBER_OF_PRIMES) {
 Test whether number is prime;

 if number is prime {
 Display the prime number and increase the count;
 }
 Increment number by 1;
}

To test whether a number is prime, check whether it is divisible by 2, 3, 4, and so on up to number/2. If a divisor is found, the number is not a prime. The algorithm can be described as follows:

Use a boolean variable isPrime to denote whether
 the number is prime; Set isPrime to true initially;
for (int divisor = 2; divisor <= number / 2; divisor++) {
 if (number % divisor == 0) {
 Set isPrime to false
 Exit the loop;
 }
}

The complete program is given in Listing 5.15.

Listing 5.15 PrimeNumber.java

 1 public class PrimeNumber {
 2 public static void main(String[] args) {
 3 final int NUMBER_OF_PRIMES = 50; // Number of primes to display
 4 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
 5 int count = 0; // Count the number of prime numbers
 6 int number = 2; // A number to be tested for primeness
 7
 8 System.out.println("The first 50 prime numbers are \n");
 9
 10 // Repeatedly find prime numbers
count prime numbers 11 while (count < NUMBER_OF_PRIMES) {
 12 // Assume the number is prime
 13 boolean isPrime = true; // Is the current number prime?
 14
 15 // Test whether number is prime
check primeness 16 for (int divisor = 2; divisor <= number / 2; divisor++) {
 17 if (number % divisor == 0) { // If true, number is not prime
 18 isPrime = false; // Set isPrime to false
exit loop 19 break; // Exit the for loop
 20 }
 21 }
 22
 23 // Display the prime number and increase the count
display if prime 24 if (isPrime) {
 25 count++; // Increase the count
 26
 27 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
 28 // Display the number and advance to the new line
 29 System.out.println(number);
 30 }
 31 else
 32 System.out.print(number + " ");
 33 }
 34
 35 // Check if the next number is prime
 36 number++;
 37 }
 38 }
 39 }

The first 50 prime numbers are
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

subproblem

This is a complex program for novice programmers. The key to developing a programmatic solution for this problem, and for many other problems, is to break it into subproblems and develop solutions for each of them in turn. Do not attempt to develop a complete solution in the first trial. Instead, begin by writing the code to determine whether a given number is prime, then expand the program to test whether other numbers are prime in a loop.

To determine whether a number is prime, check whether it is divisible by a number between 2 and number/2 inclusive (lines 16–21). If so, it is not a prime number (line 18); otherwise, it is a prime number. For a prime number, display it (lines 27–33). If the count is divisible by 10, display the number followed by a newline (lines 27–30). The program ends when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the number is found to be a nonprime. You can rewrite the loop (lines 16–21) without using the break statement, as follows:

for (int divisor = 2; divisor <= number / 2 && isPrime;
 divisor++) {
 // If true, the number is not prime
 if (number % divisor == 0) {
 // Set isPrime to false, if the number is not prime
 isPrime = false;
 }
}

However, using the break statement makes the program simpler and easier to read in this case.

Prime numbers have many applications in computer science. Section 22.7 will study several efficient algorithms for finding prime numbers.

	5.14.1 Simplify the code in lines 27–32 using a conditional operator.

Key Terms

	break statement 186

	continue statement 187

	do-while loop 170

	for loop 173

	infinite loop 162

	input redirection 170

	iteration 160

	loop 160

	loop body 160

	nested loop 178

	off-by-one error 162

	output redirection 170

	posttest loop 176

	pretest loop 176

	sentinel value 168

	while loop 160

Chapter Summary

	There are three types of repetition statements: the while loop, the do-while loop, and the for loop.

	The part of the loop that contains the statements to be repeated is called the loop body.

	A one-time execution of a loop body is referred to as an iteration of the loop.

	An infinite loop is a loop statement that executes infinitely.

	In designing loops, you need to consider both the loop control structure and the loop body.

	The while loop checks the loop-continuation-condition first. If the condition is true, the loop body is executed; if it is false, the loop terminates.

	The do-while loop is similar to the while loop, except the do-while loop executes the loop body first then checks the loop-continuation-condition to decide whether to continue or to terminate.

	The while loop and the do-while loop often are used when the number of repetitions is not predetermined.

	A sentinel value is a special value that signifies the end of the loop.

	The for loop generally is used to execute a loop body a fixed number of times.

	The for loop control has three parts. The first part is an initial action that often initializes a control variable. The second part, the loop-continuation-condition, determines whether the loop body is to be executed. The third part is executed after each iteration and is often used to adjust the control variable. Usually, the loop control variables are initialized and changed in the control structure.

	The while loop and for loop are called pretest loops because the continuation condition is checked before the loop body is executed.

	The do-while loop is called a posttest loop because the condition is checked after the loop body is executed.

	Two keywords break and continue can be used in a loop.

	The break keyword immediately ends the innermost loop, which contains the break.

	The continue keyword only ends the current iteration.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

 Programming Exercises

 Pedagogical Note

read and think before coding

explore solutions

Read each problem several times until you understand it. Think how to solve the problem before starting to write code. Translate your logic into a program.

A problem often can be solved in many different ways. Students are encouraged to explore various solutions.

Sections 5.2–5.7

		*5.1	(Count positive and negative numbers and compute the average of numbers) Write a program that reads an unspecified number of integers, determines how many positive and negative values have been read, and computes the total and average of the input values (not counting zeros). Your program ends with the input 0. Display the average as a floating-point number. Here are sample runs:

Enter an integer, the input ends if it is 0: 1 2 –1 3 0
The number of positives is 3
The number of negatives is 1
The total is 5.0
The average is 1.25

Enter an integer, the input ends if it is 0: 0
No numbers are entered except 0

	5.2 (Repeat additions) Listing 5.4, SubtractionQuizLoop.java, generates five ­random subtraction questions. Revise the program to generate 10 random addition questions for two integers between 1 and 15. Display the correct count and test time.

	5.3 (Conversion from kilograms to pounds) Write a program that displays the following table (note 1 kilogram is 2.2 pounds):

	Kilograms

	Pounds

	1

	 2.2

	3

	 6.6

	...

	

	197

	433.4

	199

	437.8

	5.4 (Conversion from miles to kilometers) Write a program that displays the following table (note 1 mile is 1.609 kilometers):

	Miles

	Kilometers

	1

	1.609

	2

	3.218

	...

	

	9

	14.481

	10

	16.090

	5.5 (Conversion from kilograms to pounds and pounds to kilograms) Write a program that displays the following two tables side by side:

	Kilograms

	Pounds

	|

	Pounds

	Kilograms

	1

	 2.2

	|

	20

	 9.09

	3

	 6.6

	|

	25

	 11.36

	...

	
	
	
	

	197

	433.4

	|

	510

	231.82

	199

	437.8

	|

	515

	234.09

	5.6 (Conversion from miles to kilometers) Write a program that displays the following two tables side by side:

	Miles

	Kilometers

	|

	Kilometers

	Miles

	1

	1.609

	|

	20

	12.430

	2

	3.218

	|

	25

	15.538

	...

	
	
	
	

	9

	14.481

	|

	60

	37.290

	10

	16.090

	|

	65

	40.398

		**5.7	(Financial application: compute future tuition) Suppose the tuition for a university is $10,000 this year and increases 5% every year. In one year, the tuition will be $10,500. Write a program that displays the tuition in 10 years, and the total cost of four years’ worth of tuition after the tenth year.

	5.8 (Find the highest score) Write a program that prompts the user to enter the number of students and each student’s name and score, and finally displays the name of the student with the highest score. Use the next() method in the Scanner class to read a name, rather than using the nextLine() method.

	*5.9 (Find the two highest scores) Write a program that prompts the user to enter the ­number of students and each student’s name and score, and finally displays the student with the highest score and the student with the second-highest score. Use the next() method in the Scanner class to read a name rather than using the nextLine() method.

	5.10 (Find numbers divisible by 5 and 6) Write a program that displays all the numbers from 100 to 1,000 (10 per line) that are divisible by 5 and 6. Numbers are separated by exactly one space.

	5.11 (Find numbers divisible by 5 or 6, but not both) Write a program that displays all the numbers from 100 to 200 (10 per line) that are divisible by 5 or 6, but not both. Numbers are separated by exactly one space.

	5.12 (Find the smallest n such that n2 >12,000) Use a while loop to find the smallest integer n such that n2 is greater than 12,000.

	5.13 (Find the largest n such that n3 <12,000) Use a while loop to find the largest integer n such that n3 is less than 12,000.

Sections 5.8–5.10

		*5.14	(Compute the greatest common divisor) Another solution for Listing 5.9 to find the greatest common divisor of two integers n1 and n2 is as follows: First find d to be the minimum of n1 and n2, then check whether d, d–1, d–2, …, 2, or 1 is a divisor for both n1 and n2 in this order. The first such common divisor is the greatest common divisor for n1 and n2. Write a program that prompts the user to enter two positive integers and displays the gcd.

		*5.15	(Display the ASCII character table) Write a program that prints the characters in the ASCII character table from ! to ~. Display 10 characters per line. The ASCII table is given in Appendix B. Characters are separated by exactly one space.

	*5.16 (Find the factors of an integer) Write a program that reads an integer and displays all its smallest factors in an increasing order. For example, if the input integer is 120, the output should be as follows: 2, 2, 2, 3, 5.

	**5.17 (Display pyramid) Write a program that prompts the user to enter an integer from 1 to 15 and displays a pyramid, as presented in the following sample run:

Enter the number of lines: 7
		 1
 2 1 2
 3 2 1 2 3
 4 3 2 1 2 3 4
 5 4 3 2 1 2 3 4 5
 6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 1 2 3 4 5 6 7

		*5.18	(Display four patterns using loops) Use nested loops that display the following patterns in four separate programs:

	Pattern A

	Pattern B

	Pattern C

	Pattern D

	1

	1 2 3 4 5 6

	 1

	1 2 3 4 5 6

	1 2

	1 2 3 4 5

	 2 1

	 1 2 3 4 5

	1 2 3

	1 2 3 4

	 3 2 1

	 1 2 3 4

	1 2 3 4

	1 2 3

	 4 3 2 1

	 1 2 3

	1 2 3 4 5

	1 2

	 5 4 3 2 1

	 1 2

	1 2 3 4 5 6

	1

	6 5 4 3 2 1

	 1

	**5.19	(Display numbers in a pyramid pattern) Write a nested for loop that prints the following output:

 1
 1 2 1
 1 2 4 2 1
 1 2 4 8 4 2 1
 1 2 4 8 16 8 4 2 1
 1 2 4 8 16 32 16 8 4 2 1
 1 2 4 8 16 32 64 32 16 8 4 2 1
 1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

		*5.20	(Display prime numbers between 2 and 1,000) Modify the program given in ­Listing 5.15 to display all the prime numbers between 2 and 1,000, inclusive. Display eight prime numbers per line. Numbers are separated by exactly one space.

Comprehensive

	**5.21 (Financial application: compare loans with various interest rates) Write a program that lets the user enter the loan amount and loan period in number of years, and displays the monthly and total payments for each interest rate starting from 5% to 8%, with an increment of 1/8. Here is a sample run:

Loan Amount: 10000
Number of Years: 5
Interest Rate Monthly Payment Total Payment
5.000% 188.71 11322.74
5.125% 189.29 11357.13
5.250% 189.86 11391.59
...
7.875% 202.17 12129.97
8.000% 202.76 12165.84

For the formula to compute monthly payment, see Listing 2.9, ComputeLoan.java.

	
**5.22 (Financial application: loan amortization schedule) The monthly payment for a given loan pays the principal and the interest. The monthly interest is computed by multiplying the monthly interest rate and the balance (the remaining principal). The principal paid for the month is therefore the monthly payment minus the monthly interest. Write a program that lets the user enter the loan amount, number of years, and interest rate then displays the amortization schedule for the loan. Here is a sample run:

Display loan schedule

Loan Amount: 10000
Number of Years: 1
Annual Interest Rate: 7
Monthly Payment: 865.26
Total Payment: 10383.21
Payment# Interest Principal Balance
1 58.33 806.93 9193.07
2 53.62 811.64 8381.43
...
11 10.00 855.26 860.27
12 5.01 860.25 0.01

 Note

The balance after the last payment may not be zero. If so, the last payment should be the normal monthly payment plus the final balance.

Hint: Write a loop to display the table. Since the monthly payment is the same for each month, it should be computed before the loop. The balance is initially the loan amount. For each iteration in the loop, compute the interest and principal, and update the balance. The loop may look as follows:

for (i = 1; i <= numberOfYears * 12; i++) {
 interest = monthlyInterestRate * balance;
 principal = monthlyPayment – interest;
 balance = balance – principal;
 System.out.println(i + "\t\t" + interest
 + "\t\t" + principal + "\t\t" + balance);
}

	*5.23 (Demonstrate cancellation errors) A cancellation error occurs when you are manipulating a very large number with a very small number. The large number may cancel out the smaller number. For example, the result of 100000000.0 + 0.000000001 is equal to 100000000.0. To avoid cancellation errors and obtain more accurate results, carefully select the order of computation. For example, in computing the following summation, you will obtain more accurate results by computing from right to left rather than from left to right:

1+12+13+…+1n

Write a program that compares the results of the summation of the preceding series, computing from left to right and from right to left with n = 50000.

	
*5.24 (Sum a series) Write a program to compute the following summation:

Sum a series

13+35+57+79+911+1113+…+9597+9799

	**5.25 (Compute π) You can approximate π by using the following summation:

π=4 (1−13+15−17+19−111+…+(−)i+12i−1)

Write a program that displays the π value for i = 10000, 20000, …, and 100000.

	**5.26 (Compute e) You can approximate e using the following summation:

e=1+11!+12!+13!+14!+…+1i!

Write a program that displays the e value for i = 10000, 20000, …, and 100000. (Hint: Because i!=i×(i−1)×…×2×1, then

1i! is 1i(i−1)!

Initialize e and item to be 1, and keep adding a new item to e. The new item is the previous item divided by i, for i >= 2.)

	**5.27 (Display leap years) Write a program that displays all the leap years, 10 per line, from 101 to 2100, separated by exactly one space. Also display the number of leap years in this period.

	**5.28 (Display the first days of each month) Write a program that prompts the user to enter the year and first day of the year, then displays the first day of each month in the year. For example, if the user entered the year 2013, and 2 for Tuesday, January 1, 2013, your program should display the following output:

January 1, 2013 is Tuesday
...
December 1, 2013 is Sunday

	**5.29 (Display calendars) Write a program that prompts the user to enter the year and first day of the year and displays the calendar table for the year on the console. For example, if the user entered the year 2013, and 2 for Tuesday, January 1, 2013, your program should display the calendar for each month in the year, as follows:

	January 2013

	Sun

	Mon

	Tue

	Wed

	Thu

	Fri

	Sat

	
	
	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	
	

 . . .

	December 2013

	Sun

	Mon

	Tue

	Wed

	Thu

	Fri

	Sat

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	
	
	
	

	*5.30 (Financial application: compound value) Suppose you save $100 each month into a savings account with the annual interest rate 5%. Thus, the monthly interest rate is 0.05 / 12 = 0.00417. After the first month, the value in the account becomes

 100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

		and so on.

Write a program that prompts the user to enter an amount (e.g., 100), the annual interest rate (e.g., 5), and the number of months (e.g., 6) then displays the amount in the savings account after the given month.

		 *5.31	 (Financial application: compute CD value) Suppose you put $10,000 into a CD with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.92

		 After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06

		 After three months, the CD is worth

10096.06 + 10096.06 * 5.75 / 1200 = 10144.44

	 	 and so on.

		 Write a program that prompts the user to enter an amount (e.g., 10000), the annual percentage yield (e.g., 5.75), and the number of months (e.g., 18) and displays a table as presented in the sample run.

Enter the initial deposit amount: 10000
Enter annual percentage yield: 5.75
Enter maturity period (number of months): 18
Month CD Value
1 10047.92
2 10096.06
...
17 10846.57
18 10898.54

	**5.32 (Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a two-digit number. The two digits in the number are distinct. (Hint: Generate the first digit. Use a loop to continuously generate the second digit until it is different from the first digit.)

	**	5.33	 (Perfect number) A positive integer is called a perfect number if it is equal to the sum of all of its positive divisors, excluding itself. For example, 6 is the first perfect number because 6 = 3 + 2 + 1. The next is 28 = 14 + 7 + 4 + 2 + 1. There are four perfect numbers<10,000. Write a program to find all these four numbers.

	***5.34 (Game: scissor, rock, paper) Programming Exercise 3.17 gives a program that plays the scissor–rock–paper game. Revise the program to let the user continuously play until either the user or the computer wins more than two times than its opponent.

	*5.35 (Summation) Write a program to compute the following summation:

11+2+12+3+13+4+…+1624+625

	**	5.36	 (Business application: checking ISBN) Use loops to simplify Programming ­Exercise 3.9.

	**5.37 (Decimal to binary) Write a program that prompts the user to enter a decimal integer then displays its corresponding binary value. Don’t use Java’s Integer.toBinaryString(int) in this program.

	**5.38 (Decimal to octal) Write a program that prompts the user to enter a decimal integer and displays its corresponding octal value. Don’t use Java’s Integer.toOctalString(int) in this program.

		*5.39	(Financial application: find the sales amount) You have just started a sales job in a department store. Your pay consists of a base salary and a commission. The base salary is $5,000. The scheme shown below is used to determine the commission rate.

	Sales Amount

	Commission Rate

	$0.01–$5,000

	8%

	$5,000.01–$10,000

	10%

	$10,000.01 and above

	12%

Note this is a graduated rate. The rate for the first $5,000 is at 8%, the next $5,000 is at 10%, and the rest is at 12%. If the sales amount is 25,000, the commission is 5,000 ∗ 8,+5,000 ∗ 10,+15,000 ∗ 12, = $2,700.

Your goal is to earn $30,000 a year. Write a program that finds out the minimum number of sales you have to generate in order to make $30,000.

	5.40 (Simulation: heads or tails) Write a program that simulates flipping a coin one million times and displays the number of heads and tails.

		*5.41	(Occurrence of max numbers) Write a program that reads integers, finds the largest of them, and counts its occurrences. Assume the input ends with number 0. Suppose you entered 3 5 2 5 5 5 0; the program finds that the largest is 5 and the occurrence count for 5 is 4.

(Hint: Maintain two variables, max and count. max stores the current max number and count stores its occurrences. Initially, assign the first number to max and 1 to count. Compare each subsequent number with max. If the number is greater than max, assign it to max and reset count to 1. If the number is equal to max, increment count by 1.)

Enter numbers: 3 5 2 5 5 5 0
The largest number is 5
The occurrence count of the largest number is 4

		*5.42	(Financial application: find the sales amount) Rewrite Programming Exercise 5.39 as follows:

	Use a for loop instead of a do-while loop.

	Let the user enter COMMISSION_SOUGHT instead of fixing it as a constant.

		*5.43	(Math: combinations) Write a program that displays all possible combinations for picking two numbers from integers 1 to 7. Also display the total number of all combinations.

1 2
1 3
...
...
The total number of all combinations is 21

		*5.44	(Computer architecture: bit-level operations) A short value is stored in 16 bits. Write a program that prompts the user to enter a short integer and displays the 16 bits for the integer. Here are sample runs:

		

Enter an integer: 5
The bits are 0000000000000101

Enter an integer: –5
The bits are 1111111111111011

(Hint: You need to use the bitwise right shift operator (>>) and the bitwise AND operator (&), which are covered in Appendix G, Bitwise Operations.)

	**5.45 (Statistics: compute mean and standard deviation) In business applications, you are often asked to compute the mean and standard deviation of data. The mean is simply the average of the numbers. The standard deviation is a statistic that tells you how tightly all the various data are clustered around the mean in a set of data. For example, what is the average age of the students in a class? How close are the ages? If all the students are the same age, the deviation is 0.

Write a program that prompts the user to enter 10 numbers and displays the mean and standard deviations of these numbers using the following formula:

 mean=

 ∑

 i=1

 n

 x
 i

 n

 =

 x
 1

 +
 x
 2

 +⋯+
 x
 n

 n

  deviation=

 ∑

 i=1

 n

 x
 i

 −

 (

 ∑

 i=1

 n

 x
 i

)

 2

 n

 n−1

Here is a sample run:

Enter 10 numbers: 1 2 3 4.5 5.6 6 7 8 9 10
The mean is 5.61
The standard deviation is 2.99794

		*5.46	(Reverse a string) Write a program that prompts the user to enter a string and ­displays the string in reverse order.

	

Enter a string: ABCD
The reversed string is DCBA

		*5.47	(Business: check ISBN-13) ISBN-13 is a new standard for identifying books. It uses 13 digits

 d
1

 d
2

 d
3

 d
4

 d
5

 d
6

 d
7

 d
8

 d
9

 d

 10

 d

 11

 d

 12

 d

 13

 .

 The last digit

 d

 13

 is a checksum, which is calculated from the other digits using the following formula:

10−(

 d
 1

 +3
 d
 2

 +
 d
 3

 +3
 d
 4

 +
 d
 5

 +3
 d
 6

 +
 d
 7

 +3
 d
 8

 +
 d
 9

 +3
 d

 10

 +
 d

 11

 +3
 d

 12

),10

If the checksum is 10, replace it with 0. Your program should read the input as a string. Here are sample runs:

Enter the first 12 digits of an ISBN-13 as a string: 978013213080
The ISBN-13 number is 9780132130806

Enter the first 12 digits of an ISBN-13 as a string: 978013213079
The ISBN-13 number is 9780132130790

Enter the first 12 digits of an ISBN-13 as a string: 97801320
97801320 is an invalid input

		*5.48	(Process string) Write a program that prompts the user to enter a string and displays the characters at odd positions. Here is a sample run:

Enter a string: Beijing Chicago
BiigCiao

		*5.49	(Count vowels and consonants) Assume that the letters A, E, I, O, and U are vowels. Write a program that prompts the user to enter a string, and displays the number of vowels and consonants in the string.

Enter a string: Programming is fun
The number of vowels is 5
The number of consonants is 11

		*5.50	(Count uppercase letters) Write a program that prompts the user to enter a string and displays the number of the uppercase letters in the string.

Enter a string: Welcome to Java
The number of uppercase letters is 2

		*5.51	(Longest common prefix) Write a program that prompts the user to enter two strings and displays the largest common prefix of the two strings. Here are some sample runs:

Enter the first string: Welcome to C++
Enter the second string: Welcome to programming
The common prefix is Welcome to

Enter the first string: Atlanta
Enter the second string: Macon
Atlanta and Macon have no common prefix

CHAPTER 6 Methods

Objectives

	To define methods with formal parameters (§6.2).

	To invoke methods with actual parameters (i.e., arguments) (§6.2).

	To define methods with a return value (§6.3).

	To define methods without a return value and distinguish the differences between void methods and value-returning methods (§6.4).

	To pass arguments by value (§6.5).

	To develop reusable code that is modular, easy to read, easy to debug, and easy to maintain (§6.6).

	To write a method that converts hexadecimals to decimals (§6.7).

	To use method overloading and understand ambiguous overloading (§6.8).

	To determine the scope of variables (§6.9).

	To apply the concept of method abstraction in software development (§6.10).

	To design and implement methods using stepwise refinement (§6.11).

6.1 Introduction

	Methods can be used to define reusable code and organize and simplify coding.

problem

Suppose you need to find the sum of integers from 1 to 10, 20 to 37, and 35 to 49, ­respectively. You may write the code as follows:

int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);
sum = 0;
for (int i = 20; i <= 37; i++)
 sum += i;
System.out.println("Sum from 20 to 37 is " + sum);
sum = 0;
for (int i = 35; i <= 49; i++)
 sum += i;
System.out.println("Sum from 35 to 49 is " + sum);

why methods?

You may have observed that computing these sums from 1 to 10, 20 to 37, and 35 to 49 are very similar, except that the starting and ending integers are different. Wouldn’t it be nice if we could write the common code once and reuse it? We can do so by defining a method and invoking it.

The preceding code can be simplified as follows:

define sum method 1 public static int sum(int i1, int i2) {
			 2 int result = 0;
			 3 for (int i = i1; i <= i2; i++)
			 4 result += i;
 			 5
 			 6 return result;
 			 7 }
 			 8
 main method 		 9 public static void main(String[] args) {
invoke sum		 10 System.out.println("Sum from 1 to 10 is " + sum(1, 10));
			 11 System.out.println("Sum from 20 to 37 is " + sum(20, 37));
			 12 System.out.println("Sum from 35 to 49 is " + sum(35, 49));
			 13 }

Lines 1–7 define the method named sum with two parameters i1 and i2. The statements in the main method invoke sum(1, 10) to compute the sum from 1 to 10, sum(20, 37) to compute the sum from 20 to 37, and sum(35, 49) to compute the sum from 35 to 49.

method

A method is a collection of statements grouped together to perform an operation. In earlier chapters you have used predefined methods such as System.out.println, System.exit, Math.pow, and Math.random. These methods are defined in the Java library. In this chapter, you will learn how to define your own methods and apply method abstraction to solve complex problems.

6.2 Defining a Method

	A method definition consists of method name, parameters, return value type, and body.

The syntax for defining a method is as follows:

modifier returnValueType methodName(list of parameters) {
 // Method body;
}

Let’s look at a method defined to find the larger between two integers. This method, named max, has two int parameters, num1 and num2, the larger of which is returned by the method. Figure 6.1 illustrates the components of this method.

[image: Two code diagrams show how to define, and then invoke, a method.]
Figure 6.1

A method definition consists of a method header and a method body.

Description

method header

modifier

The method header specifies the modifiers, return value type, method name, and parameters of the method. The static modifier is used for all the methods in this chapter. The reason for using it will be discussed in Chapter 9, Objects and Classes.

value-returning method

void method

A method may return a value. The returnValueType is the data type of the value the method returns. Some methods perform desired operations without returning a value. In this case, the returnValueType is the keyword void. For example, the returnValueType is void in the main method, as well as in System.exit, and System.out.println. If a method returns a value, it is called a value-returning method; otherwise, it is called a void method.

formal parameter

parameter

actual parameter

argument

parameter list

method signature

The variables defined in the method header are known as formal parameters or simply parameters. A parameter is like a placeholder: when a method is invoked, you pass a value to the parameter. This value is referred to as an actual parameter or argument. The parameter list refers to the method’s type, order, and the number of parameters. The method name and the parameter list together constitute the method signature. Parameters are optional; that is, a method may contain no parameters. For example, the Math.random() method has no parameters.

The method body contains a collection of statements that implement the method. The method body of the max method uses an if statement to determine which number is larger and return the value of that number. In order for a value-returning method to return a result, a return statement using the keyword return is required. The method terminates when a return statement is executed.

 Note

Some programming languages refer to methods as procedures and functions. In those languages, a value-returning method is called a function and a void method is called a procedure.

 Caution

In the method header, you need to declare each parameter separately. For instance, max(int num1, int num2) is correct, but max(int num1, num2) is wrong.

define vs. declare

 Note

We say “define a method” and “declare a variable.” We are making a subtle distinction here. A definition defines what the defined item is, but a declaration usually involves allocating memory to store data for the declared item.

6.3 Calling a Method

caller

	Calling a method executes the code in the method.

In a method definition, you define what the method is to do. To execute the method, you have to call or invoke it. The program that calls the function is called a caller. There are two ways to call a method, depending on whether the method returns a value or not.

If a method returns a value, a call to the method is usually treated as a value. For example,

int larger = max(3, 4);

calls max(3, 4) and assigns the result of the method to the variable larger. Another example of a call that is treated as a value is

System.out.println(max(3, 4));

which prints the return value of the method call max(3, 4).

If a method returns void, a call to the method must be a statement. For example, the method println returns void. The following call is a statement:

System.out.println("Welcome to Java!");

 Note

A value-returning method can also be invoked as a statement in Java. In this case, the caller simply ignores the return value. This is not often done, but it is permissible if the caller is not interested in the return value.

When a program calls a method, program control is transferred to the called method. A called method returns control to the caller when its return statement is executed or when its method-ending closing brace is reached.

Listing 6.1 presents a complete program that is used to test the max method.

Define/invoke max method

Listing 6.1 TestMax.java

		 1 public class TestMax {
		 2 /** Main method */
main method	 3 public static void main(String[] args) {
		 4 int i = 5;
		 5 int j = 2;
invoke max	 6 int k = max(i, j);		
		 7 System.out.println("The maximum of " + i +
		 8 " and " + j + " is " + k);
		 9 }
		 10
		 11 /** Return the max of two numbers */
define method 12 public static int max(int num1, int num2) {
		 13 int result;
		 14
		 15 if (num1 > num2)
		 16 result = num1;
		 17 else
		 18 result = num2;
		 19
		 20 return result;
		 21 }
		 22 }

The maximum of 5 and 2 is 5

	
	line#

	i

	j

	k

	num1

	num2

	result

	
	4

	5

	
	
	
	
	

	
	5

	
	2

	
	
	
	

	
Invoking max

	12

	
	
	
	5

	2

	

	13

	
	
	
	
	
	undefined

	16

	
	
	
	
	
	5

	
	­6

	
	
	5

	
	
	

This program contains the main method and the max method. The main method is just like any other method, except that it is invoked by the JVM to start the program.

main method

The main method’s header is always the same. Like the one in this example, it includes the modifiers public and static, return value type void, method name main, and a parameter of the String[] type. String[] indicates the parameter is an array of String, a subject addressed in Chapter 7.

The statements in main may invoke other methods that are defined in the class that contains the main method or in other classes. In this example, the main method invokes max(i, j), which is defined in the same class with the main method.

max method

When the max method is invoked (line 6), variable i’s value 5 is passed to num1 and variable j’s value 2 is passed to num2 in the max method. The flow of control transfers to the max method and the max method is executed. When the return statement in the max method is executed, the max method returns the control to its caller (in this case, the caller is the main method). This process is illustrated in Figure 6.2.

[image: Two code diagrams show how the max method is invoked.]
Figure 6.2

When the max method is invoked, the flow of control transfers to it. Once the max method is finished, it returns control back to the caller.

Description

 Caution

A return statement is required for a value-returning method. The method given in (a) is logically correct, but it has a compile error because the Java compiler thinks this method might not return a value.

	public static int sign(int n) {
 if (n > 0)
 return 1;
 else if (n == 0)
 return 0;
 else if (n < 0)
 return −1;
}

	Should be →

	public static int sign(int n) {
 if (n > 0)
 return 1;
 else if (n == 0)
 return 0;
 else
 return –1;
}

	(a)
	
	(b)

To fix this problem, delete if (n < 0) in (a), so the compiler will see a return statement to be reached regardless of how the if statement is evaluated.

reusing method

 Note

Methods enable code sharing and reuse. The max method can be invoked from any class, not just TestMax. If you create a new class, you can invoke the max method using ClassName.methodName (i.e., TestMax.max).

activation record

call stack

Each time a method is invoked, the system creates an activation record (also called an ­activation frame) that stores parameters and variables for the method and places the activation record in an area of memory known as a call stack. A call stack is also known as an execution stack, runtime stack, or machine stack and it is often shortened to just “the stack.” When a method calls another method, the caller’s activation record is kept intact and a new activation record is created for the new method called. When a method finishes its work and returns to its caller, its activation record is removed from the call stack.

A call stack stores the activation records in a last-in, first-out fashion: The activation record for the method that is invoked last is removed first from the stack. For example, suppose method m1 calls method m2, and m2 calls method m3. The runtime system pushes m1’s activation record into the stack, then m2’s, and then m3’s. After m3 is finished, its activation record is removed from the stack. After m2 is finished, its activation record is removed from the stack. After m1 is finished, its activation record is removed from the stack.

Understanding call stacks helps you to comprehend how methods are invoked. The variables defined in the main method in Listing 6.1 are i, j, and k. The variables defined in the max method are num1, num2, and result. The variables num1 and num2 are defined in the method signature and are parameters of the max method. Their values are passed through method invocation. Figure 6.3 illustrates the activation records for method calls in the stack.

[image: Diagrams ay to e show a call stack for two methods.]
Figure 6.3

When the max method is invoked, the flow of control transfers to the max method. Once the max method is finished, it returns control back to the caller.

Description

6.4 void vs. Value-Returning Methods

	A void method does not return a value.

The preceding section gives an example of a value-returning method. This section shows how to define and invoke a void method. Listing 6.2 gives a program that defines a method named printGrade and invokes it to print the grade for a given score.

Use void method

Listing 6.2  TestVoidMethod.java

Use void method		1 public class TestVoidMethod {
main method		2 public static void main(String[] args) {
			3 System.out.print("The grade is ");
invoke printGrade	4 printGrade(78.5);
			5
			6 System.out.print("The grade is ");
			7 printGrade(59.5);
			8 }
			9
printGrade method 10 public static void printGrade(double score) {
`		 11 if (score >= 90.0) {
		 12 System.out.println('A');
		 13 }
		 14 else if (score >= 80.0) {
		 15 System.out.println('B');
	 16 }
	 17 else if (score >= 70.0) {
		 18 System.out.println('C');
		 19 }
		 20 else if (score >= 60.0) {
		 21 System.out.println('D');
		 22 }
		 23 else {
		 24 System.out.println('F');
		 25 }
		 26 }
		 27 }

The grade is C
The grade is F

The printGrade method is a void method because it does not return any value. A call to a void method must be a statement. Therefore, it is invoked as a statement in line 4 in the main method. Like any Java statement, it is terminated with a semicolon.

invoke void method

To see the differences between a void and value-returning method, let’s redesign the printGrade method to return a value. The new method, which we call getGrade, returns the grade as given in Listing 6.3.

void vs. value-returned

Listing 6.3 TestReturnGradeMethod.java

	 1 public class TestReturnGradeMethod {
main method	 2 public static void main(String[] args) {
		 3 System.out.print("The grade is " + getGrade(78.5));
invoke getGrade 4 System.out.print("\nThe grade is " + getGrade(59.5));
 		 5 }
 		 6
getGrade method 7 public static char getGrade(double score) {
 		 8 if (score >= 90.0)
		 9 return 'A';
 		 10 else if (score >= 80.0)
		 11 return 'B';
		 12 else if (score >= 70.0)
		 13 return 'C';
		 14 else if (score >= 60.0)
		 15 return 'D';
		 16 else
		 17 return 'F';
		 18 }
		 19 }

The grade is C
The grade is F

The getGrade method defined in lines 7–18 returns a character grade based on the numeric score value. The caller invokes this method in lines 3 and 4.

The getGrade method can be invoked by a caller wherever a character may appear. The printGrade method does not return any value, so it must be invoked as a statement.

return in void method

 Note

A return statement is not needed for a void method, but it can be used for terminating the method and returning to the method’s caller. The syntax is simply

return;

This is not often done, but sometimes it is useful for circumventing the normal flow of control in a void method. For example, the following code has a return statement to terminate the method when the score is invalid:

public static void printGrade(double score) {
 if (score < 0 || score > 100) {
 System.out.println("Invalid score");
 return;
 }
 if (score >= 90.0) {
 System.out.println('A');
 }
 else if (score >= 80.0) {
 System.out.println('B');
 }
 else if (score >= 70.0) {
 System.out.println('C');
 }
 else if (score >= 60.0) {
 System.out.println('D');
 }
 else {
 System.out.println('F');
 }
}

	6.4.1 What are the benefits of using a method?

	6.4.2 How do you define a method? How do you invoke a method?

	6.4.3 How do you simplify the max method in Listing 6.1 using the conditional operator?

	6.4.4 True or false? A call to a method with a void return type is always a statement itself, but a call to a value-returning method cannot be a statement by itself.

	6.4.5 What is the return type of a main method?

	6.4.6 What would be wrong with not writing a return statement in a value-returning method? Can you have a return statement in a void method? Does the return statement in the following method cause syntax errors?

public static void xMethod(double x, double y) {
 System.out.println(x + y);
 return x + y;
}

	6.4.7 Define the terms parameter, argument, and method signature.

	6.4.8 Write method headers (not the bodies) for the following methods:

	Return a sales commission, given the sales amount and the commission rate.

	Display the calendar for a month, given the month and year.

	Return a square root of a number.

	Test whether a number is even, and returning true if it is.

	Display a message a specified number of times.

	Return the monthly payment, given the loan amount, number of years, and annual interest rate.

	Return the corresponding uppercase letter, given a lowercase letter.

	6.4.9 Identify and correct the errors in the following program:

 1 public class Test {
 2 public static method1(int n, m) {
 3 n += m;
 4 method2(3.4);
 5 }
 6
 7 public static int method2(int n) {
 8 if (n > 0) return 1;
 9 else if (n == 0) return 0;
10 else if (n < 0) return −1;
11 }
12 }

	6.4.10 Reformat the following program according to the programming style and documentation guidelines proposed in Section 1.9, Programming Style and Documentation. Use the next-line brace style.

public class Test {
 public static double method(double i, double j)
 {
 while (i < j) {
 j––;
 }
 return j;
 }
}

6.5 Passing Parameters by Values

	The arguments are passed by value to parameters when invoking a method.

parameter order association

The power of a method is its ability to work with parameters. You can use println to print any string, and max to find the maximum of any two int values. When calling a method, you need to provide arguments, which must be given in the same order as their respective parameters in the method signature. This is known as parameter order association. For example, the following method prints a message n times:

public static void nPrintln(String message, int n) {
 for (int i = 0; i < n; i++)
 System.out.println(message);
}

You can use nPrintln("Hello", 3) to print Hello three times. The nPrintln("Hello", 3) statement passes the actual string parameter Hello to the parameter message, passes 3 to n, and prints Hello three times. However, the statement nPrintln(3, "Hello") would be wrong. The data type of 3 does not match the data type for the first parameter, message, nor does the second argument, Hello, match the second parameter, n.

 Caution

The arguments must match the parameters in order, number, and compatible type, as defined in the method signature. Compatible type means you can pass an argument to a parameter without explicit casting, such as passing an int value argument to a double value parameter.

pass-by-value

When you invoke a method with an argument, the value of the argument is passed to the parameter. This is referred to as pass-by-value. If the argument is a variable rather than a literal value, the value of the variable is passed to the parameter. The variable is not affected, ­regardless of the changes made to the parameter inside the method. As given in Listing 6.4, the value of x (1) is passed to the parameter n to invoke the increment method (line 5). The parameter n is incremented by 1 in the method (line 10), but x is not changed no matter what the method does.

Listing 6.4 Increment.java

		 1 public class Increment {
		 2 public static void main(String[] args) {
		 3 int x = 1;
		 4 System.out.println("Before the call, x is " + x);
invoke increment 5 increment(x);
		 6 System.out.println("After the call, x is " + x);
		 7 }
		 8
		 9 public static void increment(int n) {
increment n	 10 n++;
		 11 System.out.println("n inside the method is " + n);
		 12 }
		 13 }

Before the call, x is 1
n inside the method is 2
After the call, x is 1

Listing 6.5 gives another program that demonstrates the effect of passing by value. The ­program creates a method for swapping two variables. The swap method is invoked by ­passing two arguments. Interestingly, the values of the arguments are not changed after the method is invoked.

Listing 6.5 TestPassByValue.java

		1 public class TestPassByValue {
	 2 /** Main method */
		3 public static void main(String[] args) {
		4 // Declare and initialize variables
		5 int num1 = 1;
		6 int num2 = 2;
		7
		8 System.out.println("Before invoking the swap method, num1 is " +
		9 num1 + " and num2 is " + num2);
	 10
	 11 // Invoke the swap method to attempt to swap two variables
false swap 12 swap(num1, num2);
	 13
	 14 System.out.println("After invoking the swap method, num1 is " +
	 15 num1 + " and num2 is " + num2);
	 16 }
	 17
	 18 /** Swap two variables */
	 19 public static void swap(int n1, int n2) {
	 20 System.out.println("\tInside the swap method");
	 21 System.out.println("\t\tBefore swapping, n1 is " + n1
	 22 + " and n2 is " + n2);
	 23
	 24 // Swap n1 with n2
	 25 int temp = n1;
	 26 n1 = n2;
	 27 n2 = temp;
	 28
	 29 System.out.println("\t\tAfter swapping, n1 is " + n1
	 30 + " and n2 is " + n2);
	 31 }
	 32 }

Before invoking the swap method, num1 is 1 and num2 is 2
 Inside the swap method
 Before swapping, n1 is 1 and n2 is 2
 After swapping, n1 is 2 and n2 is 1
After invoking the swap method, num1 is 1 and num2 is 2

Before the swap method is invoked (line 12), num1 is 1 and num2 is 2. After the swap method is invoked, num1 is still 1 and num2 is still 2. Their values have not been swapped. As shown in Figure 6.4, the values of the arguments num1 and num2 are passed to n1 and n2, but n1 and n2 have their own memory locations independent of num1 and num2. Therefore, changes in n1 and n2 do not affect the contents of num1 and num2.

[image: Five diagrams show a call stack for two methods.]
Figure 6.4

The values of the variables are passed to the method’s parameters.

Description

Another twist is to change the parameter name n1 in swap to num1. What effect does this have? No change occurs, because it makes no difference whether the parameter and the argument have the same name. The parameter is a variable in the method with its own memory space. The variable is allocated when the method is invoked, and it disappears when the method is returned to its caller.

 Note

For simplicity, Java programmers often say passing x to y, which actually means passing the value of argument x to parameter y.

	

6.5.1 How is an argument passed to a method? Can the argument have the same name as its parameter?

	6.5.2 Identify and correct the errors in the following program:

 1 public class Test {
 2 public static void main(String[] args) {
 3 nPrintln(5, "Welcome to Java!");
 4 }
 5
 6 public static void nPrintln(String message, int n) {
 7 int n = 1;
 8 for (int i = 0; i < n; i++)
 9 System.out.println(message);
10 }
11 }

	6.5.3 What is pass-by-value? Show the result of the following programs.

	public class Test {
 public static void main(String[] args) {
 int max = 0;
 max(1, 2, max);
 System.out.println(max);
 }
 public static void max(
 int value1, int value2, int max) {
 if (value1 > value2)
 max = value1;
 else
 max = value2;
 }
}

	
	public class Test {
 public static void main(String[] args) {
 int i = 1;
 while (i <= 6) {
 method1(i, 2);
 i++;
 }
 }
 public static void method1(
 int i, int num) {
 for (int j = 1; j <= i; j++) {
 System.out.print(num + " ");
 num *= 2;
 }
 System.out.println();
 }
}

	(a)
	
	(b)

	public class Test {
 public static void main(String[] args) {
 // Initialize times
 int times = 3;
 System.out.println("Before the call,"
 + " variable times is " + times);
 // Invoke nPrintln and display times
 nPrintln("Welcome to Java!", times);
 System.out.println("After the call,"
 + " variable times is " + times);
 }
 // Print the message n times
 public static void nPrintln(
 String message, int n) {
 while (n > 0) {
 System.out.println("n = " + n);
 System.out.println(message);
 n––;
 }
 }
}

	
	public class Test {
 public static void main(String[] args) {
 int i = 0;
 while (i <= 4) {
 method1(i);
 i++;
 }
 System.out.println("i is " + i);
 }
 public static void method1(int i) {
 do {
 if (i % 3 != 0)
 System.out.print(i + " ");
 i––;
 }
 while (i >= 1);
 System.out.println();
 }
}

	(c)
	
	(d)

	6.5.4 For (a) in the preceding question, show the contents of the activation records in the call stack just before the method max is invoked, just as max is entered, just before max is returned, and right after max is returned.

6.6 Modularizing Code

	Modularizing makes the code easy to maintain and debug and enables the code to be reused.

Methods can be used to reduce redundant code and enable code reuse. Methods can also be used to modularize code and improve the quality of the program.

Listing 5.9 gives a program that prompts the user to enter two integers and displays their greatest common divisor. You can rewrite the program using a method, as given in Listing 6.6.

Modularize code

Listing 6.6 GreatestCommonDivisorMethod.java

		1 import java.util.Scanner;
	 2
		3 public class GreatestCommonDivisorMethod {
		4 /** Main method */
		5 public static void main(String[] args) {
		6 // Create a Scanner
		7 Scanner input = new Scanner(System.in);
		8
		9 // Prompt the user to enter two integers
 10 System.out.print("Enter first integer: ");
	 11 int n1 = input.nextInt();
	 12 System.out.print("Enter second integer: ");
	 13 int n2 = input.nextInt
	 14
	 15 System.out.println("The greatest common divisor for " + n1 +
invoke gcd 16 " and " + n2 + " is " + gcd(n1, n2));
	 17 }
	 18
	 19 /** Return the gcd of two integers */
compute gcd 20 public static int gcd(int n1,int n2) {
	 21 int gcd = 1; // Initial gcd is 1
	 22 int k = 2; // Possible gcd
	 23
	 24 while (k <= n1 && k <= n2) {
	 25 if (n1 % k == 0 && n2 % k == 0)
	 26 gcd = k; // Update gcd
	 27 k++;
	 28 }
	 29
return gcd 30 return gcd; // Return gcd
	 31 }
	 32 }

Enter first integer: 45
Enter second integer: 75
The greatest common divisor for 45 and 75 is 15

By encapsulating the code for obtaining the gcd in a method, this program has several advantages:

	It isolates the problem for computing the gcd from the rest of the code in the main method. Thus, the logic becomes clear, and the program is easier to read.

	The errors on computing the gcd are confined in the gcd method, which narrows the scope of debugging.

	The gcd method now can be reused by other programs.

Listing 6.7 applies the concept of code modularization to improve Listing 5.15, Prime­Number.java.

Listing 6.7 PrimeNumberMethod.java

			 1 public class PrimeNumberMethod {
			 2 public static void main(String[] args) {
			 3 System.out.println("The first 50 prime numbers are \n");
invoke printPrimeNumbers 4 printPrimeNumbers(50);
			 5 }
			 6
printPrimeNumbers	 7 public static void printPrimeNumbers(int numberOfPrimes) {
method			 8 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
			 9 int count = 0; // Count the number of prime numbers
			 10 int number = 2; // A number to be tested for primeness
			 11
			 12 // Repeatedly find prime numbers
			 13 while (count < numberOfPrimes) {
			 14 // Print the prime number and increase the count
invoke isPrime		 15 if (isPrime(number)) {
			 16 count++; // Increase the count
			 17
			 18 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
			 19 // Print the number and advance to the new line
			 20 System.out.printf("%−5d\n", number);
			 21 }
			 22 else
			 23 System.out.printf("%−5d", number);
			 24 }
			 25
			 26 // Check whether the next number is prime
			 27 number++;
			 28 }
			 29 }
			 30
			 31 /** Check whether number is prime */
isPrime method		 32 public static boolean isPrime(int number) {
			 33 for (int divisor = 2; divisor <= number / 2; divisor++) {
			 34 if (number % divisor == 0) { // If true, number is not prime
			 35 return false; // Number is not a prime
			 36 }
			 37 }
			 38
			 39 return true; // Number is prime
			 40 }
			 41 }

The first 50 prime numbers are
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

We divided a large problem into two subproblems: determining whether a number is a prime, and printing the prime numbers. As a result, the new program is easier to read and easier to debug. Moreover, the methods printPrimeNumbers and isPrime can be reused by other programs.

	6.6.1 Trace the gcd method to find the return value for gcd(4, 6).

	6.6.2 Trace the isPrime method to find the return value for isPrime(25).

6.7 Case Study: Converting Hexadecimals to Decimals

	This section presents a program that converts a hexadecimal number into a decimal number.

Listing 5.11, Dec2Hex.java, gives a program that converts a decimal to a hexadecimal. How would you convert a hex number into a decimal?

Given a hexadecimal number hnhn−1hn−2…h2h1h0, the equivalent decimal value is

hn×16n+hn−1×16n−1+hn−2×16n−2+⋯

+h2×162+h1×161+h0×160

For example, the hex number AB8C is

10×163+11×162+8×161+12×160=43916

Our program will prompt the user to enter a hex number as a string and convert it into a decimal using the following method:

public static int hexToDecimal(String hex)

A brute-force approach is to convert each hex character into a decimal number, multiply it by 16i for a hex digit at the i’s position, and then add all the items together to obtain the equivalent decimal value for the hex number.

Note that

hn×16n+hn−1×16n−1+hn−2×16n−2+⋯+h1×161+h0×160 =(…((hn×16+hn−1)×16+hn−2)×16+⋯+h1)×16+h0

This observation, known as the Horner’s algorithm, leads to the following efficient code for converting a hex string to a decimal number:

int decimalValue = 0;
for (int i = 0; i < hex.length(); i++) {
 char hexChar = hex.charAt(i);
 decimalValue = decimalValue * 16 + hexCharToDecimal(hexChar);
}

Here is a trace of the algorithm for hex number AB8C:

	
	i

	hexChar

	hexCharToDecimal (hexChar)

	decimalValue

	Before the loop

	

	

	

	0

	After the 1st iteration

	0

	A

	10

	10

	After the 2nd iteration

	1

	B

	11

	10 * 16 + 11

	After the 3rd iteration

	2

	8

	8

	(10 * 16 + 11) * 16 + 8

	After the 4th iteration

	3

	C

	12

	((10 * 16 + 11) * 16 + 8) * 16 + 12

Listing 6.8 gives the complete program.

Listing 6.8 Hex2Dec.java

 1 import java.util.Scanner;
 2
 3 public class Hex2Dec {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
 10 System.out.print("Enter a hex number: ");
input string 11 String hex = input.nextLine();
 12
 13 System.out.println("The decimal value for hex number "
hex to decimal 14 + hex + " is " + hexToDecimal(hex.toUpperCase()));
 15 }
 16
 17 public static int hexToDecimal(String hex) {
 18 int decimalValue = 0;
 19 for (int i = 0; i < hex.length(); i++) {
 20 char hexChar = hex.charAt(i);
 21 decimalValue = decimalValue * 16 + hexCharToDecimal(hexChar);
 22 }
 23
 24 return decimalValue;
 25 }
 26
hex char to decimal 27 public static int hexCharToDecimal(char ch) {
check uppercase 28 if (ch >= 'A' && ch <= 'F')
 29 return 10 + ch – 'A';
 30 else // ch is '0', '1', ..., or '9'
 31 return ch − '0';
				 32 }
				 33 }

Enter a hex number: AB8C
The decimal value for hex number AB8C is 43916

Enter a hex number: af71
The decimal value for hex number af71 is 44913

The program reads a string from the console (line 11) and invokes the hexToDecimal method to convert a hex string to decimal number (line 14). The characters can be in either lowercase or uppercase. They are converted to uppercase before invoking the hexToDecimal method.

The hexToDecimal method is defined in lines 17–25 to return an integer. The length of the string is determined by invoking hex.length() in line 19.

The hexCharToDecimal method is defined in lines 27–32 to return a decimal value for a hex character. The character can be in either lowercase or uppercase. Recall that to subtract two characters is to subtract their Unicodes. For example, '5' – '0' is 5.

	6.7.1

	What is hexCharToDecimal('B'))?

	What is hexCharToDecimal('7'))?

	What is hexToDecimal("A9"))?

6.8 Overloading Methods

	Overloading methods enable you to define the methods with the same name as long as their parameter lists are different.

The max method used earlier works only with the int data type. But what if you need to determine which of the two floating-point numbers has the maximum value? The solution is to create another method with the same name but different parameters, as shown in the ­following code:

public static double max(double num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
}

If you call max with int parameters, the max method that expects int parameters will be invoked; and if you call max with double parameters, the max method that expects double parameters will be invoked. This is referred to as method overloading; that is, two methods have the same name but different parameter lists within one class. The Java compiler ­determines which method to use based on the method signature.

method overloading

Listing 6.9 is a program that creates three methods. The first finds the maximum integer, the second finds the maximum double, and the third finds the maximum among three double values. All three methods are named max.

Listing 6.9 TestMethodOverloading.java

 1 public class TestMethodOverloading {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Invoke the max method with int parameters
 5 System.out.println("The maximum of 3 and 4 is "
 6 + max(3, 4));
 7
 8 // Invoke the max method with the double parameters
 9 System.out.println("The maximum of 3.0 and 5.4 is "
 10 + max(3.0, 5.4));
 11
 12 // Invoke the max method with three double parameters
 13 System.out.println("The maximum of 3.0, 5.4, and 10.14 is "
 14 + max(3.0, 5.4, 10.14));
 15 }
 16
 17 /** Return the max of two int values */
overloaded max 18 public static int max(int num1, int num2) {
 19 if (num1 > num2)
 20 return num1;
 21 else
 22 return num2;
 23 }
 24
 25 /** Find the max of two double values */
overloaded max 26 public static double max(double num1, double num2) {
 27 if (num1 > num2)
 28 return num1;
 29 else
 30 return num2;
 31 }
 32
 33 /** Return the max of three double values */
overloaded max 34 public static double max(double num1, double num2, double num3) {
 35 return max(max(num1, num2), num3);
 36 }
 37 }

The maximum of 3 and 4 is 4
The maximum of 3.0 and 5.4 is 5.4
The maximum of 3.0, 5.4, and 10.14 is 10.14

When calling max(3, 4) (line 6), the max method for finding the maximum of two integers is invoked. When calling max(3.0, 5.4) (line 10), the max method for finding the maximum of two doubles is invoked. When calling max(3.0, 5.4, 10.14) (line 14), the max method for finding the maximum of three double values is invoked.

Can you invoke the max method with an int value and a double value, such as max(2, 2.5)? If so, which of the max methods is invoked? The answer to the first question is yes. The answer to the second question is that the max method for finding the maximum of two double values is invoked. The argument value 2 is automatically converted into a double value and passed to this method.

You may be wondering why the method max(double, double) is not invoked for the call max(3, 4). Both max(double, double) and max(int, int) are possible matches for max(3, 4). The Java compiler finds the method that best matches a method invocation. Since the method max(int, int) is a better match for max(3, 4) than max(double, double), max(int, int) is used to invoke max(3, 4).

 Tip

Overloading methods can make programs clearer and more readable. Methods that ­perform the same function with different types of parameters should be given the same name.

 Note

Overloaded methods must have different parameter lists. You cannot overload methods based on different modifiers or return types.

 Note

Sometimes there are two or more possible matches for the invocation of a method, but the compiler cannot determine the most specific match. This is referred to as ambiguous invocation. Ambiguous invocation causes a compile error. Consider the following code:

ambiguous invocation

public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }
 public static double max(int num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
 public static double max(double num1, int num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
}

Both max(int, double) and max(double, int) are possible candidates to match max(1, 2). Because neither is more specific than the other, the invocation is ­ambiguous, resulting in a compile error.

	6.8.1 What is method overloading? Is it permissible to define two methods that have the same name but different parameter types? Is it permissible to define two methods in a class that have identical method names and parameter lists, but different return value types or different modifiers?

	6.8.2 What is wrong in the following program?

public class Test {
 public static void method(int x) {
 }
 public static int method(int y) {
 return y;
 }
}

	6.8.3 Given two method definitions,

public static double m(double x, double y)
public static double m(int x, double y)

tell which of the two methods is invoked for:

	double z = m(4, 5);

	double z = m(4, 5.4);

	double z = m(4.5, 5.4);

6.9 The Scope of Variables

	The scope of a variable is the part of the program where the variable can be referenced.

scope of variables

local variable

Section 2.5 introduced the scope of a variable. This section discusses the scope of variables in detail. A variable defined inside a method is referred to as a local variable. The scope of a local variable starts from its declaration and continues to the end of the block that contains the variable. A local variable must be declared and assigned a value before it can be used.

A parameter is actually a local variable. The scope of a method parameter covers the entire method. A variable declared in the initial-action part of a for-loop header has its scope in the entire loop. However, a variable declared inside a for-loop body has its scope limited in the loop body from its declaration to the end of the block that contains the variable, as shown in Figure 6.5.

[image: A code diagram shows the scope of two variables.]
Figure 6.5

A variable declared in the initial-action part of a for-loop header has its scope in the entire loop.

Description

You can declare a local variable with the same name in different blocks in a method, but you cannot declare a local variable twice in the same block or in nested blocks, as shown in Figure 6.6.

[image: Two code diagrams show a variable being used more than once in a block]
Figure 6.6

A variable can be declared multiple times in nonnested blocks, but only once in nested blocks.

Description

Caution

A common mistake is to declare a variable in a for loop and then attempt to use it outside the loop. As shown in the following code, i is declared in the for loop, but it is accessed from the outside of the for loop, which causes a syntax error.

for (int i = 0; i < 10; i++) {
}
System.out.println(i); // Causes a syntax error on i

The last statement would cause a syntax error, because variable i is not defined outside of the for loop.

	6.9.1 What is a local variable?

	6.9.2 What is the scope of a local variable?

6.10 Case Study: Generating Random Characters

	A character is coded using an integer. Generating a random character is to generate an integer.

Computer programs process numerical data and characters. You have seen many examples that involve numerical data. It is also important to understand characters and how to process them. This section presents an example of generating random characters.

As introduced in Section 4.3, every character has a unique Unicode between 0 and FFFF in hexadecimal (65535 in decimal). To generate a random character is to generate a random integer between 0 and 65535 using the following expression (note since 0 <= Math .random() < 1.0, you have to add 1 to 65535):

(int)(Math.random() * (65535 + 1))

Now let’s consider how to generate a random lowercase letter. The Unicodes for lowercase letters are consecutive integers starting from the Unicode for a, then for b, c, ..., and z. The Unicode for a is

(int)'a'

Thus, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' – (int)'a' + 1))

As discussed in Section 4.3.3, all numeric operators can be applied to the char operands. The char operand is cast into a number if the other operand is a number or a character. Therefore, the preceding expression can be simplified as follows:

'a' + Math.random() * ('z' – 'a' + 1)

and a random lowercase letter is

(char)('a' + Math.random() * ('z' – 'a' + 1))

Hence, a random character between any two characters ch1 and ch2 with ch1 < ch2 can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

This is a simple but useful discovery. Listing 6.10 defines a class named RandomCharacter with overloaded methods to get a certain type of random character. You can use these methods in your future projects.

Listing 6.10 RandomCharacter.java

 1 public class RandomCharacter {
 2 /** Generate a random character between ch1 and ch2 */
getRandomCharacter 3 public static char getRandomCharacter(char ch1, char ch2) {
 4 return (char)(ch1 + Math.random() * (ch2 – ch1 + 1));
 5 }
 6
 7 /** Generate a random lowercase letter */
getRandomLower 8 public static char getRandomLowerCaseLetter() {
 CaseLetter() 9 return getRandomCharacter('a', 'z');
 10 }
 11
 12 /** Generate a random uppercase letter */
getRandomUpper 13 public static char getRandomUpperCaseLetter() {
 CaseLetter() 14 return getRandomCharacter('A', 'Z');
 15 }
 16
 17 /** Generate a random digit character */
getRandomDigit 18 public static char getRandomDigitCharacter() {
Character() 19 return getRandomCharacter('0', '9');
 20 }
 21
 22 /** Generate a random character */
getRandomCharacter() 23 public static char getRandomCharacter() {
 24 return getRandomCharacter('\u0000', '\uFFFF');
 25 }
 26 }

Listing 6.11 gives a test program that displays 175 random lowercase letters.

Listing 6.11 TestRandomCharacter.java

 1 public class TestRandomCharacter {
 2 /** Main method */
 3 public static void main(String[] args) {
constants 4 final int NUMBER_OF_CHARS = 175;
 5 final int CHARS_PER_LINE = 25;
 6
 7 // Print random characters between 'a' and 'z', 25 chars per line
 8 for (int i = 0; i < NUMBER_OF_CHARS; i++) {
lowercase letter 9 char ch = RandomCharacter.getRandomLowerCaseLetter();
 10 if ((i + 1) % CHARS_PER_LINE == 0)
 11 System.out.println(ch);
 12 else
 13 System.out.print(ch);
 14 }
 15 }
 16 }

gmjsohezfkgtazqgmswfclrao
pnrunulnwmaztlfjedmpchcif
lalqdgivxkxpbzulrmqmbhikr
lbnrjlsopfxahssqhwuuljvbe
xbhdotzhpehbqmuwsfktwsoli
cbuwkzgxpmtzihgatdslvbwbz
bfesoklwbhnooygiigzdxuqni

Line 9 invokes getRandomLowerCaseLetter() defined in the RandomCharacter class. Note getRandomLowerCaseLetter() does not have any parameters, but you still have to use the parentheses when defining and invoking the method.

parentheses required

6.11 Method Abstraction and Stepwise Refinement

	The key to developing software is to apply the concept of abstraction.

You will learn many levels of abstraction from this book. Method abstraction is achieved by separating the use of a method from its implementation. The client can use a method without knowing how it is implemented. The details of the implementation are encapsulated in the method and hidden from the client who invokes the method. This is also known as information hiding or encapsulation. If you decide to change the implementation, the client program will not be affected, provided that you do not change the method signature. The implementation of the method is hidden from the client in a “black box,” as shown in Figure 6.7.

[image: The method header is a black box with a white top portion, representing the method header. Optional arguments for input, and optional return values, pass through the method header.]
Figure 6.7

The method body can be thought of as a black box that contains the detailed implementation for the method.

Stepwise refinement

method abstraction

information hiding

You have already used the System.out.print method to display a string and the max method to find the maximum number. You know how to write the code to invoke these methods in your program, but as a user of these methods, you are not required to know how they are implemented.

The concept of method abstraction can be applied to the process of developing programs. When writing a large program, you can use the divide-and-conquer strategy, also known as stepwise refinement, to decompose it into subproblems. The subproblems can be further decomposed into smaller, more manageable problems.

divide and conquer

stepwise refinement

Suppose that you write a program that displays the calendar for a given month of the year. The program prompts the user to enter the year and the month, and then displays the entire calendar for the month, as presented in the following sample run:

Enter full year (e.g., 2012): 2012
Enter month as number between 1 and 12: 3

	March 2012

	Sun

	Mon

	Tue

	Wed

	Thu

	Fri

	Sat

	

	

	

	

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	

Let us use this example to demonstrate the divide-and-conquer approach.

6.11.1 Top-Down Design

How would you get started on such a program? Would you immediately start coding? Beginning programmers often start by trying to work out the solution to every detail. Although details are important in the final program, concern for detail in the early stages may block the problem-solving process. To make problem solving flow as smoothly as possible, this example begins by using method abstraction to isolate details from design and only later implements the details.

For this example, the problem is first broken into two subproblems: get input from the user, and print the calendar for the month. At this stage, you should be concerned with what the subproblems will achieve, not with how to get input and print the calendar for the month. You can draw a structure chart to help visualize the decomposition of the problem (see Figure 6.8a).

[image: Figures ay and b contain structure charts demonstrating top-down design.]
Figure 6.8

The structure chart shows the printCalendar problem is divided into two ­subproblems, ­readInput and printMonth in (a), and printMonth is divided into two smaller subproblems, printMonthTitle and printMonthBody in (b).

Description

You can use Scanner to read input for the year and the month. The problem of printing the calendar for a given month can be broken into two subproblems: print the month title, and print the month body, as shown in Figure 6.8b. The month title consists of three lines: month and year, a dashed line, and the names of the seven days of the week. You need to get the month name (e.g., January) from the numeric month (e.g., 1). This is accomplished in getMonthName (see Figure 6.9a).

[image: Chart ay has problem, print Month Title, and 1 sub problem: get Month Name. Chart b has problem, print Month Body, and 2 sub problems: get Start Day, and, get Number Of Days In Month.]
Figure 6.9

(a) To printMonthTitle, you need getMonthName. (b) The printMonthBody problem is refined into several smaller problems.

In order to print the month body, you need to know which day of the week is the first day of the month (getStartDay) and how many days the month has (getNumberOfDaysInMonth), as shown in Figure 6.9b. For example, December 2013 has 31 days, and December 1, 2013 is a Sunday.

How would you get the start day for the first date in a month? There are several ways to do so. For now, we’ll use an alternative approach. Assume you know that the start day for January 1, 1800 was a Wednesday (START_DAY_FOR_JAN_1_1800 = 3). You could compute the total number of days (totalNumberOfDays) between January 1, 1800 and the first date of the calendar month. The start day for the calendar month is (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7, since every week has seven days. Thus, the getStartDay problem can be further refined as getTotalNumberOfDays, as shown in Figure 6.10a.

[image: Refining a structure chart.]
Figure 6.10

(a) To getStartDay, you need getTotalNumberOfDays. (b) The ­getTotalNumberOfDays problem is refined into two smaller problems.

Description

To get the total number of days, you need to know whether the year is a leap year and the number of days in each month. Thus, getTotalNumberOfDays can be further refined into two subproblems: isLeapYear and getNumberOfDaysInMonth, as shown in Figure 6.10b. The complete structure chart is shown in Figure 6.11.

[image: A structure chart for the problem, print Calendar, opening parenthesis, main, closing parenthesis.]
Figure 6.11

The structure chart shows the hierarchical relationship of the subproblems in the program.

Description

6.11.2 Top-Down and/or Bottom-Up Implementation

Now we turn our attention to implementation. In general, a subproblem corresponds to a method in the implementation, although some are so simple that this is unnecessary. You would need to decide which modules to implement as methods and which to combine with other methods. Decisions of this kind should be based on whether the overall program will be easier to read as a result of your choice. In this example, the subproblem readInput can be simply implemented in the main method.

You can use either a “top-down” or a “bottom-up” approach. The top-down approach implements one method in the structure chart at a time from the top to the bottom. Stubs—a simple but incomplete version of a method—can be used for the methods waiting to be implemented. The use of stubs enables you to quickly build the framework of the program. Implement the main method first then use a stub for the printMonth method. For example, let printMonth display the year and the month in the stub. Thus, your program may begin as follows:

stub

top-down approach

public class PrintCalendar {
 /** Main method */
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 // Prompt the user to enter year
 System.out.print("Enter full year (e.g., 2012): ");
 int year = input.nextInt();
 // Prompt the user to enter month
 System.out.print("Enter month as a number between 1 and 12: ");
 int month = input.nextInt();
 // Print calendar for the month of the year
 printMonth(year, month);
 }
 /** A stub for printMonth may look like this */
 public static void printMonth(int year, int month) {
 System.out.print(month + " " + year);
 }
 /** A stub for printMonthTitle may look like this */
 public static void printMonthTitle(int year, int month) {
 }
 /** A stub for printMonthBody may look like this */
 public static void printMonthBody(int year, int month) {
 }
 /** A stub for getMonthName may look like this */
 public static String getMonthName(int month) {
 return "January"; // A dummy value
 }
 /** A stub for getStartDay may look like this */
 public static int getStartDay(int year, int month) {
 return 1; // A dummy value
 }
 /** A stub for getTotalNumberOfDays may look like this */
 public static int getTotalNumberOfDays(int year, int month) {
 return 10000; // A dummy value
 }
 /** A stub for getNumberOfDaysInMonth may look like this */
 public static int getNumberOfDaysInMonth(int year, int month) {
 return 31; // A dummy value
 }
 /** A stub for isLeapYear may look like this */
 public static boolean isLeapYear(int year) {
 return true; // A dummy value
 }
}

Compile and test the program, and fix any errors. You can now implement the printMonth method. For methods invoked from the printMonth method, you can again use stubs.

The bottom-up approach implements one method in the structure chart at a time from the bottom to the top. For each method implemented, write a test program, known as the driver, to test it. The top-down and bottom-up approaches are equally good: Both approaches implement methods incrementally, help to isolate programming errors, and make debugging easy. They can be used together.

bottom-up approach

driver

6.11.3 Implementation Details

The isLeapYear(int year) method can be implemented using the following code from Section 3.11:

return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);

Use the following facts to implement getTotalNumberOfDaysInMonth(int year, int month):

	January, March, May, July, August, October, and December have 31 days.

	April, June, September, and November have 30 days.

	February has 28 days during a regular year, and 29 days during a leap year. A regular year, therefore, has 365 days, and a leap year has 366 days.

To implement getTotalNumberOfDays(int year, int month), you need to compute the total number of days (totalNumberOfDays) between January 1, 1800 and the first day of the calendar month. You could find the total number of days between the year 1800 and the calendar year then figure out the total number of days prior to the calendar month in the calendar year. The sum of these two totals is totalNumberOfDays.

To print a body, first pad some space before the start day then print the lines for every week.

The complete program is given in Listing 6.12.

Listing 6.12 PrintCalendar.java

 1 import java.util.Scanner;
 2
 3 public class PrintCalendar {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter year
 9 System.out.print("Enter full year (e.g., 2012): ");
 10 int year = input.nextInt();
 11
 12 // Prompt the user to enter month
 13 System.out.print("Enter month as a number between 1 and 12: ");
 14 int month = input.nextInt();
 15
 16 // Print calendar for the month of the year
 17 printMonth(year, month);
 18 }
 19
 20 /** Print the calendar for a month in a year */
printMonth 21 public static void printMonth(int year, int month) {
 22 // Print the headings of the calendar
 23 printMonthTitle(year, month);
 24
 25 // Print the body of the calendar
 26 printMonthBody(year, month);
 27 }
 28
 29 /** Print the month title, e.g., March 2012 */
printMonthTitle 30 public static void printMonthTitle(int year, int month) {
 31 System.out.println(" " + getMonthName(month)
 32 + " " + year);
 33 System.out.println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
 34 System.out.println(" Sun Mon Tue Wed Thu Fri Sat");
 35 }
 36
 37 /** Get the English name for the month */
getMonthName 38 public static String getMonthName(int month) {
 39 String monthName = "";
 40 switch (month) {
 41 case 1: monthName = "January"; break;
 42 case 2: monthName = "February"; break;
 43 case 3: monthName = "March"; break;
 44 case 4: monthName = "April"; break;
 45 case 5: monthName = "May"; break;
 46 case 6: monthName = "June"; break;
 47 case 7: monthName = "July"; break;
 48 case 8: monthName = "August"; break;
 49 case 9: monthName = "September"; break;
 50 case 10: monthName = "October"; break;
 51 case 11: monthName = "November"; break;
 52 case 12: monthName = "December";
 53 }
 54
 55 return monthName;
 56 }
 57
 58 /** Print month body */
printMonthBody 59 public static void printMonthBody(int year, int month) {
 60 // Get start day of the week for the first date in the month
 61 int startDay = getStartDay(year, month);
 62
 63 // Get number of days in the month
 64 int numberOfDaysInMonth = getNumberOfDaysInMonth(year, month);
 65
 66 // Pad space before the first day of the month
 67 int i = 0;
 68 for (i = 0; i < startDay; i++)
 69 System.out.print(" ");
 70
 71 for (i = 1; i <= numberOfDaysInMonth; i++) {
 72 System.out.printf("%4d", i);
 73
 74 if ((i + startDay) % 7 == 0)
 75 System.out.println();
 76 }
 77
 78 System.out.println();
 79 }
 80
 81 /** Get the start day of month/1/year */
getStartDay 82 public static int getStartDay(int year, int month) {
 83 final int START_DAY_FOR_JAN_1_1800 = 3;
 84 // Get total number of days from 1/1/1800 to month/1/year
 85 int totalNumberOfDays = getTotalNumberOfDays(year, month);
 86
 87 // Return the start day for month/1/year
 88 return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;
 89 }
 90
 91 /** Get the total number of days since January 1, 1800 */
getTotalNumberOfDays 92 public static int getTotalNumberOfDays(int year, int month) {
 93 int total = 0;
 94
 95 // Get the total days from 1800 to 1/1/year
 96 for (int i = 1800; i < year; i++)
 97 if (isLeapYear(i))
 98 total = total + 366;
 99 else
 100 total = total + 365;
 101
 102 // Add days from Jan to the month prior to the calendar month
						 103 for (int i = 1; i < month; i++)
 104 total = total + getNumberOfDaysInMonth(year, i);
 105
 106 return total;
 107 }
 108
 109 /** Get the number of days in a month */
getNumberOfDaysInMonth 110 public static int getNumberOfDaysInMonth(int year, int month) {
 111 if (month == 1 || month == 3 || month == 5 || month == 7 ||
 112 month == 8 || month == 10 || month == 12)
 113 return 31;
 114
 115 if (month == 4 || month == 6 || month == 9 || month == 11)
 116 return 30;
 117
 118 if (month == 2) return isLeapYear(year) ? 29 : 28;
 119
 120 return 0; // If month is incorrect
 121 }
 122
 123 /** Determine if it is a leap year */
isLeapYear 124 public static boolean isLeapYear(int year) {
 125 return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
 126 }
 127 }

The program does not validate user input. For instance, if the user enters either a month not in the range between 1 and 12 or a year before 1800, the program displays an erroneous calendar. To avoid this error, add an if statement to check the input before printing the calendar.

This program prints calendars for a month, but could easily be modified to print calendars for a whole year. Although it can print months only after January 1800, it could be modified to print months before 1800.

6.11.4 Benefits of Stepwise Refinement

Stepwise refinement breaks a large problem into smaller manageable subproblems. Each subproblem can be implemented using a method. This approach makes the program easier to write, reuse, debug, test, modify, and maintain.

Simpler Program

The print calendar program is long. Rather than writing a long sequence of statements in one method, stepwise refinement breaks it into smaller methods. This simplifies the program and makes the whole program easier to read and understand.

Reusing Methods

Stepwise refinement promotes code reuse within a program. The isLeapYear method is defined once and invoked from the getTotalNumberOfDays and getNumberOfDaysInMonth ­methods. This reduces redundant code.

Easier Developing, Debugging, and Testing

Since each subproblem is solved in a method, a method can be developed, debugged, and tested individually. This isolates the errors and makes developing, debugging, and testing easier.

When implementing a large program, use the top-down and/or bottom-up approach. Do not write the entire program at once. Using these approaches seems to take more development time (because you repeatedly compile and run the program), but it actually saves time and makes debugging easier.

incremental development and testing

Better Facilitating Teamwork

When a large problem is divided into subprograms, subproblems can be assigned to different programmers. This makes it easier for programmers to work in teams.

Key Terms

	actual parameter 207

	ambiguous invocation 223

	argument 207

	divide and conquer 227

	formal parameter (i.e., parameter) 207

	information hiding 227

	method 206

	method abstraction 227

	method overloading 221

	method signature 207

	modifier 207

	parameter 207

	pass-by-value 214

	scope of a variable 224

	stepwise refinement 227

	stub 229

Chapter Summary

	Making programs modular and reusable is one of the central goals in software engineering. Java provides many powerful constructs that help to achieve this goal. Methods are one such construct.

	The method header specifies the modifiers, return value type, method name, and parameters of the method. The static modifier is used for all the methods in this chapter.

	A method may return a value. The returnValueType is the data type of the value the method returns. If the method does not return a value, the returnValueType is the keyword void.

	The parameter list refers to the type, order, and number of a method’s parameters. The method name and the parameter list together constitute the method signature. Parameters are optional; that is, a method doesn’t need to contain any parameters.

	A return statement can also be used in a void method for terminating the method and returning to the method’s caller. This is useful occasionally for circumventing the normal flow of control in a method.

	The arguments that are passed to a method should have the same number, type, and order as the parameters in the method signature.

	When a program calls a method, program control is transferred to the called method. A called method returns control to the caller when its return statement is executed, or when its method-ending closing brace is reached.

	A value-returning method can also be invoked as a statement in Java. In this case, the caller simply ignores the return value.

	A method can be overloaded. This means that two methods can have the same name, as long as their method parameter lists differ.

	A variable declared in a method is called a local variable. The scope of a local variable starts from its declaration and continues to the end of the block that contains the variable. A local variable must be declared and initialized before it is used.

	Method abstraction is achieved by separating the use of a method from its implementation. The client can use a method without knowing how it is implemented. The details of the implementation are encapsulated in the method and hidden from the client who invokes the method. This is known as information hiding or encapsulation.

	Method abstraction modularizes programs in a neat, hierarchical manner. Programs written as collections of concise methods are easier to write, debug, maintain, and modify than would otherwise be the case. This writing style also promotes method reusability.

	When implementing a large program, use the top-down and/or bottom-up coding approach. Do not write the entire program at once. This approach may seem to take more time for coding (because you are repeatedly compiling and running the program), but it actually saves time and makes debugging easier.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

 Programming Exercises

 Note

A common error for the exercises in this chapter is that students don’t implement the methods to meet the requirements even though the output from the main program is correct. For an example of this type of error, see liveexample.pearsoncmg.com/etc/CommonMethodErrorJava.pdf.

Sections 6.2–6.9

	6.1 (Math: pentagonal numbers) A pentagonal number is defined as n(3n−1)/2 for n=1, 2, …, and so on. Therefore, the first few numbers are 1, 5, 12, 22, Write a method with the following header that returns a pentagonal number:

public static int getPentagonalNumber(int n)

For example, getPentagonalNumber(1) returns 1 and getPentagonal­Number(2) returns 5. Write a test program that uses this method to display the first 100 pentagonal numbers with 10 numbers on each line. Use the %7d format to display each number.

	 *6.2	(Sum the digits in an integer) Write a method that computes the sum of the digits in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns 9 (= 2+3+4). (Hint: Use the % operator to extract digits and the / operator to remove the extracted digit. For instance, to extract 4 from 234, use 234 % 10 (= 4). To remove 4 from 234, use 234 / 10 (= 23). Use a loop to repeatedly extract and remove the digit until all the digits are extracted. Write a test program that prompts the user to enter an integer then displays the sum of all its digits.

	 **6.3	(Palindrome integer) Write the methods with the following headers:

// Return the reversal of an integer, e.g., reverse(456) returns 654
public static int reverse(int number)
// Return true if number is a palindrome
public static boolean isPalindrome(int number)

Use the reverse method to implement isPalindrome. A number is a palindrome if its reversal is the same as itself. Write a test program that prompts the user to enter an integer and reports whether the integer is a palindrome.

	 *6.4	(Display an integer reversed) Write a method with the following header to ­display an integer in reverse order:

Reverse an integer

public static void reverse(int number)

For example, reverse(3456) displays 6543. Write a test program that prompts the user to enter an integer then displays its reversal.

		*6.5	(Sort three numbers) Write a method with the following header to display three numbers in increasing order:

public static void displaySortedNumbers(
 double num1, double num2, double num3)

Write a test program that prompts the user to enter three numbers and invokes the method to display them in increasing order.

	 *6.6	(Display patterns) Write a method to display a pattern as follows:

 1
 2 1
 3 2 1
...
n n–1 ... 3 2 1

The method header is

public static void displayPattern(int n)

	 *6.7	(Financial application: compute the future investment value) Write a method that computes future investment value at a given interest rate for a specified number of years. The future investment is determined using the formula in Programming Exercise 2.21.

Use the following method header:

public static double futureInvestmentValue(

 double investmentAmount, double monthlyInterestRate,int years)

For example, futureInvestmentValue(10000, 0.05/12, 5) returns 12833.59.

Write a test program that prompts the user to enter the investment amount (e.g., 1,000) and the interest rate (e.g., 9%) and prints a table that displays future value for the years from 1 to 30, as shown below:

The amount invested: 1000
Annual interest rate: 9
Years Future Value
1 1093.80
2 1196.41
...
29 13467.25
30 14730.57

	6.8 (Conversions between Celsius and Fahrenheit) Write a class that contains the following two methods:

/** Convert from Celsius to Fahrenheit */
public static double celsiusToFahrenheit(double celsius)

/** Convert from Fahrenheit to Celsius */
public static double fahrenheitToCelsius(double fahrenheit)

The formula for the conversion is as follows:

fahrenheit = (9.0 / 5) * celsius + 32
celsius = (5.0 / 9) * (fahrenheit – 32)

Write a test program that invokes these methods to display the following tables:

	Celsius

	Fahrenheit

	|

	Fahrenheit

	Celsius

	40.0

	104.0

	|

	120.0

	48.89

	39.0

	102.2

	|

	110.0

	43.33

	...

	
	
	
	

	32.0

	 89.6

	|

	 40.0

	 4.44

	31.0

	 87.8

	|

	 30.0

	–1.11

	6.9 (Conversions between feet and meters) Write a class that contains the following two methods:

/** Convert from feet to meters */
public static double footToMeter(double foot)

/** Convert from meters to feet */
public static double meterToFoot(double meter)

The formula for the conversion is:

meter = 0.305 * foot
foot = 3.279 * meter

Write a test program that invokes these methods to display the following tables:

	Feet

	Meters

	|

	Meters

	Feet

	 1.0

	0.305

	|

	20.0

	 65.574

	 2.0

	0.610

	|

	25.0

	 81.967

	 ...

	
	
	
	

	 9.0

	2.745

	|

	60.0

	196.721

	10.0

	3.050

	|

	65.0

	213.115

	6.10 (Use the isPrime Method) Listing 6.7, PrimeNumberMethod.java, provides the isPrime(int number) method for testing whether a number is prime. Use this method to find the number of prime numbers less than 10000.

	6.11 (Financial application: compute commissions) Write a method that computes the commission, using the scheme in Programming Exercise 5.39 following scheme. The header of the method is as follows:

public static double computeCommission(double salesAmount)

Write a test program that displays the following table:

	Sales Amount

	Commission

	10000

	900.0

	15000

	1500.0

	...

	

	95000

	11100.0

	100000

	11700.0

	6.12 (Display characters) Write a method that prints characters using the following header:

public static void printChars(char ch1, char ch2, int
 numberPerLine)

This method prints the characters between ch1 and ch2 with the specified ­numbers per line. Write a test program that prints 10 characters per line from 1 to Z. Characters are separated by exactly one space.

	 *6.13	(Sum series) Write a method to compute the following summation:

m(i)=12+23+⋯+ii+1

Write a test program that displays the following table:

	i

	m(i)

	1

	 0.5000

	2

	 1.1667

	...

	

	19

	16.4023

	20

	17.3546

	 *6.14 (Estimate π) π can be computed using the following summation:

m(i)=4(1−13+15−17+19−111+⋯+(−1)i+12i−1)

Estimate π

Write a method that returns m(i) for a given i and write a test program that ­displays the following table:

	i

	m(i)

	1

	4.0000

	101

	3.1515

	201

	3.1466

	301

	3.1449

	401

	3.1441

	501

	3.1436

	601

	3.1433

	701

	3.1430

	801

	3.1428

	901

	3.1427

	*6.15 (Financial application: print a tax table) Listing 3.5 gives a program to compute tax. Write a method for computing tax using the following header:

public static double computeTax(int status, double

taxableIncome)

Use this method to write a program that prints a tax table for taxable income from $50,000 to $60,000 with intervals of $50 for all the following statuses:

	Taxable Income

	Single

	Married Joint or Qualifying Widow(er)

	Married Separate

	Head of House hold

	50000

	8688

	6665

	8688

	7353

	50050

	8700

	6673

	8700

	7365

	...

	
	
	
	

	59950

	11175

	8158

	11175

	9840

	60000

	11188

	8165

	11188

	9853

Hint: round the tax into integers using Math.round (i.e., Math .round(computeTax(status, taxableIncome))).

	 *6.16 (Number of days in a year) Write a method that returns the number of days in a year using the following header:

public static int numberOfDaysInAYear(int year)

Write a test program that displays the number of days in year from 2000 to 2020.

Sections 6.10 and 6.11

	 *6.17	(Display matrix of 0s and 1s) Write a method that displays an n-by-n matrix using the following header:

public static void printMatrix(int n)

Each element is 0 or 1, which is generated randomly. Write a test program that prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

Enter n: 3
0 1 0
0 0 0
1 1 1

	 **6.18	(Check password) Some Websites impose certain rules for passwords. Write a method that checks whether a string is a valid password. Suppose the ­password rules are as follows:

	A password must have at least eight characters.

	A password must contain only letters and digits.

	A password must contain at least two digits.

Write a program that prompts the user to enter a password and displays Valid Password if the rules are followed, or Invalid Password otherwise.

	 *6.19	(Triangles) Implement the following two methods:

/** Return true if the sum of every two sides is
 * greater than the third side. */
public static boolean isValid(
 double side1, double side2, double side3)
/** Return the area of the triangle. */
public static double area(
 double side1, double side2, double side3)

Write a test program that reads three sides for a triangle and uses the isValid method to test if the input is valid and uses the area method to obtain the area. The program displays the area if the input is valid. Otherwise, it displays that the input is invalid. The formula for computing the area of a triangle is given in Programming Exercise 2.19.

	 *6.20	(Count the letters in a string) Write a method that counts the number of letters in a string using the following header:

public static int countLetters(String s)

Write a test program that prompts the user to enter a string and displays the number of letters in the string.

	 *6.21	(Phone keypads) The international standard letter/number mapping for telephones is given in Programming Exercise 4.15. Write a method that returns a number, given an uppercase letter, as follows:

public static int getNumber(char uppercaseLetter)

Write a test program that prompts the user to enter a phone number as a string. The input number may contain letters. The program translates a letter (uppercase or lowercase) to a digit and leaves all other characters intact. Here are sample runs of the program:

Enter a string: 1-800-Flowers
1-800-3569377

Enter a string: 1800flowers
18003569377

	 **6.22	(Math: approximate the square root) There are several techniques for implementing the sqrt method in the Math class. One such technique is known as the Babylonian method. It approximates the square root of a number, n, by repeatedly performing the calculation using the following formula:

nextGuess = (lastGuess + n / lastGuess) / 2

When nextGuess and lastGuess are almost identical, nextGuess is the approximated square root. The initial guess can be any positive value (e.g., 1). This value will be the starting value for lastGuess. If the difference between nextGuess and lastGuess is less than a very small number, such as 0.0001, you can claim that nextGuess is the approximated square root of n. If not, nextGuess becomes lastGuess and the approximation process continues. Implement the following method that returns the square root of n:

public static double sqrt(long n)

	 *6.23	(Occurrences of a specified character) Write a method that finds the number of occurrences of a specified character in a string using the following header:

public static int count(String str, char a)

For example, count("Welcome", 'e') returns 2. Write a test program that prompts the user to enter a string followed by a character then displays the number of occurrences of the character in the string.

Sections 6.10–6.12

	 **6.24 (Display current date and time) Listing 2.7, ShowCurrentTime.java, displays the current time. Revise this example to display the current date and time. The calendar example in Listing 6.12, PrintCalendar.java, should give you some ideas on how to find the year, month, and day.

	 **6.25	(Convert milliseconds to hours, minutes, and seconds) Write a method that converts milliseconds to hours, minutes, and seconds using the following header:

public static String convertMillis(long millis)

The method returns a string as hours:minutes:seconds. For example, ­convertMillis(5500) returns a string 0:0:5, convertMillis(100000) returns a string 0:1:40, and convertMillis(555550000) returns a string 154:19:10. Write a test program that prompts the user to enter a long integer for milliseconds and displays a string in the format of hours:minutes:seconds.

Comprehensive

	**6.26 (Palindromic prime) A palindromic prime is a prime number and also palindromic. For example, 131 is a prime and also a palindromic prime, as are 313 and 757. Write a program that displays the first 100 palindromic prime numbers. Display 10 numbers per line, separated by exactly one space, as follows:

2 3 5 7 11 101 131 151 181 191
313 353 373 383 727 757 787 797 919 929
...

	 **6.27	(Emirp) An emirp (prime spelled backward) is a nonpalindromic prime number whose reversal is also a prime. For example, 17 is a prime and 71 is a prime, so 17 and 71 are emirps. Write a program that displays the first 100 emirps. Display 10 numbers per line, separated by exactly one space, as follows:

 13 17 31 37 71 73 79 97 107 113
149 157 167 179 199 311 337 347 359 389
...

	 **6.28	(Mersenne prime) A prime number is called a Mersenne prime if it can be written in the form 2p−1 for some positive integer p. Write a program that finds all Mersenne primes with p≤31 and displays the output as follows:

	p

	2^p – 1

	2

	3

	3

	7

	5

	31

	...

	

	 **6.29	(Twin primes) Twin primes are a pair of prime numbers that differ by 2. For example, 3 and 5 are twin primes, 5 and 7 are twin primes, and 11 and 13 are twin primes. Write a program to find all twin primes less than 1,000. Display the output as follows:

(3, 5)
(5, 7)
...

		**6.30	(Game: craps) Craps is a popular dice game played in casinos. Write a program to play a variation of the game, as follows:

Roll two dice. Each die has six faces representing values 1, 2, ..., and 6, respectively. Check the sum of the two dice. If the sum is 2, 3, or 12 (called craps), you lose; if the sum is 7 or 11 (called natural), you win; if the sum is another value (i.e., 4, 5, 6, 8, 9, or 10), a point is established. Continue to roll the dice until either a 7 or the same point value is rolled. If 7 is rolled, you lose. Otherwise, you win.

Your program acts as a single player. Here are some sample runs.

You rolled 5 + 6 = 11
You win

You rolled 1 + 2 = 3
You lose

You rolled 4 + 4 = 8
point is 8
You rolled 6 + 2 = 8
You win

You rolled 3 + 2 = 5
point is 5
You rolled 2 + 5 = 7
You lose

	 **6.31	(Financial: credit card number validation) Credit card numbers follow certain patterns. A credit card number must have between 13 and 16 digits. It must start with

	4 for Visa cards

	5 for Master cards

	37 for American Express cards

	6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card numbers. The algorithm is useful to determine whether a card number is entered correctly, or whether a credit card is scanned correctly by a scanner. Credit card numbers are generated following this validity check, commonly known as the Luhn check or the Mod 10 check, which can be described as follows (for illustration, consider the card number 4388576018402626):

	Double every second digit from right to left. If doubling of a digit results in a two-digit number, add up the two digits to get a single-digit number.

[image: A diagram breaks down the calculations of a Luhn check.]

Description

	Now add all single-digit numbers from Step 1.

4+4+8+2+3+1+7+8=37

	Add all digits in the odd places from right to left in the card number.

6+6+0+8+0+7+8+3=38

	Sum the results from Step 2 and Step 3.

37+38=75

	If the result from Step 4 is divisible by 10, the card number is valid; otherwise, it is invalid. For example, the number 4388576018402626 is invalid, but the number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as a long integer. Display whether the number is valid or invalid. Design your program to use the following methods:

 /** Return true if the card number is valid */
 public static boolean isValid(long number)
 /** Get the result from Step 2 */
 public static int sumOfDoubleEvenPlace(long number)
 /** Return this number if it is a single digit, otherwise,
 * return the sum of the two digits */
 public static int getDigit(int number)
 /** Return sum of odd-place digits in number */
 public static int sumOfOddPlace(long number)
 /** Return true if the number d is a prefix for number */
 public static boolean prefixMatched(long number, int d)
 /** Return the number of digits in d */
 public static int getSize(long d)
 /** Return the first k number of digits from number. If the
 * number of digits in number is less than k, return number. */
 public static long getPrefix(long number, int k)

Here are sample runs of the program: (You may also implement this program by reading the input as a string and processing the string to validate the credit card.)

Enter a credit card number as a long integer:
 4388576018410707
4388576018410707 is valid

Enter a credit card number as a long integer:
 4388576018402626
4388576018402626 is invalid

	 **6.32	(Game: chance of winning at craps) Revise Programming Exercise 6.30 to run it 10,000 times and display the number of winning games.

	 **6.33	(Current date and time) Invoking System.currentTimeMillis() returns the elapsed time in milliseconds since midnight of January 1, 1970. Write a program that displays the date and time. Here is a sample run:

Current date and time is May 16, 2012 10:34:23

		**6.34	(Print calendar) Programming Exercise 3.21 uses Zeller’s congruence to calculate the day of the week. Simplify Listing 6.12, PrintCalendar.java, using Zeller’s algorithm to get the start day of the month.

	6.35 (Geometry: area of a pentagon) The area of a pentagon can be computed using the following formula:

Area=5×s24×tan (π5)

Write a method that returns the area of a pentagon using the following header:

 public static double area(double side)

Write a main method that prompts the user to enter the side of a pentagon and displays its area. Here is a sample run:

Enter the side: 5.5
The area of the pentagon is 52.04444136781625

	 *6.36	(Geometry: area of a regular polygon) A regular polygon is an n-sided polygon in which all sides are of the same length and all angles have the same degree (i.e., the polygon is both equilateral and equiangular). The formula for computing the area of a regular polygon is

Area=n×s24×tan (πn)

Write a method that returns the area of a regular polygon using the following header:

 public static double area(int n, double side)

Write a main method that prompts the user to enter the number of sides and the side of a regular polygon and displays its area. Here is a sample run:

Enter the number of sides: 5
Enter the side: 6.5
The area of the polygon is 72.69017017488385

	6.37 (Format an integer) Write a method with the following header to format the integer with the specified width.

public static String format(int number, int width)

The method returns a string for the number with one or more prefix 0s. The size of the string is the width. For example, format(34, 4) returns 0034 and format(34, 5) returns 00034. If the number is longer than the width, the method returns the string representation for the number. For example, format(34, 1) returns 34.

Write a test program that prompts the user to enter a number and its width, and displays a string returned by invoking format(number, width).

		*6.38	(Generate random characters) Use the methods in RandomCharacter in ­Listing 6.10 to print 100 uppercase letters then 100 single digits, printing 10 per line.

	6.39 (Geometry: point position) Programming Exercise 3.32 shows how to test whether a point is on the left side of a directed line, on the right, or on the same line. Write the methods with the following headers:

/** Return true if point (x2, y2) is on the left side of the
 * directed line from (x0, y0) to (x1, y1) */
public static boolean leftOfTheLine(double x0, double y0,
 double x1, double y1, double x2, double y2)
/** Return true if point (x2, y2) is on the same
 * line from (x0, y0) to (x1, y1) */
public static boolean onTheSameLine(double x0, double y0,
 double x1, double y1, double x2, double y2)
/** Return true if point (x2, y2) is on the
 * line segment from (x0, y0) to (x1, y1) */
public static boolean onTheLineSegment(double x0, double y0,
 double x1, double y1, double x2, double y2)

Write a program that prompts the user to enter the three points for p0, p1, and p2 and displays whether p2 is on the left side of the line from p0 to p1, right side, the same line, or on the line segment. Here are some sample runs:

Enter three points for p0, p1, and p2: 1 1 2 2 1.5 1.5
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 1 1 2 2 3 3
(3.0, 3.0) is on the same line from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 1 1 2 2 1 1.5
(1.0, 1.5) is on the left side of the line
 from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 1 1 2 2 1 –1
(1.0, −1.0) is on the right side of the line
 from (1.0, 1.0) to (2.0, 2.0)

CHAPTER 7 Single-Dimensional Arrays

Objectives

	To describe why arrays are necessary in programming (§7.1).

	To declare array reference variables and create arrays (§§7.2.1 and 7.2.2).

	To obtain array size using arrayRefVar.length and know default values in an array (§7.2.3).

	To access array elements using indexes (§7.2.4).

	To declare, create, and initialize an array using an array initializer (§7.2.5).

	To program common array operations (displaying arrays, summing all elements, finding the minimum and maximum elements, random shuffling, and shifting elements) (§7.2.6).

	To simplify programming using the foreach loops (§7.2.7).

	To apply arrays in application development (AnalyzeNumbers, and DeckOfCards) (§§7.3 and 7.4).

	To copy contents from one array to another (§7.5).

	To develop and invoke methods with array arguments and return values (§§7.6–7.8).

	To define a method with a variable-length argument list (§7.9).

	To search elements using the linear (§7.10.1) or binary (§7.10.2) search algorithm.

	To sort an array using the selection sort approach (§7.11).

	To use the methods in the java.util.Arrays class (§7.12).

	To pass arguments to the main method from the command line (§7.13).

7.1 Introduction

	A single array variable can reference a large collection of data.

Often you will have to store a large number of values during the execution of a program. Suppose, for instance, that you need to read 100 numbers, compute their average, and find out how many numbers are above the average. Your program first reads the numbers and computes their average, then compares each number with the average to determine whether it is above the average. In order to accomplish this task, the numbers must all be stored in variables. You have to declare 100 variables and repeatedly write almost identical code 100 times. Writing a program this way would be impractical. So, how do you solve this problem?

problem

why array?

An efficient, organized approach is needed. Java and most other high-level languages provide a data structure, the array, which stores a fixed-size sequential collection of elements of the same type. In the present case, you can store all 100 numbers into an array and access them through a single array variable.

This chapter introduces single-dimensional arrays. The next chapter will introduce two-dimensional and multidimensional arrays.

7.2 Array Basics

	Once an array is created, its size is fixed. An array reference variable is used to access the elements in an array using an index.

An array is used to store a collection of data, but often we find it more useful to think of an array as a collection of variables of the same type. Instead of declaring individual variables, such as number0, number1,..., and number99, you declare one array variable such as numbers and use numbers[0], numbers[1],..., and numbers[99] to represent individual variables. This section introduces how to declare array variables, create arrays, and process arrays using indexes.

index

7.2.1 Declaring Array Variables

To use an array in a program, you must declare a variable to reference the array and specify the array’s element type. Here is the syntax for declaring an array variable:

element type

elementType[] arrayRefVar;

or

elementType arrayRefVar[]; // Allowed, but not preferred

The elementType can be any data type, and all elements in the array will have the same data type. For example, the following code declares a variable myList that references an array of double elements.

double[] myList;

or

double myList[]; // Allowed, but not preferred

 Note

You can use elementType arrayRefVar[] to declare an array variable. This style comes from the C/C++ language and was adopted in Java to accommodate C/C++ programmers. The style elementType[] arrayRefVar is preferred.

preferred syntax

7.2.2 Creating Arrays

Unlike declarations for primitive data type variables, the declaration of an array variable does not allocate any space in memory for the array. It creates only a storage location for the reference to an array. If a variable does not contain a reference to an array, the value of the variable is null. You cannot assign elements to an array unless it has already been created. After an array variable is declared, you can create an array by using the new operator and assign its reference to the variable with the following syntax:

null

arrayRefVar = new elementType[arraySize];

new operator

This statement does two things: (1) it creates an array using new elementType[arraySize] and (2) it assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to the variable can be combined in one statement as

elementType[] arrayRefVar = new elementType[arraySize];

or

elementType arrayRefVar[] = new elementType[arraySize];

Here is an example of such a statement:

double[] myList = new double[10];

This statement declares an array variable, myList, creates an array of 10 elements of double type, and assigns its reference to myList. To assign values to the elements, use the syntax

arrayRefVar[index] = value;

For example, the following code initializes the array:

myList[0] = 5.6;
myList[1] = 4.5;
myList[2] = 3.3;
myList[3] = 13.2;
myList[4] = 4.0;
myList[5] = 34.33;
myList[6] = 34.0;
myList[7] = 45.45;
myList[8] = 99.993;
myList[9] = 11123;

This array is illustrated in Figure 7.1.

[image: An array diagram.]
Figure 7.1

The array myList has 10 elements of double type and int indices from 0 to 9.

Description

 Note

An array variable that appears to hold an array actually contains a reference to that array. Strictly speaking, an array variable and an array are different, but most of the time the distinction can be ignored. Thus, it is all right to say, for simplicity, that myList is an array, instead of stating, at greater length, that myList is a variable that contains a reference to an array of double elements.

array vs. array variable

7.2.3 Array Size and Default Values

When space for an array is allocated, the array size must be given, specifying the number of elements that can be stored in it. The size of an array cannot be changed after the array is created. Size can be obtained using arrayRefVar.length. For example, myList.length is 10.

array length

default values

When an array is created, its elements are assigned the default value of 0 for the numeric primitive data types, \u0000 for char types, and false for boolean types.

7.2.4 Accessing Array Elements

The array elements are accessed through the index. Array indices are 0 based; that is, they range from 0 to arrayRefVar.length − 1. In the example in Figure 7.1, myList holds 10 double values, and the indices are from 0 to 9.

0 based index

Each element in the array is represented using the following syntax, known as an indexed variable:

indexed variable

arrayRefVar[index];

For example, myList[9] represents the last element in the array myList.

 Caution

Some programming languages use parentheses to reference an array element, as in myList(9), but Java uses brackets, as in myList[9].

An indexed variable can be used in the same way as a regular variable. For example, the following code adds the values in myList[0] and myList[1] to myList[2]:

myList[2] = myList[0] + myList[1];

The following loop assigns 0 to myList[0], 1 to myList[1],..., and 9 to myList[9]:

for (int i = 0; i < myList.length; i++) {
 myList[i] = i;
}

7.2.5 Array Initializers

Java has a shorthand notation, known as the array initializer, which combines the declaration, creation, and initialization of an array in one statement using the following syntax:

array initializer

elementType[] arrayRefVar = {value0, value1, ..., valuek};

For example, the statement

double[] myList = {1.9, 2.9, 3.4, 3.5};

declares, creates, and initializes the array myList with four elements, which is equivalent to the following statements:

 double[] myList = new double[4];
 myList[0] = 1.9;
 myList[1] = 2.9;
 myList[2] = 3.4;
 myList[3] = 3.5;

 Caution

The new operator is not used in the array-initializer syntax. Using an array initializer, you have to declare, create, and initialize the array all in one statement. Splitting it would cause a syntax error. Thus, the next statement is wrong:

double[] myList;
myList = {1.9, 2.9, 3.4, 3.5}; // Wrong

7.2.6 Processing Arrays

When processing array elements, you will often use a for loop for one of two reasons:

	All of the elements in an array are of the same type. They are evenly processed in the same fashion repeatedly using a loop.

	Since the size of the array is known, it is natural to use a for loop.

Assume that the array is created as follows:

double[] myList = new double[10];

The following are some examples of processing arrays:

	Initializing arrays with input values: The following loop initializes the array myList with user input values:

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)
 myList[i] = input.nextDouble();

	Initializing arrays with random values: The following loop initializes the array myList with random values between 0.0 and 100.0, but less than 100.0:

for (int i = 0; i < myList.length; i++) {
 myList[i] = Math.random() * 100;
}

	Displaying arrays: To print an array, you have to print each element in the array using a loop such as the following:

for (int i = 0; i < myList.length; i++) {
 System.out.print(myList[i] + " ");
}

 Tip

For an array of the char[] type, it can be printed using one print statement. For ­example, the following code displays Dallas:

char[] city = {'D', 'a', 'l', 'l', 'a', 's'};
System.out.println(city);

print character array

	Summing all elements: Use a variable named total to store the sum. Initially total is 0. Add each element in the array to total using a loop such as the following:

double total = 0;
for (int i = 0; i < myList.length; i++) {
 total += myList[i];
}

	Finding the largest element: Use a variable named max to store the largest element. Initially max is myList[0]. To find the largest element in the array myList, compare each element with max, and update max if the element is greater than max.

double max = myList[0];
for (int i = 1; i < myList.length; i++) {
 if (myList[i] > max) max = myList[i];
}

	Finding the smallest index of the largest element: Often you need to locate the largest element in an array. If an array has multiple elements with the same largest value, find the smallest index of such an element. Suppose that the array myList is {1, 5, 3, 4, 5, 5}. The largest element is 5, and the smallest index for 5 is 1. Use a variable named max to store the largest element, and a variable named indexOfMax to denote the index of the largest element. Initially max is myList[0] and indexOfMax is 0. Compare each element in myList with max and update max and indexOfMax if the element is greater than max.

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < myList.length; i++) {
 if (myList[i] > max) {
 max = myList[i];
 indexOfMax = i;
 }
}

	Random shuffling: In many applications, you need to randomly reorder the elements in an array. This is called shuffling. To accomplish this, for each element myList[i], randomly generate an index j and swap myList[i] with myList[j], as follows:

random shuffling

Random shuffling

	Shifting elements: Sometimes you need to shift the elements left or right. Here is an example of shifting the elements one position to the left and filling the last element with the first element:

	Simplifying coding: Arrays can be used to greatly simplify coding for certain tasks. For example, suppose you wish to obtain the English name of a given month by its number. If the month names are stored in an array, the month name for a given month can be accessed simply via the index. The following code prompts the user to enter a month number and displays its month name:

String[] months = {"January", "February",. . . , "December"};
System.out.print("Enter a month number (1 to 12): ");
int monthNumber = input.nextInt();
System.out.println("The month is " + months[monthNumber − 1]);

If you didn’t use the months array, you would have to determine the month name using a lengthy multiway if−else statement as follows:

if (monthNumber == 1)
 System.out.println("The month is January");
else if (monthNumber == 2)
 System.out.println("The month is February");
...
else
 System.out.println("The month is December");

7.2.7 Foreach Loops

Java supports a convenient for loop, known as a foreach loop, which enables you to traverse the array sequentially without using an index variable. For example, the following code displays all the elements in the array myList:

for (double e: myList) {
 System.out.println(e);
}

You can read the code as “for each element e in myList, do the following.” Note that the variable, e, must be declared as the same type as the elements in myList.

In general, the syntax for a foreach loop is

for (elementType element: arrayRefVar) {
 // Process the element
}

You still have to use an index variable if you wish to traverse the array in a different order or change the elements in the array.

ArrayIndexOutOfBounds-Exception

off-by-one error

 Caution

Accessing an array out of bounds is a common programming error that throws a runtime ArrayIndexOutOfBoundsException. To avoid it, make sure you do not use an index beyond arrayRefVar.length − 1 or simply using a foreach loop if possible.

Programmers often mistakenly reference the first element in an array with index 1, but it should be 0. This is called the off-by-one error. Another common off-by-one error in a loop is using <= where < should be used. For example, the following loop is wrong:

for (int i = 0; i <= list.length; i++)
 System.out.print(list[i] + " ");

The <= should be replaced by <. Using a foreach loop can avoid the off-by-one error in this case.

	7.2.1 How do you declare an array reference variable and how do you create an array?

	7.2.2 When is the memory allocated for an array?

	7.2.3 What is the output of the following code?

int x = 30;
int[] numbers = new int[x];
x = 60;
System.out.println("x is " + x);
System.out.println("The size of numbers is " + numbers.length);

	7.2.4 Indicate true or false for the following statements:

	Every element in an array has the same type.

	The array size is fixed after an array reference variable is declared.

	The array size is fixed after it is created.

	The elements in an array must be of a primitive data type.

	7.2.5 Which of the following statements are valid?

	int i = new int(30);

	double d[] = new double[30];

	char[] r = new char(1..30);

	int i[] = (3, 4, 3, 2);

	float f[] = {2.3, 4.5, 6.6};

	char[] c = new char();

	7.2.6 How do you access elements in an array?

	7.2.7 What is the array index type? What is the lowest index? What is the representation of the third element in an array named a?

	7.2.8 Write statements to do the following:

	Create an array to hold 10 double values.

	Assign the value 5.5 to the last element in the array.

	Display the sum of the first two elements.

	Write a loop that computes the sum of all elements in the array.

	Write a loop that finds the minimum element in the array.

	Randomly generate an index and display the element of this index in the array.

	Use an array initializer to create another array with the initial values 3.5, 5.5, 4.52, and 5.6.

	7.2.9 What happens when your program attempts to access an array element with an ­invalid index?

	7.2.10 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 double[100] r;
4
5 for (int i = 0; i < r.length(); i++);
6 r(i) = Math.random * 100;
7 }
8 }

	7.2.11 What is the output of the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 int list[] = {1, 2, 3, 4, 5, 6};
 4 for (int i = 1; i < list.length; i++)
 5 list[i] = list[i − 1];
 6
 7 for (int i = 0; i < list.length; i++)
 8 System.out.print(list[i] + " ");
 9 }
 10 }

7.3 Case Study: Analyzing Numbers

	The problem is to write a program that finds the number of items above the average of all items.

Now you can write a program using arrays to solve the problem proposed at the beginning of this chapter. The problem is to read 100 numbers, get the average of these numbers, and find the number of the items greater than the average. To be flexible for handling any number of inputs, we will let the user enter the number of inputs, rather than fixing it to 100. Listing 7.1 gives a solution.

Listing 7.1 AnalyzeNumbers.java

[image: Source code for the program, Analyze Numbers dot java.]

Description
Line 1: public class, Analyze Numbers, opening brace. Line 2, 1 indent: public static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 3, 2 indents: java dot u t i l dot Scanner, input = new java dot u t i l dot Scanner, opening parenthesis, System dot in, closing parenthesis, semicolon. Line 4, 2 indents: System dot out dot print, opening parenthesis, "Enter the number of items, colon, ", closing parenthesis, semicolon. Line 5, 2 indents: i n t, n = input dot next I n t, opening parenthesis, closing parenthesis, semicolon. Line 6, 2 indents, shaded: double, opening bracket, closing bracket, numbers = new double, opening bracket, n, closing bracket, semicolon. Line 7, 2 indents: double, sum = 0, semicolon. Line 8: blank. Line 9, 2 indents: System dot out dot print, opening parenthesis, "Enter the numbers, colon, ", closing parenthesis, semicolon. Line 10, 2 indents: for, opening parenthesis, i n t, i = 0, semicolon, i < n, semicolon, i + +, closing parenthesis, opening brace. Line 11, 3 indents, shaded: numbers, opening bracket, i, closing bracket, = input dot next Double, opening parenthesis, closing parenthesis, semicolon. Line 12, 3 indents, shaded: sum += numbers, opening bracket, i, closing bracket, semicolon. Line 13, 2 indents: closing brace. Line 14: blank. Line 15, 2 indents: double, average = sum, forward slash, n, semicolon. Line 16: blank. Line 17, 2 indents: i n t, count = 0, semicolon, double forward slashes, The number of elements above average. Line 18, 2 indents: for, opening parenthesis, i n t, i = 0, semicolon, i < n, semicolon, i + +, closing parenthesis. Line 19, 3 indents: if, opening parenthesis, begin shading, numbers, opening bracket, i, closing bracket, > average, end shading, closing parenthesis. Line 20, 4 indents: count + +, semicolon. Line 21: blank. Line 22, 2 indents: System dot out dot print l n, opening parenthesis, "Average is " + average, closing parenthesis, semicolon. Line 23, 2 indents: System dot out dot print l n, opening parenthesis, "Number of elements above the average is ". Line 24, 3 indents: + count, closing parenthesis, semicolon. Line 25, 1 indent: closing brace. Line 26: closing brace.

Enter the number of items: 10
Enter the numbers: 3.4 5 6 1 6.5 7.8 3.5 8.5 6.3 9.5
Average is 5.75
Number of elements above the average is 6

The program prompts the user to enter the array size (line 5) and creates an array with the specified size (line 6). The program reads the input, stores numbers into the array (line 11), adds each number to sum in line 11, and obtains the average (line 15). It then compares each number in the array with the average to count the number of values above the average (lines 7–20).

7.4 Case Study: Deck of Cards

	The problem is to create a program that will randomly select four cards from a deck of cards.

Deck of cards

Say you want to write a program that will pick four cards at random from a deck of 52 cards. All the cards can be represented using an array named deck, filled with initial values 0–51, as follows:

int[] deck = new int[52];
// Initialize cards
for (int i = 0; i < deck.length; i++)
 deck[i] = i;

Card numbers 0–12, 13–25, 26–38, and 39–51 represent 13 Spades, 13 Hearts, 13 Diamonds, and 13 Clubs, respectively, as shown in Figure 7.2. cardNumber / 13 determines the suit of the card, and cardNumber % 13 determines the rank of the card, as shown in Figure 7.3. After shuffling the array deck, pick the first four cards from deck. The program displays the cards from these four card numbers.

[image: Three diagrams show how the array, deck, is made and used.]
Figure 7.2

52 cards are stored in an array named deck.

Description

[image: Two diagrams break down the code for playing cards.]
Figure 7.3

cardNumber identifies a card’s suit and rank number.

Description

Listing 7.2 gives the solution to the problem.

Listing 7.2 DeckOfCards.java

 1 public class DeckOfCards {
 2 public static void main(String[] args) {
create array deck 3 int[] deck = new int[52];
array of strings 4 String[] suits = {"Spades", "Hearts", "Diamonds", "Clubs"};
array of strings 5 String[] ranks = {"Ace", "2", "3", "4", "5", "6", "7", "8", "9",
 6 "10", "Jack", "Queen", "King"};
 7
 8 // Initialize the cards
initialize deck 9 for (int i = 0; i < deck.length; i++)
 10 deck[i] = i;
 11
 12 // Shuffle the cards
shuffle deck 13 for (int i = 0; i < deck.length; i++) {
 14 // Generate an index randomly
 15 int index = (int)(Math.random() * deck.length);
 16 int temp = deck[i];
 17 deck[i] = deck[index];
 18 deck[index] = temp;
 19 }
 20
 21 // Display the first four cards
 22 for (int i = 0; i < 4; i++) {
suit of a card 23 String suit = suits[deck[i] / 13];
rank of a card 24 String rank = ranks[deck[i] % 13];
 25 System.out.println("Card number " + deck[i] + ": "
 26 + rank + " of " + suit);
 27 }
 28 }
 29 }

 Card number 6: 7 of Spades
 Card number 48: 10 of Clubs
 Card number 11: Queen of Spades
 Card number 24: Queen of Hearts

The program creates an array suits for four suits (line 4) and an array ranks for 13 cards in a suit (lines 5 and 6). Each element in these arrays is a string.

The program initializes deck with values 0–51 in lines 9 and 10. The deck value 0 represents the Ace of Spades, 1 represents the card 2 of Spades, 13 represents the Ace of Hearts, and 14 represents the 2 of Hearts.

Lines 13–19 randomly shuffle the deck. After a deck is shuffled, deck[i] contains an arbitrary value. deck[i] / 13 is 0, 1, 2, or 3, which determines the suit (line 23). deck[i] % 13 is a value between 0 and 12, which determines the rank (line 24). If the suits array is not defined, you would have to determine the suit using a lengthy multiway if−else statement as follows:

if (deck[i] / 13 == 0)
 System.out.print("suit is Spades");
else if (deck[i] / 13 == 1)
 System.out.print("suit is Hearts");
else if (deck[i] / 13 == 2)
 System.out.print("suit is Diamonds");
else
 System.out.print("suit is Clubs");

With suits = {"Spades", "Hearts", "Diamonds", "Clubs"} created in an array, suits[deck[i] / 13] gives the suit for deck[i]. Using arrays greatly simplifies the solution for this program.

	7.4.1 Will the program pick four random cards if you replace lines 22–27 in Listing 7.2 , DeckOfCards.java, with the following code?

 for (int i = 0; i < 4; i++) {
 int cardNumber = (int)(Math.random() * deck.length);
 String suit = suits[cardNumber / 13];
 String rank = ranks[cardNumber % 13];
 System.out.println("Card number " + cardNumber + ": "
 + rank + " of " + suit);
 }

7.5 Copying Arrays

	To copy the contents of one array into another, you have to copy the array’s individual elements into the other array.

Often, in a program, you need to duplicate an array or a part of an array. In such cases you could attempt to use the assignment statement (=), as follows:

list2 = list1;

copy reference

garbage collection

However, this statement does not copy the contents of the array referenced by list1 to list2, but instead merely copies the reference value from list1 to list2. After this statement, list1 and list2 reference the same array, as shown in Figure 7.4. The array previously referenced by list2 is no longer referenced; it becomes garbage, which will be automatically collected by the Java Virtual Machine. This process is called garbage collection.

[image: Two diagrams show the effect of changing an array assignment.]
Figure 7.4

Before the assignment statement, list1 and list2 point to separate memory locations. After the assignment, the reference of the list1 array is passed to list2.

Description

In Java, you can use assignment statements to copy primitive data type variables, but not arrays. Assigning one array variable to another array variable actually copies one reference to another and makes both variables point to the same memory location.

There are three ways to copy arrays:

	Use a loop to copy individual elements one by one.

	Use the static arraycopy method in the System class.

	Use the clone method to copy arrays; this will be introduced in Chapter 13, Abstract Classes and Interfaces.

You can write a loop to copy every element from the source array to the ­corresponding element in the target array. The following code, for instance, copies sourceArray to ­targetArray using a for loop:

int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new int[sourceArray.length];
for (int i = 0; i < sourceArray.length; i++) {
 targetArray[i] = sourceArray[i];
}

Another approach is to use the arraycopy method in the java.lang.System class to copy arrays instead of using a loop. The syntax for arraycopy is:

arraycopy method

arraycopy(sourceArray, srcPos, targetArray, tarPos, length);

The parameters srcPos and tarPos indicate the starting positions in sourceArray and ­targetArray, respectively. The number of elements copied from sourceArray to ­targetArray is indicated by length. For example, you can rewrite the loop using the ­following statement:

System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);

The arraycopy method does not allocate memory space for the target array. The target array must have already been created with its memory space allocated. After the copying takes place, targetArray and sourceArray have the same content but independent memory locations.

 Note

The arraycopy method violates the Java naming convention. By convention, this method should be named arrayCopy (i.e., with an uppercase C).

	7.5.1 Use the arraycopy method to copy the following array to a target array t:

int[] source = {3, 4, 5};

	7.5.2 Once an array is created, its size cannot be changed. Does the following code resize the array?

int[] myList;
myList = new int[10];
// Sometime later you want to assign a new array to myList
myList = new int[20];

7.6 Passing Arrays to Methods

	When passing an array to a method, the reference of the array is passed to the method.

Just as you can pass primitive type values to methods, you can also pass arrays to methods. For example, the following method displays the elements in an int array:

public static void printArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }	
}

You can invoke it by passing an array. For example, the following statement invokes the printArray method to display 3, 1, 2, 6, 4, and 2.

printArray(new int[]{3, 1, 2, 6, 4, 2});

 Note

The preceding statement creates an array using the following syntax:

new elementType[]{value0, value1,..., valuek};

There is no explicit reference variable for the array. Such array is called an anonymous array.

anonymous array

Java uses pass-by-value to pass arguments to a method. There are important differences between passing the values of variables of primitive data types and passing arrays.

pass-by-value

	For an argument of a primitive type, the argument’s value is passed.

	For an argument of an array type, the value of the argument is a reference to an array; this reference value is passed to the method. Semantically, it can be best described as pass-by-sharing, that is, the array in the method is the same as the array being passed. Thus, if you change the array in the method, you will see the change outside the method.

pass-by-sharing

Take the following code, for example:

public class TestArrayArguments {
 public static void main(String[] args) {
 int x = 1; // x represents an int value
 int[] y = new int[10]; // y represents an array of int values
 m(x, y); // Invoke m with arguments x and y
 System.out.println("x is " + x);
 System.out.println("y[0] is " + y[0]);
 }
 public static void m(int number, int[] numbers) {
 number = 1001; // Assign a new value to number
 numbers[0] = 5555; // Assign a new value to numbers[0]
 }
}

x is 1
y[0] is 5555

You may wonder why after m is invoked, x remains 1, but y[0] becomes 5555. This is because y and numbers, although they are independent variables, reference the same array, as illustrated in Figure 7.5. When m(x, y) is invoked, the values of x and y are passed to number and numbers. Since y contains the reference value to the array, numbers now contains the same reference value to the same array.

[image: A diagram of the stack and the heap.]
Figure 7.5

The primitive type value in x is passed to number, and the reference value in y is passed to numbers.

Description

 Note

Arrays are objects in Java (objects are introduced in Chapter 9). The JVM stores the objects in an area of memory called the heap, which is used for dynamic memory allocation.

heap

Listing 7.3 gives another program that shows the difference between passing a primitive data type value and an array reference variable to a method.

The program contains two methods for swapping elements in an array. The first method, named swap, fails to swap two int arguments. The second method, named swapFirst­TwoInArray, successfully swaps the first two elements in the array argument.

Listing 7.3 TestPassArray.java

 1 public class TestPassArray {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 int[] a = {1, 2};
 5
 6 // Swap elements using the swap method
 7 System.out.println("Before invoking swap");
 8 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
false swap 9 swap(a[0], a[1]);
 10 System.out.println("After invoking swap");
 11 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
 12
 13 // Swap elements using the swapFirstTwoInArray method
 14 System.out.println("Before invoking swapFirstTwoInArray");
 15 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
swap array elements 16 swapFirstTwoInArray(a);
 17 System.out.println("After invoking swapFirstTwoInArray");
 18 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
 19 }
 20
 21 /** Swap two variables */
 22 public static void swap(int n1, int n2) {
 23 int temp = n1;
 24 n1 = n2;
 25 n2 = temp;
 26 }
 27
 28 /** Swap the first two elements in the array */
 29 public static void swapFirstTwoInArray(int[] array) {
 30 int temp = array[0];
 31 array[0] = array[1];
 32 array[1] = temp;
 33 }
 34 }

Before invoking swap
array is {1, 2}
After invoking swap
array is {1, 2}
Before invoking swapFirstTwoInArray
array is {1, 2}
After invoking swapFirstTwoInArray
array is {2, 1}

As shown in Figure 7.6, the two elements are not swapped using the swap method. However, they are swapped using the swapFirstTwoInArray method. Since the parameters in the swap method are primitive type, the values of a[0] and a[1] are passed to n1 and n2 inside the method when invoking swap(a[0], a[1]). The memory locations for n1 and n2 are independent of the ones for a[0] and a[1]. The contents of the array are not affected by this call.

[image: A diagram shows a heap between two stacks.]
Figure 7.6

When passing an array to a method, the reference of the array is passed to the method.

Description

The parameter in the swapFirstTwoInArray method is an array. As shown in Figure 7.6, the reference of the array is passed to the method. Thus, the variables a (outside the method) and array (inside the method) both refer to the same array in the same memory location. Therefore, swapping array[0] with array[1] inside the method swapFirstTwoInArray is the same as swapping a[0] with a[1] outside of the method.

7.7 Returning an Array from a Method

	When a method returns an array, the reference of the array is returned.

You can pass arrays when invoking a method. A method may also return an array. For example, the following method returns an array that is the reversal of another array.

[image: A code diagram shows 10 lines of code.]

Description

Line 2 creates a new array result. Lines 4–7 copy elements from array list to array result. Line 9 returns the array. For example, the following statement returns a new array list2 with elements 6, 5, 4, 3, 2, 1:

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

	7.7.1 Suppose the following code is written to reverse the contents in an array, explain why it is wrong. How do you fix it?

int[] list = {1, 2, 3, 5, 4};
for (int i = 0, j = list.length − 1; i < list.length; i++, j−−) {
 // Swap list[i] with list[j]
 int temp = list[i];
 list[i] = list[j];
 list[j] = temp;
}

7.8 Case Study: Counting the Occurrences of Each Letter

	This section presents a program to count the occurrences of each letter in an array of characters.

The program given in Listing 7.4 does the following:

	Generates 100 lowercase letters randomly and assigns them to an array of characters, as shown in Figure 7.7a. You can obtain a random letter by using the getRandomLower-CaseLetter() method in the RandomCharacter class in Listing 6.10.

	Count the occurrences of each letter in the array. To do so, create an array, say counts, of 26 int values, each of which counts the occurrences of a letter, as shown in ­Figure 7.7b. That is, counts[0] counts the number of a’s, counts[1] counts the number of b’s, and so on.

[image: In figure ay, the array, c h ay r s, contains 100 elements with index numbers 0 to 99. In figure b, the array, counts, contains 26 elements with index numbers 0 to 25.]
Figure 7.7

The chars array stores 100 characters, and the counts array stores 26 counts, each of which counts the occurrences of a letter.

Listing 7.4 CountLettersInArray.java

 1 public class CountLettersInArray {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare and create an array
create array 5 char[] chars = createArray();
 6
 7 // Display the array
 8 System.out.println("The lowercase letters are:");
pass array 9 displayArray(chars);
 10
 11 // Count the occurrences of each letter
return array 12 int[] counts = countLetters(chars);
 13
 14 // Display counts
 15 System.out.println();
 16 System.out.println("The occurrences of each letter are:");
pass array 17 displayCounts(counts);
 18 }
 19
 20 /** Create an array of characters */
 21 public static char[] createArray() {
 22 // Declare an array of characters and create it
 23 char[] chars = new char[100];
 24
 25 // Create lowercase letters randomly and assign
 26 // them to the array
 27 for (int i = 0; i < chars.length; i++)
 28 chars[i] = RandomCharacter.getRandomLowerCaseLetter();
 29
 30 // Return the array
 31 return chars;
 32 }
 33
 34 /** Display the array of characters */
 35 public static void displayArray(char[] chars) {
 36 // Display the characters in the array 20 on each line
 37 for (int i = 0; i < chars.length; i++) {
 38 if ((i + 1) % 20 == 0)
 39 System.out.println(chars[i]);
 40 else
 41 System.out.print(chars[i] + " ");
 42 }
 43 }
 44
 45 /** Count the occurrences of each letter */
 46 public static int[] countLetters(char[] chars) {
 47 // Declare and create an array of 26 int
 48 int[] counts = new int[26];
 49
 50 // For each lowercase letter in the array, count it
 51 for (int i = 0; i < chars.length; i++)
increase count 52 counts[chars[i] - 'a']++;
 53
 54 return counts;
 55 }
 56
 57 /** Display counts */
 58 public static void displayCounts(int[] counts) {
 59 for (int i = 0; i < counts.length; i++) {
 60 if ((i + 1) % 10 == 0)
 61 System.out.println(counts[i] + " " + (char)(i + 'a'));
 62 else
 63 System.out.print(counts[i] + " " + (char)(i + 'a') + " ");
 64 }
 65 }
 66 }

The lowercase letters are:
e y l s r i b k j v j h a b z n w b t v
s c c k r d w a m p w v u n q a m p l o
a z g d e g f i n d x m z o u l o z j v
h w i w n t g x w c d o t x h y v z y z
q e a m f w p g u q t r e n n w f c r f

The occurrences of each letter are:
5 a 3 b 4 c 4 d 4 e 4 f 4 g 3 h 3 i 3 j
2 k 3 l 4 m 6 n 4 o 3 p 3 q 4 r 2 s 4 t
3 u 5 v 8 w 3 x 3 y 6 z

The createArray method (lines 21–32) generates an array of 100 random lowercase ­letters. Line 5 invokes the method and assigns the array to chars. What would be wrong if you rewrote the code as follows?

char[] chars = new char[100];
chars = createArray();

You would be creating two arrays. The first line would create an array by using new char[100]. The second line would create an array by invoking createArray() and assign the reference of the array to chars. The array created in the first line would be garbage because it is no longer referenced, and as mentioned earlier, Java automatically collects ­garbage behind the scenes. Your program would compile and run correctly, but it would create an array unnecessarily.

Invoking getRandomLowerCaseLetter() (line 28) returns a random lowercase ­letter. This method is defined in the RandomCharacter class in Listing 6.10.

The countLetters method (lines 46–55) returns an array of 26 int values, each of which stores the number of occurrences of a letter. The method processes each letter in the array and increases its count by one. A brute-force approach to count the occurrences of each letter might be as follows:

for (int i = 0; i < chars.length; i++)
 if (chars[i] == 'a')
 counts[0]++;
 else if (chars[i] == 'b')
 counts[1]++;
 ...

However, a better solution is given in lines 51 and 52.

for (int i = 0; i < chars.length; i++)
 counts[chars[i] − 'a']++;

If the letter (chars[i]) is a, the corresponding count is counts['a' − 'a'] (i.e., counts[0]). If the letter is b, the corresponding count is counts['b' − 'a'] (i.e., counts[1]), since the Unicode of b is one more than that of a. If the letter is z, the ­corresponding count is counts['z' − 'a'] (i.e., counts[25]), since the Unicode of z is 25 more than that of a.

Figure 7.8 shows the call stack and heap during and after executing createArray. See CheckPoint Question 7.8.3 to show the call stack and heap for other methods in the program.

[image: Two diagrams show the stack before and after executing the, create Array, method.]
Figure 7.8

(a) An array of 100 characters is created when executing createArray. (b) This array is returned and assigned to the variable chars in the main method.

Description

	7.8.1 True or false? When an array is passed to a method, a new array is created and passed to the method.

	7.8.2 Show the output of the following two programs:

	public class Test {
 public static void main(String[] args) {
 int number = 0;
 int[] numbers = new int[1];
 m(number, numbers);
 System.out.println("number is " + number
 + " and numbers[0] is " + numbers[0]);
 }
 public static void m(int x, int[] y) {
 x = 3;
 y[0] = 3;
 }
}

	
	public class Test {
 public static void main(String[] args) {
 int[] list = {1, 2, 3, 4, 5};
 reverse(list);
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 }
 public static void reverse(int[] list) {
 int[] newList = new int[list.length];
 for (int i = 0; i < list.length; i++)
 newList[i] = list[list.length − 1 − i];
 list = newList;
 }
}

	(a)

	
	(b)

	7.8.3 Where are the arrays stored during execution? Show the contents of the stack and heap during and after executing displayArray, countLetters, and displayCounts in Listing 7.4 .

7.9 Variable-Length Argument Lists

	A variable number of arguments of the same type can be passed to a method and treated as an array.

You can pass a variable number of arguments of the same type to a method. The parameter in the method is declared as follows:

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (...). Only one ­variable-length parameter may be specified in a method, and this parameter must be the last parameter. Any regular parameters must precede it.

Java treats a variable-length parameter as an array. You can pass an array or a variable number of arguments to a variable-length parameter. When invoking a method with a variable number of arguments, Java creates an array and passes the arguments to it. Listing 7.5 presents a method that prints the maximum value in a list of an unspecified number of values.

Listing 7.5 VarArgsDemo.java

 1 public class VarArgsDemo {
 2 public static void main(String[] args) {
pass variable-length arg list 3 printMax(34, 3, 3, 2, 56.5);
pass an array arg 4 printMax(new double[]{1, 2, 3});
 5 }
 6
a variable-length arg 7 public static void printMax(double... numbers) {
 parameter 8 if (numbers.length == 0) {
 9 System.out.println("No argument passed");
 10 return;
 11 }
 12
 13 double result = numbers[0];
 14
 15 for (int i = 1; i < numbers.length; i++)
 16 if (numbers[i] > result)
 17 result = numbers[i];
 18
 19 System.out.println("The max value is " + result);
 20 }
 21 }

Line 3 invokes the printMax method with a variable-length argument list passed to the array numbers. If no arguments are passed, the length of the array is 0 (line 8).

Line 4 invokes the printMax method with an array.

	7.9.1 What is wrong with each of the following method headers?

	public static void print(String... strings, double... numbers)

	public static void print(double... numbers, String name)

	public static double... print(double d1, double d2)

	7.9.2 Can you invoke the printMax method in Listing 7.5 using the following statements?

	printMax(1, 2, 2, 1, 4);

	printMax(new double[]{1, 2, 3});

	printMax(new int[]{1, 2, 3});

7.10 Searching Arrays

	If an array is sorted, binary search is more efficient than linear search for finding an element in the array.

Searching is the process of looking for a specific element in an array—for example, discovering whether a certain score is included in a list of scores. Searching is a common task in computer programming. Many algorithms and data structures are devoted to searching. This section discusses two commonly used approaches, linear search and binary search.

linear search

binary search

7.10.1 The Linear Search Approach

The linear search approach compares the key element key sequentially with each element in the array. It continues to do so until the key matches an element in the array, or the array is exhausted without a match being found. If a match is made, the linear search returns the index of the element in the array that matches the key. If no match is found, the search returns −1. The linearSearch method in Listing 7.6 gives the solution.

linear search animation on Companion Website

Listing 7.6 LinearSearch.java

[image: Source code for the program, Linear Search dot java.]

Description

To better understand this method, trace it with the following statements:

1 int[] list = {1, 4, 4, 2, 5, −3, 6, 2};
2 int i = linearSearch(list, 4); // Returns 1
3 int j = linearSearch(list, −4); // Returns -1
4 int k = linearSearch(list, −3); // Returns 5

The linear search method compares the key with each element in the array. The elements can be in any order. On average, the algorithm will have to examine half of the elements in an array before finding the key, if it exists. Since the execution time of a linear search increases linearly as the number of array elements increases, linear search is inefficient for a large array.

7.10.2 The Binary Search Approach

Binary search is the other common search approach for a list of values. For binary search to work, the elements in the array must already be ordered. Assume that the array is in ascending order. The binary search first compares the key with the element in the middle of the array. Consider the following three cases:

	If the key is less than the middle element, you need to continue to search for the key only in the first half of the array.

	If the key is equal to the middle element, the search ends with a match.

	If the key is greater than the middle element, you need to continue to search for the key only in the second half of the array.

Clearly, the binary search method eliminates at least half of the array after each comparison. Sometimes you eliminate half of the elements, and sometimes you eliminate half plus one. Suppose the array has n elements. For convenience, let n be a power of 2. After the first comparison, n/2 elements are left for further search; after the second comparison, (n/2)/2 elements are left. After the kth comparison, n/2k elements are left for further search. When k = log2n, only one element is left in the array, and you need only one more comparison. Therefore, in the worst case when using the binary search approach, you need log2n+1 ­comparisons to find an element in the sorted array. In the worst case for a list of 1024 (210) elements, binary search requires only 11 comparisons, whereas a linear search requires 1023 comparisons in the worst case.

binary search animation on Companion Website

The portion of the array being searched shrinks by half after each comparison. Let low and high denote, respectively, the first index and last index of the array that is currently being searched. Initially, low is 0 and high is list.length − 1. Let mid denote the index of the middle element, so mid is (low + high)/2. Figure 7.9 shows how to find key 11 in the list {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79} using binary search.

[image: Three versions of the array, list, demonstrate a binary search in which key is 11.]
Figure 7.9

Binary search eliminates half of the list from further consideration after each comparison.

Description

You now know how the binary search works. The next task is to implement it in Java. Don’t rush to give a complete implementation. Implement it incrementally, one step at a time. You may start with the first iteration of the search, as shown in Figure 7.10a. It compares the key with the middle element in the list whose low index is 0 and high index is list.length − 1. If key < list[mid], set the high index to mid − 1; if key == list[mid], a match is found and return mid; if key > list[mid], set the low index to mid + 1.

why not −1?

Figure 7.10

Binary search is implemented incrementally.

	
public static int binarySearch(
 int[] list, int key) {
 int low = 0;
 int high = list.length − 1;

 int mid = (low + high) / 2;
 if (key < list[mid])
 high = mid − 1;
 else if (key == list[mid])
 return mid;
 else
 low = mid + 1;

}

	
	
public static int binarySearch(
 int[] list, int key) {
 int low = 0;
 int high = list.length − 1;

 while (high >= low) {
 int mid = (low + high) / 2;
 if (key < list[mid])
 high = mid - 1;
 else if (key == list[mid])
 return mid;
 else
 low = mid + 1;
 }
 return -1; // Not found
}

	(a) Version 1

	
	(b) Version 2

Next, consider implementing the method to perform the search repeatedly by adding a loop, as shown in Figure 7.10b. The search ends if the key is found, or if the key is not found when low > high.

When the key is not found, low is the insertion point where a key would be inserted to maintain the order of the list. It is more useful to return the insertion point than −1. The method must return a negative value to indicate that the key is not in the list. Can it simply return −low? No. If the key is less than list[0], low would be 0. −0 is 0. This would indicate the key matches list[0]. A good choice is to let the method return −low − 1 if the key is not in the list. Returning −low − 1 indicates not only that the key is not in the list, but also where the key would be inserted.

The complete program is given in Listing 7.7.

Listing 7.7 BinarySearch.java

 1 public class BinarySearch {
 2 /** Use binary search to find the key in the list */
 3 public static int binarySearch(int[] list, int key) {
 4 int low = 0;
 5 int high = list.length − 1;
 6
 7 while (high >= low) {
 8 int mid = (low + high) / 2;
 9 if (key < list[mid])
first half 10 high = mid − 1;
 11 else if (key == list[mid])
 12 return mid;
 13 else
second half 14 low = mid + 1;
 15 }
 16
 17 return –low - 1; // Now high < low, key not found
 18 }
 19 }

The binary search returns the index of the search key if it is contained in the list (line 12). Otherwise, it returns −low − 1 (line 17).

What would happen if we replaced (high >= low) in line 7 with (high > low)? The search would miss a possible matching element. Consider a list with just one element. The search would miss the element.

Does the method still work if there are duplicate elements in the list? Yes, as long as the elements are sorted in increasing order. The method returns the index of one of the matching elements if the element is in the list.

The precondition for the binary search method is that the list must be sorted in increasing order. The postcondition is that the method returns the index of the element that matches the key if the key is in the list or a negative integer k such that −k - 1 is the position for inserting the key. Precondition and postcondition are the terms often used to describe the properties of a method. Preconditions are the things that are true before the method is invoked, and ­postconditions are the things that are true after the method is returned:

\precondition

postcondition

To better understand this method, trace it with the following statements and identify low and high when the method returns.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
int i = BinarySearch.binarySearch(list, 2); // Returns 0
int j = BinarySearch.binarySearch(list, 11); // Returns 4
int k = BinarySearch.binarySearch(list, 12); // Returns –6
int l = BinarySearch.binarySearch(list, 1); // Returns –1
int m = BinarySearch.binarySearch(list, 3); // Returns –2

Here is the table that lists the low and high values when the method exits, and the value returned from invoking the method.

	Method

	Low

	High

	Value Returned

	binarySearch(list, 2)

	0

	1

	0 (mid)

	binarySearch(list, 11)

	3

	5

	4 (mid)

	binarySearch(list, 12)

	5

	4

	−6

	binarySearch(list, 1)

	0

	−1

	−1

	binarySearch(list, 3)

	1

	0

	−2

 Note

Linear search is useful for finding an element in a small array or an unsorted array, but it is inefficient for large arrays. Binary search is more efficient, but it requires that the array be presorted.

binary search benefits

	7.10.1 If high is a very large integer such as the maximum int value 2147483647, (low + high) / 2 may cause overflow. How do you fix it to avoid overflow?

	7.10.2 Use Figure 7.9 as an example to show how to apply the binary search approach to a search for key 10 and key 12 in list {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}.

	7.10.3 If the binary search method returns −4, is the key in the list? Where should the key be inserted if you wish to insert the key into the list?

7.11 Sorting Arrays

	Sorting, like searching, is a common task in computer programming. Many different algorithms have been developed for sorting. This section introduces an intuitive sorting algorithm: selection sort.

Selection sort

Suppose you want to sort a list in ascending order. Selection sort finds the smallest number in the list and swaps it with the first element. It then finds the smallest number remaining and swaps it with the second element, and so on, until only a single number remains. Figure 7.11 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

[image: A list is sorted by selection.]
Figure 7.11

Selection sort repeatedly selects the smallest number and swaps it with the first number in the list.

Description

Selection sort

selection sort animation on Companion Website

You know how the selection-sort approach works. The task now is to implement it in Java. Beginners find it difficult to develop a complete solution on the first attempt. Start by writing the code for the first iteration to find the smallest element in the list and swap it with the first element, then observe what would be different for the second iteration, the third, and so on. The insight this gives will enable you to write a loop that generalizes all the iterations.

The solution can be described as follows:

for (int i = 0; i < list.length − 1; i++) {
 select the smallest element in list[i..list.length−1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration applies on list[i+1..list.length−1]
}

Listing 7.8 implements the solution.

Listing 7.8 SelectionSort.java

 1 public class SelectionSort {
 2 /** The method for sorting the numbers */
 3 public static void selectionSort(double[] list) {
 4 for (int i = 0; i < list.length - 1; i++) {
 5 // Find the minimum in the list[i..list.length−1]
 6 double currentMin = list[i];
 7 int currentMinIndex = i;
 8
select 9 for (int j = i + 1; j < list.length; j++) {
 10 if (currentMin > list[j]) {
 11 currentMin = list[j];
 12 currentMinIndex = j;
 13 }
 14 }
 15
 16 // Swap list[i] with list[currentMinIndex] if necessary
swap 17 if (currentMinIndex != i) {
 18 list[currentMinIndex] = list[i];
 19 list[i] = currentMin;
 20 }
 21 }
 22 }
 23 }

The selectionSort(double[] list) method sorts any array of double elements. The method is implemented with a nested for loop. The outer loop (with the loop control variable i in line 4) is iterated in order to find the smallest element in the list, which ranges from list[i] to list[list.length−1], and exchanges it with list[i].

The variable i is initially 0. After each iteration of the outer loop, list[i] is in the right place. Eventually, all the elements are put in the right place; therefore, the whole list is sorted.

To understand this method better, trace it with the following statements:

double[] list = {1, 9, 4.5, 6.6, 5.7, −4.5};
SelectionSort.selectionSort(list);

	7.11.1 Use Figure 7.11 as an example to show how to apply the selection-sort approach to sort {3.4, 5, 3, 3.5, 2.2, 1.9, 2}.

	7.11.2 How do you modify the selectionSort method in Listing 7.8 to sort numbers in decreasing order?

7.12 The Arrays Class

	The java.util.Arrays class contains useful methods for common array operations such as sorting and searching.

The java.util.Arrays class contains various static methods for sorting and searching arrays, comparing arrays, filling array elements, and returning a string representation of the array. These methods are overloaded for all primitive types.

You can use the sort or parallelSort method to sort a whole array or a partial array. For example, the following code sorts an array of numbers and an array of characters:

sort

parallelSort

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers); // Sort the whole array
java.util.Arrays.parallelSort(numbers); // Sort the whole array

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars, 1, 3); // Sort part of the array
java.util.Arrays.parallelSort(chars, 1, 3); // Sort part of the array

Invoking sort(numbers) sorts the whole array numbers. Invoking sort(chars, 1, 3) sorts a partial array from chars[1] to chars[3−1]. parallelSort is more efficient if your computer has multiple processors.

binarySearch

You can use the binarySearch method to search for a key in an array. The array must be presorted in increasing order. If the key is not in the array, the method returns −(insertionIndex + 1). For example, the following code searches the keys in an array of integers and an array of characters:

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("1. Index is " +
 java.util.Arrays.binarySearch(list, 11));
System.out.println("2. Index is " +
 java.util.Arrays.binarySearch(list, 12));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("3. Index is " +
 java.util.Arrays.binarySearch(chars, 'a'));
System.out.println("4. Index is " +
 java.util.Arrays.binarySearch(chars, 't'));

The output of the preceding code is as follows:

	Index is 4

	Index is −6

	Index is 0

	Index is −4

You can use the equals method to check whether two arrays are strictly equal. Two arrays are strictly equal if their corresponding elements are the same. In the following code, list1 and list2 are equal, but list2 and list3 are not.

equals

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 10};
int[] list3 = {4, 2, 7, 10};
System.out.println(java.util.Arrays.equals(list1, list2)); // true
System.out.println(java.util.Arrays.equals(list2, list3)); // false

You can use the fill method to fill in all or part of the array. For example, the following code fills list1 with 5 and fills 8 into elements list2[1] through list2[5−1].

fill

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 7, 7, 10};
java.util.Arrays.fill(list1, 5); // Fill 5 to the whole array
java.util.Arrays.fill(list2, 1, 5, 8); // Fill 8 to a partial array

You can also use the toString method to return a string that represents all elements in the array. This is a quick and simple way to display all elements in the array. For example, the following code:

toString

int[] list = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list));

displays [2, 4, 7, 10].

	7.12.1 What types of array can be sorted using the java.util.Arrays.sort method? Does this sort method create a new array?

	7.12.2 To apply java.util.Arrays.binarySearch(array, key), should the array be sorted in increasing order, in decreasing order, or neither?

	7.12.3 Show the output of the following code:

int[] list1 = {2, 4, 7, 10};
java.util.Arrays.fill(list1, 7);
System.out.println(java.util.Arrays.toString(list1));

int[] list2 = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list2));
System.out.print(java.util.Arrays.equals(list1, list2));

7.13 Command-Line Arguments

	The main method can receive string arguments from the command line.

Perhaps you have already noticed the unusual header for the main method, which has the parameter args of the String[] type. It is clear that args is an array of strings. The main method is just like a regular method with a parameter. You can call a regular method by passing actual parameters. Can you pass arguments to main? Yes, of course you can. In the following examples, the main method in class TestMain is invoked by a method in A:

	public class A {
 public static void main(String[] args) {
 String[] strings = {"New York",
 "Boston", "Atlanta"};
 TestMain.main(strings);
 }
}

	
	public class TestMain {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

A main method is just like a regular method. Furthermore, you can pass arguments to a main method from the command line.

7.13.1 Passing Strings to the main Method

You can pass strings to a main method from the command line when you run the program. The following command line, for example, starts the program TestMain with three strings: arg0, arg1, and arg2:

java TestMain arg0 arg1 arg2

arg0, arg1, and arg2 are strings, but they don’t have to appear in double quotes on the command line. The strings are separated by a space. A string that contains a space must be enclosed in double quotes. Consider the following command line:

java TestMain "First num" alpha 53

It starts the program with three strings: First num, alpha, and 53. Since First num is a string, it is enclosed in double quotes. Note 53 is actually treated as a string. You can use "53" instead of 53 in the command line.

When the main method is invoked, the Java interpreter creates an array to hold the command-line arguments and pass the array reference to args. For example, if you invoke a program with n arguments, the Java interpreter creates an array such as the one that follows:

args = new String[n];

The Java interpreter then passes args to invoke the main method.

 Note

If you run the program with no strings passed, the array is created with new String[0]. In this case, the array is empty with length 0. args references to this empty array. Therefore, args is not null, but args.length is 0.

7.13.2 Case Study: Calculator

Suppose you are to develop a program that performs arithmetic operations on integers. The program receives an expression. The expression consists of an integer followed by an operator and another integer. For example, to add two integers, use this command:

Command-line arguments

java Calculator 2 + 3

The program will display the following output:

2 + 3 = 5

Figure 7.12 shows sample runs of the program.

[image: A command prompt, with inputs and outputs for addition, subtraction, multiplication, and division.]
Figure 7.12

The program takes three arguments (operand1 operator operand2) from the command line and displays the expression and the result of the arithmetic operation.

Description

The strings passed to the main program are stored in args, which is an array of strings. The first string is stored in args[0], and args.length is the number of strings passed.

Here are the steps in the program:

	Use args.length to determine whether the expression has been provided as three arguments in the command line. If not, terminate the program using System.exit(1).

	Perform a binary arithmetic operation on the operands args[0] and args[2] using the operator in args[1].

The program is given in Listing 7.9.

Listing 7.9 Calculator.java

 1 public class Calculator {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Check number of strings passed
check argument 5 if (args.length != 3) {
 6 System.out.println(
 7 "Usage: java Calculator operand1 operator operand2");
 8 System.exit(1);
 9 }
 10
 11 // The result of the operation
 12 int result = 0;
 13
 14 // Determine the operator
 15 switch (args[1].charAt(0)) {
check operator 16 case '+': result = Integer.parseInt(args[0]) +
 17 Integer.parseInt(args[2]);
 18 break;
 19 case '−': result = Integer.parseInt(args[0]) −
 20 Integer.parseInt(args[2]);
 21 break;
 22 case '.': result = Integer.parseInt(args[0]) *
 23 Integer.parseInt(args[2]);
 24 break;
 25 case '/': result = Integer.parseInt(args[0]) /
 26 Integer.parseInt(args[2]);
 27 }
 28
 29 // Display result
 30 System.out.println(args[0] + ' ' + args[1] + ' ' + args[2]
 31 + " = " + result);
 32 }
 33 }

		
Integer.parseInt(args[0]) (line 16) converts a digital string into an integer. The string must consist of digits. If not, the program will terminate abnormally.

We used the . symbol for multiplication, not the common * symbol. The reason for this is the * symbol refers to all the files in the current directory when it is used on a command line. The following program displays all the files in the current directory when issuing the command java Test *:

public class Test {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

To circumvent this problem, we will have to use a different symbol for the multiplication operator.

	7.13.1 This booktext declares the main method as

public static void main(String[] args)

Can it be replaced by one of the following lines?

	public static void main(String args[])

	public static void main(String[] x)

	public static void main(String x[])

	static void main(String x[])

	7.13.2 Show the output of the following program when invoked using

	java Test I have a dream

	java Test “1 2 3”

	java Test

public class Test {
 public static void main(String[] args) {
 System.out.println("Number of strings is " + args.length);
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

Key Terms

	anonymous array 260

	array 248

	array initializer 250

	binary search 267

	garbage collection 258

	index 248

	indexed variable 250

	linear search 267

	off-by-one error 253

	postcondition 270

	precondition 270

	selection sort 271

Chapter Summary

	A variable is declared as an array type using the syntax elementType[] arrayRefVar or elementType arrayRefVar[]. The style elementType[] arrayRefVar is preferred, although elementType arrayRefVar[] is legal.

	Unlike declarations for primitive data type variables, the declaration of an array variable does not allocate any space in memory for the array. An array variable is not a primitive data type variable. An array variable contains a reference to an array.

	You cannot assign elements to an array unless it has already been created. You can create an array by using the new operator with the following syntax: new elementType[arraySize].

	Each element in the array is represented using the syntax arrayRefVar[index]. An index must be an integer or an integer expression.

	After an array is created, its size becomes permanent and can be obtained using arrayRefVar.length. Since the index of an array always begins with 0, the last index is always arrayRefVar.length − 1. An out-of-bounds error will occur if you attempt to reference elements beyond the bounds of an array.

	Programmers often mistakenly reference the first element in an array with index 1, but it should be 0. This is called the index off-by-one error.

	When an array is created, its elements are assigned the default value of 0 for the numeric primitive data types, \u0000 for char types, and false for boolean types.

	Java has a shorthand notation, known as the array initializer, which combines declaring an array, creating an array, and initializing an array in one statement, using the syntax elementType[] arrayRefVar = {value0, value1, . . . , valuek}.

	When you pass an array argument to a method, you are actually passing the reference of the array; that is, the called method can modify the elements in the caller’s original array.

	If an array is sorted, binary search is more efficient than linear search for finding an element in the array.

	Selection sort finds the smallest number in the list and swaps it with the first element. It then finds the smallest number remaining and swaps it with the first element in the remaining list, and so on, until only a single number remains.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

 Programming Exercises

Sections 7.2–7.5

		*7.1 (Assign grades) Write a program that reads student scores, gets the best score, and then assigns grades based on the following scheme:

	Grade is A if score is ≥ best −10;

	Grade is B if score is ≥ best −20;

	Grade is C if score is ≥ best −30;

	Grade is D if score is ≥ best −40;

	Grade is F otherwise.

The program prompts the user to enter the total number of students, then prompts the user to enter all of the scores, and concludes by displaying the grades. Here is a sample run:

Enter the number of students: 4
Enter 4 scores: 40 55 70 58
Student 0 score is 40 and grade is C
Student 1 score is 55 and grade is B
Student 2 score is 70 and grade is A
Student 3 score is 58 and grade is B

	7.2 (Reverse the numbers entered) Write a program that reads 10 integers then displays them in the reverse of the order in which they were read.

		**7.3 (Count occurrence of numbers) Write a program that reads the integers between 1 and 100 and counts the occurrences of each. Assume the input ends with 0. Here is a sample run of the program:

Enter the integers between 1 and 100: 2 5 6 5 4 3 23 43 2 0
2 occurs 2 times
3 occurs 1 time
4 occurs 1 time
5 occurs 2 times
6 occurs 1 time
23 occurs 1 time
43 occurs 1 time

Note if a number occurs more than one time, the plural word “times” is used in the output.

	7.4 (Analyze scores) Write a program that reads an unspecified number of scores and determines how many scores are above or equal to the average, and how many scores are below the average. Enter a negative number to signify the end of the input. Assume the maximum number of scores is 100.

		**7.5 (Print distinct numbers) Write a program that reads in 10 numbers and displays the number of distinct numbers and the distinct numbers in their input order and separated by exactly one space (i.e., if a number appears multiple times, it is displayed only once). (Hint: Read a number and store it to an array if it is new. If the number is already in the array, ignore it.) After the input, the array contains the distinct numbers. Here is the sample run of the program:

Enter 10 numbers: 1 2 3 2 1 6 3 4 5 2
The number of distinct numbers is 6
The distinct numbers are: 1 2 3 6 4 5

		*7.6 (Revise Listing 5.15, PrimeNumber.java) Listing 5.15 determines whether a number n is prime by checking whether 2, 3, 4, 5, 6, . . . , n/2 is a divisor. If a divisor is found, n is not prime. A more efficient approach is to check whether any of the prime numbers less than or equal to n can divide n evenly. If not, n is prime. Rewrite Listing 5.15 to display the first 50 prime numbers using this approach. You need to use an array to store the prime numbers, and later use them to check whether they are possible divisors for n.

		*7.7 (Count single digits) Write a program that generates 100 random integers between 0 and 9 and displays the count for each number. (Hint: Use an array of 10 integers, say counts, to store the counts for the number of 0s, 1s, . . . , 9s.)

Sections 7.6–7.8

	7.8 (Average an array) Write two overloaded methods that return the average of an array with the following headers:

public static int average(int[] array)
public static double average(double[] array)

Write a test program that prompts the user to enter 10 double values, invokes this method, then displays the average value.

	7.9 (Find the smallest element) Write a method that finds the smallest element in an array of double values using the following header:

public static double min(double[] array)

Write a test program that prompts the user to enter 10 numbers, invokes this method to return the minimum value, and displays the minimum value. Here is a sample run of the program:

Enter 10 numbers: 1.9 2.5 3.7 2 1.5 6 3 4 5 2
The minimum number is 1.5

	7.10 (Find the index of the smallest element) Write a method that returns the index of the smallest element in an array of integers. If the number of such elements is greater than 1, return the smallest index. Use the following header:

public static int indexOfSmallestElement(double[] array)

Write a test program that prompts the user to enter 10 numbers, invokes this method to return the index of the smallest element, and displays the index.

	 *7.11 (Statistics: compute deviation) Programming Exercise 5.45 computes the standard deviation of numbers. This exercise uses a different but equivalent formulaThe following is the formula to compute the standard deviation of n numbers.

mean=∑i=1nxin=x1+x2+ ⋯ +xnn deviation=∑i=1n(xi−mean)2n−1

To compute the standard deviation with this formula, you have to store the individual numbers using an array, so they can be used after the mean is obtained.

Your program should contain the following methods:

/** Compute the deviation of double values */
public static double deviation(double[] x)

/** Compute the mean of an array of double values */
public static double mean(double[] x)

Write a test program that prompts the user to enter 10 numbers and displays the mean and standard deviation, as presented in the following sample run:

Enter 10 numbers: 1.9 2.5 3.7 2 1 6 3 4 5 2
The mean is 3.11
The standard deviation is 1.55738

		*7.12 (Reverse an array) The reverse method in Section 7.7 reverses an array by ­copying it to a new array. Rewrite the method that reverses the array passed in the argument and returns this array. Write a test program that prompts the user to enter 10 numbers, invokes the method to reverse the numbers, and displays the numbers.

Section 7.9

		*7.13 (Random number chooser) Write a method that returns a random number between 1 and 54, excluding the numbers passed in the argument. The method header is specified as follows:

public static int getRandom(int... numbers)

	7.14 (Computing gcd) Write a method that returns the gcd of an unspecified number of integers. The method header is specified as follows:

public static int gcd(int... numbers)

Write a test program that prompts the user to enter five numbers, invokes the method to find the gcd of these numbers, and displays the gcd.

Sections 7.10–7.12

	7.15 (Eliminate duplicates) Write a method that returns a new array by eliminating the duplicate values in the array using the following method header:

public static int[] eliminateDuplicates(int[] list)

Write a test program that reads in 10 integers, invokes the method, and displays the distinct numbers separated by exactly one space. Here is a sample run of the program:

Enter 10 numbers: 1 2 3 2 1 6 3 4 5 2
The distinct numbers are: 1 2 3 6 4 5

	7.16 (Execution time) Write a program that randomly generates an array of 100,000 integers and a key. Estimate the execution time of invoking the linearSearch method in Listing 7.6. Sort the array and estimate the execution time of invoking the binarySearch method in Listing 7.7. You can use the following code template to obtain the execution time:

long startTime = System.nanoTime();
perform the task;
long endTime = System.nanoTime();
long executionTime = endTime − startTime;

		**7.17 (Sort students) Write a program that prompts the user to enter the number of students, the students’ names, and their scores and prints student names in decreasing order of their scores. Assume the name is a string without spaces, use the Scanner’s next() method to read a name.

		**7.18 (Bubble sort) Write a sort method that uses the bubble-sort algorithm. The bubble-sort algorithm makes several passes through the array. On each pass, successive neighboring pairs are compared. If a pair is not in order, its values are swapped; otherwise, the values remain unchanged. The technique is called a bubble sort or sinking sort because the smaller values gradually “bubble” their way to the top, and the larger values “sink” to the bottom. Write a test program that reads in 10 double numbers, invokes the method, and displays the sorted numbers.

		**7.19 (Sorted?) Write the following method that returns true if the list is already sorted in nondecreasing order:

public static boolean isSorted(int[] list)

Write a test program that prompts the user to enter a list and displays whether the list is sorted or not. Here is a sample run. Note that the program first prompts the user to enter the size of the list.

Enter the size of the list: 8
Enter the contents of the list: 10 1 5 16 61 9 11 1
The list has 8 integers 10 1 5 16 61 9 11 1
The list is not sorted

Enter the size of the list: 10
Enter the contents of the list: 1 1 3 4 4 5 7 9 11 21
The list has 10 integers 1 1 3 4 4 5 7 9 11 21
The list is already sorted

		*7.20 (Revise selection sort) In Listing 7.8, you used selection sort to sort an array. The selection-sort method repeatedly finds the smallest number in the current array and swaps it with the first. Rewrite this program by finding the largest number and swapping it with the last. Write a test program that reads in 10 double numbers, invokes the method, and displays the sorted numbers.

Section 7.13

		*7.21 (Sum integers) Write a program that passes an unspecified number of integers from command line and displays their total.

		*7.22 (Find the number of uppercase letters in a string) Write a program that passes a string to the command line and displays the number of uppercase letters in the string.

Comprehensive

Coupon collector’s problem

		**7.23 (Game: locker puzzle) A school has 100 lockers and 100 students. All lockers are closed on the first day of school. As the students enter, the first student, denoted as S1, opens every locker. Then the second student, S2, begins with the second locker, denoted as L2, and closes every other locker. Student S3 begins with the third locker and changes every third locker (closes it if it was open and opens it if it was closed). Student S4 begins with locker L4 and changes every fourth locker. Student S5 starts with L5 and changes every fifth locker, and so on, until student S100 changes L100.

After all the students have passed through the building and changed the lockers, which lockers are open? Write a program to find your answer and display all open locker numbers separated by exactly one space.

(Hint: Use an array of 100 Boolean elements, each of which indicates whether a locker is open (true) or closed (false). Initially, all lockers are closed.)

		**7.24 (Simulation: coupon collector’s problem) Coupon collector is a classic ­statistics problem with many practical applications. The problem is to repeatedly pick objects from a set of objects and find out how many picks are needed for all the objects to be picked at least once. A variation of the problem is to pick cards from a shuffled deck of 52 cards repeatedly, and find out how many picks are needed before you see one of each suit. Assume a picked card is placed back in the deck before picking another. Write a program to simulate the number of picks needed to get four cards from each suit and display the four cards picked (it is possible a card may be picked twice). Here is a sample run of the program:

Queen of Spades
5 of Clubs
Queen of Hearts
4 of Diamonds
Number of picks: 12

	7.25 (Algebra: solve quadratic equations) Write a method for solving a quadratic equation using the following header:

public static int solveQuadratic(double[] eqn, double[] roots)

The coefficients of a quadratic equation ax2+bx+c=0 are passed to the array eqn and the real roots are stored in roots. The method returns the number of real roots. See Programming Exercise 3.1 on how to solve a quadratic equation.

Write a program that prompts the user to enter values for a, b, and c and displays the number of real roots and all real roots.

	7.26 (Strictly identical arrays) The arrays list1 and list2 are strictly identical if their corresponding elements are equal. Write a method that returns true if list1 and list2 are strictly identical, using the following header:

public static boolean equals(int[] list1, int[] list2)

Write a test program that prompts the user to enter two lists of integers and displays whether the two are strictly identical. Here are the sample runs. Note the first number in the input indicates the number of the elements in the list. This number is not part of the list.

Enter list1 size and contents: 5 2 5 6 1 6
Enter list2 size and contents: 5 2 5 6 1 6
Two lists are strictly identical

Enter list1 size and contents: 5 2 5 6 6 1
Enter list2 size and contents: 5 2 5 6 1 6
Two lists are not strictly identical

	7.27 (Identical arrays) The arrays list1 and list2 are identical if they have the same contents. Write a method that returns true if list1 and list2 are identical, using the following header:

public static boolean equals(int[] list1, int[] list2)

Write a test program that prompts the user to enter two lists of integers and displays whether the two are identical. Here are the sample runs. Note the first number in the input indicates the number of the elements in the list. This number is not part of the list.

Enter list1 size and contents: 5 2 5 6 6 1
Enter list2 size and contents: 5 5 2 6 1 6
Two lists are identical

Enter list1: 5 5 5 6 6 1
Enter list2: 5 2 5 6 1 6
Two lists are not identical

		*7.28 (Math: combinations) Write a program that prompts the user to enter 10 integers and displays all combinations of picking two numbers from the 10 numbers.

		*7.29 (Game: pick four cards) Write a program that picks four cards from a deck of 52 cards and computes their sum. An Ace, King, Queen, and Jack represent 1, 13, 12, and 11, respectively. Your program should display the number of picks that yields the sum of 24.

		*7.30 (Pattern recognition: consecutive four equal numbers) Write the following method that tests whether the array has four consecutive numbers with the same value:

Consecutive four

public static boolean isConsecutiveFour(int[] values)

Write a test program that prompts the user to enter a series of integers and displays it if the series contains four consecutive numbers with the same value. Your program should first prompt the user to enter the input size—i.e., the number of values in the series. Here are sample runs:

Enter the number of values: 8
Enter the values: 3 4 5 5 5 5 4 5
The list has consecutive fours

Enter the number of values: 9
Enter the values: 3 4 5 5 6 5 5 4 5
The list has no consecutive fours

		**7.31 (Merge two sorted lists) Write the following method that merges two sorted lists into a new sorted list:

public static int[] merge(int[] list1, int[] list2)

Implement the method in a way that takes at most list1.length + list2.length comparisons. See liveexample.pearsoncmg.com/dsanimation/MergeSortNeweBook.html for an animation of the implementation. Write a test program that prompts the user to enter two sorted lists and displays the merged list. Here is a sample run. Note the first number in the input indicates the number of the elements in the list. This number is not part of the list.

Enter list1 size and contents: 5 1 5 16 61 111
Enter list2 size and contents: 4 2 4 5 6
list1 is 1 5 16 61 111
list2 is 2 4 5 6
The merged list is 1 2 4 5 5 6 16 61 111

	**7.32 (Partition of a list) Write the following method that partitions the list using the first element, called a pivot:

public static int partition(int[] list)

After the partition, the elements in the list are rearranged so all the elements before the pivot are less than or equal to the pivot, and the elements after the pivot are greater than the pivot. The method returns the index where the pivot is located in the new list. For example, suppose the list is {5, 2, 9, 3, 6, 8}. After the partition, the list becomes {3, 2, 5, 9, 6, 8}. Implement the method in a way that takes at most list.length comparisons. See liveexample.pearsoncmg.com/dsanimation/QuickSortNeweBook.html for an animation of the implementation. Write a test program that prompts the user to enter the size of the list and the contents of the list and displays the list after the partition. Here is a sample run.

Enter list size: 8
Enter list content: 10 1 5 16 61 9 11 1
After the partition, the list is 9 1 5 1 10 61 11 16

		*7.33 (Culture: Chinese Zodiac) Simplify Listing 3.9 using an array of strings to store the animal names.

		**7.34 (Sort characters in a string) Write a method that returns a sorted string using the following header:

public static String sort(String s)

For example, sort("acb") returns abc.

Write a test program that prompts the user to enter a string and displays the sorted string.

	***7.35 (Game: hangman) Write a hangman game that randomly generates a word and prompts the user to guess one letter at a time, as presented in the sample run. Each letter in the word is displayed as an asterisk. When the user makes a correct guess, the actual letter is then displayed. When the user finishes a word, display the number of misses and ask the user whether to continue to play with another word. Declare an array to store words, as follows:

// Add any words you wish in this array
String[] words = {"write", "that",...};

(Guess) Enter a letter in word ******* > p
(Guess) Enter a letter in word p****** > r
(Guess) Enter a letter in word pr**r** > p
 p is already in the word
(Guess) Enter a letter in word pr**r** > o
(Guess) Enter a letter in word pro*r** > g
(Guess) Enter a letter in word progr** > n
 n is not in the word
(Guess) Enter a letter in word progr** > m
(Guess) Enter a letter in word progr*m > a
The word is program. You missed 1 time
Do you want to guess another word? Enter y or n>

	***7.36 (Game: Eight Queens) The classic Eight Queens puzzle is to place eight queens on a chessboard such that no two queens can attack each other (i.e., no two queens are on the same row, same column, or same diagonal). There are many possible solutions. Write a program that displays one such solution. A sample output is shown below:

Q							
				Q			
							Q
					Q		
		Q					
						Q	
	Q						
			Q				

	***7.37 (Game: bean machine) The bean machine, also known as a quincunx or the Galton box, is a device for statistics experiments named after English scientist Sir Francis Galton. It consists of an upright board with evenly spaced nails (or pegs) in a triangular form, as shown in Figure 7.13.

[image: Diagrams ay, b, and c show balls taking different paths down the bean machine’s pegboard.]
Figure 7.13

Each ball takes a random path and falls into a slot.

Description

Balls are dropped from the opening of the board. Every time a ball hits a nail, it has a 50% chance of falling to the left or to the right. The piles of balls are accumulated in the slots at the bottom of the board.

Write a program that simulates the bean machine. Your program should prompt the user to enter the number of the balls and the number of the slots in the machine. Simulate the falling of each ball by printing its path. For example, the path for the ball in Figure 7.13b is LLRRLLR and the path for the ball in Figure 7.13c is RLRRLRR. Display the final buildup of the balls in the slots in a histogram. Here is a sample run of the program:

(Hint: Create an array named slots. Each element in slots stores the number of balls in a slot. Each ball falls into a slot via a path. The number of Rs in a path is the position of the slot where the ball falls. For example, for the path LRLRLRR, the ball falls into slots[4], and for the path RRLLLLL, the ball falls into slots[2].)

Enter the number of balls to drop: 5
Enter the number of slots in the bean machine: 8
LRLRLRR
RRLLLRR
LLRLLRR
RRLLLLL
LRLRRLR
 O
 O
 OOO

CHAPTER 8 Multidimensional Arrays

Objectives

	To give examples of representing data using two-dimensional arrays (§8.1).

	To declare variables for two-dimensional arrays, create arrays, and access array elements in a two-dimensional array using row and column indices (§8.2).

	To program common operations for two-dimensional arrays (­displaying arrays, summing all elements, finding the minimum and maximum ­elements, and random shuffling) (§8.3).

	To pass two-dimensional arrays to methods (§8.4).

	To write a program for grading multiple-choice questions using ­two-dimensional arrays (§8.5).

	To solve the closest pair problem using two-dimensional arrays (§8.6).

	To check a Sudoku solution using two-dimensional arrays (§8.7).

	To use multidimensional arrays (§8.8).

8.1 Introduction

	Data in a table or a matrix can be represented using a two-dimensional array.

The preceding chapter introduced how to use one-dimensional arrays to store linear collections of elements. You can use a two-dimensional array to store a matrix or a table. For example, the following table that lists the distances between cities can be stored using a two-dimensional array named distances.

problem

	Distance Table (in miles)

	

	Chicago

	Boston

	New York

	Atlanta

	Miami

	Dallas

	Houston

	Chicago

	0

	983

	787

	714

	1375

	967

	1087

	Boston

	983

	0

	214

	1102

	1763

	1723

	1842

	New York

	787

	214

	0

	888

	1549

	1548

	1627

	Atlanta

	714

	1102

	888

	0

	661

	781

	810

	Miami

	1375

	1763

	1549

	661

	0

	1426

	1187

	Dallas

	967

	1723

	1548

	781

	1426

	0

	239

	Houston

	1087

	1842

	1627

	810

	1187

	239

	0

 double[][] distances = {
 {0, 983, 787, 714, 1375, 967, 1087},
 {983, 0, 214, 1102, 1763, 1723, 1842},
 {787, 214, 0, 888, 1549, 1548, 1627},
 {714, 1102, 888, 0, 661, 781, 810},
 {1375, 1763, 1549, 661, 0, 1426, 1187},
 {967, 1723, 1548, 781, 1426, 0, 239},
 {1087, 1842, 1627, 810, 1187, 239, 0},
 };

8.2 Two-Dimensional Array Basics

	An element in a two-dimensional array is accessed through a row and a column index.

How do you declare a variable for two-dimensional arrays? How do you create a two-­dimensional array? How do you access elements in a two-dimensional array? This section will address these issues.

8.2.1 Declaring Variables of Two-Dimensional Arrays and Creating Two-Dimensional Arrays

The syntax for declaring a two-dimensional array is as follows:

elementType[][] arrayRefVar;

or

elementType arrayRefVar[][]; // Allowed, but not preferred

As an example, here is how you would declare a two-dimensional array variable matrix of int values:

int[][] matrix;

or

int matrix[][]; // This style is allowed, but not preferred

You can create a two-dimensional array of 5-by-5 int values and assign it to matrix using this syntax:

matrix = new int[5][5];

Two subscripts are used in a two-dimensional array: one for the row, and the other for the column. As in a one-dimensional array, the index for each subscript is of the int type and starts from 0, as shown in Figure 8.1a.

[image: Figures ay, b, and c contain two-dimensional arrays.]

Figure 8.1

The index of each subscript of a two-dimensional array is an int value, starting from 0.

Description

To assign the value 7 to a specific element at row index 2 and column index 1, as shown in Figure 8.1b, you can use the following syntax:

matrix[2][1] = 7;

 Caution

It is a common mistake to use matrix[2, 1] to access the element at row 2 and ­column 1. In Java, each subscript must be enclosed in a pair of square brackets.

You can also use an array initializer to declare, create, and initialize a two-dimensional array. For example, the following code in (a) creates an array with the specified initial values, as shown in Figure 8.1c. This is equivalent to the code in (b).

[image: Code diagrams ay and b contain equivalent code.]

Description

8.2.2 Obtaining the Lengths of Two-Dimensional Arrays

A two-dimensional array is actually an array in which each element is a one-dimensional array. The length of an array x is the number of elements in the array, which can be obtained using x.length. x[0], x[1], . . . , and x[x.length − 1] are arrays. Their lengths can be obtained using x[0].length, x[1].length, . . . , and x[x.length − 1].length.

For example, suppose that x = new int[3][4], x[0], x[1], and x[2] are one-­dimensional arrays and each contains four elements, as shown in Figure 8.2. x.length is 3, and x[0].length, x[1].length, and x[2].length are 4.

[image: A diagram of a two-dimensional array.]

Figure 8.2

A two-dimensional array is a one-dimensional array in which each element is another one-dimensional array.

Description

8.2.3 Ragged Arrays

Each row in a two-dimensional array is itself an array. Thus, the rows can have different lengths. An array of this kind is known as a ragged array. Here is an example of creating a ragged array:

ragged array

[image: A diagram of a ragged array.]

Description

As you can see, triangleArray[0].length is 5, triangleArray[1].length is 4, triangleArray[2].length is 3, triangleArray[3].length is 2, and triangle−Array[4].length is 1.

If you don’t know the values in a ragged array in advance, but do know the sizes—say, the same as in the preceding figure—you can create a ragged array using the following syntax:

int[][] triangleArray = new int[5][];
triangleArray[0] = new int[5];
triangleArray[1] = new int[4];
triangleArray[2] = new int[3];
triangleArray[3] = new int[2];
triangleArray[4] = new int[1];

You can now assign values to the array. For example,

triangleArray[0][3] = 4;
triangleArray[4][0] = 5;

 Note

The syntax new int[5][] for creating an array requires the first index to be specified. The syntax new int[][] would be wrong.

	8.2.1 Declare an array reference variable for a two-dimensional array of int values, create a 4-by-5 int matrix, and assign it to the variable.

	8.2.2 Can the rows in a two-dimensional array have different lengths?

	8.2.3 What is the output of the following code?

int[][] array = new int[5][6];
int[] x = {1, 2};
array[0] = x;
System.out.println("array[0][1] is " + array[0][1]);

	8.2.4 Which of the following statements are valid?

int[][] r = new int[2];
int[] x = new int[];
int[][] y = new int[3][];
int[][] z = {{1, 2}};
int[][] m = {{1, 2}, {2, 3}};
int[][] n = {{1, 2}, {2, 3}, };

8.3 Processing Two-Dimensional Arrays

	Nested for loops are often used to process a two-dimensional array.

Suppose an array matrix is created as follows:

int[][] matrix = new int[10][10];

The following are some examples of processing two-dimensional arrays.

	Initializing arrays with input values. The following loop initializes the array with user input values:

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.println("Enter " + matrix.length + " rows and " +
 matrix[0].length + " columns: ");
for (int row = 0; row < matrix.length; row++) {
 for (int column = 0; column < matrix[row].length; column++) {
 matrix[row][column] = input.nextInt();
 }
}

	Initializing arrays with random values. The following loop initializes the array with random values between 0 and 99:

for (int row = 0; row < matrix.length; row++) {
 for (int column = 0; column < matrix[row].length; column++) {
 matrix[row][column] = (int)(Math.random() * 100);
 }
}

	Printing arrays. To print a two-dimensional array, you have to print each element in the array using a loop like the following loop:

for (int row = 0; row < matrix.length; row++) {
 for (int column = 0; column < matrix[row].length; column++) {
 System.out.print(matrix[row][column] + " ");
 }
 System.out.println();
}

	Summing all elements. Use a variable named total to store the sum. Initially total is 0. Add each element in the array to total using a loop like this:

int total = 0;
for (int row = 0; row < matrix.length; row++) {
 for (int column = 0; column < matrix[row].length; column++) {
 total += matrix[row][column];
 }
}

	Summing elements by column. For each column, use a variable named total to store its sum. Add each element in the column to total using a loop like this:

for (int column = 0; column < matrix[0].length; column++) {
 int total = 0;
 for (int row = 0; row < matrix.length; row++)
 total += matrix[row][column];
 System.out.println("Sum for column " + column + " is "
 + total);
}

Find the row with the largest sum

	Which row has the largest sum? Use variables maxRow and indexOfMaxRow to track the largest sum and index of the row. For each row, compute its sum and update maxRow and indexOfMaxRow if the new sum is greater.

int maxRow = 0;
int indexOfMaxRow = 0;
// Get sum of the first row in maxRow
for (int column = 0; column < matrix[0].length; column++) {
 maxRow += matrix[0][column];
}
for (int row = 1; row < matrix.length; row++) {
 int totalOfThisRow = 0;
 for (int column = 0; column < matrix[row].length; column++)
 totalOfThisRow += matrix[row][column];
 if (totalOfThisRow > maxRow) {
 maxRow = totalOfThisRow;
 indexOfMaxRow = row;
 }
}
System.out.println("Row " + indexOfMaxRow
 + " has the maximum sum of " + maxRow);

	Random shuffling. Shuffling the elements in a one-dimensional array was introduced in Section 7.2.6. How do you shuffle all the elements in a two-dimensional array? To accomplish this, for each element matrix[i][j], randomly generate indices i1 and j1 and swap matrix[i][j] with matrix[i1][j1], as follows:

for (int i = 0; i < matrix.length; i++) {
 for (int j = 0; j < matrix[i].length; j++) {
 int i1 = (int)(Math.random() * matrix.length);
 int j1 = (int)(Math.random() * matrix[i].length);
 // Swap matrix[i][j] with matrix[i1][j1]
 int temp = matrix[i][j];
 matrix[i][j] = matrix[i1][j1];
 matrix[i1][j1] = temp;
 }
}

	8.3.1 Show the output of the following code:

int[][] array = {{1, 2}, {3, 4}, {5, 6}};
for (int i = array.length − 1; i >= 0; i——) {
 for (int j = array[i].length − 1; j >= 0; j——)
 System.out.print(array[i][j] + " ");
 System.out.println();
}

	8.3.2 Show the output of the following code:

int[][] array = {{1, 2}, {3, 4}, {5, 6}};
int sum = 0;
for (int i = 0; i < array.length; i++)
 sum += array[i][0];
System.out.println(sum);

8.4 Passing Two-Dimensional Arrays to Methods

	When passing a two-dimensional array to a method, the reference of the array is passed to the method.

You can pass a two-dimensional array to a method just as you pass a one-dimensional array. You can also return an array from a method. Listing 8.1 gives an example with two methods. The first method, getArray(), returns a two-dimensional array and the second method, sum(int[][] m), returns the sum of all the elements in a matrix.

Listing 8.1 PassTwoDimensionalArray.java

 1 import java.util.Scanner;
 2
 3 public class PassTwoDimensionalArray {
 4 public static void main(String[] args) {
get array 5 int[][] m = getArray(); // Get an array
 6
 7 // Display sum of elements
pass array 8 System.out.println("\nSum of all elements is " + sum(m));
 9 }
 10
getArray method 11 public static int[][] getArray() {
 12 // Create a Scanner
 13 Scanner input = new Scanner(System.in);
 14
 15 // Enter array values
 16 int[][] m = new int[3][4];
 17 System.out.println("Enter " + m.length + " rows and "
 18 + m[0].length + " columns: ");
 19 for (int i = 0; i < m.length; i++)
 20 for (int j = 0; j < m[i].length; j++)
 21 m[i][j] = input.nextInt();
 22
return array 23 return m;
 24 }
 25
sum method 26 public static int sum(int[][] m) {
 27 int total = 0;
 28 for (int row = 0; row < m.length; row++) {
 29 for (int column = 0; column < m[row].length; column++) {
 30 total += m[row][column];
 31 }
 32 }
 33
 34 return total;
 35 }
 36 }

Enter 3 rows and 4 columns:
1 2 3 4
5 6 7 8
9 10 11 12
Sum of all elements is 78

The method getArray prompts the user to enter values for the array (lines 11–24) and returns the array (line 23).

The method sum (lines 26–35) has a two-dimensional array argument. You can obtain the number of rows using m.length (line 28), and the number of columns in a specified row using m[row].length (line 29).

	8.4.1 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 int[][] array = {{1, 2, 3, 4}, {5, 6, 7, 8}};
 System.out.println(m1(array)[0]);
 System.out.println(m1(array)[1]);
 }
 public static int[] m1(int[][] m) {
 int[] result = new int[2];
 result[0] = m.length;
 result[1] = m[0].length;
 return result;
 }
}

8.5 Case Study: Grading a Multiple-Choice Test

	The problem is to write a program that will grade multiple-choice tests.

Grade multiple-choice test

Suppose you need to write a program that grades multiple-choice tests. Assume there are eight students and ten questions, and the answers are stored in a two-dimensional array. Each row records a student’s answers to the questions, as shown in the following array:

Students’ Answers to the Questions:

	
	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	Student 0

	A

	B

	A

	C

	C

	D

	E

	E

	A

	D

	Student 1

	D

	B

	A

	B

	C

	A

	E

	E

	A

	D

	Student 2

	E

	D

	D

	A

	C

	B

	E

	E

	A

	D

	Student 3

	C

	B

	A

	E

	D

	C

	E

	E

	A

	D

	Student 4

	A

	B

	D

	C

	C

	D

	E

	E

	A

	D

	Student 5

	B

	B

	E

	C

	C

	D

	E

	E

	A

	D

	Student 6

	B

	B

	A

	C

	C

	D

	E

	E

	A

	D

	Student 7

	E

	B

	E

	C

	C

	D

	E

	E

	A

	D

The key is stored in a one-dimensional array:

	Key to the Questions:

	
	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	Key

	D

	B

	D

	C

	C

	D

	A

	E

	A

	D

Your program grades the test and displays the result. It compares each student’s answers with the key, counts the number of correct answers, and displays it. Listing 8.2 gives the program.

Listing 8.2 GradeExam.java

 1 public class GradeExam {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Students' answers to the questions
2-D array 5 char[][] answers = {
 6 {'A', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
 7 {'D', 'B', 'A', 'B', 'C', 'A', 'E', 'E', 'A', 'D'},
 8 {'E', 'D', 'D', 'A', 'C', 'B', 'E', 'E', 'A', 'D'},
 9 {'C', 'B', 'A', 'E', 'D', 'C', 'E', 'E', 'A', 'D'},
 10 {'A', 'B', 'D', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
 11 {'B', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
 12 {'B', 'B', 'A', 'C', 'C', 'D', 'E', 'E', 'A', 'D'},
 13 {'E', 'B', 'E', 'C', 'C', 'D', 'E', 'E', 'A', 'D'}};
 14
 15 // Key to the questions
1-D array 16 char[] keys = {'D', 'B', 'D', 'C', 'C', 'D', 'A', 'E', 'A', 'D'};
 17
 18 // Grade all answers
 19 for (int i = 0; i < answers.length; i++) {
 20 // Grade one student
 21 int correctCount = 0;
 22 for (int j = 0; j < answers[i].length; j++) {
compare with key 23 if (answers[i][j] == keys[j])
 24 correctCount++;
 25 }
 26
 27 System.out.println("Student " + i + "'s correct count is " +
 28 correctCount);
 29 }
 30 }
 31 }

Student 0's correct count is 7
Student 1's correct count is 6
Student 2's correct count is 5
Student 3's correct count is 4
Student 4's correct count is 8
Student 5's correct count is 7
Student 6's correct count is 7
Student 7's correct count is 7

The statement in lines 5–13 declares, creates, and initializes a two-dimensional array of characters and assigns the reference to answers of the char[][] type.

The statement in line 16 declares, creates, and initializes an array of char values and assigns the reference to keys of the char[] type.

Each row in the array answers stores a student’s answer, which is graded by comparing it with the key in the array keys. The result is displayed immediately after a student's answer is graded.

		8.5.1	How do you modify the code so it also displays the highest count and the student with the highest count?

8.6 Case Study: Finding the Closest Pair

	This section presents a geometric problem for finding the closest pair of points.

closest-pair animation on the Companion Website

Given a set of points, the closest-pair problem is to find the two points that are nearest to each other. In Figure 8.3, for example, points (1, 1) and (2, 0.5) are closest to each other. There are several ways to solve this problem. An intuitive approach is to compute the distances between all pairs of points and find the one with the minimum distance, as implemented in Listing 8.3.

[image: 8 points are plotted on an x y plane, at coordinates provided in an array.]

Figure 8.3

Points can be represented in a two-dimensional array.

Description

Listing 8.3 FindNearestPoints.java

			 1 import java.util.Scanner;
			 2
			 3 public class FindNearestPoints {
			 4 public static void main(String[] args) {
			 5 Scanner input = new Scanner(System.in);
			 6 System.out.print("Enter the number of points: ");
number of points 7 int numberOfPoints = input.nextInt();
			 8
			 9 // Create an array to store points
2-D array 10 double[][] points = new double[numberOfPoints][2];
			 11 System.out.print("Enter " + numberOfPoints + " points: ");
read points 12 for (int i = 0; i < points.length; i++) {
			 13 points[i][0] = input.nextDouble();
			 14 points[i][1] = input.nextDouble();
			 15 }
			 16
			 17 // p1 and p2 are the indices in the points' array
track two points 18 int p1 = 0, p2 = 1; // Initial two points
track shortestDistance 19 double shortestDistance = distance(points[p1][0], points[p1][1],
			 20 points[p2][0], points[p2][1]); // Initialize shortestDistance
			 21
			 22 // Compute distance for every two points
for each point i 23 for (int i = 0; i < points.length; i++) {
for each point j 24 for (int j = i + 1; j < points.length; j++) {
distance between i and j 25 double distance = distance(points[i][0], points[i][1],
distance between two points 26 points[j][0], points[j][1]); // Find distance
			 27
			 28 if (shortestDistance > distance) {
			 29 p1 = i; // Update p1
			 30 p2 = j; // Update p2
update shortestDistance 31 shortestDistance = distance; // Update shortestDistance
			 32 }
			 33 }
			 34 }
			 35
			 36 // Display result
			 37 System.out.println("The closest two points are " +
			 38 "(" + points[p1][0] + ", " + points[p1][1] + ") and (" +
			 39 points[p2][0] + ", " + points[p2][1] + ")");
			 40 }
			 41
			 42 /** Compute the distance between two points (x1, y1) and (x2, y2)*/
			 43 public static double distance(
			 44 double x1, double y1, double x2, double y2) {
			 45 return Math.sqrt((x2 − x1) * (x2 − x1) + (y2 − y1) * (y2 − y1));
			 46 }
			 47 }

Enter the number of points: 8
Enter 8 points: −1 3 −1 −1 1 1 2 0.5 2 −1 3 3 4 2 4 −0.5
The closest two points are (1, 1) and (2, 0.5)

The program prompts the user to enter the number of points (lines 6 and 7). The points are read from the console and stored in a two-dimensional array named points (lines 12–15). The program uses the variable shortestDistance (line 19) to store the distance between the two nearest points, and the indices of these two points in the points array are stored in p1 and p2 (line 18).

For each point at index i, the program computes the distance between points[i] and points[j] for all j > i (lines 23–34). Whenever a shorter distance is found, the variable shortestDistance and p1 and p2 are updated (lines 28–32).

The distance between two points (x1, y1) and (x2, y2) can be computed using the formula (x2−x1)2+(y2−y1)2 (lines 43–46).

The program assumes the plane has at least two points. You can easily modify the program to handle the case if the plane has zero or one point.

Note that there might be more than one closest pair of points with the same minimum distance. The program finds one such pair. You may modify the program to find all closest pairs in Programming Exercise 8.8.

multiple closest pairs

 Tip

It is cumbersome to enter all points from the keyboard. You may store the input in a file, say FindNearestPoints.txt, and run the program using the following command:

java FindNearestPoints < FindNearestPoints.txt

input file

	8.6.1 What happens if the input has only one point?

8.7 Case Study: Sudoku

	The problem is to check whether a given Sudoku solution is correct.

Sudoku

This section presents an interesting problem of a sort that appears in the newspaper every day. It is a number-placement puzzle, commonly known as Sudoku. This is a very challenging problem. To make it accessible to the novice, this section presents a simplified version of the Sudoku problem, which is to verify whether a Sudoku solution is correct. The complete program for finding a Sudoku solution is presented in Supplement VI.C.

Sudoku is a 9×9 grid divided into smaller 3×3 boxes (also called regions or blocks), as shown in Figure 8.4a. Some cells, called fixed cells, are populated with numbers from 1 to 9. The objective is to fill the empty cells, also called free cells, with the numbers 1 to 9 so every row, every column, and every 3×3 box contains the numbers 1 to 9, as shown in Figure 8.4b.

fixed cells

free cells

[image: Diagrams ay and b show a Sudoku puzzle, and its solution, respectively.]

Figure 8.4

The Sudoku puzzle in (a) is solved in (b).

Description

For convenience, we use value 0 to indicate a free cell, as shown in Figure 8.5a. The grid can be naturally represented using a two-dimensional array, as shown in Figure 8.5b.

representing a grid

[image: Diagrams ay and b show a 9 by 9 grid, and code for an array to represent the grid.]

Figure 8.5

A grid can be represented using a two-dimensional array.

Description

To find a solution for the puzzle, we must replace each 0 in the grid with an appropriate number from 1 to 9. For the solution to the puzzle in Figure 8.5, the grid should be as shown in Figure 8.6.

Once a solution to a Sudoku puzzle is found, how do you verify that it is correct? Here are two approaches:

	Check if every row has numbers from 1 to 9, every column has numbers from 1 to 9, and every small box has numbers from 1 to 9.

	Check each cell. Each cell must be a number from 1 to 9 and the cell must be unique on every row, every column, and every small box.

[image: A code diagram shows a solution for a Sudoku puzzle.]

Figure 8.6

A solution is stored in grid.

Description

The program in Listing 8.4 prompts the user to enter a solution and reports whether it is valid. We use the second approach in the program to check whether the solution is correct.

Listing 8.4 CheckSudokuSolution.java

 1 import java.util.Scanner;
 2
 3 public class CheckSudokuSolution {
 4 public static void main(String[] args) {
 5 // Read a Sudoku solution
read input 6 int[][] grid = readASolution();
 7
solution valid? 8 System.out.println(isValid(grid) ? "Valid solution" :
 9 "Invalid solution");
 10 }
 11
 12 /** Read a Sudoku solution from the console */
read solution 13 public static int[][] readASolution() {
 14 // Create a Scanner
 15 Scanner input = new Scanner(System.in);
 16
 17 System.out.println("Enter a Sudoku puzzle solution:");
 18 int[][] grid = new int[9][9];
 19 for (int i = 0; i < 9; i++)
 20 for (int j = 0; j < 9; j++)
 21 grid[i][j] = input.nextInt();
 22
 23 return grid;
 24 }
 25
 26 /** Check whether a solution is valid */
check solution 27 public static boolean isValid(int[][] grid) {
 28 for (int i = 0; i < 9; i++)
 29 for (int j = 0; j < 9; j++)
 30 if (grid[i][j] < 1 || grid[i][j] > 9
 31 || !isValid(i, j, grid))
 32 return false;
 33 return true; // The solution is valid
 34 }
 35
 36 /** Check whether grid[i][j] is valid in the grid */
 37 public static boolean isValid(int i, int j, int[][] grid) {
 38 // Check whether grid[i][j] is unique in i's row
check rows 39 for (int column = 0; column < 9; column++)
 40 if (column != j && grid[i][column] == grid[i][j])
 41 return false;
 42
 43 // Check whether grid[i][j] is unique in j's column
check columns 44 for (int row = 0; row < 9; row++)
 45 if (row != i && grid[row][j] == grid[i][j])
 46 return false;
 47
 48 // Check whether grid[i][j] is unique in the 3−by−3 box
check small boxes 49 for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)
 50 for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)
 51 if (!(row == i && col == j) && grid[row][col] == grid[i][j])
 52 return false;
 53
 54 return true; // The current value at grid[i][j] is valid
 55 }
 56 }

Enter a Sudoku puzzle solution:
9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3
Valid solution

The program invokes the readASolution() method (line 6) to read a Sudoku solution and return a two-dimensional array representing a Sudoku grid.

The isValid(grid) method checks whether the values in the grid are valid by verifying that each value is between 1 and 9, and that each value is valid in the grid (lines 27–34).

isValid method

The isValid(i, j, grid) method checks whether the value at grid[i][j] is valid. It checks whether grid[i][j] appears more than once in row i (lines 39–41), in column j (lines 44–46), and in the 3×3
 box (lines 49–52).

overloaded isValid method

How do you locate all the cells in the same box? For any grid[i][j], the starting cell of the 3×3 box that contains it is grid[(i / 3) * 3][(j / 3) * 3], as illustrated in Figure 8.7.

[image: A diagram shows the syntax for different areas of a 9 by 9 grid.]

Figure 8.7

The location of the first cell in a 3×3 box determines the locations of other cells in the box.

Description

With this observation, you can easily identify all the cells in the box. For instance, if grid[r][c] is the starting cell of a 3×3 box, the cells in the box can be traversed in a nested loop as follows:

// Get all cells in a 3−by−3 box starting at grid[r][c]
for (int row = r; row < r + 3; row++)
 for (int col = c; col < c + 3; col++)
 // grid[row][col] is in the box

It is cumbersome to enter 81 numbers from the console. When you test the program, you may store the input in a file, say CheckSudokuSolution.txt (see liveexample.pearsoncmg.com/data/CheckSudokuSolution.txt) and run the program using the following command:

input file

java CheckSudokuSolution < CheckSudokuSolution.txt

	8.7.1 What happens if the code in line 51 in Listing 8.4 is changed to

if (row != i && col != j && grid[row][col] == grid[i][j])

8.8 Multidimensional Arrays

	A two-dimensional array is an array of one-dimensional arrays, and a three-dimensional array is an array of two-dimensional arrays.

In the preceding section, you used a two-dimensional array to represent a matrix or a table. Occasionally, you will need to represent n-dimensional data structures. In Java, you can create n-dimensional arrays for any positive integer n.

The way to declare two-dimensional array variables and create two-dimensional arrays can be generalized to declare n-dimensional array variables and create n-dimensional arrays for n >= 3.
 For example, you may use a three-dimensional array to store exam scores for a class of six students with five exams, and each exam has two parts (multiple-choice and essay type questions). The following syntax declares a three-dimensional array variable scores, creates an array, and assigns its reference to scores.

double[][][] scores = new double[6][5][2];

You can also use the array initializer to create and initialize the array as follows:

double[][][] scores = {
 {{7.5, 20.5}, {9.0, 22.5}, {15, 33.5}, {13, 21.5}, {15, 2.5}},
 {{4.5, 21.5}, {9.0, 22.5}, {15, 34.5}, {12, 20.5}, {14, 9.5}},
 {{6.5, 30.5}, {9.4, 10.5}, {11, 33.5}, {11, 23.5}, {10, 2.5}},
 {{6.5, 23.5}, {9.4, 32.5}, {13, 34.5}, {11, 20.5}, {16, 7.5}},
 {{8.5, 26.5}, {9.4, 52.5}, {13, 36.5}, {13, 24.5}, {16, 2.5}},
 {{9.5, 20.5}, {9.4, 42.5}, {13, 31.5}, {12, 20.5}, {16, 6.5}}};

scores[0][1][0] refers to the multiple-choice score for the first student’s second exam, which is 9.0. scores[0][1][1] refers to the essay score for the first student’s second exam, which is 22.5. This is depicted in the following figure:

[image: In the syntax scores, opening bracket, i, closing bracket, opening bracket, j, closing bracket, opening bracket, k, closing bracket, the values, i, j, and k, respectively indicate, which student, which exam, and a multiple-choice or essay score.]

A multidimensional array is actually an array in which each element is another array. A three-dimensional array is an array of two-dimensional arrays. A two-dimensional array is an array of one-dimensional arrays. For example, suppose that x = new int[2][2][5] and x[0] and x[1] are two-dimensional arrays. x[0][0], x[0][1], x[1][0], and x[1][1] are one-dimensional arrays and each contains five elements. x.length is 2, x[0].length and x[1].length are 2, and x[0][0].length, x[0][1].length, x[1][0].length, and x[1][1].length are 5.

8.8.1 Case Study: Daily Temperature and Humidity

Suppose a meteorology station records the temperature and humidity every hour of every day, and stores the data for the past 10 days in a text file named Weather.txt (see liveexample.pearsoncmg.com/data/Weather.txt). Each line of the file consists of four numbers that indicate the day, hour, temperature, and humidity. The contents of the file may look like those in (a).

[image: Figures ay and b show truncated versions of the data output.]

Description

Note the lines in the file are not necessarily in increasing order of day and hour. For example, the file may appear as shown in (b).

Your task is to write a program that calculates the average daily temperature and humidity for the 10 days. You can use the input redirection to read the file and store the data in a three-dimensional array named data. The first index of data ranges from 0 to 9 and represents 10 days, the second index ranges from 0 to 23 and represents 24 hours, and the third index ranges from 0 to 1 and represents temperature and humidity, as depicted in the following figure:

[image: In the syntax, data, opening bracket, i, closing bracket, opening bracket, j, closing bracket, opening bracket, k, closing bracket, the values, i, j, and k, respectively indicate, which day, which hour, and temperature or humidity.]

Note the days are numbered from 1 to 10 and the hours from 1 to 24 in the file. Because the array index starts from 0, data[0][0][0] stores the temperature in day 1 at hour 1 and data[9][23][1] stores the humidity in day 10 at hour 24.

The program is given in Listing 8.5.

Listing 8.5 Weather.java

 1 import java.util.Scanner;
 2
 3 public class Weather {
 4 public static void main(String[] args) {
 5 final int NUMBER_OF_DAYS = 10;
 6 final int NUMBER_OF_HOURS = 24;
 7 double[][][] data
three-dimensional array 8 = new double[NUMBER_OF_DAYS][NUMBER_OF_HOURS][2];
 9
 10 Scanner input = new Scanner(System.in);
 11 // Read input using input redirection from a file
 12 for (int k = 0; k < NUMBER_OF_DAYS * NUMBER_OF_HOURS; k++) {
 13 int day = input.nextInt();
 14 int hour = input.nextInt();
 15 double temperature = input.nextDouble();
 16 double humidity = input.nextDouble();
 17 data[day − 1][hour − 1][0] = temperature;
 18 data[day − 1][hour − 1][1] = humidity;
 19 }
 20
 21 // Find the average daily temperature and humidity
 22 for (int i = 0; i < NUMBER_OF_DAYS; i++) {
 23 double dailyTemperatureTotal = 0, dailyHumidityTotal = 0;
 24 for (int j = 0; j < NUMBER_OF_HOURS; j++) {
 25 dailyTemperatureTotal += data[i][j][0];
 26 dailyHumidityTotal += data[i][j][1];
 27 }
 28
 29 // Display result
 30 System.out.println("Day " + i + "'s average temperature is "
 31 + dailyTemperatureTotal / NUMBER_OF_HOURS);
 32 System.out.println("Day " + i + "'s average humidity is "
 33 + dailyHumidityTotal / NUMBER_OF_HOURS);
 34 }
 35 }
 36 }

Day 0's average temperature is 77.7708
Day 0's average humidity is 0.929583
Day 1's average temperature is 77.3125
Day 1's average humidity is 0.929583
…
Day 9's average temperature is 79.3542
Day 9's average humidity is 0.9125

You can use the following command to run the program:

java Weather < Weather.txt

A three-dimensional array for storing temperature and humidity is created in line 8. The loop in lines 12–19 reads the input to the array. You can enter the input from the keyboard, but doing so will be awkward. For convenience, we store the data in a file and use input redirection to read the data from the file. The loop in lines 24–27 adds all temperatures for each hour in a day to dailyTemperatureTotal, and all humidity for each hour to dailyHumidityTotal. The average daily temperature and humidity are displayed in lines 30–33.

8.8.2 Case Study: Guessing Birthdays

Listing 4.3, GuessBirthday.java, gives a program that guesses a birthday. The program can be simplified by storing the numbers in five sets in a three-dimensional array and it prompts the user for the answers using a loop, as given in Listing 8.6. The sample run of the program can be the same as given in Listing 4.3.

Listing 8.6 GuessBirthdayUsingArray.java

 1 import java.util.Scanner;
 2
 3 public class GuessBirthdayUsingArray {
 4 public static void main(String[] args) {
 5 int day = 0; // Day to be determined
 6 int answer;
 7
three-dimensional array 8 int[][][] dates = {
 9 {{ 1, 3, 5, 7},
 10 { 9, 11, 13, 15},
 11 {17, 19, 21, 23},
 12 {25, 27, 29, 31}},
 13 {{ 2, 3, 6, 7},
 14 {10, 11, 14, 15},
 15 {18, 19, 22, 23},
 16 {26, 27, 30, 31}},
 17 {{ 4, 5, 6, 7},
 18 {12, 13, 14, 15}},
 19 {20, 21, 22, 23},
 20 {28, 29, 30, 31}},
 21 {{ 8, 9, 10, 11},
 22 {12, 13, 14, 15},
 23 {24, 25, 26, 27},
 24 {28, 29, 30, 31}},
 25 {{16, 17, 18, 19},
 26 {20, 21, 22, 23},
 27 {24, 25, 26, 27},
 28 {28, 29, 30, 31}}};
 29
 30 // Create a Scanner
 31 Scanner input = new Scanner(System.in);
 32
 33 for (int i = 0; i < 5; i++) {
Set i 34 System.out.println("Is your birthday in Set" + (i + 1) + "?");
 35 for (int j = 0; j < 4; j++) {
 36 for (int k = 0; k < 4; k++)
 37 System.out.printf("%4d", dates[i][j][k]);
 38 System.out.println();
 39 }
 40
 41 System.out.print("\nEnter 0 for No and 1 for Yes: ");
 42 answer = input.nextInt();
 43
 44 if (answer == 1)
add to day 45 day += dates[i][0][0];
 46 }
 47
 48 System.out.println("Your birthday is " + day);
 49 }
 50 }

A three-dimensional array dates is created in lines 8–28. This array stores five sets of numbers. Each set is a 4-by-4 two-dimensional array.

The loop starting from line 33 displays the numbers in each set and prompts the user to answer whether the birthday is in the set (lines 41 and 42). If the day is in the set, the first number (dates[i][0][0]) in the set is added to variable day (line 45).

	8.8.1 Declare an array variable for a three-dimensional array, create a 4×6×5
 int array, and assign its reference to the variable.

	8.8.2 Assume char[][][] x = new char[12][5][2], how many elements are in the array? What are x.length, x[2].length, and x[0][0].length?

	8.8.3 Show the output of the following code:

int[][][] array = {{{1, 2}, {3, 4}}, {{5, 6},{7, 8}}};
System.out.println(array[0][0][0]);
System.out.println(array[1][1][1]);

Chapter Summary

	A two-dimensional array can be used to store a table.

	A variable for two-dimensional arrays can be declared using the syntax: ­elementType[][] arrayVar.

	A two-dimensional array can be created using the syntax: new ­elementType[ROW_SIZE][COLUMN_SIZE].

	Each element in a two-dimensional array is represented using the syntax: arrayVar[rowIndex][columnIndex].

	You can create and initialize a two-dimensional array using an array initializer with the syntax: elementType[][] arrayVar = {{row values}, …, {row values}}.

	You can use arrays of arrays to form multidimensional arrays. For example, a variable for three-dimensional arrays can be declared as elementType[][][] arrayVar and a three-dimensional array can be created using new elementType[size1][size2] [size3].

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

		*8.1	(Sum elements column by column) Write a method that returns the sum of all the elements in a specified column in a matrix using the following header:

public static double sumColumn(double[][] m, int columnIndex)

Write a test program that reads a 3-by-4 matrix and displays the sum of each column. Here is a sample run:

Enter a 3−by−4 matrix row by row:
1.5 2 3 4
5.5 6 7 8
9.5 1 3 1
Sum of the elements at column 0 is 16.5
Sum of the elements at column 1 is 9.0
Sum of the elements at column 2 is 13.0
Sum of the elements at column 3 is 13.0

		*8.2	(Sum the major diagonal in a matrix) Write a method that sums all the numbers in the major diagonal in an n×n matrix of double values using the following header:

public static double sumMajorDiagonal(double[][] m)

Write a test program that reads a 4-by-4 matrix and displays the sum of all its elements on the major diagonal. Here is a sample run:

Enter a 4−by−4 matrix row by row:
1 2 3 4.0
5 6.5 7 8
9 10 11 12
13 14 15 16
Sum of the elements in the major diagonal is 34.5

		*8.3	(Sort students on grades) Rewrite Listing 8.2, GradeExam.java, to display the students in increasing order of the number of correct answers.

		**8.4	(Compute the weekly hours for each employee) Suppose the weekly hours for all employees are stored in a two-dimensional array. Each row records an employee’s seven-day work hours with seven columns. For example, the following array stores the work hours for eight employees. Write a program that displays employees and their total hours in decreasing order of the total hours.

	

	Su

	M

	T

	W

	Th

	F

	Sa

	Employee 0

	2

	4

	3

	4

	5

	8

	8

	Employee 1

	7

	3

	4

	3

	3

	4

	4

	Employee 2

	3

	3

	4

	3

	3

	2

	2

	Employee 3

	9

	3

	4

	7

	3

	4

	1

	Employee 4

	3

	5

	4

	3

	6

	3

	8

	Employee 5

	3

	4

	4

	6

	3

	4

	4

	Employee 6

	3

	7

	4

	8

	3

	8

	4

	Employee 7

	6

	3

	5

	9

	2

	7

	9

	8.5 (Algebra: add two matrices) Write a method to add two matrices. The header of the method is as follows:

public static double[][] addMatrix(double[][] a, double[][] b)

In order to be added, the two matrices must have the same dimensions and the same or compatible types of elements. Let c be the resulting matrix. Each element cij is aij+bij. For example, for two 3×3 matrices a and b, c is

(a11a12a13a21a22a23a31a32a33) + (b11b12b13b21b22b23b31b32b33) = (a11+b11a12+b12a13+b13a21+b21a22+b22a23+b23a31+b31a32+b32a33+b33)

Write a test program that prompts the user to enter two 3×3 matrices and displays their sum. Here is a sample run:

Enter matrix1: 1 2 3 4 5 6 7 8 9
Enter matrix2: 0 2 4 1 4.5 2.2 1.1 4.3 5.2
The matrices are added as follows
 1.0 2.0 3.0 0.0 2.0 4.0 1.0 4.0 7.0
 4.0 5.0 6.0 + 1.0 4.5 2.2 = 5.0 9.5 8.2
 7.0 8.0 9.0 1.1 4.3 5.2 8.1 12.3 14.2

		**8.6	(Algebra: multiply two matrices) Write a method to multiply two matrices. The header of the method is:

Multiply two matrices

public static double[][]
 multiplyMatrix(double[][] a, double[][] b)

To multiply matrix a by matrix b, the number of columns in a must be the same as the number of rows in b, and the two matrices must have elements of the same or compatible types. Let c be the result of the multiplication. Assume the column size of matrix a is n. Each element cij is ai1×b1j+ai2×b2j+···+ain×bnj. For example, for two 3×3 matrices a and b, c is

(a11a12a13a21a22a23a31a32a33)×(b11b12b13b21b22b23b31b32b33) = (c11c12c13c21c22c23c31c32c33)

where cij=ai1×b1j+ai2×b2j+ai3×b3j.

Write a test program that prompts the user to enter two 3×3 matrices and ­displays their product. Here is a sample run:

Enter matrix1: 1 2 3 4 5 6 7 8 9
Enter matrix2: 0 2 4 1 4.5 2.2 1.1 4.3 5.2
The multiplication of the matrices is
1 2 3 0 2.0 4.0 5.3 23.9 24
4 5 6 * 1 4.5 2.2 = 11.6 56.3 58.2
7 8 9 1.1 4.3 5.2 17.9 88.7 92.4

		*8.7	(Points nearest to each other) Listing 8.3 gives a program that finds two points in a two-dimensional space nearest to each other. Revise the program so it finds two points in a three-dimensional space nearest to each other. Use a two-dimensional array to represent the points. Test the program using the following points:

double[][] points = {{−1, 0, 3}, {−1, −1, −1}, {4, 1, 1},
 {2, 0.5, 9}, {3.5, 2, −1}, {3, 1.5, 3}, {−1.5, 4, 2},
 {5.5, 4, −0.5}};

The formula for computing the distance between two points (x1, y1, z1) and (x2, y2, z2) is (x2−x1)2+(y2−y1)2+(z2−z1)2.

		**8.8	(All closest pairs of points) Revise Listing 8.3, FindNearestPoints.java, to display all closest pairs of points with the same minimum distance. Here is a sample run:

Enter the number of points: 8
Enter 8 points: 0 0 1 1 −1 −1 2 2 −2 −2 −3 −3 −4 −4 5 5
The closest two points are (0.0, 0.0) and (1.0, 1.0)
The closest two points are (0.0, 0.0) and (−1.0, −1.0)
The closest two points are (1.0, 1.0) and (2.0, 2.0)
The closest two points are (−1.0, −1.0) and (−2.0, −2.0)
The closest two points are (−2.0, −2.0) and (−3.0, −3.0)
The closest two points are (−3.0, −3.0) and (−4.0, −4.0)
Their distance is 1.4142135623730951

		***8.9	(Game: play a tic-tac-toe game) In a game of tic-tac-toe, two players take turns marking an available cell in a 3×3
 grid with their respective tokens (either X or O). When one player has placed three tokens in a horizontal, vertical, or diagonal row on the grid, the game is over and that player has won. A draw (no winner) occurs when all the cells on the grid have been filled with tokens and neither player has achieved a win. Create a program for playing a tic-tac-toe game.

The program prompts two players to alternately enter an X token and O token. Whenever a token is entered, the program redisplays the board on the console and determines the status of the game (win, draw, or continue). Here is a sample run:

| | | |

| | | |

| | | |

Enter a row (0, 1, or 2) for player X: 1
Enter a column (0, 1, or 2) for player X: 1

| | | |

| | X | |

| | | |

Enter a row (0, 1, or 2) for player O: 1
Enter a column (0, 1, or 2) for player O: 2

| | | |

| | X | O |

| | | |

Enter a row (0, 1, or 2) for player X:
…

| X | | |

| O | X | O |

| | | X |

X player won

		*8.10	(Largest row and column) Write a program that randomly fills in 0s and 1s into a 4-by-4 matrix, prints the matrix, and finds the first row and column with the most 1s. Here is a sample run of the program:

0011
0011
1101
1010
The largest row index: 2
The largest column index: 2

		**8.11	(Game: nine heads and tails) Nine coins are placed in a 3-by-3 matrix with some face up and some face down. You can represent the state of the coins using a 3-by-3 matrix with values 0 (heads) and 1 (tails). Here are some examples:

0 0 0 1 0 1 1 1 0 1 0 1 1 0 0
0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 0 0 1 1 0 0 1 1 0

		Each state can also be represented using a binary number. For example, the preceding matrices correspond to the numbers

000010000 101001100 110100001 101110100 100111110

		There are a total of 512 possibilities, so you can use decimal numbers 0, 1, 2, 3, . . . , and 511 to represent all states of the matrix. Write a program that prompts the user to enter a number between 0 and 511 and displays the corresponding matrix with the characters H and T. Here is a sample run:

Enter a number between 0 and 511: 7
H H H
H H H
T T T

The user entered 7, which corresponds to 000000111. Since 0 stands for H and 1 for T, the output is correct.

	**8.12 (Financial application: compute tax) Rewrite Listing 3.5, ComputeTax.java, using arrays. For each filing status, there are six tax rates. Each rate is applied to a certain amount of taxable income. For example, from the taxable income of $400,000 for a single filer, $8,350 is taxed at 10%, (33,950−8,350)
 at 15%, (82,250−33,950)
 at 25%, (171,550−82,550)
 at 28%, (372,550−82,250)
 at 33%, and (400,000−372,950)

 at 36%. The six rates are the same for all filing statuses, which can be represented in the following array:

double[] rates = {0.10, 0.15, 0.25, 0.28, 0.33, 0.35};

The brackets for each rate for all the filing statuses can be represented in a two-dimensional array as follows:

int[][] brackets = {
{8350, 33950, 82250, 171550, 372950},	// Single filer
{16700, 67900, 137050, 20885, 372950},	// Married jointly
	// −or qualifying widow(er)
{8350, 33950, 68525, 104425, 186475},	// Married separately
{11950, 45500, 117450, 190200, 372950}	// Head of household
};

		Suppose the taxable income is $400,000 for single filers. The tax can be computed as follows:

tax = brackets[0][0] * rates[0] +
 (brackets[0][1] – brackets[0][0]) * rates[1] +
 (brackets[0][2] – brackets[0][1]) * rates[2] +
 (brackets[0][3] – brackets[0][2]) * rates[3] +
 (brackets[0][4] – brackets[0][3]) * rates[4] +
 (400000 – brackets[0][4]) * rates[5];

	*8.13 (Locate the largest element) Write the following method that returns the location of the largest element in a two-dimensional array:

 public static int[] locateLargest(double[][] a)

		The return value is a one-dimensional array that contains two elements. These two elements indicate the row and column indices of the largest element in the two-dimensional array. Write a test program that prompts the user to enter a two-dimensional array and displays the location of the largest element in the array. Here is a sample run:

Enter the number of rows and columns of the array: 3 4
Enter the array:
23.5 35 2 10
4.5 3 45 3.5
35 44 5.5 9.6
The location of the largest element is at (1, 2)

	**8.14 (Explore matrix) Write a program that prompts the user to enter the length of a square matrix, randomly fills in 0s and 1s into the matrix, prints the matrix, and finds the rows, columns, and diagonals with all 0s or 1s. Here is a sample run of the program:

Enter the size for the matrix: 4
0111
0000
0100
1111
All 0s on row 2
All 1s on row 4
No same numbers on a column
No same numbers on the major diagonal
No same numbers on the sub−diagonal

		*8.15	(Geometry: same line?) Programming Exercise 6.39 gives a method for testing whether three points are on the same line.

Write the following method to test whether all the points in the array points are on the same line:

public static boolean sameLine(double[][] points)

		Write a program that prompts the user to enter five points and displays whether they are on the same line. Here are sample runs:

Enter five points: 3.4 2 6.5 9.5 2.3 2.3 5.5 5 −5 4
The five points are not on the same line

Enter five points: 1 1 2 2 3 3 4 4 5 5
The five points are on the same line

		*8.16	(Sort two-dimensional array) Write a method to sort a two-dimensional array using the following header:

public static void sort(int m[][])

		The method performs a primary sort on rows, and a secondary sort on columns. For example, the following array

{{4, 2},{1, 7},{4, 5},{1, 2},{1, 1},{4, 1}}

will be sorted to

{{1, 1},{1, 2},{1, 7},{4, 1},{4, 2},{4, 5}}.

		***8.17	(Financial tsunami) Banks lend money to each other. In tough economic times, if a bank goes bankrupt, it may not be able to pay back the loan. A bank’s total assets are its current balance plus its loans to other banks. The diagram in Figure 8.8 shows five banks. The banks’ current balances are 25, 125, 175, 75, and 181 million dollars, respectively. The directed edge from node 1 to node 2 indicates that bank 1 lends 40 million dollars to bank 2.

[image: A diagram, with 5 nodes and 8 directed edges.]

Figure 8.8

Banks lend money to each other.

Description

If a bank’s total assets are under a certain limit, the bank is unsafe. The money it borrowed cannot be returned to the lender, and the lender cannot count the loan in its total assets. Consequently, the lender may also be unsafe, if its total assets are under the limit. Write a program to find all the unsafe banks. Your program reads the input as follows. It first reads two integers n and limit, where n indicates the number of banks and limit is the minimum total assets for keeping a bank safe. It then reads n lines that describe the information for n banks with IDs from 0 to n−1.

The first number in the line is the bank’s balance, the second number indicates the number of banks that borrowed money from the bank, and the rest are pairs of two numbers. Each pair describes a borrower. The first number in the pair is the borrower’s ID and the second is the amount borrowed. For example, the input for the five banks in Figure 8.8 is as follows (note the limit is 201):

5 201
25 2 1 100.5 4 320.5
125 2 2 40 3 85
175 2 0 125 3 75
75 1 0 125
181 1 2 125

The total assets of bank 3 are (75+125),
 which is under 201, so bank 3 is unsafe. After bank 3 becomes unsafe, the total assets of bank 1 fall below (125+40).
 Thus, bank 1 is also unsafe. The output of the program should be

Unsafe banks are 3 1

(Hint: Use a two-dimensional array borrowers to represent loans. borrowers[i][j] indicates the loan that bank i provides to bank j. Once bank j becomes unsafe, borrowers[i][j] should be set to 0.)

		*8.18	(Shuffle rows) Write a method that shuffles the rows in a two-dimensional int array using the following header:

public static void shuffle(int[][] m)

Write a test program that shuffles the following matrix:

int[][] m = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};

		**8.19	(Pattern recognition: four consecutive equal numbers) Write the following method that tests whether a two-dimensional array has four consecutive numbers of the same value, either horizontally, vertically, or diagonally:

public static boolean isConsecutiveFour(int[][] values)

Write a test program that prompts the user to enter the number of rows and ­columns of a two-dimensional array then the values in the array, and displays true if the array contains four consecutive numbers with the same value. Otherwise, the program displays false. Here are some examples of the true cases:

[image: Four examples of two-dimensional arrays fitting the stated criteria.]

Description

		***8.20	(Game: connect four) Connect four is a two-player board game in which the players alternately drop colored disks into a seven-column, six-row vertically suspended grid, as shown below.

[image: The player using the darker-colored disks has placed a fourth piece in a diagonal row, winning the game.]
The objective of the game is to connect four same-colored disks in a row, a column, or a diagonal before your opponent can do likewise. The program prompts two players to drop a red or yellow disk alternately. In the preceding figure, the red disk is shown in a dark color and the yellow in a light color. Whenever a disk is dropped, the program redisplays the board on the console and determines the status of the game (win, draw, or continue). Here is a sample run:

	| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Drop a red disk at column (0–6): 0
R						

Drop a yellow disk at column (0–6): 3
R			Y			
…						
…						
…						
Drop a yellow disk at column (0–6): 6						
			R			
			Y	R	Y	
		R	Y	Y	Y	Y
R	Y	R	Y	R	R	R

The yellow player won

		*8.21	(Central city) Given a set of cities, the central city is the city that has the shortest total distance to all other cities. Write a program that prompts the user to enter the number of cities and the locations of the cities (coordinates), and finds the central city and its total distance to all other cities.

Enter the number of cities: 5
Enter the coordinates of the cities:
 2.5 5 5.1 3 1 9 5.4 54 5.5 2.1
The central city is at (2.5, 5.0)
The total distance to all other cities is 60.81

	*8.22 (Even number of 1s) Write a program that generates a 6-by-6 two-dimensional matrix filled with 0s and 1s, displays the matrix, and checks if every row and every column have an even number of 1s.

Even number of 1s

		*8.23	(Game: find the flipped cell) Suppose you are given a 6-by-6 matrix filled with 0s and 1s. All rows and all columns have an even number of 1s. Let the user flip one cell (i.e., flip from 1 to 0 or from 0 to 1) and write a program to find which cell was flipped. Your program should prompt the user to enter a 6-by-6 array with 0s and 1s and find the first row r and first column c where the even number of the 1s property is violated (i.e., the number of 1s is not even). The flipped cell is at (r, c). Here is a sample run:

Enter a 6−by−6 matrix row by row:
1 1 1 0 1 1
1 1 1 1 0 0
0 1 0 1 1 1
1 1 1 1 1 1
0 1 1 1 1 0
1 0 0 0 0 1
The flipped cell is at (0, 1)

		*8.24	(Check Sudoku solution) Listing 8.4 checks whether a solution is valid by checking whether every number is valid in the board. Rewrite the program by checking whether every row, every column, and every small box has the numbers 1 to 9.

		*8.25	(Markov matrix) An n×n matrix is called a positive Markov matrix if each element is positive and the sum of the elements in each column is 1. Write the following method to check whether a matrix is a Markov matrix:

public static boolean isMarkovMatrix(double[][] m)

Write a test program that prompts the user to enter a 3×3
 matrix of double values and tests whether it is a Markov matrix. Here are sample runs:

Enter a 3−by−3 matrix row by row:
0.15 0.875 0.375
0.55 0.005 0.225
0.30 0.12 0.4
It is a Markov matrix

Enter a 3−by−3 matrix row by row:
0.95 −0.875 0.375
0.65 0.005 0.225
0.30 0.22 −0.4
It is not a Markov matrix

		*8.26	(Row sorting) Implement the following method to sort the rows in a two-­dimensional array. A new array is returned and the original array is intact.

public static double[][] sortRows(double[][] m)

Write a test program that prompts the user to enter a 3×3 matrix of double values and displays a new row-sorted matrix. Here is a sample run:

Enter a 3−by−3 matrix row by row:
0.15 0.875 0.375
0.55 0.005 0.225
0.30 0.12 0.4
The row–sorted array is
0.15 0.375 0.875
0.005 0.225 0.55
0.12 0.30 0.4

		*8.27	(Column sorting) Implement the following method to sort the columns in a two-dimensional array. A new array is returned and the original array is intact.

public static double[][] sortColumns(double[][] m)

Write a test program that prompts the user to enter a 3×3 matrix of double values and displays a new column-sorted matrix. Here is a sample run:

Enter a 3−by−3 matrix row by row:
0.15 0.875 0.375
0.55 0.005 0.225
0.30 0.12 0.4
The column−sorted array is
0.15 0.0050 0.225
0.3 0.12 0.375
0.55 0.875 0.4

	8.28 (Strictly identical arrays) The two-dimensional arrays m1 and m2 are strictly identical if their corresponding elements are equal. Write a method that returns true if m1 and m2 are strictly identical, using the following header:

public static boolean equals(int[][] m1, int[][] m2)

Write a test program that prompts the user to enter two 3×3 arrays of integers and displays whether the two are strictly identical. Here are the sample runs:

Enter list1: 51 22 25 6 1 4 24 54 6
Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are strictly identical

Enter list1: 51 25 22 6 1 4 24 54 6
Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are not strictly identical

	8.29 (Identical arrays) The two-dimensional arrays m1 and m2 are identical if they have the same contents. Write a method that returns true if m1 and m2 are identical, using the following header:

public static boolean equals(int[][] m1, int[][] m2)

Write a test program that prompts the user to enter two 3×3 arrays of integers and displays whether the two are identical. Here are the sample runs:

Enter list1: 51 25 22 6 1 4 24 54 6
Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are identical

Enter list1: 51 5 22 6 1 4 24 54 6
Enter list2: 51 22 25 6 1 4 24 54 6
The two arrays are not identical

		*8.30	(Algebra: solve linear equations) Write a method that solves the following 2×2 system of linear equations:

a00x+a01y=b0a10x+a11y=b1 x=b0a11−b1a01a00a11−a01a10 y=b1a00−b0a10a00a11−a01a10

		The method header is:

public static double[] linearEquation(double[][] a, double[] b)

The method returns null if a00a11−a01a10
 is 0. Write a test program that prompts the user to enter a00, a01, a10, a11, b0,
 and b1
 and displays the result. If a00a11−a01a10
 is 0, report that “The equation has no solution.” A sample run is similar to Programming Exercise 3.3.

		*8.31	(Geometry: intersecting point) Write a method that returns the intersecting point of two lines. The intersecting point of the two lines can be found by using the formula given in Programming Exercise 3.25. Assume that (x1, y1) and (x2, y2) are the two points on line 1 and (x3, y3) and (x4, y4) are on line 2. The method header is:

public static double[] getIntersectingPoint(double[][] points)

		The points are stored in a 4-by-2 two-dimensional array points with (points [0][0], points[0][1]) for (x1, y1). The method returns the intersecting point or null if the two lines are parallel. Write a program that prompts the user to enter four points and displays the intersecting point. See Programming Exercise 3.25 for a sample run.

		*8.32	(Geometry: area of a triangle) Write a method that returns the area of a triangle using the following header:

public static double getTriangleArea(double[][] points)

		The points are stored in a 3-by-2 two-dimensional array points with points [0][0] and points[0][1] for (x1, y1). The triangle area can be computed using the formula in Programming Exercise 2.19. The method returns 0 if the three points are on the same line. Write a program that prompts the user to enter three points of a triangle and displays the triangle’s area. Here are the sample runs:

Enter x1, y1, x2, y2, x3, y3: 2.5 2 5 −1.0 4.0 2.0
The area of the triangle is 2.25

Enter x1, y1, x2, y2, x3, y3: 2 2 4.5 4.5 6 6
The three points are on the same line

		*8.33 (Geometry: polygon subareas) A convex four-vertex polygon is divided into four triangles, as shown in Figure 8.9.

		Write a program that prompts the user to enter the coordinates of four vertices and displays the areas of the four triangles in increasing order. Here is a sample run:

Enter x1, y1, x2, y2, x3, y3, x4, y4:
 −2.5 2 4 4 3 −2 −2 −3.5
The areas are 6.17 7.96 8.08 10.42

[image: A polygon is divided into other shapes.]

Figure 8.9

A four-vertex polygon is defined by four vertices.

Description

		*8.34	(Geometry: rightmost lowest point) In computational geometry, often you need to find the rightmost lowest point in a set of points. Write the following method that returns the rightmost lowest point in a set of points:

public static double[]
 getRightmostLowestPoint(double[][] points)

		Write a test program that prompts the user to enter the coordinates of six points and displays the rightmost lowest point. Here is a sample run:

Enter 6 points: 1.5 2.5 −3 4.5 5.6 −7 6.5 −7 8 1 10 2.5
The rightmost lowest point is (6.5, −7.0)

	**8.35	(Largest block) Given a square matrix with the elements 0 or 1, write a program to find a maximum square submatrix whose elements are all 1s. Your ­program should prompt the user to enter the number of rows in the matrix. The program then displays the location of the first element in the maximum square submatrix and the number of rows in the submatrix. Here is a sample run:

Enter the number of rows in the matrix: 5
Enter the matrix row by row:
1 0 1 0 1
1 1 1 0 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
The maximum square submatrix is at (2, 2) with size 3

Your program should implement and use the following method to find the maximum square submatrix:

public static int[] findLargestBlock(int[][] m)

The return value is an array that consists of three values. The first two values are the row and column indices for the first element in the submatrix, and the third value is the number of the rows in the submatrix.

		**8.36	(Latin square) A Latin square is an n-by-n array filled with n different Latin letters, each occurring exactly once in each row and once in each column. Write a program that prompts the user to enter the number n and the array of characters, as shown in the sample output, and checks if the input array is a Latin square. The characters are the first n characters starting from A.

Enter number n: 4
Enter 4 rows of letters separated by spaces:
A B C D
B A D C
C D B A
D C A B
The input array is a Latin square

Enter number n: 3
Enter 3 rows of letters separated by spaces:
A F D
Wrong input: the letters must be from A to C

		**8.37	(Guess the capitals) Write a program that repeatedly prompts the user to enter a capital for a state. Upon receiving the user input, the program reports whether the answer is correct. Assume that 50 states and their capitals are stored in a two-dimensional array, as shown in Figure 8.10. The program prompts the user to answer all states’ capitals and displays the total correct count. The user’s answer is not case-sensitive.

[image: The first three 3 rows of the array contain paired values as follows: Alabama, Montgomery; Alaska, Juneau; Arizona, Phoenix.]

Figure 8.10

A two-dimensional array stores states and their capitals.

Here is a sample run:

What is the capital of Alabama? Montogomery
The correct answer should be Montgomery
What is the capital of Alaska? Juneau
Your answer is correct
What is the capital of Arizona? …
…
The correct count is 35

CHAPTER 9 Objects and Classes

Objectives

	To describe objects and classes, and use classes to model objects (§9.2).

	To use UML graphical notation to describe classes and objects (§9.2).

	To demonstrate how to define classes and create objects (§9.3).

	To create objects using constructors (§9.4).

	To access objects via object reference variables (§9.5).

	To define a reference variable using a reference type (§9.5.1).

	To access an object’s data and methods using the object member access operator (.) (§9.5.2).

	To define data fields of reference types and assign default values for an object’s data fields (§9.5.3).

	To distinguish between object reference variables and primitive-data-type variables (§9.5.4).

	To use the Java library classes Date, Random, and Point2D (§9.6).

	To distinguish between instance and static variables and methods (§9.7).

	To define private data fields with appropriate getter and setter methods (§9.8).

	To encapsulate data fields to make classes easy to maintain (§9.9).

	To develop methods with object arguments and differentiate between primitive-type arguments and object-type arguments (§9.10).

	To store and process objects in arrays (§9.11).

	To create immutable objects from immutable classes to protect the contents of objects (§9.12).

	To determine the scope of variables in the context of a class (§9.13).

	To use the keyword this to refer to the calling object itself (§9.14).

9.1 Introduction

	Object-oriented programming enables you to develop large-scale software and GUIs effectively.

Object-oriented programming is essentially a technology for developing reusable software. Having learned the material in the preceding chapters, you are able to solve many programming problems using selections, loops, methods, and arrays. However, these Java features are not sufficient for developing graphical user interfaces and large-scale software systems. Suppose you want to develop a graphical user interface (GUI, pronounced ­goo-ee) as shown in Figure 9.1. How would you program it?

[image: A sample G U I.]
Figure 9.1

The GUI objects are created from classes.

Description

why OOP?

This chapter introduces object-oriented programming, which you can use to develop GUI and large-scale software systems.

9.2 Defining Classes for Objects

	A class defines the properties and behaviors for objects.

Object-oriented programming (OOP) involves programming using objects. An object represents an entity in the real world that can be distinctly identified. For example, a student, a desk, a circle, a button, and even a loan can all be viewed as objects. An object has a unique identity, state, and behavior.

Define classes and objects

object

state of an object

properties

attributes

data fields

behavior

actions

	The state of an object (also known as its properties or attributes) is represented by data fields with their current values. A circle object, for example, has a data field radius, which is the property that characterizes a circle. A rectangle object, for example, has the data fields width and height, which are the properties that characterize a rectangle.

	The behavior of an object (also known as its actions) is defined by methods. To invoke a method on an object is to ask the object to perform an action. For example, you may define methods named getArea() and getPerimeter() for circle objects. A circle object may invoke getArea() to return its area and getPerimeter() to return its perimeter. You may also define the setRadius(radius) method. A circle object can invoke this method to change its radius.

Objects of the same type are defined using a common class. A class is a template, blueprint, or contract that defines what an object’s data fields and methods will be. An object is an instance of a class. You can create many instances of a class. Creating an instance is referred to as instantiation. The terms object and instance are often interchangeable. The relationship between classes and objects is analogous to that between an apple-pie recipe and apple pies: You can make as many apple pies as you want from a single recipe. Figure 9.2 shows a class named Circle and its three objects.

[image: A class template, and three objects.]
Figure 9.2

A class is a template for creating objects.

Description

class

contract

instantiation

instance

A Java class uses variables to define data fields and methods to define actions. In addition, a class provides methods of a special type, known as constructors, which are invoked to create a new object. A constructor can perform any action, but constructors are designed to perform initializing actions, such as initializing the data fields of objects. Figure 9.3 shows an example of defining the class for circle objects.

[image: An annotated code diagram.]
Figure 9.3

A class is a construct that defines objects of the same type.

Description

data field

method

constructors

The Circle class is different from all of the other classes you have seen thus far. It does not have a main method, and therefore cannot be run; it is merely a definition for circle objects. The class that contains the main method will be referred to in this book, for convenience, as the main class.

The illustration of class templates and objects in Figure 9.2 can be standardized using Unified Modeling Language (UML) notation. This notation, as shown in Figure 9.4, is called a UML class diagram, or simply a class diagram. In the class diagram, the data field is denoted as

[image: A U M L class diagram, and three U M L objects.]
Figure 9.4

Classes and objects can be represented using UML notation.

Description

main class

Unified Modeling Language (UML)

class diagram

dataFieldName: dataFieldType

The constructor is denoted as

ClassName(parameterName: parameterType)

The method is denoted as

methodName(parameterName: parameterType): returnType

9.3 Example: Defining Classes and Creating Objects

	Classes are definitions for objects and objects are created from classes.

This section gives two examples of defining classes and uses the classes to create objects. ­Listing 9.1 is a program that defines the Circle class and uses it to create objects. The program constructs three circle objects with radius 1, 25, and 125 and displays the radius and area of each of the three circles. It then changes the radius of the second object to 100 and displays its new radius and area.

Listing 9.1 TestCircle.java

main class 1 public class TestCircle {
 2 /** Main method */
main method 3 public static void main(String[] args) {
 4 // Create a circle with radius 1
create object 5 Circle circle1 = new Circle();
 6 System.out.println("The area of the circle of radius "
 7 + circle1.radius + " is " + circle1.getArea());
 8
 9 // Create a circle with radius 25
create object 10 Circle circle2 = new Circle(25);
 11 System.out.println("The area of the circle of radius "
 12 + circle2.radius + " is " + circle2.getArea());
 13
 14 // Create a circle with radius 125
create object 15 Circle circle3 = new Circle(125);
 16 System.out.println("The area of the circle of radius "
 17 + circle3.radius + " is " + circle3.getArea());
 18
 19 // Modify circle radius
 20 circle2.radius = 100; // or circle2.setRadius(100)
 21 System.out.println("The area of the circle of radius "
 22 + circle2.radius + " is " + circle2.getArea());
 23 }
 24 }
 25
 26 // Define the circle class with two constructors
class Circle 27 class Circle {
data field 28 double radius;
 29
 30 /** Construct a circle with radius 1 */
no-arg constructor 31 Circle() {
 32 radius = 1;
 33 }
 34
 35 /** Construct a circle with a specified radius */
second constructor 36 Circle(double newRadius) {
 37 radius = newRadius;
 38 }
 39
 40 /** Return the area of this circle */
getArea 41 double getArea() {
 42 return radius * radius * Math.PI;
 43 }
 44
 45 /** Return the perimeter of this circle */
getPerimeter 46 double getPerimeter() {
 47 return 2 * radius * Math.PI;
 48 }
 49
 50 /** Set a new radius for this circle */
setRadius 51 void setRadius(double newRadius) {
 52 radius = newRadius;
 53 }
 54 }

		

The area of the circle of radius 1.0 is 3.141592653589793The area of the circle of radius 25.0 is 1963.4954084936207
The area of the circle of radius 125.0 is 49087.385212340516
The area of the circle of radius 100.0 is 31415.926535897932

The program contains two classes. The first of these, TestCircle, is the main class. Its sole purpose is to test the second class, Circle. Such a program that uses the class is often referred to as a client of the class. When you run the program, the Java runtime system invokes the main method in the main class.

client

public class

You can put the two classes into one file, but only one class in the file can be a public class. Furthermore, the public class must have the same name as the file name. Therefore, the file name is TestCircle.java, since TestCircle is public. Each class in the source code is compiled into a .class file. When you compile TestCircle.java, two class files TestCircle.class and Circle.class are generated, as shown in Figure 9.5.

[image: The file, Test Circle dot java, contains code for the public class, Test Circle, and for the class, Circle. This code is compiled by the java compiler, which generates, Test Circle dot class, and Circle dot class.]
Figure 9.5

Each class in the source code file is compiled into a .class file.

The main class contains the main method (line 3) that creates three objects. As in creating an array, the new operator is used to create an object from the constructor: new Circle() creates an object with radius 1 (line 5), new Circle(25) creates an object with radius 25 (line 10), and new Circle(125) creates an object with radius 125 (line 15).

These three objects (referenced by circle1, circle2, and circle3) have different data but the same methods. Therefore, you can compute their respective areas by using the getArea() method. The data fields can be accessed via the reference of the object using circle1.radius, circle2.radius, and circle3.radius, respectively. The object can invoke its method via the reference of the object using circle1.getArea(), circle2.getArea(), and circle3.getArea(), respectively.

These three objects are independent. The radius of circle2 is changed to 100 in line 20. The object’s new radius and area are displayed in lines 21 and 22.

There are many ways to write Java programs. For instance, you can combine the two classes in the preceding example into one, as given in Listing 9.2.

Listing 9.2 Circle.java (AlternativeCircle.java)

 1 public class Circle {
 2 /** Main method */
main method 3 public static void main(String[] args) {
 4 // Create a circle with radius 1
 5 Circle circle1 = new Circle();
 6 System.out.println("The area of the circle of radius "
 7 + circle1.radius + " is " + circle1.getArea());
 8
 9 // Create a circle with radius 25
 10 Circle circle2 = new Circle(25);
 11 System.out.println("The area of the circle of radius "
 12 + circle2.radius + " is " + circle2.getArea());
 13
 14 // Create a circle with radius 125
 15 Circle circle3 = new Circle(125);
 16 System.out.println("The area of the circle of radius "
 17 + circle3.radius + " is " + circle3.getArea());
 18
 19 // Modify circle radius
 20 circle2.radius = 100;
 21 System.out.println("The area of the circle of radius "
 22 + circle2.radius + " is " + circle2.getArea());
 23 }
 24
data field 25 double radius;
 26
 27 /** Construct a circle with radius 1 */
no-arg constructor 28 Circle() {
 29 radius = 1;
 30 }
 31
 32 /** Construct a circle with a specified radius */
second constructor 33 Circle(double newRadius) {
 34 radius = newRadius;
 35 }
 36
 37 /** Return the area of this circle */
method 38 double getArea() {
 39 return radius * radius * Math.PI;
 40 }
 41
 42 /** Return the perimeter of this circle */
 43 double getPerimeter() {
 44 return 2 * radius * Math.PI;
 45 }
 46
 47 /** Set a new radius for this circle */
 48 void setRadius(double newRadius) {
 49 radius = newRadius;
 50 }
 51 }

Since the combined class has a main method, it can be executed by the Java interpreter. The main method is the same as that in Listing 9.1. This demonstrates that you can test a class by simply adding a main method in the same class.

As another example, consider television sets. Each TV is an object with states (current channel, current volume level, and power on or off) and behaviors (change channels, adjust volume, and turn on/off). You can use a class to model TV sets. The UML diagram for the class is shown in Figure 9.6.

[image: An annotated U M L class diagram.]
Figure 9.6

The TV class models TV sets.

Description

Listing 9.3 gives a program that defines the TV class.

Listing 9.3 TV.java

 1 public class TV {
data fields 2 int channel = 1; // Default channel is 1
 3 int volumeLevel = 1; // Default volume level is 1
 4 boolean on = false; // TV is off
 5
constructor 6 public TV() {
 7 }
 8
turn on TV 9 public void turnOn() {
 10 on = true;
 11 }
 12
turn off TV 13 public void turnOff() {
 14 on = false;
 15 }
 16
set a new channel 17 public void setChannel(int newChannel) {
 18 if (on && newChannel >= 1 && newChannel <= 120)
 19 channel = newChannel;
 20 }
 21
set a new volume 22 public void setVolume(int newVolumeLevel) {
 23 if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
 24 volumeLevel = newVolumeLevel;
 25 }
 26
increase channel 27 public void channelUp() {
 28 if (on && channel < 120)
 29 channel++;
 30 }
 31
decrease channel 32 public void channelDown() {
 33 if (on && channel > 1)
 34 channel—–;
 35 }
 36
increase volume 37 public void volumeUp() {
 38 if (on && volumeLevel < 7)
 39 volumeLevel++;
 40 }
 41
decrease volume 42 public void volumeDown() {
 43 if (on && volumeLevel > 1)
 44 volumeLevel—–;
 45 }
 46 }

The constructor and methods in the TV class are defined public so they can be accessed from other classes. Note the channel and volume level are not changed if the TV is not on. Before either of these is changed, its current value is checked to ensure it is within the correct range.

Listing 9.4 gives a program that uses the TV class to create two objects.

Listing 9.4 TestTV.java

 1 public class TestTV {
main method 2 public static void main(String[] args) {
create a TV 3 TV tv1 = new TV();
turn on 4 tv1.turnOn();
set a new channel 5 tv1.setChannel(30);
set a new volume 6 tv1.setVolume(3);
 7
create a TV 8 TV tv2 = new TV();
turn on 9 tv2.turnOn();
increase channel 10 tv2.channelUp();
 11 tv2.channelUp();
increase volume 12 tv2.volumeUp();
 13
display state 14 System.out.println("tv1's channel is " + tv1.channel
 15 + " and volume level is " + tv1.volumeLevel);
 16 System.out.println("tv2's channel is " + tv2.channel
 17 + " and volume level is " + tv2.volumeLevel);
 18 }
 19 }

tv1's channel is 30 and volume level is 3
tv2's channel is 3 and volume level is 2

The program creates two objects in lines 3 and 8 and invokes the methods on the objects to perform actions for setting channels and volume levels and for increasing channels and volumes. The program displays the state of the objects in lines 14–17. The methods are invoked using syntax such as tv1.turnOn() (line 4). The data fields are accessed using syntax such as tv1.channel (line 14).

These examples have given you a glimpse of classes and objects. You may have many questions regarding constructors, objects, reference variables, accessing data fields, and invoking object’s methods. The sections that will follow discuss these issues in detail.

	9.3.1 Describe the relationship between an object and its defining class.

	9.3.2 How do you define a class?

	9.3.3 How do you declare an object’s reference variable?

	9.3.4 How do you create an object?

9.4 Constructing Objects Using Constructors

	A constructor is invoked to create an object using the new operator.

Constructors are a special kind of method. They have three peculiarities:

constructor’s name

no return type

	A constructor must have the same name as the class itself.

	Constructors do not have a return type—not even void.

	Constructors are invoked using the new operator when an object is created. ­Constructors play the role of initializing objects.

new operator

The constructor has exactly the same name as its defining class. Like regular methods, constructors can be overloaded (i.e., multiple constructors can have the same name but different signatures), making it easy to construct objects with different initial data values.

overloaded constructors

It is a common mistake to put the void keyword in front of a constructor. For example,

public void Circle() {
}

no void

In this case, Circle() is a method, not a constructor.

Constructors are used to construct objects. To construct an object from a class, invoke a constructor of the class using the new operator, as follows:

constructing objects

new ClassName(arguments);

For example, new Circle() creates an object of the Circle class using the first constructor defined in the Circle class, and new Circle(25) creates an object using the second constructor defined in the Circle class.

A class normally provides a constructor without arguments (e.g., Circle()). Such a constructor is referred to as a no-arg or no-argument constructor.

no-arg constructor

A class may be defined without constructors. In this case, a public no-arg constructor with an empty body is implicitly defined in the class. This constructor, called a default constructor, is provided automatically only if no constructors are explicitly defined in the class.

default constructor

	9.4.5 What are the differences between constructors and methods?

	9.4.6 When will a class have a default constructor?

9.5 Accessing Objects via Reference Variables

	An object’s data and methods can be accessed through the dot (.) operator via the object’s reference variable.

Newly created objects are allocated in the memory. They can be accessed via reference variables.

9.5.1 Reference Variables and Reference Types

Objects are accessed via the object’s reference variables, which contain references to the objects. Such variables are declared using the following syntax:

reference variable

ClassName objectRefVar;

A class is essentially a programmer-defined type. A class is a reference type, which means that a variable of the class type can reference an instance of the class. The following statement declares the variable myCircle to be of the Circle type:

reference type

Circle myCircle;

The variable myCircle can reference a Circle object. The next statement creates an object and assigns its reference to myCircle:

myCircle = new Circle();

You can write a single statement that combines the declaration of an object reference variable, the creation of an object, and the assigning of an object reference to the variable with the following syntax:

ClassName objectRefVar = new ClassName();

Here is an example:

Circle myCircle = new Circle();

The variable myCircle holds a reference to a Circle object.

 Note
An object reference variable that appears to hold an object actually contains a reference to that object. Strictly speaking, an object reference variable and an object are different, but most of the time the distinction can be ignored. Therefore, it is fine, for simplicity, to say that myCircle is a Circle object rather than use the long-winded description that myCircle is a variable that contains a reference to a Circle object.

object vs. object reference variable

 Note

Arrays are treated as objects in Java. Arrays are created using the new operator. An array variable is actually a variable that contains a reference to an array.

array object

9.5.2 Accessing an Object’s Data and Methods

In OOP terminology, an object’s member refers to its data fields and methods. After an object is created, its data can be accessed and its methods can be invoked using the dot operator (.), also known as the object member access operator:

dot operator (.)

	objectRefVar.dataField references a data field in the object.

	objectRefVar.method(arguments) invokes a method on the object.

For example, myCircle.radius references the radius in myCircle and myCircle .getArea() invokes the getArea method on myCircle. Methods are invoked as operations on objects.

The data field radius is referred to as an instance variable because it is dependent on a specific instance. For the same reason, the method getArea is referred to as an instance method because you can invoke it only on a specific instance. The object on which an instance method is invoked is called a calling object.

instance variable

instance method

calling object

 Caution

Recall that you use Math.methodName(arguments) (e.g., Math.pow(3, 2.5)) to invoke a method in the Math class. Can you invoke getArea() using Circle.getArea()? The answer is no. All the methods in the Math class are static methods, which are defined using the static keyword. However, getArea() is an instance method, and thus nonstatic. It must be invoked from an object using objectRefVar.methodName(arguments) (e.g., myCircle.getArea()). ­Further explanation will be given in Section 9.7, Static Variables, Constants, and Methods.

invoking methods

 Note

Usually you create an object and assign it to a variable, then later you can use the variable to reference the object. Occasionally, an object does not need to be referenced later. In this case, you can create an object without explicitly assigning it to a variable using the syntax:

new Circle();

or

System.out.println("Area is " + new Circle(5).getArea());

The former statement creates a Circle object. The latter creates a Circle object and invokes its getArea method to return its area. An object created in this way is known as an anonymous object.

anonymous object

9.5.3 Reference Data Fields and the null Value

The data fields can be of reference types. For example, the following Student class contains a data field name of the String type. String is a predefined Java class.

reference data fields

class Student {
 String name; // name has the default value null
 int age; // age has the default value 0
 boolean isScienceMajor; // isScienceMajor has default value false
 char gender; // gender has default value '\u0000'
}

If a data field of a reference type does not reference any object, the data field holds a special Java value, null. null is a literal just like true and false. While true and false are Boolean literals, null is a literal for a reference type.

null value

The default value of a data field is null for a reference type, 0 for a numeric type, false for a boolean type, and \u0000 for a char type. However, Java assigns no default value to a local variable inside a method. The following code displays the default values of the data fields name, age, isScienceMajor, and gender for a Student object:

default field values

class TestStudent {
 public static void main(String[] args) {
 Student student = new Student();
 System.out.println("name? " + student.name);
 System.out.println("age? " + student.age);
 System.out.println("isScienceMajor? " + student.isScienceMajor);
 System.out.println("gender? " + student.gender);
 }
}

The following code has a compile error, because the local variables x and y are not initialized:

class TestLocalVariables {
 public static void main(String[] args) {
 int x; // x has no default value
 String y; // y has no default value
 System.out.println("x is " + x);
 System.out.println("y is " + y);
 }
}

 Caution

NullPointerException is a common runtime error. It occurs when you invoke a method on a reference variable with a null value. Make sure you assign an object reference to the variable before invoking the method through the reference variable (see CheckPoint Question 9.5.5c).

NullPointerException

9.5.4 Differences between Variables of Primitive Types and ­Reference Types

Every variable represents a memory location that holds a value. When you declare a variable, you are telling the compiler what type of value the variable can hold. For a variable of a primitive type, the value is of the primitive type. For a variable of a reference type, the value is a reference to where an object is located. For example, as shown in Figure 9.7, the value of int variable i is int value 1, and the value of Circle object c holds a reference to where the contents of the Circle object are stored in memory.

[image: A diagram compares variables of different types.]
Figure 9.7

A variable of a primitive type holds a value of the primitive type, and a variable of a reference type holds a reference to where an object is stored in memory.

Description

When you assign one variable to another, the other variable is set to the same value. For a variable of a primitive type, the real value of one variable is assigned to the other variable. For a variable of a reference type, the reference of one variable is assigned to the other variable. As shown in Figure 9.8, the assignment statement i = j copies the contents of j into i for primitive variables. As shown in Figure 9.9, the assignment statement c1 = c2 copies the reference of c2 into c1 for reference variables. After the assignment, variables c1 and c2 refer to the same object.

[image: Before i = j, i = 1, and j = 2. After i = j, both i and j = 2.]
Figure 9.8

Primitive variable j is copied to variable i.

[image: A diagram of object type assignment, c 1, =, c 2.]
Figure 9.9

Reference variable c2 is copied to variable c1.

Description

 Note

As illustrated in Figure 9.9, after the assignment statement c1 = c2, c1 points to the same object referenced by c2. The object previously referenced by c1 is no longer useful and therefore is now known as garbage. Garbage occupies memory space, so the Java runtime system detects garbage and automatically reclaims the space it occupies. This process is called garbage collection.

garbage

garbage collection

 Tip

If you know that an object is no longer needed, you can explicitly assign null to a reference variable for the object. The JVM will automatically collect the space if the object is not referenced by any reference variable.

	9.5.1 Which operator is used to access a data field or invoke a method from an object?

	9.5.2 What is an anonymous object?

	9.5.3 What is NullPointerException?

	9.5.4 Is an array an object or a primitive-type value? Can an array contain elements of an object type? Describe the default value for the elements of an array.

	9.5.5 What is wrong with each of the following programs?

	 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 ShowErrors t = new ShowErrors(5);
 4 }
 5 }

	 1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 ShowErrors t = new ShowErrors();
 4 t.x();
 5 }
 6 }

	(a)

	(b)

	 1 public class ShowErrors {
 2 public void method1() {
 3 Circle c;
 4 System.out.println("What is radius "
 5 + c.getRadius());
 6 c = new Circle();
 7 }
 8 }

	1 public class ShowErrors {
 2 public static void main(String[] args) {
 3 C c = new C(5.0);
 4 System.out.println(c.value);
 5 }
 6 }
 7
 8 class C {
 9 int value = 2;
10 }

	(c)

	(d)

	9.5.6 What is wrong in the following code?

 1 class Test {
 2 public static void main(String[] args) {
 3 A a = new A();
 4 a.print();
 5 }
 6 }
 7
 8 class A {
 9 String s;
10
11 A(String newS) {
12 s = newS;
13 }
14
15 public void print() {
16 System.out.print(s);
17 }
18 }

	9.5.7 What is the output of the following code?

public class A {
 boolean x;
 public static void main(String[] args) {
 A a = new A();
 System.out.println(a.x);
 }
}

9.6 Using Classes from the Java Library

	The Java API contains a rich set of classes for developing Java programs.

Use classes

Listing 9.1 defined the Circle class and created objects from the class. You will frequently use the classes in the Java library to develop programs. This section gives some examples of the classes in the Java library.

9.6.1 The Date Class

In Listing 2.7, ShowCurrentTime.java, you learned how to obtain the current time using ­System.currentTimeMillis(). You used the division and remainder operators to extract the current second, minute, and hour. Java provides a system-independent encapsulation of date and time in the java.util.Date class, as shown in Figure 9.10.

[image: An annotated diagram of the object, java dot u t i l dot Date.]
Figure 9.10

A Date object represents a specific date and time.

Description

java.util.Date class

You can use the no-arg constructor in the Date class to create an instance for the current date and time, the getTime() method to return the elapsed time in milliseconds since January 1, 1970, GMT, and the toString() method to return the date and time as a string. For example, the following code

java.util.Date date = new java.util.Date();
System.out.println("The elapsed time since Jan 1, 1970 is " +
 date.getTime() + " milliseconds");
System.out.println(date.toString());

create object

get elapsed time

invoke toString

displays the output as follows:

The elapsed time since Jan 1, 1970 is 1324903419651 milliseconds
Mon Dec 26 07:43:39 EST 2011

The Date class has another constructor, Date(long elapseTime), which can be used to construct a Date object for a given time in milliseconds elapsed since January 1, 1970, GMT.

9.6.2 The Random Class

You have used Math.random() to obtain a random double value between 0.0 and 1.0 (excluding 1.0). Another way to generate random numbers is to use the java.util.Random class, as shown in Figure 9.11, which can generate a random int, long, double, float, and boolean value.

[image: An annotated diagram of the object, java dot u t i l dot Random.]
Figure 9.11

A Random object can be used to generate random values.

Description

When you create a Random object, you have to specify a seed or use the default seed. A seed is a number used to initialize a random number generator. The no-arg constructor creates a Random object using the current elapsed time as its seed. If two Random objects have the same seed, they will generate identical sequences of numbers. For example, the following code creates two Random objects with the same seed, 3:

Random generator1 = new Random(3);
System.out.print("From generator1: ");
for (int i = 0; i < 10; i++)
 System.out.print(generator1.nextInt(1000) + " ");

Random generator2 = new Random(3);
System.out.print("\nFrom generator2: ");
for (int i = 0; i < 10; i++)
 System.out.print(generator2.nextInt(1000) + " ");

The code generates the same sequence of random int values:

From generator1: 734 660 210 581 128 202 549 564 459 961
From generator2: 734 660 210 581 128 202 549 564 459 961

Note

The ability to generate the same sequence of random values is useful in software testing and many other applications. In software testing, often you need to reproduce the test cases from a fixed sequence of random numbers.

same sequence

 Note

You can generate random numbers using the java.security.SecureRandom class rather than the Random class. The random numbers generated from the Random are deterministic and they can be predicated by hackers. The random numbers generated from the SecureRandom class are nondeterministic and are secure.

SecureRandom

9.6.3 The Point2D Class

Java API has a convenient Point2D class in the javafx.geometry package for representing a point in a two-dimensional plane. The UML diagram for the class is shown in Figure 9.12.

[image: An annotated diagram of the object, java f x dot geometry dot Point 2 D.]
Figure 9.12

A Point2D object represents a point with x- and y-coordinates.

Description

You can create a Point2D object for a point with the specified x- and y-coordinates, use the distance method to compute the distance from this point to another point, and use the toString() method to return a string representation of the point. Listing 9.5 gives an example of using this class.

Listing 9.5 TestPoint2D.java

 1 import java.util.Scanner;
 2 import javafx.geometry.Point2D;
 3
 4 public class TestPoint2D {
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7
 8 System.out.print("Enter point1's x-, y–coordinates: ");
 9 double x1 = input.nextDouble();
 10 double y1 = input.nextDouble();
 11 System.out.print("Enter point2's x-, y–coordinates: ");
 12 double x2 = input.nextDouble();
 13 double y2 = input.nextDouble();
 14
create an object 15 Point2D p1 = new Point2D(x1, y1);
 16 Point2D p2 = new Point2D(x2, y2);
invoke toString() 17 System.out.println("p1 is " + p1.toString());
 18 System.out.println("p2 is " + p2.toString());
 19 System.out.println("The distance between p1 and p2 is " +
get distance 20 p1.distance(p2));
 21 System.out.println("The midpoint between p1 and p2 is " +
get midpoint 22 p1.midpoint(p2).toString());
 23 }
 24 }

Enter point1's x-, y-coordinates: 1.5 5.5
Enter point2's x-, y-coordinates: −5.3 −4.4
p1 is Point2D [x = 1.5, y = 5.5]
p2 is Point2D [x = −5.3, y = −4.4]
The distance between p1 and p2 is 12.010412149464313
The midpoint between p1 and p2 is
Point2D [x = −1.9, y = 0.5499999999999998]

get midpoint

This program creates two objects of the Point2D class (lines 15 and 16). The toString() method returns a string that describes the object (lines 17 and 18). Invoking p1.distance(p2) returns the distance between the two points (line 20). Invoking p1.midpoint(p2) returns the midpoint between the two points (line 22).

	9.6.1 How do you create a Date for the current time? How do you display the current time?

	9.6.2 How do you create a Point2D? Suppose p1 and p2 are two instances of Point2D, how do you obtain the distance between the two points? How do you obtain the midpoint between the two points?

	9.6.3 Which packages contain the classes Date, Random, Point2D, System, and Math?

9.7 Static Variables, Constants, and Methods

	A static variable is shared by all objects of the class. A static method cannot access instance members (i.e., instance data fields and methods) of the class.

Static vs. instance

The data field radius in the circle class is known as an instance variable. An instance variable is tied to a specific instance of the class; it is not shared among objects of the same class. For example, suppose that you create the following objects:

Static vs. instance

instance variable

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

The radius in circle1 is independent of the radius in circle2 and is stored in a different memory location. Changes made to circle1’s radius do not affect circle2’s radius, and vice versa.

static variable

If you want all the instances of a class to share data, use static variables, also known as class variables. Static variables store values for the variables in a common memory location. Because of this common location, if one object changes the value of a static variable, all objects of the same class are affected. Java supports static methods as well as static variables. Static methods can be called without creating an instance of the class.

static method

Let’s modify the Circle class by adding a static variable numberOfObjects to count the number of circle objects created. When the first object of this class is created, ­numberOfObjects is 1. When the second object is created, numberOfObjects becomes 2. The UML of the new circle class is shown in Figure 9.13. The Circle class defines the instance variable radius and the static variable numberOfObjects, the instance methods getRadius, ­setRadius, and getArea, and the static method getNumberOfObjects. (Note static variables and methods are underlined in the UML class diagram.)

[image: A U M L diagram shows how to add variables to the Circle class.]
Figure 9.13

Instance variables belong to the instances and have memory storage independent of one another. Static variables are shared by all the instances of the same class.

Description

To declare a static variable or define a static method, put the modifier static in the variable or method declaration. The static variable numberOfObjects and the static method ­getNumberOfObjects() can be declared as follows:

static int numberOfObjects;

static int getNumberObjects() {
 return numberOfObjects;
}

declare static variable

define static method

Constants in a class are shared by all objects of the class. Thus, constants should be declared as final static. For example, the constant PI in the Math class is defined as follows:

declare constant

final static double PI = 3.14159265358979323846;

The new circle class is defined in Listing 9.6.

Listing 9.6 Circle.java (for CircleWithStaticMembers)

 1 public class Circle {
 2 /** The radius of the circle */
 3 double radius;
 4
 5 /** The number of objects created */
static variable 6 static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 Circle() {
 10 radius = 1;
increase by 1 11 numberOfObjects++;
 12 }
 13
 14 /** Construct a circle with a specified radius */
 15 Circle(double newRadius) {
 16 radius = newRadius;
increase by 1 17 numberOfObjects++;
 18 }
 19
 20 /** Return numberOfObjects */
static method 21 static int getNumberOfObjects() {
 22 return numberOfObjects;
 23 }
 24
 25 /** Return the area of this circle */
 26 double getArea() {
 27 return radius * radius * Math.PI;
 28 }
 29 }

 Method getNumberOfObjects() in Circle is a static method. All the methods in the Math class are static. The main method is static, too.

Instance methods (e.g., getArea()) and instance data (e.g., radius) belong to instances and can be used only after the instances are created. They are accessed via a reference variable. Static methods (e.g., getNumberOfObjects()) and static data (e.g., numberOfObjects) can be accessed from a reference variable or from their class name.

The program in Listing 9.7 demonstrates how to use instance and static variables and methods and illustrates the effects of using them.

Listing 9.7 TestCircleWithStaticMembers.java

 1 public class TestCircleWithStaticMembers {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 System.out.println("Before creating objects");
 5 System.out.println("The number of Circle objects is " +
static variable 6 Circle.numberOfObjects);
 7
 8 // Create c1
 9 Circle c1 = new Circle(); // Use the Circle class in Listing 9.6
 10
 11 // Display c1 BEFORE c2 is created
 12 System.out.println("\nAfter creating c1");
instance variable 13 System.out.println("c1: radius (" + c1.radius +
 14 ") and number of Circle objects (" +
static variable 15 c1.numberOfObjects + ")");
 16
 17 // Create c2
 18 Circle c2 = new Circle(5);
 19
 20 // Modify c1
instance variable 21 c1.radius = 9;
 22
 23 // Display c1 and c2 AFTER c2 was created
 24 System.out.println("\nAfter creating c2 and modifying c1");
 25 System.out.println("c1: radius (" + c1.radius +
 26 ") and number of Circle objects (" +
static variable 27 c1.numberOfObjects + ")");
 28 System.out.println("c2: radius (" + c2.radius +
 29 ") and number of Circle objects (" +
static variable 30 c2.numberOfObjects + ")");
 31 }
 32 }

Before creating objects
The number of Circle objects is 0
After creating c1
c1: radius (1.0) and number of Circle objects (1)
After creating c2 and modifying c1
c1: radius (9.0) and number of Circle objects (2)
c2: radius (5.0) and number of Circle objects (2)

When you compile TestCircleWithStaticMembers.java, the Java compiler automatically compiles Circle.java if it has not been compiled since the last change.

Static variables and methods can be accessed without creating objects. Line 6 displays the number of objects, which is 0, since no objects have been created.

The main method creates two circles, c1 and c2 (lines 9 and18). The instance variable radius in c1 is modified to become 9 (line 21). This change does not affect the instance variable radius in c2, since these two instance variables are independent. The static variable numberOfObjects becomes 1 after c1 is created (line 9), and it becomes 2 after c2 is created (line 18).

Note PI is a constant defined in Math and Math.PI references the constant. c1.numberOfObjects (line 27) and c2.numberOfObjects (line 30) are better replaced by­ ­Circle.numberOfObjects. This improves readability because other programmers can easily recognize the static variable. You can also replace Circle.numberOfObjects with ­Circle.getNumberOfObjects().

 Tip

Use ClassName.methodName(arguments) to invoke a static method and ClassName.staticVariable to access a static variable. This improves readability because this makes static methods and data easy to spot.

use class name

An instance method can invoke an instance or static method, and access an instance or static data field. A static method can invoke a static method and access a static data field. However, a static method cannot invoke an instance method or access an instance data field, since static methods and static data fields don’t belong to a particular object. The relationship between static and instance members is summarized in the following diagram:

[image: A diagram summarizes the capabilities if an instant method, versus a static method.]

Description

For example, the following code is wrong.

 1 public class A {
 2 int i = 5;
 3 static int k = 2;
 4
 5 public static void main(String[] args) {
 6 int j = i; // Wrong because i is an instance variable
 7 m1(); // Wrong because m1() is an instance method
 8 }
 9
10 public void m1() {
11 // Correct since instance and static variables and methods
12 // can be used in an instance method
13 i = i + k + m2(i, k);
14 }
15
16 public static int m2(int i, int j) {
17 return (int)(Math.pow(i, j));
18 }
19 }

Note if you replace the preceding code with the following new code, the program would be fine, because the instance data field i and method m1 are now accessed from an object a (lines 7 and 8):

 1 public class A {
 2 int i = 5;
 3 static int k = 2;
 4
 5 public static void main(String[] args) {
 6 A a = new A();
 7 int j = a.i; // OK, a.i accesses the object's instance variable
 8 a.m1(); // OK, a.m1() invokes the object's instance method
 9 }
10
11 public void m1() {
12 i = i + k + m2(i, k);
13 }
14
15 public static int m2(int i, int j) {
16 return (int)(Math.pow(i, j));
17 }
18 }

Design Guide

How do you decide whether a variable or a method should be instance or static? A ­variable or a method that is dependent on a specific instance of the class should be an instance variable or method. A variable or a method that is not dependent on a specific instance of the class should be a static variable or method. For example, every circle has its own radius, so the radius is dependent on a specific circle. Therefore, radius is an instance variable of the Circle class. Since the getArea method is dependent on a specific circle, it is an instance method. None of the methods in the Math class, such as random, pow, sin, and cos, is dependent on a specific instance. Therefore, these methods are static methods. The main method is static and can be invoked directly from a class.

instance or static?

 Caution

It is a common design error to define an instance method that should have been defined as static. For example, the method factorial(int n) should be defined as static, as shown next, because it is independent of any specific instance.

	public class Test {
 public int factorial(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result *= i;

 return result;
 }
}

	public class Test {
 public static int factorial(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result *= i;

 return result;
 }
}

	(a) Wrong design
	(b) Correct design

common design error

	9.7.1 Suppose the class F is defined in (a). Let f be an instance of F. Which of the ­statements in (b) are correct?

	public class F {
 int i;
 static String s;
 void imethod() {
 }
 static void smethod() {
 }
}

	System.out.println(f.i);
System.out.println(f.s);
f.imethod();
f.smethod();
System.out.println(F.i);
System.out.println(F.s);
F.imethod();
F.smethod();

	(a)
	(b)

	9.7.2 Add the static keyword in the place of ? if appropriate.

public class Test {
 int count;
 public ? void main(String[] args) {
 ...
 }
 public ? int getCount() {
 return count;
 }
 public ? int factorial(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result *= i;
 return result;
 }
}

	9.7.3 Can you invoke an instance method or reference an instance variable from a static method? Can you invoke a static method or reference a static variable from an instance method? What is wrong in the following code?

 1 public class C {
 2 public static void main(String[] args) {
 3 method1();
 4 }
 5
 6 public void method1() {
 7 method2();
 8 }
 9
10 public static void method2() {
11 System.out.println("What is radius " + c.getRadius());
12 }
13
14 Circle c = new Circle();
15 }

9.8 Visibility Modifiers

	Visibility modifiers can be used to specify the visibility of a class and its members.

You can use the public visibility modifier for classes, methods, and data fields to denote they can be accessed from any other classes. If no visibility modifier is used, then by default the classes, methods, and data fields are accessible by any class in the same package. This is known as package-private or package-access.

package-private (or package-access)

Note

Packages can be used to organize classes. To do so, you need to add the following line as the first noncomment and nonblank statement in the program:

using packages

package packageName;

If a class is defined without the package statement, it is said to be placed in the default package.

Java recommends that you place classes into packages rather than using a default ­package. For simplicity, however, this book uses default packages. For more information on packages, see Supplement III.E, Packages.

In addition to the public and default visibility modifiers, Java provides the private and protected modifiers for class members. This section introduces the private modifier. The protected modifier will be introduced in Section 11.14, The protected Data and Methods.

The private modifier makes methods and data fields accessible only from within its own class. Figure 9.14 illustrates how a public, default, and private data field or method in class C1 can be accessed from a class C2 in the same package, and from a class C3 in a different package.

	package p1;

public class C1 {
 public int x;
 int y;
 private int z;

 public void m1() {
 }
 void m2() {
 }
 private void m3() {
 }
}

	package p1;

public class C2 {
 void aMethod() {
 C1 c1 = new C1();
 can access c1.x;
 can access c1.y;
 cannot access o.z;

 can invoke c1.m1();
 can invoke c1.m2();
 cannot invoke c1.m3();
 }
}

	package p2;

public class C3 {
 void aMethod() {
 C1 c1 = new C1();
 can access c1.x;
 cannot access c1.y;
 cannot access c1.z;

 can invoke c1.m1();
 cannot invoke c1.m2();
 cannot invoke c1.m3();
 }
}

Figure 9.14

The private modifier restricts access to its defining class, the default modifier restricts access to a package, and the public modifier enables unrestricted access.

If a class is not defined as public, it can be accessed only within the same package. As shown in Figure 9.15, C1 can be accessed from C2, but not from C3.

	package p1;
class C1 {
 ...
}

	package p1;
public class C2 {
 can access C1
}

	package p2;
public class C3 {
 cannot access p1.C1;
 can access p1.C2;
}

Figure 9.15

A nonpublic class has package access.

A visibility modifier specifies how data fields and methods in a class can be accessed from outside the class. There is no restriction on accessing data fields and methods from inside the class. As shown in Figure 9.16b, an object c of class C cannot access its private members, because c is in the Test class. As shown in Figure 9.16a, an object c of class C can access its private members, because c is defined inside its own class.

inside access

[image: Diagrams ay and b contain code for public class, C, and public class, Test, respectively.]
Figure 9.16

An object can access its private members if it is defined in its own class.

Description

 Caution

The private modifier applies only to the members of a class. The public modifier can apply to a class or members of a class. Using the modifiers public and private on local variables would cause a compile error.

private constructor

 Note

In most cases, the constructor should be public. However, if you want to prohibit the user from creating an instance of a class, use a private constructor. For example, there is no reason to create an instance from the Math class, because all of its data fields and methods are static. To prevent the user from creating objects from the Math class, the constructor in java.lang.Math is defined as follows:

private Math() {
}

9.9 Data Field Encapsulation

	Making data fields private protects data and makes the class easy to maintain.

Data field encapsulation

The data fields radius and numberOfObjects in the Circle class in Listing 9.6 can be modified directly (e.g., c1.radius = 5 or Circle.numberOfObjects = 10). This is not a good practice—for two reasons:

Data field encapsulation

	Data may be tampered with. For example, numberOfObjects is to count the number of objects created, but it may be mistakenly set to an arbitrary value (e.g., Circle.numberOfObjects = 10).

	The class becomes difficult to maintain and vulnerable to bugs. Suppose that you want to modify the Circle class to ensure that the radius is nonnegative after other programs have already used the class. You have to change not only the Circle class but also the programs that use it because the clients may have modified the radius directly (e.g., c1.radius = –5).

To prevent direct modifications of data fields, you should declare the data fields private, using the private modifier. This is known as data field encapsulation.

data field encapsulation

A private data field cannot be accessed by an object from outside the class that defines the private field. However, a client often needs to retrieve and modify a data field. To make a private data field accessible, provide a getter method to return its value. To enable a private data field to be updated, provide a setter method to set a new value. A getter method is also referred to as an accessor and a setter to a mutator. A getter method has the following signature:

getter (or accessor)

setter (or mutator)

public returnType getPropertyName()

boolean accessor

If the returnType is boolean, the getter method should be defined as follows by convention:

public boolean isPropertyName()

A setter method has the following signature:

public void setPropertyName(dataType propertyValue)

Let’s create a new circle class with a private data-field radius and its associated accessor and mutator methods. The class diagram is shown in Figure 9.17. The new circle class is defined in Listing 9.8:

[image: An annotated diagram of the class, Circle.]
Figure 9.17

The Circle class encapsulates circle properties and provides getter/setter and other methods.

Description

Listing 9.8 Circle.java(for CircleWithPrivateDataFields)

 1 public class Circle {
 2 /** The radius of the circle */
encapsulate radius 3 private double radius = 1;
 4
 5 /** The number of objects created */
encapsulate numberOfObjects 6 private static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 public Circle() {
 10 numberOfObjects++;
 11 }
 12
 13 /** Construct a circle with a specified radius */
 14 public Circle(double newRadius) {
 15 radius = newRadius;
 16 numberOfObjects++;
 17 }
 18
 19 /** Return radius */
accessor method 20 public double getRadius() {
 21 return radius;
 22 }
 23
 24 /** Set a new radius */
mutator method 25 public void setRadius(double newRadius) {
 26 radius = (newRadius >= 0) ? newRadius : 0;
 27 }
 28
 29 /** Return numberOfObjects */
accessor method 30 public static int getNumberOfObjects() {
 31 return numberOfObjects;
 32 }
 33
 34 /** Return the area of this circle */
 35 public double getArea() {
 36 return radius * radius * Math.PI;
 37 }
 38 }
The getRadius() method (lines 20–22) returns the radius and the setRadius(newRadius) method (lines 25–27) sets a new radius for the object. If the new radius is negative, 0 is set as the radius for the object. Since these methods are the only ways to read and modify the radius, you have total control over how the radius property is accessed. If you have to change the implementation of these methods, you don’t need to change the client programs. This makes the class easy to maintain.

Listing 9.9 gives a client program that uses the Circle class to create a Circle object, and modifies the radius using the setRadius method.

Listing 9.9 TestCircleWithPrivateDataFields.java

 1 public class TestCircleWithPrivateDataFields {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a circle with radius 5.0
 5 Circle myCircle = new Circle(5.0);
 6 System.out.println("The area of the circle of radius "
invoke public method 7 + myCircle.getRadius() + " is " + myCircle.getArea());
 8
 9 // Increase myCircle's radius by 10%
 10 myCircle.setRadius(myCircle.getRadius() * 1.1);
 11 System.out.println("The area of the circle of radius "
invoke public method 12 + myCircle.getRadius() + " is " + myCircle.getArea());
 13
 14 System.out.println("The number of objects created is "
invoke public method 15 + Circle.getNumberOfObjects());
 16 }
 17 }

 The data field radius is declared private. Private data can be accessed only within their defining class, so you cannot use myCircle.radius in the client program. A compile error would occur if you attempted to access private data from a client.

Since numberOfObjects is private, it cannot be modified. This prevents tampering. For example, the user cannot set numberOfObjects to 100. The only way to make it 100 is to create 100 objects of the Circle class.

Suppose you combined TestCircleWithPrivateDataFields and Circle into one class by moving the main method in TestCircleWithPrivateDataFields into Circle. Could you use myCircle.radius in the main method? See CheckPoint Question 9.9.3 for the answer.

 Design Guide

To prevent data from being tampered with and to make the class easy to maintain, declare data fields private.

 Note

From now on, all data fields should be declared private, and all constructors and methods should be defined public, unless specified otherwise.

	9.9.1 What is an accessor method? What is a mutator method? What are the naming conventions for accessor methods and mutator methods?

	9.9.2 What are the benefits of data field encapsulation?

	9.9.3 In the following code, radius is private in the Circle class, and myCircle is an object of the Circle class. Does the highlighted code cause any problems? If so, explain why.

public class Circle {
 private double radius = 1;
 /** Find the area of this circle */
 public double getArea() {
 return radius * radius * Math.PI;
 }
 public static void main(String[] args) {
 Circle myCircle = new Circle();
 System.out.println("Radius is " + myCircle.radius);
 }
}

9.10 Passing Objects to Methods

	Passing an object to a method is to pass the reference of the object.

You can pass objects to methods. Like passing an array, passing an object is actually passing the reference of the object. The following code passes the myCircle object as an argument to the printCircle method:

 1 public class Test {
 2 public static void main(String[] args) {
 3 // Circle is defined in Listing 9.8
 4 Circle myCircle = new Circle(5.0);
pass an object 5 printCircle(myCircle);
 6 }
 7
 8 public static void printCircle(Circle c) {
 9 System.out.println("The area of the circle of radius "
 10 + c.getRadius() + " is " + c.getArea());
 11 }
 12 }

Java uses exactly one mode of passing arguments: pass-by-value. In the preceding code, the value of myCircle is passed to the printCircle method. This value is a reference to a Circle object.

pass-by-value

The program in Listing 9.10 demonstrates the difference between passing a primitive-type value and passing a reference value.

Listing 9.10 TestPassObject.java

 1 public class TestPassObject {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a Circle object with radius 1
 5 Circle myCircle =
 6 new Circle(1); // Use the Circle class in Listing 9.8
 7
 8 // Print areas for radius 1, 2, 3, 4, and 5.
 9 int n = 5;
pass object 10 printAreas(myCircle, n);
 11
 12 // See myCircle.radius and times
 13 System.out.println("\n" + "Radius is " + myCircle.getRadius());
 14 System.out.println("n is " + n);
 15 }
 16
 17 /** Print a table of areas for radius */
object parameter 18 public static void printAreas(Circle c, int times) {
 19 System.out.println("Radius \t\tArea");
 20 while (times >= 1) {
 21 System.out.println(c.getRadius() + "\t\t" + c.getArea());
 22 c.setRadius(c.getRadius() + 1);
 23 times——;
 24 }
 25 }
 26 }

Radius Area
1.0 3.141592653589793
2.0 12.566370614359172
3.0 28.274333882308138
4.0 50.26548245743669
5.0 78.53981633974483
Radius is 6.0
n is 5

The Circle class is defined in Listing 9.8. The program passes a Circle object myCircle and an integer value from n to invoke printAreas(myCircle, n) (line 10), which prints a table of areas for radii 1, 2, 3, 4, and 5, as presented in the sample output.

Figure 9.18 shows the call stack for executing the methods in the program. Note the objects are stored in a heap (see Section 7.6).

[image: A diagram of the stack and the heap, with pass-by-values.]
Figure 9.18

The value of n is passed to times, and the reference to myCircle is passed to c in the printAreas method.

Description

When passing an argument of a primitive data type, the value of the argument is passed. In this case, the value of n (5) is passed to times. Inside the printAreas method, the content of times is changed; this does not affect the content of n.

When passing an argument of a reference type, the reference of the object is passed. In this case, c contains a reference for the object that is also referenced via myCircle. Therefore, changing the properties of the object through c inside the printAreas method has the same effect as doing so outside the method through the variable myCircle. Pass-by-value on references can be best described semantically as pass-by-sharing; that is, the object referenced in the method is the same as the object being passed.

pass-by-sharing

	9.10.1 Describe the difference between passing a parameter of a primitive type and passing a parameter of a reference type. Show the output of the following programs:

	public class Test {
 public static void main(String[] args) {
 Count myCount = new Count();
 int times = 0;
 for (int i = 0; i < 100; i++)
 increment(myCount, times);
 System.out.println("count is " + myCount.count);
 System.out.println("times is " + times);
 }
 public static void increment(Count c, int times) {
 c.count++;
 times++;
 }
}

	public class Count {
 public int count;
 public Count (int c) {
 count = c;
 }
 public Count () {
 count = 1;
 }
}

	9.10.2 Show the output of the following program:

public class Test {
 public static void main(String[] args) {
 Circle circle1 = new Circle(1);
 Circle circle2 = new Circle(2);

 swap1(circle1, circle2);
 System.out.println("After swap1: circle1 = " +
 circle1.radius + " circle2 = " + circle2.radius);

 swap2(circle1, circle2);
 System.out.println("After swap2: circle1 = " +
 circle1.radius + " circle2 = " + circle2.radius);
 }

 public static void swap1(Circle x, Circle y) {
 Circle temp = x;
 x = y;
 y = temp;
 }
 public static void swap2(Circle x, Circle y) {
 double temp = x.radius;
 x.radius = y.radius;
 y.radius = temp;
 }
}

class Circle {
 double radius;
 Circle(double newRadius) {
 radius = newRadius;
 }
}

	9.10.3 Show the output of the following code:

	public class Test {
 public static void main(String[] args) {
 int[] a = {1, 2};
 swap(a[0], a[1]);
 System.out.println("a[0] = " + a[0]
 + " a[1] = " + a[1]);
 }
 public static void swap(int n1, int n2) {
 int temp = n1;
 n1 = n2;
 n2 = temp;
 }
}

	public class Test {
 public static void main(String[] args) {
 int[] a = {1, 2};
 swap(a);
 System.out.println("a[0] = " + a[0]
 + " a[1] = " + a[1]);
 }
 public static void swap(int[] a) {
 int temp = a[0];
 a[0] = a[1];
 a[1] = temp;
 }
}

	(a)

	(b)

	public class Test {
 public static void main(String[] args) {
 T t = new T();
 swap(t);
 System.out.println("e1 = " + t.e1
 + " e2 = " + t.e2);
 }
 public static void swap(T t) {
 int temp = t.e1;
 t.e1 = t.e2;
 t.e2 = temp;
 }
}
class T {
 int e1 = 1;
 int e2 = 2;
}

	public class Test {
 public static void main(String[] args) {
 T t1 = new T();
 T t2 = new T();
 System.out.println("t1's i = " +
 t1.i + " and j = " + t1.j);
 System.out.println("t2's i = " +
 t2.i + " and j = " + t2.j);
 }
}
class T {
 static int i = 0;
 int j = 0;
 T() {
 i++;
 j = 1;
 }
}

	(c)

	(d)

	9.10.4 What is the output of the following programs?

	import java.util.Date;
public class Test {
 public static void main(String[] args) {
 Date date = null;
 m1(date);
 System.out.println(date);
 }
 public static void m1(Date date) {
 date = new Date();
 }
}

	import java.util.Date;
public class Test {
 public static void main(String[] args) {
 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }
 public static void m1(Date date) {
 date = new Date(7654321);
 }
}

	(a)

	(b)

	import java.util.Date;
public class Test {
 public static void main(String[] args) {
 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }
 public static void m1(Date date) {
 date.setTime(7654321);
 }
}

	import java.util.Date;
public class Test {
 public static void main(String[] args) {
 Date date = new Date(1234567);
 m1(date);
 System.out.println(date.getTime());
 }
 public static void m1(Date date) {
 date = null;
 }
}

	(c)

	(d)

9.11 Array of Objects

	An array can hold objects as well as primitive-type values.

Chapter 7, Single-Dimensional Arrays, described how to create arrays of primitive-type elements. You can also create arrays of objects. For example, the following statement declares and creates an array of 10 Circle objects:

Circle[] circleArray = new Circle[10];

To initialize circleArray, you can use a for loop as follows:

for (int i = 0; i < circleArray.length; i++) {
 circleArray[i] = new Circle();
}

An array of objects is actually an array of reference variables. Thus, invoking ­circleArray[1] .getArea() involves two levels of referencing, as shown in Figure 9.19. circleArray ­references the entire array, and circleArray[1] references a Circle object.

[image: The reference, circle Array, refers to an array of, circle Array, elements, with index numbers from 0 to 9. These elements contain, Circle, objects, with corresponding numbers from 0 to 9.]
Figure 9.19

In an array of objects, an element of the array contains a reference to an object.

 Note

When an array of objects is created using the new operator, each element in the array is a reference variable with a default value of null.

Listing 9.11 gives an example that demonstrates how to use an array of objects. The program summarizes the areas of an array of circles. The program creates circleArray, an array composed of five Circle objects; it then initializes circle radii with random values and displays the total area of the circles in the array.

Listing 9.11 TotalArea.java

 1 public class TotalArea {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare circleArray
array of objects 5 Circle[] circleArray;
 6
 7 // Create circleArray
 8 circleArray = createCircleArray();
 9
 10 // Print circleArray and total areas of the circles
 11 printCircleArray(circleArray);
 12 }
 13
 14 /** Create an array of Circle objects */
 15 public static Circle[] createCircleArray() {
 16 Circle[] circleArray = new Circle[5];
 17
 18 for (int i = 0; i < circleArray.length; i++) {
 19 circleArray[i] = new Circle(Math.random() * 100);
 20 }
 21
 22 // Return Circle array
return array of objects 23 return circleArray;
 24 }
 25
 26 /** Print an array of circles and their total area */
pass array of objects 27 public static void printCircleArray(Circle[] circleArray) {
 28 System.out.printf("%–30s%–15s\n", "Radius", "Area");
 29 for (int i = 0; i < circleArray.length; i++) {
 30 System.out.printf("%–30f%–15f\n", circleArray[i].getRadius(),
 31 circleArray[i].getArea());
 32 }
 33
 34 System.out.println("— —");
 35
 36 // Compute and display the result
 37 System.out.printf("%–30s%–15f\n", "The total area of circles is",
 38 sum(circleArray));
 39 }
 40
 41 /** Add circle areas */
pass array of objects 42 public static double sum(Circle[] circleArray) {
 43 // Initialize sum
 44 double sum = 0;
 45
 46 // Add areas to sum
 47 for (int i = 0; i < circleArray.length; i++)
 48 sum += circleArray[i].getArea();
 49
 50 return sum;
 51 }
 52 }

Radius Area
70.577708 15649.941866
44.152266 6124.291736
24.867853 1942.792644
 5.680718 101.380949
36.734246 4239.280350
———
The total area of circles is 28056.687544

The program invokes createCircleArray() (line 8) to create an array of five circle objects. Several circle classes were introduced in this chapter. This example uses the Circle class introduced in Section 9.9, Data Field Encapsulation.

The circle radii are randomly generated using the Math.random() method (line 19). The createCircleArray method returns an array of Circle objects (line 23). The array is passed to the printCircleArray method, which displays the radius and area of each circle and the total area of the circles.

The sum of the circle areas is computed by invoking the sum method (line 38), which takes the array of Circle objects as the argument and returns a double value for the total area.

	9.11.1 What is wrong in the following code?

1 public class Test {
2 public static void main(String[] args) {
3 java.util.Date[] dates = new java.util.Date[10];
4 System.out.println(dates[0]);
5 System.out.println(dates[0].toString());
6 }
7 }

9.12 Immutable Objects and Classes

	You can define immutable classes to create immutable objects. The contents of ­immutable objects cannot be changed.

Normally, you create an object and allow its contents to be changed later. However, occasionally it is desirable to create an object whose contents cannot be changed once the object has been created. We call such an object as immutable object and its class as immutable class. The String class, for example, is immutable. If you deleted the setter method in the Circle class in Listing 9.8, the class would be immutable because radius is private and cannot be changed without a setter method.

immutable class

Immutable objects and this keyword

immutable object

If a class is immutable, then all its data fields must be private and it cannot contain public setter methods for any data fields. A class with all private data fields and no mutators is not necessarily immutable. For example, the following Student class has all private data fields and no setter methods, but it is not an immutable class:

Student class

 1 public class Student {
 2 private int id;
 3 private String name;
 4 private java.util.Date dateCreated;
 5
 6 public Student(int ssn, String newName) {
 7 id = ssn;
 8 name = newName;
 9 dateCreated = new java.util.Date();
10 }
11
12 public int getId() {
13 return id;
14 }
15
16 public String getName() {
17 return name;
18 }
19
20 public java.util.Date getDateCreated() {
21 return dateCreated;
22 }
23 }

As shown in the following code, the data field dateCreated is returned using the getDateCreated() method. This is a reference to a Date object. Through this reference, the content for dateCreated can be changed.

public class Test {
 public static void main(String[] args) {
 Student student = new Student(111223333, "John");
 java.util.Date dateCreated = student.getDateCreated();
 dateCreated.setTime(200000); // Now dateCreated field is changed!
 }
}

For a class to be immutable, it must meet the following requirements:

	All data fields must be private.

	There can’t be any mutator methods for data fields.

	No accessor methods can return a reference to a data field that is mutable.

Interested readers may refer to Supplement III.U for an extended discussion on immutable objects.

	9.12.1 If a class contains only private data fields and no setter methods, is the class immutable?

	9.12.2 If all the data fields in a class are private and of primitive types, and the class doesn’t contain any setter methods, is the class immutable?

	9.12.3 Is the following class immutable?

public class A {
 private int[] values;

 public int[] getValues() {
 return values;
 }
}

9.13 The Scope of Variables

	The scope of instance and static variables is the entire class, regardless of where the variables are declared.

Section 6.9 discussed local variables and their scope rules. Local variables are declared and used inside a method locally. This section discusses the scope rules of all the variables in the context of a class.

Instance and static variables in a class are referred to as the class’s variables or data fields. A variable defined inside a method is referred to as a local variable. The scope of a class’s variables is the entire class, regardless of where the variables are declared. A class’s variables and methods can appear in any order in the class, as shown in Figure 9.20a. The exception is when a data field is initialized based on a reference to another data field. In such cases, the other data field must be declared first, as shown in Figure 9.20b. For consistency, this book declares data fields at the beginning of the class.

class’s variables

	public class Circle {
 public double getArea() {
 return radius * radius * Math.PI;
 }
 private double radius = 1;
}

	public class F {
 private int i;
 private int j = i + 1;
}

	(a) The variable radius and method getArea() can be declared in any order.

	(b) i has to be declared before j because j’s initial value is dependent on i.

Figure 9.20

Members of a class can be declared in any order, with one exception.

You can declare a class’s variable only once, but you can declare the same variable name in a method many times in different nonnesting blocks.

If a local variable has the same name as a class’s variable, the local variable takes precedence and the class’s variable with the same name is hidden. For example, in the following program, x is defined both as an instance variable and as a local variable in the method:

hidden variables

public class F {
 private int x = 0; // Instance variable
 private int y = 0;
 public F() {
 }
 public void p() {
 int x = 1; // Local variable
 System.out.println("x = " + x);
 System.out.println("y = " + y);
 }
}

What is the output for f.p(), where f is an instance of F? The output for f.p() is 1 for x and 0 for y. Here is why:

	x is declared as a data field with the initial value of 0 in the class, but it is also declared in the method p() with an initial value of 1. The latter x is referenced in the System.out.println statement.

	y is declared outside the method p(), but y is accessible inside the method.

 Tip

To avoid confusion and mistakes, do not use the names of instance or static variables as local variable names, except for method parameters. We will discuss hidden data fields by method parameters in the next section.

	9.13.1 What is the output of the following program?

public class Test {
 private static int i = 0;
 private static int j = 0;
 public static void main(String[] args) {
 int i = 2;
 int k = 3;
 {
 int j = 3;
 System.out.println("i + j is " + i + j);
 }
 k = i + j;
 System.out.println("k is " + k);
 System.out.println("j is " + j);
 }
}

9.14 The this Reference

	The keyword this refers to the object itself. It can also be used inside a constructor to invoke another constructor of the same class.

this keyword

The this keyword is the name of a reference that an object can use to refer to itself. You can use the this keyword to reference the object’s instance members. For example, the following code in (a) uses this to reference the object’s radius and invokes its getArea() method explicitly. The this reference is normally omitted for brevity as shown in (b). However, the this reference is needed to reference a data field hidden by a method or constructor parameter, or to invoke an overloaded constructor.

The this keyword

[image: Code diagrams ay and b contain equivalent code.]

Description

9.14.1 Using this to Reference Data Fields

It is a good practice to use the data field as the parameter name in a setter method or a constructor to make the code easy to read and to avoid creating unnecessary names. In this case, you need to use the this keyword to reference the data field in the setter method. For example, the setRadius method can be implemented as shown in (a). It would be wrong if it is ­implemented as shown in (b).

[image: Diagrams ay and b demonstrate correct and incorrect coding.]

(a) this.radius refers the radius data field in this object.

Description

(b) radius is the parameter defined in the method header.

The data field radius is hidden by the parameter radius in the setter method. You need to reference the data field name in the method using the syntax this.radius. A hidden static variable can be accessed simply by using the ClassName.staticVariable reference. A hidden instance variable can be accessed by using the keyword this, as shown in Figure 9.21a.

reference data fields

	public class F {
 private int i = 5;
 private static double k = 0;

 public void setI(int i) {
 this.i = i;
 }

 public static void setK(double k) {
 F.k = k;
 }

 // other methods omitted
}

	Suppose that f1 and f2 are two objects of F.

Invoking f1.setI(10) is to execute

 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute

 this.i = 45, where this refers f2

Invoking F.setK(33) is to execute

 F.k = 33. setK is a static method

	(a)

	(b)

Figure 9.21

The keyword this refers to the calling object that invokes the method.

The this keyword gives us a way to reference the object that invokes an instance method. To invoke f1.setI(10), this.i = i is executed, which assigns the value of parameter i to the data field i of this calling object f1. The keyword this refers to the object that invokes the instance method setI, as shown in Figure 9.21b. The line F.k = k means the value in parameter k is assigned to the static data field k of the class, which is shared by all the objects of the class.

9.14.2 Using this to Invoke a Constructor

The this keyword can be used to invoke another constructor of the same class. For example, you can rewrite the Circle class as follows:

[image: A code diagram shows how to rewrite the Circle class.]

Description

The line this(1.0) in the second constructor invokes the first constructor with a double value argument.

 Note

Java requires that the this(arg-list) statement appear first in the constructor before any other executable statements.

 Tip

If a class has multiple constructors, it is better to implement them using this(arg-list) as much as possible. In general, a constructor with no or fewer arguments can invoke a constructor with more arguments using this(arg-list). This syntax often simplifies coding and makes the class easier to read and to maintain.

	9.14.1 Describe the role of the this keyword.

	9.14.2 What is wrong in the following code?

 1 public class C {
 2 private int p;
 3
 4 public C() {
 5 System.out.println("C's no-arg constructor invoked");
 6 this(0);
 7 }
 8
 9 public C(int p) {
10 p = p;
11 }
12
13 public void setP(int p) {
14 p = p;
15 }
16 }

	9.14.3 What is wrong in the following code?

public class Test {
 private int id;

 public void m1() {
 this.id = 45;
 }
 public void m2() {
 Test.id = 45;
 }
}

Key Terms

	action 324

	anonymous object 333

	attribute 324

	behavior 324

	class 324

	class’s variable 357

	client 327

	constructor 324

	data field 324

	data field encapsulation 346

	default constructor 331

	dot operator (.) 332

	getter (or accessor)  347

	instance 324

	instance method 333

	instance variable 333

	instantiation 324

	immutable class 355

	immutable object 355

	no-arg constructor 327

	null value 333

	object 324

	object-oriented programming (OOP)

	package-private (or package-access) 344

	private constructor 346

	property 324

	public class 327

	reference type 332

	reference variable 332

	setter (or mutator) 347

	state 324

	static method 339

	static variable 339

	this keyword 358

	Unified Modeling Language (UML) 325

Chapter Summary

	A class is a template for objects. It defines the properties of objects and provides constructors for creating objects and methods for manipulating them.

	A class is also a data type. You can use it to declare object reference variables. An object reference variable that appears to hold an object actually contains a reference to that object. Strictly speaking, an object reference variable and an object are different, but most of the time the distinction can be ignored.

	An object is an instance of a class. You use the new operator to create an object and the dot operator (.) to access members of that object through its reference variable.

	An instance variable or method belongs to an instance of a class. Its use is associated with individual instances. A static variable is a variable shared by all instances of the same class. A static method is a method that can be invoked without using instances.

	Every instance of a class can access the class’s static variables and methods. For clarity, however, it is better to invoke static variables and methods using ClassName .­variable and ClassName.method.

	Visibility modifiers specify how the class, method, and data are accessed. A public class, method, or data is accessible to all clients. A private method or data is accessible only inside the class.

	You can provide a getter (accessor) method or a setter (mutator) method to enable clients to see or modify the data.

	A getter method has the signature public returnType getPropertyName(). If the returnType is boolean, the getter method should be defined as public boolean isPropertyName(). A setter method has the signature public void setPropertyName(dataType propertyValue).

	All parameters are passed to methods using pass-by-value. For a parameter of a primitive type, the actual value is passed; for a parameter of a reference type, the reference for the object is passed.

	A Java array is an object that can contain primitive-type values or object-type values. When an array of objects is created, its elements are assigned the default value of null.

	Once it is created, an immutable object cannot be modified. To prevent users from modifying an object, you can define immutable classes.

	The scope of instance and static variables is the entire class, regardless of where the variables are declared. Instance and static variables can be declared anywhere in the class. For consistency, they are declared at the beginning of the class in this book.

	The keyword this can be used to refer to the calling object. It can also be used inside a constructor to invoke another constructor of the same class.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

three objectives

 Pedagogical Note

The exercises in Chapters 9–13 help you to achieve three objectives:

	Design classes and draw UML class diagrams.

	Implement classes from the UML.

	Use classes to develop applications.

Students can download solutions for the UML diagrams for the even-numbered exercises from the Companion Website and instructors can download all solutions from the same site.

Starting from Section 9.7, all data fields should be declared private and all constructors and methods should be defined public unless specified otherwise.

Sections 9.2–9.5

	9.1 (The Rectangle class) Following the example of the Circle class in Section 9.2 , design a class named Rectangle to represent a rectangle. The class contains:

	Two double data fields named width and height that specify the width and height of the rectangle. The default values are 1 for both width and height.

	A no-arg constructor that creates a default rectangle.

	A constructor that creates a rectangle with the specified width and height.

	A method named getArea() that returns the area of this rectangle.

	A method named getPerimeter() that returns the perimeter.

Draw the UML diagram for the class then implement the class. Write a test program that creates two Rectangle objects—one with width 4 and height 40, and the other with width 3.5 and height 35.9. Display the width, height, area, and perimeter of each rectangle in this order.

	9.2 (The Stock class) Following the example of the Circle class in Section 9.2 , design a class named Stock that contains:

	A string data field named symbol for the stock’s symbol.

	A string data field named name for the stock’s name.

	A double data field named previousClosingPrice that stores the stock price for the previous day.

	A double data field named currentPrice that stores the stock price for the current time.

	A constructor that creates a stock with the specified symbol and name.

	A method named getChangePercent() that returns the percentage changed from previousClosingPrice to currentPrice.

		Draw the UML diagram for the class then implement the class. Write a test program that creates a Stock object with the stock symbol ORCL, the name ­Oracle Corporation, and the previous closing price of 34.5. Set a new current price to 34.35 and display the price-change percentage.

Section 9.6

		*9.3	(Use the Date class) Write a program that creates a Date object, sets its elapsed time to 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, and 100000000000, and displays the date and time using the toString() method, respectively.

		*9.4	(Use the Random class) Write a program that creates a Random object with seed 1000 and displays the first 50 random integers between 0 and 100 using the ­nextInt(100) method.

		*9.5	(Use the GregorianCalendar class) Java API has the GregorianCalendar class in the java.util package, which you can use to obtain the year, month, and day of a date. The no-arg constructor constructs an instance for the current date, and the methods get(GregorianCalendar.YEAR), get(GregorianCalendar.MONTH), and get(GregorianCalendar.DAY_OF_MONTH) return the year, month, and day. Write a program to perform two tasks:

	Display the current year, month, and day.

	The GregorianCalendar class has the setTimeInMillis(long), which can be used to set a specified elapsed time since January 1, 1970. Set the value to 1234567898765L and display the year, month, and day.

Sections 9.7–9.9

	*9.6 (Stopwatch) Design a class named StopWatch. The class contains:

	Private data fields startTime and endTime with getter methods.

	A no-arg constructor that initializes startTime with the current time.

	A method named start() that resets the startTime to the current time.

	A method named stop() that sets the endTime to the current time.

	A method named getElapsedTime() that returns the elapsed time for the stopwatch in milliseconds.

		Draw the UML diagram for the class then implement the class. Write a test program that measures the execution time of sorting 100,000 numbers using selection sort.

	9.7 (The Account class) Design a class named Account that contains:

	A private int data field named id for the account (default 0).

	A private double data field named balance for the account (default 0).

	A private double data field named annualInterestRate that stores the current interest rate (default 0). Assume that all accounts have the same interest rate.

	A private Date data field named dateCreated that stores the date when the account was created.

	A no-arg constructor that creates a default account.

	A constructor that creates an account with the specified id and initial balance.

	The accessor and mutator methods for id, balance, and annualInterestRate.

	The accessor method for dateCreated.

	A method named getMonthlyInterestRate() that returns the monthly interest rate.

	A method named getMonthlyInterest() that returns the monthly interest.

	A method named withdraw that withdraws a specified amount from the account.

	A method named deposit that deposits a specified amount to the account.

Draw the UML diagram for the class then implement the class. (Hint: The method getMonthlyInterest() is to return monthly interest, not the interest rate. Monthly interest is balance * monthlyInterestRate. monthlyInterestRate is annualInterestRate / 12. Note annualInterestRate is a percentage, for example 4.5%. You need to divide it by 100.)

Write a test program that creates an Account object with an account ID of 1122, a balance of $20,000, and an annual interest rate of 4.5%. Use the withdraw method to withdraw $2,500, use the deposit method to deposit $3,000, and print the balance, the monthly interest, and the date when this account was created.

	9.8 (The Fan class) Design a class named Fan to represent a fan. The class contains:

The Fan class

	Three constants named SLOW, MEDIUM, and FAST with the values 1, 2, and 3 to denote the fan speed.

	A private int data field named speed that specifies the speed of the fan (the default is SLOW).

	A private boolean data field named on that specifies whether the fan is on (the default is false).

	A private double data field named radius that specifies the radius of the fan (the default is 5).

	A string data field named color that specifies the color of the fan (the default is blue).

	The accessor and mutator methods for all four data fields.

	A no-arg constructor that creates a default fan.

	A method named toString() that returns a string description for the fan. If the fan is on, the method returns the fan speed, color, and radius in one combined string. If the fan is not on, the method returns the fan color and radius along with the string “fan is off” in one combined string.

		Draw the UML diagram for the class then implement the class. Write a test program that creates two Fan objects. Assign maximum speed, radius 10, color yellow, and turn it on to the first object. Assign medium speed, radius 5, color blue, and turn it off to the second object. Display the objects by invoking their toString method.

		**9.9	(Geometry: n-sided regular polygon) In an n-sided regular polygon, all sides have the same length and all angles have the same degree (i.e., the polygon is both equilateral and equiangular). Design a class named RegularPolygon that contains:

	A private int data field named n that defines the number of sides in the polygon with default value 3.

	A private double data field named side that stores the length of the side with default value 1.

	A private double data field named x that defines the x-coordinate of the polygon’s center with default value 0.

	A private double data field named y that defines the y-coordinate of the polygon’s center with default value 0.

	A no-arg constructor that creates a regular polygon with default values.

	A constructor that creates a regular polygon with the specified number of sides and length of side, centered at (0, 0).

	A constructor that creates a regular polygon with the specified number of sides, length of side, and x- and y-coordinates.

	The accessor and mutator methods for all data fields.

	The method getPerimeter() that returns the perimeter of the polygon.

	The method getArea() that returns the area of the polygon. The formula for computing the area of a regular polygon is

Area=n×s24×tan(πn).

Draw the UML diagram for the class then implement the class. Write a test program that creates three RegularPolygon objects, created using the no-arg constructor, using RegularPolygon(6, 4), and using RegularPolygon(10, 4, 5.6, 7.8). For each object, display its perimeter and area.

		*9.10	(Algebra: quadratic equations) Design a class named QuadraticEquation for a quadratic equation ax2+bx+c=0
. The class contains:

	Private data fields a, b, and c that represent three coefficients.

	A constructor with the arguments for a, b, and c.

	Three getter methods for a, b, and c.

	A method named getDiscriminant() that returns the discriminant, which is b2−4ac.

	The methods named getRoot1() and getRoot2() for returning two roots of the equation

r1= −b+b2−4ac2a and r2= −b−b2−4ac2a

These methods are useful only if the discriminant is nonnegative. Let these methods return 0 if the discriminant is negative.

		Draw the UML diagram for the class then implement the class. Write a test program that prompts the user to enter values for a, b, and c and displays the result based on the discriminant. If the discriminant is positive, display the two roots. If the discriminant is 0, display the one root. Otherwise, display “The equation has no roots.” See Programming Exercise 3.1 for sample runs.

	*9.11 (Algebra: 2×2 linear equations) Design a class named LinearEquation for a 2×2 system of linear equations:

ax+by=ecx+dy=f x=ed−bfad−bc y=af−ecad−bc

The class contains:

	Private data fields a, b, c, d, e, and f.

	A constructor with the arguments for a, b, c, d, e, and f.

	Six getter methods for a, b, c, d, e, and f.

	A method named isSolvable() that returns true if ad−bc
 is not 0.

	Methods getX() and getY() that return the solution for the equation.

		Draw the UML diagram for the class then implement the class. Write a test program that prompts the user to enter a, b, c, d, e, and f and displays the result. If ad−bc
 is 0, report that “The equation has no solution.” See Programming Exercise 3.3 for sample runs.

		**9.12	(Geometry: intersecting point) Suppose two line segments intersect. The two endpoints for the first line segment are (x1, y1) and (x2, y2) and for the second line segment are (x3, y3) and (x4, y4). Write a program that prompts the user to enter these four endpoints and displays the intersecting point. As discussed in Programming Exercise 3.25, the intersecting point can be found by solving a linear equation. Use the LinearEquation class in Programming Exercise 9.11 to solve this equation. See Programming Exercise 3.25 for sample runs.

		**9.13	(The Location class) Design a class named Location for locating a maximal value and its location in a two-dimensional array. The class contains public data fields row, column, and maxValue that store the maximal value and its indices in a two-dimensional array with row and column as int types and maxValue as a double type.

Write the following method that returns the location of the largest element in a two-dimensional array:

public static Location locateLargest(double[][] a)

		The return value is an instance of Location. Write a test program that prompts the user to enter a two-dimensional array and displays the location of the largest element in the array. Here is a sample run:

Enter the number of rows and columns in the array: 3 4

Enter the array:

23.5 35 2 10
4.5 3 45 3.5
35 44 5.5 9.6

The location of the largest element is 45 at (1, 2)

CHAPTER 10 Object-Oriented Thinking

Objectives

	To apply class abstraction to develop software (§10.2).

	To explore the differences between the procedural paradigm and object-oriented paradigm (§10.3).

	To discover the relationships between classes (§10.4).

	To design programs using the object-oriented paradigm (§§10.5 and 10.6).

	To create objects for primitive values using the wrapper classes (Byte, Short, Integer, Long, Float, Double, Character, and Boolean) (§10.7).

	To simplify programming using automatic conversion between ­primitive types and wrapper class types (§10.8).

	To use the BigInteger and BigDecimal classes for computing very large numbers with arbitrary precisions (§10.9).

	To use the String class to process immutable strings (§10.10).

	To use the StringBuilder and StringBuffer classes to process mutable strings (§10.11).

10.1 Introduction

	The focus of this chapter is on class design and to explore the differences between ­procedural programming and object-oriented programming.

The preceding chapter introduced objects and classes. You learned how to define classes, create objects, and use objects. This book’s approach is to teach problem solving and fundamental programming techniques before object-oriented programming. This chapter shows how procedural and object-oriented programming differ. You will see the benefits of object-oriented programming and learn to use it effectively.

Our focus here is on class design. We will use several examples to illustrate the advantages of the object-oriented approach. The examples involve designing new classes and using them in applications and introducing new classes in the Java API.

10.2 Class Abstraction and Encapsulation

	Class abstraction is separation of class implementation from the use of a class. The details of implementation are encapsulated and hidden from the user. This is known as class encapsulation.

In Chapter 6, you learned about method abstraction and used it in stepwise refinement. Java provides many levels of abstraction, and class abstraction separates class implementation from how the class is used. The creator of a class describes the functions of the class and lets the user know how the class can be used. The collection of public constructors, methods, and fields that are accessible from outside the class, together with the description of how these members are expected to behave, serves as the class’s contract. As shown in Figure 10.1, the user of the class does not need to know how the class is implemented. The details of implementation are encapsulated and hidden from the user. This is called class encapsulation. For example, you can create a Circle object and find the area of the circle without knowing how the area is computed. For this reason, a class is also known as an abstract data type (ADT).

class abstraction

class’s contract

[image: Class implementation is like a black box hidden from the clients.]
Figure 10.1

Class abstraction separates class implementation from the use of the class.

Description

Class abstraction and encapsulation are two sides of the same coin. Many real-life examples illustrate the concept of class abstraction. Consider, for instance, building a computer system. Your personal computer has many components—a CPU, memory, disk, motherboard, fan, and so on. Each component can be viewed as an object that has properties and methods. To get the components to work together, you need to know only how each component is used and how it interacts with the others. You don’t need to know how the components work internally. The internal implementation is encapsulated and hidden from you. You can build a computer without knowing how a component is implemented.

class encapsulation

The computer-system analogy precisely mirrors the object-oriented approach. Each component can be viewed as an object of the class for the component. For example, you might have a class that models all kinds of fans for use in a computer, with properties such as fan size and speed and methods such as start and stop. A specific fan is an instance of this class with specific property values.

abstract data type

As another example, consider getting a loan. A specific loan can be viewed as an object of a Loan class. The interest rate, loan amount, and loan period are its data properties and computing the monthly and total payments are its methods. When you buy a car, a loan object is created by instantiating the class with your loan interest rate, loan amount, and loan period. You can then use the methods to find the monthly payment and total payment of your loan. As a user of the Loan class, you don’t need to know how these methods are implemented.

The Loan class

Listing 2.9, ComputeLoan.java, presented a program for computing loan payments. That program cannot be reused in other programs because the code for computing the payments is in the main method. One way to fix this problem is to define static methods for computing the monthly payment and the total payment. However, this solution has limitations. Suppose that you wish to associate a date with the loan. There is no good way to tie a date with a loan without using objects. The traditional procedural programming paradigm is action-driven, and data are separated from actions. The object-oriented programming paradigm focuses on objects, and actions are defined along with the data in objects. To tie a date with a loan, you can define a loan class with a date along with the loan’s other properties as data fields. A loan object now contains data and actions for manipulating and processing data, and the loan data and actions are integrated in one object. Figure 10.2 shows the UML class diagram for the Loan class.

[image: An annotated diagram of the class, Loan.]
Figure 10.2

The Loan class models the properties and behaviors of loans.

Description

The UML diagram in Figure 10.2 serves as the contract for the Loan class. Throughout this book, you will play the roles of both class user and class developer. Remember that a class user can use the class without knowing how the class is implemented.

Assume the Loan class is available. The program in Listing 10.1 uses that class.

Listing 10.1 TestLoanClass.java

 1 import java.util.Scanner;
 2
 3 public class TestLoanClass {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Enter annual interest rate
 10 System.out.print(
 11 "Enter annual interest rate, for example, 8.25: ");
 12 double annualInterestRate = input.nextDouble();
 13
 14 // Enter number of years
 15 System.out.print("Enter number of years as an integer: ");
 16 int numberOfYears = input.nextInt();
 17
 18 // Enter loan amount
 19 System.out.print("Enter loan amount, for example, 120000.95: ");
 20 double loanAmount = input.nextDouble();
 21
 22 // Create a Loan object
 23 Loan loan =
create loan object 24 new Loan(annualInterestRate, numberOfYears, loanAmount);
 25
 26 // Display loan date, monthly payment, and total payment
 27 System.out.printf("The loan was created on %s\n" +
 28 "The monthly payment is %.2f\nThe total payment is %.2f\n",
invoke instance method 29 loan.getLoanDate().toString(), loan.getMonthlyPayment(),
invoke instance method 30 loan.getTotalPayment());
 31 }
 32 }

Enter annual interest rate, for example, 8.25: 2.5
Enter number of years as an integer: 5
Enter loan amount, for example, 120000.95: 1000
The loan was created on Sat Jun 16 21:12:50 EDT 2012
The monthly payment is 17.75
The total payment is 1064.84

The main method reads the interest rate, the payment period (in years), and the loan amount; creates a Loan object; then obtains the monthly payment (line 29) and the total payment (line 30) using the instance methods in the Loan class.

The Loan class can be implemented as in Listing 10.2.

Listing 10.2 Loan.java

 1 public class Loan {
 2 private double annualInterestRate;
 3 private int numberOfYears;
 4 private double loanAmount;
 5 private java.util.Date loanDate;
 6
 7 /** Default constructor */
no-arg constructor 8 public Loan() {
 9 this(2.5, 1, 1000);
 10 }
 11
 12 /** Construct a loan with specified annual interest rate,
 13 number of years, and loan amount
 14 */
constructor 15 public Loan(double annualInterestRate, int numberOfYears,
 16 double loanAmount) {
 17 this.annualInterestRate = annualInterestRate;
 18 this.numberOfYears = numberOfYears;
 19 this.loanAmount = loanAmount;
 20 loanDate = new java.util.Date();
 21 }
 22
 23 /** Return annualInterestRate */
 24 public double getAnnualInterestRate() {
 25 return annualInterestRate;
 26 }
 27
 28 /** Set a new annualInterestRate */
 29 public void setAnnualInterestRate(double annualInterestRate) {
 30 this.annualInterestRate = annualInterestRate;
 31 }
 32
 33 /** Return numberOfYears */
 34 public int getNumberOfYears() {
 35 return numberOfYears;
 36 }
 37
 38 /** Set a new numberOfYears */
 39 public void setNumberOfYears(int numberOfYears) {
 40 this.numberOfYears = numberOfYears;
 41 }
 42
 43 /** Return loanAmount */
 44 public double getLoanAmount() {
 45 return loanAmount;
 46 }
 47
 48 /** Set a new loanAmount */
 49 public void setLoanAmount(double loanAmount) {
 50 this.loanAmount = loanAmount;
 51 }
 52
 53 /** Find monthly payment */
 54 public double getMonthlyPayment() {
 55 double monthlyInterestRate = annualInterestRate / 1200;
 56 double monthlyPayment = loanAmount * monthlyInterestRate / (1 –
 57 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
 58 return monthlyPayment;
 59 }
 60
 61 /** Find total payment */
 62 public double getTotalPayment() {
 63 double totalPayment = getMonthlyPayment() * numberOfYears * 12;
 64 return totalPayment;
 65 }
 66
 67 /** Return loan date */
 68 public java.util.Date getLoanDate() {
 69 return loanDate;
 70 }
 71 }

From a class developer’s perspective, a class is designed for use by many different ­customers. In order to be useful in a wide range of applications, a class should provide a ­variety of ways for customization through constructors, properties, and methods.

The Loan class contains two constructors, four getter methods, three setter methods, and the methods for finding the monthly payment and the total payment. You can construct a Loan object by using the no-arg constructor or the constructor with three parameters: annual interest rate, number of years, and loan amount. When a loan object is created, its date is stored in the loanDate field. The getLoanDate method returns the date. The methods—getAnnualInterest, getNumberOfYears, and getLoanAmount—return the annual interest rate, payment years, and loan amount, respectively. All the data properties and methods in this class are tied to a specific instance of the Loan class. Therefore, they are instance variables and methods.

 Important Pedagogical Tip

Use the UML diagram for the Loan class shown in Figure 10.2 to write a test program that uses the Loan class even though you don’t know how the Loan class is implemented. This has three benefits:

		■	It demonstrates that developing a class and using a class are two separate tasks.

		■	It enables you to skip the complex implementation of certain classes without interrupting the sequence of this book.

		■	It is easier to learn how to implement a class if you are familiar with it by using the class.

For all the class examples from now on, create an object from the class and try using its methods before turning your attention to its implementation.

	10.2.1 If you redefine the Loan class in Listing 10.2 without setter methods, is the class immutable?

10.3 Thinking in Objects

	The procedural paradigm focuses on designing methods. The object-oriented ­paradigm couples data and methods together into objects. Software design using the object-oriented paradigm focuses on objects and operations on objects.

Chapters 1 through 8 introduced fundamental programming techniques for problem solving using loops, methods, and arrays. Knowing these techniques lays a solid foundation for object-oriented programming. Classes provide more flexibility and modularity for building reusable software. This section improves the solution for a problem introduced in Chapter 3 using the object-oriented approach. From these improvements, you will gain insight into the differences between procedural and object-oriented programming, and see the benefits of developing reusable code using objects and classes.

Listing 3.4, ComputeAndInterpretBMI.java, presented a program for computing the body mass index (BMI). The code cannot be reused in other programs, because the code is in the main method. To make it reusable, define a static method to compute body mass index as follows:

public static double getBMI(double weight, double height)

This method is useful for computing body mass index for a specified weight and height. However, it has limitations. Suppose you need to associate the weight and height with a ­person’s name and birth date. You could declare separate variables to store these values, but these values would not be tightly coupled. The ideal way to couple them is to create an object that contains them all. Since these values are tied to individual objects, they should be stored in instance data fields. You can define a class named BMI as shown in Figure 10.3.

[image: An annotated U M L diagram of the class, B M I.]
Figure 10.3

The BMI class encapsulates BMI information.

Description

The BMI class

Assume the BMI class is available. Listing 10.3 gives a test program that uses this class.

Listing 10.3 UseBMIClass.java

 1 public class UseBMIClass {
 2 public static void main(String[] args) {
create an object 3 BMI bmi1 = new BMI("Kim Yang", 18, 145, 70);
invoke instance method 4 System.out.println("The BMI for " + bmi1.getName() + " is "
 5 + bmi1.getBMI() + " " + bmi1.getStatus());
 6
create an object 7 BMI bmi2 = new BMI("Susan King", 215, 70);
invoke instance method 8 System.out.println("The BMI for " + bmi2.getName() + " is "
 9 + bmi2.getBMI() + " " + bmi2.getStatus());
 10 }
 11 }

The BMI for Kim Yang is 20.81 Normal
The BMI for Susan King is 30.85 Obese

Line 3 creates the object bmi1 for Kim Yang, and line 7 creates the object bmi2 for Susan King. You can use the instance methods getName(), getBMI(), and getStatus() to return the BMI information in a BMI object.

The BMI class can be implemented as in Listing 10.4.

Listing 10.4 BMI.java

 1 public class BMI {
 2 private String name;
 3 private int age;
 4 private double weight; // in pounds
 5 private double height; // in inches
 6 public static final double KILOGRAMS_PER_POUND = 0.45359237;
 7 public static final double METERS_PER_INCH = 0.0254;
 8
constructor 9 public BMI(String name, int age, double weight, double height) {
 10 this.name = name;
 11 this.age = age;
 12 this.weight = weight;
 13 this.height = height;
 14 }
 15
constructor 16 public BMI(String name, double weight, double height) {
 17 this(name, 20, weight, height);
 18 }
 19
getBMI 20 public double getBMI() {
 21 double bmi = weight * KILOGRAMS_PER_POUND /
 22 ((height * METERS_PER_INCH) * (height * METERS_PER_INCH));
 23 return Math.round(bmi * 100) / 100.0;
 24 }
 25
getStatus 26 public String getStatus() {
 27 double bmi = getBMI();
 28 if (bmi < 18.5)
 29 return "Underweight";
 30 else if (bmi < 25)
 31 return "Normal";
 32 else if (bmi < 30)
 33 return "Overweight";
 34 else
 35 return "Obese";
 36 }
 37
 38 public String getName() {
 39 return name;
 40 }
 41
 42 public int getAge() {
 43 return age;
 44 }
 45
 46 public double getWeight() {
 47 return weight;
 48 }
 49
 50 public double getHeight() {
 51 return height;
 52 }
 53 }

The mathematical formula for computing the BMI using weight and height is given in Sections 3.8. The instance method getBMI() returns the BMI. Since the weight and height are instance data fields in the object, the getBMI() method can use these properties to compute the BMI for the object.

The instance method getStatus() returns a string that interprets the BMI. The interpretation is also given in Section 3.8.

This example demonstrates the advantages of the object-oriented paradigm over the procedural paradigm. The procedural paradigm focuses on designing methods. The object-oriented paradigm couples data and methods together into objects. Software design using the object-oriented paradigm focuses on objects and operations on objects. The object-oriented approach combines the power of the procedural paradigm with an added dimension that integrates data with operations into objects.

procedural vs. object-oriented paradigms

In procedural programming, data and operations on the data are separate, and this methodology requires passing data to methods. Object-oriented programming places data and the operations that pertain to them in an object. This approach solves many of the problems inherent in procedural programming. The object-oriented programming approach organizes programs in a way that mirrors the real world, in which all objects are associated with both attributes and activities. Using objects improves software reusability and makes programs easier to develop and easier to maintain. Programming in Java involves thinking in terms of objects; a Java program can be viewed as a collection of cooperating objects.

	10.3.1 Is the BMI class defined in Listing 10.4 immutable?

10.4 Class Relationships

	To design classes, you need to explore the relationships among classes. The ­common relationships among classes are association, aggregation, composition, and inheritance.

This section explores association, aggregation, and composition. The inheritance relationship will be introduced in Chapter 11.

10.4.1 Association

Association is a general binary relationship that describes an activity between two classes. For example, a student taking a course is an association between the Student class and the Course class, and a faculty member teaching a course is an association between the Faculty class and the Course class. These associations can be represented in UML graphical notation, as shown in Figure 10.4.

association

[image: Graphical notation for the relationship between students in a course, and the faculty teaching it.]
Figure 10.4

This UML diagram shows that a student may take any number of courses, a faculty member may teach at most three courses, a course may have from 5 to 60 students, and a course is taught by only one faculty member.

Description

An association is illustrated by a solid line between two classes with an optional label that describes the relationship. In Figure 10.4, the labels are Take and Teach. Each relationship may have an optional small black triangle that indicates the direction of the relationship. In this figure, the ▸ indicates that a student takes a course (as opposed to a course taking a student).

Each class involved in the relationship may have a role name that describes the role it plays in the relationship. In Figure 10.4, teacher is the role name for Faculty.

Each class involved in an association may specify a multiplicity, which is placed at the side of the class to specify how many of the class’s objects are involved in the relationship in UML. A multiplicity could be a number or an interval that specifies how many of the class’s objects are involved in the relationship. The character * means an unlimited number of objects, and the interval m..n indicates that the number of objects is between m and n, inclusively. In ­Figure 10.4, each student may take any number of courses, and each course must have at least 5 and at most 60 students. Each course is taught by only one faculty member, and a faculty member may teach from 0 to 3 courses per semester.

multiplicity

In Java code, you can implement associations by using data fields and methods. For example, the relationships in Figure 10.4 may be implemented using the classes in Figure 10.5. The relation “a student takes a course” is implemented using the addCourse method in the Student class and the addStudent method in the Course class. The relation “a faculty teaches a course” is implemented using the addCourse method in the Faculty class and the setFaculty method in the Course class. The Student class may use a list to store the courses that the student is taking, the Faculty class may use a list to store the courses that the faculty is teaching, and the Course class may use a list to store students enrolled in the course and a data field to store the instructor who teaches the course.

Figure 10.5

The association relations are implemented using data fields and methods in classes.

	public class Student {
 private Course[]
 courseList;

 public void addCourse(
 Course c) { ... }
}

	public class Course {
 private Student[]
 classList;
 private Faculty faculty;

 public void addStudent(
 Student s) { ... }

 public void setFaculty(
 Faculty faculty) { ... }
}

	public class Faculty {
 private Course[]
 courseList;

 public void addCourse(
 Course c) { ... }
}

many possible implementations

 Note

There are many possible ways to implement relationships. For example, the student and faculty information in the Course class can be omitted, since they are already in the Student and Faculty class. Likewise, if you don’t need to know the courses a student takes or a faculty member teaches, the data field courseList and the addCourse method in Student or Faculty can be omitted.

10.4.2 Aggregation and Composition

Aggregation is a special form of association that represents an ownership relationship between two objects. Aggregation models has-a relationships. The owner object is called an ­aggregating object, and its class is called an aggregating class. The subject object is called an aggregated object, and its class is called an aggregated class.

aggregation

aggregating object

aggregating class

aggregated object

aggregated class

We refer aggregation between two objects as composition if the existence of the aggregated object is dependent on the aggregating object. In other words, if a relationship is composition, the aggregated object cannot exist on its own. For example, “a student has a name” is a composition relationship between the Student class and the Name class because Name is dependent on Student, whereas “a student has an address” is an aggregation relationship between the ­Student class and the Address class because an address can exist by itself. Composition implies exclusive ownership. One object owns another object. When the owner object is destroyed, the dependent object is destroyed as well. In UML, a filled diamond is attached to an aggregating class (in this case, Student) to denote the composition relationship with an aggregated class (Name), and an empty diamond is attached to an aggregating class (Student) to denote the aggregation relationship with an aggregated class (Address), as shown in Figure 10.6.

[image: U M L graphic notation. The diagram reads as follows from left to right. Class, Name, 1, 1, filled diamond, class, Student, empty diamond, 1 dot dot 3, 1, class, Address.]
Figure 10.6

Each student has a name and an address.

Description

composition

In Figure 10.6, each student has only one multiplicity—address—and each address can be shared by up to 3 students. Each student has one name, and the name is unique for each student.

An aggregation relationship is usually represented as a data field in the aggregating class. For example, the relationships in Figure 10.6 may be implemented using the classes in Figure 10.7. The relation “a student has a name” and “a student has an address” are implemented in the data field name and address in the Student class.

[image:]
Figure 10.7

The composition relations are implemented using data fields in classes.

Description

Aggregation may exist between objects of the same class. For example, a person may have a supervisor. This is illustrated in Figure 10.8.

[image: U M L graphic notation. This diagram uses only one class, Person, so the horizontal line is instead bent into a rectangle, and the diagram reads as follows. Class, Person, empty diamond, 1, Supervisor, 1, lass, Person.]
Figure 10.8

A person may have a supervisor.

In the relationship “a person has a supervisor,” a supervisor can be represented as a data field in the Person class, as follows:

public class Person {
 // The type for the data is the class itself
 private Person supervisor;

 ...
}

If a person can have several supervisors, as shown in Figure 10.9a, you may use an array to store supervisors, as shown in Figure 10.9b.

[image: Diagrams ay and b represent the relationship between a person and one or more supervisors.]
Figure 10.9

A person can have several supervisors.

Description

 Important Note

Since aggregation and composition relationships are represented using classes in the same way, we will not differentiate them and call both compositions for simplicity.

aggregation or composition

	10.4.1 What are common relationships among classes?

	10.4.2 What is association? What is aggregation? What is composition?

	10.4.3 What is UML notation of aggregation and composition?

	10.4.4 Why both aggregation and composition are together referred to as composition?

10.5 Case Study: Designing the Course Class

	This section designs a class for modeling courses.

This book’s philosophy is teaching by example and learning by doing. The book provides a wide variety of examples to demonstrate object-oriented programming. This section and the next offer additional examples on designing classes.

Suppose you need to process course information. Each course has a name and has students enrolled. You should be able to add/drop a student to/from the course. You can use a class to model the courses, as shown in Figure 10.10.

[image: An annotated diagram of the class, Course.]
Figure 10.10

The Course class models the courses.

Description

A Course object can be created using the constructor Course(String name) by passing a course name. You can add students to the course using the addStudent(String student) method, drop a student from the course using the dropStudent(String student) method, and return all the students in the course using the getStudents() method. Suppose that the Course class is available; Listing 10.5 gives a test class that creates two courses and adds students to them.

Listing 10.5 TestCourse.java

 1 public class TestCourse {
 2 public static void main(String[] args) {
create a Course 3 Course course1 = new Course("Data Structures");
 4 Course course2 = new Course("Database Systems");
 5
add a Student 6 course1.addStudent("Peter Jones");
 7 course1.addStudent("Kim Smith");
 8 course1.addStudent("Anne Kennedy");
 9
 10 course2.addStudent("Peter Jones");
 11 course2.addStudent("Steve Smith");
 12
 13 System.out.println("Number of students in course1: "
number of students 14 + course1.getNumberOfStudents());
return students 15 String[] students = course1.getStudents();
 16 for (int i = 0; i < course1.getNumberOfStudents(); i++)
 17 System.out.print(students[i] + ", ");
 18
 19 System.out.println();
 20 System.out.print("Number of students in course2: "
 21 + course2.getNumberOfStudents());
 22 }
 23 }

Number of students in course1: 3
Peter Jones, Kim Smith, Anne Kennedy,
Number of students in course2: 2

The Course class is implemented in Listing 10.6. It uses an array to store the students in the course. For simplicity, assume the maximum course enrollment is 100. The array is created using new String[100] in line 3. The addStudent method (line 10) adds a student to the array. Whenever a new student is added to the course, numberOfStudents is increased (line 12). The getStudents method returns the array. The dropStudent method (line 27) is left as an exercise.

Listing 10.6 Course.java

 1 public class Course {
 2 private String courseName;
create students 3 private String[] students = new String[100];
 4 private int numberOfStudents;
 5
add a course 6 public Course(String courseName) {
 7 this.courseName = courseName;
 8 }
 9
 10 public void addStudent(String student) {
 11 students[numberOfStudents] = student;
 12 numberOfStudents++;
 13 }
 14
return students 15 public String[] getStudents() {
 16 return students;
 17 }
 18
number of students 19 public int getNumberOfStudents() {
 20 return numberOfStudents;
 21 }
 22
 23 public String getCourseName() {
 24 return courseName;
 25 }
 26
 27 public void dropStudent(String student) {
 28 // Left as an exercise in Programming Exercise 10.9
 29 }
 30 }

The array size is fixed to be 100 (line 3), so you cannot have more than 100 students in the course. You can improve the class by automatically increasing the array size in Programming Exercise 10.9.

When you create a Course object, an array object is created. A Course object contains a reference to the array. For simplicity, you can say the Course object contains the array.

The user can create a Course object and manipulate it through the public methods ­addStudent, dropStudent, getNumberOfStudents, and getStudents. However, the user doesn’t need to know how these methods are implemented. The Course class encapsulates the internal implementation. This example uses an array to store students, but you could use a different data structure to store students. The program that uses Course does not need to change as long as the contract of the public methods remains unchanged.

	10.5.1 Replace the statement in line 17 in Listing 10.5 , TestCourse.java, so the loop displays each student name followed by a comma except the last student name.

10.6 Case Study: Designing a Class for Stacks

	This section designs a class for modeling stacks.

Recall that a stack is a data structure that holds data in a last-in, first-out fashion, as shown in Figure 10.11.

[image: The stack is represented as a box, into which Data 1, 2, and 3 are placed, with 1 on the bottom and 3 on the top. The stack is then emptied in the sequence, Data 3, then 2, then 1.]
Figure 10.11

A stack holds data in a last-in, first-out fashion.

stack

Stacks have many applications. For example, the compiler uses a stack to process method invocations. When a method is invoked, its parameters and local variables are pushed into a stack. When a method calls another method, the new method’s parameters and local variables are pushed into the stack. When a method finishes its work and returns to its caller, its associated space is released from the stack.

You can define a class to model stacks. For simplicity, assume the stack holds the int values. Thus, name the stack class StackOfIntegers. The UML diagram for the class is shown in Figure 10.12.

[image: An annotated diagram of the class, Stack Of Integers.]
Figure 10.12

The StackOfIntegers class encapsulates the stack storage and provides the operations for manipulating the stack.

Description

The StackOfIntegers class

Suppose the class is available. The test program in Listing 10.7 uses the class to create a stack (line 3), store 10 integers 0, 1, 2, ..., and 9 (line 6), and displays them in reverse order (line 9).

Listing 10.7 TestStackOfIntegers.java

 1 public class TestStackOfIntegers {
 2 public static void main(String[] args) {
create a stack 3 StackOfIntegers stack = new StackOfIntegers();
 4
 5 for (int i = 0; i < 10; i++)
push to stack 6 stack.push(i);
 7
 8 while (!stack.empty())
pop from stack 9 System.out.print(stack.pop() + " ");
 10 }
 11 }

9 8 7 6 5 4 3 2 1 0

How do you implement the StackOfIntegers class? The elements in the stack are stored in an array named elements. When you create a stack, the array is also created. The no-arg constructor creates an array with the default capacity of 16. The variable size counts the number of elements in the stack, and size – 1 is the index of the element at the top of the stack, as shown in Figure 10.13. For an empty stack, size is 0.

[image: An array diagram]
Figure 10.13

The StackOfIntegers uses an array to store the elements in a stack.

Description

The StackOfIntegers class is implemented in Listing 10.8. The methods empty(), peek(), pop(), and getSize() are easy to implement. To implement push(int value), assign value to elements[size] if size < capacity (line 24). If the stack is full (i.e., size >= capacity), create a new array of twice the current capacity (line 19), copy the contents of the current array to the new array (line 20), and assign the reference of the new array to the current array in the stack (line 21). Now you can add the new value to the array (line 24).

Listing 10.8 StackOfIntegers.java

 1 public class StackOfIntegers {
 2 private int[] elements;
 3 private int size;
max capacity 16 4 public static final int DEFAULT_CAPACITY = 16;
 5
 6 /** Construct a stack with the default capacity 16 */
 7 public StackOfIntegers() {
 8 this(DEFAULT_CAPACITY);
 9 }
 10
 11 /** Construct a stack with the specified maximum capacity */
 12 public StackOfIntegers(int capacity) {
 13 elements = new int[capacity];
 14 }
 15
 16 /** Push a new integer to the top of the stack */
 17 public void push(int value) {
 18 if (size >= elements.length) {
double the capacity 19 int[] temp = new int[elements.length * 2];
 20 System.arraycopy(elements, 0, temp, 0, elements.length);
 21 elements = temp;
 22 }
 23
add to stack 24 elements[size++] = value;
 25 }
 26
 27 /** Return and remove the top element from the stack */
 28 public int pop() {
 29 return elements[——size];
 30 }
 31
 32 /** Return the top element from the stack */
 33 public int peek() {
 34 return elements[size – 1];
 35 }
 36
 37 /** Test whether the stack is empty */
 38 public boolean empty() {
 39 return size == 0;
 40 }
 41
 42 /** Return the number of elements in the stack */
 43 public int getSize() {
 44 return size;
 45 }
 46 }

10.7 Processing Primitive Data Type Values as Objects

	A primitive-type value is not an object, but it can be wrapped in an object using a wrapper class in the Java API.

Owing to performance considerations, primitive data type values are not objects in Java. Because of the overhead of processing objects, the language’s performance would be adversely affected if primitive data type values were treated as objects. However, many Java methods require the use of objects as arguments. Java offers a convenient way to incorporate, or wrap, a primitive data type value into an object (e.g., wrapping an int into an Integer object, wrapping a double into a Double object, and wrapping a char into a Character object). By using a wrapper class, you can process primitive data type values as objects. Java provides Boolean, Character, Double, Float, Byte, Short, Integer, and Long wrapper classes in the java.lang package for primitive data types. The Boolean class wraps a Boolean value true or false. This section uses Integer and Double as examples to introduce the numeric wrapper classes.

why wrapper class?

naming convention

 Note

Most wrapper class names for a primitive type are the same as the primitive data type name with the first letter capitalized. The exceptions are Integer for int and Character for char.

Numeric wrapper classes are very similar to each other. Each contains the methods doubleValue(), floatValue(), intValue(), longValue(), shortValue(), and byteValue(). These methods “convert” objects into primitive-type values. The key features of Integer and Double are shown in Figure 10.14.

[image: Two U M L diagrams show examples of wrappers for handling primitive data type values.]
Figure 10.14

The wrapper classes provide constructors, constants, and conversion methods for manipulating various data types.

Description

You can construct a wrapper object either from a primitive data type value or from a string representing the numeric value—for example, new Double(5.0), new Double("5.0"), new Integer(5), and new Integer("5").

constructors

The wrapper classes do not have no-arg constructors. The instances of all wrapper classes are immutable; this means that, once the objects are created, their internal values cannot be changed.

no no-arg constructor

immutable

Each numeric wrapper class has the constants MAX_VALUE and MIN_VALUE. MAX_VALUE represents the maximum value of the corresponding primitive data type. For Byte, Short, Integer, and Long, MIN_VALUE represents the minimum byte, short, int, and long values. Float and Double, MIN_VALUE represents the minimum positive float and double values. The following statements display the maximum integer (2,147,483,647), the minimum positive float (1.4E–45), and the maximum double floating-point number

 (

 1.79769313486231570e+308d

)

:

constants

System.out.println("The maximum integer is " + Integer.MAX_VALUE);
System.out.println("The minimum positive float is " +
 Float.MIN_VALUE);
System.out.println(
 "The maximum double-precision floating-point number is " +
 Double.MAX_VALUE);

Each numeric wrapper class contains the methods doubleValue(), floatValue(), intValue(), longValue(), and shortValue() for returning a double, float, int, long, or short value for the wrapper object. For example,

conversion methods

new Double(12.4).intValue() returns 12;
new Integer(12).doubleValue() returns 12.0;

compareTo method

Recall the String class contains the compareTo method for comparing two strings. The numeric wrapper classes contain the compareTo method for comparing two numbers and returns 1, 0, or –1, if this number is greater than, equal to, or less than the other number. For example,

new Double(12.4).compareTo(new Double(12.3)) returns 1;
new Double(12.3).compareTo(new Double(12.3)) returns 0;
new Double(12.3).compareTo(new Double(12.51)) returns –1;

The numeric wrapper classes have a useful static method, valueOf(String s). This method creates a new object initialized to the value represented by the specified string. For example,

static valueOf methods

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueOf("12");

You have used the parseInt method in the Integer class to parse a numeric string into an int value and the parseDouble method in the Double class to parse a numeric string into a double value. Each numeric wrapper class has two overloaded parsing methods to parse a numeric string into an appropriate numeric value based on 10 (decimal) or any specified radix (e.g., 2 for binary, 8 for octal, and 16 for hexadecimal).

static parsing methods

// These two methods are in the Byte class
public static byte parseByte(String s)
public static byte parseByte(String s, int radix)

// These two methods are in the Short class
public static short parseShort(String s)
public static short parseShort(String s, int radix)

// These two methods are in the Integer class
public static int parseInt(String s)
public static int parseInt(String s, int radix)

// These two methods are in the Long class
public static long parseLong(String s)
public static long parseLong(String s, int radix)

// These two methods are in the Float class
public static float parseFloat(String s)
public static float parseFloat(String s, int radix)

// These two methods are in the Double class
public static double parseDouble(String s)
public static double parseDouble(String s, int radix)

For example,

Integer.parseInt("11", 2) returns 3;
Integer.parseInt("12", 8) returns 10;
Integer.parseInt("13", 10) returns 13;
Integer.parseInt("1A", 16) returns 26;
Integer.parseInt("12", 2) would raise a runtime exception because 12 is not a binary number.

Note you can convert a decimal number into a hex number using the format method. For example,

converting decimal to hex

String.format("%x", 26) returns 1A;

	10.7.1 Describe primitive-type wrapper classes.

	10.7.2 Can each of the following statements be compiled?

	Integer i = new Integer("23");

	Integer i = new Integer(23);

	Integer i = Integer.valueOf("23");

	Integer i = Integer.parseInt("23", 8);

	Double d = new Double();

	Double d = Double.valueOf("23.45");

	int i = (Integer.valueOf("23")).intValue();

	double d = (Double.valueOf("23.4")).doubleValue();

	int i = (Double.valueOf("23.4")).intValue();

	String s = (Double.valueOf("23.4")).toString();

	10.7.3 How do you convert an integer into a string? How do you convert a numeric string into an integer? How do you convert a double number into a string? How do you convert a numeric string into a double value?

	10.7.4 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 Integer x = new Integer(3);
 System.out.println(x.intValue());
 System.out.println(x.compareTo(new Integer(4)));
 }
}

	10.7.5 What is the output of the following code?

public class Test {
 public static void main(String[] args) {
 System.out.println(Integer.parseInt("10"));
 System.out.println(Integer.parseInt("10", 10));
 System.out.println(Integer.parseInt("10", 16));
 System.out.println(Integer.parseInt("11"));
 System.out.println(Integer.parseInt("11", 10));
 System.out.println(Integer.parseInt("11", 16));
 }
}

10.8 Automatic Conversion between Primitive Types and Wrapper Class Types

	A primitive-type value can be automatically converted to an object using a wrapper class, and vice versa, depending on the context.

Converting a primitive value to a wrapper object is called boxing. The reverse conversion is called unboxing. Java allows primitive types and wrapper classes to be converted automatically. The compiler will automatically box a primitive value that appears in a context requiring an object, and unbox an object that appears in a context requiring a primitive value. This is called autoboxing and autounboxing.

boxing

unboxing

autoboxing

autounboxing

For instance, the following statement in (a) can be simplified as in (b) using autoboxing.

[image: Diagrams ay and be contain equivalent code.]

Description

The following statement in (a) is the same as in (b) due to autounboxing.

[image: 2 lines of code.]

Description

Consider the following example:

	1 Integer[] intArray = {1, 2, 3};

	2 System.out.println(intArray[0] + intArray1] + intArray[2]);

In line 1, the primitive values 1, 2, and 3 are automatically boxed into objects new Integer(1), new Integer(2), and new Integer(3). In line 2, the objects ­intArray[0], intArray[1], and intArray[2] are automatically unboxed into int values that are added together.

	10.8.1 What are autoboxing and autounboxing? Are the following statements correct?

	Integer x = 3 + new Integer(5);

	Integer x = 3;

	Double x = 3;

	Double x = 3.0;

	int x = new Integer(3);

	int x = new Integer(3) + new Integer(4);

	10.8.2 Show the output of the following code.

public class Test {
 public static void main(String[] args) {
 Double x = 3.5;
 System.out.println(x.intValue());
 System.out.println(x.compareTo(4.5));
 }
}

10.9 The BigInteger and BigDecimal Classes

	The BigInteger and BigDecimal classes can be used to represent integers or ­decimal numbers of any size and precision.

If you need to compute with very large integers or high-precision floating-point values, you can use the BigInteger and BigDecimal classes in the java.math package. Both are immutable. The largest integer of the long type is Long.MAX_VALUE (i.e., 9223372036854775807). An instance of BigInteger can represent an integer of any size. You can use new BigInteger(String) and new BigDecimal(String) to create an instance of BigInteger and BigDecimal, use the add, subtract, multiply, divide, and remainder methods to perform arithmetic operations, and use the compareTo method to compare two big numbers. For example, the following code creates two BigInteger objects and multiplies them:

immutable

Process large numbers

BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.println(c);

The output is 18446744073709551614.

There is no limit to the precision of a BigDecimal object. The divide method may throw an ArithmeticException if the result cannot be terminated. However, you can use the overloaded divide(BigDecimal d, int scale, int roundingMode) method to specify a scale and a rounding mode to avoid this exception, where scale is the maximum number of digits after the decimal point. For example, the following code creates two BigDecimal objects and performs division with scale 20 and rounding mode BigDecimal.ROUND_UP:

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

The output is 0.33333333333333333334.

Note the factorial of an integer can be very large. Listing 10.9 gives a method that can return the factorial of any integer.

Listing 10.9 LargeFactorial.java

 1 import java.util.Scanner;
 2 import java.math.*;
 3
 4 public class LargeFactorial {
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7 System.out.print("Enter an integer: ");
 8 int n = input.nextInt();
 9 System.out.println(n +"! is \n" + factorial(n));
 10 }
 11
 12 public static BigInteger factorial(long n) {
constant 13 BigInteger result = BigInteger.ONE;
 14 for (int i = 1; i <= n; i++)
multiply 15 result = result.multiply(new BigInteger(i + ""));
 16
 17 return result;
 18 }
 19 }

Enter an integer: 50
50! is
30414093201713378043612608166064768844377641568960512000000000000

BigInteger.ONE (line 13) is a constant defined in the BigInteger class. BigInteger.ONE is the same as new BigInteger("1").

A new result is obtained by invoking the multiply method (line 15).

	10.9.1 What is the output of the following code?

public class Test {
 public static void main(String[] args) {
 java.math.BigInteger x = new java.math.BigInteger("3");
 java.math.BigInteger y = new java.math.BigInteger("7");
 java.math.BigInteger z = x.add(y);
 System.out.println("x is " + x);
 System.out.println("y is " + y);
 System.out.println("z is " + z);
 }
}

10.10 The String Class

	A String object is immutable; its contents cannot be changed once the string is created.

The String class

Strings were introduced in Sections 4.4. You know strings are objects. You can invoke the charAt(index) method to obtain a character at the specified index from a string, the length() method to return the size of a string, the substring method to return a substring in a string, the indexOf and lastIndexOf methods to return the first or last index of a ­matching character or a substring, the equals and compareTo methods to compare two strings, and the trim() method to trim whitespace characters from the two ends of a string, and the ­toLowerCase() and toUpperCase() methods to return the lowercase and uppercase from a string. We will take a closer look at strings in this section.

The String class has 13 constructors and more than 40 methods for manipulating strings. Not only is it very useful in programming, but it is also a good example for learning classes and objects.

10.10.1 Constructing a String

You can create a string object from a string literal or from an array of characters. To create a string from a string literal, use the syntax:

String newString = new String(stringLiteral);

The argument stringLiteral is a sequence of characters enclosed in double quotes. The following statement creates a String object message for the string literal "Welcome to Java":

string literal object

String message = new String("Welcome to Java");

Java treats a string literal as a String object. Thus, the following statement is valid:

String message = "Welcome to Java";

You can also create a string from an array of characters. For example, the following statements create the string "Good Day":

char[] charArray = {'G', 'o', 'o', 'd', ' ', 'D', 'a', 'y'};
String message = new String(charArray);

 Note

A String variable holds a reference to a String object that stores a string value. Strictly speaking, the terms String variable, String object, and string value are different, but most of the time the distinctions between them can be ignored. For simplicity, the term string will often be used to refer to String variable, String object, and string value.

String variable, string object, string value

10.10.2 Immutable Strings and Interned Strings

A String object is immutable; its contents cannot be changed. Does the following code change the contents of the string?

immutable

String s = "Java";
s = "HTML";

The answer is no. The first statement creates a String object with the content "Java" and assigns its reference to s. The second statement creates a new String object with the content "HTML" and assigns its reference to s. The first String object still exists after the assignment, but it can no longer be accessed, because variable s now points to the new object, as shown in Figure 10.15.

[image: Two U M L diagrams.]
Figure 10.15

Strings are immutable; once created, their contents cannot be changed.

Description

Because strings are immutable and are ubiquitous in programming, the JVM uses a unique instance for string literals with the same character sequence in order to improve efficiency and save memory. Such an instance is called an interned string. For example, the following statements:

interned string

[image: Variables, s 1 to s 3, refer to a string for, Welcome to Java. However, s 1 and s 3 refer to an interned string.]

Description

display

s1 == s2 is false
s1 == s3 is true

In the preceding statements, s1 and s3 refer to the same interned string—"Welcome to Java"—so s1 == s3 is true. However, s1 == s2 is false, because s1 and s2 are two different string objects, even though they have the same contents.

10.10.3 Replacing and Splitting Strings

The String class provides the methods for replacing and splitting strings, as shown in Figure 10.16.

[image: An annotated diagram of the class, java dot l ay n g dot String.]
Figure 10.16

The String class contains the methods for replacing and splitting strings.

Description

Once a string is created, its contents cannot be changed. The methods replace, ­replaceFirst, and replaceAll return a new string derived from the original string (­without changing the original string!). Several versions of the replace methods are provided to replace a character or a substring in the string with a new character or a new substring.

replace

replaceFirst

replace

replace

For example,

"Welcome".replace('e', 'A') returns a new string, WAlcomA.
"Welcome".replaceFirst("e", "AB") returns a new string, WABlcome.
"Welcome".replace("e", "AB") returns a new string, WABlcomAB.
"Welcome".replace("el", "AB") returns a new string, WABcome.

The split method can be used to extract tokens from a string with the specified delimiters. For example, the following code

split

String[] tokens = "Java#HTML#Perl".split("#");
for (int i = 0; i < tokens.length; i++)
 System.out.print(tokens[i] + " ");

displays

Java HTML Perl

10.10.4 Matching, Replacing, and Splitting by Patterns

Often you will need to write code that validates user input, such as to check whether the input is a number, a string with all lowercase letters, or a Social Security number. How do you write this type of code? A simple and effective way to accomplish this task is to use the regular expression.

why regular expression?

A regular expression (abbreviated regex) is a string that describes a pattern for matching a set of strings. You can match, replace, or split a string by specifying a pattern. This is an extremely useful and powerful feature.

regular expression

regex

Let us begin with the matches method in the String class. At first glance, the matches method is very similar to the equals method. For example, the following two statements both evaluate to true:

matches(regex)

"Java".matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match not only a fixed string, but also a set of strings that follow a pattern. For example, the following statements all evaluate to true:

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

Java.* in the preceding statements is a regular expression. It describes a string pattern that begins with Java followed by any zero or more characters. Here, the substring matches any zero or more characters.

The following statement evaluates to true:

"440–02–4534".matches("\\d{3}–\\d{2}–\\d{4}")

Here, \\d represents a single digit, and \\d{3} represents three digits.

The replaceAll, replaceFirst, and split methods can be used with a regular ­expression. For example, the following statement returns a new string that replaces $, +, or # in a+b$#c with the string NNN.

replaceAll(regex)

String s = "a+b$#c".replaceAll("[$+#]", "NNN");
System.out.println(s);

Here, the regular expression [$+#] specifies a pattern that matches $, +, or #. Thus, the output is aNNNbNNNNNNc.

The following statement splits the string into an array of strings delimited by punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

split(regex)

for (int i = 0; i < tokens.length; i++)
 System.out.println(tokens[i]);

In this example, the regular expression [.,:;?] specifies a pattern that matches ., ,, :, ;, or ?. Each of these characters is a delimiter for splitting the string. Thus, the string is split into Java, C, C#, and C++, which are stored in array tokens.

further studies

Regular expression patterns are complex for beginning students to understand. For this reason, simple patterns are introduced in this section. Please refer to Appendix H, Regular Expressions, to learn more about these patterns.

10.10.5 Conversion between Strings and Arrays

Strings are not arrays, but a string can be converted into an array and vice versa. To convert a string into an array of characters, use the toCharArray method. For example, the following statement converts the string Java to an array:

toCharArray

char[] chars = "Java".toCharArray();

Thus, chars[0] is J, chars[1] is a, chars[2] is v, and chars[3] is a.

You can also use the getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin) method to copy a substring of the string from index srcBegin to index srcEnd–1 into a character array dst starting from index dstBegin. For example, the following code copies a substring "3720" in "CS3720" from index 2 to index 6–1 into the character array dst starting from index 4:

getChars

char[] dst = {'J', 'A', 'V', 'A', '1', '3', '0', '1'};
"CS3720".getChars(2, 6, dst, 4);

Thus, dst becomes {'J', 'A', 'V', 'A', '3', '7', '2', '0'}.

To convert an array of characters into a string, use the String(char[]) constructor or the valueOf(char[]) method. For example, the following statement constructs a string from an array using the String constructor:

String str = new String(new char[]{'J', 'a', 'v', 'a'});

The next statement constructs a string from an array using the valueOf method.

valueOf

String str = String.valueOf(new char[]{'J', 'a', 'v', 'a'});

10.10.6 Converting Characters and Numeric Values to Strings

Recall that you can use Double.parseDouble(str) or Integer.parseInt(str) to ­convert a string to a double value or an int value", and you can convert a character or a number into a string by using the string concatenating operator. Another way of converting a number into a string is to use the overloaded static valueOf method. This method can also be used to convert a character or an array of characters into a string, as shown in Figure 10.17.

[image: An annotated diagram of the class, java dot l ay n g dot String.]
Figure 10.17

The String class contains the static methods for creating strings from primitive-type values.

Description

For example, to convert a double value 5.44 to a string, use String.valueOf(5.44). The return value is a string consisting of the characters '5', '.', '4', and '4'.

overloaded valueOf

10.10.7 Formatting Strings

The String class contains the static format method to return a formatted string. The syntax to invoke this method is

String.format(format, item1, item2, ..., itemk);

This method is similar to the printf method except that the format method returns a formatted string, whereas the printf method displays a formatted string. For example,

String s = String.format("%7.2f%6d%-4s", 45.556, 14, "AB");
System.out.println(s);

displays

 [image: The string reads as follows: two square boxes, 4, 5, dot, 5, 6, four square boxes, 1, 4, Ay, B, two square boxes.]45.56  14AB 

where the square box () denotes a blank space.

Note

System.out.printf(format, item1, item2, ..., itemk);

is equivalent to

System.out.print(
 String.format(format, item1, item2, ..., itemk));

	10.10.1 Suppose s1, s2, s3, and s4 are four strings, given as follows:

String s1 = "Welcome to Java";
String s2 = s1;
String s3 = new String("Welcome to Java");
String s4 = "Welcome to Java";

What are the results of the following expressions?

	s1 == s2

	s1 == s3

	s1 == s4

	s1.equals(s3)

	s1.equals(s4)

	"Welcome to Java".replace("Java", "HTML")

	s1.replace('o', 'T')

	s1.replaceAll("o", "T")

	s1.replaceFirst("o", "T")

	s1.toCharArray()

	10.10.2 To create the string Welcome to Java, you may use a statement like this:

String s = "Welcome to Java";

or

String s = new String("Welcome to Java");

Which one is better? Why?

	10.10.3 What is the output of the following code?

String s1 = "Welcome to Java";
String s2 = s1.replace("o", "abc");
System.out.println(s1);
System.out.println(s2);

	10.10.4 Let s1 be " Welcome " and s2 be " welcome ". Write the code for the following statements:

	Replace all occurrences of the character e with E in s1 and assign the new string to s3.

	Split Welcome to Java and HTML into an array tokens delimited by a space and assign the first two tokens into s1 and s2.

	10.10.5 Does any method in the String class change the contents of the string?

	10.10.6 Suppose string s is created using new String(); what is s.length()?

	10.10.7 How do you convert a char, an array of characters, or a number to a string?

	10.10.8 Why does the following code cause a NullPointerException?

 1 public class Test {
 2 private String text;
 3
 4 public Test(String s) {
 5 String text = s;
 6 }
 7
 8 public static void main(String[] args) {
 9 Test test = new Test("ABC");
10 System.out.println(test.text.toLowerCase());
11 }
12 }

	10.10.9 What is wrong in the following program?

 1 public class Test {
 2 String text;
 3
 4 public void Test(String s) {
 5 text = s;
 6 }
 7
 8 public static void main(String[] args) {
 9 Test test = new Test("ABC");
10 System.out.println(test);
11 }
12 }

	10.10.10 Show the output of the following code:

 public class Test {
 public static void main(String[] args) {
 System.out.println("Hi, ABC, good".matches("ABC "));
 System.out.println("Hi, ABC, good".matches(".*ABC.*"));
 System.out.println("A,B;C".replaceAll(",;", "#"));
 System.out.println("A,B;C".replaceAll("[,;]", "#"));

 String[] tokens = "A,B;C".split("[,;]");
 for (int i = 0; i < tokens.length; i++)
 System.out.print(tokens[i] + " ");
 }
 }

	10.10.11 Show the output of the following code:

 public class Test {
 public static void main(String[] args) {
 String s = "Hi, Good Morning";
 System.out.println(m(s));
 }

 public static int m(String s) {
 int count = 0;
 for (int i = 0; i < s.length(); i++)
 if (Character.isUpperCase(s.charAt(i)))
 count++;

 return count;
 }
 }

10.11 The StringBuilder and StringBuffer Classes

	The StringBuilder and StringBuffer classes are similar to the String class except that the String class is immutable.

In general, the StringBuilder and StringBuffer classes can be used wherever a string is used. StringBuilder and StringBuffer are more flexible than String. You can add, insert, or append new contents into StringBuilder and StringBuffer objects, whereas the value of a String object is fixed once the string is created.

StringBuilder

The StringBuilder class is similar to StringBuffer except that the methods for modifying the buffer in StringBuffer are synchronized, which means that only one task is allowed to execute the methods. Use StringBuffer if the class might be accessed by multiple tasks concurrently, because synchronization is needed in this case to prevent corruptions to StringBuffer. Concurrent programming will be introduced in Chapter 32. Using StringBuilder is more efficient if it is accessed by just a single task, because no synchronization is needed in this case. The constructors and methods in StringBuffer and StringBuilder are almost the same. This section covers StringBuilder. You can replace StringBuilder in all occurrences in this section by StringBuffer. The program can compile and run without any other changes.

StringBuilder constructors

The StringBuilder class has three constructors and more than 30 methods for managing the builder and modifying strings in the builder. You can create an empty string builder or a string builder from a string using the constructors, as shown in Figure 10.18.

[image: An annotated diagram of the class, java dot l ay n g dot String Builder.]
Figure 10.18

The StringBuilder class contains the constructors for creating instances of StringBuilder.

Description

10.11.1 Modifying Strings in the StringBuilder

You can append new contents at the end of a string builder, insert new contents at a specified position in a string builder, and delete or replace characters in a string builder, using the methods listed in Figure 10.19.

[image: An annotated diagram of the class, java dot l ay n g dot String Builder.]
Figure 10.19

The StringBuilder class contains the methods for modifying string builders.

Description

The StringBuilder class provides several overloaded methods to append boolean, char, char[], double, float, int, long, and String into a string builder. For example, the following code appends strings and characters into stringBuilder to form a new string, Welcome to Java:

append

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append("Welcome");
stringBuilder.append(' ');
stringBuilder.append("to");
stringBuilder.append(' ');
stringBuilder.append("Java");

The StringBuilder class also contains overloaded methods to insert boolean, char, char array, double, float, int, long, and String into a string builder. Consider the following code:

stringBuilder.insert(11, "HTML and ");

Suppose stringBuilder contains Welcome to Java before the insert method is applied. This code inserts "HTML and " at position 11 in stringBuilder (just before the J). The new stringBuilder is Welcome to HTML and Java.

insert

You can also delete characters from a string in the builder using the two delete methods, reverse the string using the reverse method, replace characters using the replace method, or set a new character in a string using the setCharAt method.

For example, suppose stringBuilder contains Welcome to Java before each of the following methods is applied:

delete

deleteCharAt

reverse

replace

setCharAt

stringBuilder.delete(8, 11) changes the builder to Welcome Java.
stringBuilder.deleteCharAt(8) changes the builder to Welcome o Java.
stringBuilder.reverse() changes the builder to avaJ ot emocleW.
stringBuilder.replace(11, 15, "HTML") changes the builder to Welcome to HTML.
stringBuilder.setCharAt(0, 'w') sets the builder to welcome to Java.

All these modification methods except setCharAt do two things:

	Change the contents of the string builder

	Return the reference of the string builder

ignore return value

For example, the following statement:

StringBuilder stringBuilder1 = stringBuilder.reverse();

reverses the string in the builder and assigns the builder’s reference to stringBuilder1. Thus, stringBuilder and stringBuilder1 both point to the same StringBuilder object. Recall that a value-returning method can be invoked as a statement, if you are not interested in the return value of the method. In this case, the return value is simply ignored. For example, in the following statement:

stringBuilder.reverse():

the return value is ignored. Returning the reference of a StringBuilder enables the ­StringBuilder methods to be invoked in a chain such as the following:

stringBuilder.reverse().delete(8, 11).replace(11, 15, "HTML");

String or StringBuilder?

 Tip

If a string does not require any change, use String rather than StringBuilder. String is more efficient than StringBuilder.

10.11.2 The toString, capacity, length, setLength, and charAt Methods

The StringBuilder class provides the additional methods for manipulating a string builder and obtaining its properties, as shown in Figure 10.20.

[image: An annotated diagram of the class, java dot l ay n g dot String Builder.]
Figure 10.20

The StringBuilder class contains the methods for modifying string builders.

Description

The capacity() method returns the current capacity of the string builder. The capacity is the number of characters the string builder is able to store without having to increase its size.

capacity()

The length() method returns the number of characters actually stored in the string builder. The setLength(newLength) method sets the length of the string builder. If the newLength argument is less than the current length of the string builder, the string builder is truncated to contain exactly the number of characters given by the newLength argument. If the newLength argument is greater than or equal to the current length, sufficient null characters (\u0000) are appended to the string builder so length becomes the newLength argument. The newLength argument must be greater than or equal to 0.

length()

setLength(int)

The charAt(index) method returns the character at a specific index in the string builder. The index is 0 based. The first character of a string builder is at index 0, the next at index 1, and so on. The index argument must be greater than or equal to 0, and less than the length of the string builder.

charAt(int)

 Note

The length of the string builder is always less than or equal to the capacity of the builder. The length is the actual size of the string stored in the builder, and the capacity is the current size of the builder. The builder’s capacity is automatically increased if more characters are added to exceed its capacity. Internally, a string builder is an array of characters, so the builder’s capacity is the size of the array. If the builder’s capacity is exceeded, the array is replaced by a new array. The new array size is 2 * (the previous array size + 1).

length and capacity

 Tip

You can use new StringBuilder(initialCapacity) to create a StringBuilder with a specified initial capacity. By carefully choosing the initial capacity, you can make your program more efficient. If the capacity is always larger than the actual length of the builder, the JVM will never need to reallocate memory for the builder. On the other hand, if the capacity is too large, you will waste memory space. You can use the trimToSize() method to reduce the capacity to the actual size.

initial capacity

trimToSize()

10.11.3 Case Study: Ignoring Nonalphanumeric Characters When Checking Palindromes

Listing 5.14, Palindrome.java, considered all the characters in a string to check whether it is a palindrome. Write a new program that ignores nonalphanumeric characters in checking whether a string is a palindrome.

Here are the steps to solve the problem:

	Filter the string by removing the nonalphanumeric characters. This can be done by creating an empty string builder, adding each alphanumeric character in the string to a string builder, and returning the string from the string builder. You can use the isLetterOrDigit(ch) method in the Character class to check whether character ch is a letter or a digit.

	Obtain a new string that is the reversal of the filtered string. Compare the reversed string with the filtered string using the equals method.

The complete program is shown in Listing 10.10.

Listing 10.10 PalindromeIgnoreNonAlphanumeric.java

 1 import java.util.Scanner;
 2
 3 public class PalindromeIgnoreNonAlphanumeric {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
 10 System.out.print("Enter a string: ");
 11 String s = input.nextLine();
 12
 13 // Display result
 14 System.out.println("Ignoring nonalphanumeric characters, \nis "
 15 + s + " a palindrome? " + isPalindrome(s));
 16 }
 17
 18 /** Return true if a string is a palindrome */
check palindrome 19 public static boolean isPalindrome(String s) {
 20 // Create a new string by eliminating nonalphanumeric chars
 21 String s1 = filter(s);
 22
 23 // Create a new string that is the reversal of s1
 24 String s2 = reverse(s1);
 25
 26 // Check if the reversal is the same as the original string
 27 return s2.equals(s1);
 28 }
 29
 30 /** Create a new string by eliminating nonalphanumeric chars */
 31 public static String filter(String s) {
 32 // Create a string builder
 33 StringBuilder stringBuilder = new StringBuilder();
 34
 35 // Examine each char in the string to skip alphanumeric char
 36 for (int i = 0; i < s.length(); i++) {
 37 if (Character.isLetterOrDigit(s.charAt(i))) {
add letter or digit 38 stringBuilder.append(s.charAt(i));
 39 }
 40 }
 41
 42 // Return a new filtered string
 43 return stringBuilder.toString();
 44 }
 45
 46 /** Create a new string by reversing a specified string */
 47 public static String reverse(String s) {
 48 StringBuilder stringBuilder = new StringBuilder(s);
 49 stringBuilder.reverse(); // Invoke reverse in StringBuilder
 50 return stringBuilder.toString();
 51 }
 52 }

Enter a string: ab<c>cb?a
Ignoring nonalphanumeric characters,
is ab<c>cb?a a palindrome? true

Enter a string: abcc><?cab
Ignoring nonalphanumeric characters,
is abcc><?cab a palindrome? false

The filter(String s) method (lines 31–44) examines each character in string s and copies it to a string builder if the character is a letter or a numeric character. The filter method returns the string in the builder. The reverse(String s) method (lines 47–51) creates a new string that reverses the specified string s. The filter and reverse methods both return a new string. The original string is not changed.

The program in Listing 5.14 checks whether a string is a palindrome by comparing pairs of characters from both ends of the string. Listing 10.10 uses the reverse method in the StringBuilder class to reverse the string, then compares whether the two strings are equal to determine whether the original string is a palindrome.

	10.11.1 What is the difference between StringBuilder and StringBuffer?

	10.11.2 How do you create a string builder from a string? How do you return a string from a string builder?

	10.11.3 Write three statements to reverse a string s using the reverse method in the StringBuilder class.

	10.11.4 Write three statements to delete a substring from a string s of 20 characters, starting at index 4 and ending with index 10. Use the delete method in the StringBuilder class.

	10.11.5 What is the internal storage for characters in a string and a string builder?

	10.11.6 Suppose s1 and s2 are given as follows:

StringBuilder s1 = new StringBuilder("Java");
StringBuilder s2 = new StringBuilder("HTML");

Show the value of s1 after each of the following statements. Assume the ­statements are independent.

	s1.append(" is fun");

	s1.append(s2);

	s1.insert(2, "is fun");

	s1.insert(1, s2);

	s1.charAt(2);

	s1.length();

	s1.deleteCharAt(3);

	s1.delete(1, 3);

	s1.reverse();

	s1.replace(1, 3, "Computer");

	s1.substring(1, 3);

	s1.substring(2);

	10.11.7 Show the output of the following program:

public class Test {
 public static void main(String[] args) {
 String s = "Java";
 StringBuilder builder = new StringBuilder(s);
 change(s, builder);

 System.out.println(s);
 System.out.println(builder);
 }

 private static void change(String s, StringBuilder builder) {
 s = s + " and HTML";
 builder.append(" and HTML");
 }
}

Key Terms

	abstract data type (ADT) 368

	aggregation 376

	boxing 385

	class abstraction 368

	class encapsulation 368

	class’s contract 368

	composition 376

	has-a relationship 376

	multiplicity 375

	stack 380

	unboxing 385

Chapter Summary

	The procedural paradigm focuses on designing methods. The object-oriented paradigm couples data and methods together into objects. Software design using the object-oriented paradigm focuses on objects and operations on objects. The object-oriented approach combines the power of the procedural paradigm with an added dimension that integrates data with operations into objects.

	Many Java methods require the use of objects as arguments. Java offers a convenient way to incorporate, or wrap, a primitive data type into an object (e.g., wrapping int into the Integer class, and wrapping double into the Double class).

	Java can automatically convert a primitive-type value to its corresponding wrapper object in the context and vice versa.

	The BigInteger class is useful for computing and processing integers of any size. The BigDecimal class can be used to compute and process floating-point numbers with any arbitrary precision.

	A String object is immutable; its contents cannot be changed. To improve efficiency and save memory, the JVM stores two literal strings that have the same character sequence in a unique object. This unique object is called an interned string object.

	A regular expression (abbreviated regex) is a string that describes a pattern for matching a set of strings. You can match, replace, or split a string by specifying a pattern.

	The StringBuilder and StringBuffer classes can be used to replace the String class. The String object is immutable, but you can add, insert, or append new contents into StringBuilder and StringBuffer objects. Use String if the string contents do not require any change and use StringBuilder or StringBuffer if they might change.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 10.2 and 10.3

	*10.1 (The Time class) Design a class named Time. The class contains:

	The data fields hour, minute, and second that represent a time.

	A no-arg constructor that creates a Time object for the current time. (The values of the data fields will represent the current time.)

	A constructor that constructs a Time object with a specified elapsed time since midnight, January 1, 1970, in milliseconds. (The values of the data fields will represent this time.)

	A constructor that constructs a Time object with the specified hour, minute, and second.

	Three getter methods for the data fields hour, minute, and second, respectively.

	A method named setTime(long elapseTime) that sets a new time for the object using the elapsed time. For example, if the elapsed time is 555550000 milliseconds, the hour is 10, the minute is 19, and the second is 10.

Draw the UML diagram for the class then implement the class. Write a test program that creates three Time objects (using new Time(), new Time(555550000), and new Time(5, 23, 55)) and displays their hour, minute, and second in the format hour:minute:second.

(Hint: The first two constructors will extract the hour, minute, and second from the elapsed time. For the no-arg constructor, the current time can be obtained using System.currentTimeMillis(), as shown in Listing 2.7 , Show­CurrentTime.java. Assume the time is in GMT.)

	10.2 (The BMI class) Add the following new constructor in the BMI class:

/** Construct a BMI with the specified name, age, weight,
 * feet, and inches
 */
public BMI(String name, int age, double weight, double feet,
 double inches)

	10.3 (The MyInteger class) Design a class named MyInteger. The class contains:

	An int data field named value that stores the int value represented by this object.

	A constructor that creates a MyInteger object for the specified int value.

	A getter method that returns the int value.

	The methods isEven(), isOdd(), and isPrime() that return true if the value in this object is even, odd, or prime, respectively.

	The static methods isEven(int), isOdd(int), and isPrime(int) that return true if the specified value is even, odd, or prime, respectively.

	The static methods isEven(MyInteger), isOdd(MyInteger), and isPrime(MyInteger) that return true if the specified value is even, odd, or prime, respectively.

	The methods equals(int) and equals(MyInteger) that return true if the value in this object is equal to the specified value.

	A static method parseInt(char[]) that converts an array of numeric ­characters to an int value.

	A static method parseInt(String) that converts a string into an int value.

Draw the UML diagram for the class then implement the class. Write a client program that tests all methods in the class.

	10.4 (The MyPoint class) Design a class named MyPoint to represent a point with x- and y-coordinates. The class contains:

	The data fields x and y that represent the coordinates with getter methods.

	A no-arg constructor that creates a point (0, 0).

	A constructor that constructs a point with specified coordinates.

	A method named distance that returns the distance from this point to a specified point of the MyPoint type.

	A method named distance that returns the distance from this point to another point with specified x- and y-coordinates.

	A static method named distance that returns the distance from two MyPoint objects.

Draw the UML diagram for the class then implement the class. Write a test program that creates the two points (0, 0) and (10, 30.5) and displays the distance between them.

The MyPoint class

Sections 10.4–10.8

	*10.5 (Display the prime factors) Write a program that prompts the user to enter a positive integer and displays all its smallest factors in decreasing order. For example, if the integer is 120, the smallest factors are displayed as 5, 3, 2, 2, 2. Use the StackOfIntegers class to store the factors (e.g., 2, 2, 2, 3, 5) and retrieve and display them in reverse order.

	*10.6 (Display the prime numbers) Write a program that displays all the prime numbers less than 120 in decreasing order. Use the StackOfIntegers class to store the prime numbers (e.g., 2, 3, 5, . . .) and retrieve and display them in reverse order.

	**10.7 (Game: ATM machine) Use the Account class created in Programming Exercise 9.7 to simulate an ATM machine. Create 10 accounts in an array with id 0, 1, ..., 9, and an initial balance of $100. The system prompts the user to enter an id. If the id is entered incorrectly, ask the user to enter a correct id. Once an id is accepted, the main menu is displayed as shown in the sample run. You can enter choice 1 for viewing the current balance, 2 for withdrawing money, 3 for depositing money, and 4 for exiting the main menu. Once you exit, the system will prompt for an id again. Thus, once the system starts, it will not stop.

Enter an id: 4

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 1
The balance is 100.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 2
Enter an amount to withdraw: 3

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 1
The balance is 97.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 3
Enter an amount to deposit: 10

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 1
The balance is 107.0

Main menu
1: check balance
2: withdraw
3: deposit
4: exit
Enter a choice: 4

Enter an id:

	***10.8 (Financial: the Tax class) Programming Exercise 8.12 writes a program for computing taxes using arrays. Design a class named Tax to contain the following instance data fields:

	int filingStatus: One of the four tax-filing statuses: 0—single filer, 1—married filing jointly or qualifying widow(er), 2—married filing separately, and 3—head of household. Use the public static constants SINGLE_FILER (0), MARRIED_JOINTLY_OR_QUALIFYING_WIDOW(ER) (1), MARRIED_­SEPARATELY (2), HEAD_OF_HOUSEHOLD (3) to represent the statuses.

	int[][] brackets: Stores the tax brackets for each filing status.

	double[] rates: Stores the tax rates for each bracket.

	double taxableIncome: Stores the taxable income.

Provide the getter and setter methods for each data field and the getTax() method that returns the tax. Also, provide a no-arg constructor and the constructor Tax(filingStatus, brackets, rates, taxableIncome).

Draw the UML diagram for the class and then implement the class. Write a test program that uses the Tax class to print the 2001 and 2009 tax tables for taxable income from $50,000 to $60,000 with intervals of $1,000 for all four statuses. The tax rates for the year 2009 were given in Table 3.2. The tax rates for 2001 are shown in Table 10.1 .

Table 10.1  2001 U.S. Federal Personal Tax Rates

	Tax Rate

	Single Filers

	Married—Filing Jointly or Qualifying Widow(er)

	Married—Filing Separately

	Head of Household

	15%

	Up to $27,050

	Up to $45,200

	Up to $22,600

	Up to $36,250

	27.5%

	$27,051–$65,550

	$45,201–$109,250

	$22,601–$54,625

	$36,251–$93,650

	30.5%

	$65,551–$136,750

	$109,251–$166,500

	$54,626–$83,250

	$93,651–$151,650

	35.5%

	$136,751–$297,350

	$166,501–$297,350

	$83,251–$148,675

	$151,651–$297,350

	39.1%

	$297,351 or more

	$297,351 or more

	$ 148,676 or more

	$297,351 or more

	**10.9 (The Course class) Revise the Course class as follows:

	Revise the getStudents() method to return an array whose length is the same as the number of students in the course. (Hint: create a new array and copy students to it.)

	The array size is fixed in Listing 10.6 . Revise the addStudent method to automatically increase the array size if there is no room to add more students. This is done by creating a new larger array and copying the contents of the current array to it.

	Implement the dropStudent method.

	Add a new method named clear() that removes all students from the course.

Write a test program that creates a course, adds three students, removes one, and displays the students in the course.

	*10.10 (The Queue class) Section 10.6 gives a class for Stack. Design a class named Queue for storing integers. Like a stack, a queue holds elements. In a stack, the elements are retrieved in a last-in first-out fashion. In a queue, the elements are retrieved in a first-in first-out fashion. The class contains:

	An int[] data field named elements that stores the int values in the queue.

	A data field named size that stores the number of elements in the queue.

	A constructor that creates a Queue object with default capacity 8.

	The method enqueue(int v) that adds v into the queue.

	The method dequeue() that removes and returns the element from the queue.

	The method empty() that returns true if the queue is empty.

	The method getSize() that returns the size of the queue.

Draw an UML diagram for the class. Implement the class with the initial array size set to 8. The array size will be doubled once the number of the elements exceeds the size. After an element is removed from the beginning of the array, you need to shift all elements in the array one position the left. Write a test program that adds 20 numbers from 1 to 20 into the queue then removes these numbers and displays them.

	*10.11 (Geometry: the Circle2D class) Define the Circle2D class that contains:

	Two double data fields named x and y that specify the center of the circle with getter methods.

	A data field radius with a getter method.

	A no-arg constructor that creates a default circle with (0, 0) for (x, y) and 1 for radius.

	A constructor that creates a circle with the specified x, y, and radius.

	A method getArea() that returns the area of the circle.

	A method getPerimeter() that returns the perimeter of the circle.

	A method contains(double x, double y) that returns true if the specified point (x, y) is inside this circle (see Figure 10.21a).

	A method contains(Circle2D circle) that returns true if the specified circle is inside this circle (see Figure 10.21b).

	A method overlaps(Circle2D circle) that returns true if the specified circle overlaps with this circle (see Figure 10.21c).

[image: In diagram ay, point P is near the center of a circle. In diagram b, a smaller circle is contained within a larger circle. In diagram c, two circles of approximately equal size partially overlap.]
Figure 10.21

(a) A point is inside the circle. (b) A circle is inside another circle. (c) A ­circle overlaps another circle.

Draw the UML diagram for the class then implement the class. Write a test program that creates a Circle2D object c1 (new Circle2D(2, 2, 5.5)), displays its area and perimeter, and displays the result of c1.contains(3, 3), c1.contains(new Circle2D(4, 5, 10.5)), and c1.overlaps(new Circle2D(3, 5, 2.3)).

	***10.12 (Geometry: the Triangle2D class) Define the Triangle2D class that contains:

	Three points named p1, p2, and p3 of the type MyPoint with getter and ­setter methods. MyPoint is defined in Programming Exercise 10.4 .

	A no-arg constructor that creates a default triangle with the points (0, 0), (1, 1), and (2, 5).

	A constructor that creates a triangle with the specified points.

	A method getArea() that returns the area of the triangle.

	A method getPerimeter() that returns the perimeter of the triangle.

	A method contains(MyPoint p) that returns true if the specified point p is inside this triangle (see Figure 10.22a).

	A method contains(Triangle2D t) that returns true if the ­specified triangle is inside this triangle (see Figure 10.22b).

	A method overlaps(Triangle2D t) that returns true if the specified triangle ­overlaps with this triangle (see Figure 10.22c).

[image: In diagram ay, point P is near the center of a triangle. In diagram b, a smaller triangle is contained within a larger triangle. In diagram c, two pairs of triangles partially overlay each other.]
Figure 10.22

(a) A point is inside the triangle. (b) A triangle is inside another triangle. (c) A triangle overlaps another triangle.

Draw the UML diagram for the class and then implement the class. Write a test program that creates a Triangle2D object t1 using the constructor new Triangle2D(new MyPoint(2.5, 2), new MyPoint(4.2, 3), new MyPoint(5, 3.5)), displays its area and perimeter, and displays the result of t1.contains(3, 3), r1.contains(new Triangle2D(new MyPoint(2.9, 2), new MyPoint(4, 1), MyPoint(1, 3.4))), and t1 .overlaps(new Triangle2D(new MyPoint(2, 5.5), new MyPoint (4, –3), MyPoint(2, 6.5))).

(Hint: For the formula to compute the area of a triangle, see Programming Exercise 2.19 . To detect whether a point is inside a triangle, draw three dashed lines, as shown in Figure 10.23 . If the point is inside a triangle, each dashed line should intersect a side only once. If a dashed line intersects a side twice, then the point must be outside the triangle. For the algorithm of finding the intersecting point of two lines, see Programming Exercise 3.25 .)

[image: Diagrams ay and b show points plotted inside and outside a triangle.]
Figure 10.23

(a) A point is inside the triangle. (b) A point is outside the triangle.

Description

	*10.13 (Geometry: the MyRectangle2D class) Define the MyRectangle2D class that contains:

	Two double data fields named x and y that specify the center of the rectangle with getter and setter methods. (Assume the rectangle sides are parallel to x- or y-axis.)

	The data fields width and height with getter and setter methods.

	A no-arg constructor that creates a default rectangle with (0, 0) for (x, y) and 1 for both width and height.

	A constructor that creates a rectangle with the specified x, y, width, and height.

	A method getArea() that returns the area of the rectangle.

	A method getPerimeter() that returns the perimeter of the rectangle.

	A method contains(double x, double y) that returns true if the specified point (x, y) is inside this rectangle (see Figure 10.24a).

	A method contains(MyRectangle2D r) that returns true if the specified rectangle is inside this rectangle (see Figure 10.24b).

	A method overlaps(MyRectangle2D r) that returns true if the specified rectangle overlaps with this rectangle (see Figure 10.24c).

[image: Four diagrams, ay to d, show one or more rectangles and points.]
Figure 10.24

A point is inside the rectangle. (b) A rectangle is inside another rectangle. (c) A rectangle overlaps another rectangle. (d) Points are enclosed inside a rectangle.

Description

Draw the UML diagram for the class then implement the class. Write a test program that creates a MyRectangle2D object r1 (new MyRectangle2D (2, 2, 5.5, 4.9)), displays its area and perimeter, and displays the result of r1.contains(3, 3), r1.contains(new MyRectangle2D(4, 5, 10.5, 3.2)), and r1.overlaps(new MyRectangle2D(3, 5, 2.3, 5.4)).

	*10.14 (The MyDate class) Design a class named MyDate. The class contains:

	The data fields year, month, and day that represent a date. month is 0-based, i.e., 0 is for January.

	A no-arg constructor that creates a MyDate object for the current date.

	A constructor that constructs a MyDate object with a specified elapsed time since midnight, January 1, 1970, in milliseconds.

	A constructor that constructs a MyDate object with the specified year, month, and day.

	Three getter methods for the data fields year, month, and day, respectively.

	A method named setDate(long elapsedTime) that sets a new date for the object using the elapsed time.

Draw the UML diagram for the class then implement the class. Write a test program that creates two MyDate objects (using new MyDate() and new MyDate(34355555133101L)) and displays their year, month, and day.

(Hint: The first two constructors will extract the year, month, and day from the elapsed time. For example, if the elapsed time is 561555550000 ­milliseconds, the year is 1987, the month is 9, and the day is 18. You may use the ­GregorianCalendar class discussed in Programming Exercise 9.5 to simplify coding.)

	*10.15 (Geometry: the bounding rectangle) A bounding rectangle is the minimum rectangle that encloses a set of points in a two-dimensional plane, as shown in Figure 10.24d . Write a method that returns a bounding rectangle for a set of points in a two-dimensional plane, as follows:

public static MyRectangle2D getRectangle(double[][] points)

The Rectangle2D class is defined in Programming Exercise 10.13 . Write a test program that prompts the user to enter five points and displays the bounding ­rectangle’s center, width, and height. Here is a sample run:

Enter five points: 1.0 2.5 3 4 5 6 7 8 9 10
The bounding rectangle's center (5.0, 6.25), width 8.0, height 7.5

Section 10.9

	*10.16 (Divisible by 2 or 3) Find the first 10 numbers with 50 decimal digits that are divisible by 2 or 3.

	*10.17 (Square numbers) Find the first 10 square numbers that are greater than Long.MAX_VALUE. A square number is a number in the form of

 n
2

 .

 For example, 4, 9, and 16 are square numbers. Find an efficient approach to run your program fast.

	*10.18 (Large prime numbers) Write a program that finds five prime numbers larger than Long.MAX_VALUE.

	*10.19 (Mersenne prime) A prime number is called a Mersenne prime if it can be written in the form

2
 p

 −1

 for some positive integer p. Write a program that finds all Mersenne primes with
 p≤100

 and displays the output as shown below. (Hint: You have to use BigInteger to store the number because it is too big to be stored in long. Your program may take several hours to run.)

 p 2^p – 1

 2 3
 3 7
 5 31
...

	*10.20 (Approximate e) Programming Exercise 5.26 approximates e using the ­following series:

e=1+11!+12!+13!+14!+g+1i!

In order to get better precision, use BigDecimal with 25 digits of precision in the computation. Write a program that displays the e value for i = 100, 200, . . . , and 1000.

	10.21 (Divisible by 5 or 6) Find the first 10 numbers greater than Long.MAX_VALUE that are divisible by 5 or 6.

Sections 10.10 and 10.11

	**10.22 (Implement the String class) The String class is provided in the Java library. Provide your own implementation for the following methods (name the new class MyString1):

public MyString1(char[] chars);
public char charAt(int index);
public int length();
public MyString1 substring(int begin, int end);
public MyString1 toLowerCase();
public boolean equals(MyString1 s);
public static MyString1 valueOf(int i);

	**10.23 (Implement the String class) The String class is provided in the Java library. Provide your own implementation for the following methods (name the new class MyString2):

public MyString2(String s);
public int compare(String s);
public MyString2 substring(int begin);
public MyString2 toUpperCase();
public char[] toChars();
public static MyString2 valueOf(boolean b);

	10.24 (Implement the Character class) The Character class is provided in the Java library. Provide your own implementation for this class. Name the new class MyCharacter.

	**10.25 (New string split method) The split method in the String class returns an array of strings consisting of the substrings split by the delimiters. However, the delimiters are not returned. Implement the following new method that returns an array of strings consisting of the substrings split by the matching delimiters, including the matching delimiters.

public static String[] split(String s, String regex)

For example, split("ab#12#453", "#") returns ab, #, 12, #, and 453 in an array of String and split("a?b?gf#e", "[?#]") returns a, ?, b, ?, gf, #, and e in an array of String.

		*10.26	(Calculator) Revise Listing 7.9 , Calculator.java, to accept an expression as a string in which the operands and operator are separated by zero or more spaces. For example, 3+4 and 3 + 4 are acceptable expressions. Here is a sample run:

[image: Performing calculations in a command prompt.]

Description

	**10.27 (Implement the StringBuilder class) The StringBuilder class is provided in the Java library. Provide your own implementation for the following methods (name the new class MyStringBuilder1):

public MyStringBuilder1(String s);
public MyStringBuilder1 append(MyStringBuilder1 s);
public MyStringBuilder1 append(int i);
public int length();
public char charAt(int index);
public MyStringBuilder1 toLowerCase();
public MyStringBuilder1 substring(int begin, int end);
public String toString();

	**10.28 (Implement the StringBuilder class) The StringBuilder class is provided in the Java library. Provide your own implementation for the following methods (name the new class MyStringBuilder2):

public MyStringBuilder2();
public MyStringBuilder2(char[] chars);
public MyStringBuilder2(String s);
public MyStringBuilder2 insert(int offset, MyStringBuilder2 s);
public MyStringBuilder2 reverse();
public MyStringBuilder2 substring(int begin);
public MyStringBuilder2 toUpperCase();

CHAPTER 11 Inheritance and Polymorphism

Objectives

	To define a subclass from a superclass through inheritance (§11.2).

	To invoke the superclass’s constructors and methods using the super keyword (§11.3).

	To override instance methods in the subclass (§11.4).

	To distinguish differences between overriding and overloading (§11.5).

	To explore the toString() method in the Object class (§11.6).

	To discover polymorphism and dynamic binding (§§11.7 and 11.8).

	To describe casting and explain why explicit downcasting is necessary (§11.9).

	To explore the equals method in the Object class (§11.10).

	To store, retrieve, and manipulate objects in an ArrayList (§11.11).

	To construct an array list from an array, to sort and shuffle a list, and to obtain max and min element from a list (§11.12).

	To implement a Stack class using ArrayList (§11.13).

	To enable data and methods in a superclass accessible from subclasses using the protected visibility modifier (§11.14).

	To prevent class extending and method overriding using the final modifier (§11.15).

11.1 Introduction

	Object-oriented programming allows you to define new classes from existing classes. This is called inheritance.

As discussed in the preceding chapter, the procedural paradigm focuses on designing methods, and the object-oriented paradigm couples data and methods together into objects. Software design using the object-oriented paradigm focuses on objects and operations on objects. The object-oriented approach combines the power of the procedural paradigm with an added dimension that integrates data with operations into objects.

Inheritance is an important and powerful feature for reusing software. Suppose you need to define classes to model circles, rectangles, and triangles. These classes have many common features. What is the best way to design these classes so as to avoid redundancy and make the system easy to comprehend and easy to maintain? The answer is to use inheritance.

inheritance

why inheritance?

11.2 Superclasses and Subclasses

	Inheritance enables you to define a general class (i.e., a superclass) and later extend it to more specialized classes (i.e., subclasses).

You use a class to model objects of the same type. Different classes may have some common properties and behaviors, which can be generalized in a class that can be shared by other classes. You can define a specialized class that extends the generalized class. The specialized classes inherit the properties and methods from the general class.

Geometric class hierarchy

Consider geometric objects. Suppose you want to design the classes to model geometric objects such as circles and rectangles. Geometric objects have many common properties and behaviors. They can be drawn in a certain color and be filled or unfilled. Thus, a general class GeometricObject can be used to model all geometric objects. This class contains the properties color and filled and their appropriate getter and setter methods. Assume this class also contains the dateCreated property, and the getDateCreated() and toString() methods. The toString() method returns a string representation of the object. Since a circle is a special type of geometric object, it shares common properties and methods with other geometric objects. Thus, it makes sense to define the Circle class that extends the GeometricObject class. Likewise, Rectangle can also be defined as a special type of GeometricObject. Figure 11.1 shows the relationship among these classes. A triangular arrow pointing to the generalized class is used to denote the inheritance relationship between the two classes involved.

[image: Three U M L diagrams.]
Figure 11.1

The GeometricObject class is the superclass for Circle and Rectangle.

Description

In Java terminology, a class C1 extended from another class C2 is called a subclass, and C2 is called a superclass. A superclass is also referred to as a parent class or a base class, and a subclass as a child class, an extended class, or a derived class. A subclass inherits accessible data fields and methods from its superclass and may also add new data fields and methods. Therefore, Circle and Rectangle are subclasses of GeometricObject, and ­GeometricObject is the superclass for Circle and Rectangle. A class defines a type. A type defined by a subclass is called a subtype, and a type defined by its superclass is called a supertype. Therefore, you can say that Circle is a subtype of GeometricObject, and ­GeometricObject is a supertype for Circle.

subclass

superclass

subtype

supertype

The subclass and its superclass are said to form a is-a relationship. A Circle object is a special type of general GeometricObject. The Circle class inherits all accessible data fields and methods from the GeometricObject class. In addition, it has a new data field, radius, and its associated getter and setter methods. The Circle class also contains the getArea(), getPerimeter(), and getDiameter() methods for returning the area, perimeter, and diameter of the circle.

is-a relationship

width and height

The Rectangle class inherits all accessible data fields and methods from the ­GeometricObject class. In addition, it has the data fields width and height and their associated getter and setter methods. It also contains the getArea() and getPerimeter() methods for returning the area and perimeter of the rectangle. Note that you may have used the terms width and length to describe the sides of a rectangle in geometry. The common terms used in computer science are width and height, where width refers to the horizontal length, and height to the vertical length.

The GeometricObject, Circle, and Rectangle classes are shown in Listings 11.1, 11.2, and 11.3, respectively.

Listing 11.1 GeometricObject.java

data fields		 1 public class GeometricObject {
			 2 private String color = "white";
			 3 private boolean filled;
			 4 private java.util.Date dateCreated;
			 5
			 6 /** Construct a default geometric object */
constructor		 7 public GeometricObject() {
date constructed	 8 dateCreated = new java.util.Date();
			 9 }
			 10
			 11 /** Construct a geometric object with the specified color
			 12 * and filled value */
			 13 public GeometricObject(String color, boolean filled) {
			 14 dateCreated = new java.util.Date();
			 15 this.color = color;
			 16 this.filled = filled;
			 17 }
			 18
			 19 /** Return color */
			 20 public String getColor() {
			 21 return color;
			 22 }
			 23
			 24 /** Set a new color */
			 25 public void setColor(String color) {
			 26 this.color = color;
			 27 }
			 28
			 29 /** Return filled. Since filled is boolean,
			 30 its getter method is named isFilled */
			 31 public boolean isFilled() {
			 32 return filled;
			 33 }
			 34
			 35 /** Set a new filled */
			 36 public void setFilled(boolean filled) {
			 37 this.filled = filled;
			 38 }
			 39
			 40 /** Get dateCreated */
			 41 public java.util.Date getDateCreated() {
			 42 return dateCreated;
			 43 }
			 44
			 45 /** Return a string representation of this object */
			 46 public String toString() {
			 47 return "created on " + dateCreated + "\ncolor: " + color +
			 48 " and filled: " + filled;
			 49 }
			 50 }

Listing 11.2 Circle.java

extends superclass 1 public class Circle extends GeometricObject {
data fields	 2 private double radius;
		 3
constructor	 4 public Circle() {
		 5 }
		 6
		 7 public Circle(double radius) {
		 8 this.radius = radius;
		 9 }
		 10
		 11 public Circle(double radius,
		 12 String color, boolean filled) {
		 13 this.radius = radius;
		 14 setColor(color);
		 15 setFilled(filled);
		 16 }
		 17
		 18 /** Return radius */
methods		 19 public double getRadius() {
		 20 return radius;
		 21 }
		 22
		 23 /** Set a new radius */
		 24 public void setRadius(double radius) {
		 25 this.radius = radius;
		 26 }
		 27
		 28 /** Return area */
		 29 public double getArea() {
		 30 return radius * radius * Math.PI;
		 31 }
		 32
		 33 /** Return diameter */
		 34 public double getDiameter() {
		 35 return 2 * radius;
		 36 }
		 37
		 38 /** Return perimeter */
		 39 public double getPerimeter() {
		 40 return 2 * radius * Math.PI;
		 41 }
		 42
		 43 /** Print the circle info */
		 44 public void printCircle() {
		 45 System.out.println("The circle is created " + getDateCreated() +
		 46 " and the radius is " + radius);
		 47 }
		 48 }

The Circle class (Listing 11.2) extends the GeometricObject class (Listing 11.1) using the following syntax:

[image: The syntax reads as follows: public, class, Circle, extends, Geometric Object. In this example, Circle, is the subclass, and, Geometric Object, is the superclass.]

The keyword extends (lines 1 and 2) tells the compiler that the Circle class extends the GeometricObject class, thus inheriting the methods getColor, setColor, isFilled, setFilled, and toString.

The overloaded constructor Circle(double radius, String color, boolean filled) is implemented by invoking the setColor and setFilled methods to set the color and filled properties (lines 14 and 15). The public methods defined in the ­superclass GeometricObject are inherited in Circle, so they can be used in the ­Circle class.

You might attempt to use the data fields color and filled directly in the constructor as follows:

private member in superclass	public Circle(double radius, String color, boolean filled) {
 			 this.radius = radius;
			 this.color = color; // Illegal
 			 this.filled = filled; // Illegal
				}

This is wrong because the private data fields color and filled in the GeometricObject class cannot be accessed in any class other than in the GeometricObject class itself. The only way to read and modify color and filled is through their getter and setter methods.

The Rectangle class (Listing 11.3) extends the GeometricObject class (Listing 11.1) using the following syntax:

[image: The syntax reads as follows: public, class, Rectangle, extends, Geometric Object. In this example, Rectangle, is the subclass, and, Geometric Object, remain the superclass.]

The keyword extends (lines 1 and 2) tells the compiler the Rectangle class extends the GeometricObject class, thus inheriting the methods getColor, setColor, isFilled, setFilled, and toString.

Listing 11.3 Rectangle.java

extends superclass		 1 public class Rectangle extends GeometricObject {
data fields			 2 private double width;
				 3 private double height;
				 4
constructor			 5 public Rectangle() {
				 6 }
				 7
				 8 public Rectangle(double width, double height) {
				 9 this.width = width;
				 10 this.height = height;
				 11 }
				 12
				 13 public Rectangle(
				 14 double width, double height, String color, boolean filled) {
				 15 this.width = width;
				 16 this.height = height;
				 17 setColor(color);
				 18 setFilled(filled);
				 19 }
				 20
				 21 /** Return width */
methods			 	 22 public double getWidth() {
				 23 return width;
				 24 }
				 25
				 26 /** Set a new width */
				 27 public void setWidth(double width) {
				 28 this.width = width;
				 29 }
				 30
				 31 /** Return height */
				 32 public double getHeight() {
				 33 return height;
				 34 }
				 35
				 36 /** Set a new height */
				 37 public void setHeight(double height) {
				 38 this.height = height;
				 39 }
				 40
				 41 /** Return area */
				 42 public double getArea() {
				 43 return width * height;
				 44 }
				 45
				 46 /** Return perimeter */
				 47 public double getPerimeter() {
				 48 return 2 * (width + height);
				 49 }
				 50 }

The code in Listing 11.4 creates objects of Circle and Rectangle and invokes the methods on these objects. The toString() method is inherited from the GeometricObject class and is invoked from a Circle object (line 4) and a Rectangle object (line 11).

Listing 11.4 TestCircleRectangle.java

			 1 public class TestCircleRectangle {
			 2 public static void main(String[] args) {
Circle object		 3 Circle circle = new Circle(1);
invoke toString		 4 System.out.println("A circle " + circle.toString());
invoke getColor		 5 System.out.println("The color is " + circle.getColor());
			 6 System.out.println("The radius is " + circle.getRadius());
			 7 System.out.println("The area is " + circle.getArea());
			 8 System.out.println("The diameter is " + circle.getDiameter());
			 9
Rectangle object	10 Rectangle rectangle = new Rectangle(2, 4);
invoke toString		11 System.out.println("\nA rectangle " + rectangle.toString());
			12 System.out.println("The area is " + rectangle.getArea());
			13 System.out.println("The perimeter is " +
			14 rectangle.getPerimeter());
			15 }
			16 }

A circle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The color is white
The radius is 1.0
The area is 3.141592653589793
The diameter is 2.0
A rectangle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The area is 8.0
The perimeter is 12.0

Note the following points regarding inheritance:

	Contrary to the conventional interpretation, a subclass is not a subset of its superclass. In fact, a subclass usually contains more information and methods than its superclass.

more in subclass

	Private data fields in a superclass are not accessible outside the class. Therefore, they cannot be used directly in a subclass. They can, however, be accessed/mutated through public accessors/mutators if defined in the superclass.

private data fields

	Not all is-a relationships should be modeled using inheritance. For example, a square is a rectangle, but you should not extend a Square class from a Rectangle class, because the width and height properties are not appropriate for a square. Instead, you should define a Square class to extend the GeometricObject class and define the side property for the side of a square.

nonextensible is-a

	Inheritance is used to model the is-a relationship. Do not blindly extend a class just for the sake of reusing methods. For example, it makes no sense for a Tree class to extend a Person class, even though they share common properties such as height and weight. A subclass and its superclass must have the is-a relationship.

no blind extension

	Some programming languages allow you to derive a subclass from several classes. This capability is known as multiple inheritance. Java, however, does not allow multiple inheritance. A Java class may inherit directly from only one superclass. This restriction is known as single inheritance. If you use the extends keyword to define a subclass, it allows only one parent class. Nevertheless, multiple inheritance can be achieved through interfaces, which will be introduced in Sections 13.5.

multiple inheritance

single inheritance

	11.2.1 True or false? A subclass is a subset of a superclass.

	11.2.2 What keyword do you use to define a subclass?

	11.2.3 What is single inheritance? What is multiple inheritance? Does Java support multiple inheritance?

11.3 Using the super Keyword

The keyword super refers to the superclass and can be used to invoke the superclass's methods and constructors.

A subclass inherits accessible data fields and methods from its superclass. Does it inherit constructors? Can the superclass’s constructors be invoked from a subclass? This section addresses these questions and their ramifications.

Sections 9.14, The this Reference, introduced the use of the keyword this to reference the calling object. The keyword super refers to the superclass of the class in which super appears. It can be used in two ways:

	To call a superclass constructor

	To call a superclass method

11.3.1 Calling Superclass Constructors

A constructor is used to construct an instance of a class. Unlike properties and methods, the constructors of a superclass are not inherited by a subclass. They can only be invoked from the constructors of the subclasses using the keyword super.

The syntax to call a superclass’s constructor is:

super() or super(arguments);

The statement super() invokes the no-arg constructor of its superclass, and the statement super(arguments) invokes the superclass constructor that matches the arguments. The statement super() or super(arguments) must be the first statement of the subclass’s constructor; this is the only way to explicitly invoke a superclass constructor. For example, the constructor in lines 11–16 in Listing 11.2 can be replaced by the following code:

public Circle(double radius, String color, boolean filled) {
 super(color, filled);
 this.radius = radius;
}

 Caution

You must use the keyword super to call the superclass constructor, and the call must be the first statement in the constructor. Invoking a superclass constructor’s name in a subclass causes a syntax error.

11.3.2 Constructor Chaining

A constructor may invoke an overloaded constructor or its superclass constructor. If neither is invoked explicitly, the compiler automatically puts super() as the first statement in the constructor. For example:

[image: Two pairs of code diagrams contain equivalent code.]

Description

In any case, constructing an instance of a class invokes the constructors of all the superclasses along the inheritance chain. When constructing an object of a subclass, the subclass constructor first invokes its superclass constructor before performing its own tasks. If the superclass is derived from another class, the superclass constructor invokes its parent-class constructor before performing its own tasks. This process continues until the last constructor along the inheritance hierarchy is called. This is called constructor chaining.

constructor chaining

Consider the following code:

				 1 public class Faculty extends Employee {
				 2 public static void main(String[] args) {
				 3 new Faculty();
				 4 }
				 5
				 6 public Faculty() {
				 7 System.out.println("(4) Performs Faculty's tasks");
				 8 }
				 9 }
				 10
				 11 class Employee extends Person {
				 12 public Employee() {
invoke overloaded constructor	 13 this("(2) Invoke Employee's overloaded constructor");
				 14 System.out.println("(3) Performs Employee's tasks ");
				 15 }
				 16
				 17 public Employee(String s) {
				 18 System.out.println(s);
				 19 }
				 20 }
				 21
				 22 class Person {
				 23 public Person() {
				 24 System.out.println("(1) Performs Person's tasks");
				 25 }
				 26 }

(1) Performs Person's tasks
(2) Invoke Employee's overloaded constructor
(3) Performs Employee's tasks
(4) Performs Faculty's tasks

The program produces the preceding output. Why? Let us discuss the reason. In line 3, new Faculty() invokes Faculty’s no-arg constructor. Since Faculty is a subclass of Employee, Employee’s no-arg constructor is invoked before any statements in Faculty’s constructor are executed. Employee’s no-arg constructor invokes Employee’s second constructor (line 13). Since Employee is a subclass of Person, Person’s no-arg constructor is invoked before any statements in Employee’s second constructor are executed. This process is illustrated in the following figure.

[image: Faculty invokes employee, which invokes the second employee, which invokes the person. Then, these parties perform their tasks in last in, first out order.]

 Caution

If a class is designed to be extended, it is better to provide a no-arg constructor to avoid programming errors. Consider the following code:

no-arg constructor

1 public class Apple extends Fruit {
2 }
3
4 class Fruit {
5 public Fruit(String name) {
6 System.out.println("Fruit's constructor is invoked");
7 }
8 }

Since no constructor is explicitly defined in Apple, Apple’s default no-arg constructor is defined implicitly. Since Apple is a subclass of Fruit, Apple’s default constructor automatically invokes Fruit’s no-arg constructor. However, Fruit does not have a no-arg constructor, because Fruit has an explicit constructor defined. Therefore, the program cannot be compiled.

 Design Guide

If possible, you should provide a no-arg constructor for every class to make the class easy to extend and to avoid errors.

no-arg constructor

11.3.3 Calling Superclass Methods

The keyword super can also be used to reference a method other than the constructor in the superclass. The syntax is

super.method(arguments);

You could rewrite the printCircle() method in the Circle class as follows:

public void printCircle() {
 System.out.println("The circle is created " +
 super.getDateCreated() + " and the radius is " + radius);
}

It is not necessary to put super before getDateCreated() in this case, however, because getDateCreated is a method in the GeometricObject class and is inherited by the Circle class. Nevertheless, in some cases, as shown in the next section, the keyword super is needed.

	11.3.1 What is the output of running the class C in (a)? What problem arises in compiling the program in (b)?

	class A {
 public A() {
 System.out.println(
 "A's no-arg constructor is invoked");
 }
}
class B extends A {
}
public class C {
 public static void main(String[] args) {
 B b = new B();
 }
}

	
	class A {
 public A(int x) {
 }
}
class B extends A {
 public B() {
 }
}
public class C {
 public static void main(String[] args) {
 B b = new B();
 }
}

	(a)

	
	(b)

	11.3.2 How does a subclass invoke its superclass’s constructor?

	11.3.3 True or false? When invoking a constructor from a subclass, its superclass’s no-arg constructor is always invoked.

11.4 Overriding Methods

	To override a method, the method must be defined in the subclass using the same ­signature as in its superclass.

A subclass inherits methods from a superclass. Sometimes, it is necessary for the subclass to modify the implementation of a method defined in the superclass. This is referred to as method overriding.

method overriding

The toString method in the GeometricObject class (lines 46–49 in Listing 11.1) returns the string representation of a geometric object. This method can be overridden to return the string representation of a circle. To override it, add the following new method in the ­Circle class in Listing 11.2:

			1 public class Circle extends GeometricObject {
			2 // Other methods are omitted
			3
			4 // Override the toString method defined in the superclass
toString in superclass 5 public String toString() {
			6 return super.toString() + "\nradius is " + radius;
			7 }
			8 }

The toString() method is defined in the GeometricObject class and modified in the Circle class. Both methods can be used in the Circle class. To invoke the toString method defined in the GeometricObject class from the Circle class, use super.toString() (line 6).

Can a subclass of Circle access the toString method defined in the GeometricObject class using syntax such as super.super.toString()? No. This is a syntax error.

no super.super.methodName()

Several points are worth noting:

	The overriding method must have the same signature as the overridden method and same or compatible return type. Compatible means that the overriding method’s return type is a subtype of the overridden method’s return type.

override accessible instance method

	An instance method can be overridden only if it is accessible. Thus, a private method cannot be overridden, because it is not accessible outside its own class. If a method defined in a subclass is private in its superclass, the two methods are completely unrelated.

	Like an instance method, a static method can be inherited. However, a static method cannot be overridden. If a static method defined in the superclass is redefined in a subclass, the method defined in the superclass is hidden. The hidden static methods can be invoked using the syntax SuperClassName.staticMethodName.

cannot override static method

	11.4.1 True or false? You can override a private method defined in a superclass.

	11.4.2 True or false? You can override a static method defined in a superclass.

	11.4.3 How do you explicitly invoke a superclass’s constructor from a subclass?

	11.4.4 How do you invoke an overridden superclass method from a subclass?

11.5 Overriding vs. Overloading

	Overloading means to define multiple methods with the same name but different signatures. Overriding means to provide a new implementation for a method in the subclass.

You learned about overloading methods in Sections 6.8. To override a method, the method must be defined in the subclass using the same signature and the same or compatible return type.

Let us use an example to show the differences between overriding and overloading. In (a) below, the method p(double i) in class A overrides the same method defined in class B. In (b), however, the class A has two overloaded methods: p(double i) and p(int i). The method p(double i) is inherited from B.

	public class TestOverriding {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}
class B {
 public void p(double i) {
 System.out.println(i * 2);
 }
}
class A extends B {
 // This method overrides the method in B
public void p(double i) {
 System.out.println(i);
 }
}

	
	public class TestOverloading {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}
class B {
 public void p(double i) {
 System.out.println(i * 2);
 }
}
class A extends B {
 // This method overloads the method in B
 public void p(int i) {
 System.out.println(i);
 }
}

	(a)

	
	(b)

When you run the TestOverriding class in (a), both a.p(10) and a.p(10.0) invoke the p(double i) method defined in class A to display 10.0. When you run the ­TestOverloading class in (b), a.p(10) invokes the p(int i) method defined in class A to display 10 and a.p(10.0) invokes the p(double i) method defined in class B to display 20.0.

Note the following:

	Overridden methods are in different classes related by inheritance; overloaded methods can be either in the same class, or in different classes related by inheritance.

	Overridden methods have the same signature; overloaded methods have the same name but different parameter lists.

To avoid mistakes, you can use a special Java syntax, called override annotation, to place @Override before the overriding method in the subclass. For example,

override annotation

			1 public class Circle extends GeometricObject {
			2 // Other methods are omitted
			3
			4 @Override
			5 public String toString() {
toString in superclass	6 return super.toString() + "\nradius is " + radius;
			7 }
			8 }

This annotation denotes that the annotated method is required to override a method in its ­superclass. If a method with this annotation does not override its superclass’s method, the compiler will report an error. For example, if toString is mistyped as tostring, a compile error is reported. If the @Override annotation isn’t used, the compiler won’t report an error. Using the @Override annotation avoids mistakes.

	11.5.1 Identify the problems in the following code:

 1 public class Circle {
 2 private double radius;
 3
 4 public Circle(double radius) {
 5 radius = radius;
 6 }
 7
 8 public double getRadius() {
 9 return radius;
10 }
11
12 public double getArea() {
13 return radius * radius * Math.PI;
14 }
15 }
16
17 class B extends Circle {
18 private double length;
19
20 B(double radius, double length) {
21 Circle(radius);
22 length = length;
23 }
24
25 @Override
26 public double getArea() {
27 return getArea() * length;
28 }
29 }

	11.5.2 Explain the difference between method overloading and method overriding.

	11.5.3 If a method in a subclass has the same signature as a method in its superclass with the same return type, is the method overridden or overloaded?

	11.5.4 If a method in a subclass has the same signature as a method in its superclass with a different return type, will this be a problem?

	11.5.5 If a method in a subclass has the same name as a method in its superclass with different parameter types, is the method overridden or overloaded?

	11.5.6 What is the benefit of using the @Override annotation?

11.6 The Object Class and Its toString() Method

	Every class in Java is descended from the java.lang.Object class.

If no inheritance is specified when a class is defined, the superclass of the class is Object by default. For example, the following two class definitions are the same:

[image: Two code diagrams contain equivalent code.]

Description

Classes such as String, StringBuilder, Loan, and GeometricObject are ­implicitly subclasses of Object (as are all the main classes you have seen in this book so far). It is important to be familiar with the methods provided by the Object class so that you can use them in your classes. This section introduces the toString method in the Object class.

The signature of the toString() method is:

toString()

public String toString()

Invoking toString() on an object returns a string that describes the object. By default, it returns a string consisting of a class name of which the object is an instance, an at sign (@), and the object’s memory address in hexadecimal. For example, consider the following code for the Loan class defined in Listing 10.2:

string representation

Loan loan = new Loan();
System.out.println(loan.toString());

The output for this code displays something like Loan@15037e5. This message is not very helpful or informative. Usually you should override the toString method so that it returns a descriptive string representation of the object. For example, the toString method in the Object class was overridden in the GeometricObject class in lines 46–49 in Listing 11.1 as follows:

public String toString() {
 return "created on " + dateCreated + "\ncolor: " + color +
 " and filled: " + filled;
}

print object

 Note

You can also pass an object to invoke System.out.println(object) or System.out.print(object). This is equivalent to invoking ­System.out.println(object.toString()) or System.out.print(object.toString()). Thus, you could replace System.out.println(loan.toString()) with System.out.println(loan).

11.7 Polymorphism

	Polymorphism means that a variable of a supertype can refer to a subtype object.

The three pillars of object-oriented programming are encapsulation, inheritance, and polymorphism. You have already learned the first two. This section introduces polymorphism.

The inheritance relationship enables a subclass to inherit features from its superclass with additional new features. A subclass is a specialization of its superclass; every instance of a subclass is also an instance of its superclass, but not vice versa. For example, every circle is a geometric object, but not every geometric object is a circle. Therefore, you can always pass an instance of a subclass to a parameter of its superclass type. Consider the code in Listing 11.5.

Listing 11.5 PolymorphismDemo.java

			 1 public class PolymorphismDemo {
			 2 /** Main method */
			 3 public static void main(String[] args) {
			 4 // Display circle and rectangle properties
polymorphic call	 5 displayObject(new Circle(1, "red", false));
polymorphic call	 6 displayObject(new Rectangle(1, 1, "black", true));
			 7 }
			 8
			 9 /** Display geometric object properties */
			10 public static void displayObject(GeometricObject object) {
			11 System.out.println("Created on " + object.getDateCreated() +
			12 ". Color is " + object.getColor());
			13 }
			14 }

Created on Mon Mar 09 19:25:20 EDT 2011. Color is white
Created on Mon Mar 09 19:25:20 EDT 2011. Color is black

The method displayObject (line 10) takes a parameter of the GeometricObject type. You can invoke displayObject by passing any instance of GeometricObject (e.g., new Circle(1, "red", false) and new Rectangle(1, 1, "black", false) in lines 5 and 6). An object of a subclass can be used wherever its superclass object is used. This is commonly known as polymorphism (from a Greek word meaning “many forms”). In simple terms, polymorphism means that a variable of a supertype can refer to a subtype object.

what is polymorphism?

	11.7.1 What are the three pillars of object-oriented programming? What is polymorphism?

11.8 Dynamic Binding

	A method can be implemented in several classes along the inheritance chain. The JVM decides which method is invoked at runtime.

A method can be defined in a superclass and overridden in its subclass. For example, the toString() method is defined in the Object class and overridden in GeometricObject. Consider the following code:

Object o = new GeometricObject();
System.out.println(o.toString());

Which toString() method is invoked by o? To answer this question, we first introduce two terms: declared type and actual type. A variable must be declared a type. The type that declares a variable is called the variable’s declared type. Here, o’s declared type is Object. A variable of a reference type can hold a null value or a reference to an instance of the declared type. The instance may be created using the constructor of the declared type or its subtype. The actual type of the variable is the actual class for the object referenced by the variable. Here, o’s actual type is GeometricObject, because o references an object created using new GeometricObject(). Which toString() method is invoked by o is determined by o’s actual type. This is known as dynamic binding.

declared type

actual type

dynamic binding

Dynamic binding works as follows: Suppose that an object o is an instance of classes C1, C2, . . . , Cn-1, and Cn, where C1 is a subclass of C2, C2 is a subclass of C3, . . . , and Cn-1 is a subclass of Cn, as shown in Figure 11.2. That is, Cn is the most general class, and C1 is the most specific class. In Java, Cn is the Object class. If o invokes a method p, the JVM searches for the implementation of the method p in C1, C2, . . . , Cn-1, and Cn, in this order, until it is found. Once an implementation is found, the search stops and the first-found implementation is invoked.

[image: A flowchart shows methods being invoked.]
Figure 11.2

The method to be invoked is dynamically bound at runtime.

Description

Listing 11.6 gives an example to demonstrate dynamic binding.

Polymorphism and dynamic binding demo

Listing 11.6 DynamicBindingDemo.java

			 1 public class DynamicBindingDemo {
			 2 public static void main(String[] args) {
polymorphic call	 3 m(new GraduateStudent());
			 4 m(new Student());
			 5 m(new Person());
			 6 m(new Object());
			 7 }
			 8
			 9 public static void m(Object x) {
dynamic binding		10 System.out.println(x.toString());
			11 }
			12 }
			13
			14 class GraduateStudent extends Student {
			15 }
			16
			17 class Student extends Person {
override toString()	18 @Override
			19 public String toString() {
			20 return "Student";
			21 }
			22 }
			23
			24 class Person extends Object {
override toString()	25 @Override
			26 public String toString() {
			27 return "Person";
			28 }
			29 }

Student
Student
Person
java.lang.Object@130c19b

Method m (line 9) takes a parameter of the Object type. You can invoke m with any object (e.g., new GraduateStudent(), new Student(), new Person(), and new Object()) in lines 3–6).

When the method m(Object x) is executed, the argument x’s toString method is invoked. x may be an instance of GraduateStudent, Student, Person, or Object. The toString method is implemented in Student, Person, and Object. Which implementation is used will be determined by x’s actual type at runtime. Invoking m(new ­GraduateStudent()) (line 3) causes the toString method defined in the Student class to be invoked.

Invoking m(new Student()) (line 4) causes the toString method defined in the ­Student class to be invoked; invoking m(new Person()) (line 5) causes the toString method defined in the Person class to be invoked; and invoking m(new Object()) (line 6) causes the toString method defined in the Object class to be invoked.

Matching a method signature and binding a method implementation are two separate issues. The declared type of the reference variable decides which method to match at compile time. The compiler finds a matching method according to the parameter type, number of parameters, and order of the parameters at compile time. A method may be implemented in several classes along the inheritance chain. The JVM dynamically binds the implementation of the method at runtime, decided by the actual type of the variable.

matching vs. binding

	11.8.1 What is polymorphism? What is dynamic binding?

	11.8.2 Describe the difference between method matching and method binding.

	11.8.3 Can you assign new int[50], new Integer[50], new String[50], or new Object[50] into a variable of Object[] type?

	11.8.4 What is wrong in the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 Integer[] list1 = {12, 24, 55, 1};
 4 Double[] list2 = {12.4, 24.0, 55.2, 1.0};
 5 int[] list3 = {1, 2, 3};
 6 printArray(list1);
 7 printArray(list2);
 8 printArray(list3);
 9 }
10
11 public static void printArray(Object[] list) {
12 for (Object o: list)
13 System.out.print(o + " ");
14 System.out.println();
15 }
16 }

	11.8.5 Show the output of the following code:

	public class Test {
 public static void main(String[] args) {
 new Person().printPerson();
 new Student().printPerson();
 }
}
class Student extends Person {
 @Override
 public String getInfo() {
 return "Student";
 }
}
class Person {
 public String getInfo() {
 return "Person";
 }
 public void printPerson() {
 System.out.println(getInfo());
 }
}

	
	public class Test {
 public static void main(String[] args) {
 new Person().printPerson();
 new Student().printPerson();
 }
}
class Student extends Person {
 private String getInfo() {
 return "Student";
 }
}
class Person {
 private String getInfo() {
 return "Person";
 }
 public void printPerson() {
 System.out.println(getInfo());
 }
}

	(a)

	
	(b)

	11.8.6 Show the output of following program:

 1 public class Test {
 2 public static void main(String[] args) {
 3 A a = new A(3);
 4 }
 5 }
 6
 7 class A extends B {
 8 public A(int t) {
 9 System.out.println("A's constructor is invoked");
10 }
11 }
12
13 class B {
14 public B() {
15 System.out.println("B's constructor is invoked");
16 }
17 }

Is the no-arg constructor of Object invoked when new A(3) is invoked?

	11.8.7 Show the output of following program:

public class Test {
 public static void main(String[] args) {
 new A();
 new B();
 }
}

class A {
 int i = 7;

 public A() {
 setI(20);
 System.out.println("i from A is " + i);
 }

 public void setI(int i) {
 this.i = 2 * i;
 }
}

class B extends A {
 public B() {
 System.out.println("i from B is " + i);
 }

 public void setI(int i) {
 this.i = 3 * i;
 }
}

11.9 Casting Objects and the instanceof Operator

	One object reference can be typecast into another object reference. This is called casting object.

In the preceding section, the statement

casting object

m(new Student());

assigns the object new Student() to a parameter of the Object type. This statement is equivalent to

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as implicit casting, is legal because an instance of Student is an instance of Object.

implicit casting

Suppose you want to assign the object reference o to a variable of the Student type using the following statement:

Student b = o;

In this case a compile error would occur. Why does the statement Object o = new ­Student() work, but Student b = o doesn’t? The reason is that a Student object is always an instance of Object, but an Object is not necessarily an instance of Student. Even though you can see that o is really a Student object, the compiler is not clever enough to know it. To tell the compiler o is a Student object, use explicit casting. The syntax is similar to the one used for casting among primitive data types. Enclose the target object type in parentheses and place it before the object to be cast, as follows:

explicit casting

Student b = (Student)o; // Explicit casting

upcasting

downcasting

It is always possible to cast an instance of a subclass to a variable of a superclass (known as upcasting) because an instance of a subclass is always an instance of its superclass. When casting an instance of a superclass to a variable of its subclass (known as downcasting), explicit casting must be used to confirm your intention to the compiler with the (SubclassName) cast notation. For the casting to be successful, you must make sure the object to be cast is an instance of the subclass. If the superclass object is not an instance of the subclass, a runtime ClassCastException occurs. For example, if an object is not an instance of Student, it cannot be cast into a variable of Student. It is a good practice, therefore, to ensure the object is an instance of another object before attempting a casting. This can be accomplished by using the instanceof operator. Consider the following code:

ClassCastException

instanceof

 void someMethod(Object myObjet) {
 ... // Some lines of code
 /** Perform casting if myObject is an instance of Circle */
 if (myObject instanceof Circle) {
 System.out.println("The circle diameter is " +
 ((Circle)myObject).getDiameter());
 ...
 }
 }

You may be wondering why casting is necessary. The variable myObject is declared Object. The declared type decides which method to match at compile time. Using myObject.­getDiameter() would cause a compile error, because the Object class does not have the getDiameter method. The compiler cannot find a match for myObject.getDiameter(). Therefore, it is necessary to cast myObject into the Circle type to tell the compiler that myObject is also an instance of Circle.

Why not declare myObject as a Circle type in the first place? To enable generic programming, it is a good practice to declare a variable with a supertype that can accept an object of any subtype.

 Note

instanceof is a Java keyword. Every letter in a Java keyword is in lowercase.

lowercase keywords

 Tip

To help understand casting, you may also consider the analogy of fruit, apple, and orange, with the Fruit class as the superclass for Apple and Orange. An apple is a fruit, so you can always safely assign an instance of Apple to a variable for Fruit. However, a fruit is not necessarily an apple, so you have to use explicit casting to assign an instance of Fruit to a variable of Apple.

casting analogy

Listing 11.7 demonstrates polymorphism and casting. The program creates two objects (lines 5 and 6), a circle and a rectangle, and invokes the displayObject method to display them (lines 9 and 10). The displayObject method displays the area and diameter if the object is a circle (line 15), and the area if the object is a rectangle (line 21).

Listing 11.7 CastingDemo.java

			 1 public class CastingDemo {
			 2 /** Main method */
			 3 public static void main(String[] args) {
			 4 // Create and initialize two objects
			 5 Object object1 = new Circle(1);
			 6 Object object2 = new Rectangle(1, 1);
			 7
			 8 // Display circle and rectangle
			 9 displayObject(object1);
			10 displayObject(object2);
			11 }
			12
			13 /** A method for displaying an object */
			14 public static void displayObject(Object object) {
			15 if (object instanceof Circle) {
			16 System.out.println("The circle area is " +
polymorphic call	17 ((Circle)object).getArea());
			18 System.out.println("The circle diameter is " +
			19 ((Circle)object).getDiameter());
			20 }
			21 else if (object instanceof Rectangle) {
			22 System.out.println("The rectangle area is " +
polymorphic call	23 ((Rectangle)object).getArea());
			24 }
			25 }
			26 }

The circle area is 3.141592653589793
The circle diameter is 2.0
The rectangle area is 1.0

The displayObject(Object object) method is an example of generic programming. It can be invoked by passing any instance of Object.

The program uses implicit casting to assign a Circle object to object1 and a ­Rectangle object to object2 (lines 5 and 6), then invokes the displayObject method to display the information on these objects (lines 9–10).

In the displayObject method (lines 14–25), explicit casting is used to cast the object to Circle if the object is an instance of Circle, and the methods getArea and getDiameter are used to display the area and diameter of the circle.

Casting can be done only when the source object is an instance of the target class. The program uses the instanceof operator to ensure that the source object is an instance of the target class before performing a casting (line 15).

Explicit casting to Circle (lines 17 and 19) and to Rectangle (line 23) is necessary because the getArea and getDiameter methods are not available in the Object class.

precedes casting

 Caution

The object member access operator (.) precedes the casting operator. Use parentheses to ensure that casting is done before the . operator, as in

 ((Circle)object).getArea();

	
Casting a primitive-type value is different from casting an object reference. Casting a primitive-type value returns a new value. For example:

int age = 45;
byte newAge = (byte)age; // A new value is assigned to newAge

However, casting an object reference does not create a new object. For example:

Object o = new Circle();
Circle c = (Circle)o; // No new object is created

Now, reference variables o and c point to the same object.

	11.9.1 Indicate true or false for the following statements:

	You can always successfully cast an instance of a subclass to a superclass.

	You can always successfully cast an instance of a superclass to a subclass.

	11.9.2 For the GeometricObject and Circle classes in Listings 11.1 and 11.2, answer the following questions:

	Assume that circle and object1 are created as follows:

 Circle circle = new Circle(1);
GeometricObject object1 = new GeometricObject();

 Are the following Boolean expressions true or false?

 (circle instanceof GeometricObject)
(object instanceof GeometricObject)
(circle instanceof Circle)
(object instanceof Circle)

	Can the following statements be compiled?

 Circle circle = new Circle(5);
GeometricObject object = circle;

	Can the following statements be compiled?

 GeometricObject object = new GeometricObject();
Circle circle = (Circle)object;

	11.9.3 Suppose Fruit, Apple, Orange, GoldenDelicious, and McIntosh are defined in the following inheritance hierarchy:

[image: In the hierarchy, Golden Delicious, and, McIntosh, point to, Apple. Apple and, Orange, point to, Fruit.]
Assume the following code is given:

Fruit fruit = new GoldenDelicious();
Orange orange = new Orange();

Answer the following questions:

	Is fruit instanceof Fruit?

	Is fruit instanceof Orange?

	Is fruit instanceof Apple?

	Is fruit instanceof GoldenDelicious?

	Is fruit instanceof McIntosh?

	Is orange instanceof Orange?

	Is orange instanceof Fruit?

	Is orange instanceof Apple?

	Suppose the method makeAppleCider is defined in the Apple class. Can Fruit invoke this method? Can orange invoke this method?

	Suppose the method makeOrangeJuice is defined in the Orange class. Can orange invoke this method? Can Fruit invoke this method?

	Is the statement Orange p = new Apple() legal?

	Is the statement McIntosh p = new Apple() legal?

	Is the statement Apple p = new McIntosh() legal?

	11.9.4 What is wrong in the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 Object fruit = new Fruit();
 4 Object apple = (Apple)fruit;
 5 }
 6 }
 7
 8 class Apple extends Fruit {
 9 }
10
11 class Fruit {
12 }

11.10 The Object’s equals Method

Like the toString() method, the equals(Object) method is another useful method defined in the Object class.

Another method defined in the Object class that is often used is the equals method. Its signature is

public boolean equals(Object o)

This method tests whether two objects are equal. The syntax for invoking it is

object1.equals(object2);

The default implementation of the equals method in the Object class is

public boolean equals(Object obj) {
 return this == obj;
}

This implementation checks whether two reference variables point to the same object using the == operator. You should override this method in your custom class to test whether two distinct objects have the same content.

The equals method is overridden in many classes in the Java API, such as java.lang.String and java.util.Date, to compare whether the contents of two objects are equal. You have already used the equals method to compare two strings in Sections 4.4.7, The String Class. The equals method in the String class is inherited from the Object class, and is overridden in the String class to test whether two strings are identical in content.

You can override the equals method in the Circle class to compare whether two circles are equal based on their radius as follows:

@Override
public boolean equals(Object o) {
 if (o instanceof Circle)
 return radius == ((Circle)o).radius;
 else
 return false;
}

 Note

The == comparison operator is used for comparing two primitive-data-type values or for determining whether two objects have the same references. The equals method is intended to test whether two objects have the same contents, provided the method is overridden in the defining class of the objects. The == operator is stronger than the equals method in that the == operator checks whether the two reference variables refer to the same object.

== vs. equals

 Caution

Using the signature equals(SomeClassName obj) (e.g., equals(Circle c)) to override the equals method in a subclass is a common mistake. You should use equals(Object obj). See CheckPoint Question 11.10.2.

equals(Object)

	11.10.1 Does every object have a toString method and an equals method? Where do they come from? How are they used? Is it appropriate to override these methods?

	11.10.2 When overriding the equals method, a common mistake is mistyping its signature in the subclass. For example, the equals method is incorrectly written as equals(Circle circle), as shown in (a) in the following code; instead, it should be equals(Object circle), as shown in (b). Show the output of running class Test with the Circle class in (a) and in (b), respectively.

	
public class Test {
 public static void main(String[] args) {
 Object circle1 = new Circle();
 Object circle2 = new Circle();
 System.out.println(circle1.equals(circle2));
 }
}

	class Circle {
 double radius;

 public boolean equals(Circle circle) {
 return this.radius == circle.radius;
 }
}

	class Circle {
 double radius;

 public boolean equals(Object circle) {
 return this.radius ==
 ((Circle)circle).radius;
 }
}

	(a)

	(b)

If Object is replaced by Circle in the Test class, what would be the output to run Test using the Circle class in (a) and (b), respectively?

11.11 The ArrayList Class

	An ArrayList object can be used to store a list of objects.

The ArrayList class

Now we are ready to introduce a very useful class for storing objects. You can create an array to store objects. However, once the array is created, its size is fixed. Java provides the ArrayList class, which can be used to store an unlimited number of objects. Figure 11.3 shows some methods in ArrayList.

[image: An annotated U M L diagram named, java dot u t i l dot Array List, <, E, >.]
Figure 11.3

An ArrayList stores an unlimited number of objects.

Description

ArrayList is known as a generic class with a generic type E. You can specify a concrete type to replace E when creating an ArrayList. For example, the following statement creates an ArrayList and assigns its reference to variable cities. This ArrayList object can be used to store strings.

ArrayList<String> cities = new ArrayList<String>();

The following statement creates an ArrayList and assigns its reference to variable dates. This ArrayList object can be used to store dates.

ArrayList<java.util.Date> dates = new ArrayList<java.util.Date>();

 Note

Since JDK 7, the statement

ArrayList <AConcreteType> list = new ArrayList<AConcreteType>();

can be simplified by

ArrayList<AConcreteType> list = new ArrayList<>();

type inference

The concrete type is no longer required in the constructor, thanks to a feature called type inference. The compiler is able to infer the type from the variable declaration. More discussions on generics including how to define custom generic classes and methods will be introduced in Chapter 19, Generics.

Listing 11.8 gives an example of using ArrayList to store objects.

Listing 11.8 TestArrayList.java

import ArrayList	 1 import java.util.ArrayList;
			 2
			 3 public class TestArrayList {
			 4 public static void main(String[] args) {
			 5 // Create a list to store cities
create ArrayList	 6 ArrayList<String> cityList = new ArrayList<>();
			 7
			 8 // Add some cities in the list
add element		 9 cityList.add("London");
			10 // cityList now contains [London]
			11 cityList.add("Denver");
			12 // cityList now contains [London, Denver]
			13 cityList.add("Paris");
			14 // cityList now contains [London, Denver, Paris]
			15 cityList.add("Miami");
			16 // cityList now contains [London, Denver, Paris, Miami]
			17 cityList.add("Seoul");
			18 // Contains [London, Denver, Paris, Miami, Seoul]
			19 cityList.add("Tokyo");
			20 // Contains [London, Denver, Paris, Miami, Seoul, Tokyo]
			21
list size		22 System.out.println("List size? " + cityList.size());
			23 System.out.println("Is Miami in the list? " +
contains element?	24 cityList.contains("Miami"));
			25 System.out.println("The location of Denver in the list? "
element index		26 + cityList.indexOf("Denver"));
			27 System.out.println("Is the list empty? " +
is empty?		28 cityList.isEmpty()); // Print false
			29
			30 // Insert a new city at index 2
			31 cityList.add(2, "Xian");
			32 // Contains [London, Denver, Xian, Paris, Miami, Seoul, Tokyo]
			33
			34 // Remove a city from the list
remove element		35 cityList.remove("Miami");
			36 // Contains [London, Denver, Xian, Paris, Seoul, Tokyo]
			37
			38 // Remove a city at index 1
remove element		39 cityList.remove(1);
			40 // Contains [London, Xian, Paris, Seoul, Tokyo]
			41
			42 // Display the contents in the list
toString()		43 System.out.println(cityList.toString());
			44
			45 // Display the contents in the list in reverse order
			46 for (int i = cityList.size() − 1; i >= 0; i––)
get element		47 System.out.print(cityList.get(i) + " ");
			48 System.out.println();
			49
 50 // Create a list to store two circles
create ArrayList 51 ArrayList<Circle> list = new ArrayList<>();
			52
			53 // Add two circles
			54 list.add(new Circle(2));
			55 list.add(new Circle(3));
			56
			57 // Display the area of the first circle in the list
			58 System.out.println("The area of the circle? " +
			59 list.get(0).getArea());
			60 }
			61 }

List size? 6
Is Miami in the list? true
The location of Denver in the list? 1
Is the list empty? false
[London, Xian, Paris, Seoul, Tokyo]
Tokyo Seoul Paris Xian London
The area of the circle? 12.566370614359172

Since the ArrayList is in the java.util package, it is imported in line 1. The program creates an ArrayList of strings using its no-arg constructor and assigns the reference to cityList (line 6). The add method (lines 9–19) adds strings to the end of list. Thus, after cityList.add("London") (line 9), the list contains

add(Object)

[London]

After cityList.add("Denver") (line 11), the list contains

[London, Denver]

After adding Paris, Miami, Seoul, and Tokyo (lines 13–19), the list contains

[London, Denver, Paris, Miami, Seoul, Tokyo]

Invoking size() (line 22) returns the size of the list, which is currently 6. Invoking contains("Miami") (line 24) checks whether the object is in the list. In this case, it returns true, since Miami is in the list. Invoking indexOf("Denver") (line 26) returns the index of Denver in the list, which is 1. If Denver were not in the list, it would return –1. The isEmpty() method (line 28) checks whether the list is empty. It returns false, since the list is not empty.

size()

The statement cityList.add(2, "Xian") (line 31) inserts an object into the list at the specified index. After this statement, the list becomes

add(index, Object)

[London, Denver, Xian, Paris, Miami, Seoul, Tokyo]

The statement cityList.remove("Miami") (line 35) removes the object from the list. After this statement, the list becomes

remove(Object)

[London, Denver, Xian, Paris, Seoul, Tokyo]

The statement cityList.remove(1) (line 39) removes the object at the specified index from the list. After this statement, the list becomes

remove(index)

[London, Xian, Paris, Seoul, Tokyo]

The statement in line 43 is same as

System.out.println(cityList);

The toString() method returns a string representation of the list in the form of [e0.toString(), e1.toString(), ..., ek.toString()], where e0, e1, ..., and ek are the elements in the list.

toString()

The get(index) method (line 47) returns the object at the specified index.

get(index)

ArrayList objects can be used like arrays, but there are many differences. Table 11.1 lists their similarities and differences.

array vs. ArrayList

Table 11.1  Differences and Similarities between Arrays and ArrayList

	Operation

	Array

	ArrayList

	Creating an array/ArrayList

	String[] a = new String[10]

	ArrayList<String> list = new ArrayList<>();

	Accessing an element

	a[index]

	list.get(index);

	Updating an element

	a[index] = "London";

	list.set(index, "London");

	Returning size

	a.length

	list.size();

	Adding a new element

	
	list.add("London");

	Inserting a new element

	
	list.add(index, "London");

	Removing an element

	
	list.remove(index);

	Removing an element

	
	list.remove(Object);

	Removing all elements

	
	list.clear();

Once an array is created, its size is fixed. You can access an array element using the square-bracket notation (e.g., a[index]). When an ArrayList is created, its size is 0. You cannot use the get(index) and set(index, element) methods if the element is not in the list. It is easy to add, insert, and remove elements in a list, but it is rather ­complex to add, insert, and remove elements in an array. You have to write code to manipulate the array in order to perform these operations. Note you can sort an array using the ­java.util.Arrays.sort(array) method. To sort an array list, use the java.util.­Collections.sort(arraylist) method.

Suppose you want to create an ArrayList for storing integers. Can you use the following code to create a list?

ArrayList<int> listOfIntegers = new ArrayList<>();

No. This will not work because the elements stored in an ArrayList must be of an object type. You cannot use a primitive data type such as int to replace a generic type. However, you can create an ArrayList for storing Integer objects as follows:

ArrayList<Integer> listOfIntegers = new ArrayList<>();

Note the remove(int index) method removes an element at the specified index. To remove an integer value v from listOfIntegers, you need to use listOfIntegers.remove(new Integer(v)). This is not a good design in the Java API because it could easily lead to mistakes. It would be much better if remove(int) is renamed removeAt(int).

remove(int) vs. remove(Integer)

Listing 11.9 gives a program that prompts the user to enter a sequence of numbers and displays the distinct numbers in the sequence. Assume the input ends with 0, and 0 is not counted as a number in the sequence.

Listing 11.9 DistinctNumbers.java

			 1 import java.util.ArrayList;
			 2 import java.util.Scanner;
			 3
			 4 public class DistinctNUmbers {
			 5 public static void main(String[] args) {
create an array list	 6 ArrayList<Integer> list = new ArrayList<>();
			 7
			 8 Scanner input = new Scanner(System.in);
			 9 System.out.print("Enter integers (input ends with 0): ");
			 10 int value;
			 11
			 12 do {
			 13 value = input.nextInt(); // Read a value from the input
			 14
contained in list?	 15 if (!list.contains(value) && value != 0)
add to list		 16 list.add(value); // Add the value if it is not in the list
			 17 } while (value != 0);
			 18
			 19 // Display the distinct numbers
			 20 for (int i = 0; i < list.size(); i++)
			 21 System.out.print(list.get(i) + " ");
			 22 }
			 23 }

Enter numbers (input ends with 0): 1 2 3 2 1 6 3 4 5 4 5 1 2 3 0
The distinct numbers are: 1 2 3 6 4 5

The program creates an ArrayList for Integer objects (line 6) and repeatedly reads a value in the loop (lines 12–17). For each value, if it is not in the list (line 15), add it to the list (line 16). You can rewrite this program using an array to store the elements rather than using an ArrayList. However, it is simpler to implement this program using an ArrayList for two reasons.

	The size of an ArrayList is flexible so you don’t have to specify its size in advance. When creating an array, its size must be specified.

	ArrayList contains many useful methods. For example, you can test whether an element is in the list using the contains method. If you use an array, you have to write additional code to implement this method.

foreach loop

You can traverse the elements in an array using a foreach loop. The elements in an array list can also be traversed using a foreach loop using the following syntax:

for (elementType element: arrayList) {
 // Process the element
}

For example, you can replace the code in lines 20 and 21 using the following code:

for (Integer number: list)
 System.out.print(number + " ");

or

for (int number: list)
 System.out.print(number + " ");

Note the elements in list are Integer objects. They are automatically unboxed into int in this foreach loop.

	11.11.1 How do you do the following?

	Create an ArrayList for storing double values?

	Append an object to a list?

	Insert an object at the beginning of a list?

	Find the number of objects in a list?

	Remove a given object from a list?

	Remove the last object from a list?

	Check whether a given object is in a list?

	Retrieve an object at a specified index from a list?

	11.11.2 Identify the errors in the following code.

ArrayList<String> list = new ArrayList<>();
list.add("Denver");
list.add("Austin");
list.add(new java.util.Date());
String city = list.get(0);
list.set(3, "Dallas");
System.out.println(list.get(3));

	11.11.3 Suppose the ArrayList list contains {"Dallas", "Dallas", "Houston", "Dallas"}. What is the list after invoking list.remove("Dallas") one time? Does the following code correctly remove all elements with value "Dallas" from the list? If not, correct the code.

for (int i = 0; i < list.size(); i++)
 list.remove("Dallas");

	11.11.4 Explain why the following code displays [1, 3] rather than [2, 3].

ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.remove(1);
System.out.println(list);

How do you remove integer value 3 from the list?

	11.11.5 Explain why the following code is wrong:

ArrayList<Double> list = new ArrayList<>();
list.add(1);

11.12 Useful Methods for Lists

	Java provides the methods for creating a list from an array, for sorting a list, and for finding maximum and minimum element in a list, and for shuffling a list.

array to array list

Often you need to create an array list from an array of objects or vice versa. You can write the code using a loop to accomplish this, but an easy way is to use the methods in the Java API. Here is an example to create an array list from an array:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

array list to array

The static method asList in the Arrays class returns a list that is passed to the ArrayList constructor for creating an ArrayList. Conversely, you can use the following code to create an array of objects from an array list:

String[] array1 = new String[list.size()];
list.toArray(array1);

Invoking list.toArray(array1) copies the contents from list to array1. If the elements in a list are comparable, such as integers, double, or strings, you can use the static sort method in the java.util.Collections class to sort the elements. Here are some examples:

sort a list

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
java.util.Collections.sort(list);
System.out.println(list);

max and min methods

You can use the static max and min in the java.util.Collections class to return the maximum and minimal element in a list. Here are some examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
System.out.println(java.util.Collections.max(list));
System.out.println(java.util.Collections.min(list));

shuffle method

You can use the static shuffle method in the java.util.Collections class to perform a random shuffle for the elements in a list. Here are some examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
java.util.Collections.shuffle(list);
System.out.println(list);

	11.12.1 Correct errors in the following statements:

int[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));

	11.12.2 Correct errors in the following statements:

int[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
System.out.println(java.util.Collections.max(array));

11.13 Case Study: A Custom Stack Class

	This section designs a stack class for holding objects.

The MyStack class

Sections 10.6 presented a stack class for storing int values. This section introduces a stack class to store objects. You can use an ArrayList to implement Stack, as shown in Listing 11.10. The UML diagram for the class is shown in Figure 11.4.

[image: An annotated U M L diagram for the class, My Stack.]
Figure 11.4

The MyStack class encapsulates the stack storage and provides the operations for manipulating the stack.

Description

Listing 11.10 MyStack.java

		 1 import java.util.ArrayList;
		 2
		 3 public class MyStack {
array list	 4 private ArrayList<Object> list = new ArrayList<>();
		 5
stack empty?	 6 public boolean isEmpty() {
		 7 return list.isEmpty();
		 8 }
		 9
get stack size	 10 public int getSize() {
		 11 return list.size();
		 12 }
		 13
peek stack	 14 public Object peek() {
		 15 return list.get(getSize() − 1);
		 16 }
		 17
remove		 18 public Object pop() {
		 19 Object o = list.get(getSize() − 1);
		 20 list.remove(getSize() − 1);
		 21 return o;
		 22 }
		 23
push		 24 public void push(Object o) {
		 25 list.add(o);
		 26 }
		 27
		 28 @Override
		 29 public String toString() {
		 30 return "stack: " + list.toString();
		 31 }
		 32 }

An array list is created to store the elements in the stack (line 4). The isEmpty() method (lines 6–8) returns list.isEmpty(). The getSize() method (lines 10–12) returns list.size(). The peek() method (lines 14–16) retrieves the element at the top of the stack without removing it. The end of the list is the top of the stack. The pop() method (lines 18–22) removes the top element from the stack and returns it. The push(Object element) method (lines 24–26) adds the specified element to the stack. The toString() method (lines 28–31) defined in the Object class is overridden to display the contents of the stack by invoking list.toString(). The toString() method implemented in ArrayList returns a string representation of all the elements in an array list.

 Design Guide

In Listing 11.10, MyStack contains ArrayList. The relationship between MyStack and ArrayList is composition. Composition essentially means declaring an instance variable for referencing an object. This object is said to be composed. While inheritance models an is-a relationship, composition models a has-a relationship. You could also implement ­MyStack as a subclass of ArrayList (see Programming Exercise 11.10). Using composition is better, however, because it enables you to define a completely new stack class without inheriting the unnecessary and inappropriate methods from ArrayList.

composition

has-a

	11.13.1 Write statements that create a MyStack and add number 11 to the stack.

11.14 The Protected Data and Methods

	A protected member of a class can be accessed from a subclass.

So far you have used the private and public keywords to specify whether data fields and methods can be accessed from outside of the class. Private members can be accessed only from inside of the class, and public members can be accessed from any other classes.

Often it is desirable to allow subclasses to access data fields or methods defined in the superclass, but not to allow nonsubclasses in different packages to access these data fields and methods. To accomplish this, you can use the protected keyword. This way you can access protected data fields or methods in a superclass from its subclasses.

why protected?

The modifiers private, protected, and public are known as visibility or accessibility modifiers because they specify how classes and class members are accessed. The visibility of these modifiers increases in this order:

→private, default (no modifier), protected, publicVisibility increases

Table 11.2 summarizes the accessibility of the members in a class. Figure 11.5 illustrates how a public, protected, default, and private datum or method in class C1 can be accessed from a class C2 in the same package, a subclass C3 in the same package, a subclass C4 in a different package, and a class C5 in a different package.

Table 11.2 Data and Methods Visibility

	Modifier on Members in a Class

	Accessed from the Same Class

	Accessed from the Same Package

	Accessed from a Subclass in a Different Package

	Accessed from a Different Package

	Public

	✓

	✓

	✓

	✓

	Protected

	✓

	✓

	✓

	–

	Default (no modifier)

	✓

	✓

	–

	–

	Private

	✓

	–

	–

	–

[image: Five code diagrams are divided into two groups.]
Figure 11.5

Visibility modifiers are used to control how data and methods are accessed.

Description

Use the private modifier to hide the members of the class completely so they cannot be accessed directly from outside the class. Use no modifiers (the default) in order to allow the members of the class to be accessed directly from any class within the same package but not from other packages. Use the protected modifier to enable the members of the class to be accessed by the subclasses in any package or classes in the same package. Use the public modifier to enable the members of the class to be accessed by any class.

Your class can be used in two ways: (1) for creating instances of the class and (2) for defining subclasses by extending the class. Make the members private if they are not intended for use from outside the class. Make the members public if they are intended for the users of the class. Make the fields or methods protected if they are intended for the extenders of the class but not for the users of the class.

The private and protected modifiers can be used only for members of the class. The public modifier and the default modifier (i.e., no modifier) can be used on members of the class as well as on the class. A class with no modifier (i.e., not a public class) is not accessible by classes from other packages.

 Note

A subclass may override a protected method defined in its superclass and change its visibility to public. However, a subclass cannot weaken the accessibility of a method defined in the superclass. For example, if a method is defined as public in the superclass, it must be defined as public in the subclass.

change visibility

	11.14.1 What modifier should you use on a class so a class in the same package can access it, but a class in a different package cannot access it?

	11.14.2 What modifier should you use so a class in a different package cannot access the class, but its subclasses in any package can access it?

	11.14.3 In the following code, the classes A and B are in the same package. If the question marks in (a) are replaced by blanks, can class B be compiled? If the question marks are replaced by private, can class B be compiled? If the question marks are replaced by protected, can class B be compiled?

	package p1;
public class A {
 ? int i;
 ? void m() {
 ...
 }
}

	
	package p1;
public class B extends A {
 public void m1(String[] args) {
 System.out.println(i);
 m();
 }
}

	(a)

	
	(b)

	11.14.4 In the following code, the classes A and B are in different packages. If the question marks in (a) are replaced by blanks, can class B be compiled? If the question marks are replaced by private, can class B be compiled? If the question marks are replaced by protected, can class B be compiled?

	package p1;
public class A {
 ? int i;
 ? void m() {
 ...
 }
}

	
	package p2;
public class B extends A {
 public void m1(String[] args) {
 System.out.println(i);
 m();
 }
}

	(a)

	
	(b)

11.15 Preventing Extending and Overriding

	Neither a final class nor a final method can be extended. A final data field is a constant.

You may occasionally want to prevent classes from being extended. In such cases, use the final modifier to indicate a class is final and cannot be a parent class. The Math class is a final class. The String, StringBuilder, and StringBuffer classes, and all wrapper classes for primitive data types are also final classes. For example, the following class A is final and cannot be extended:

public final class A {
 // Data fields, constructors, and methods omitted
}

You also can define a method to be final; a final method cannot be overridden by its subclasses.

For example, the following method m is final and cannot be overridden:

public class Test {
 // Data fields, constructors, and methods omitted
 public final void m() {
 // Do something
 }
}

 Note

The modifiers public, protected, private, static, abstract, and final are used on classes and class members (data and methods), except that the final modifier can also be used on local variables in a method. A final local variable is a constant inside a method.

	11.15.1 How do you prevent a class from being extended? How do you prevent a method from being overridden?

	11.15.2 Indicate true or false for the following statements:

	A protected datum or method can be accessed by any class in the same package.

	A protected datum or method can be accessed by any class in different packages.

	A protected datum or method can be accessed by its subclasses in any package.

	A final class can have instances.

	A final class can be extended.

	A final method can be overridden.

Key Terms

	actual type 426

	 casting objects  429

	constructor chaining 419

	declared type 426

	dynamic binding 426

	inheritance 412

	instanceof430

	is-a relationship 412

	method overriding 421

	multiple inheritance 418

	override 421

	polymorphism 425

	protected 442

	single inheritance 418

	subclass 412

	subtype 412

	superclass 412

	supertype 412

	type inference 435

Chapter Summary

	You can define a new class from an existing class. This is known as class inheritance. The new class is called a subclass, child class, or extended class. The existing class is called a superclass, parent class, or base class.

	A constructor is used to construct an instance of a class. Unlike properties and methods, the constructors of a superclass are not inherited in the subclass. They can be invoked only from the constructors of the subclasses, using the keyword super.

	A constructor may invoke an overloaded constructor or its superclass’s constructor. The call must be the first statement in the constructor. If none of them is invoked explicitly, the compiler puts super() as the first statement in the constructor, which invokes the superclass’s no-arg constructor.

	To override a method, the method must be defined in the subclass using the same signature and the same or compatible return type as in its superclass.

	An instance method can be overridden only if it is accessible. Thus, a private method cannot be overridden because it is not accessible outside its own class. If a method defined in a subclass is private in its superclass, the two methods are completely unrelated.

	Like an instance method, a static method can be inherited. However, a static method cannot be overridden. If a static method defined in the superclass is redefined in a subclass, the method defined in the superclass is hidden.

	Every class in Java is descended from the java.lang.Object class. If no superclass is specified when a class is defined, its superclass is Object.

	If a method’s parameter type is a superclass (e.g., Object), you may pass an object to this method of any of the parameter’s subclasses (e.g., Circle or String). This is known as polymorphism.

	It is always possible to cast an instance of a subclass to a variable of a superclass because an instance of a subclass is always an instance of its superclass. When casting an instance of a superclass to a variable of its subclass, explicit casting must be used to confirm your intention to the compiler with the (SubclassName) cast notation.

	A class defines a type. A type defined by a subclass is called a subtype, and a type defined by its superclass is called a supertype.

	When invoking an instance method from a reference variable, the actual type of the variable decides which implementation of the method is used at runtime. This is known as dynamic binding.

	You can use obj instanceof AClass to test whether an object is an instance of a class.

	You can use the ArrayList class to create an object to store a list of objects.

	You can use the protected modifier to prevent the data and methods from being accessed by nonsubclasses from a different package.

	You can use the final modifier to indicate a class is final and cannot be extended and to indicate a method is final and cannot be overridden.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 11.2–11.4

	11.1 (The Triangle class) Design a class named Triangle that extends ­GeometricObject. The class contains:

	Three double data fields named side1, side2, and side3 with default values 1.0 to denote three sides of a triangle.

	A no-arg constructor that creates a default triangle.

	A constructor that creates a triangle with the specified side1, side2, and side3.

	The accessor methods for all three data fields.

	A method named getArea() that returns the area of this triangle.

	A method named getPerimeter() that returns the perimeter of this triangle.

	A method named toString() that returns a string description for the triangle.

For the formula to compute the area of a triangle, see Programming Exercise 2.19 . The toString() method is implemented as follows:

return "Triangle: side1 = " + side1 + " side2 = " + side2 +
 " side3 = " + side3;

Draw the UML diagrams for the classes Triangle and GeometricObject and implement the classes. Write a test program that prompts the user to enter three sides of the triangle, a color, and a Boolean value to indicate whether the triangle is filled. The program should create a Triangle object with these sides and set the color and filled properties using the input. The program should display the area, perimeter, color, and true or false to indicate whether it is filled or not.

Sections 11.5–11.14

	11.2 (The Person, Student, Employee, Faculty, and Staff classes) Design a class named Person and its two subclasses named Student and Employee. Make Faculty and Staff subclasses of Employee. A person has a name, address, phone number, and e-mail address. A student has a class status (freshman, sophomore, junior, or senior). Define the status as a constant. An employee has an office, salary, and date hired. Use the MyDate class defined in Programming Exercise 10.14 to create an object for date hired. A faculty member has office hours and a rank. A staff member has a title. Override the toString method in each class to display the class name and the person’s name.

Draw the UML diagram for the classes and implement them. Write a test program that creates a Person, Student, Employee, Faculty, and Staff, and invokes their toString() methods.

	11.3 (Subclasses of Account) In Section 9.7 , the Account class was defined to model a bank account. An account has the properties account number, balance, annual interest rate, and date created, and methods to deposit and withdraw funds. Create two subclasses for checking and saving accounts. A checking account has an overdraft limit, but a savings account cannot be overdrawn.

Draw the UML diagram for the classes and implement them. Write a test program that creates objects of Account, SavingsAccount, and CheckingAccount and invokes their toString() methods.

	11.4 (Maximum element in ArrayList) Write the following method that returns the maximum value in an ArrayList of integers. The method returns null if the list is null or the list size is 0.

public static Integer max(ArrayList<Integer> list)

Write a test program that prompts the user to enter a sequence of numbers ending with 0 and invokes this method to return the largest number in the input.

	11.5 (The Course class) Rewrite the Course class in Listing 10.6 . Use an ArrayList to replace an array to store students. Draw the new UML diagram for the class. You should not change the original contract of the Course class (i.e., the definition of the constructors and methods should not be changed, but the private members may be changed.)

	11.6 (Use ArrayList) Write a program that creates an ArrayList and adds a Loan object, a Date object, a string, and a Circle object to the list, and use a loop to display all the elements in the list by invoking the object’s toString() method.

	11.7 (Shuffle ArrayList) Write the following method that shuffles the elements in an ArrayList of integers:

public static void shuffle(ArrayList<Integer> list)

New Account class

		**11.8	(New Account class) An Account class was specified in Programming Exercise 9.7. Design a new Account class as follows:

	Add a new data field name of the String type to store the name of the customer.

	Add a new constructor that constructs an account with the specified name, id, and balance.

	Add a new data field named transactions whose type is ArrayList that stores the transaction for the accounts. Each transaction is an instance of the Transaction class, which is defined as shown in ­Figure 11.6 .

[image: An annotated U M L diagram for the class, Transaction.]
Figure 11.6

The Transaction class describes a transaction for a bank account.

Description

	Modify the withdraw and deposit methods to add a transaction to the transactions array list.

	All other properties and methods are the same as in Programming Exercise 9.7.

Write a test program that creates an Account with annual interest rate 1.5%, balance 1000, id 1122, and name George. Deposit $30, $40, and $50 to the account and withdraw $5, $4, and $2 from the account. Print an account summary that shows the account holder name, interest rate, balance, and all transactions.

		*11.9	(Largest rows and columns) Write a program that randomly fills in 0s and 1s into an n-by-n matrix, prints the matrix, and finds the rows and columns with the most 1s. (Hint: Use two ArrayLists to store the row and column indices with the most 1s.) Here is a sample run of the program:

Enter the array size n: 4
The random array is
0011
0011
1101
1010
The largest row index: 2
The largest column index: 2, 3

	11.10 (Implement MyStack using inheritance) In Listing 11.10 , MyStack is implemented using composition. Define a new stack class that extends ArrayList.

Draw the UML diagram for the classes then implement MyStack. Write a test program that prompts the user to enter five strings and displays them in reverse order.

	11.11 (Sort ArrayList) Write the following method that sorts an ArrayList of numbers:

public static void sort(ArrayList<Integer> list)

Write a test program that prompts the user to enter five numbers, stores them in an array list, and displays them in increasing order.

	11.12 (Sum ArrayList) Write the following method that returns the sum of all numbers in an ArrayList:

public static double sum(ArrayList<Double> list)

Write a test program that prompts the user to enter five numbers, stores them in an array list, and displays their sum.

		*11.13	(Remove duplicates) Write a method that removes the duplicate elements from an array list of integers using the following header:

public static void removeDuplicate(ArrayList<Integer> list)

Write a test program that prompts the user to enter 10 integers to a list and displays the distinct integers in their input order and separated by exactly one space. Here is a sample run:

Enter 10 integers: 34 5 3 5 6 4 33 2 2 4
The distinct integers are 34 5 3 6 4 33 2

	11.14 (Combine two lists) Write a method that returns the union of two array lists of integers using the following header:

public static ArrayList<Integer> union(
 ArrayList<Integer> list1, ArrayList<Integer> list2)

For example, the addition of two array lists

 {
2, 3, 1, 5
 }

 and

 {
3, 4, 6
 }

 is

 {
2, 3, 1, 5, 3, 4, 6
 }.

 Write a test program that prompts the user to enter two lists, each with five integers, and displays their union. The numbers are separated by exactly one space. Here is a sample run:

Enter five integers for list1: 3 5 45 4 3
Enter five integers for list2: 33 51 5 4 13
The combined list is 3 5 45 4 3 33 51 5 4 13

		*11.15	(Area of a convex polygon) A polygon is convex if it contains any line segments that connects two points of the polygon. Write a program that prompts the user to enter the number of points in a convex polygon, enter the points clockwise, then displays the area of the polygon. For the formula for computing the area of a polygon, see http://www.mathwords.com/a/area_convex_polygon.htm. Here is a sample run of the program:

Enter the number of points: 7
Enter the coordinates of the points:
 −12 0 −8.5 10 0 11.4 5.5 7.8 6 -5.5 0 −7 −3.5 −13.5
The total area is 292.575

		**11.16	(Addition quiz) Rewrite Listing 5.1 , RepeatAdditionQuiz.java, to alert the user if an answer is entered again. (Hint: use an array list to store answers.) Here is a sample run:

What is 5 + 9? 12
Wrong answer. Try again. What is 5 + 9? 34
Wrong answer. Try again. What is 5 + 9? 12
You already entered 12
Wrong answer. Try again. What is 5 + 9? 14
You got it!

		**11.17	(Algebra: perfect square) Write a program that prompts the user to enter an integer m and find the smallest integer n such that m * n is a perfect square. (Hint: Store all smallest factors of m into an array list. n is the product of the factors that appear an odd number of times in the array list. For example, consider m = 90, store the factors 2, 3, 3, and 5 in an array list. 2 and 5 appear an odd number of times in the array list. Thus, n is 10.) Here are some sample runs:

Enter an integer m: 1500
The smallest number n for m * n to be a perfect square is 15
m * n is 22500

Enter an integer m: 63
The smallest number n for m * n to be a perfect square is 7
m * n is 441

		**11.18	(ArrayList of Character) Write a method that returns an array list of Character from a string using the following header:

public static ArrayList<Character> toCharacterArray(String s)

For example, toCharacterArray("abc") returns an array list that contains characters 'a', 'b', and 'c'.

	**11.19 (Bin packing using first fit) The bin packing problem is to pack the objects of various weights into containers. Assume each container can hold a maximum of 10 pounds. The program uses an algorithm that places an object into the first bin in which it would fit. Your program should prompt the user to enter the total number of objects and the weight of each object. The program displays the total number of containers needed to pack the objects and the contents of each container. Here is a sample run of the program:

Enter the number of objects: 6
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 7 2
Container 2 contains objects with weight 5 3
Container 3 contains objects with weight 5
Container 4 contains objects with weight 8

Does this program produce an optimal solution, that is, finding the minimum number of containers to pack the objects?

CHAPTER 12 Exception Handling and Text I/O

Objectives

	To get an overview of exceptions and exception handling (§12.2).

	To explore the advantages of using exception handling (§12.2).

	To distinguish exception types: Error (fatal) vs. Exception (­nonfatal) and checked vs. unchecked (§12.3).

	To declare exceptions in a method header (§12.4.1).

	To throw exceptions in a method (§12.4.2).

	To write a try-catch block to handle exceptions (§12.4.3).

	To explain how an exception is propagated (§12.4.3).

	To obtain information from an exception object (§12.4.4).

	To develop applications with exception handling (§12.4.5).

	To use the finally clause in a try-catch block (§12.5).

	To use exceptions only for unexpected errors (§12.6).

	To rethrow exceptions in a catch block (§12.7).

	To create chained exceptions (§12.8).

	To define custom exception classes (§12.9).

	To discover file/directory properties, to delete and rename files/­directories, and to create directories using the File class (§12.10).

	To write data to a file using the PrintWriter class (§12.11.1).

	To use try-with-resources to ensure that the resources are closed ­automatically (§12.11.2).

	To read data from a file using the Scanner class (§12.11.3).

	To understand how data is read using a Scanner (§12.11.4).

	To develop a program that replaces text in a file (§12.11.5).

	To read data from the Web (§12.12).

	To develop a Web crawler (§12.13).

12.1 Introduction

	Exceptions are runtime errors. Exception handling enables a program to deal with runtime errors and continue its normal execution.

Runtime errors occur while a program is running if the JVM detects an operation that is ­impossible to carry out. For example, if you access an array using an index that is out of bounds, you will get a runtime error with an ArrayIndexOutOfBoundsException. If you enter a double value when your program expects an integer, you will get a runtime error with an InputMismatchException.

exception

In Java, runtime errors are thrown as exceptions. An exception is an object that represents an error or a condition that prevents execution from proceeding normally. If the exception is not handled, the program will terminate abnormally. How can you handle the exception so the program can continue to run or else terminate gracefully? This chapter introduces this subject, and text input and output.

12.2 Exception-Handling Overview

	Exceptions are thrown from a method. The caller of the method can catch and handle the exception.

To demonstrate exception handling, including how an exception object is created and thrown, let’s begin with the example in Listing 12.1, which reads in two integers and displays their quotient.

Exception-handling advantages

Listing 12.1 Quotient.java

			1 import java.util.Scanner;
			2
			3 public class Quotient {
			4 public static void main(String[] args) {
			5 Scanner input = new Scanner(System.in);
			6
			7 // Prompt the user to enter two integers
			8 System.out.print("Enter two integers: ");
read two integers	9 int number1 = input.nextInt();
		 10 int number2 = input.nextInt();
		 11
		 12 System.out.println(number1 + " / " + number2 + " is " +
integer division 13 (number1 / number2));
		 14 }
		 15 }

Enter two integers: 5 2
5 / 2 is 2

Enter two integers: 3 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
at Quotient.main(Quotient.java:13)

If you entered 0 for the second number, a runtime error would occur, because you cannot divide an integer by 0. (Note a floating-point number divided by 0 does not raise an ­exception.) A simple way to fix this error is to add an if statement to test the second number, as shown in Listing 12.2.

Listing 12.2 QuotientWithIf.java

			 1 import java.util.Scanner;
			 2
			 3 public class QuotientWithIf {
			 4 public static void main(String[] args) {
			 5 Scanner input = new Scanner(System.in);
			 6
			 7 // Prompt the user to enter two integers
			 8 System.out.print("Enter two integers: ");
read to integers	 9 int number1 = input.nextInt();
			10 int number2 = input.nextInt();
			11
test number2		12 if (number2 != 0)
			13 System.out.println(number1 + " / " + number2
			14 + " is " + (number1 / number2));
			15 else
			16 System.out.println("Divisor cannot be zero ");
			17 }
			18 }

Enter two integers: 5 0
Divisor cannot be zero

Before introducing exception handling, let us rewrite Listing 12.2 to compute a quotient using a method, as shown in Listing 12.3.

Listing 12.3 QuotientWithMethod.java

			 1 import java.util.Scanner;
			 2
			 3 public class QuotientWithMethod {
quotient method		 4 public static int quotient(int number1,int number2) {
			 5 if (number2 == 0) {
			 6 System.out.println("Divisor cannot be zero");
terminate the program	 7 System.exit(1);
			 8 }
			 9
			10 return number1 / number2;
			11 }
			12
			13 public static void main(String[] args) {
			14 Scanner input = new Scanner(System.in);
			15
			16 // Prompt the user to enter two integers
			17 System.out.print("Enter two integers: ");
read two integers	18 int number1 = input.nextInt();
			19 int number2 = input.nextInt();
			20
invoke method		21 int result = quotient(number1, number2);
			22 System.out.println(number1 + " / " + number2 + " is "
			23 + result);
			24 }
			25 }

Enter two integers: 5 3
5 / 3 is 1

Enter two integers: 5 0
Divisor cannot be zero

The method quotient (lines 4–11) returns the quotient of two integers. If number2 is 0, it cannot return a value, so the program is terminated in line 7. This is clearly a problem. You should not let the method terminate the program—the caller should decide whether to terminate the program.

How can a method notify its caller an exception has occurred? Java enables a method to throw an exception that can be caught and handled by the caller. Listing 12.3 can be rewritten, as shown in Listing 12.4.

Listing 12.4 QuotientWithException.java

[image: Source code for the program, Quotient With Exception dot java.]

Description
Note: in the following code, an arrow pointing from line 20 to line 24 is labeled, If an, Arithmetic Exception, occurs. Line 1:import, java dot u t i l dot Scanner, semicolon. Line 2: blank. Line 3:public, class, QuotientWithException, opening brace. Line 4, 1 indent, shaded:public, static, i n t, quotient, opening parenthesis, i n t, number 1, comma,i n t, number 2, closing parenthesis, opening brace. Line 5, 2 indents: if, opening parenthesis, number 2,double equals sign, 0, closing parenthesis. Line 6, 3 indents, shaded: throw, new, ArithmeticException, opening parenthesis, "Divisor cannot be zero", closing parenthesis, semicolon. Line 7: blank. Line 8, 2 indents:return,number 1,forward slash, number 2, semicolon. Line 9, 1 indent:closing brace. Line 10: blank. Line 11, 1 indent:public, static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 12, 2 indents:Scanner input, =, new, Scanner, opening parenthesis, System dot in, closing parenthesis, semicolon. Line 13: blank. Line 14, 2 indents:double forward slashes, Prompt the user to enter two integers. Line 15, 2 indents:System dot out dot print, opening parenthesis, "Enter two integers, colon, ", closing parenthesis, semicolon. Line 16, 2 indents:i n t, number 1, =, input dot next I n t, opening parenthesis, closing parenthesis, semicolon. Line 17, 2 indents:i n t, number 2, =, input dot next I n t, opening parenthesis, closing parenthesis, semicolon. Line 18: blank. Line 19, 2 indents, shaded: try, opening brace. Line 20, 3 indents, shaded: i n t, result, =, quotient, opening parenthesis, number 1, comma, number 2, closing parenthesis, semicolon. Line 21, 3 indents:System dot out dotprint l n, opening parenthesis, number 1, +, " forward slash, " +, number 2, +, " is ". Line 22, 4 indents: +, result, closing parenthesis, semicolon. Line 23, 2 indents:closing brace. Line 24, 2 indents, shaded: catch, opening parenthesis, ArithmeticException, ex, closing parenthesis, opening brace. Line 25, 3 indents:System dot out dotprint l n, opening parenthesis, "Exception, colon, an integer " +. Line 26, 4 indents: "cannot be divided by zero ", closing parenthesis, semicolon. Line 27, 2 indents:closing brace. Line 28: blank. Line 29, 2 indents:System dot out dotprint l n, opening parenthesis, "Execution continues but is truncated here, ", closing parenthesis, semicolon. Line 30, 1 indent:closing brace. Line 31: closing brace.

Enter two integers: 5 3
5 / 3 is 1
Execution continues ...

Enter two integers: 5 0
Exception: an integer cannot be divided by zero
Execution continues ...

If number2 is 0, the method throws an exception (line 6) by executing

throw new ArithmeticException("Divisor cannot be zero");

throw statement

The value thrown, in this case new ArithmeticException("Divisor cannot be zero"), is called an exception. The execution of a throw statement is called throwing an exception. The exception is an object created from an exception class. In this case, the exception class is java.lang.ArithmeticException. The constructor ArithmeticException(str) is invoked to construct an exception object, where str is a message that describes the exception.

exception

throw exception

When an exception is thrown, the normal execution flow is interrupted. As the name suggests, to “throw an exception” is to pass the exception from one place to another. The statement for invoking the method is contained in a try block. The try block (lines 19–23) contains the code that is executed in normal circumstances. The exception is caught by the catch block. The code in the catch block is executed to handle the exception. Afterward, the statement (line 29) after the catch block is executed.

handle exception

The throw statement is analogous to a method call, but instead of calling a method, it calls a catch block. In this sense, a catch block is like a method definition with a parameter that matches the type of the value being thrown. Unlike a method, however, after the catch block is executed, the program control does not return to the throw statement; instead, it executes the next statement after the catch block.

The identifier ex in the catch–block header

catch (ArithmeticException ex)

acts very much like a parameter in a method. Thus, this parameter is referred to as a catch–block parameter. The type (e.g., ArithmeticException) preceding ex specifies what kind of exception the catch block can catch. Once the exception is caught, you can access the thrown value from this parameter in the body of a catch block.

catch–block parameter

In summary, a template for a try-throw-catch block may look as follows:

try {
 Code to run;
 A statement or a method that may throw an exception;
 More code to run;
}
catch (type ex) {
 Code to process the exception;
}

An exception may be thrown directly by using a throw statement in a try block, or by ­invoking a method that may throw an exception.

The main method invokes quotient (line 20). If the quotient method executes normally, it returns a value to the caller. If the quotient method encounters an exception, it throws the exception back to its caller. The caller’s catch block handles the exception.

advantage

Now you can see the advantage of using exception handling: It enables a method to throw an exception to its caller, enabling the caller to handle the exception. Without this capability, the called method itself must handle the exception or terminate the program. Often the called method does not know what to do in case of error. This is typically the case for the library methods. The library method can detect the error, but only the caller knows what needs to be done when an error occurs. The key benefit of exception handling is separating the detection of an error (done in a called method) from the handling of an error (done in the calling method).

Many library methods throw exceptions. Listing 12.5 gives an example that handles an InputMismatchException when reading an input.

Listing 12.5 InputMismatchExceptionDemo.java

[image: Source code for the program, Input Mismatch Exception Demo dot java.]

Description
Note: in the following code, an arrow pointing from line 11 to line 19 is labeled, If an, Input MismatchException, occurs. Line 1:import, java dot u t i l dot asterisk, semicolon. Line 2: blank. Line 3:public, class, InputMismatchExceptionDemo, opening brace. Line 4, 1 indent:public, static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay rgs, closing parenthesis, opening brace. Line 5, 2 indents:Scanner input, =, new, Scanner, opening parenthesis, System dot in, closing parenthesis, semicolon. Line 6, 2 indents:boolean, continueInput, =, true, semicolon. Line 7: blank. Line 8, 2 indents: do, opening brace. Line 9, 3 indents: begin shading,try, end shading, opening brace. Line 10, 4 indents:System dot out dot print, opening parenthesis, "Enter an integer, colon, ", closing parenthesis, semicolon. Line 11, 4 indents, shaded:i n t, number, =,input dot next I n t,opening parenthesis, closing parenthesis, semicolon. Line 12: blank. Line 13, 4 indents:double forward slashes, Display the result. Line 14, 4 indents:System dot out dotprint l n, opening parenthesis. Line 15, 5 indents: "The number entered is " +, number, closing parenthesis, semicolon. Line 16: blank. Line 17, 4 indents: continueInput, =, false, semicolon. Line 18, 3 indents:closing brace. Line 19, 3 indents, shaded: catch, opening parenthesis, InputMismatchException, ex, closing parenthesis, opening brace. Line 20, 4 indents:System dot out dotprint l n, opening parenthesis, "Try again, period, opening parenthesis, " +. Line 21, 5 indents: "Incorrect input, colon, an integer is required, closing parenthesis, ", closing parenthesis, semicolon. Line 22, 4 indents:input dot next Line, opening parenthesis, closing parenthesis, semicolon,double forward slashes, Discard input dot. Line 23, 3 indents:closing brace. Line 24, 2 indents: closing brace, while, opening parenthesis, continueInput, closing parenthesis, semicolon. Line 25, 1 indent:closing brace. Line 26: closing brace.

Enter an integer: 3.5
Try again. (Incorrect input: an integer is required)
Enter an integer: 4
The number entered is 4

When executing input.nextInt() (line 11), an InputMismatchException occurs if the input entered is not an integer. Suppose 3.5 is entered. An ­InputMismatchException occurs and the control is transferred to the catch block. The statements in the catch block are now executed. The statement input.nextLine() in line 22 discards the current input line so the user can enter a new line of input. The variable continueInput controls the loop. Its initial value is true (line 6) and it is changed to false (line 17) when a valid input is received. Once a valid input is received, there is no need to continue the input.

	12.2.1 What is the advantage of using exception handling?

	12.2.2 Which of the following statements will throw an exception?

System.out.println(1 / 0);
System.out.println(1.0 / 0);

	12.2.3 Point out the problem in the following code. Does the code throw any exceptions?

long value = Long.MAX_VALUE + 1;
System.out.println(value);

	12.2.4 What does the JVM do when an exception occurs? How do you catch an exception?

	12.2.5 What is the output of the following code?

public class Test {
 public static void main(String[] args) {
 try {
 int value = 30;
 if (value < 40)
 throw new Exception("value is too small");
 }
 catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
 System.out.println("Continue after the catch block");
 }
}
What would be the output if the line
int value = 30;
were changed to
int value = 50;

	12.2.6 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 for (int i = 0; i < 2; i++) {
 System.out.print(i + " ");
 try {
 System.out.println(1 / 0);
 }
 catch (Exception ex) {
 }
 }
 }
}

(a)

public class Test {
 public static void main(String[] args) {
 try {
 for (int i = 0; i < 2; i++) {
 System.out.print(i + " ");
 System.out.println(1 / 0);
 }
 }
 catch (Exception ex) {
 }
 }
}

(b)

12.3 Exception Types

	Exceptions are objects, and objects are defined using classes. The root class for exceptions is java.lang.Throwable.

The preceding section used the classes ArithmeticException and InputMismatch-Exception. Are there any other types of exceptions you can use? Can you define your own exception classes? Yes. There are many predefined exception classes in the Java API. ­Figure 12.1 shows some of them, and in Section 12.9, you will learn how to define your own ­exception classes.

[image: A hierarchical diagram of classes.]
Figure 12.1

Exceptions thrown are instances of the classes shown in this diagram, or of subclasses of one of these classes.

Description

 Note

The class names Error, Exception, and RuntimeException are somewhat ­confusing. All three of these classes are exceptions and all of the errors occur at runtime.

The Throwable class is the root of exception classes. All Java exception classes inherit directly or indirectly from Throwable. You can create your own exception classes by ­extending Exception or a subclass of Exception.

The exception classes can be classified into three major types: system errors, exceptions, and runtime exceptions.

system error

	System errors are thrown by the JVM and are represented in the Error class. The Error class describes internal system errors, though such errors rarely occur. If one does, there is little you can do beyond notifying the user and trying to terminate the program gracefully. Examples of subclasses of Error are listed in Table 12.1.

Table 12.1 Examples of Subclasses of Error

	Class

	Reasons for Exception

	LinkageError

	A class has some dependency on another class, but the latter class has changed incompatibly after the compilation of the former class.

	VirtualMachineError

	The JVM is broken or has run out of the resources it needs in order to ­continue operating.

exception

	Exceptions are represented in the Exception class, which describes errors caused by your program and by external circumstances. These errors can be caught and handled by your program. Examples of subclasses of Exception are listed in Table 12.2.

Table 12.2 Examples of Subclasses of Exception

	Class

	Reasons for Exception

	ClassNotFoundException

	Attempt to use a class that does not exist. This exception would occur, for example, if you tried to run a nonexistent class using the java command or if your program were composed of, say, three class files, only two of which could be found.

	IOException

	Related to input/output operations, such as invalid input, reading past the end of a file, and opening a nonexistent file. Examples of subclasses of IOException are InterruptedIOException, EOFException (EOF is short for End of File), and FileNotFoundException.

	Runtime exceptions are represented in the RuntimeException class, which describes programming errors, such as bad casting, accessing an out-of-bounds array, and numeric errors. Runtime exceptions normally indicate programming errors. Examples of subclasses are listed in Table 12.3.

runtime exception

Table 12.3 Examples of Subclasses of RuntimeException

	Class

	Reasons for Exception

	ArithmeticException

	Dividing an integer by zero. Note floating-point arithmetic does not throw exceptions (see Appendix E, Special Floating-Point Values).

	NullPointerException

	Attempt to access an object through a null reference variable.

	IndexOutOfBoundsException

	Index to an array is out of range.

	IllegalArgumentException

	A method is passed an argument that is illegal or inappropriate.

RuntimeException, Error, and their subclasses are known as unchecked exceptions. All other exceptions are known as checked exceptions, meaning the compiler forces the programmer to check and deal with them in a try-catch block or declare it in the method header. Declaring an exception in the method header will be covered in Section 12.4.

unchecked exception

checked exception

In most cases, unchecked exceptions reflect programming logic errors that are unrecoverable. For example, a NullPointerException is thrown if you access an object through a reference variable before an object is assigned to it; an IndexOutOfBoundsException is thrown if you access an element in an array outside the bounds of the array. These are logic errors that should be corrected in the program. Unchecked exceptions can occur anywhere in a program. To avoid cumbersome overuse of try-catch blocks, Java does not mandate that you write code to catch or declare unchecked exceptions.

	12.3.1 Describe the Java Throwable class, its subclasses, and the types of exceptions.

	12.3.2 What RuntimeException will the following programs throw, if any?

public class Test {
 public static void main(String[] args) {
 System.out.println(1 / 0);
 }
}

(a)

public class Test {
 public static void main(String[] args) {
 int[] list = new int[5];
 System.out.println(list[5]);
 }
}

(b)

public class Test {
 public static void main(String[] args) {
 String s = "abc";
 System.out.println(s.charAt(3));
 }
}

(c)

public class Test {
 public static void main(String[] args) {
 Object o = new Object();
 String d = (String)o;
 }
}

(d)

public class Test {
 public static void main(String[] args) {
 Object o = null;
 System.out.println(o.toString());
 }
}

(e)

public class Test {
 public static void main(String[] args) {
 System.out.println(1.0 / 0);
 }
}

(f)

12.4 More on Exception Handling

	A handler for an exception is found by propagating the exception backward through a chain of method calls, starting from the current method.

The preceding sections gave you an overview of exception handling and introduced ­several predefined exception types. This section provides an in-depth discussion of exception handling.

Java’s exception-handling model is based on three operations: declaring an exception, throwing an exception, and catching an exception, as shown in Figure 12.2.

[image: Two code diagrams demonstrate how an exception is handled.]
Figure 12.2

Exception handling in Java consists of declaring exceptions, throwing exceptions, and catching and ­processing exceptions.

Description

12.4.1 Declaring Exceptions

In Java, the statement currently being executed belongs to a method. The Java interpreter invokes the main method to start executing a program. Every method must state the types of checked exceptions it might throw. This is known as declaring exceptions. Because system errors and runtime errors can happen to any code, Java does not require that you declare Error and RuntimeException (unchecked exceptions) explicitly in the method. However, all other exceptions thrown by the method must be explicitly declared in the method header so the caller of the method is informed of the exception.

declare exception

To declare an exception in a method, use the throws keyword in the method header, as in this example:

public void myMethod() throws IOException

The throws keyword indicates myMethod might throw an IOException. If the method might throw multiple exceptions, add a list of the exceptions, separated by commas, after throws:

public void myMethod()
 throws Exception1, Exception2, ..., ExceptionN

 Note

If a method does not declare exceptions in the superclass, you cannot override it to declare exceptions in the subclass.

12.4.2 Throwing Exceptions

throw exception

A program that detects an error can create an instance of an appropriate exception type and throw it. This is known as throwing an exception. Here is an example: Suppose the ­program detects that an argument passed to the method violates the method contract (e.g., the argument must be nonnegative, but a negative argument is passed); the program can create an instance of IllegalArgumentException and throw it, as follows:

IllegalArgumentException ex =
 new IllegalArgumentException("Wrong Argument");
throw ex;

Or, if you prefer, you can use the following:

throw new IllegalArgumentException("Wrong Argument");

 Note

IllegalArgumentException is an exception class in the Java API. In general, each exception class in the Java API has at least two constructors: a no-arg constructor and a constructor with a String argument that describes the exception. This ­argument is called the exception message, which can be obtained by invoking getMessage() from an exception object.

exception message

 Tip

The keyword to declare an exception is throws, and the keyword to throw an exception is throw.

throws vs. throw

12.4.3 Catching Exceptions

You now know how to declare an exception and how to throw an exception. When an exception is thrown, it can be caught and handled in a try-catch block, as follows:

catch exception

try {
 statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVarN) {
 handler for exceptionN;
}

If no exceptions arise during the execution of the try block, the catch blocks are skipped.

If one of the statements inside the try block throws an exception, Java skips the remaining statements in the try block and starts the process of finding the code to handle the exception. The code that handles the exception is called the exception handler; it is found by propagating the exception backward through a chain of method calls, starting from the current method. Each catch block is examined in turn, from first to last, to see whether the type of the exception object is an instance of the exception class in the catch block. If so, the exception object is assigned to the variable declared and the code in the catch block is executed. If no handler is found, Java exits this method, passes the exception to the method’s caller, and continues the same process to find a handler. If no handler is found in the chain of methods being invoked, the program terminates and prints an error message on the console. The process of finding a handler is called catching an exception.

exception handler

exception propagation

Suppose the main method invokes method1, method1 invokes method2, method2 invokes method3, and method3 throws an exception, as shown in Figure 12.3. Consider the following scenario:

[image: The main method invokes, method 1, which invokes, method 2, which invokes, method 3, at which point an exception is thrown. Each method is added to the stack from the bottom upward, so method 3 is at the top, making it last in and first out.]
Figure 12.3
 If an exception is not caught in the current method, it is passed to its caller. The process is repeated until the exception is caught or passed to the main method.

	If the exception type is Exception3, it is caught by the catch block for handling exception ex3 in method2. statement5 is skipped and statement6 is executed.

	If the exception type is Exception2, method2 is aborted, the control is returned to method1, and the exception is caught by the catch block for handling exception ex2 in method1. statement3 is skipped and statement4 is executed.

	If the exception type is Exception1, method1 is aborted, the control is returned to the main method, and the exception is caught by the catch block for handling ­exception ex1 in the main method. statement1 is skipped and statement2 is executed.

	If the exception type is not caught in method2, method1, or main, the program terminates and statement1 and statement2 are not executed.

 Note

Various exception classes can be derived from a common superclass. If a catch block catches exception objects of a superclass, it can catch all the exception objects of the subclasses of that superclass.

catch block

 Note

The order in which exceptions are specified in catch blocks is important. A compile error will result if a catch block for a superclass type appears before a catch block for a subclass type. For example, the ordering in (a) below is erroneous, because ­RuntimeException is a subclass of Exception. The correct ordering should be as shown in (b).

order of exception handlers

try {
 ...
}
catch (Exception ex) {
 ...
}
catch (RuntimeException ex) {
 ...
}

(a) Wrong order

try {
 ...
}
catch (RuntimeException ex) {
 ...
}
catch (Exception ex) {
 ...
}

(b) Correct order

 Note

Java forces you to deal with checked exceptions. If a method declares a checked exception (i.e., an exception other than Error or RuntimeException), you must invoke it in a try-catch block or declare to throw the exception in the calling method. For example, suppose method p1 invokes method p2 and p2 may throw a checked exception (e.g., IOException); you have to write the code as shown in (a) or (b) below.

catch or declare checked exceptions

void p1() {
 try {
 p2();
 }
 catch(IOException ex) {
 ...
 }
}

(a) Catch exception

void p1() throws IOException {
 p2();
}

(b) Throw exception

 Note

You can use the new JDK 7 multicatch feature to simplify coding for the exceptions with the same handling code. The syntax is:

JDK 7 multicatch

catch (Exception1 | Exception2 | ... | Exceptionk ex) {
 // Same code for handling these exceptions
}

Each exception type is separated from the next with a vertical bar (|). If one of the ­exceptions is caught, the handling code is executed.

12.4.4 Getting Information from Exceptions

methods in Throwable

An exception object contains valuable information about the exception. You may use the following instance methods in the java.lang.Throwable class to get information regarding the exception, as shown in Figure 12.4. The printStackTrace() method prints stack trace information on the console. The stack trace lists all the methods in the call stack, which provides valuable information for debugging runtime errors. The getStackTrace() method provides programmatic access to the stack trace information printed by printStackTrace().

[image: An annotated U M L diagram for the class, java dot l ay n g dot Throwable.]
Figure 12.4

 Throwable is the root class for all exception objects.

Description
Listing 12.6 gives an example that uses the methods in Throwable to display exception information. Line 4 invokes the sum method to return the sum of all the elements in the array. There is an error in line 23 that causes the ArrayIndexOutOfBoundsException, a subclass of IndexOutOfBoundsException. This exception is caught in the try-catch block. Lines 7, 8, and 9 display the stack trace, exception message, and exception object and m­essage using the printStackTrace(), getMessage(), and toString() methods, as shown in F­igure 12.5. Line 12 brings stack trace elements into an array. Each element represents a method call. You can obtain the method (line 14), class name (line 15), and exception line number (line 16) for each element.

[image: A command prompt shows output for the command, java, Test Exception.]
Figure 12.5

 You can use the printStackTrace(), getMessage(), toString(), and getStackTrace() methods to obtain information from exception objects.

Description

Listing 12.6 TestException.java

			 1 public class TestException {
			 2 public static void main(String[] args) {
			 3 try {
invoke sum		 4 System.out.println(sum(new int[] {1, 2, 3, 4, 5}));
			 5 }
			 6 catch (Exception ex) {
printStackTrace()	 7 ex.printStackTrace();
getMessage()		 8 System.out.println("\n" + ex.getMessage());
toString()		 9 System.out.println("\n" + ex.toString());
			10
			11 System.out.println("\nTrace Info Obtained from getStackTrace");
getStackTrace()		12 StackTraceElement[] traceElements = ex.getStackTrace();
			13 for (int i = 0; i < traceElements.length; i++) {
			14 System.out.print("method " + traceElements[i].getMethodName());
			15 System.out.print("(" + traceElements[i].getClassName() + ":");
			16 System.out.println(traceElements[i].getLineNumber() + ")");
			17 }
			18 }
			19 }
			20
			21 private static int sum(int[] list) {
			22 int result = 0;
cause an exception	23 for (int i = 0; i <= list.length; i++)
			24 result += list[i];
			25 return result;
			26 }
			27 }

12.4.5 Example: Declaring, Throwing, and Catching Exceptions

This example demonstrates declaring, throwing, and catching exceptions by modifying the setRadius method in the Circle class in Listing 9.8, Circle.java (CircleWithPrivate DataField). The new setRadius method throws an exception if the radius is negative.

Listing 12.7 defines a new circle class named CircleWithException, which is the same as Circle in Listing 9.8 except that the setRadius(double ­newRadius) method throws an IllegalArgumentException if the argument ­newRadius is negative.

Listing 12.7 CircleWithException.java

			 1 public class CircleWithException {
			 2 /** The radius of the circle */
			 3 private double radius;
			 4
			 5 /** The number of the objects created */
			 6 private static int numberOfObjects = 0;
			 7
			 8 /** Construct a circle with radius 1 */
			 9 public CircleWithException() {
		 10 this(1.0);
		 11 }
		 12
		 13 /** Construct a circle with a specified radius */
		 14 public CircleWithException(double newRadius) {
		 15 setRadius(newRadius);
		 16 numberOfObjects++;
		 17 }
		 18
		 19 /** Return radius */
		 20 public double getRadius() {
		 21 return radius;
		 22 }
		 23
		 24 /** Set a new radius */
		 25 public void setRadius(double newRadius)
declare exception	26 throws IllegalArgumentException {
		 27 if (newRadius >= 0)
		 28 radius = newRadius;
		 29 else
throw exception		30 throw new IllegalArgumentException(
		 31 "Radius cannot be negative");
		 32 }
		 33
		 34 /** Return numberOfObjects */
		 35 public static int getNumberOfObjects() {
		 36 return numberOfObjects;
		 37 }
		 38
		 39 /** Return the area of this circle */
		 40 public double findArea() {
		 41 return radius * radius * 3.14159;
		 42 }
		 43 }

A test program that uses the new Circle class is given in Listing 12.8.

Listing 12.8 TestCircleWithException.java

	 1 public class TestCircleWithException {
	 2 public static void main(String[] args) {
try	 3 try {
	 4 CircleWithException c1 = new CircleWithException(5);
	 5 CircleWithException c2 = new CircleWithException(−5);
	 6 CircleWithException c3 = new CircleWithException(0);
	 7 }
catch	 8 catch (IllegalArgumentException ex) {
	 9 System.out.println(ex);
	10 }
	11
	12 System.out.println("Number of objects created: " +
	13 CircleWithException.getNumberOfObjects());
	14 }
	15 }

java.lang.IllegalArgumentException: Radius cannot be negative
Number of objects created: 1

The original Circle class remains intact except that the class name is changed to ­CircleWithException, a new constructor CircleWithException(newRadius) is added, and the setRadius method now declares an exception and throws it if the radius is negative.

The setRadius method declares to throw IllegalArgumentException in the method header (lines 25–32 in Listing 12.7 CircleWithException.java). The CircleWithException class would still compile if the throws IllegalArgumentException clause (line 26) were removed from the method declaration, since it is a subclass of RuntimeException and every method can throw RuntimeException (an unchecked exception) regardless of whether it is declared in the method header.

The test program creates three CircleWithException objects—c1, c2, and c3—to test how to handle exceptions. Invoking new CircleWithException(−5) (line 5 in Listing 12.8) causes the setRadius method to be invoked, which throws an ­IllegalArgumentException, because the radius is negative. In the catch block, the type of the object ex is ­IllegalArgumentException, which matches the exception object thrown by the ­setRadius method, so this exception is caught by the catch block.

The exception handler prints a short message, ex.toString() (line 9 in Listing 12.8), about the exception, using System.out.println(ex).

Note that the execution continues in the event of the exception. If the handlers had not caught the exception, the program would have abruptly terminated.

The test program would still compile if the try statement were not used, because the method throws an instance of IllegalArgumentException, a subclass of Runtime­Exception (an unchecked exception).

	12.4.1 What is the purpose of declaring exceptions? How do you declare an exception and where? Can you declare multiple exceptions in a method header?

	12.4.2 What is a checked exception and what is an unchecked exception?

	12.4.3 How do you throw an exception? Can you throw multiple exceptions in one throw statement?

	12.4.4 What is the keyword throw used for? What is the keyword throws used for?

	12.4.5 Suppose statement2 causes an exception in the following try-catch block:

try {
 statement1;
 statement2;
 statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
}
statement4;

Answer the following questions:

	Will statement3 be executed?

	If the exception is not caught, will statement4 be executed?

	If the exception is caught in the catch block, will statement4 be executed?

	12.4.6 What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 int[] list = new int[10];
 System.out.println("list[10] is " + list[10]);
 }
 catch (ArithmeticException ex) {
 System.out.println("ArithmeticException");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException");
 }
 catch (Exception ex) {
 System.out.println("Exception");
 }
 }
}

	12.4.7 What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 method();
 System.out.println("After the method call");
 }
 catch (ArithmeticException ex) {
 System.out.println("ArithmeticException");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException");
 }
 catch (Exception e) {
 System.out.println("Exception");
 }
 }
 static void method() throws Exception {
 System.out.println(1 / 0);
 }
 }

		 12.4.8	What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 method();
 System.out.println("After the method call");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in main");
 }
 catch (Exception ex) {
 System.out.println("Exception in main");
 }
 }
 static void method() throws Exception {
 try {
 String s ="abc";
 System.out.println(s.charAt(3));
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in method()");
 }
 catch (Exception ex) {
 System.out.println("Exception in method()");
 }
 }
}

		 12.4.9	What does the method getMessage() do?

	12.4.10 What does the method printStackTrace() do?

	12.4.11 Does the presence of a try-catch block impose overhead when no exception occurs?

	12.4.12 Correct a compile error in the following code:

public void m(int value) {
 if (value < 40)
 throw new Exception("value is too small");
}

12.5 The finally Clause

	The finally clause is always executed regardless of whether an exception occurred or not.

Occasionally, you may want some code to be executed regardless of whether an exception occurs or is caught. Java has a finally clause that can be used to accomplish this objective. The syntax for the finally clause might look like this:

try {
 statements;
}
catch (TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

The code in the finally block is executed under all circumstances, regardless of whether an exception occurs in the try block or is caught. Consider three possible cases:

	If no exception arises in the try block, finalStatements is executed and the next statement after the try statement is executed.

	If a statement causes an exception in the try block that is caught in a catch block, the rest of the statements in the try block are skipped, the catch block is executed, and the finally clause is executed. The next statement after the try statement is executed.

	If one of the statements causes an exception that is not caught in any catch block, the other statements in the try block are skipped, the finally clause is executed, and the exception is passed to the caller of this method.

The finally block executes even if there is a return statement prior to reaching the finally block.

 Note

The catch block may be omitted when the finally clause is used.

omit catch block

	12.5.1 Suppose statement2 may cause an exception in the following statement:

try {
 statement1;
 statement2;
 statement3;
}
catch (Exception1 ex1) {
}
finally {
 statement4;
}
statement5;

Answer the following questions:

	If no exception occurs, will statement4 or statement5 be executed?

	If the exception is of type Exception1, will statement4 or statement5 be executed?

	If the exception is not of type Exception1, will statement4 or statement5 be executed?

12.6 When to Use Exceptions

	A method should throw an exception if the error needs to be handled by its caller.

The try block contains the code that is executed in normal circumstances. The catch block contains the code that is executed in exceptional circumstances. Exception handling separates error-handling code from normal programming tasks, thus making programs easier to read and to modify. Be aware, however, that exception handling usually requires more time and resources, because it requires instantiating a new exception object, rolling back the call stack, and propagating the exception through the chain of method calls to search for the handler.

An exception occurs in a method. If you want the exception to be processed by its caller, you should create an exception object and throw it. If you can handle the exception in the method where it occurs, there is no need to throw or use exceptions.

In general, common exceptions that may occur in multiple classes in a project are candidates for exception classes. Simple errors that may occur in individual methods are best handled without throwing exceptions. This can be done by using if statements to check for errors.

When should you use a try-catch block in the code? Use it when you have to deal with unexpected error conditions. Do not use a try-catch block to deal with simple, expected situations. For example, the following code:

try {
 System.out.println(refVar.toString());
}
catch (NullPointerException ex) {
 System.out.println("refVar is null");
}

is better replaced by

if (refVar != null)
 System.out.println(refVar.toString());
else
 System.out.println("refVar is null");

Which situations are exceptional and which are expected is sometimes difficult to decide. The point is not to abuse exception handling as a way to deal with a simple logic test.

	12.6.1 The following method checks whether a string is a numeric string:

public static boolean isNumeric(String token) {
 try {
 Double.parseDouble(token);
 return true;
 }
 catch (java.lang.NumberFormatException ex) {
 return false;
 }
}

Is it correct? Rewrite it without using exceptions.

12.7 Rethrowing Exceptions

	Java allows an exception handler to rethrow the exception if the handler cannot ­process the exception, or simply wants to let its caller be notified of the exception.

The syntax for rethrowing an exception may look like this:

try {
 statements;
}
catch (TheException ex) {
 perform operations before exits;
 throw ex;
}

The statement throw ex rethrows the exception to the caller so other handlers in the caller get a chance to process the exception ex.

	12.7.1 Suppose that statement2 may cause an exception in the following code:

try {
 statement1;
 statement2;
 statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
 throw ex2;
}
finally {
 statement4;
}
statement5;

Answer the following questions:

	If no exception occurs, will statement4 or statement5 be executed?

	If the exception is of type Exception1, will statement4 or statement5 be executed?

	If the exception is of type Exception2, will statement4 or statement5 be executed?

	If the exception is not Exception1 nor Exception2, will statement4 or statement5 be executed?

12.8 Chained Exceptions

	Throwing an exception along with another exception forms a chained exception.

In the preceding section, the catch block rethrows the original exception. Sometimes, you may need to throw a new exception (with additional information) along with the original exception. This is called chained exceptions. Listing 12.9 illustrates how to create and throw chained exceptions.

chained exception

Listing 12.9 ChainedExceptionDemo.java

			 1 public class ChainedExceptionDemo {
			 2 public static void main(String[] args) {
			 3 try {
			 4 method1();
			 5 }
			 6 catch (Exception ex) {
stack trace		 7 ex.printStackTrace();
			 8 }
			 9 }
			10
			11 public static void method1() throws Exception {
			12 try {
			13 method2();
			14 }
			15 catch (Exception ex) {
chained exception	16 throw new Exception("New info from method1", ex);
			17 }
			18 }
			19
			20 public static void method2() throws Exception {
throw exception		21 throw new Exception("New info from method2");
			22 }
			23 }

java.lang.Exception: New info from method1
 at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:16)
 at ChainedExceptionDemo.main(ChainedExceptionDemo.java:4)
Caused by: java.lang.Exception: New info from method2
 at ChainedExceptionDemo.method2(ChainedExceptionDemo.java:21)
 at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:13)
 ... 1 more

The main method invokes method1 (line 4), method1 invokes method2 (line 13), and method2 throws an exception (line 21). This exception is caught in the catch block in method1 and is wrapped in a new exception in line 16. The new exception is thrown and caught in the catch block in the main method in line 6. The sample output shows the output from the printStackTrace() method in line 7. The new exception thrown from method1 is displayed first, followed by the original exception thrown from method2.

	12.8.1 What would be the output if line 16 of Listing 12.9 is replaced by the following line?

throw new Exception("New info from method1");

12.9 Defining Custom Exception Classes

	You can define a custom exception class by extending the java.lang.Exception class.

Java provides quite a few exception classes. Use them whenever possible instead of defining your own exception classes. However, if you run into a problem that cannot be adequately described by the predefined exception classes, you can create your own exception class, derived from Exception or from a subclass of Exception, such as IOException.

Create custom exception classes

In Listing 12.7, CircleWithException.java, the setRadius method throws an exception if the radius is negative. Suppose you wish to pass the radius to the handler. In that case, you can define a custom exception class, as shown in Listing 12.10.

Listing 12.10 InvalidRadiusException.java

extends Exception	1 public class InvalidRadiusException extends Exception {
			2 private double radius;
			3
			4 /** Construct an exception */
			5 public InvalidRadiusException(double radius) {
			6 super("Invalid radius " + radius);
			7 this.radius = radius;
			8 }
			9
		 10 /** Return the radius */
		 11 public double getRadius() {
		 12 return radius;
		 13 }
		 14 }

This custom exception class extends java.lang.Exception (line 1). The Exception class extends java.lang.Throwable. All the methods (e.g., getMessage(), toString(), and printStackTrace()) in Exception are inherited from Throwable. The Exception class contains four constructors. Among them, the following constructors are often used:

[image: An annotated U M L Diagram for the class, java dot l ay n g dot Exception.]

Description

Line 6 invokes the superclass’s constructor with a message. This message will be set in the exception object and can be obtained by invoking getMessage() on the object.

 Tip

Most exception classes in the Java API contain two constructors: a no-arg constructor and a constructor with a message parameter.

To create an InvalidRadiusException, you have to pass a radius. Therefore, the ­setRadius method in Listing 12.7 can be modified as shown in Listing 12.11.

Listing 12.11 TestCircleWithCustomException.java

			 1 public class TestCircleWithCustomException {
			 2 public static void main(String[] args) {
			 3 try {
			 4 new CircleWithCustomException(5);
			 5 new CircleWithCustomException(−5);
			 6 new CircleWithCustomException(0);
			 7 }
			 8 catch (InvalidRadiusException ex) {
			 9 System.out.println(ex);
			10 }
			11
			12 System.out.println("Number of objects created: " +
			13 CircleWithCustomException.getNumberOfObjects());
			14 }
			15 }
			16
			17 class CircleWithCustomException {
			18 /** The radius of the circle */
			19 private double radius;
			20
			21 /** The number of objects created */
			22 private static int numberOfObjects = 0;
			23
			24 /** Construct a circle with radius 1 */
declare exception	25 public CircleWithCustomException() throws InvalidRadiusException {
			26 this(1.0);
			27 }
			28
			29 /** Construct a circle with a specified radius */
			30 public CircleWithCustomException(double newRadius)
			31 throws InvalidRadiusException {
			32 setRadius(newRadius);
			33 numberOfObjects++;
			34 }
			35
			36 /** Return radius */
			37 public double getRadius() {
			38 return radius;
			39 }
			40
			41 /** Set a new radius */
			42 public void setRadius(double newRadius)
			43 throws InvalidRadiusException {
			44 if (newRadius >= 0)
			45 radius = newRadius;
			46 else
throw exception		47 throw new InvalidRadiusException(newRadius);
			48 }
			49
			50 /** Return numberOfObjects */
			51 public static int getNumberOfObjects() {
			52 return numberOfObjects;
			53 }
			54
			55 /** Return the area of this circle */
			56 public double findArea() {
			57 return radius * radius * 3.14159;
			58 }
			59 }

InvalidRadiusException: Invalid radius −5.0
Number of objects created: 1

The setRadius method in CircleWithCustomException throws an InvalidRadius-Exception when radius is negative (line 47). Since InvalidRadiusException is a checked exception, the setRadius method must declare it in the method header (line 43). Since the constructors for CircleWithCustomException invoke the setRadius method to set a new radius, and it may throw an InvalidRadiusException, the constructors are declared to throw InvalidRadiusException (lines 25 and 31).

Invoking new CircleWithCustomException(−5) (line 5) throws an InvalidRadius-Exception, which is caught by the handler. The handler displays the radius in the exception object ex.

 Tip

Can you define a custom exception class by extending RuntimeException? Yes, but it is not a good way to go because it makes your custom exception unchecked. It is better to make a custom exception checked, so the compiler can force these exceptions to be caught in your program.

checked custom exception

	12.9.1 How do you define a custom exception class?

	12.9.2 Suppose that the setRadius method throws the InValidRadiusException defined in Listing 12.10 . What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 method();
 System.out.println("After the method call");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in main");
 }
 catch (Exception ex) {
 System.out.println("Exception in main");
 }
 }
 static void method() throws Exception {
 try {
 Circle c1 = new Circle(1);
 c1.setRadius(−1);
 System.out.println(c1.getRadius());
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in method()");
 }
 catch (Exception ex) {
 System.out.println("Exception in method()");
 throw ex;
 }
 }
}

12.10 The File Class

	The File class contains the methods for obtaining the properties of a file/directory, and for renaming and deleting a file/directory.

Having learned exception handling, you are ready to step into file processing. Data stored in the program are temporary; they are lost when the program terminates. To permanently store the data created in a program, you need to save them in a file on a disk or other permanent storage device. The file can then be transported and read later by other programs. Since data are stored in files, this section introduces how to use the File class to obtain file/directory properties, to delete and rename files/directories, and to create directories. The next section introduces how to read/write data from/to text files.

why file?

Every file is placed in a directory in the file system. An absolute file name (or full name) contains a file name with its complete path and drive letter. For example, c:\book\Welcome.java is the absolute file name for the file Welcome.java on the Windows operating system. Here, c:\book is referred to as the directory path for the file. Absolute file names are machine dependent. On the UNIX platform, the absolute file name may be /home/liang/book/­Welcome.java, where /home/liang/book is the directory path for the file Welcome.java.

absolute file name

directory path

A relative file name is in relation to the current working directory. The complete ­directory path for a relative file name is omitted. For example, Welcome.java is a relative file name. If the current working directory is c:\book, the absolute file name would be c:\book\Welcome.java.

relative file name

The File class is intended to provide an abstraction that deals with most of the machine-dependent complexities of files and path names in a machine-independent fashion. The File class contains the methods for obtaining file and directory properties, and for renaming and deleting files and directories, as shown in Figure 12.6. However, the File class does not contain the methods for reading and writing file contents.

The file name is a string. The File class is a wrapper class for the file name and its directory path. For example, new File("c:\\book") creates a File object for the directory c:\book and new File("c:\\book\\test.dat") creates a File object for the file c:\book\test.dat, both on Windows. You can use the File class’s isDirectory() method to check whether the object represents a directory, and the isFile() method to check whether the object represents a file.

[image: An annotated U M L diagram for the class, java dot i o do File.]
Figure 12.6

 The File class can be used to obtain file and directory properties, to delete and rename files and directories, and to create directories.

Description

 Caution

The directory separator for Windows is a backslash (\). The backslash is a special ­character in Java and should be written as \\ in a string literal (see Table 4.5).

\ in file names

 Note

Constructing a File instance does not create a file on the machine. You can create a File instance for any file name regardless of whether it exists or not. You can invoke the exists() method on a File instance to check whether the file exists.

relative file name

Java directory separator (/)

Do not use absolute file names in your program. If you use a file name such as c:\\book\\Welcome.java, it will work on Windows but not on other platforms. You should use a file name relative to the current directory. For example, you may create a File object using new File("Welcome.java") for the file Welcome.java in the current directory. You may create a File object using new File("image/us.gif") for the file us.gif under the image ­directory in the current directory. The forward slash (/) is the Java directory separator, which is the same as on UNIX. The statement new File("image/us.gif") works on Windows, UNIX, and any other platform.

Listing 12.12 demonstrates how to create a File object and use the methods in the File class to obtain its properties. The program creates a File object for the file us.gif. This file is stored under the image directory in the current directory.

Listing 12.12 TestFileClass.java

 1 public class TestFileClass {
 2 public static void main(String[] args) {
create a File 3 java.io.File file = new java.io.File("image/us.gif");
exists() 4 System.out.println("Does it exist? " + file.exists());
length() 5 System.out.println("The file has " + file.length() + " bytes");
canRead() 6 System.out.println("Can it be read? " + file.canRead());
canWrite() 7 System.out.println("Can it be written? " + file.canWrite());
isDirectory() 8 System.out.println("Is it a directory? " + file.isDirectory());
isFile() 9 System.out.println("Is it a file? " + file.isFile());
isAbsolute() 10 System.out.println("Is it absolute? " + file.isAbsolute());
isHidden() 11 System.out.println("Is it hidden? " + file.isHidden());
 12 System.out.println("Absolute path is " +
getAbsolutePath() 13 file.getAbsolutePath());
 14 System.out.println("Last modified on " +
lastModified() 15 new java.util.Date(file.lastModified()));
 16 }
 17 }

The lastModified() method returns the date and time when the file was last modified, measured in milliseconds since the beginning of UNIX time (00:00:00 GMT, January 1, 1970). The Date class is used to display it in a readable format in lines 14 and 15.

Figure 12.7a shows a sample run of the program on Windows and Figure 12.7b, a sample run on UNIX. As shown in the figures, the path-naming conventions on Windows are different from those on UNIX.

[image: Two figures show sample runs in different programs.]
Figure 12.7

 The program creates a File object and displays file properties.

Description

	12.10.1 What is wrong about creating a File object using the following statement?

new File("c:\book\test.dat");

	12.10.2 How do you check whether a file already exists? How do you delete a file? How do you rename a file? Can you find the file size (the number of bytes) using the File class? How do you create a directory?

	12.10.3 Can you use the File class for I/O? Does creating a File object create a file on the disk?

12.11 File Input and Output

	Use the Scanner class for reading text data from a file, and the PrintWriter class for writing text data to a file.

A File object encapsulates the properties of a file or a path, but it does not contain the methods for writing/reading data to/from a file (referred to as data input and output, or I/O for short). In order to perform I/O, you need to create objects using appropriate Java I/O classes. The objects contain the methods for reading/writing data from/to a file. There are two types of files: text and binary. Text files are essentially characters on disk. This section introduces how to read/write strings and numeric values from/to a text file using the Scanner and PrintWriter classes. Binary files will be introduced in Chapter 17.

Write and read data

12.11.1 Writing Data Using PrintWriter

The java.io.PrintWriter class can be used to create a file and write data to a text file. First, you have to create a PrintWriter object for a text file as follows:

PrintWriter output = new PrintWriter(filename);

Then, you can invoke the print, println, and printf methods on the PrintWriter object to write data to a file. Figure 12.8 summarizes frequently used methods in PrintWriter.

[image: An annotated U M L diagram for the class, java dot i o dot Print Writer.]
Figure 12.8 

The PrintWriter class contains the methods for writing data to a text file.

Description

Listing 12.13 gives an example that creates an instance of PrintWriter and writes two lines to the file scores.txt. Each line consists of a first name (a string), a middle-name initial (a character), a last name (a string), and a score (an integer).

Listing 12.13 WriteData.java

throws an exception

create File object

file exist?

Lines 4–7 check whether the file scores.txt exists. If so, exit the program (line 6).

create PrintWriter

print data

close file

Invoking the constructor of PrintWriter will create a new file if the file does not exist. If the file already exists, the current content in the file will be discarded without verifying with the user.

create a file

Invoking the constructor of PrintWriter may throw an I/O exception. Java forces you to write the code to deal with this type of exception. For simplicity, we declare throws ­IOException in the main method header (line 2).

throws IOException

You have used the System.out.print, System.out.println, and System.out.printf methods to write text to the console output. System.out is a standard Java object for the console. You can create PrintWriter objects for writing text to any file using print, println, and printf (lines 13–16).

print method

The close() method must be used to close the file (line 19). If this method is not invoked, the data may not be saved properly in the file.

close file

12.11.2 Closing Resources Automatically Using try-with-resources

Programmers often forget to close the file. JDK 7 provides the followings new try-with-resources syntax that automatically closes the files.

try (declare and create resources) {
 Use the resource to process the file;
}

Using the try-with-resources syntax, we rewrite the code in Listing 12.13 as shown in ­Listing 12.14.

Listing 12.14 WriteDataWithAutoClose.java

 1 public class WriteDataWithAutoClose {
 2 public static void main(String[] args) throws Exception {
 3 java.io.File file = new java.io.File("scores.txt");
 4 if (file.exists()) {
 5 System.out.println("File already exists");
 6 System.exit(0);
 7 }
 8
			 9 try (
 10 // Create a file
declare/create resource 11 java.io.PrintWriter output = new java.io.PrintWriter(file);
 12) {
 13 // Write formatted output to the file
use the resource 14 output.print("John T Smith ");
 15 output.println(90);
 16 output.print("Eric K Jones ");
 17 output.println(85);
 18 }
 19 }
 20 }

A resource is declared and created followed by the keyword try. Note the resources are enclosed in the parentheses (lines 9–12). The resources must be a subtype of ­AutoCloseable such as a PrinterWriter that has the close() method. A resource must be declared and created in the same statement, and multiple resources can be declared and created inside the parentheses. The statements in the block (lines 12–18) immediately following the resource declaration use the resource. After the block is finished, the resource’s close() method is automatically invoked to close the resource. Using try-with-resources can not only avoid errors, but also make the code simpler. Note the catch clause may be omitted in a try-with-resources statement.

12.11.3 Reading Data Using Scanner

The java.util.Scanner class was used to read strings and primitive values from the ­console in Section 2.3, Reading Input from the Console. A Scanner breaks its input into tokens delimited by whitespace characters. To read from the keyboard, you create a Scanner for System.in, as follows:

Scanner input = new Scanner(System.in);

To read from a file, create a Scanner for a file, as follows:

Scanner input = new Scanner(new File(filename));

Figure 12.9 summarizes frequently used methods in Scanner.

[image: An annotated U M L diagram for the class, java dot u t i l dot Scanner.]
Figure 12.9

The Scanner class contains the methods for scanning data.

Description

Listing 12.15 gives an example that creates an instance of Scanner and reads data from the file scores.txt.

create a File

create a Scanner

Listing 12.15 ReadData.java

has next?

read items

close file

Note new Scanner(String) creates a Scanner for a given string. To create a Scanner to read data from a file, you have to use the java.io.File class to create an instance of the File using the constructor new File(filename) (line 6) and use new Scanner(File) to create a Scanner for the file (line 9).

File class

Invoking the constructor new Scanner(File) may throw an I/O exception, so the main method declares throws Exception in line 4.

throws Exception

Each iteration in the while loop reads the first name, middle initial, last name, and score from the text file (lines 12–19). The file is closed in line 22.

It is not necessary to close the input file (line 22), but it is a good practice to do so to release the resources occupied by the file. You can rewrite this program using the try-with-resources syntax. See liveexample.pearsoncmg.com/html/ReadDataWithAutoClose.html.

close file

12.11.4 How Does Scanner Work?

Section 4.5.5 introduced token-based and line-based input. The token-based input methods nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(), nextDouble(), and next() read input separated by delimiters. By default, the delimiters are whitespace characters. You can use the useDelimiter(String regex) method to set a new pattern for delimiters.

change delimiter

How does an input method work? A token-based input first skips any delimiters (whitespace characters by default) then reads a token ending at a delimiter. The token is then automatically converted into a value of the byte, short, int, long, float, or double type for ­nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(), and ­nextDouble(), respectively. For the next() method, no conversion is performed. If the token does not match the expected type, a runtime exception java.util.InputMismatchException will be thrown.

InputMismatchException

next() vs. nextLine()

Both methods next() and nextLine() read a string. The next() method reads a string separated by delimiters and nextLine() reads a line ending with a line separator.

 Note

The line-separator string is defined by the system. It is \r\n on Windows and \n on UNIX. To get the line separator on a particular platform, use

line separator

String lineSeparator = System.getProperty("line.separator");

If you enter input from a keyboard, a line ends with the Enter key, which corresponds to the \n character.

The token-based input method does not read the delimiter after the token. If the nextLine() method is invoked after a token-based input method, this method reads characters that start from this delimiter and end with the line separator. The line separator is read, but it is not part of the string returned by nextLine().

behavior of nextLine()

Suppose a text file named test.txt contains a line

input from file

34 567

After the following code is executed,

Scanner input = new Scanner(new File("test.txt"));
int intValue = input.nextInt();
String line = input.nextLine();

intValue contains 34 and line contains the characters ' ', 5, 6, and 7.

What happens if the input is entered from the keyboard? Suppose you enter 34, press the Enter key, then enter 567 and press the Enter key for the following code:

input from keyboard

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
String line = input.nextLine();

You will get 34 in intValue and an empty string in line. Why? Here is the reason. The token-based input method nextInt() reads in 34 and stops at the delimiter, which in this case is a line separator (the Enter key). The nextLine() method ends after reading the line separator and returns the string read before the line separator. Since there are no characters before the line separator, line is empty. For this reason, you should not use a line-based input after a token-based input.

scan a string

You can read data from a file or from the keyboard using the Scanner class. You can also scan data from a string using the Scanner class. For example, the following code:

Scanner input = new Scanner("13 14");
int sum = input.nextInt() + input.nextInt();
System.out.println("Sum is " + sum);

displays

Sum is 27

12.11.5 Case Study: Replacing Text

Suppose you are to write a program named ReplaceText that replaces all occurrences of a string in a text file with a new string. The file name and strings are passed as command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in the file FormatString.java and saves the new file in t.txt.

Listing 12.16 gives the program. The program checks the number of arguments passed to the main method (lines 7–11), checks whether the source and target files exist (lines 14–25), creates a Scanner for the source file (line 29), creates a PrintWriter for the target file (line 30), and repeatedly reads a line from the source file (line 33), replaces the text (line 34), and writes a new line to the target file (line 35).

Listing 12.16 ReplaceText.java

 1 import java.io.*;
 2 import java.util.*;
 3
 4 public class ReplaceText {
 5 public static void main(String[] args) throws Exception {
 6 // Check command line parameter usage
check command usage 7 if (args.length != 4) {
 8 System.out.println(
 9 "Usage: java ReplaceText sourceFile targetFile oldStr newStr");
 10 System.exit(1);
 11 }
 12
 13 // Check if source file exists
 14 File sourceFile = new File(args[0]);
source file exists? 15 if (!sourceFile.exists()) {
 16 System.out.println("Source file " + args[0] + " does not exist");
 17 System.exit(2);
 18 }
 19
 20 // Check if target file exists
 21 File targetFile = new File(args[1]);
target file exists? 22 if (targetFile.exists()) {
 23 System.out.println("Target file " + args[1] + " already exists");
 24 System.exit(3);
 25 }
 26
try-with-resources 27 try (
 28 // Create input and output files
create a Scanner 29 Scanner input = new Scanner(sourceFile);
create a PrintWriter 30 PrintWriter output = new PrintWriter(targetFile);
 31) {
has next? 32 while (input.hasNext()) {
read a line 33 String s1 = input.nextLine();
 34 String s2 = s1.replaceAll(args[2], args[3]);
 35 output.println(s2);
 36 }
 37 }
 38 }
 39 }

In a normal situation, the program is terminated after a file is copied. The program is terminated abnormally if the command-line arguments are not used properly (lines 7–11), if the source file does not exist (lines 14–18), or if the target file already exists (lines 22–25). The exit status codes 1, 2, and 3 are used to indicate these abnormal terminations (lines 10, 17, and 24).

	12.11.1 How do you create a PrintWriter to write data to a file? What is the ­reason to declare throws Exception in the main method in Listing 12.13 , ­WriteData.java? What would happen if the close() method were not invoked in Listing 12.13 ?

	12.11.2 Show the contents of the file temp.txt after the following program is executed:

public class Test {
 public static void main(String[] args) throws Exception {
 java.io.PrintWriter output = new
 java.io.PrintWriter("temp.txt");
 output.printf("amount is %f %e\r\n", 32.32, 32.32);
 output.printf("amount is %5.4f %5.4e\r\n", 32.32, 32.32);
 output.printf("%6b\r\n", (1 > 2));
 output.printf("%6s\r\n", "Java");
 output.close();
 }
}

	12.11.3 Rewrite the code in the preceding question using a try-with-resources syntax.

	12.11.4 How do you create a Scanner to read data from a file? What is the reason to define throws Exception in the main method in Listing 12.15 , ReadData.java? What would happen if the close() method were not invoked in Listing 12.15 ?

	12.11.5 What will happen if you attempt to create a Scanner for a nonexistent file? What will happen if you attempt to create a PrintWriter for an existing file?

	12.11.6 Is the line separator the same on all platforms? What is the line separator on Windows?

	12.11.7 Suppose you enter 45 57.8 789, then press the Enter key. Show the contents of the variables after the following code is executed:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

	12.11.8 Suppose you enter 45, press the Enter key, enter 57.8, press the Enter key, and enter 789, press the Enter key. Show the contents of the variables after the ­following code is executed:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

12.12 Reading Data from the Web

	Just like you can read data from a file on your computer, you can read data from a file on the Web.

In addition to reading data from a local file on a computer or file server, you can also access data from a file that is on the Web if you know the file’s URL (Uniform Resource Locator—the unique address for a file on the Web). For example, www.google.com/index.html is the URL for the file index.html located on the Google web server. When you enter the URL in a Web browser, the Web server sends the data to your browser, which renders the data graphically. Figure 12.10 illustrates how this process works.

[image: The client uses a web browser, or an application program, to access the Internet, retrieving locally stored files from web servers.]
Figure 12.10

 The client retrieves files from a Web server.

For an application program to read data from a URL, you first need to create a URL object using the java.net.URL class with this constructor:

public URL(String spec) throws MalformedURLException

For example, the following statement creates a URL object for http://www.google.com/index.html.

1 try {
2 URL url = new URL("http://www.google.com/index.html");
3 }
4 catch (MalformedURLException ex) {
5 ex.printStackTrace();
6 }

A MalformedURLException is thrown if the URL string has a syntax error. For example, the URL string http://www.google.com/index.html would cause a MalformedURLException runtime error because two slashes (//) are required after the colon (:). Note the http:// prefix is required for the URL class to recognize a valid URL. It would be wrong if you replace line 2 with the following code:

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the openStream() method defined in the URL class to open an input stream and use this stream to create a Scanner object as follows:

Scanner input = new Scanner(url.openStream());

Now you can read the data from the input stream just like from a local file. The example in Listing 12.17 prompts the user to enter a URL and displays the size of the file.

Listing 12.17 ReadFileFromURL.java

 1 import java.util.Scanner;
 2
 3 public class ReadFileFromURL {
 4 public static void main(String[] args) {
 5 System.out.print("Enter a URL: ");
enter a URL 6 String URLString = new Scanner(System.in).next();
 7
 8 try {
create a URL object 9 java.net.URL url = new java.net.URL(URLString);
 10 int count = 0;
create a Scanner object 11 Scanner input = new Scanner(url.openStream());
more to read? 12 while (input.hasNext()) {
read a line 13 String line = input.nextLine();
 14 count += line.length();
 15 }
 16
 17 System.out.println("The file size is " + count + " characters");
 18 }
MalformedURLException 19 catch (java.net.MalformedURLException ex) {
 20 System.out.println("Invalid URL");
 21 }
IOException 22 catch (java.io.IOException ex) {
 23 System.out.println("I/O Errors: no such file");
 24 }
 25 }
 26 }

Enter a URL: http://liveexample.pearsoncmg.com/data/Lincoln.txt
The file size is 1469 characters

Enter a URL: http://www.yahoo.com
The file size is 190006 characters

The program prompts the user to enter a URL string (line 6) and creates a URL object (line 9). The constructor will throw a java.net.MalformedURLException (line 19) if the URL isn’t formed correctly.

MalformedURLException

The program creates a Scanner object from the input stream for the URL (line 11). If the URL is formed correctly but does not exist, an IOException will be thrown (line 22). For example, http://google.com/index1.html uses the appropriate form, but the URL itself does not exist. An IOException would be thrown if this URL was used for this program.

	12.12.1 How do you create a Scanner object for reading text from a URL?

12.13 Case Study: Web Crawler

	This case study develops a program that travels the Web by following hyperlinks.

The World Wide web, abbreviated as WWW, W3, or Web, is a system of interlinked hypertext documents on the Internet. With a web browser, you can view a document and follow the hyperlinks to view other documents. In this case study, we will develop a program that automatically traverses the documents on the Web by following the hyperlinks. This type of program is commonly known as a web crawler. For simplicity, our program follows the hyperlink that starts with http://. Figure 12.11 shows an example of traversing the Web. We start from a Webpage that contains three URLs named URL1, URL2, and URL3. Following URL1 leads to the page that contains three URLs named URL11, URL12, and URL13. Following URL2 leads to the page that contains two URLs named URL21 and URL22. Following URL3 leads to the page that contains four URLs named URL31, URL32, URL33, and URL34. Continue to traverse the Web following the new hyperlinks. As you see, this process may continue forever, but we will exit the program once we have traversed 100 pages.

[image: The starting U R L contains U R L’s 1, 2, and 3. U R L 1 leads to U R L’s 11, 12, and 13. U R L 2 leads to U R L’s 21 and 22. U R L 3 leads to U R L’s 4, 31, 32, and 33.]
Figure 12.11

 Web crawler explores the web through hyperlinks.

web crawler

The program follows the URLs to traverse the Web. To ensure that each URL is traversed only once, the program maintains two lists of URLs. One list stores the URLs pending for traversing, and the other stores the URLs that have already been traversed. The algorithm for this program can be described as follows:

Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty and size of listOfTraversedURLs <= 100 {
 Remove a URL from listOfPendingURLs;
 if this URL is not in listOfTraversedURLs {
 Add it to listOfTraversedURLs;
 Display this URL;
 Read the page from this URL and for each URL contained in the page {
 Add it to listOfPendingURLs if it is not in listOfTraversedURLs;
 }
 }
}

Listing 12.18 gives the program that implements this algorithm.

Listing 12.18 WebCrawler.java

 1 import java.util.Scanner;
 2 import java.util.ArrayList;
 3
 4 public class WebCrawler {
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7 System.out.print("Enter a URL: ");
enter a URL 8 String url = input.nextLine();
crawl from this URL 9 crawler(url); // Traverse the Web from the a starting url
 10 }
 11
 12 public static void crawler(String startingURL) {
list of pending URLs 13 ArrayList<String> listOfPendingURLs = new ArrayList<>();
list of traversed URLs 14 ArrayList<String> listOfTraversedURLs = new ArrayList<>();
 15
add starting URL 16 listOfPendingURLs.add(startingURL);
 17 while (!listOfPendingURLs.isEmpty() &&
 18 listOfTraversedURLs.size() <= 100) {
get the first URL 19 String urlString = listOfPendingURLs.remove(0);
 20 if (!listOfTraversedURLs.contains(urlString)) {
URL traversed 21 listOfTraversedURLs.add(urlString);
 22 System.out.println("Crawl " + urlString);
 23
 24 for (String s: getSubURLs(urlString)) {
 25 if (!listOfTraversedURLs.contains(s))
add a new URL 26 listOfPendingURLs.add(s);
 27 }
 28 }
 29 }
 30 }
 31
 32 public static ArrayList<String> getSubURLs(String urlString) {
 33 ArrayList<String> list = new ArrayList<>();
 34
 35 try {
 36 java.net.URL url = new java.net.URL(urlString);
 37 Scanner input = new Scanner(url.openStream());
 38 int current = 0;
 39 while (input.hasNext()) {
read a line 40 String line = input.nextLine();
search for a URL 41 current = line.indexOf("http:", current);
end of a URL 42 while (current > 0) {
 43 int endIndex = line.indexOf("\"", current);
URL ends with " 44 if (endIndex > 0) { // Ensure that a correct URL is found
extract a URL 45 list.add(line.substring(current, endIndex));
search for next URL 46 current = line.indexOf("http:", endIndex);
 47 }
 48 else
 49 current = –1;
 50 }
 51 }
 52 }
 53 catch (Exception ex) {
 54 System.out.println("Error: " + ex.getMessage());
 55 }
 56
return URLs 57 return list;
 58 }
 59 }

Enter a URL: http://cs.armstrong.edu/liang
Crawl http://www.cs.armstrong.edu/liang
Crawl http://www.cs.armstrong.edu
Crawl http://www.armstrong.edu
Crawl http://www.pearsonhighered.com/liang
...

The program prompts the user to enter a starting URL (lines 7 and 8) and invokes the crawler(url) method to traverse the Web (line 9).

The crawler(url) method adds the starting url to listOfPendingURLs (line 16) and repeatedly process each URL in listOfPendingURLs in a while loop (lines 17–29). It removes the first URL in the list (line 19) and processes the URL if it has not been processed (lines 20–28). To process each URL, the program first adds the URL to listOfTraversedURLs (line 21). This list stores all the URLs that have been processed. The getSubURLs(url) method returns a list of URLs in the webpage for the specified URL (line 24). The program uses a foreach loop to add each URL in the page into listOfPendingURLs if it is not in listOfTraversedURLs (lines 24–27).

The getSubURLs(url) method reads each line from the webpage (line 40) and searches for the URLs in the line (line 41). Note a correct URL cannot contain line break characters. Therefore, it is sufficient to limit the search for a URL in one line of the text in a webpage. For simplicity, we assume that a URL ends with a quotation mark " (line 43). The method obtains a URL and adds it to a list (line 45). A line may contain multiple URLs. The method continues to search for the next URL (line 46). If no URL is found in the line, current is set to –1 (line 49). The URLs contained in the page are returned in the form of a list (line 57).

The program terminates when the number of traversed URLs reaches 100 (line 18).

This is a simple program to traverse the Web. Later, you will learn the techniques to make the program more efficient and robust.

	12.13.1 Before a URL is added to listOfPendingURLs, line 25 checks whether it has been traversed. Is it possible that listOfPendingURLs contains duplicate URLs? If so, give an example.

	12.13.2 Simplify the code in lines 20-28 as follows: 1. Delete lines 20 and 28; 2. Add an additional condition !listOfPendingURLs.contains(s) to the if statement in line 25. Write the complete new code for the while loop in lines 20-29. Does this revision work?

Key Terms

	absolute file name 477

	chained exception 473

	checked exception 461

	declare exception 462

	directory path 477

	exception 454

	exception propagation 463

	relative file name 477

	throw exception 457

	unchecked exception 461

Chapter Summary

	Exception handling enables a method to throw an exception to its caller.

	A Java exception is an instance of a class derived from java.lang.Throwable. Java provides a number of predefined exception classes, such as Error, Exception, RuntimeException, ClassNotFoundException, NullPointerException, and ArithmeticException. You can also define your own exception class by extending Exception.

	Exceptions occur during the execution of a method. RuntimeException and Error are unchecked exceptions; all other exceptions are checked.

	When declaring a method, you have to declare a checked exception if the method might throw it, thus telling the compiler what can go wrong.

	The keyword for declaring an exception is throws, and the keyword for throwing an exception is throw.

	To invoke the method that declares checked exceptions, enclose it in a try statement. When an exception occurs during the execution of the method, the catch block catches and handles the exception.

	If an exception is not caught in the current method, it is passed to its caller. The process is repeated until the exception is caught or passed to the main method.

	Various exception classes can be derived from a common superclass. If a catch block catches the exception objects of a superclass, it can also catch all the exception objects of the subclasses of that superclass.

	The order in which exceptions are specified in a catch block is important. A compile error will result if you specify an exception object of a class after an exception object of the superclass of that class.

	When an exception occurs in a method, the method exits immediately if it does not catch the exception. If the method is required to perform some task before exiting, you can catch the exception in the method and then rethrow it to its caller.

	The code in the finally block is executed under all circumstances, regardless of whether an exception occurs in the try block, or whether an exception is caught if it occurs.

	Exception handling separates error-handling code from normal programming tasks, thus making programs easier to read and to modify.

	Exception handling should not be used to replace simple tests. You should perform simple test using if statements whenever possible and reserve exception handling for dealing with situations that cannot be handled with if statements.

	The File class is used to obtain file properties and manipulate files. It does not contain the methods for creating a file or for reading/writing data from/to a file.

	You can use Scanner to read string and primitive data values from a text file and use PrintWriter to create a file and write data to a text file.

	You can read from a file on the Web using the URL class.

 Quiz

Answer the quiz for this chapter online at the Companion Website.

 Programming Exercises

Sections 12.2–12.9

	*12.1 (NumberFormatException) Listing 7.9 , Calculator.java, is a simple command-line calculator. Note the program terminates if any operand is nonnumeric. Write a program with an exception handler that deals with nonnumeric operands; then write another program without using an exception handler to achieve the same objective. Your program should display a message that informs the user of the wrong operand type before exiting (see Figure 12.12).

[image: A command prompt reports an error during a calculation.]
Figure 12.12 

The program performs arithmetic operations and detects input errors.

Description

	*12.2 (InputMismatchException) Write a program that prompts the user to read two integers and displays their sum. Your program should prompt the user to read the number again if the input is incorrect.

	*12.3 (ArrayIndexOutOfBoundsException) Write a program that meets the following requirements:

	Creates an array with 100 randomly chosen integers.

	Prompts the user to enter the index of the array, then displays the corresponding element value. If the specified index is out of bounds, display the message "Out of Bounds".

	*12.4 (IllegalArgumentException) Modify the Loan class in Listing 10.02 to throw IllegalArgumentException if the loan amount, interest rate, or number of years is less than or equal to zero.

	*12.5 (IllegalTriangleException) Programming Exercise 11.1 defined the ­Triangle class with three sides. In a triangle, the sum of any two sides is greater than the other side. The Triangle class must adhere to this rule. ­Create the ­IllegalTriangleException class, and modify the constructor of the ­Triangle class to throw an IllegalTriangleException object if a triangle is created with sides that violate the rule, as follows:

 /** Construct a triangle with the specified sides */
 public Triangle(double side1, double side2, double side3)
 throws IllegalTriangleException {
 // Implement it
 }

	*12.6 (NumberFormatException) Listing 6.8 implements the hex2Dec(String hexString) method, which converts a hex string into a decimal number. Implement the hex2Dec method to throw a NumberFormatException if the string is not a hex string.

	*12.7 (NumberFormatException) Write the bin2Dec(String binaryString) method to convert a binary string into a decimal number. Implement the bin2Dec method to throw a NumberFormatException if the string is not a binary string.

	*12.8 (HexFormatException) Programming Exercise 12.6 implements the ­hex2Dec method to throw a NumberFormatException if the string is not a hex string. Define a custom exception called HexFormatException. Implement the hex2Dec method to throw a HexFormatException if the string is not a hex string.

HexFormatException

	*12.9 (BinaryFormatException) Exercise 12.7 implements the bin2Dec method to throw a BinaryFormatException if the string is not a binary string. Define a custom exception called BinaryFormatException. Implement the bin2Dec method to throw a BinaryFormatException if the string is not a binary string.

	*12.10 (OutOfMemoryError) Write a program that causes the JVM to throw an ­OutOfMemoryError and catches and handles this error.

Sections 12.10–12.12

	**12.11 (Remove text) Write a program that removes all the occurrences of a specified string from a text file. For example, invoking

java Exercise12_11 John filename

removes the string John from the specified file. Your program should get the arguments from the command line.

	**12.12 (Reformat Java source code) Write a program that converts the Java source code from the next-line brace style to the end-of-line brace style. For example, the following Java source in (a) uses the next-line brace style. Your program converts it to the end-of-line brace style in (b).

public class Test
{
 public static void main(String[] args)
 {
 // Some statements
 }
}

public class Test {
 public static void main(String[] args) {
 // Some statements
 }
}

(a) Next-line brace style

(b) End-of-line brace style

Your program can be invoked from the command line with the Java source-code file as the argument. It converts the Java source code to a new format. For example, the following command converts the Java source-code file Test.java to the end-of-line brace style.

java Exercise12_12 Test.java

	*12.13 (Count characters, words, and lines in a file) Write a program that will count the number of characters, words, and lines in a file. Words are separated by whitespace characters. The file name should be passed as a command-line argument, as shown in Figure 12.13 .

[image: A command prompt. In line 1, the prompt reads, c, colon, backslash, exercise, >. Input, java Exercise 12, underscore, 13, Loan dot java. Line 2: File loan dot java has. Line 3: 1919 characters. Line 4: 210 words. Line 5: 71 lines.]
Figure 12.13 

The program displays the number of characters, words, and lines in the given file.

	*12.14 (Process scores in a text file) Suppose a text file contains an unspecified ­number of scores separated by spaces. Write a program that prompts the user to enter the file, reads the scores from the file, and displays their total and average.

	*12.15 (Write/read data) Write a program to create a file named Exercise12_15.txt if it does not exist. Write 100 integers created randomly into the file using text I/O. Integers are separated by spaces in the file. Read the data back from the file and display the data in increasing order.

	**12.16 (Replace text) Listing 12.16 , ReplaceText.java, gives a program that replaces text in a source file and saves the change into a new file. Revise the program to save the change into the original file. For example, invoking

java Exercise12_16 file oldString newString

replaces oldString in the source file with newString.

	***12.17 (Game: hangman) Rewrite Programming Exercise 7.35 . The program reads the words stored in a text file named hangman.txt. Words are delimited by spaces.

	**12.18 (Add package statement) Suppose you have Java source files under the directories chapter1, chapter2, ..., chapter34. Write a program to insert the statement package chapteri; as the first line for each Java source file under the directory chapteri. Suppose chapter1, chapter2, . . . , ­chapter34 are under the root directory srcRootDirectory. The root ­directory and ­chapteri directory may contain other folders and files. Use the following command to run the program:

java Exercise12_18 srcRootDirectory

	*12.19 (Count words) Write a program that counts the number of words in President Abraham Lincoln’s Gettysburg address from https://liveexample.pearsoncmg.com/data/Lincoln.txt.

	**12.20 (Remove package statement) Suppose you have Java source files under the directories chapter1, chapter2, . . . , chapter34. Write a program to remove the statement package chapteri; in the first line for each Java source file under the directory chapteri. Suppose chapter1, ­chapter2, . . . , ­chapter34 are under the root directory srcRootDi­rectory. The root ­directory and ­chapteri directory may contain other folders and files. Use the following command to run the program:

java Exercise12_20 srcRootDirectory

	*12.21 (Data sorted?) Write a program that reads the strings from file SortedStrings.txt and reports whether the strings in the files are stored in increasing order. If the strings are not sorted in the file, it displays the first two strings that are out of the order.

	**12.22 (Replace text) Revise Programming Exercise 12.16 to replace a string in a file with a new string for all files in the specified directory using the following command:

java Exercise12_22 dir oldString newString

	**12.23 (Process scores in a text file on the Web) Suppose the text file on the Web http://liveexample.pearsoncmg.com/data/Scores.txt contains an ­unspecified number of scores separated by spaces. Write a program that reads the scores from the file and displays their total and average.

	*12.24 (Create large dataset) Create a data file with 1,000 lines. Each line in the file consists of a faculty member’s first name, last name, rank, and salary. The faculty member’s first name and last name for the ith line are FirstNamei and LastNamei. The rank is randomly generated as assistant, associate, and full. The salary is randomly generated as a number with two digits after the decimal point. The salary for an assistant professor should be in the range from 50,000 to 80,000, for associate professor from 60,000 to 110,000, and for full professor from 75,000 to 130,000. Save the file in Salary.txt. Here are some sample data:

FirstName1 LastName1 assistant 60055.95

FirstName2 LastName2 associate 81112.45

...

FirstName1000 LastName1000 full 92255.21

	*12.25 (Process large dataset) A university posts its employees’ salaries at http://liveexample.pearsoncmg.com/data/Salary.txt. Each line in the file consists of a faculty member’s first name, last name, rank, and salary (see Programming Exercise 12.24). Write a program to display the total salary for assistant professors, associate professors, full professors, and faculty, respectively, and display the average salary for assistant professors, associate professors, full professors, and faculty, respectively.

	**12.26 (Create a directory) Write a program that prompts the user to enter a directory name and creates a directory using the File’s mkdirs method. The program displays the message “Directory created successfully” if a directory is created or “Directory already exists” if the directory already exists.

	**12.27 (Replace words) Suppose you have a lot of files in a directory that contain words Exercisei_j, where i and j are digits. Write a program that pads a 0 before i if i is a single digit and 0 before j if j is a single digit. For example, the word Exercise2_1 in a file will be replaced by Exercise02_01. In Java, when you pass the symbol * from the command line, it refers to all files in the directory (see Supplement III.V). Use the following command to run your program:

java Exercise12_27 *

	**12.28 (Rename files) Suppose you have a lot of files in a directory named Exercisei_j, where i and j are digits. Write a program that pads a 0 before i if i is a single digit. For example, a file named Exercise2_1 in a directory will be renamed to Exercise02_1. In Java, when you pass the symbol * from the command line, it refers to all files in the directory (see Supplement III.V). Use the following command to run your program:

java Exercise12_28 *

	**12.29 (Rename files) Suppose you have several files in a directory named Exercisei_j, where i and j are digits. Write a program that pads a 0 before j if j is a single digit. For example, a file named Exercise2_1 in a directory will be renamed to Exercise2_01. In Java, when you pass the symbol * from the command line, it refers to all files in the directory (see Supplement III.V). Use the following command to run your program:

java Exercise12_29 *

	**12.30 (Occurrences of each letter) Write a program that prompts the user to enter a file name and displays the occurrences of each letter in the file. Letters are case insensitive. Here is a sample run:

Enter a filename: Lincoln.txt
Number of As: 56
Number of Bs: 134
...
Number of Zs: 9

	*12.31 (Baby name popularity ranking) The popularity ranking of baby names from years 2001 to 2010 is downloaded from www.ssa.gov/oact/babynames and stored in files named babynameranking2001.txt, babynameranking2002.txt, . . . , babynameranking2010.txt. You can download these files using the URL such as http://liveexample.pearsoncmg.com/data/babynamesranking2001.txt. Each file contains 1,000 lines. Each line contains a ranking, a boy’s name, number for the boy’s name, a girl’s name, and number for the girl’s name. For example, the first two lines in the file babynameranking2010.txt are as follows:

1	Jacob	21,875	Isabella	22,731
2	Ethan	17,866	Sophia	 20,477

Therefore, the boy’s name Jacob and girl’s name Isabella are ranked #1 and the boy’s name Ethan and girl’s name Sophia are ranked #2; 21,875 boys are named Jacob, and 22,731 girls are named Isabella. Write a program that prompts the user to enter the year, gender, followed by a name, and displays the ranking of the name for the year. Here is a sample run:

Enter the year: 2010
Enter the gender: M
Enter the name: Javier
Javier is ranked #190 in year 2010

Enter the year: 2010
Enter the gender: F
Enter the name: ABC
The name ABC is not ranked in year 2010

	*12.32 (Ranking summary) Write a program that uses the files described in Programming Exercise 12.31 and displays a ranking summary table for the first five girl’s and boy’s names as follows:

	Year
	Rank 1
	Rank 2
	Rank 3
	Rank 4
	Rank 5
	Rank 1
	Rank 2
	Rank 3
	Rank 4
	Rank 5

	2010
	Isabella
	Sophia
	Emma
	Olivia
	Ava
	Jacob
	Ethan
	Michael
	Jayden
	William

	2009
	Isabella
	Emma
	Olivia
	Sophia
	Ava
	Jacob
	Ethan
	Michael
	Alexander
	William

	...

	2001
	Emily
	Madison
	Hannah
	Ashley
	Alexis
	Jacob
	Michael
	Matthew
	Joshua
	Christopher

	**12.33 (Search Web) Modify Listing 12.18 WebCrawler.java to search for the word (e.g., Computer Programming) starting from a URL (e.g., http://cs.armstrong.edu/liang). Your program prompts the user to enter the word and the starting URL and terminates once the word is found. Display the URL for the page that contains the word.

CHAPTER 13 Abstract Classes and Interfaces

Objectives

	To design and use abstract classes (§13.2).

	To generalize numeric wrapper classes BigInteger and ­BigDecimal using the abstract Number class (§13.3).

	To process a calendar using the Calendar and GregorianCalendar classes (§13.4).

	To specify common behavior for objects using interfaces (§13.5).

	To define interfaces and define classes that implement interfaces (§13.5).

	To define a natural order using the Comparable interface (§13.6).

	To make objects cloneable using the Cloneable interface (§13.7).

	To explore the similarities and differences among concrete classes, abstract classes, and interfaces (§13.8).

	To design the Rational class for processing rational numbers (§13.9).

	To design classes that follow the class-design guidelines (§13.10).

13.1 Introduction

	A superclass defines common behavior for related subclasses. An interface can be used to define common behavior for classes (including unrelated classes).

You can use the java.util.Arrays.sort method to sort an array of numbers or strings. Can you apply the same sort method to sort an array of geometric objects? In order to write such code, you have to know about interfaces. An interface is for defining common behavior for classes (including unrelated classes). Before discussing interfaces, we introduce a closely related subject: abstract classes.

problem

interface

13.2 Abstract Classes

	An abstract class cannot be used to create objects. An abstract class can contain abstract methods that are implemented in concrete subclasses.

In the inheritance hierarchy, classes become more specific and concrete with each new subclass. If you move from a subclass back up to a superclass, the classes become more general and less specific. Class design should ensure a superclass contains common features of its subclasses. Sometimes, a superclass is so abstract it cannot be used to create any specific instances. Such a class is referred to as an abstract class.

Abstract GeometricObject class

In Chapter 11, GeometricObject was defined as the superclass for Circle and ­Rectangle. GeometricObject models common features of geometric objects. Both Circle and Rectangle contain the getArea() and getPerimeter() methods for computing the area and perimeter of a circle and a rectangle. Since you can compute areas and perimeters for all geometric objects, it is better to define the getArea() and getPerimeter() methods in the GeometricObject class. However, these methods cannot be implemented in the ­GeometricObject class because their implementation depends on the specific type of ­geometric object. Such methods are referred to as abstract methods and are denoted using the abstract modifier in the method header. After you define the methods in ­GeometricObject, it becomes an abstract class. Abstract classes are denoted using the abstract modifier in the class header. In UML graphic notation, the names of abstract classes and their abstract methods are italicized, as shown in Figure 13.1. Listing 13.1 gives the source code for the new ­GeometricObject class.

abstract class

abstract method

abstract modifier

[image: A U M L diagram, with 3 parts.]
Figure 13.1

The new GeometricObject class contains abstract methods.

Description

Listing 13.1 GeometricObject.java

abstract class 1 public abstract class GeometricObject {
 2 private String color = "white";
 3 private boolean filled;
 4 private java.util.Date dateCreated;
 5
 6 /** Construct a default geometric object */
 7 protected GeometricObject() {
 8 dateCreated = new java.util.Date();
 9 }
 10
 11 /** Construct a geometric object with color and filled value */
 12 protected GeometricObject(String color, boolean filled) {
 13 dateCreated = new java.util.Date();
 14 this.color = color;
 15 this.filled = filled;
 16 }
 17
 18 /** Return color */
 19 public String getColor() {
 20 return color;
 21 }
 22
 23 /** Set a new color */
 24 public void setColor(String color) {
 25 this.color = color;
 26 }
 27
 28 /** Return filled. Since filled is boolean,
 29 * the getter method is named isFilled */
 30 public boolean isFilled() {
 31 return filled;
 32 }
 33
 34 /** Set a new filled */
 35 public void setFilled(boolean filled) {
 36 this.filled = filled;
 37 }
 38
 39 /** Get dateCreated */
 40 public java.util.Date getDateCreated() {
 41 return dateCreated;
 42 }
 43
 44 @Override
 45 public String toString() {
 46 return "created on " + dateCreated + "\ncolor: " + color +
 47 " and filled: " + filled;
 48 }
 49
 50 /** Abstract method getArea */
abstract method 51 public abstract doublegetArea();
 52
 53 /** Abstract method getPerimeter */
abstract method 54 public abstract doublegetPerimeter();
 55 }

Abstract classes are like regular classes, but you cannot create instances of abstract classes using the new operator. An abstract method is defined without implementation. Its implementation is provided by the subclasses. A class that contains abstract methods must be defined as abstract.

 The constructor in the abstract class is defined as protected because it is used only by subclasses. When you create an instance of a concrete subclass, its superclass’s constructor is invoked to initialize data fields defined in the superclass.

why protected constructor?

The GeometricObject abstract class defines the common features (data and methods) for geometric objects and provides appropriate constructors. Because you don’t know how to compute areas and perimeters of geometric objects, getArea() and getPerimeter() are defined as abstract methods. These methods are implemented in the subclasses. The implementation of Circle and Rectangle is the same as in Listings 11.2 and 11.3, except they extend the GeometricObject class defined in this chapter. You can see the complete code for these two programs at liveexample.pearsoncmg.com/html/Circle.html and liveexample.pearsoncmg.com/html/Rectangle.html, respectively.

implement Circle

implement Rectangle

Listing 13.2 Circle.java

extends abstract GeometricObject 1 public class Circle extends GeometricObject {
 2 // Same as lines 2−47 in Listing 11.2, so omitted
 3 }

Listing 13.3 Rectangle.java

extends abstract GeometricObject 1 public class Rectangle extends GeometricObject {
 2 // Same as lines 2−49 in Listing 11.3, so omitted
 3 }

13.2.1 Why Abstract Methods?

You may be wondering what advantage is gained by defining the methods getArea() and getPerimeter() as abstract in the GeometricObject class. The example in Listing 13.4 shows the benefits of defining them in the GeometricObject class. The program creates two geometric objects, a circle and a rectangle, invokes the equalArea method to check whether they have equal areas, and invokes the displayGeometricObject method to display them.

Listing 13.4 TestGeometricObject.java

 1 public class TestGeometricObject {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create two geometric objects
create a circle 5 GeometricObject geoObject1 = new Circle(5);
create a rectangle 6 GeometricObject geoObject2 = new Rectangle(5, 3);
 7
 8 System.out.println("The two objects have the same area? " +
 9 equalArea(geoObject1, geoObject2));
 10
 11 // Display circle
 12 displayGeometricObject(geoObject1);
 13
 14 // Display rectangle
 15 displayGeometricObject(geoObject2);
 16 }
 17
 18 /** A method for comparing the areas of two geometric objects */
equalArea 19 public static boolean equalArea(GeometricObject object1,
 20 GeometricObject object2) {
 21 return object1.getArea() == object2.getArea();
 22 }
 23
 24 /** A method for displaying a geometric object */
displayGeometricObject 25 public static void displayGeometricObject(GeometricObject object) {
 26 System.out.println();
 27 System.out.println("The area is " + object.getArea());
 28 System.out.println("The perimeter is " + object.getPerimeter());
 29 }
 30 }

The two objects have the same area? false

The area is 78.53981633974483
The perimeter is 31.41592653589793

The area is 13.0
The perimeter is 16.0

The methods getArea() and getPerimeter() defined in the GeometricObject class are overridden in the Circle class and the Rectangle class. The statements (lines 5–6)

GeometricObject geoObject1 = new Circle(5);
GeometricObject geoObject2 = new Rectangle(5, 3);

create a new circle and rectangle and assign them to the variables geoObject1 and ­geoObject2. These two variables are of the GeometricObject type.

When invoking equalArea(geoObject1, geoObject2) (line 9), the getArea() method defined in the Circle class is used for object1.getArea(), since ­geoObject1 is a ­circle, and the getArea() method defined in the Rectangle class is used for object2.getArea(), since geoObject2 is a rectangle.

Similarly, when invoking displayGeometricObject(geoObject1) (line 12), the methods getArea() and getPerimeter() defined in the Circle class are used, and when invoking displayGeometricObject(geoObject2) (line 15), the methods getArea and getPerimeter defined in the Rectangle class are used. The JVM dynamically determines which of these methods to invoke at runtime, depending on the actual object that invokes the method.

Note you could not define the equalArea method for comparing whether two geometric objects have the same area if the getArea method were not defined in GeometricObject. Now you have seen the benefits of defining the abstract methods in GeometricObject.

why abstract methods?

13.2.2 Interesting Points about Abstract Classes

The following points about abstract classes are worth noting:

	An abstract method cannot be contained in a nonabstract class. If a subclass of an abstract superclass does not implement all the abstract methods, the subclass must be defined as abstract. In other words, in a nonabstract subclass extended from an abstract class, all the abstract methods must be implemented. Also note abstract methods are nonstatic.

abstract method in abstract class

	An abstract class cannot be instantiated using the new operator, but you can still define its constructors, which are invoked in the constructors of its subclasses. For instance, the constructors of GeometricObject are invoked in the Circle class and the Rectangle class.

object cannot be created from abstract class

	A class that contains abstract methods must be abstract. However, it is possible to define an abstract class that doesn’t contain any abstract methods. This abstract class is used as a base class for defining subclasses.

abstract class without abstract method

	A subclass can override a method from its superclass to define it as abstract. This is very unusual, but it is useful when the implementation of the method in the superclass becomes invalid in the subclass. In this case, the subclass must be defined as abstract.

concrete method overridden to be abstract

	A subclass can be abstract even if its superclass is concrete. For example, the Object class is concrete, but its subclasses, such as GeometricObject, may be abstract.

concrete method overridden to be abstract

	You cannot create an instance from an abstract class using the new operator, but an abstract class can be used as a data type. Therefore, the following statement, which creates an array whose elements are of the GeometricObject type, is correct:

abstract class as type

GeometricObject[] objects = new GeometricObject[10];

	You can then create an instance of GeometricObject and assign its reference to the array like this:

objects[0] = new Circle();

	13.2.1 Which of the following classes defines a legal abstract class?

	class A {
 abstract void unfinished() {
 }
}

	public class abstract A {
 abstract void unfinished();
}

	(a)

	(b)

	class A {
 abstract void unfinished();
}

	abstract class A {
 protected void unfinished();
}

	(c)

	(d)

	abstract class A {
 abstract void unfinished();
}

	abstract class A {
 abstract int unfinished();
}

	(e)

	(f)

	13.2.2 The getArea() and getPerimeter() methods may be removed from the GeometricObject class. What are the benefits of defining getArea() and getPerimeter() as abstract methods in the GeometricObject class?

	13.2.3 True or false?

	An abstract class can be used just like a nonabstract class except that you cannot use the new operator to create an instance from the abstract class.

	An abstract class can be extended.

	A subclass of a nonabstract superclass cannot be abstract.

	A subclass cannot override a concrete method in a superclass to define it as abstract.

	An abstract method must be nonstatic.

13.3 Case Study: the Abstract Number Class

	Number is an abstract superclass for numeric wrapper classes BigInteger and BigDecimal.

Section 10.7 introduced numeric wrapper classes and Section 10.9 introduced the ­BigInteger and BigDecimal classes. These classes have common methods byteValue(), ­shortValue(), intValue(), longValue(), floatValue(), and doubleValue() for returning a byte, short, int, long, float, and double value from an object of these classes. These common methods are actually defined in the Number class, which is a superclass for the numeric wrapper classes BigInteger and BigDecimal, as shown in Figure 13.2.

[image: An annotated U M L diagram for the superclass, java dot l ay n g dot Number.]
Figure 13.2

The Number class is an abstract superclass for Double, Float, Long, Integer, Short, Byte, ­BigInteger, and BigDecimal.

Description

Since the intValue(), longValue(), floatValue(), and doubleValue() methods ­cannot be implemented in the Number class, they are defined as abstract methods in the ­Number class. The Number class is therefore an abstract class. The byteValue() and shortValue() method are implemented from the intValue() method as follows:

 public byte byteValue() {
 return (byte)intValue();
 }

 public short shortValue() {
 return (short)intValue();
 }

With Number defined as the superclass for the numeric classes, we can define methods to perform common operations for numbers. Listing 13.5 gives a program that finds the largest number in a list of Number objects.

Listing 13.5 LargestNumber.java

 1 import java.util.ArrayList;
 2 import java.math.*;
 3
 4 public class LargestNumber {
 5 public static void main(String[] args) {
create an array list 6 ArrayList<Number> list = new ArrayList<>();
add number to list 7 list.add(45); // Add an integer
 8 list.add(3445.53); // Add a double
 9 // Add a BigInteger
 10 list.add(new BigInteger("3432323234344343101"));
 11 // Add a BigDecimal
 12 list.add(new BigDecimal("2.0909090989091343433344343"));
 13
 14 System.out.println("The largest number is " +
invoke getLargestNumber 15 getLargestNumber(list));
 16 }
 17
 18 public static Number getLargestNumber(ArrayList<Number> list) {
 19 if (list == null || list.size() == 0)
 20 return null;
 21
 22 Number number = list.get(0);
 23 for (int i = 1; i < list.size(); i++)
doubleValue 24 if (number.doubleValue() < list.get(i).doubleValue())
 25 number = list.get(i);
 26
 27 return number;
 28 }
 29 }

The largest number is 3432323234344343101

The program creates an ArrayList of Number objects (line 6). It adds an Integer object, a Double object, a BigInteger object, and a BigDecimal object to the list (lines 7–12). Note 45 is automatically converted into an Integer object and added to the list in line 7, and 3445.53 is automatically converted into a Double object and added to the list in line 8 using autoboxing.

Invoking the getLargestNumber method returns the largest number in the list (line 15). The getLargestNumber method returns null if the list is null or the list size is 0 (lines 19 and 20). To find the largest number in the list, the numbers are compared by invoking their doubleValue() method (line 24). The doubleValue() method is defined in the Number class and implemented in the concrete subclass of Number. If a number is an Integer object, the Integer’s doubleValue() is invoked. If a number is a BigDecimal object, the BigDecimal’s doubleValue() is invoked.

If the doubleValue() method were not defined in the Number class, you will not be able to find the largest number among different types of numbers using the Number class.

	13.3.1 Why do the following two lines of code compile but cause a runtime error?

 Number numberRef = new Integer(0);
 Double doubleRef = (Double)numberRef;

	13.3.2 Why do the following two lines of code compile but cause a runtime error?

 Number[] numberArray = new Integer[2];
 numberArray[0] = new Double(1.5);

	13.3.3 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 Number x = 3;
 System.out.println(x.intValue());
 System.out.println(x.doubleValue());
 }
}

	13.3.4 What is wrong in the following code? (Note the compareTo method for the Integer and Double classes was introduced in Section 10.7 .)

public class Test {
 public static void main(String[] args) {
 Number x = new Integer(3);
 System.out.println(x.intValue());
 System.out.println(x.compareTo(new Integer(4)));
 }
}

	13.3.5 What is wrong in the following code?

public class Test {
 public static void main(String[] args) {
 Number x = new Integer(3);
 System.out.println(x.intValue());
 System.out.println((Integer)x.compareTo(new Integer(4)));
 }
}

13.4 Case Study: Calendar and GregorianCalendar

	GregorianCalendar is a concrete subclass of the abstract class Calendar.

An instance of java.util.Date represents a specific instant in time with millisecond precision. java.util.Calendar is an abstract base class for extracting detailed calendar information, such as the year, month, date, hour, minute, and second. Subclasses of Calendar can implement specific calendar systems, such as the Gregorian calendar, the lunar calendar, and the Jewish calendar. Currently, java.util.GregorianCalendar for the Gregorian calendar is supported in Java, as shown in Figure 13.3. The add method is abstract in the Calendar class because its implementation is dependent on a concrete calendar system.

[image: An annotated U M L diagram for two classes.]
Figure 13.3

The abstract Calendar class defines common features of various calendars.

Description

Calendar and ­GregorianCalendar classes

abstract add method

construct calendar

You can use new GregorianCalendar() to construct a default GregorianCalendar with the current time and new GregorianCalendar(year, month, date) to construct a GregorianCalendar with the specified year, month, and date. The month parameter is 0-based—that is, 0 is for January.

get(field)

The get(int field) method defined in the Calendar class is useful for extracting the date and time information from a Calendar object. The fields are defined as constants, as shown in Table 13.1.

Table 13.1 Field Constants in the Calendar Class

	Constant

	Description

	YEAR

	The year of the calendar.

	MONTH

	The month of the calendar, with 0 for January.

	DATE

	The day of the calendar.

	HOUR

	The hour of the calendar (12-hour notation).

	HOUR_OF_DAY

	The hour of the calendar (24-hour notation).

	MINUTE

	The minute of the calendar.

	SECOND

	The second of the calendar.

	DAY_OF_WEEK

	The day number within the week, with 1 for Sunday.

	DAY_OF_MONTH

	Same as DATE.

	DAY_OF_YEAR

	The day number in the year, with 1 for the first day of the year.

	WEEK_OF_MONTH

	The week number within the month, with 1 for the first week.

	WEEK_OF_YEAR

	The week number within the year, with 1 for the first week.

	AM_PM

	Indicator for AM or PM (0 for AM and 1 for PM).

Listing 13.6 gives an example that displays the date and time information for the current time.

Listing 13.6 TestCalendar.java

 1 import java.util.*;
 2
 3 public class TestCalendar {
 4 public static void main(String[] args) {
 5 // Construct a Gregorian calendar for the current date and time
calendar for current time 6 Calendar calendar = new GregorianCalendar();
 7 System.out.println("Current time is " + new Date());
extract fields in calendar 8 System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
 9 System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
 10 System.out.println("DATE: " + calendar.get(Calendar.DATE));
 11 System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
 12 System.out.println("HOUR_OF_DAY: " +
 13 calendar.get(Calendar.HOUR_OF_DAY));
 14 System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
 15 System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
 16 System.out.println("DAY_OF_WEEK: " +
 17 calendar.get(Calendar.DAY_OF_WEEK));
 18 System.out.println("DAY_OF_MONTH: " +
 19 calendar.get(Calendar.DAY_OF_MONTH));
 20 System.out.println("DAY_OF_YEAR: " +
 21 calendar.get(Calendar.DAY_OF_YEAR));
 22 System.out.println("WEEK_OF_MONTH: " +
 23 calendar.get(Calendar.WEEK_OF_MONTH));
 24 System.out.println("WEEK_OF_YEAR: " +
 25 calendar.get(Calendar.WEEK_OF_YEAR));
 26 System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
 27
 28 // Construct a calendar for December 25, 1997
create a calendar 29 Calendar calendar1 = new GregorianCalendar(1997, 11, 25);
 30 String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday", "Wednesday",
 31 "Thursday", "Friday", "Saturday"};
 32 System.out.println("December 25, 1997 is a " +
 33 dayNameOfWeek[calendar1.get(Calendar.DAY_OF_WEEK) − 1]);
 34 }
 35 }

Current time is Tue Sep 22 12:55:56 EDT 2015
YEAR: 2015
MONTH: 8
DATE: 22
HOUR: 0
HOUR_OF_DAY: 12
MINUTE: 55
SECOND: 56
DAY_OF_WEEK: 3
DAY_OF_MONTH: 22
DAY_OF_YEAR: 265
WEEK_OF_MONTH: 4
WEEK_OF_YEAR: 39
AM_PM: 1
December 25, 1997 is a Thursday

The set(int field, value) method defined in the Calendar class can be used to set a field. For example, you can use calendar.set(Calendar.DAY_OF_MONTH, 1) to set the calendar to the first day of the month.

set(field, value)

The add(field, value) method adds the specified amount to a given field. For example, add(Calendar.DAY_OF_MONTH, 5) adds five days to the current time of the calendar. add(Calendar.DAY_OF_MONTH, −5) subtracts five days from the current time of the calendar.

add(field, amount)

To obtain the number of days in a month, use calendar.getActualMaximum(Calendar.DAY_OF_MONTH). For example, if the calendar were for March, this method would return 31.

getActualMaximum(field)

You can set a time represented in a Date object for the calendar by invoking calendar.setTime(date) and retrieve the time by invoking calendar.getTime().

setTime(date)

getTime()

	13.4.1 Can you create a Calendar object using the Calendar class?

	13.4.2 Which method in the Calendar class is abstract?

	13.4.3 How do you create a Calendar object for the current time?

	13.4.4 For a Calendar object c, how do you get its year, month, date, hour, minute, and second?

13.5 Interfaces

	An interface is a class-like construct for defining common operations for objects.

In many ways an interface is similar to an abstract class, but its intent is to specify common behavior for objects of related classes or unrelated classes. For example, using appropriate interfaces, you can specify that the objects are comparable, edible, and/or cloneable.

The concept of interface

To distinguish an interface from a class, Java uses the following syntax to define an interface:

modifier interface InterfaceName {
 /** Constant declarations */
 /** Abstract method signatures */
}

Here is an example of an interface:

public interface Edible {
 /** Describe how to eat */
 public abstract String howToEat();
}

An interface is treated like a special class in Java. Each interface is compiled into a separate bytecode file, just like a regular class. You can use an interface more or less the same way you use an abstract class. For example, you can use an interface as a data type for a reference variable, as the result of casting, and so on. As with an abstract class, you cannot create an instance from an interface using the new operator.

You can use the Edible interface to specify whether an object is edible. This is accomplished by letting the class for the object implement this interface using the implements keyword. For example, the classes Chicken and Fruit in Listing 13.7 (lines 30 and 49) implement the Edible interface. The relationship between the class and the interface is known as interface inheritance. Since interface inheritance and class inheritance are essentially the same, we will simply refer to both as inheritance.

interface inheritance

Listing 13.7 TestEdible.java

 1 public class TestEdible {
 2 public static void main(String[] args) {
 3 Object[] objects = {new Tiger(), new Chicken(), new Apple()};
 4 for (int i = 0; i < objects.length; i++) {
 5 if (objects[i] instanceof Edible)
 6 System.out.println(((Edible)objects[i]).howToEat());
 7
 8 if (objects[i] instanceof Animal) {
 9 System.out.println(((Animal)objects[i]).sound());
 10 }
 11 }
 12 }
 13 }
 14
Animal class 15 abstract class Animal {
 16 private double weight;
 17
 18 public double getWeight() {
 19 return weight;
 20 }
 21
 22 public void setWeight(double weight) {
 23 this.weight = weight;
 24 }
 25
 26 /** Return animal sound */
 27 public abstract String sound();
 28 }
 29
implements Edible 30 class Chicken extends Animal implements Edible {
 31 @Override
howToEat() 32 public String howToEat() {
 33 return "Chicken: Fry it";
 34 }
 35
 36 @Override
 37 public String sound() {
 38 return "Chicken: cock-a-doodle-doo";
 39 }
 40 }
 41
Tiger class 42 class Tiger extends Animal {
 43 @Override
 44 public String sound() {
 45 return "Tiger: RROOAARR";
 46 }
 47 }
 48
implements Edible 49 abstract class Fruit implements Edible {
 50 // Data fields, constructors, and methods omitted here
 51 }
 52
Apple class 53 class Apple extends Fruit {
 54 @Override
 55 public String howToEat() {
 56 return "Apple: Make apple cider";
 57 }
 58 }
 59
Orange class 60 class Orange extends Fruit {
 61 @Override
 62 public String howToEat() {
 63 return "Orange: Make orange juice";
 64 }
 65 }

Tiger: RROOAARR
 Chicken: Fry it
 Chicken: cock-a-doodle-doo
 Apple: Make apple cider

This example uses several classes and interfaces. Their inheritance relationship is shown in Figure 13.4.

[image: A U M L diagram.]
Figure 13.4

Edible is a supertype for Chicken and Fruit. Animal is a supertype for Chicken and Tiger. Fruit is a supertype for Orange and Apple.

Description

The Animal class defines the weight property with its getter and setter methods (lines 16–24) and the sound method (line 27). The sound method is an abstract method and will be implemented by a concrete animal class.

The Chicken class implements Edible to specify that chickens are edible. When a class implements an interface, it implements all the methods defined in the interface. The Chicken class implements the howToEat method (lines 32–34). Chicken also extends Animal to implement the sound method (lines 37–39).

The Fruit class implements Edible. Since it does not implement the howToEat method, Fruit must be defined as abstract (line 49). The concrete subclasses of Fruit must implement the howToEat method. The Apple and Orange classes implement the howToEat method (lines 55 and 62).

The main method creates an array with three objects for Tiger, Chicken, and Apple (line 3) and invokes the howToEat method if the element is edible (line 6), and the sound method if the element is an animal (line 9).

common behavior

In essence, the Edible interface defines common behavior for edible objects. All edible objects have the howToEat method.

omit modifiers

 Note

The modifiers public static final on data fields and the modifiers public abstract on methods can be omitted in an interface. Therefore, the following interface definitions are equivalent:

	public interface T {
 public static final int K = 1;

 public abstract void p();
}

	Equivalent
	public interface T {
 int K = 1;

 void p();
}

Although the public modifier may be omitted for a method defined in the interface, the method must be defined public when it is implemented in a subclass.

 Note

default methods

Java 8 introduced default interface methods using the keyword default. A default method provides a default implementation for the method in the interface. A class that implements the interface may simply use the default implementation for the method or override the method with a new implementation. This feature enables you to add a new method to an existing interface with a default implementation without having to rewrite the code for the existing classes that implement this interface.

Java 8 also permits public static methods in an interface. A public static method in an interface can be used just like a public static method in a class. Here is an example of defining default methods and static methods in an interface:

public static methods

public interface A {
 /** default method */
 public default void doSomething() {
 System.out.println("Do something");
 }

 /** static method */
 public static int getAValue() {
 return 0;
 }
}

	13.5.1 Suppose A is an interface. Can you create an instance using new A()?

	13.5.2 Suppose A is an interface. Can you declare a reference variable x with type A like this?

A x;

	13.5.3 Which of the following is a correct interface?

	interface A {
 void print() { }
}

	abstract interface A {
 abstract void print() { }
}

	(a)

	(b)

	abstract interface A {
 print();
}

	interface A {
 void print();
}

	(c)

	(d)

	interface A {
 default void print() {
 }
}

	interface A {
 static int get() {
 return 0;
 }
}

	(e)

	(f)

	13.5.4 Show the error in the following code:

interface A {
 void m1();
}

class B implements A {
 void m1() {
 System.out.println("m1");
 }
}

13.6 The Comparable Interface

	The Comparable interface defines the compareTo method for comparing objects.

Suppose you want to design a generic method to find the larger of two objects of the same type, such as two students, two dates, two circles, two rectangles, or two squares. In order to accomplish this, the two objects must be comparable, so the common behavior for the objects must be comparable. Java provides the Comparable interface for this purpose. The interface is defined as follows:

java.lang.Comparable

// Interface for comparing objects, defined in java.lang
package java.lang;

public interfaceComparable<E> {
 public int compareTo(E o);
}

The compareTo method determines the order of this object with the specified object o and returns a negative integer, zero, or a positive integer if this object is less than, equal to, or greater than o.

The Comparable interface is a generic interface. The generic type E is replaced by a concrete type when implementing this interface. Many classes in the Java library implement Comparable to define a natural order for objects. The classes Byte, Short, Integer, Long, Float, Double, Character, BigInteger, BigDecimal, Calendar, String, and Date all implement the Comparable interface. For example, the Integer, BigInteger, String, and Date classes are defined as follows in the Java API:

	public final class Integer extends Number
 implements Comparable<Integer> {
 // class body omitted

 @Override
 public int compareTo(Integer o) {
 // Implementation omitted
 }
}

	public class BigInteger extends Number
 implements Comparable<Biginteger> {
 // class body omitted

 @Override
 public int compareTo(BigInteger o) {
 // Implementation omitted
 }
}

	public final class String extends Object
 implements Comparable<String> {
 // class body omitted

 @Override
 public int compareTo(String o) {
 // Implementation omitted
 }
}

	public class Date extends Object
 implements Comparable<Date> {
 // class body omitted

 @Override
 public int compareTo(Date o) {
 // Implementation omitted
 }
}

Thus, numbers are comparable, strings are comparable, and so are dates. You can use the compareTo method to compare two numbers, two strings, and two dates. For example, the following code:

 1 System.out.println(new Integer(3).compareTo(new Integer(5)));
 2 System.out.println("ABC".compareTo("ABC"));
 3 java.util.Date date1 = new java.util.Date(2013, 1, 1);
 4 java.util.Date date2 = new java.util.Date(2012, 1, 1);
 5 System.out.println(date1.compareTo(date2));

displays

 −1
 0
 1

Line 1 displays a negative value since 3 is less than 5. Line 2 displays zero since ABC is equal to ABC. Line 5 displays a positive value since date1 is greater than date2.

Let n be an Integer object, s be a String object, and d be a Date object. All the following expressions are true:

	n instanceof Integer

	s instanceof String

	d instanceof java.util.Date

	n instanceof Object

	s instanceof Object

	d instanceof Object

	n instanceof Comparable

	s instanceof Comparable

	d instanceof Comparable

Since all Comparable objects have the compareTo method, the java.util.Arrays.sort(Object[]) method in the Java API uses the compareTo method to compare and sorts the objects in an array, provided the objects are instances of the Comparable interface. Listing 13.8 gives an example of sorting an array of strings and an array of BigInteger objects.

Listing 13.8 SortComparableObjects.java

 1 import java.math.*;
 2
 3 public class SortComparableObjects {
 4 public static void main(String[] args) {
create an array 5 String[] cities = {"Savannah", "Boston", "Atlanta", "Tampa"};
sort the array 6 java.util.Arrays.sort(cities);
 7 for (String city: cities)
 8 System.out.print(city + " ");
 9 System.out.println();
 10
create an array 11 BigInteger[] hugeNumbers = {new BigInteger("2323231092923992"),
 12 new BigInteger("432232323239292"),
 13 new BigInteger("54623239292")};
sort the array 14 java.util.Arrays.sort(hugeNumbers);
 15 for (BigInteger number: hugeNumbers)
 16 System.out.print(number + " ");
 17 }
 18 }

Atlanta Boston Savannah Tampa
54623239292 432232323239292 2323231092923992

The program creates an array of strings (line 5) and invokes the sort method to sort the strings (line 6). The program creates an array of BigInteger objects (lines 11–13) and invokes the sort method to sort the BigInteger objects (line 14).

You cannot use the sort method to sort an array of Rectangle objects because ­Rectangle does not implement Comparable. However, you can define a new rectangle class that implements Comparable. The instances of this new class are comparable. Let this new class be named ComparableRectangle, as shown in Listing 13.9.

Listing 13.9 ComparableRectangle.java

 1 public class ComparableRectangle extends Rectangle
implements Comparable 2 implements Comparable<ComparableRectangle> {
 3 /** Construct a ComparableRectangle with specified properties */
 4 public ComparableRectangle(double width, double height) {
 5 super(width, height);
 6 }
 7
 8 @Override // Implement the compareTo method defined in Comparable
implement compareTo 9 public int compareTo(ComparableRectangle o) {
 10 if (getArea() > o.getArea())
 11 return 1;
 12 else if (getArea() < o.getArea())
 13 return −1;
 14 else
 15 return 0;
 16 }
 17
 18 @Override // Implement the toString method in GeometricObject
implement toString 19 public String toString() {
 20 return super.toString() + " Area: " + getArea();
 21 }
 22 }

ComparableRectangle extends Rectangle and implements Comparable, as shown in Figure 13.5. The keyword implements indicates that ComparableRectangle inher­its all the constants from the Comparable interface and implements the methods in the ­interface. The compareTo method compares the areas of two rectangles. An instance of Comparable­Rectangle is also an instance of Rectangle, GeometricObject, Object, and Comparable.

[image: A flow chart represents shows the actions resulting from comparable rectangle.]
Figure 13.5

ComparableRectangle extends Rectangle and implements Comparable.

Description

You can now use the sort method to sort an array of ComparableRectangle objects, as in Listing 13.10.

Listing 13.10 SortRectangles.java

 1 public class SortRectangles {
 2 public static void main(String[] args) {
create an array 3 ComparableRectangle[] rectangles = {
 4 new ComparableRectangle(3.4, 5.4),
 5 new ComparableRectangle(13.24, 55.4),
 6 new ComparableRectangle(7.4, 35.4),
 7 new ComparableRectangle(1.4, 25.4)};
sort the array 8 java.util.Arrays.sort(rectangles);
 9 for (Rectangle rectangle: rectangles) {
 10 System.out.print(rectangle + " ");
 11 System.out.println();
 12 }
 13 }
 14 }

Width: 3.4 Height: 5.4 Area: 18.36
Width: 1.4 Height: 25.4 Area: 35.559999999999995
idth: 7.4 Height: 35.4 Area: 261.96
Width: 13.24 Height: 55.4 Area: 733.496

An interface provides another form of generic programming. It would be difficult to use a generic sort method to sort the objects without using an interface in this example, because multiple inheritance would be necessary to inherit Comparable and another class, such as Rectangle, at the same time.

benefits of interface

The Object class contains the equals method, which is intended for the subclasses of the Object class to override in order to compare whether the contents of the objects are the same. Suppose the Object class contains the compareTo method, as defined in the Comparable interface; the sort method can be used to compare a list of any objects. Whether a compareTo method should be included in the Object class is debatable. Since the compareTo method is not defined in the Object class, the Comparable interface is defined in Java to enable objects to be compared if they are instances of the Comparable interface. compareTo should be consistent with equals. That is, for two objects o1 and o2, o1.compareTo(o2) == 0 if and only if o1.equals(o2) is true. Therefore, you should also override the equals method in the ComparableRectangle class to return true if two rectangles have the same area.

	13.6.1 True or false? If a class implements Comparable, the object of the class can invoke the compareTo method.

	13.6.2 Which of the following is the correct method header for the compareTo method in the String class?

public int compareTo(String o)
public int compareTo(Object o)

	13.6.3 Can the following code be compiled? Why?

Integer n1 = new Integer(3);
Object n2 = new Integer(4);
System.out.println(n1.compareTo(n2));

	13.6.4 You can define the compareTo method in a class without implementing the ­Comparable interface. What are the benefits of implementing the Comparable interface?

	13.6.5 What is wrong in the following code?

public class Test {
 public static void main(String[] args) {
 Person[] persons = {new Person(3), new Person(4), new Person(1)};
 java.util.Arrays.sort(persons);
 }
}

class Person {
 private int id;

 Person(int id) {
 this.id = id;
 }
}

	13.6.6 Simplify the code in lines 10–15 in Listing 13.9 using one line of code. Also override the equals method in this class.

	13.6.7 Listing 13.5 has an error. If you add list.add(new BigInteger ("3432323234344343102")); in line 11, you will see the result is incorrect. This is due to the fact that a double value can have up to 17 significant digits. When invoking doubleValue() on a BigInteger object in line 24, precision is lost. Fix the error by converting the numbers into BigDecimal, and compare them using the compareTo method in line 24.

13.7 The Cloneable Interface

	The Cloneable interface specifies that an object can be cloned.

Often, it is desirable to create a copy of an object. To do this, you need to use the clone method and understand the Cloneable interface.

An interface contains constants and abstract methods, but the Cloneable interface is a special case. The Cloneable interface in the java.lang package is defined as follows:

java.lang.Cloneable

package java.lang;

public interface Cloneable {
}

This interface is empty. An interface with an empty body is referred to as a marker interface. A marker interface is used to denote that a class possesses certain desirable properties. A class that implements the Cloneable interface is marked cloneable, and its objects can be cloned using the clone() method defined in the Object class.

marker interface

Many classes in the Java library (e.g., Date, Calendar and ArrayList) implement Cloneable. Thus, the instances of these classes can be cloned. For example, the following code:

1 Calendar calendar = new GregorianCalendar(2013, 2, 1);
2 Calendar calendar1 = calendar;
3 Calendar calendar2 = (Calendar)calendar.clone();
4 System.out.println("calendar == calendar1 is " +
5 (calendar == calendar1));
6 System.out.println("calendar == calendar2 is " +
7 (calendar == calendar2));
8 System.out.println("calendar.equals(calendar2) is " +
9 calendar.equals(calendar2));

displays

calendar == calendar1 is true
calendar == calendar2 is false
calendar.equals(calendar2) is true

In the preceding code, line 2 copies the reference of calendar to calendar1, so calendar and calendar1 point to the same Calendar object. Line 3 creates a new object that is the clone of calendar and assigns the new object’s reference to calendar2. calendar2 and calendar are different objects with the same contents.

The following code:

 1 ArrayList<Double> list1 = new ArrayList<>();
 2 list1.add(1.5);
 3 list1.add(2.5);
 4 list1.add(3.5);
 5 ArrayList<Double> list2 = (ArrayList<Double>)list1.clone();
 6 ArrayList<Double> list3 = list1;
 7 list2.add(4.5);
 8 list3.remove(1.5);
 9 System.out.println("list1 is " + list1);
10 System.out.println("list2 is " + list2);
11 System.out.println("list3 is " + list3);

displays

list1 is [2.5, 3.5]
list2 is [1.5, 2.5, 3.5, 4.5]
list3 is [2.5, 3.5]

In the preceding code, line 5 creates a new object that is the clone of list1 and assigns the new object’s reference to list2. list2 and list1 are different objects with the same contents. Line 6 copies the reference of list1 to list3, so list1 and list3 point to the same ArrayList object. Line 7 adds 4.5 into list2. Line 8 removes 1.5 from list3. Since list1 and list3 point to the same ArrayList, line 9 and 11 display the same content.

clone arrays

You can clone an array using the clone method. For example, the following code:

1 int[] list1 = {1, 2};
2 int[] list2 = list1.clone();
3 list1[0] = 7;
4 list2[1] = 8;
5 System.out.println("list1 is " + list1[0] + ", " + list1[1]);
6 System.out.println("list2 is " + list2[0] + ", " + list2[1]);

displays

list1 is 7, 2
list2 is 1, 8

Note the return type of the clone() method for an array is the same as the type of the array. For example, the return type for list1.clone() is int[] since list1 is of the type int[].

how to implement Cloneable

To define a custom class that implements the Cloneable interface, the class must override the clone() method in the Object class. Listing 13.11 defines a class named House that implements Cloneable and Comparable.

Listing 13.11 House.java

 1 public class House implements Cloneable, Comparable<House> {
 2 private int id;
 3 private double area;
 4 private java.util.Date whenBuilt;
 5
 6 public House(int id, double area) {
 7 this.id = id;
 8 this.area = area;
 9 whenBuilt = new java.util.Date();
 10 }
 11
 12 public int getId() {
 13 return id;
 14 }
 15
 16 public double getArea() {
 17 return area;
 18 }
 19
 20 public java.util.Date getWhenBuilt() {
 21 return whenBuilt;
 22 }
 23
 24 @Override /** Override the protected clone method defined in
 25 the Object class, and strengthen its accessibility */
 26 public Object clone() {
 27 try {
This exception is thrown if	 28 return super.clone();
 House does not implement 29 }
 Cloneable 30 catch (CloneNotSupportedException ex) {
 31 return null;
 32 }
 33 }
 34
 35 @Override // Implement the compareTo method defined in Comparable
 36 public int compareTo(House o) {
 37 if (area > o.area)
 38 return 1;
 39 else if (area < o.area)
 40 return −1;
 41 else
 42 return 0;
 43 }
 44 }

The House class implements the clone method (lines 26–33) defined in the Object class. The header for the clone method defined in the Object class is:

protected native Object clone() throws CloneNotSupportedException;

The keyword native indicates that this method is not written in Java, but is implemented in the JVM for the native platform. The keyword protected restricts the method to be accessed in the same package or in a subclass. For this reason, the House class must override the method and change the visibility modifier to public so the method can be used in any package. Since the clone method implemented for the native platform in the Object class performs the task of cloning objects, the clone method in the House class simply invokes super.clone(). The clone method defined in the Object class throws ­CloneNotSupportedException if the object is not a type of Cloneable. Since we catch the exception in the method (lines 30–32), there is no need to declare it in the clone() method header.

CloneNotSupported­Exception

The House class implements the compareTo method (lines 36–43) defined in the ­Comparable interface. The method compares the areas of two houses.

You can now create an object of the House class and create an identical copy from it, as follows:

House house1 = new House(1, 1750.50);
House house2 = (House)house1.clone();

house1 and house2 are two different objects with identical contents. The clone method in the Object class copies each field from the original object to the target object. If the field is of a primitive type, its value is copied. For example, the value of area (double type) is copied from house1 to house2. If the field is of an object, the reference of the field is copied. For example, the field whenBuilt is of the Date class, so its reference is copied into house2, as shown in Figure 13.6a. Therefore, house1.whenBuilt == house2.whenBuilt is true, although house1 == house2 is false. This is referred to as a shallow copy rather than a deep copy, meaning if the field is of an object type, the object’s reference is copied rather than its contents.

shallow copy

deep copy

[image: In diagram ay, both houses refer to a single value for, When Built, colon, Date. In diagram b, houses 1 and 2 each refer to a separate, deep, copy of when Built, colon, Date.]
Figure 13.6

(a) The default clone method performs a shallow copy. (b) The custom clone method performs a deep copy.

deep copy

To perform a deep copy for a House object, replace the clone() method in lines 26–33 with the following code: (For the complete code, see liveexample.pearsoncmg.com/text/House.txt.)

 public Object clone() throws CloneNotSupportedException {
 // Perform a shallow copy
 House houseClone = (House)super.clone();
 // Deep copy on whenBuilt
 houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());
 return houseClone;
 }

or

 public Object clone() {
 try {
 // Perform a shallow copy
 House houseClone = (House)super.clone();
 // Deep copy on whenBuilt
 houseClone.whenBuilt = (java.util.Date)(whenBuilt.clone());
 return houseClone;
 }
 catch (CloneNotSupportedException ex) {
 return null;
 }
 }

Now, if you clone a House object in the following code:

House house1 = new House(1, 1750.50);
House house2 = (House)house1.clone();

house1.whenBuilt == house2.whenBuilt will be false. house1 and house2 contain two different Date objects, as shown in Figure 13.6b.

Several questions arise from the clone method and Cloneable interface.

First, why is the clone method in the Object class defined protected, not public? Not every object can be cloned. The designer of Java purposely forces the subclasses to override it if an object of the subclass is cloneable.

Second, why is the clone method not defined in the Cloneable interface? Java provides a native method that performs a shallow copy to clone an object. Since a method in an interface is abstract, this native method cannot be implemented in the interface. Therefore, the designer of Java decided to define and implement the native clone method in the Object class.

Third, why doesn’t the Object class implement the Cloneable interface? The answer is the same as in the first question.

Fourth, what would happen if the House class did not implement Cloneable in line 1 of Listing 13.11? house1.clone() would return null because super.clone() in line 28 would throw a CloneNotSupportedException.

Fifth, you may implement the clone method in the House class without invoking the clone method in the Object class as follows:

 public Object clone() {
 // Perform a shallow copy
 House houseClone = new House(id, area);

 // Deep copy on whenBuilt
 houseClone.whenBuilt = new Date();
 houseClone.getWhenBuilt().setTime(whenBuilt.getTime());

 return houseClone;
 }

In this case, the House class does not need to implement the Cloneable interface, and you have to make sure all the data fields are copied correctly. Using the clone() method in the Object class relieves you from manually copying the data fields. The clone method in the Object class automatically performs a shallow copy of all the data fields.

	13.7.1 Can a class invoke the super.clone() when implementing the clone() method if the class does not implement the java.lang.Cloneable? Does the Date class ­implement Cloneable?

	13.7.2 What would happen if the House class (defined in Listing 13.11) did not override the clone() method or if House did not implement java.lang.Cloneable?

	13.7.3 Show the output of the following code:

java.util.Date date = new java.util.Date();
java.util.Date date1 = date;
java.util.Date date2 = (java.util.Date)(date.clone());
System.out.println(date == date1);
System.out.println(date == date2);
System.out.println(date.equals(date2));

	13.7.4 Show the output of the following code:

ArrayList<String> list = new ArrayList<>();
list.add("New York");
ArrayList<String> list1 = list;
ArrayList<String> list2 = (ArrayList<String>)(list.clone());
list.add("Atlanta");
System.out.println(list == list1);
System.out.println(list == list2);
System.out.println("list is " + list);
System.out.println("list1 is " + list1);
System.out.println("list2.get(0) is " + list2.get(0));
System.out.println("list2.size() is " + list2.size());

	13.7.5 What is wrong in the following code?

public class Test {
 public static void main(String[] args) {
 GeometricObject x = new Circle(3);
 GeometricObject y = x.clone();
 System.out.println(x == y);
 }
}

	13.7.6 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 House house1 = new House(1, 1750, 50);
 House house2 = (House)house1.clone();
 System.out.println(house1.equals(house2);
 }
}

13.8 Interfaces vs. Abstract Classes

	A class can implement multiple interfaces, but it can only extend one superclass.

An interface can be used more or less the same way as an abstract class, but defining an interface is different from defining an abstract class. Table 13.2 summarizes the differences.

Table 13.2 Interfaces vs. Abstract Classes

	
	Variables

	Constructors

	Methods

	Abstract class

	No restrictions.

	Constructors are invoked by subclasses through constructor chaining. An abstract class cannot be instantiated using the new operator.

	No restrictions.

	Interface

	All variables must be ­public static final.

	No constructors. An interface cannot be ­instantiated using the new operator.

	May contain public abstract instance methods, public default, and public static methods.

Java allows only single inheritance for class extension, but allows multiple extensions for interfaces. For example,

single inheritance

multiple inheritance

public class NewClass extends BaseClass
 implements Interface1, ... , InterfaceN {
 ...
}

An interface can inherit other interfaces using the extends keyword. Such an interface is called a subinterface. For example, NewInterface in the following code is a subinterface of Interface1, . . . , and InterfaceN.

subinterface

public interface NewInterface extends Interface1, ... , InterfaceN {
 // constants and abstract methods
}

A class implementing NewInterface must implement the abstract methods defined in NewInterface, Interface1, . . . , and InterfaceN. An interface can extend other interfaces, but not classes. A class can extend its superclass and implement multiple interfaces.

All classes share a single root, the Object class, but there is no single root for interfaces. Like a class, an interface also defines a type. A variable of an interface type can reference any instance of the class that implements the interface. If a class implements an interface, the interface is like a superclass for the class. You can use an interface as a data type and cast a variable of an interface type to its subclass, and vice versa. For example, suppose c is an instance of Class2 in Figure 13.7. c is also an instance of Object, Class1, Interface1, Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

[image: A diagram shows the relationships between different classes and interfaces.]
Figure 13.7

Class1 implements Interface1; Interface1 extends Interface1_1 and Interface1_2. Class2 extends Class1 and implements Interface2_1 and Interface2_2.

Description

 Note

Class names are nouns. Interface names may be adjectives or nouns.

naming convention

 Design Guide

Abstract classes and interfaces can both be used to specify common behavior of objects. How do you decide whether to use an interface or a class? In general, a strong is-a ­relationship that clearly describes a parent–child relationship should be modeled using classes. For example, Gregorian calendar is a calendar, so the relationship between the class java.util.GregorianCalendar and java.util.Calendar is modeled using class inheritance. A weak is-a relationship, also known as an is-kind-of ­relationship, indicates that an object possesses a certain property. A weak is-a relationship can be modeled using interfaces. For example, all strings are comparable, so the String class implements the Comparable interface.

is-a relationship

is-kind-of relationship

In general, interfaces are preferred over abstract classes because an interface can define a common supertype for unrelated classes. Interfaces are more flexible than classes. Consider the Animal class. Suppose the howToEat method is defined in the Animal class as follows:

interface preferred

Animal class

abstract class Animal {
 public abstract String howToEat();
}

Two subclasses of Animal are defined as follows:

Chicken class

class Chicken extends Animal {
 @Override
 public String howToEat() {
 return "Fry it";
 }
}

class Duck extends Animal {
 @Override
 public String howToEat() {
 return "Roast it";
 }
}

Duck class

Given this inheritance hierarchy, polymorphism enables you to hold a reference to a Chicken object or a Duck object in a variable of type Animal, as in the following code:

public static void main(String[] args) {
 Animal animal = new Chicken();
 eat(animal);

 animal = new Duck();
 eat(animal);
}

public static void eat(Animal animal) {
 System.out.println(animal.howToEat());
}

The JVM dynamically decides which howToEat method to invoke based on the actual object that invokes the method.

You can define a subclass of Animal. However, there is a restriction: The subclass must be for another animal (e.g., Turkey). Another issue arises: If an animal (e.g., Tiger) is not edible, it will not be appropriate to extend the Animal class.

Interfaces don’t have these problems. Interfaces give you more flexibility than classes because you don’t have to make everything fit into one type of class. You may define the howToEat() method in an interface, and let it serve as a common supertype for other classes. For example,

Edible interface

Chicken class

public class DesignDemo {
 public static void main(String[] args) {
 Edible stuff = new Chicken();
 eat(stuff);

 stuff = new Duck();
 eat(stuff);

 stuff = new Broccoli();
 eat(stuff);
 }

 public static void eat(Edible stuff) {
 System.out.println(stuff.howToEat()):
 }
}

interface Edible {
 public String howToEat();
}

class Chicken implements Edible {
 @Override
 public String howToEat() {
 return "Fry it";
 }
}

class Duck implements Edible {
 @Override
 public String howToEat() {
 return "Roast it";
 }
}

class Broccoli implements Edible {
 @Override
 public String howToEat() {
 return "Stir-fry it";
 }
}

Duck class

Broccoli class

To define a class that represents edible objects, simply let the class implement the Edible interface. The class is now a subtype of the Edible type, and any Edible object can be passed to invoke the howToEat method.

	13.8.1 Give an example to show why interfaces are preferred over abstract classes.

	13.8.2 Define the terms abstract classes and interfaces. What are the similarities and ­differences between abstract classes and interfaces?

	13.8.3 True or false?

	An interface is compiled into a separate bytecode file.

	An interface can have static methods.

	An interface can extend one or more interfaces.

	An interface can extend an abstract class.

	An interface can have default methods.

13.9 Case Study: The Rational Class

	This section shows how to design the Rational class for representing and processing rational numbers.

A rational number has a numerator and a denominator in the form a/b, where a is the ­numerator and b the denominator. For example, 1/3, 3/4, and 10/4 are rational numbers.

A rational number cannot have a denominator of 0, but a numerator of 0 is fine. Every integer i is equivalent to a rational number i/1. Rational numbers are used in exact computations involving fractions—for example, 1/3 = 0.33333. . . . This number cannot be precisely represented in floating-point format using either the data type double or float. To obtain the exact result, we must use rational numbers.

Java provides data types for integers and floating-point numbers, but not for rational ­numbers. This section shows how to design a class to represent rational numbers.

Since rational numbers share many common features with integers and floating-point ­numbers, and Number is the root class for numeric wrapper classes, it is appropriate to define Rational as a subclass of Number. Since rational numbers are comparable, the Rational class should also implement the Comparable interface. Figure 13.8 illustrates the Rational class and its relationship to the Number class and the Comparable interface.

[image: An annotated U M L diagram, with multiple parts.]
Figure 13.8

The properties, constructors, and methods of the Rational class are illustrated in UML.

Description

A rational number consists of a numerator and a denominator. There are many equivalent rational numbers—for example, 1/3 = 2/6 = 3/9 = 4/12. The numerator and the denominator of 1/3 have no common divisor except 1, so 1/3 is said to be in lowest terms.

To reduce a rational number to its lowest terms, you need to find the greatest common ­divisor (GCD) of the absolute values of its numerator and denominator, then divide both the numerator and denominator by this value. You can use the method for computing the GCD of two integers n and d, as suggested in Listing 5.9, GreatestCommonDivisor.java. The numerator and denominator in a Rational object are reduced to their lowest terms.

As usual, let us first write a test program to create two Rational objects and test its ­methods. Listing 13.12 is a test program.

Listing 13.12 TestRationalClass.java

 1 public class TestRationalClass {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create and initialize two rational numbers r1 and r2
create a Rational 5 Rational r1 = new Rational(4, 2);
create a Rational 6 Rational r2 = new Rational(2, 3);
 7
 8 // Display results
add 9 System.out.println(r1 + " + " + r2 + " = " + r1.add(r2));
 10 System.out.println(r1 + " − " + r2 + " = " + r1.subtract(r2));
 11 System.out.println(r1 + " * " + r2 + " = " + r1.multiply(r2));
 12 System.out.println(r1 + " / " + r2 + " = " + r1.divide(r2));
 13 System.out.println(r2 + " is " + r2.doubleValue());
 14 }
 15 }

2 + 2/3 = 8/3
2 – 2/3 = 4/3
2 * 2/3 = 4/3
2 / 2/3 = 3
2/3 is 0.6666666666666666

The main method creates two rational numbers, r1 and r2 (lines 5 and 6), and displays the results of r1 + r2, r1 – r2, r1 x r2, and r1 / r2 (lines 9–12). To perform r1 + r2, invoke r1.add(r2) to return a new Rational object. Similarly, invoke r1.subtract(r2) for r1 – r2, r1.multiply(r2) for r1 x r2, and r1.divide(r2) for r1 / r2.

The doubleValue() method displays the double value of r2 (line 13). The ­doubleValue() method is defined in java.lang.Number and overridden in Rational.

Note when a string is concatenated with an object using the plus sign (+), the object’s string representation from the toString() method is used to concatenate with the string. Thus, r1 + " + " + r2 + " = " + r1.add(r2) is equivalent to r1.toString() + " + " + r2.toString() + " = " + r1.add(r2).toString().

The Rational class is implemented in Listing 13.13.

Listing 13.13 Rational.java

 1 public class Rational extends Number implements Comparable<Rational> {
 2 // Data fields for numerator and denominator
 3 private long numerator = 0;
 4 private long denominator = 1;
 5
 6 /** Construct a rational with default properties */
 7 public Rational() {
 8 this(0, 1);
 9 }
 10
 11 /** Construct a rational with specified numerator and denominator */
 12 public Rational(long numerator, long denominator) {
 13 long gcd = gcd(numerator, denominator);
 14 this.numerator = (denominator > 0 ? 1 : –1) * numerator / gcd;
 15 this.denominator = Math.abs(denominator) / gcd;
 16 }
 17
 18 /** Find GCD of two numbers */
 19 private static long gcd(long n, long d) {
 20 long n1 = Math.abs(n);
 21 long n2 = Math.abs(d);
 22 int gcd = 1;
 23
 24 for (int k = 1; k <= n1 && k <= n2; k++) {
 25 if (n1 % k == 0 && n2 % k == 0)
 26 gcd = k;
 27 }
 28
 29 return gcd;
 30 }
 31
 32 /** Return numerator */
 33 public long getNumerator() {
 34 return numerator;
 35 }
 36
 37 /** Return denominator */
 38 public long getDenominator() {
 39 return denominator;
 40 }
 41
 42 /** Add a rational number to this rational */
ab+cd=ad+bcbd 43 public Rational add(Rational secondRational) {
 44 long n = numerator * secondRational.getDenominator() +
 45 denominator * secondRational.getNumerator();
 46 long d = denominator * secondRational.getDenominator();
 47 return new Rational(n, d);
 48 }
 49
 50 /** Subtract a rational number from this rational */
ab−cd=ad−bcbd 51 public Rational subtract(Rational secondRational) {
 52 long n = numerator * secondRational.getDenominator()
 53 – denominator * secondRational.getNumerator();
 54 long d = denominator * secondRational.getDenominator();
 55 return new Rational(n, d);
 56 }
 57
 58 /** Multiply a rational number by this rational */
ab×cd=acbd 59 public Rational multiply(Rational secondRational) {
 60 long n = numerator * secondRational.getNumerator();
 61 long d = denominator * secondRational.getDenominator();
 62 return new Rational(n, d);
 63 }
 64
 65 /** Divide a rational number by this rational */
ab÷cd=adbc 66 public Rational divide(Rational secondRational) {
 67 long n = numerator * secondRational.getDenominator();
 68 long d = denominator * secondRational.numerator;
 69 return new Rational(n, d);
 70 }
 71
 72 @Override
 73 public String toString() {
 74 if (denominator == 1)
 75 return numerator + "";
 76 else
 77 return numerator + "/" + denominator;
 78 }
 79
 80 @Override // Override the equals method in the Object class
 81 public boolean equals(Object other) {
 82 if ((this.subtract((Rational)(other))).getNumerator() == 0)
 83 return true;
 84 else
 85 return false;
 86 }
 87
 88 @Override // Implement the abstract intValue method in Number
 89 public int intValue() {
 90 return (int)doubleValue();
 91 }
 92
 93 @Override // Implement the abstract floatValue method in Number
 94 public float floatValue() {
 95 return (float)doubleValue();
 96 }
 97
 98 @Override // Implement the doubleValue method in Number
 99 public double doubleValue() {
 100 return numerator * 1.0 / denominator;
 101 }
 102
 103 @Override // Implement the abstract longValue method in Number
 104 public long longValue() {
 105 return (long)doubleValue();
 106 }
 107
 108 @Override // Implement the compareTo method in Comparable
 109 public int compareTo(Rational o) {
 110 if (this.subtract(o).getNumerator() > 0)
 111 return 1;
 112 else if (this.subtract(o).getNumerator() < 0)
 113 return −1;
 114 else
 115 return 0;
 116 }
 117 }

The rational number is encapsulated in a Rational object. Internally, a rational number is represented in its lowest terms (line 13) and the numerator determines its sign (line 14). The denominator is always positive (line 15).

The gcd method (lines 19–30 in the Rational class) is private; it is not intended for use by clients. The gcd method is only for internal use by the Rational class. The gcd method is also static, since it is not dependent on any particular Rational object.

The abs(x) method (lines 20 and 21 in the Rational class) is defined in the Math class and returns the absolute value of x.

Two Rational objects can interact with each other to perform add, subtract, multiply, and divide operations. These methods return a new Rational object (lines 43–70).

The methods toString and equals in the Object class are overridden in the Rational class (lines 72–86). The toString() method returns a string representation of a Rational object in the form numerator/denominator, or simply numerator if denominator is 1. The equals(Object other) method returns true if this rational number is equal to the other rational number.

The abstract methods intValue, longValue, floatValue, and doubleValue in the Number class are implemented in the Rational class (lines 88–106). These methods return the int, long, float, and double value for this rational number.

The compareTo(Rational other) method in the Comparable interface is ­implemented in the Rational class (lines 108–116) to compare this rational number to the other rational number.

 Note

The getter methods for the properties numerator and denominator are provided in the Rational class, but the setter methods are not provided, so, once a Rational object is created, its contents cannot be changed. The Rational class is immutable. The String class and the wrapper classes for primitive-type values are also immutable.

immutable

 Note

The numerator and denominator are represented using two variables. It is possible to use an array of two integers to represent the numerator and denominator (see Programming Exercise 13.14). The signatures of the public methods in the Rational class are not changed, although the internal representation of a rational number is changed. This is a good example to illustrate the idea that the data fields of a class should be kept private so as to encapsulate the implementation of the class from the use of the class.

encapsulation

The Rational class has serious limitations and can easily overflow. For example, the following code will display an incorrect result, because the denominator is too large:

overflow

public class Test {
 public static void main(String[] args) {
 Rational r1 = new Rational(1, 123456789);
 Rational r2 = new Rational(1, 123456789);
 Rational r3 = new Rational(1, 123456789);
 System.out.println("r1 * r2 * r3 is " +
 r1.multiply(r2.multiply(r3)));
 }
}

r1 * r2 * r3 is –1/2204193661661244627

To fix it, you can implement the Rational class using the BigInteger for numerator and denominator (see Programming Exercise 13.15).

	13.9.1 Show the output of the following code:

 Rational r1 = new Rational(–2, 6);
 System.out.println(r1.getNumerator());
 System.out.println(r1.getDenominator());
 System.out.println(r1.intValue());
 System.out.println(r1.doubleValue());

	13.9.2 Why is the following code wrong?

 Rational r1 = new Rational(–2, 6);
 Object r2 = new Rational(1, 45);
 System.out.println(r2.compareTo(r1));

	13.9.3 Why is the following code wrong?

 Object r1 = new Rational(–2, 6);
 Rational r2 = new Rational(1, 45);
 System.out.println(r2.compareTo(r1));

	13.9.4 Simplify the code in lines 82–85 in Listing 13.13 Rational.java using one line of code without using the if statement. Simply the code in lines 110-115 using a ­conditional operator.

	13.9.5 Trace the program carefully and show the output of the following code:

 Rational r1 = new Rational(1, 2);
 Rational r2 = new Rational(1, –2);
 System.out.println(r1.add(r2));

	13.9.6 The preceding question shows a bug in the toString method. Revise the toString() method to fix the error.

13.10 Class-Design Guidelines

	Class-design guidelines are helpful for designing sound classes.

You have learned how to design classes from the preceding example and from many other examples in the previous chapters. This section summarizes some of the guidelines.

13.10.1 Cohesion

A class should describe a single entity, and all the class operations should logically fit together to support a coherent purpose. You can use a class for students, for example, but you should not combine students and staff in the same class, because students and staff are different entities.

coherent purpose

separate responsibilities

A single entity with many responsibilities can be broken into several classes to separate the responsibilities. The classes String, StringBuilder, and StringBuffer all deal with strings, for example, but have different responsibilities. The String class deals with immutable strings, the StringBuilder class is for creating mutable strings, and the StringBuffer class is similar to StringBuilder, except that StringBuffer contains synchronized methods for updating strings.

13.10.2 Consistency

Follow standard Java programming style and naming conventions. Choose informative names for classes, data fields, and methods. A popular style is to place the data declaration before the constructor, and place constructors before methods.

naming conventions

Make the names consistent. It is not a good practice to choose different names for ­similar operations. For example, the length() method returns the size of a String, a ­StringBuilder, and a StringBuffer. It would be inconsistent if different names were used for this method in these classes.

naming consistency

In general, you should consistently provide a public no-arg constructor for constructing a default instance. If a class does not support a no-arg constructor, document the reason. If no constructors are defined explicitly, a public default no-arg constructor with an empty body is assumed.

no-arg constructor

If you want to prevent users from creating an object for a class, you can declare a private constructor in the class, as is the case for the Math class and the GuessDate class.

13.10.3 Encapsulation

A class should use the private modifier to hide its data from direct access by clients. This makes the class easy to maintain.

encapsulate data fields

Provide a getter method only if you want the data field to be readable and provide a setter method only if you want the data field to be updateable. For example, the Rational class provides a getter method for numerator and denominator, but no setter method, because a Rational object is immutable.

13.10.4 Clarity

Cohesion, consistency, and encapsulation are good guidelines for achieving design clarity. In addition, a class should have a clear contract that is easy to explain and easy to understand.

easy to explain

Users can incorporate classes in many different combinations, orders, and environments. Therefore, you should design a class that imposes no restrictions on how or when the user can use it, design the properties in a way that lets the user set them in any order and with any combination of values, and design methods that function independently of their order of occurrence. For example, the Loan class contains the properties loanAmount, numberOfYears, and ­annualInterestRate. The values of these properties can be set in any order.

independent methods

Methods should be defined intuitively without causing confusion. For example, the substring(int beginIndex, int endIndex) method in the String class is somewhat confusing. The method returns a substring from beginIndex to endIndex – 1, rather than to endIndex. It would be more intuitive to return a substring from beginIndex to endIndex.

intuitive meaning

You should not declare a data field that can be derived from other data fields. For example, the following Person class has two data fields: birthDate and age. Since age can be derived from birthDate, age should not be declared as a data field.

independent properties

public class Person {
 private java.util.Date birthDate;
 private int age;
 ...
}

13.10.5 Completeness

Classes are designed for use by many different customers. In order to be useful in a wide range of applications, a class should provide a variety of ways for customization through properties and methods. For example, the String class contains more than 40 methods that are useful for a variety of applications.

13.10.6 Instance vs. Static

A variable or method that is dependent on a specific instance of the class must be an instance variable or method. A variable that is shared by all the instances of a class should be declared static. For example, the variable numberOfObjects in ­Circle in Listing 9.8 is shared by all the objects of the Circle class, and therefore is declared static. A method that is not dependent on a specific instance should be defined as a static method. For instance, the getNumberOfObjects() method in ­Circle is not tied to any specific instance and therefore is defined as a static method.

Always reference static variables and methods from a class name (rather than a reference variable) to improve readability and avoid errors.

Do not pass a parameter from a constructor to initialize a static data field. It is better to use a setter method to change the static data field. Thus, the following class in (a) is better replaced by (b):

	public class SomeThing {
 private int tl;
 private static int t2;

 public SomeThing(int tl, int t2) {
 ...
 }
}

	public class SomeThing {
 private int tl;
 private static int t2;

 public SomeThing(int tl) {
 ...
 }

 public static void setT2(int t2) {
 SomeThing.t2 = t2;
 }
}

	(a)

	(b)

Instance and static are integral parts of object-oriented programming. A data field or method is either instance or static. Do not mistakenly overlook static data fields or methods. It is a common design error to define an instance method that should have been static. For example, the factorial(int n) method for computing the factorial of n should be defined static because it is independent of any specific instance.

common design error

A constructor is always instance because it is used to create a specific instance. A static variable or method can be invoked from an instance method, but an instance variable or method cannot be invoked from a static method.

13.10.7 Inheritance vs. Aggregation

The difference between inheritance and aggregation is the difference between an is-a and a has-a relationship. For example, an apple is a fruit; thus, you would use inheritance to model the relationship between the classes Apple and Fruit. A person has a name; thus, you would use aggregation to model the relationship between the classes Person and Name.

13.10.8 Interfaces vs. Abstract Classes

Both interfaces and abstract classes can be used to specify common behavior for objects. How do you decide whether to use an interface or a class? In general, a strong is-a relationship that clearly describes a parent–child relationship should be modeled using classes. For example, since an orange is a fruit, their relationship should be modeled using class inheritance. A weak is-a relationship, also known as an is-kind-of relationship, indicates that an object possesses a certain property. A weak is-a relationship can be modeled using interfaces. For example, all strings are comparable, so the String class implements the Comparable interface. A circle or a rectangle is a geometric object, so Circle can be designed as a subclass of ­GeometricObject. Circles are different and comparable based on their radii, so Circle can implement the Comparable interface.

Interfaces are more flexible than abstract classes because a subclass can extend only one superclass, but can implement any number of interfaces. However, interfaces cannot contain data fields. In Java 8, interfaces can contain default methods and static methods, which are very useful to simplify class design. We will give examples of this type of design in Chapter 20, Lists, Stacks, Queues, and Priority Queues.

	13.10.1 Describe class-design guidelines.

Key Terms

	abstract class 500

	abstract method 500

	deep copy 520

	interface 500

	marker interface 518

	shallow copy 520

	subinterface 523

Chapter Summary

	Abstract classes are like regular classes with data and methods, but you cannot create instances of abstract classes using the new operator.

	An abstract method cannot be contained in a nonabstract class. If a subclass of an abstract superclass does not implement all the inherited abstract methods of the superclass, the subclass must be defined as abstract.

	A class that contains abstract methods must be abstract. However, it is possible to define an abstract class that doesn’t contain any abstract methods.

	A subclass can be abstract even if its superclass is concrete.

	An interface is a class-like construct that contains only constants, abstract methods, default methods, and static methods. In many ways, an interface is similar to an abstract class, but an abstract class can contain data fields.

	An interface is treated like a special class in Java. Each interface is compiled into a separate bytecode file, just like a regular class.

	The java.lang.Comparable interface defines the compareTo method. Many classes in the Java library implement Comparable.

	The java.lang.Cloneable interface is a marker interface. An object of the class that implements the Cloneable interface is cloneable.

	A class can extend only one superclass but can implement one or more interfaces.

	An interface can extend one or more interfaces.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 13.2 and 13.3

		**13.1	(Triangle class) Design a new Triangle class that extends the abstract ­GeometricObject class. Draw the UML diagram for the classes Triangle and GeometricObject then implement the Triangle class. Write a test program that prompts the user to enter three sides of the triangle, a color, and a Boolean value to indicate whether the triangle is filled. The program should create a Triangle object with these sides, and set the color and filled properties using the input. The program should display the area, perimeter, color, and true or false to indicate whether it is filled or not.

	*13.2 (Shuffle ArrayList) Write the following method that shuffles an ArrayList of numbers:

public static void shuffle(ArrayList<Number> list)

	*13.3 (Sort ArrayList) Write the following method that sorts an ArrayList of numbers:

public static void sort(ArrayList<Number> list)

	**13.4 (Display calendars) Rewrite the PrintCalendar class in Listing 6.12 to display a calendar for a specified month using the Calendar and GregorianCalendar classes. Your program receives the month and year from the command line. For example:

java Exercise13_04 5 2016

This displays the calendar shown in Figure 13.9 .

[image: The command prompt displays a calendar, arranging days 1 to 31 in columns under abbreviated headings for the days of the week.]
Figure 13.9

The program displays a calendar for May 2016.

You can also run the program without the year. In this case, the year is the current year. If you run the program without specifying a month and a year, the month is the current month.

Sections 13.4–13.8

	*13.5 (Enable GeometricObject comparable) Modify the GeometricObject class to implement the Comparable interface and define a static max method in the GeometricObject class for finding the larger of two GeometricObject objects. Draw the UML diagram and implement the new GeometricObject class. Write a test program that uses the max method to find the larger of two circles, the larger of two rectangles.

	*13.6 (The ComparableCircle class) Define a class named ComparableCircle that extends Circle and implements Comparable. Draw the UML diagram and implement the compareTo method to compare the circles on the basis of area. Write a test class to find the larger of two instances of ComparableCircle objects, and the larger between a circle and a rectangle.

	*13.7 (The Colorable interface) Design an interface named Colorable with a void method named howToColor(). Every class of a colorable object must implement the Colorable interface. Design a class named Square that extends GeometricObject and implements Colorable. Implement howToColor to display the message Color all four sides. The Square class contains a data field side with getter and setter methods, and a constructor for constructing a Square with a specified side. The Square class has a private double data field named side with its getter and setter methods. It has a no-arg constructor to create a Square with side 0, and another constructor that creates a Square with the specified side.

Draw a UML diagram that involves Colorable, Square, and ­GeometricObject. Write a test program that creates an array of five GeometricObjects. For each object in the array, display its area and invoke its howToColor method if it is colorable.

	*13.8 (Revise the MyStack class) Rewrite the MyStack class in Listing 11.10 to perform a deep copy of the list field.

	*13.9 (Enable Circle comparable) Rewrite the Circle class in Listing 13.2 to extend GeometricObject and implement the Comparable interface. Override the equals method in the Object class. Two Circle objects are equal if their radii are the same. Draw the UML diagram that involves Circle, GeometricObject, and Comparable.

		*13.10	(Enable Rectangle comparable) Rewrite the Rectangle class in Listing 13.3 to extend GeometricObject and implement the Comparable interface. Override the equals method in the Object class. Two Rectangle objects are equal if their areas are the same. Draw the UML diagram that involves Rectangle, GeometricObject, and Comparable.

Redesign the ­Rectangle class

		*13.11	(The Octagon class) Write a class named Octagon that extends ­GeometricObject and implements the Comparable and Cloneable interfaces. Assume all eight sides of the octagon are of equal length. The area can be ­computed using the following formula:

area=(2+4/2) ∗ side ∗ side

The Octagon class has a private double data field named side with its getter and setter methods. The class has a no-arg constructor that creates an Octagon with side 0, and a constructor to create an Octagon with a specified side.

Draw the UML diagram that involves Octagon, GeometricObject, ­Comparable, and Cloneable. Write a test program that creates an Octagon object with side value 5 and displays its area and perimeter. Create a new object using the clone method, and compare the two objects using the compareTo method.

		*13.12	(Sum the areas of geometric objects) Write a method that sums the areas of all the geometric objects in an array. The method signature is:

public static double sumArea(GeometricObject[] a)

Write a test program that creates an array of four objects (two circles and two rectangles) and computes their total area using the sumArea method.

		*13.13	(Enable the Course class cloneable) Rewrite the Course class in Listing 10.6 to add a clone method to perform a deep copy on the students field.

Section 13.9

		*13.14	(Demonstrate the benefits of encapsulation) Rewrite the Rational class in ­Listing 13.13 using a new internal representation for the numerator and ­denominator. ­Create an array of two integers as follows:

private long[] r = new long[2];

Use r[0] to represent the numerator and r[1] to represent the denominator. The signatures of the methods in the Rational class are not changed, so a client application that uses the previous Rational class can continue to use this new Rational class without being recompiled.

		*13.15	(Use BigInteger for the Rational class) Redesign and implement the Rational class in Listing 13.13 using BigInteger for the numerator and denominator. Write a test program that prompts the user to enter two rational ­numbers and ­display the results as shown in the following sample run:

Enter the first rational number: 3 454
Enter the second second number: 7 2389
3/454 + 7/2389 = 10345/1084606
3/454 – 7/2389 = 3989/1084606
3/454 * 7/2389 = 21/1084606
3/454 / 7/2389 = 7167/3178
7/2389 is 0.0029300962745918793

		*13.16	(Create a rational-number calculator) Write a program similar to Listing 7.9 , Calculator.java. Instead of using integers, use rationals, as shown in Figure 13.10 . You will need to use the split method in the String class, introduced in Section 10.10.3 , Replacing and Splitting Strings, to retrieve the numerator string and denominator string, and convert strings into integers using the Integer.­parseInt method.

[image: Two figures, labeled ay and b.]
Figure 13.10

(a) The program takes a string argument that consists of operand1, operator, and operand2 from the command line and displays the expression and the result of the arithmetic operation. (b) A complex number can be interpreted as a point in a plane.

Description

		*13.17	(Math: The Complex class) A complex number is a number in the form a+bi, where a and b are real numbers and i is  −1. The numbers a and b are known as the real part and imaginary part of the complex number, respectively. You can perform addition, subtraction, multiplication, and division for complex numbers using the following formulas:

a + bi + c + di = (a + c) + (b + d)i

a + bi − (c + di) = (a − c) + (b − d)i

(a + bi) * ( c + di) = (ac − bd) + (bc + ad)i

(a + bi)/(c + di) = (ac + bd)/(
c
2

 + 
d
2

) + (bc − ad)i/(
c
2

 + 
d
2

)

You can also obtain the absolute value for a complex number using the following formula:

|
a + bi | = 

a
2

 + 
b
2

(A complex number can be interpreted as a point on a plane by identifying the (a,b) values as the coordinates of the point. The absolute value of the complex number corresponds to the distance of the point to the origin, as shown in Figure 13.10 .)

Design a class named Complex for representing complex numbers and the methods add, ­subtract, multiply, divide, and abs for performing complex-number operations, and override toString method for returning a string representation for a complex number. The toString method returns (a + bi) as a string. If b is 0, it simply returns a. Your Complex class should also implement Cloneable and Comparable. Compare two complex numbers using their absolute values.

Provide three constructors Complex(a, b), Complex(a), and ­Complex(). Complex() creates a Complex object for number 0, and Complex(a) creates a Complex object with 0 for b. Also provide the getRealPart() and ­getImaginaryPart() methods for returning the real part and the imaginary part of the complex number, respectively.

Draw the UML class diagram and implement the class. Write a test program that prompts the user to enter two complex numbers and displays the result of their addition, subtraction, multiplication, division, and absolute value. Here is a sample run:

Enter the first complex number: 3.5 5.5
Enter the second complex number: –3.5 1
(3.5 + 5.5i) + (–3.5 + 1.0i) = 0.0 + 6.5i
(3.5 + 5.5i) – (–3.5 + 1.0i) = 7.0 + 4.5i
(3.5 + 5.5i) * (–3.5 + 1.0i) = –17.75 + –15.75i
(3.5 + 5.5i) / (–3.5 + 1.0i) = –0.5094 + –1.7i
|(3.5 + 5.5i)| = 6.519202405202649

	13.18 (Use the Rational class) Write a program that computes the following summation series using the Rational class:

1
2

 + 
2
3

 + 
3
4

 + ⋯ + 

98

99

 + 

99

100

You will discover that the output is incorrect because of integer overflow (too large). To fix this problem, see Programming Exercise 13.15 .

	13.19 (Convert decimals to fractions) Write a program that prompts the user to enter a decimal number and displays the number in a fraction. (Hint: read the decimal number as a string, extract the integer part and fractional part from the string, and use the BigInteger implementation of the Rational class in Programming Exercise 13.15 to obtain a rational number for the decimal number.) Here are some sample runs:

Enter a decimal number: 3.25
The fraction number is 13/4

Enter a decimal number: –0.45452
The fraction number is –11363/25000

	13.20 (Algebra: solve quadratic equations) Rewrite Programming Exercise 3.1 to obtain imaginary roots if the determinant is less than 0 using the Complex class in ­Programming Exercise 13.17 . Here are some sample runs:

Enter a, b, c: 1 3 1
The roots are –0.381966 and –2.61803

Enter a, b, c: 1 2 1
The root is –1

Enter a, b, c: 1 2 3
The roots are –1.0 + 1.4142i and –1.0 + –1.4142i

	13.21 (Algebra: vertex form equations) The equation of a parabola can be expressed in either standard form (y=ax2+bx+c) or vertex form (y=a(x−h)2+k). Write a program that prompts the user to enter a, b, and c as integers in standard form and displays h (=  −b2a) and k (= 4ac−b24a) in the vertex form. Display h and k as rational numbers. Here are some sample runs:

Enter a, b, c: 1 3 1
h is –3/2 k is –5/4

Enter a, b, c: 2 3 4
h is –3/4 k is 23/8

CHAPTER 14 JavaFX Basics

Objectives

	To distinguish between JavaFX, Swing, and AWT (§14.2).

	To write a simple JavaFX program and understand the relationship among stages, scenes, and nodes (§14.3).

	To create user interfaces using panes, groups, UI controls, and shapes (§14.4).

	To update property values automatically through property binding (§14.5).

	To use the common properties style and rotate for nodes (§14.6).

	To create colors using the Color class (§14.7).

	To create fonts using the Font class (§14.8).

	To create images using the Image class, and to create image views using the ImageView class (§14.9).

	To layout nodes using Pane, StackPane, FlowPane, GridPane, BorderPane, HBox, and VBox (§14.10).

	To display text using the Text class, and create shapes using the Line, Circle, Rectangle, Ellipse, Arc, Polygon, and Polyline classes (§14.11).

	To develop the reusable GUI component ClockPane for displaying an analog clock (§14.12).

14.1 Introduction

	JavaFX is an excellent pedagogical tool for learning object-oriented programming.

JavaFX is a new framework for developing Java GUI programs. The JavaFX API is an excellent example of how the object-oriented principles are applied. This chapter serves two purposes. First, it presents the basics of JavaFX programming. Second, it uses JavaFX to demonstrate object-oriented design and programming. Specifically, this chapter introduces the framework of JavaFX and discusses JavaFX GUI components and their relationships. You will learn how to develop simple GUI programs using layout panes, groups, buttons, labels, text fields, colors, fonts, images, image views, and shapes.

14.2 JavaFX vs. Swing and AWT

	Swing and AWT are replaced by the JavaFX platform for developing rich GUI applications.

When Java was introduced, the GUI classes were bundled in a library known as the Abstract Windows Toolkit (AWT). AWT is fine for developing simple graphical user interfaces, but not for developing comprehensive GUI projects. In addition, AWT is prone to platform-specific bugs. The AWT user-interface components were replaced by a more robust, versatile, and flexible library known as Swing. Swing components are painted directly on canvases using Java code. Swing components depend less on the target platform, and use less of the native GUI resources. Swing is designed for developing desktop GUI applications. It is now replaced by a completely new GUI platform known as JavaFX. JavaFX incorporates modern GUI technologies to enable you to develop rich GUI applications. In addition, JavaFX provides a multitouch support for touch-enabled devices such as tablets and smart phones. JavaFX has a built-in 2D, 3D, animation support, and video and audio playback. Using third-party software, you can develop JavaFX programs to be deployed on devices running iOS or Android.

AWT

Swing

JavaFX

This book teaches Java GUI programming using JavaFX for three reasons. First, JavaFX is much simpler to learn and use for new Java programmers. Second, JavaFX is a better ­pedagogical tool for demonstrating object-oriented programming than Swing. Third, Swing is essentially dead because it will not receive any further enhancement. JavaFX is the new GUI tool for developing cross-platform rich GUI applications on desktop computers and on ­handheld devices.

why teaching JavaFX

	14.2.1 Explain the evolution of Java GUI technologies.

	14.2.2 Explain why this book teaches Java GUI using JavaFX.

14.3 The Basic Structure of a JavaFX Program

	The javafx.application.Application class defines the essential framework for writing JavaFX programs.

We begin by writing a simple JavaFX program that illustrates the basic structure of a JavaFX program. Every JavaFX program is defined in a class that extends javafx.application .Application, as shown in Listing 14.1.

Getting started with JavaFX

Listing 14.1 MyJavaFX.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5
extend Application 6 public class extends Application {
 7 @Override // Override the start method in the Application class
override start 8 public void start(Stage primaryStage) {
 9 // Create a scene and place a button in the scene
create a button 10 Button btOK = new Button("OK");
create a scene 11 Scene scene = new Scene(btOK, 200, 250);
set stage title 12 primaryStage.setTitle("MyJavaFX"); // Set the stage title
set a scene 13 primaryStage.setScene(scene); // Place the scene in the stage
display stage 14 primaryStage.show(); // Display the stage
 15 }
 16
 17 /**
 18 * The main method is only needed for the IDE with limited
 19 * JavaFX support. Not needed for running from the command line.
 20 */
main method 21 public static void main(String[] args) {
launch application 22 Application.launch(args);
 23 }
 24 }

You can test and run your program from a command window or from an IDE such as ­NetBeans or Eclipse. A sample run of the program is shown in Figure 14.1. Supplements II.F–H give the tips for running JavaFX programs from a command window, NetBeans, and Eclipse.

[image: The sample run creates a window titled, My Java F X, displaying a button labeled, O K, that occupies the entire window.]
Figure 14.1

A simple JavaFX displays a button in the window.

JavaFX on NetBeans and Eclipse

The launch method (line 22) is a static method defined in the Application class for launching a stand-alone JavaFX application. The main method (lines 21–23) is not needed if you run the program from the command line. It may be needed to launch a JavaFX program from an IDE with a limited JavaFX support. When you run a JavaFX application without a main method, JVM automatically invokes the launch method to run the application.

launch

The main class overrides the start method defined in javafx.application .Application (line 8). After a JavaFX application is launched, the JVM constructs an instance of the class using its no-arg constructor and invokes its start method. The start method normally places UI controls in a scene and displays the scene in a stage, as shown in Figure 14.2a.

construct application

start application

[image: Figures ay and b examine the basic design of, scenes, for individual windows.]
Figure 14.2

(a) Stage is a window for displaying a scene that contains nodes. (b) Multiple stages can be displayed in a JavaFX program.

Description

Line 10 creates a Button object and places it in a Scene object (line 11). A Scene object can be created using the constructor Scene(node, width, height). This constructor specifies the width and height of the scene and places the node in the scene.

scene

A Stage object is a window. A Stage object called primary stage is automatically created by the JVM when the application is launched. Line 13 sets the scene to the primary stage and line 14 displays the primary stage. JavaFX names the Stage and Scene classes using the analogy from the theater. You may think of stage as the platform to support scenes, and nodes as actors to perform in the scenes.

primary stage

You can create additional stages if needed. The JavaFX program in Listing 14.2 displays two stages, as shown in Figure 14.2b.

Listing 14.2 MultipleStageDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5
 6 public class MultipleStageDemo extends Application {
 7 @Override // Override the start method in the Application class
primary stage in start 8 public void start(Stage primaryStage) {
 9 // Create a scene and place a button in the scene
 10 Scene scene = new Scene(new Button("OK"), 200, 250);
 11 primaryStage.setTitle("MyJavaFX"); // Set the stage title
 12 primaryStage.setScene(scene); // Place the scene in the stage
display primary stage 13 primaryStage.show(); // Display the stage
 14
create second stage 15 Stage stage = new Stage(); // Create a new stage
 16 stage.setTitle("Second Stage"); // Set the stage title
 17 // Set a scene with a button in the stage
 18 stage.setScene(new Scene(new Button("New Stage"), 200, 250));
display second stage 19 stage.show(); // Display the stage
 20 }
main method omitted 21 }

Note the main method is omitted in the listing since it is identical for every JavaFX application. From now on, we will not list the main method in our JavaFX source code for brevity.

main method omitted

By default, the user can resize the stage. To prevent the user from resizing the stage, invoke stage.setResizable(false).

prevent stage resizing

	14.3.1 How do you define a JavaFX main class? What is the signature of the start method? What is a stage? What is a primary stage? Is a primary stage ­automatically ­created? How do you display a stage? Can you prevent the user from resizing the stage? Can you replace Application.launch(args) by launch(args) in line 22 in Listing 14.1 ?

	14.3.2 Show the output of the following JavaFX program:

import javafx.application.Application;
import javafx.stage.Stage;
public class Test extends Application {
 public class Test() {
 System.out.println("Test constructor is invoked");
 }
 @Override // Override the start method in the Application class
 public void start(Stage primaryStage) {
 System.out.println("start method is invoked");
 }
 public static void main(String[] args) {
 System.out.println("launch application");
 Application.launch(args);
 }
}

14.4 Panes, Groups, UI Controls, and Shapes

	Panes, Groups, UI controls, and shapes are subtypes of Node.

When you run MyJavaFX in Listing 14.1, the window is displayed as shown in Figure 14.1. The button is always centered in the scene and occupies the entire window no matter how you resize it. You can fix the problem by setting the position and size properties of a button. However, a better approach is to use container classes, called panes, for automatically laying out the nodes in a desired location and size. You place nodes inside a pane then place the pane into a scene. A node is a visual component such as a shape, an image view, a UI control, a group, or a pane. A shape refers to a text, line, circle, ellipse, rectangle, arc, polygon, polyline, and so on. A UI ­control refers to a label, button, check box, radio button, text field, text area, and so on. A group is a container that groups a collection of nodes. You can apply transformations or effects to a group, which automatically apply to all the children in the group. A scene can be displayed in a stage, as shown in Figure 14.3a. The relationship among Stage, Scene, Node, Control, Group, and Pane is illustrated in the UML diagram, as shown in Figure 14.3b. Note a Scene can contain a ­Control, Group, or a Pane, but not a Shape or an ImageView. A Pane or a Group can contain any subtype of Node. You can create a Scene using the constructor Scene(Parent, width, height) or Scene(Parent). The dimension of the scene is automatically decided in the latter constructor. Every subclass of Node has a no-arg constructor for creating a default node.

pane

node

shape

UI control

group

[image: A wireframe diagram of panes, groups, and nodes, and a U M L diagram.]
Figure 14.3

(a) Panes and groups are used to hold nodes. (b) Nodes can be shapes, image views, UI controls, groups, and panes.

Description

Listing 14.3 gives a program that places a button in a pane, as shown in Figure 14.4.

[image: The sample run creates a window titled, Button in a pane, displaying a button labeled, O K, centered on a white background.]
Figure 14.4

A button is placed in the center of the pane.

Listing 14.3 ButtonInPane.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5 import javafx.scene.layout.StackPane;
 6
 7 public class ButtonInPane extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
 10 // Create a scene and place a button in the scene
create a pane 11 StackPane pane = new StackPane();
add a button 12 pane.getChildren().add(new Button("OK"));
add pane to scene 13 Scene scene = new Scene(pane, 200, 50);
 14 primaryStage.setTitle("Button in a pane"); // Set the stage title
 15 primaryStage.setScene(scene); // Place the scene in the stage
display stage 16 primaryStage.show(); // Display the stage
 17 }
main method omitted 18 }

The program creates a StackPane (line 11) and adds a button as a child of the pane (line 12). The getChildren() method returns an instance of javafx.collections .­ObservableList. ObservableList behaves very much like an ArrayList for storing a collection of elements. Invoking add(e) adds an element to the list. The StackPane places the nodes in the center of the pane on top of each other. Here, there is only one node in the pane. The StackPane respects a node’s preferred size. Therefore, you see the button displayed in its preferred size.

ObservableList

Along with many other constructors, each pane and group have a no-arg constructor, and also a contractor that adds one or more children to the pane or group. Thus, the code in lines 11 and 12 can be replaced using one statement:

StackPane pane = new StackPane(new Button("OK"));

Listing 14.4 gives an example that displays a circle in the center of the pane, as shown in Figure 14.5a.

[image: Figures ay and b show the window, Show Circle, before and after it is resized.]
Figure 14.5

(a) A circle is displayed in the center of the scene. (b) The circle is not ­centered after the window is resized.

Description

Listing 14.4 ShowCircle.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class ShowCircle extends Application {
 9 @Override // Override the start method in the Application class
 10 public void start(Stage primaryStage) {
 11 // Create a circle and set its properties
create a circle 12 Circle circle = new Circle();
set circle properties 13 circle.setCenterX(100);
 14 circle.setCenterY(100);
 15 circle.setRadius(50);
 16 circle.setStroke(Color.BLACK);
 17 circle.setFill(Color.WHITE);
 18
 19 // Create a pane to hold the circle
create a pane 20 Pane pane = new Pane();
add circle to pane 21 pane.getChildren().add(circle);
 22
 23 // Create a scene and place it in the stage
add pane to scene 24 Scene scene = new Scene(pane,200, 200);
 25 primaryStage.setTitle("ShowCircle"); // Set the stage title
 26 primaryStage.setScene(scene); // Place the scene in the stage
display stage 27 primaryStage.show(); // Display the stage
 28 }
main method omitted 29 }

The program creates a Circle (line 12) and sets its center at (100, 100) (lines 13 and 14), which is also the center for the scene, since the scene is created with the width and height of 200 (line 24). The radius of the circle is set to 50 (line 15). Note the measurement units for graphics in Java are all in pixels.

pixels

The stroke color (i.e., the color to draw the circle) is set to black (line 16). The fill color (i.e., the color to fill the circle) is set to white (line 17). You may set the color to null to specify that no color is set.

set color

The program creates a Pane (line 20) and places the circle in the pane (line 21). Note the coordinates of the upper-left corner of the pane is (0, 0) in the Java coordinate system, as shown in Figure 14.6a, as opposed to the conventional coordinate system, where (0, 0) is at the center of the window, as shown in Figure 14.6b. The x-coordinate increases from left to right, and the y-coordinate increases downward in the Java coordinate system.

[image: Figures ay and b compare the Java coordinate system to the conventional coordinate system.]
Figure 14.6

The Java coordinate system is measured in pixels, with (0, 0) at its ­upper-left corner.

Description

The pane is placed in the scene (line 24) and the scene is set in the stage (line 26). The circle is displayed in the center of the stage, as shown in Figure 14.5a. However, if you resize the window, the circle is not centered, as shown in Figure 14.5b. In order to display the circle centered as the window resizes, the x- and y-coordinates of the circle center need to be reset to the center of the pane. This can be done by using property binding, introduced in the next section.

	14.4.1 How do you create a Scene object? How do you set a scene in a stage? How do you place a circle into a scene?

	14.4.2 What is a pane? What is a node? How do you place a node in a pane? Can you directly place a Shape or an ImageView into a Scene? Can you directly place a Control or a Pane into a Scene?

	14.4.3 How do you create a Circle? How do you set its center location and radius? How do you set its stroke color and fill color?

	14.4.4 How do you replace the code in lines 20 and 21 in Listing 14.4 using one statement?

14.5 Property Binding

	You can bind a target object to a source object. A change in the source object will be automatically reflected in the target object.

JavaFX introduces a new concept called property binding that enables a target object to be bound to a source object. If the value in the source object changes, the target object is also automatically changed. The target object is called a binding object or a binding property, and the source object is called a bindable object or observable object. As discussed in Listing 14.4 ShowCircle.java, the circle is not centered after the window is resized. In order to display the circle centered as the window resizes, the x- and y-coordinates of the circle center need to be reset to the center of the pane. This can be done by binding the centerX with pane’s width/2 and centerY with pane’s height/2, as given in lines 16–17 Listing 14.5.

target object

source object

binding object

binding property

bindable object

observable object

Understand property binding

Listing 14.5 ShowCircleCentered.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class ShowCircleCentered extends Application {
 9 @Override // Override the start method in the Application class
 10 public void start(Stage primaryStage) {
 11 // Create a pane to hold the circle
create a pane 12 Pane pane = new Pane();
 13
 14 // Create a circle and set its properties
create a circle 15 Circle circle = new Circle();
bind properties 16 circle.centerXProperty().bind(pane.widthProperty().divide(2));
 17 circle.centerYProperty().bind(pane.heightProperty().divide(2));
 18 circle.setRadius(50);
 19 circle.setStroke(Color.BLACK);
 20 circle.setFill(Color.WHITE);
add circle to pane 21 pane.getChildren().add(circle); // Add circle to the pane
 22
 23 // Create a scene and place it in the stage
add pane to scene 24 Scene scene = new Scene(pane,200,200);
 25 primaryStage.setTitle("ShowCircleCentered"); // Set the stage title
 26 primaryStage.setScene(scene); // Place the scene in the stage
display stage 27 primaryStage.show(); // Display the stage
 28 }
 29 }

The Circle class has the centerX property for representing the x-coordinate of the circle center. This property like many properties in JavaFX classes can be used both as target and source in a property binding. A binding property is an object that can be bound to a source object. A target listens to the changes in the source and automatically updates itself once a change is made in the source. A target binds with a source using the bind method as follows:

target.bind(source);

The bind method is defined in the javafx.beans.property.Property interface. A binding property is an instance of javafx.beans.property.Property. An ­observable source object is an instance of the javafx.beans.value.­ObservableValue interface. An ObservableValue is an entity that wraps a value and allows to observe the value for changes.

the Property interface

the ObservableValue interface

A binding property is an object. JavaFX defines binding properties for primitive types and strings. For a double/float/long/int/boolean value, its binding property type is DoubleProperty/FloatProperty/LongProperty/IntegerProperty/BooleanProperty respectively. For a string, its binding property type is StringProperty. These properties are also subtypes of ObservableValue. Therefore, they can be used as both source and target in a binding.

common binding properties

common ObservableValue objects

By convention, each binding property (e.g., centerX) in a JavaFX class (e.g., Circle) has a getter (e.g., getCenterX()) and setter (e.g., setCenterX(double)) method for returning and setting the property’s value. It also has a getter method for returning the property itself. The naming convention for this method is the property name followed by the word Property. For example, the property getter method for centerX is centerXProperty(). We call the getCenterX() method as the value getter method, the setCenterX(double) method as the value setter method, and centerXProperty() as the property getter method. Note ­getCenterX() returns a double value, and centerXProperty() returns an object of the DoubleProperty type. Figure 14.7a shows the convention for defining a binding property in a class, and Figure 14.7b shows a concrete example in which centerX is a binding property of the type DoubleProperty.

value getter method

value setter method

property getter method

Figure 14.7

A binding property has a value getter method, setter method, and property getter method.

	public class SomeClassName {
 private PropertyType x;
 /** Value getter method */
 public propertyValueType getX() { ... }
 /** Value setter method */
 public void setX(propertyValueType value) { ... }
 /** Property getter method */
 public class PropertyType
 xProperty() { ... }
}

	
	public class Circle {

 private DoubleProperty centerX;
 /** Value getter method */
 public double getCenterX() { ... }

 /** Value setter method */
 public void setCenterX(double value) { ... }
 /** Property getter method */
 public class DoubleProperty centerXProperty() { ... }
}

	(a) x is a binding property

	
	(b) centerX is binding property in the Circle class

The program in Listing 14.5 is the same as in Listing 14.4 except that it binds circle’s centerX and centerY properties to half of pane’s width and height (lines 16 and 17). Note circle.centerXProperty() returns centerX and pane.widthProperty() returns width. Both centerX and width are binding properties of the DoubleProperty type. The numeric binding property classes such as DoubleProperty and IntegerProperty contain the add, subtract, multiply, and divide methods for adding, subtracting, multiplying, and dividing a value in a binding property and returning a new observable property. Therefore, pane.widthProperty().divide(2) returns a new observable property that represents half of the pane’s width. The statement

circle.centerXProperty().bind(pane.widthProperty().divide(2));

is the same as

DoubleProperty centerX = circle.centerXProperty();
DoubleProperty width = pane.widthProperty();
centerX.bind(width.divide(2));

Since centerX is bound to width.divide(2), when pane’s width is changed, centerX automatically updates itself to match pane’s width / 2.

Listing 14.6 gives another example that demonstrates bindings.

Listing 14.6 BindingDemo.java

 1 import javafx.beans.property.DoubleProperty;
 2 import javafx.beans.property.SimpleDoubleProperty;
 3
 4 public class BindingDemo {
 5 public static void main(String[] args) {
create a DoubleProperty 6 DoubleProperty d1 = new SimpleDoubleProperty(1);
create a DoubleProperty 7 DoubleProperty d2 = new SimpleDoubleProperty(2);
bind property 8 d1.bind(d2);
 9 System.out.println("d1 is " + d1.getValue()
 10 + " and d2 is " + d2.getValue());
set a new source value 11 d2.setValue(70.2);
 12 System.out.println("d1 is " + d1.getValue()
 13 + " and d2 is " + d2.getValue());
 14 }
 15 }

d1 is 2.0 and d2 is 2.0
d1 is 70.2 and d2 is 70.2

The program creates an instance of DoubleProperty using ­SimpleDoubleProperty(1) (line 6). Note that DoubleProperty, FloatProperty, LongProperty, ­IntegerProperty, and BooleanProperty are abstract classes. Their concrete subclasses ­SimpleDoubleProperty, SimpleFloatProperty, SimpleLongProperty, ­SimpleIntegerProperty, and SimpleBooleanProperty are used to create instances of these properties. These classes are very much like wrapper classes Double, Float, Long, Integer, and Boolean with additional features for property binding.

The program binds d1 with d2 (line 8). Now the values in d1 and d2 are the same. After setting d2 to 70.2 (line 11), d1 also becomes 70.2 (line 13).

The binding demonstrated in this example is known as unidirectional binding. Occasionally, it is useful to synchronize two properties so a change in one property is reflected in another object, and vice versa. This is called a bidirectional binding. If the target and source are both binding properties and observable properties, they can be bound bidirectionally using the bindBidirectional method.

unidirectional binding

bidirectional binding

	14.5.1 What is a binding property? What interface defines a binding property? What interface defines a source object? What are the binding object types for int, long, float, double, and boolean? Are Integer and Double binding properties? Can Integer and Double be used as source objects in a binding?

	14.5.2 Following the JavaFX binding property naming convention, for a binding property named age of the IntegerProperty type, what is its value getter method, value setter method, and property getter method?

	14.5.3 Can you create an object of IntegerProperty using new IntegerProperty(3)? If not, what is the correct way to create it? What will be the output if line 8 is replaced by d1.bind(d2.multiply(2)) in Listing 14.6 ? What will be the output if line 8 is replaced by d1.bind(d2.add(2)) in Listing 14.6 ?

	14.5.4 What is unidirectional binding and what is bidirectional binding? Are all binding properties capable of bidirectional binding? Write a statement to bind property d1 with property d2 bidirectionally.

14.6 Common Properties and Methods for Nodes

	The Node class defines many properties and methods that are common to all nodes.

Nodes share many common properties. This section introduces two such properties: style and rotate.

JavaFX style properties are similar to cascading style sheets (CSS) used to specify the styles for HTML elements in a Web page. Therefore, the style properties in JavaFX are called JavaFX CSS. In JavaFX, a style property is defined with a prefix –fx–. Each node has its own style properties. You can find these properties at docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html. For information on HTML and CSS, see Supplements V.A and V.B. If you are not familiar with HTML and CSS, you can still use JavaFX CSS.

JavaFX CSS

The syntax for setting a style is styleName:value. Multiple style properties for a node can be set together separated by semicolon (;). For example, the following statement:

circle.setStyle("−fx−stroke: black; −fx−fill: red;");

setStyle

sets two JavaFX CSS properties for a circle. This statement is equivalent to the following two statements:

circle.setStroke(Color.BLACK);
circle.setFill(Color.RED);

If an incorrect JavaFX CSS is used, your program will still compile and run, but the style will be ignored.

The rotate property enables you to specify an angle in degrees for rotating a node from its center. If the degree is positive, the rotation is performed clockwise; otherwise, it is performed counterclockwise. For example, the following code rotates a button 80 degrees:

button.setRotate(80);

Listing 14.7 gives an example that creates a button, sets its style, and adds it to a pane. It then rotates the pane 45 degrees and sets its style with border color red and background color light gray, as shown in Figure 14.8.

[image: The sample run creates a window titled, Node Style Rotate Demo, which displays a gray background, or parent, with a centered O K button, or node, both rotated to the right and centered over a white scene.]
Figure 14.8

A pane’s style is set and the pane is rotated 45 degrees.

Listing 14.7 NodeStyleRotateDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.stage.Stage;
 5 import javafx.scene.layout.StackPane;
 6
 7 public class NodeStyleRotateDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
 10 // Create a scene and place a button in the scene
 11 StackPane pane = new StackPane();
 12 Button btOK = new Button("OK");
 13 btOK.setStyle("-fx-border-color: blue;");
 14 pane.getChildren().add(btOK);
 15
rotate the pane 16 pane.setRotate(45);
set style for pane 17 pane.setStyle(
 18 "−fx−border−color: red; −fx−background−color: lightgray;");
 19
 20 Scene scene = new Scene(pane, 200, 250);
 21 primaryStage.setTitle("NodeStyleRotateDemo"); // Set the stage title
 22 primaryStage.setScene(scene); // Place the scene in the stage
 23 primaryStage.show(); // Display the stage
 24 }
 25 }

As seen in Figure 14.8, rotating a pane causes all its containing nodes rotated as well.

The Node class contains many useful methods that can be applied to all nodes. For example, you can use the contains(double x, double y) method to test whether a point (x, y) is inside the boundary of a node and use the setScaleX(double scale) and setScaleY(double scale) methods to scale a node.

contains method

setScaleX method

setScaleY method

	14.6.1 How do you set a style of a node with border color red? Modify the code to set the text color for the button to red.

	14.6.2 Can you rotate a pane, a text, or a button? Modify the code to rotate the button 15 degrees counterclockwise? How do you test if a point is inside a node? How do you scale up or down a node?

14.7 The Color Class

	The Color class can be used to create colors.

JavaFX defines the abstract Paint class for painting a node. The javafx.scene.paint.Color is a concrete subclass of Paint, which is used to encapsulate colors, as shown in Figure 14.9.

[image: An annotated U M L diagram with the title, java f x dot scene dot paint dot Color.]
Figure 14.9

Color encapsulates information about colors.

Description

A color instance can be constructed using the following constructor:

public class Color(double r, double g, double b, double opacity);

in which r, g, and b specify a color by its red, green, and blue components with values in the range from 0.0 (darkest shade) to 1.0 (lightest shade). The opacity value defines the transparency of a color within the range from 0.0 (completely transparent) to 1.0 (completely opaque). This is known as the RGBA model, where RGBA stands for red, green, blue, and alpha. The alpha value indicates the opacity. For example,

RBGA model

Color color = new Color(0.25, 0.14, 0.333, 0.51);

For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/FigureSection14_7.html.

The Color class is immutable. Once a Color object is created, its properties cannot be changed. The brighter() method returns a new Color with a larger red, green, and blue values, and the darker() method returns a new Color with a smaller red, green, and blue values. The opacity value is the same as in the original Color object.

You can also create a Color object using the static methods color(r, g, b), color(r, g, b, opacity), rgb(r, g, b), and rgb(r, g, b, opacity).

Alternatively, you can use one of the many standard colors such as BEIGE, BLACK, BLUE, BROWN, CYAN, DARKGRAY, GOLD, GRAY, GREEN, LIGHTGRAY, MAGENTA, NAVY, ORANGE, PINK, RED, SILVER, WHITE, and YELLOW defined as constants in the Color class. The following code, for instance, sets the fill color of a circle to red:

circle.setFill(Color.RED);

	14.7.1 How do you create a color? What is wrong about creating a Color using new Color(1.2, 2.3, 3.5, 4)? Which of two colors is darker, new Color(0, 0, 0, 1) or new Color(1, 1, 1, 1)? Does invoking c.darker() change the color value in c?

	14.7.2 How do you create a Color object with a random color?

	14.7.3 How do you set a circle object c with blue fill color using the setFill method and the setStyle method?

14.8 The Font Class

	A Font describes font name, weight, and size.

You can set fonts for rendering the text. The javafx.scene.text.Font class is used to create fonts, as shown in Figure 14.10.

[image: An annotated U M L diagram with the title, java f x dot scene dot text dot Font.]
Figure 14.10

Font encapsulates information about fonts.

Description

A Font instance can be constructed using its constructors or using its static methods. A Font is defined by its name, weight, posture, and size. Times New Roman, Courier, and Arial are examples of font names.You can obtain a list of available font family names by invoking the static getFontNames() method. This method returns List<String>. List is an interface that defines common methods for lists. ArrayList, introduced in Section 11.11, is a concrete class that implements List. There are two font postures defined as constants in the FontPosture class: FontPosture.ITALIC and FontPosture.REGULAR.

Font font1 = new Font("SansSerif", 16);
Font font2 = Font.font("Times New Roman", FontWeight.BOLD,
 FontPosture.ITALIC, 12);

Listing 14.8 gives a program that displays a label using the font (Times New Roman, bold, italic, and size 20), as shown in Figure 14.11.

[image: The sample run creates a window titled, Font Demo. The text, Java F X, appears in black serif and italic font, centered in a circle with a thin black edge, on a white scene.]
Figure 14.11

A label is on top of a circle displayed in the center of the scene.

Listing 14.8 FontDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.*;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.text.*;
 7 import javafx.scene.control.*;
 8 import javafx.stage.Stage;
 9
 10 public class FontDemo extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 // Create a pane to hold the circle
create a StackPane 14 Pane pane = new StackPane();
 15
 16 // Create a circle and set its properties
create a Circle 17 Circle circle = new Circle();
 18 circle.setRadius(50);
 19 circle.setStroke(Color.BLACK);
create a Color 20 circle.setFill(new Color(0.5,0.5, 0.5, 0.1));
add circle to the pane 21 pane.getChildren().add(circle); // Add circle to the pane
 22
 23 // Create a label and set its properties
create a label 24 Label label = new Label("JavaFX");
create a font 25 label.setFont(Font.font("Times New Roman",
 26 FontWeight.BOLD, FontPosture.ITALIC,20));
add label to the pane 27 pane.getChildren().add(label);
 28
 29 // Create a scene and place it in the stage
 30 Scene scene = new Scene(pane);
 31 primaryStage.setTitle("FontDemo"); // Set the stage title
 32 primaryStage.setScene(scene); // Place the scene in the stage
 33 primaryStage.show(); // Display the stage
 34 }
 35 }

The program creates a StackPane (line 14) and adds a circle and a label to it (lines 21 and 27). These two statements can be combined using the following one statement:

pane.getChildren().addAll(circle, label);

A StackPane places the nodes in the center and nodes are placed on top of each other. A custom color is created and set as a fill color for the circle (line 20). The program creates a label and sets a font (line 25) so that the text in the label is displayed in Times New Roman, bold, italic, and 20 pixels.

As you resize the window, the circle and label are displayed in the center of the window because the circle and label are placed in the stack pane. Stack pane automatically places nodes in the center of the pane.

A Font object is immutable. Once a Font object is created, its properties cannot be changed.

	14.8.1 How do you create a Font object with font name Courier, size 20, and weight bold?

	14.8.2 How do you find all available fonts on your system?

14.9 The Image and ImageView Classes

	The Image class represents a graphical image, and the ImageView class can be used to display an image.

Use Image and ImageView

The javafx.scene.image.Image class represents a graphical image and is used for loading an image from a specified filename or a URL. For example, new Image("image/us.gif") creates an Image object for the image file us.gif under the directory image in the Java class directory and new Image("http://liveexample.pearsoncmg.com/book/image/us.gif") creates an Image object for the image file in the URL on the Web.

The javafx.scene.image.ImageView is a node for displaying an image. An ImageView can be created from an Image object. For example, the following code creates an ImageView from an image file:

Image image = new Image("image/us.gif");
ImageView imageView = new ImageView(image);

Alternatively, you can create an ImageView directly from a file or a URL as follows:

ImageView imageView = new ImageView("image/us.gif");

The UML diagrams for the Image class and ImageView classes are illustrated in Figures 14.12 and 14.13.

[image: An annotated U M L diagram titled, java f x dot scene dot image dot Image.]
Figure 14.12

Image encapsulates information about images.

Description

[image: An annotated U M L diagram titled, java f x dot scene dot image dot Image View.]
Figure 14.13

ImageView is a node for displaying an image.

Description

Listing 14.9 displays an image in three image views, as shown in Figure 14.14.

[image: The sample run creates window titled, Show Image, which displays three versions of the American flag, in a row. Left to right, the images appear in correct proportion, then compressed, and then rotated 90 degrees and cropped.]
Figure 14.14

An image is displayed in three image views placed in a pane.

Source: booka/Fotolia.

Listing 14.9 ShowImage.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.HBox;
 4 import javafx.scene.layout.Pane;
 5 import javafx.geometry.Insets;
 6 import javafx.stage.Stage;
 7 import javafx.scene.image.Image;
 8 import javafx.scene.image.ImageView;
 9
 10 public class ShowImage extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 // Create a pane to hold the image views
create an HBox 14 Pane pane = new HBox(10);
 15 pane.setPadding(new Insets(5, 5, 5, 5));
create an image 16 Image image = new Image("image/us.gif");
add an image view to pane 17 pane.getChildren().add(new ImageView(image));
 18
create an image view 19 ImageView imageView2 =new ImageView(image);
set image view properties 20 imageView2.setFitHeight(100);
 21 imageView2.setFitWidth(100);
add an image to pane 22 pane.getChildren().add(imageView2);
 23
create an image view 24 ImageView imageView3 =new ImageView(image);
rotate an image view 25 imageView3.setRotate(90);
add an image to pane 26 pane.getChildren().add(imageView3);
 27
 28 // Create a scene and place it in the stage
 29 Scene scene = new Scene(pane);
 30 primaryStage.setTitle("ShowImage"); // Set the stage title
 31 primaryStage.setScene(scene); // Place the scene in the stage
 32 primaryStage.show(); // Display the stage
 33 }
 34 }

The program creates an HBox (line 14). An HBox is a pane that places all nodes horizontally in one row. The program creates an Image, then an ImageView for displaying the image, and places the ImageView in the HBox (line 17).

The program creates the second ImageView (line 19), sets its fitHeight and fitWidth properties (lines 20 and 21), and places the ImageView into the HBox (line 22). The program creates the third ImageView (line 24), rotates it 90 degrees (line 25), and places it into the HBox (line 26). The setRotate method is defined in the Node class and can be used for any node. Note an Image object can be shared by multiple nodes. In this case, it is shared by three ImageView. However, a node such as ImageView cannot be shared. You cannot place an ImageView multiple times into a pane or scene.

Note you must place the image file in the same directory as the class file, as shown in the following figure.

[image: A hierarchical diagram. Directory, contains, Show Image dot class, and, image, which contains, us dot g i f.]
If you use the URL to locate the image file, the URL protocol http:// must be present. Therefore, the following code is wrong:

new Image("liveexample.pearsoncmg.com/book/image/us.gif");

It must be replaced by

new Image("http://liveexample.pearsoncmg.com/book/image/us.gif");

	14.9.1 How do you create an Image from a URL or a filename?

	14.9.2 How do you create an ImageView from an Image or directly from a file or a URL?

	14.9.3 Can you set an Image to multiple ImageViews? Can you display the same ­ImageView multiple times?

14.10 Layout Panes and Groups

	JavaFX provides many types of panes for automatically laying out nodes in a desired location and size.

Panes and groups are the containers for holding nodes. The Group class is often used to group nodes and to perform transformation and scale as a group. Panes and UI control objects are resizable, but group, shape, and text objects are not resizable. JavaFX provides many types of panes for organizing nodes in a container, as shown in Table 14.1. You have used the layout panes Pane, StackPane, and HBox in the preceding sections for containing nodes. This section introduces the panes in more details.

Use layout panes

Table 14.1 Panes for Containing and Organizing Nodes

	Class

	Description

	Pane

	Base class for layout panes. It contains the getChildren() method for returning a list of nodes in the pane.

	StackPane

	Places the nodes on top of each other in the center of the pane.

	FlowPane

	Places the nodes row-by-row horizontally or column-by-column vertically.

	GridPane

	Places the nodes in the cells in a two-dimensional grid.

	BorderPane

	Places the nodes in the top, right, bottom, left, and center regions.

	HBox

	Places the nodes in a single row.

	VBox

	Places the nodes in a single column.

You have used the Pane in Listing 14.4, ShowCircle.java. A Pane is usually used as a canvas for displaying shapes. Pane is the base class for all specialized panes. You have used a specialized pane StackPane in Listing 14.3, ButtonInPane.java. Nodes are placed in the center of a StackPane. Each pane contains a list for holding nodes in the pane. This list is an instance of ObservableList, which can be obtained using pane’s getChildren() method. You can use add(node) to add an element to the list and addAll(node1, node2, ...) to add a variable number of nodes.

ObservableList

getChildren()

14.10.1  FlowPane

FlowPane arranges the nodes in the pane horizontally from left to right, or vertically from top to bottom, in the order in which they were added. When one row or one column is filled, a new row or column is started. You can specify the way the nodes are placed horizontally or vertically using one of two constants: Orientation.HORIZONTAL or Orientation.VERTICAL. You can also specify the gap between the nodes in pixels. The class diagram for FlowPane is shown in Figure 14.15.

[image: An annotated U M L diagram with the title, java f x dot scene dot layout dot Flow Plane.]
Figure 14.15

FlowPane lays out nodes row-by-row horizontally or column-by-column vertically.

Description

Data fields alignment, orientation, hgap, and vgap are binding properties. Recall that each binding property in JavaFX has a getter method (e.g., getHgap()) that returns its value, a setter method (e.g., setHGap(double)) for setting a value, and a getter method that returns the property itself (e.g., hgapProperty()). For a data field of ObjectProperty<T> type, the value getter method returns a value of type T, and the property getter method returns a property value of type ObjectProperty<T>.

Listing 14.10 gives a program that demonstrates FlowPane. The program adds labels and text fields to a FlowPane, as shown in Figure 14.16.

[image: Figures ay and b show sample runs of listing 14.10. Both windows have 3 text fields in 2 rows, labeled, First Name, M I, and Last Name. In figure ay, the M I text field wraps to the second row, pushing the Last Name field to the right.]
Figure 14.16

The nodes fill in the rows in the FlowPane one after another.

Listing 14.10 ShowFlowPane.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.FlowPane;
 7 import javafx.stage.Stage;
 8
extend Application 9 public class ShowFlowPane extends Application {
 10 @Override // Override the start method in the Application class
 11 public void start(Stage primaryStage) {
 12 // Create a pane and set its properties
create FlowPane 13 FlowPane pane = new FlowPane();
 14 pane.setPadding(new Insets(11, 12, 13, 14));
 15 pane.setHgap(5);
 16 pane.setVgap(5);
 17
 18 // Place nodes in the pane
add UI controls to pane 19 pane.getChildren().addAll(new Label("First Name:"),
 20 new TextField(), new Label("MI:"));
 21 TextField tfMi = new TextField();
 22 tfMi.setPrefColumnCount(1);
 23 pane.getChildren().addAll(tfMi, new Label("Last Name:"),
 24 new TextField());
 25
 26 // Create a scene and place it in the stage
add pane to scene 27 Scene scene = new Scene(pane, 200, 250);
 28 primaryStage.setTitle("ShowFlowPane"); // Set the stage title
place scene to stage 29 primaryStage.setScene(scene); // Place the scene in the stage
display stage 30 primaryStage.show(); // Display the stage
 31 }
 32 }

The program creates a FlowPane (line 13) and sets its padding property with an Insets object (line 14). An Insets object specifies the size of the border of a pane. The constructor Insets(11, 12, 13, 14) creates an Insets with the border sizes for top (11), right (12), bottom (13), and left (14) in pixels, as shown in Figure 14.17. You can also use the constructor Insets(value) to create an Insets with the same value for all four sides. The hGap and vGap properties are in lines 15 and 16 to specify the horizontal gap and vertical gap, ­respectively, between two nodes in the pane, as shown in Figure 14.17.

[image: Insets control the placement of the scene’s top, bottom, left, and right edges within the pane, while values for h Gap and v Gap respectively determine the spacing between adjacent nodes inside the scene.]
Figure 14.17

You can specify hGap and vGap between the nodes in a FlowLPane.

Each FlowPane contains an object of ObservableList for holding the nodes. This list can be obtained using the getChildren() method (line 19). To add a node into a FlowPane is to add it to this list using the add(node) or addAll(node1, node2, ...) method. You can also remove a node from the list using the remove(node) method, or use the removeAll() method to remove all nodes from the pane. The program adds the labels and text fields into the pane (lines 19–24). Invoking tfMi.setPrefColumnCount(1)sets the preferred column count to 1 for the MI text field (line 22). The program declares an explicit reference tfMi for a TextField object for MI. The explicit reference is necessary because we need to reference the object directly to set its prefColumnCount property.

The program adds the pane to the scene (line 27), sets the scene in the stage (line 29), and displays the stage (line 30). Note if you resize the window, the nodes are automatically rearranged to fit in the pane. In Figure 14.16a, the first row has three nodes, but in Figure 14.16b, the first row has four nodes because the width has been increased.

Suppose you wish to add the object tfMi to a pane 10 times; will 10 text fields appear in the pane? No, a node such as a text field can be added to only one pane and once. Adding a node to a pane multiple times or to different panes will cause a runtime error.

14.10.2 GridPane

A GridPane arranges nodes in a grid (matrix) formation. The nodes are placed in the specified column and row indices. The class diagram for GridPane is shown in Figure 14.18.

[image: An annotated U M L diagram with the title, java f x dot scene dot layout d to Grid Pane.]
Figure 14.18

GridPane lays out nodes in the specified cell in a grid.

Description

Listing 14.11 gives a program that demonstrates GridPane. The program is similar to the one in Listing 14.10, except that it adds three labels and three text fields, and a button to the specified location in a grid, as shown in Figure 14.19.

[image: Two versions of the same window, titled, Show Grid Pane. The entry fields, labels, and button are all larger in the first version, occupying more of the pane.]
Figure 14.19

The GridPane places the nodes in a grid with a specified column and row indices.

Listing 14.11 ShowGridPane.java

 1 import javafx.application.Application;
 2 import javafx.geometry.HPos;
 3 import javafx.geometry.Insets;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.TextField;
 9 import javafx.scene.layout.GridPane;
 10 import javafx.stage.Stage;
 11
 12 public class ShowGridPane extends Application {
 13 @Override // Override the start method in the Application class
 14 public void start(Stage primaryStage) {
 15 // Create a pane and set its properties
create a grid pane 16 GridPane pane = new GridPane();
set properties 17 pane.setAlignment(Pos.CENTER);
 18 pane.setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
 19 pane.setHgap(5.5);
 20 pane.setVgap(5.5);
 21
 22 // Place nodes in the pane
add label 23 pane.add(new Label("First Name:"), 0, 0);
add text field 24 pane.add(new TextField(), 1, 0);
 25 pane.add(new Label("MI:"), 0, 1);
 26 pane.add(new TextField(), 1, 1);
 27 pane.add(new Label("Last Name:"), 0, 2);
 28 pane.add(new TextField(), 1, 2);
 29 Button btAdd = new Button("Add Name");
add button 30 pane.add(btAdd, 1, 3);
align button right 31 GridPane.setHalignment(btAdd, HPos.RIGHT);
 32
 33 // Create a scene and place it in the stage
create a scene 34 Scene scene = new Scene(pane);
 35 primaryStage.setTitle("ShowGridPane"); // Set the stage title
 36 primaryStage.setScene(scene); // Place the scene in the stage
display stage 37 primaryStage.show(); // Display the stage
 38 }
 39 }

The program creates a GridPane (line 16) and sets its properties (line 17–20). The ­alignment is set to the center position (line 17), which causes the nodes to be placed in the center of the grid pane. If you resize the window, you will see the nodes remained in the center of the grid pane.

The program adds the label in column 0 and row 0 (line 23). The column and row index starts from 0. The add method places a node in the specified column and row. Not every cell in the grid needs to be filled. A button is placed in column 1 and row 3 (line 30), but there are no nodes placed in column 0 and row 3. To remove a node from a GridPane, use pane.getChildren().remove(node). To remove all nodes, use pane.getChildren().removeAll().

remove nodes

The program invokes the static setHalignment method to align the button right in the cell (line 31).

Note the scene size is not set (line 34). In this case, the scene size is automatically computed according to the sizes of the nodes placed inside the scene.

By default, the grid pane will resize rows and columns to the preferred sizes of its contents, even if the grid pane is resized larger than its preferred size. You may purposely set a large value for the preferred width and height of its contents by invoking the setPrefWidth and setPrefHeight methods, so the contents will be automatically stretched to fill in the grid pane when the grid pane is enlarged (see Programming Exercise 14.8).

remove nodes

setPrefWidth

setPrefHeight

14.10.3  BorderPane

A BorderPane can place nodes in five regions: top, bottom, left, right, and center, using the setTop(node), setBottom(node), setLeft(node), setRight(node), and setCenter(node) methods. The class diagram for BorderPane is shown in Figure 14.20.

[image: An annotated U M L diagram titled, java f x dot scene dot layout dot Border Pane.]
Figure 14.20

BorderPane places the nodes in top, bottom, left, right, and center regions.

Description

Listing 14.12 gives a program that demonstrates BorderPane. The program places five buttons in the five regions of the pane, as shown in Figure 14.21.

[image: The sample run creates a window titled, Show Border Pane, divided into 5 nodes in 3 rows. The top and bottom rows each have 1 node, labeled Top or Bottom, respectively, and the middle row has Left, Center, and Right nodes.]
Figure 14.21

The BorderPane places the nodes in five regions of the pane.

Listing 14.12 ShowBorderPane.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.StackPane;
 7 import javafx.stage.Stage;
 8
 9 public class ShowBorderPane extends Application {
 10 @Override // Override the start method in the Application class
 11 public void start(Stage primaryStage) {
 12 // Create a border pane
create a border pane 13 BorderPane pane = new BorderPane();
 14
 15 // Place nodes in the pane
add to top 16 pane.setTop(new CustomPane("Top"));
add to right 17 pane.setRight(new CustomPane("Right"));
add to bottom 18 pane.setBottom(new CustomPane("Bottom"));
add to left 19 pane.setLeft(new CustomPane("Left"));
add to center 20 pane.setCenter(new CustomPane("Center"));
 21
 22 // Create a scene and place it in the stage
 23 Scene scene = new Scene(pane);
 24 primaryStage.setTitle("ShowBorderPane"); // Set the stage title
 25 primaryStage.setScene(scene); // Place the scene in the stage
 26 primaryStage.show(); // Display the stage
 27 }
 28 }
 29
 30 // Define a custom pane to hold a label in the center of the pane
define a custom pane 31 class CustomPane extends StackPane {
 32 public class CustomPane(String title) {
add a label to pane 33 getChildren().add(new Label(title));
set style 34 setStyle("−fx−border−color: red");
set padding 35 setPadding(new Insets(11.5, 12.5, 13.5, 14.5));
 36 }
 37 }

The program defines CustomPane that extends StackPane (line 31). The constructor of CustomPane adds a label with the specified title (line 33), sets a style for the border color, and sets a padding using insets (line 35).

The program creates a BorderPane (line 13) and places five instances of ­CustomPane into five regions of the border pane (lines 16–20). Note a pane is a node. Therefore, a pane can be added into another pane. To remove a node from the top region, invoke setTop(null). If a region is not occupied, no space will be allocated for this region.

14.10.4 HBox and VBox

An HBox lays out its children in a single horizontal row. A VBox lays out its children in a single vertical column. Recall that a FlowPane can lay out its children in multiple rows or multiple columns, but an HBox or a VBox can lay out children only in one row or one column. The class diagrams for HBox and VBox are shown in Figures 14.22 and 14.23.

[image: An annotated U M L diagram titled, java f x dot scene dot layout dot H Box.]
Figure 14.22

HBox places the nodes in one row.

Description

[image: An annotated U M L diagram titled, java f x dot scene dot layout dot V Box.]
Figure 14.23

VBox places the nodes in one column.

Description

Listing 14.13 gives a program that demonstrates HBox and VBox. The program places two buttons and an image view in an HBox and five labels in a VBox, as shown in Figure 14.24.

[image: The sample run creates a window titled, Show H Box V Box. The top section has nodes in a row as follows: Computer Science button, Chemistry button, American flag image. The bottom section has a list of course numbers.]
Figure 14.24

The HBox places the nodes in one row, and the VBox places the nodes in one column.

Source: booka/Fotolia.

Listing 14.13 ShowHBoxVBox.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Insets;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.HBox;
 8 import javafx.scene.layout.VBox;
 9 import javafx.stage.Stage;
 10 import javafx.scene.image.Image;
 11 import javafx.scene.image.ImageView;
 12
 13 public class ShowHBoxVBox extends Application {
 14 @Override // Override the start method in the Application class
 15 public void start(Stage primaryStage) {
 16 // Create a border pane
create a border pane 17 BorderPane pane = new BorderPane();
 18
 19 // Place nodes in the pane
add an HBox to top 20 pane.setTop(getHBox());
add a VBox to left 21 pane.setLeft(getVBox());
 22
 23 // Create a scene and place it in the stage
create a scene 24 Scene scene = new Scene(pane);
 25 primaryStage.setTitle("ShowHBoxVBox"); // Set the stage title
 26 primaryStage.setScene(scene); // Place the scene in the stage
display stage 27 primaryStage.show(); // Display the stage
 28 }
 29
getHBox 30 private HBox getHBox() {
 31 HBox hBox = new HBox(15);
 32 hBox.setPadding(new Insets(15, 15, 15, 15));
 33 hBox.setStyle("−fx−background−color: gold");
add buttons to HBox 34 hBox.getChildren().add(new Button("Computer Science"));
 35 hBox.getChildren().add(new Button("Chemistry"));
 36 ImageView imageView = new ImageView(new Image("image/us.gif"));
 37 hBox.getChildren().add(imageView);
return an HBox 38 return hBox;
 39 }
 40
getVBox 41 private VBox getVBox() {
 42 VBox vBox = new VBox(15);
 43 vBox.setPadding(new Insets(15, 5, 5, 5));
add a label 44 vBox.getChildren().add(new Label("Courses"));
 45
 46 Label[] courses = {new Label("CSCI 1301"), new Label("CSCI 1302"),
 47 new Label("CSCI 2410"), new Label("CSCI 3720")};
 48
 49 for (Label course: courses) {
set margin 50 VBox.setMargin(course, new Insets(0, 0, 0, 15));
add a label 51 vBox.getChildren().add(course);
 52 }
 53
return vBox 54 return vBox;
 55 }
 56 }

The program defines the getHBox() method. This method returns an HBox that contains two buttons and an image view (lines 30–39). The background color of the HBox is set to gold using Java CSS (line 33). The program defines the getVBox() method. This method returns a VBox that contains five labels (lines 41–55). The first label is added to the VBox in line 44 and the other four are added in line 51. The setMargin method is used to set a node’s margin when placed inside the VBox (line 50).

		14.10.1  How do you add a node to a Pane, StackPane, FlowPane, GridPane, ­BorderPane, HBox, and VBox? How do you remove a node from these panes?

		14.10.2  How do you set the alignment to right for nodes in a FlowPane, GridPane, HBox, and VBox?

		14.10.3  How do you set the horizontal gap and vertical gap between nodes in 8 pixels in a FlowPane and GridPane and set spacing in 8 pixels in an HBox and VBox?

		14.10.4  How do you get the column and row index of a node in a GridPane? How do you reposition a node in a GridPane?

		14.10.5  What are the differences between a FlowPane and an HBox or a VBox?

14.11 Shapes

	JavaFX provides many shape classes for drawing texts, lines, circles, rectangles, ­ellipses, arcs, polygons, and polylines.

The Shape class is the abstract base class that defines the common properties for all shapes. Among them are the fill, stroke, and strokeWidth properties. The fill property ­specifies a color that fills the interior of a shape. The stroke property specifies a color that is used to draw the outline of a shape. The strokeWidth property specifies the width of the outline of a shape. This section introduces the classes Text, Line, Rectangle, Circle, Ellipse, Arc, Polygon, and Polyline for drawing texts and simple shapes. All these are subclasses of Shape, as shown in Figure 14.25.

Use shapes

[image: A hierarchical diagram. The classes, Text, Line, Rectangle, Circle, Ellipse, Arc, Polygon, and Polyline, connect to, shape, with an empty triangle, which connects to, Node, with a second empty triangle.]
Figure 14.25

A shape is a node. The Shape class is the root of all shape classes.

fill property

stroke property

strokeWidth property

14.11.1 Text

The Text class defines a node that displays a string at a starting point (x, y), as shown in Figure 14.27a. A Text object is usually placed in a pane. The pane’s upper-left corner point is (0, 0) and the bottom-right point is (pane.getWidth(), pane.getHeight()). A string may be displayed in multiple lines separated by \n. The UML diagram for the Text class is shown in Figure 14.26. Listing 14.14 gives an example that demonstrates text, as shown in Figure 14.27b.

[image: An annotated U M L diagram titled, java f x dot scene dot test dot Text.]
Figure 14.26

Text defines a node for displaying a text.

Description

[image: Figures ay and b show a diagram and a sample run of text objects.]
Figure 14.27

A Text object is created to display a text.

Description

Listing 14.14 ShowText.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.geometry.Insets;
 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8 import javafx.scene.text.Font;
 9 import javafx.scene.text.FontWeight;
 10 import javafx.scene.text.FontPosture;
 11
 12 public class ShowText extends Application {
 13 @Override // Override the start method in the Application class
 14 public void start(Stage primaryStage) {
 15 // Create a pane to hold the texts
create a pane 16 Pane pane = new Pane();
 17 pane.setPadding(new Insets(5, 5, 5, 5));
create a Text 18 Text text1 = new Text(20, 20, "Programming is fun");
set text font 19 text1.setFont(Font.font("Courier", FontWeight.BOLD,
 20 FontPosture.ITALIC, 15));
add text to pane 21 pane.getChildren().add(text1);
 22
create a two-line Text 23 Text text2 = new Text(60, 60, "Programming is fun\nDisplay text");
add text to pane 24 pane.getChildren().add(text2);
 25
create a Text 26 Text text3 = new Text(10, 100, "Programming is fun\nDisplay text");
set text color 27 text3.setFill(Color.RED);
set underline 28 text3.setUnderline(true);
set strike line 29 text3.setStrikethrough(true);
add text to pane 30 pane.getChildren().add(text3);
 31
 32 // Create a scene and place it in the stage
 33 Scene scene = new Scene(pane);
 34 primaryStage.setTitle("ShowText"); // Set the stage title
 35 primaryStage.setScene(scene); // Place the scene in the stage
 36 primaryStage.show(); // Display the stage
 37 }
 38 }

The program creates a Text (line 18), sets its font (line 19), and places it to the pane (line 21). The program creates another Text with multiple lines (line 23) and places it to the pane (line 24). The program creates the third Text (line 26), sets its color (line 27), sets an underline and a strike through line (lines 28 and 29), and places it to the pane (line 30).

14.11.2 Line

A line connects two points with four parameters startX, startY, endX, and endY, as shown in Figure 14.29a. The Line class defines a line. The UML diagram for the Line class is shown in Figure 14.28. Listing 14.15 gives an example that demonstrates the line shape, as shown in Figure 14.29b.

[image: An annotated U M L diagram titled, java f x dot scene dot shape dot Line.]
Figure 14.28

The Line class defines a line.

Description

[image: Figures ay and b show a diagram and a sample run of line objects.]
Figure 14.29

A Line object is created to display a line.

Description

Listing 14.15 ShowLine.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Line;
 7
 8 public class ShowLine extends Application {
 9 @Override // Override the start method in the Application class
 10 public void start(Stage primaryStage) {
 11 // Create a scene and place it in the stage
create a pane in scene 12 Scene scene = new Scene(new LinePane(), 200, 200);
 13 primaryStage.setTitle("ShowLine"); // Set the stage title
 14 primaryStage.setScene(scene); // Place the scene in the stage
 15 primaryStage.show(); // Display the stage
 16 }
 17 }
 18
define a custom pane 19 class LinePane extends Pane {
 20 public class LinePane() {
create a line 21 Line line1 = new Line(10, 10, 10, 10);
 22 line1.endXProperty().bind(widthProperty().subtract(10));
 23 line1.endYProperty().bind(heightProperty().subtract(10));
set stroke width 24 line1.setStrokeWidth(5);
set stroke 25 line1.setStroke(Color.GREEN);
add line to pane 26 getChildren().add(line1);
 27
create a line 28 Line line2 = new Line(10, 10, 10, 10);
 29 line2.startXProperty().bind(widthProperty().subtract(10));
 30 line2.endYProperty().bind(heightProperty().subtract(10));
 31 line2.setStrokeWidth(5);
 32 line2.setStroke(Color.GREEN);
add line to pane 33 getChildren().add(line2);
 34 }
 35 }

The program defines a custom pane class named LinePane (line 19). The custom pane class creates two lines and binds the starting and ending points of the line with the width and height of the pane (lines 22 and 23 and 29 and 30) so the two points of the lines are changed as the pane is resized.

14.11.3  Rectangle

A rectangle is defined by the parameters x, y, width, height, arcWidth, and arcHeight, as shown in Figure 14.31a. The rectangle’s upper-left corner point is at (x, y), parameter aw (arcWidth) is the horizontal diameter of the arcs at the corner, and ah (arcHeight) is the vertical diameter of the arcs at the corner.

[image: An annotated U M L diagram titled, java f x dot scene dot shape dot Rectangle.]
Figure 14.30

Rectangle defines a rectangle.

Description

[image: Three figures show diagrams and examples of Rectangle objects.]
Figure 14.31

A Rectangle object is created to display a rectangle.

Description

The Rectangle class defines a rectangle. The UML diagram for the Rectangle class is shown in Figure 14.30. Listing 14.16 gives an example that demonstrates rectangles, as shown in Figure 14.31b.

Listing 14.16 ShowRectangle.java

 1 import javafx.application.Application;
 2 import javafx.scene.Group;
 3 import javafx.scene.Scene;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.paint.Color;
 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8 import javafx.scene.shape.Rectangle;
 9
 10 public class ShowRectangle extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 // Create rectangles
create a rectangle r1 14 Rectangle r1 = new Rectangle(25, 10, 60, 30);
set r1’s properties 15 r1.setStroke(Color.BLACK);
 16 r1.setFill(Color.WHITE);
create rectangle r2 17 Rectangle r2 = new Rectangle(25, 50, 60, 30);
create rectangle r3 18 Rectangle r3 = new Rectangle(25, 90, 60, 30);
set r3’s arc width 19 r3.setArcWidth(15);
set r3’s arc height 20 r3.setArcHeight(25);
 21
 22 // Create a group and add nodes to the group
create a group 23 Group group = new Group();
add nodes to group 24 group.getChildren().addAll(new Text(10, 27, "r1"), r1,
 25 new Text(10, 67, "r2"), r2, new Text(10, 107, "r3"), r3);
 26
 27 for (int i = 0; i < 4; i++) {
create a rectangle 28 Rectangle r = new Rectangle(100, 50, 100, 30);
rotate a rectangle 29 r.setRotate(i * 360 / 8);
 30 r.setStroke(Color.color(Math.random(), Math.random(),
 31 Math.random()));
 32 r.setFill(Color.WHITE);
add rectangle to group 33 group.getChildren().add(r);
 34 }
 35
 36 // Create a scene and place it in the stage
 37 Scene scene = new Scene(new BorderPane(group),250, 150);
 38 primaryStage.setTitle("ShowRectangle"); // Set the stage title
 39 primaryStage.setScene(scene); // Place the scene in the stage
 40 primaryStage.show(); // Display the stage
 41 }
 42 }

The program creates multiple rectangles. By default, the fill color is black. Thus, a rectangle is filled with black color. The stroke color is white by default. Line 15 sets stroke color of rectangle r1 to black. The program creates rectangle r3 (line 18) and sets its arc width and arc height (lines 19 and 20). Thus, r3 is displayed as a rounded rectangle.

The program creates a Group to hold the nodes (lines 23–25). The program repeatedly creates a rectangle (line 28), rotates it (line 29), sets a random stroke color (lines 30 and 31), its fill color to white (line 32), and adds the rectangle to the group (line 33).

If line 32 is replaced by the following line:

r.setFill(null);

the rectangle is not filled with a color. Thus, they are displayed as shown in Figure 14.31c.

To center the nodes in the window, the program creates a BorderPane with the group in the center of the pane (line 37). If line 23 is replaced by the following?

Pane group = new Pane();

the rectangle will not be centered in the window. Therefore, using Group along with the ­BorderPane displays the contents of the group in the center of the window. Another ­advantage of using group is you can apply transformation to all nodes in the group. For example, if you add the following two lines in line 35:

group.setScaleX(2);

group.setScaleY(2);

the sizes of the nodes in the group are doubled.

14.11.4  Circle and Ellipse

You have used circles in several examples early in this chapter. A circle is defined by its parameters centerX, centerY, and radius. The Circle class defines a circle. The UML diagram for the Circle class is shown in Figure 14.32.

[image: An annotated U M L diagram titled, java f x dot scene dot shape dot Circle.]
Figure 14.32

The Circle class defines circles.

Description

An ellipse is defined by its parameters centerX, centerY, radiusX, and radiusY, as shown in Figure 14.34a. The Ellipse class defines an ellipse. The UML diagram for the Ellipse class is shown in Figure 14.33. Listing 14.17 gives an example that demonstrates ellipses, as shown in Figure 14.34b.

[image: An annotated U M L diagram titled, java f x dot scene dot shape dot Ellipse.]
Figure 14.33

The Ellipse class defines ellipses.

Description

[image: A diagram and a sample run of an, Ellipse, object.]
Figure 14.34

An Ellipse object is created to display an ellipse.

Description

Listing 14.17 ShowEllipse.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Ellipse;
 7
 8  public class ShowEllipse extends Application {
 9 @Override // Override the start method in the Application class
 10 public void start(Stage primaryStage) {
 11 // Create a scene and place it in the stage
create a pane 12 Scene scene = new Scene(new MyEllipse(), 300, 200);
 13 primaryStage.setTitle("ShowEllipse"); // Set the stage title
 14 primaryStage.setScene(scene); // Place the scene in the stage
 15 primaryStage.show(); // Display the stage
 16 }
 17 }
 18
 19 class MyEllipse extends Pane {
 20 private void paint() {
 21 getChildren().clear();
 22 for (int i = 0; i < 16; i++) {
 23 // Create an ellipse and add it to pane
create an ellipse 24 Ellipse e1 = new Ellipse(getWidth() / 2, getHeight() / 2,
 25 getWidth() / 2 – 50, getHeight() / 2 – 50);
set random color for stroke 26 e1.setStroke(Color.color(Math.random(), Math.random(),
 27 Math.random()));
set fill color 28 e1.setFill(Color.WHITE);
rotate ellipse 29 e1.setRotate(i * 180 / 16);
add ellipse to pane 30 getChildren().add(e1);
 31 }
 32 }
 33
 34 @Override
 35 public void setWidth(double width) {
 36 super.setWidth(width);
 37 paint();
 38 }
 39
 40 @Override
 41 public void setHeight(double height) {
 42 super.setHeight(height);
 43 paint();
 44 }
 45 }

The program defines the MyEllipse class to draw the ellipses (lines 19–45) rather than creating ellipses directly in the start method (line 10) for two reasons. First, by defining the MyEllipse class for displaying the ellipses, you can easily reuse the code. Second, the ­MyEllipse class extends Pane. The contents in the pane can be resized when the stage is resized.

The MyEllipse class extends Pane and overrides the setWidth and setHeight ­methods (lines 34–44). A MyEllipse object’s width and height are automatically set by invoking its setWidth and setHeight methods when it is displayed. When you resize the stage that contains a MyEllipse, the MyEllipse’s width and height are automatically resized by again invoking the setWidth and setHeight methods. The setWidth and setHeight methods invoke the paint() method for displaying the ellipses (lines 37 and 43). The paint() method first clears the contents in the pane (line 21), then repeatedly creates ellipses (lines 24 and 25), sets a random stroke color (lines 26 and 27), sets its fill color to white (line 28), rotates it (line 29), and adds the rectangle to the pane (line 30). Thus, when the stage that contains a ­MyEllipse object is resized, the contents in ­MyEllipse are redisplayed.

14.11.5 Arc

An arc is conceived as part of an ellipse, defined by the parameters centerX, centerY, ­radiusX, radiusY, startAngle, length, and an arc type (ArcType.OPEN, ArcType .CHORD, or ArcType.ROUND). The parameter startAngle is the starting angle, and length is the spanning angle (i.e., the angle covered by the arc). Angles are measured in degrees and follow the usual mathematical conventions (i.e., 0 degrees is in the easterly direction and positive angles indicate counterclockwise rotation from the easterly direction), as shown in Figure 14.36a.

[image: An annotated U M L diagram titled, java f x dot scene dot shape dot Arc.]
Figure 14.35

The Arc class defines an arc.

Description

[image: A diagram and a sample run of an, Arc, object.]
Figure 14.36

An Arc object is created to display an arc.

Description

The Arc class defines an arc. The UML diagram for the Arc class is shown in Figure 14.35. Listing 14.18 gives an example that demonstrates ellipses, as shown in Figure 14.36b.

Listing 14.18 ShowArc.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.Group;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.paint.Color;
 6 import javafx.stage.Stage;
 7 import javafx.scene.shape.Arc;
 8 import javafx.scene.shape.ArcType;
 9 import javafx.scene.text.Text;
 10
 11 public class ShowArc extends Application {
 12 @Override // Override the start method in the Application class
 13 public void start(Stage primaryStage) {
create arc1 14 Arc arc1 = new Arc(150, 100, 80, 80, 30, 35); // Create an arc
set fill color for arc1 15 arc1.setFill(Color.RED); // Set fill color
set arc1 as round arc 16 arc1.setType(ArcType.ROUND); // Set arc type
 17
create arc2 18 Arc arc2 = new Arc(150, 100, 80, 80, 30 + 90, 35);
set fill color for arc2 19 arc2.setFill(Color.WHITE);
set arc2 as round arc 20 arc2.setType(ArcType.OPEN);
 21 arc2.setStroke(Color.BLACK);
 22
create arc3 23 Arc arc3 = new Arc(150, 100, 80, 80, 30 + 180, 35);
set fill color for arc3 24 arc3.setFill(Color.WHITE);
set arc3 as chord arc 25 arc3.setType(ArcType.CHORD);
 26 arc3.setStroke(Color.BLACK);
 27
create arc4 28 Arc arc4 = new Arc(150, 100, 80, 80, 30 + 270, 35);
 29 arc4.setFill(Color.GREEN);
 30 arc4.setType(ArcType.CHORD);
 31 arc4.setStroke(Color.BLACK);
 32
 33 // Create a group and add nodes to the group
create a group 34 Group group = new Group();
add arcs and text to group 35 group.getChildren().addAll(new Text(210, 40, "arc1: round"),
 36 arc1, new Text(20, 40, "arc2: open"), arc2,
 37 new Text(20, 170, "arc3: chord"), arc3,
 38 new Text(210, 170, "arc4: chord"), arc4);
 39
 40 // Create a scene and place it in the stage
 41 Scene scene = new Scene(new BorderPane(group), 300, 200);
 42 primaryStage.setTitle("ShowArc"); // Set the stage title
 43 primaryStage.setScene(scene); // Place the scene in the stage
 44 primaryStage.show(); // Display the stage
 45 }
 46 }

The program creates an arc arc1 centered at (150, 100) with radiusX 80 and radiusY 80. The starting angle is 30 with length 35 (line 14). arc1’s arc type is set to ArcType.ROUND (line 16). Since arc1’s fill color is red, arc1 is displayed filled with red round.

The program creates an arc arc3 centered at (150, 100) with radiusX 80 and radiusY 80. The starting angle is 30+180 with length 35 (line 23). Arc3’s arc type is set to ArcType.CHORD (line 25). Since arc3’s fill color is white and stroke color is black, arc3 is displayed with black outline as a chord.

Angles may be negative. A negative starting angle sweeps clockwise from the easterly direction, as shown in Figure 14.37. A negative spanning angle sweeps clockwise from the starting angle. The following two statements define the same arc:

negative degrees

[image: A negative starting angle of negative 30 degrees means an arc will be measured from a point below the horizontal. Negative spanning angles are measured further clockwise from 0, and positive spanning angles move closer to 0, counterclockwise.]
Figure 14.37

Angles may be negative.

new Arc(x, y, radiusX, radiusY, –30, –20);
new Arc(x, y, radiusX, radiusY, –50, 20);

The first statement uses negative starting angle -30 and negative spanning angle –20, as shown in Figure 14.37a. The second statement uses negative starting angle –50 and positive spanning angle 20, as shown in Figure 14.37b.

Note the trigonometric methods in the Math class use the angles in radians, but the angles in the Arc class are in degrees.

14.11.6 Polygon and Polyline

The Polygon class defines a polygon that connects a sequence of points, as shown in F­igure 14.38a. The Polyline class is similar to the Polygon class except that the Polyline class is not automatically closed, as shown in Figure 14.38b.

[image: Figures ay and b show line segments extending between 5 points. Figures ay and b show identically plotted points. In ay, five line segments connect the points, forming a polygon. In b, with only 4 line segments, the polygon cannot be closed.]
Figure 14.38

Polygon is closed and Polyline is not closed.

The UML diagram for the Polygon class is shown in Figure 14.39. Listing 14.19 gives an example that creates a hexagon, as shown in Figure 14.40.

[image: An annotated U M L diagram titled, java f x dot scene dot shape dot Polygon.]
Figure 14.39

The Polygon class defines a polygon.

Description

[image: Figures ay and b compare a polygon and a similar polyline.]
Figure 14.40

(a) A Polygon is displayed. (b) A Polyline is displayed.

Description

Listing 14.19 ShowPolygon.java

 1 import javafx.application.Application;
 2 import javafx.collections.ObservableList;
 3 import javafx.scene.Scene;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.paint.Color;
 6 import javafx.stage.Stage;
 7 import javafx.scene.shape.Polygon;
 8
 9 public class ShowPolygon extends Application {
 10 @Override // Override the start method in the Application class
 11 public void start(Stage primaryStage) {
 12 // Create a scene and place it in the stage
add pane to scene 13 Scene scene = new Scene(new MyPolygon(), 400, 400);
 14 primaryStage.setTitle("ShowPolygon"); // Set the stage title
 15 primaryStage.setScene(scene); // Place the scene in the stage
 16 primaryStage.show(); // Display the stage
 17 }
 18 }
 19
extends Pane 20 class MyPolygon extends Pane {
 21 private void paint() {
 22 // Create a polygon and place polygon to pane
create a polygon 23 Polygon polygon = new Polygon();
 24 polygon.setFill(Color.WHITE);
 25 polygon.setStroke(Color.BLACK);
get a list of points 26 ObservableList<Double> list = polygon.getPoints();
 27
 28 double centerX = getWidth() / 2, centerY = getHeight() / 2;
 29 double radius = Math.min(getWidth(), getHeight()) * 0.4;
 30
 31 // Add points to the polygon list
 32 for (int i = 0; i < 6; i++) {
add x-coordinate of a point 33 list.add(centerX + radius * Math.cos(2 * i * Math.PI / 6));
add y-coordinate of a point 34 list.add(centerY – radius * Math.sin(2 * i * Math.PI / 6));
 35 }
 36
 37 getChildren().clear();
 38 getChildren().add(polygon);
 39 }
 40
 41 @Override
 42 public void setWidth(double width) {
 43 super.setWidth(width);
 44 paint();
 45 }
 46
 47 @Override
 48 public void setHeight(double height) {
 49 super.setHeight(height);
 50 paint();
 51 }
 52 }

The program defines the MyPolygon class that extends Pane (lines 20–52). The setWidth and setHeight methods in the Pane class are overridden in MyPolygon to invoke the paint() method.

override setWidth and setHeight

The paint() method creates a polygon (line 23) and adds it to a pane (line 38). The polygon.getPoints() method returns an ObservableList<Double> (line 26), which contains the add method for adding an element to the list (lines 33 and 34). Note the value passed to add(value) must be a double value. If an int value is passed, the int value would be automatically boxed into an Integer. This would cause an error, because the ObservableList<Double> consists of double elements.

The centerX, centerY, and radius are obtained in proportion to the width and height of the pane (lines 28 and 29). The loop adds six points to the polygon (lines 32–35). Each point is represented by its x- and y-coordinates, computed using centerX, centerY, and radius. For each point, its x-coordinate is added to the polygon’s list (line 33) then its y-coordinate is added to the list (line 34). The formula for computing the x- and y-coordinates for a point in the hexagon is illustrated in Figure 14.40a.

If you replace Polygon by Polyline (line 23), the program displays a polyline as shown in Figure 14.40b. The Polyline class is used in the same way as Polygon, except that the starting and ending points are not connected in Polyline.

		 14.11.1 How do you display a text, line, rectangle, circle, ellipse, arc, polygon, and polyline?

		 14.11.2 Write code fragments to display a string rotated 45 degrees in the center of the pane.

		 14.11.3 Write code fragments to display a thick line of 10 pixels from (10, 10) to (70, 30).

		 14.11.4 Write code fragments to fill red color in a rectangle of width 100 and height 50 with the upper-left corner at (10, 10).

		 14.11.5 Write code fragments to display a round-cornered rectangle with width 100, height 200 with the upper-left corner at (10, 10), corner horizontal diameter 40, and corner vertical diameter 20.

		 14.11.6 Write code fragments to display an ellipse with horizontal radius 50 and ­vertical radius 100.

		 14.11.7 Write code fragments to display the outline of the upper half of a circle with radius 50.

		 14.11.8 Write code fragments to display the lower half of a circle with radius 50 filled with the red color.

		 14.11.9 Write code fragments to display a polygon connecting the following points: (20, 40), (30, 50), (40, 90), (90, 10), and (10, 30), and fill the polygon with green color.

		14.11.10  Write code fragments to display a polyline connecting the following points: (20, 40), (30, 50), (40, 90), (90, 10), and (10, 30).

		14.11.11  What is wrong in the following code?

public void start(Stage primaryStage) {
 // Create a polygon and place it in the scene
 Scene scene = new Scene(new Polygon(), 400, 400);
 primaryStage.setScene(scene); // Place the scene in the stage
 primaryStage.show(); // Display the stage
}

14.12 Case Study: The ClockPane Class

	This case study develops a class that displays a clock on a pane.

The contract of the ClockPane class is shown in Figure 14.41.

[image: An annotated U M L diagram, with 2 parts.]
Figure 14.41

ClockPane displays an analog clock.

Description

Assume ClockPane is available; we write a test program in Listing 14.20 to display an analog clock and use a label to display the hour, minute, and second, as shown in Figure 14.42.

[image: Figures ay and b examine clocks that tell time with hands, on circular faces.]
Figure 14.42

(a) The DisplayClock program displays a clock that shows the current time. (b) The endpoint of a clock hand can be determined, given the spanning angle, the hand length, and the center point.

Description

Listing 14.20 DisplayClock.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.stage.Stage;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.layout.BorderPane;
 7
 8 public class DisplayClock extends Application {
 9 @Override // Override the start method in the Application class
 10 public void start(Stage primaryStage) {
 11 // Create a clock and a label
create a clock 12 ClockPane clock = new ClockPane();
 13 String timeString = clock.getHour() + ":" + clock.getMinute()
 14 + ":" + clock.getSecond();
create a label 15 Label lblCurrentTime = new Label(timeString);
 16
 17 // Place clock and label in border pane
 18 BorderPane pane = new BorderPane();
add a clock 19 pane.setCenter(clock);
add a label 20 pane.setBottom(lblCurrentTime);
 21 BorderPane.setAlignment(lblCurrentTime, Pos.TOP_CENTER);
 22
 23 // Create a scene and place it in the stage
 24 Scene scene = new Scene(pane, 250, 250);
 25 primaryStage.setTitle("DisplayClock"); // Set the stage title
 26 primaryStage.setScene(scene); // Place the scene in the stage
 27 primaryStage.show(); // Display the stage
 28 }
 29 }

The rest of this section explains how to implement the ClockPane class. Since you can use the class without knowing how it is implemented, you may skip the implementation if you wish.

skip implementation?

To draw a clock, you need to draw a circle and three hands for the second, minute, and hour. To draw a hand, you need to specify the two ends of the line. As shown in Figure 14.42b, one end is the center of the clock at (centerX, centerY); the other end, at (endX, endY), is determined by the following formula:

implementation

endX = centerX + handLength × sin(θ)
endY = centerY – handLength × cos(θ)

Since there are 60 seconds in one minute, the angle for the second hand is

second × (2π/60)

The position of the minute hand is determined by the minute and second. The exact minute value combined with seconds is minute + second/60. For example, if the time is 3 minutes and 30 seconds, the total minutes are 3.5. Since there are 60 minutes in one hour, the angle for the minute hand is

(minute + second/60) × (2π/60)

Since one circle is divided into 12 hours, the angle for the hour hand is

(hour + minute/60 + second/(60 × 60)) × (2π/12)

For simplicity in computing the angles of the minute and hour hands, you can omit the seconds because they are negligibly small. Therefore, the endpoints for the second, minute, and hour hands can be computed as follows:

secondX = centerX + secondHandLength × sin(second × (2π/60))
secondY = centerY – secondHandLength × cos(second × (2π/60))
minuteX = centerX + minuteHandLength × sin(minute × (2π/60))
minuteY = centerY – minuteHandLength × cos(minute × (2π/60))
hourX = centerX + hourHandLength × sin((hour + minute/60) × (2π/12))
hourY = centerY – hourHandLength × cos((hour + minute/60) × (2π/12))

The ClockPane class is implemented in Listing 14.21.

Listing 14.21 ClockPane.java

 1 import java.util.Calendar;
 2 import java.util.GregorianCalendar;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.shape.Line;
 7 import javafx.scene.text.Text;
 8
 9 public class ClockPane extends Pane {
clock properties 10 private int hour;
 11 private int minute;
 12 private int second;
 13
 14 /** Construct a default clock with the current time*/
no-arg constructor 15 public ClockPane() {
 16 setCurrentTime();
 17 }
 18
 19 /** Construct a clock with specified hour, minute, and second */
constructor 20 public ClockPane(int hour,int minute,int second) {
 21 this.hour = hour;
 22 this.minute = minute;
 23 this.second = second;
 24 }
 25
 26 /** Return hour */
 27 public int getHour() {
 28 return hour;
 29 }
 30
 31 /** Set a new hour */
set a new hour 32 public void setHour(int hour) {
 33 this.hour = hour;
paint clock 34 paintClock();
 35 }
 36
 37 /** Return minute */
set a new minute 38 public int getMinute() {
 39 return minute;
 40 }
 41
 42 /** Set a new minute */
 43 public void setMinute(int minute) {
 44 this.minute = minute;
paint clock 45 paintClock();
 46 }
 47
 48 /** Return second */
 49 public int getSecond() {
 50 return second;
 51 }
 52
 53 /** Set a new second */
set a new second 54 public void setSecond(int second) {
 55 this.second = second;
paint clock 56 paintClock();
 57 }
 58
 59 /* Set the current time for the clock */
set current time 60 public void setCurrentTime() {
 61 // Construct a calendar for the current date and time
 62 Calendar calendar = new GregorianCalendar();
 63
 64 // Set current hour, minute and second
 65 this.hour = calendar.get(Calendar.HOUR_OF_DAY);
 66 this.minute = calendar.get(Calendar.MINUTE);
 67 this.second = calendar.get(Calendar.SECOND);
 68
paint clock 69 paintClock(); // Repaint the clock
 70 }
 71
 72 /** Paint the clock */
 73 private void paintClock() {
paint clock 74 // Initialize clock parameters
get radius 75 double clockRadius =
 76 Math.min(getWidth(), getHeight()) * 0.8 * 0.5;
get center 77 double centerX = getWidth() /2;
 78 double centerY = getHeight() /2;
 79
 80 // Draw circle
create a circle 81 Circle circle = new Circle(centerX, centerY, clockRadius);
 82 circle.setFill(Color.WHITE);
 83 circle.setStroke(Color.BLACK);
create texts 84 Text t1 = new Text(centerX – 5, centerY – clockRadius + 12, "12");
 85 Text t2 = new Text(centerX – clockRadius + 3, centerY + 5, "9");
 86 Text t3 = new Text(centerX + clockRadius – 10, centerY + 3, "3");
 87 Text t4 = new Text(centerX – 3, centerY + clockRadius – 3, "6");
 88
 89 // Draw second hand
 90 double sLength = clockRadius * 0.8;
 91 double secondX = centerX + sLength *
 92 Math.sin(second * (2 * Math.PI / 60));
 93 double secondY = centerY – sLength *
 94 Math.cos(second * (2 * Math.PI / 60));
create second hand 95 Line sLine = new Line(centerX, centerY, secondX, secondY);
 96 sLine.setStroke(Color.RED);
 97
 98 // Draw minute hand
 99 double mLength = clockRadius * 0.65;
 100 double xMinute = centerX + mLength *
 101 Math.sin(minute * (2 * Math.PI / 60));
 102 double minuteY = centerY – mLength *
 103 Math.cos(minute * (2 * Math.PI / 60));
create minute hand 104 Line mLine = new Line(centerX, centerY, xMinute, minuteY);
 105 mLine.setStroke(Color.BLUE);
 106
 107 // Draw hour hand
 108 double hLength = clockRadius * 0.5;
 109 double hourX = centerX + hLength *
 110 Math.sin((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
 111 double hourY = centerY – hLength *
 112 Math.cos((hour % 12 + minute / 60.0) * (2 * Math.PI / 12));
create hour hand 113 Line hLine = new Line(centerX, centerY, hourX, hourY);
 114 hLine.setStroke(Color.GREEN);
 115
clear pane 116 getChildren().clear();
add nodes to pane 117 getChildren().addAll(circle, t1, t2, t3, t4, sLine, mLine, hLine);
 118 }
 119
 120 @Override
set a new width 121 public void setWidth(double width) {
 122 super.setWidth(width);
paint clock 123 paintClock();
 124 }
 125
 126 @Override
set a new height 127 public void setHeight(double height) {
 128 super.setHeight(height);
paint clock 129 paintClock();
 130 }
 131 }

The program displays a clock for the current time using the no-arg constructor (lines 15–17) and displays a clock for the specified hour, minute, and second using the other constructor (lines 20–24).

The class defines the properties hour, minute, and second to store the time represented in the clock (lines 10–12). The current hour, minute, and second are obtained by using the GregorianCalendar class (lines 62–67). The GregorianCalendar class in the Java API enables you to create a Calendar instance for the current time using its ­no-arg constructor. You can then use its methods get(Calendar.HOUR), get(Calendar .MINUTE), and get(Calendar.SECOND) to return the hour, minute, and second from a Calendar object.

The paintClock() method paints the clock (lines 73–118). The clock radius is proportional to the width and height of the pane (lines 75–78). A circle for the clock is created at the center of the pane (line 81). The text for showing the hours 12, 3, 6, and 9 are created in lines 84–87. The second, minute, and hour hands are the lines created in lines 90–114. The ­paintClock() method places all these shapes in the pane using the addAll method (line 117). Before adding new contents into the pane, the old contents are cleared from the pane (line 116).

The setWidth and setHeight methods defined in the Pane class are overridden in the ClockPane class to repaint the clock after the width or height is changed in the clock pane (lines 120–130). The paintClock() method is invoked whenever a new property (hour, minute, second, width, and height) is set (lines 34, 45, 56, 69, 123, and 129).

override setWidth and setHeight

In Listing 14.20, the clock is placed inside a border pane, the border pane is placed in the scene, and the scene is placed in the stage. When a stage is displayed or resized, all these components inside the stage are automatically resized by invoking their respective setWidth and setHeight methods. Since the setWidth and setHeight methods are overridden to invoke the paintClock() method, the clock is automatically resized in response to the change of the stage size.

		14.12.1  What will happen if lines 120–130 are removed in Listing 14.21 ? Run the ­DisplayClock class in Listing 14.20 to test it.

Key Terms

	AWT 542

	bidirectional binding 551

	bindable object 548

	binding object 548

	binding property 548

	JavaFX 551

	node 545

	observable object 548

	pane 545

	primary stage 543

	property getter method 549

	shape 545

	Swing 542

	UI control 545

	unidirectional binding 551

	value getter method 549

	value setter method 549

Chapter Summary

	JavaFX is the new framework for developing rich GUI applications. JavaFX completely replaces Swing and AWT.

	A main JavaFX class must extend javafx.application.Application and ­implement the start method. The primary stage is automatically created by the JVM and passed to the start method.

	A stage is a window for displaying a scene. You can add nodes to a scene. Panes, groups, controls, and shapes are nodes. Panes can be used as the containers for nodes.

	A binding property can be bound to an observable source object. A change in the source object will be automatically reflected in the binding property. A binding property has a value getter method, value setter method, and property getter method.

	The Node class defines many properties that are common to all nodes. You can apply these properties to panes, groups, controls, and shapes.

	You can create a Color object with the specified red, green, blue components, and opacity value.

	You can create a Font object and set its name, size, weight, and posture.

	The javafx.scene.image.Image class can be used to load an image, and this image can be displayed in an ImageView object.

	JavaFX provides many types of panes for automatically laying out nodes in a desired location and size. The Pane is the base class for all panes. It contains the ­getChildren() method to return an ObservableList. You can use ­ObservableList’s add(node) and addAll(node1, node2,...) methods for adding nodes into a pane.

	A FlowPane arranges the nodes in the pane horizontally from left to right or vertically from top to bottom, in the order in which they were added. A GridPane arranges nodes in a grid (matrix) formation. The nodes are placed in the specified column and row indices. A ­BorderPane can place nodes in five regions: top, bottom, left, right, and center. An HBox lays out its children in a single horizontal row. A VBox lays out its children in a single vertical column.

	JavaFX provides many shape classes for drawing texts, lines, circles, rectangles, ellipses, arcs, polygons, and polylines.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

 Note

The image files used in the exercises can be obtained from liveexample.pearsoncmg.com/resource/image.zip under the image folder.

download image files

Sections 14.2–14.9

	14.1 (Display images) Write a program that displays four images in a grid pane, as shown in Figure 14.43a.

[image: Figures ay, b, and c show sample runs.]
Figure 14.43

(a) Exercise 14.1 displays four images.

Source: booka/Fotolia.

 Figure 14.43a4: United States ­Government.

 (b) Exercise 14.2 displays a tic-tac-toe board with images.

 (c) Three cards are randomly selected.

Source: pandawild/Fotolia.

Description

Display a tic-tac-toe board

		*14.2	(Tic-tac-toe board) Write a program that displays a tic-tac-toe board, as shown in Figure 14.43b . A cell may be X, O, or empty. What to display at each cell is randomly decided. The X and O are the image files x.gif and o.gif.

		*14.3	(Display three cards) Write a program that displays three cards randomly selected from a deck of 52, as shown in Figure 14.43c . The card image files are named 1.png, 2.png, . . . , 52.png and stored in the image/card directory. All three cards are distinct and selected randomly. (Hint: You can select random cards by storing the numbers 1–52 to an array list, perform a random shuffle introduced in Section 11.12, , and use the first three numbers in the array list as the file names for the image.)

	14.4 (Color and font) Write a program that displays five texts vertically, as shown in Figure 14.44a . Set a random color and opacity for each text and set the font of each text to Times Roman, bold, italic, and 22 pixels.

[image: Figures ay, b, and c show sample runs.]
Figure 14.44

(a) Five texts are displayed with a random color and a specified font. (b) A string is displayed around the circle. (c) A checkerboard is displayed using rectangles.

Description

	14.5 (Characters around circle) Write a program that displays a string “Welcome to Java” around the circle, as shown in Figure 14.44b . (Hint: You need to display each character in the right location with appropriate rotation using a loop.)

		*14.6	(Game: display a checkerboard) Write a program that displays a checkerboard in which each white and black cell is a Rectangle with a fill color black or white, as shown in Figure 14.44c .

Sections 14.10 and 14.11

		*14.7	(Display random 0 or 1) Write a program that displays a 10-by-10 square matrix, as shown in Figure 14.45a . Each element in the matrix is 0 or 1, randomly generated. Display each number centered in a text field. Use TextField’s setText method to set value 0 or 1 as a string.

[image: Figures ay, b, and c show sample runs.]
Figure 14.45

(a) The program randomly generates 0s and 1s. (b) Exercise 14.9 draws four fans. (c) Exercise 14.10 draws a cylinder.

Description

Display a random matrix

	14.8 (Display 54 cards) Expand Exercise 14.3 to display all 54 cards (including two jokers), nine per row. The image files are jokers and are named 53.png and 54.png.

		*14.9	(Create four fans) Write a program that places four fans in a GridPane with two rows and two columns, as shown in Figure 14.45b.

		*14.10	(Display a cylinder) Write a program that draws a cylinder, as shown in ­Figure 14.45b . You can use the following method to set the dashed stroke for an arc:­

 arc.getStrokeDashArray().addAll(6.0, 21.0);

The solution posted on the website enables the cylinder to resize horizontally. Can you revise it to resize vertically as well?

		*14.11	(Paint a smiley face) Write a program that paints a smiley face, as shown in ­Figure 14.46a.

[image: Figures ay, b, and c show sample runs.]
Figure 14.46

(a) Exercise 14.11 paints a smiley face. (b) Exercise 14.12 paints a bar chart. (c) Exercise 14.3 paints a pie chart.

Description

Display a bar chart

		**14.12	(Display a bar chart) Write a program that uses a bar chart to display the percentages of the overall grade represented by projects, quizzes, midterm exams, and the final exam, as shown in Figure 14.46b . Suppose projects take 20% and are displayed in red, quizzes take 10% and are displayed in blue, midterm exams take 30% and are displayed in green, and the final exam takes 40% and is displayed in orange. Use the Rectangle class to display the bars. Interested readers may explore the JavaFX BarChart class for further study.

		**14.13	(Display a pie chart) Write a program that uses a pie chart to display the percentages of the overall grade represented by projects, quizzes, midterm exams, and the final exam, as shown in Figure 14.46c . Suppose projects take 20% and are displayed in red, quizzes take 10% and are displayed in blue, ­midterm exams take 30% and are displayed in green, and the final exam takes 40% and is displayed in orange. Use the Arc class to display the pies. Interested readers may explore the JavaFX PieChart class for further study.

	14.14 (Display a rectanguloid) Write a program that displays a rectanguloid, as shown in Figure 14.47a. The cube should grow and shrink as the window grows or shrinks.

[image: Figures ay, b, and c show sample runs.]
Figure 14.47

(a) Exercise 14.14 paints a rectanguloid. (b) Exercise 14.15 paints a STOP sign. (c) Exercise 14.16 paints a grid.

Description

		*14.15	(Display a STOP sign) Write a program that displays a STOP sign, as shown in Figure 14.47b . The octagon is in red and the sign is in white. (Hint: Place an octagon and a text in a stack pane.)

		*14.16	(Display a

3×3

 grid) Write a program that displays a

3×3

 grid, as shown in Figure 14.47c . Use red color for vertical lines and blue for horizontals. The lines are automatically resized when the window is resized.

	14.17 (Game: hangman) Write a program that displays a drawing for the popular hangman game, as shown in Figure 14.48a.

[image: Figures ay, b, and c show sample runs.]
Figure 14.48

(a) Exercise 14.17 draws a sketch for the hangman game. (b) Exercise 14.18 plots the quadratic function. (c) Exercise 14.19 plots the sine/cosine functions.

Description

		*14.18	(Plot the square function) Write a program that draws a diagram for the function
 f(
 x
)=
 x
2

 (see Figure 14.48b).

Hint: Add points to a polyline using the following code:

 Polyline polyline = new Polyline();
 ObservableList<Double> list = polyline.getPoints();
 double scaleFactor = 0.0125;
 for (int x = –100; x <= 100; x++) {
 list.add(x + 200.0);
 list.add(scaleFactor * x * x);
 }

		**14.19	(Plot the sine and cosine functions) Write a program that plots the sine function in red and cosine in blue, as shown in Figure 14.48c .

Hint: The Unicode for
π
 is \u03c0. To display

 −2π,

 use Text(x, y, "–2\u03c0"). For a trigonometric function like sin(x), x is in radians. Use the ­following loop to add the points to a polyline:

 Polyline polyline = new Polyline();
 ObservableList<Double> list = polyline.getPoints();
 double scaleFactor = 50;
 for (int x = −170; x <= 170; x++) {
 list.add(x + 200.0);
 list.add(100 – 50 * Math.sin((x / 100.0) * 2 * Math.PI));
 }

		**14.20	(Draw an arrow line) Write a static method that draws an arrow line from a ­starting point to an ending point in a pane using the following method header:

public static void drawArrowLine(double startX, double startY,
 double endX, double endY, Pane pane)

Write a test program that randomly draws an arrow line, as shown in Figure 14.49a.

[image: Figures ay, b, and c show sample runs.]
Figure 14.49

(a) The program displays an arrow line. (b) Exercise 14.21 connects the centers of two filled circles. (c) Exercise 14.22 connects two circles from their perimeter.

Description

		*14.21	(Two circles and their distance) Write a program that draws two circles with radius 15 pixels, centered at random locations, with a line connecting the two circles. The distance between the two centers is displayed on the line, as shown in Figure 14.49b .

		*14.22	(Connect two circles) Write a program that draws two filled circles with radius 15 pixels, centered at random locations, with a line connecting the two circles. The line should not cross inside the circles, as shown in Figure 14.49c .

		*14.23	(Geometry: two rectangles) Write a program that prompts the user to enter the center coordinates, width, and height of two rectangles from the command line. The program displays the rectangles and a text indicating whether the two are overlapping, whether one is contained in the other, or whether they don’t overlap, as shown in Figure 14.50 . See Programming Exercise 10.13 for checking the relationship between two rectangles.

[image: Figures ay, b, and c show sample runs.]
Figure 14.50

Two rectangles are displayed.

Description

		*14.24	(Geometry: Inside a polygon?) Write a program that prompts the user to enter the coordinates of five points from the command line. The first four points form a polygon, and the program displays the polygon and a text that indicates whether the fifth point is inside the polygon, as shown in Figure 14.51a . (Hint: Use the Node’s contains method to test whether a point is inside a node.)

[image: Figures ay, b, and c show sample runs.]
Figure 14.51

(a) The polygon and a point are displayed. (b) Exercise 14.25 connects five random points on a circle. (b) Exercise 14.26 displays two clocks.

Description

		*14.25	(Random points on a circle) Modify Programming Exercise 4.6 to create five random points on a circle, form a polygon by connecting the points clockwise, and display the circle and the polygon, as shown in Figure 14.51b.

Section 14.12

	14.26 (Use the ClockPane class) Write a program that displays two clocks. The hour, minute, and second values are 4, 20, 45 for the first clock, and 22, 46, 15 for the second clock, as shown in Figure 14.51c.

		*14.27	(Draw a detailed clock) Modify the ClockPane class in Section 14.12 to draw the clock with more details on the hours and minutes, as shown in Figure 14.52a.

[image: Figures ay, b, and c show sample runs.]
Figure 14.52

(a) Exercise 14.27 displays a detailed clock. (b) Exercise 14.28 displays a clock with random hour and minute values. (c) Exercise 14.29 displays a bean machine.

Description

		*14.28	(Random time) Modify the ClockPane class with three new Boolean properties—hourHandVisible, minuteHandVisible, and ­secondHandVisible—and their associated accessor and mutator methods. You can use the set methods to make a hand visible or invisible. Write a test program that displays only the hour and minute hands. The hour and minute values are randomly generated. The hour is between 0 and 11, and the minute is either 0 or 30, as shown in Figure 14.52b .

		**14.29	(Game: bean machine) Write a program that displays a bean machine introduced in Programming Exercise 7.37 , as shown in Figure 14.52c.

CHAPTER 15 Event-Driven Programming and Animations

Objectives

	To get a taste of event-driven programming (§15.1).

	To describe events, event sources, and event classes (§15.2).

	To define handler classes, register handler objects with the source object, and write the code to handle events (§15.3).

	To define handler classes using inner classes (§15.4).

	To define handler classes using anonymous inner classes (§15.5).

	To simplify event handling using lambda expressions (§15.6).

	To develop a GUI application for a loan calculator (§15.7).

	To write programs to deal with MouseEvents (§15.8).

	To write programs to deal with KeyEvents (§15.9).

	To create listeners for processing a value change in an observable object (§15.10).

	To use the Animation, PathTransition, FadeTransition, and Timeline classes to develop animations (§15.11).

	To develop an animation for simulating a bouncing ball (§15.12).

	To draw, color, and resize a US map (§15.13).

15.1 Introduction

	You can write code to process events such as a button click, mouse movement, and keystrokes.

Suppose you wish to write a GUI program that lets the user enter a loan amount, annual interest rate, and number of years then click the Calculate button to obtain the monthly payment and total payment, as shown in Figure 15.1. How do you accomplish the task? You have to use event-driven programming to write the code to respond to the button-clicking event.

[image: The window titled, Loan Calculator, with input fields as follows: Annual interest rate, 4.5. Number of Years, 4. Loan amount, 5000. Monthly payment, $114.02. Total payment, $5472.84. A button below the fields is labeled, calculate.]
Figure 15.1

The program computes loan payments.

problem

Before delving into event-driven programming, it is helpful to get a taste using a simple example. The example displays two buttons in a pane, as shown in Figure 15.2.

[image: Figures ay and b show a G U I, and a console.]
Figure 15.2

(a) The program displays two buttons. (b) A message is displayed in the ­console when a button is clicked.

Description

problem

To respond to a button click, you need to write the code to process the button-clicking action. The button is an event source object—where the action originates. You need to ­create an object capable of handling the action event on a button. This object is called an event ­handler, as shown in Figure 15.3.

[image: A diagram, with 3 steps.]
Figure 15.3

An event handler processes the event fired from the source object.

Description

Not all objects can be handlers for an action event. To be a handler of an action event, two requirements must be met:

	The object must be an instance of the EventHandler<T extends Event> interface. This interface defines the common behavior for all handlers. <T extends Event> denotes that T is a generic type that is a subtype of Event.

EventHandler interface

	The EventHandler object handler must be registered with the event source object using the method source.setOnAction(handler).

setOnAction(handler)

The EventHandler<ActionEvent> interface contains the handle(ActionEvent) method for processing the action event. Your handler class must override this method to respond to the event. Listing 15.1 gives the code that processes the ActionEvent on the two buttons. When you click the OK button, the message “OK button clicked” is displayed. When you click the Cancel button, the message “Cancel button clicked” is displayed, as shown in Figure 15.2.

Listing 15.1 HandleEvent.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.layout.HBox;
 6 import javafx.stage.Stage;
 7 import javafx.event.ActionEvent;
 8 import javafx.event.EventHandler;
 9
 10 public class HandleEvent extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 // Create a pane and set its properties
 14 HBox pane = new HBox(10);
 15 pane.setAlignment(Pos.CENTER);
 16 Button btOK = new Button("OK");
 17 Button btCancel = new Button("Cancel");
create handler 18 OKHandlerClass handler1 = new OKHandlerClass();
register handler 19 btOK.setOnAction(handler1);
create handler 20 CancelHandlerClass handler2 = new CancelHandlerClass();
register handler 21 btCancel.setOnAction(handler2);
 22 pane.getChildren().addAll(btOK, btCancel);
 23
 24 // Create a scene and place it in the stage
 25 Scene scene = new Scene(pane);
 26 primaryStage.setTitle("HandleEvent"); // Set the stage title
 27 primaryStage.setScene(scene); // Place the scene in the stage
 28 primaryStage.show(); // Display the stage
 29 }
 30 }
 31
handler class 32 class OKHandlerClass implements EventHandler<ActionEvent> {
 33 @Override
handle event 34 public void handle(ActionEvent e) {
 35 System.out.println("OK button clicked");
 36 }
 37 }
 38
handler class 39 class CancelHandlerClass implements EventHandler<ActionEvent> {
 40 @Override
handle event 41 public void handle(ActionEvent e) {
 42 System.out.println("Cancel button clicked");
 43 }
 44 }

Two handler classes are defined in lines 32–44. Each handler class implements EventHandler<ActionEvent> to process ActionEvent. The object handler1 is an instance of OKHandlerClass (line 18), which is registered with the button btOK (line 19). When the OK button is clicked, the handle(ActionEvent) method (line 34) in OKHandlerClass is invoked to process the event. The object handler2 is an instance of CancelHandlerClass (line 20), which is registered with the button btCancel in line 21. When the Cancel button is clicked, the handle(ActionEvent) method (line 41) in ­CancelHandlerClass is invoked to process the event.

You now have seen a glimpse of event-driven programming in JavaFX. You probably have many questions, such as why a handler class is defined to implement the EventHandler<ActionEvent>. The following sections will give you all the answers.

15.2 Events and Event Sources

	An event is an object created from an event source. Firing an event means to create an event and delegate the handler to handle the event.

When you run a Java GUI program, the program interacts with the user and the events drive its execution. This is called event-driven programming. An event can be defined as a signal to the program that something has happened. Events are triggered by external user actions, such as mouse movements, mouse clicks, and keystrokes. The program can choose to respond to or ignore an event. The example in the preceding section gave you a taste of event-driven programming.

event-driven programming

event

The component that creates an event and fires it is called the event source object, or simply source object or source component. For example, a button is the source object for a button-clicking action event. An event is an instance of an event class. The root class of the Java event classes is java.util.EventObject. The root class of the JavaFX event classes is javafx .event.Event. The hierarchical relationships of some event classes are shown in Figure 15.4.

fire event

event source object

source object

[image: A diagram represents the hierarchy of events in Java F X.]
Figure 15.4

An event in JavaFX is an object of the javafx.event.Event class.

Description

An event object contains whatever properties are pertinent to the event. You can identify the source object of an event using the getSource() instance method in the EventObject class. The subclasses of EventObject deal with specific types of events, such as action events, window events, mouse events, and key events. The first three columns in Table 15.1 list some external user actions, source objects, and event types fired. For example, when clicking a button, the button creates and fires an ActionEvent, as indicated in the first line of this table. Here, the button is an event source object, and an ActionEvent is the event object fired by the source object, as shown in Figure 15.3.

event object

getSource()

 Note

If a component can fire an event, any subclass of the component can fire the same type of event. For example, every JavaFX shape, layout pane, and control can fire ­MouseEvent and KeyEvent since Node is the superclass for shapes, layout panes, and controls and Node can fire MouseEvent and KeyEvent.

Table 15.1 User Action, Source Object, Event Type, Handler Interface, and Handler

	User Action

	Source Object

	Event Type Fired

	Event Registration Method

	Click a button

	Button

	ActionEvent

	setOnAction(EventHandler<ActionEvent>)

	Press Enter in a text field

	TextField

	ActionEvent

	setOnAction(EventHandler<ActionEvent>)

	Check or uncheck

	RadioButton

	ActionEvent

	setOnAction(EventHandler<ActionEvent>)

	Check or uncheck

	CheckBox

	ActionEvent

	setOnAction(EventHandler<ActionEvent>)

	Select a new item

	ComboBox

	ActionEvent

	setOnAction(EventHandler<ActionEvent>)

	Mouse pressed

	Node, Scene

	MouseEvent

	setOnMousePressed(EventHandler<MouseEvent>)

	Mouse released

	
	
	setOnMouseReleased(EventHandler<MouseEvent>)

	Mouse clicked

	
	
	setOnMouseClicked(EventHandler<MouseEvent>)

	Mouse entered

	
	
	setOnMouseEntered(EventHandler<MouseEvent>)

	Mouse exited

	
	
	setOnMouseExited(EventHandler<MouseEvent>)

	Mouse moved

	
	
	setOnMouseMoved(EventHandler<MouseEvent>)

	Mouse dragged

	
	
	setOnMouseDragged(EventHandler<MouseEvent>)

	Key pressed

	Node, Scene

	KeyEvent

	setOnKeyPressed(EventHandler<KeyEvent>)

	Key released

	
	
	setOnKeyReleased(EventHandler<KeyEvent>)

	Key typed

	
	
	setOnKeyTyped(EventHandler<KeyEvent>)

	15.2.1 What is an event source object? What is an event object? Describe the relationship between an event source object and an event object.

	15.2.2 Can a button fire a MouseEvent? Can a button fire a KeyEvent? Can a button fire an ActionEvent?

15.3 Registering Handlers and Handling Events

	A handler is an object that must be registered with an event source object and it must be an instance of an appropriate event-handling interface.

Java uses a delegation-based model for event handling: A source object fires an event, and an object interested in the event handles it. The latter object is called an event handler or an event listener. For an object to be a handler for an event on a source object, two things are needed, as shown in Figure 15.5.

event delegation

event handler

[image: Two U M L diagrams represent the relationship between listener and listener interface.]
Figure 15.5

A listener must be an instance of a listener interface and must be registered with a source object.

Description

	The handler object must be an instance of the corresponding event–handler interface to ensure the handler has the correct method for processing the event. JavaFX defines a unified handler interface EventHandler<T extends Event> for an event T. The handler interface contains the handle(T e) method for processing the event. For example, the handler interface for ActionEvent is EventHandler<ActionEvent>; each handler for ActionEvent should implement the handle(ActionEvent e) method for processing an ActionEvent.

event–handler interface

EventHandler<T extends Event>

event handler

	The handler object must be registered by the source object. Registration methods depend on the event type. For ActionEvent, the method is setOnAction. For a mouse-pressed event, the method is setOnMousePressed. For a key-pressed event, the method is setOnKeyPressed.

register handler

Let’s revisit Listing 15.1, HandleEvent.java. Since a Button object fires ActionEvent, a handler object for ActionEvent must be an instance of EventHandler<ActionEvent>, so the handler class implements EventHandler<ActionEvent> in line 32. The source object invokes setOnAction(handler) to register a handler, as follows:

create source object

create handler object

register handler

Button btOK = new Button("OK"); // Line 16 in Listing 15.1
OKHandlerClass handler1 = new OKHandlerClass(); // Line 18 in Listing 15.1
btOK.setOnAction(handler1); // Line 19 in Listing 15.1

When you click the button, the Button object fires an ActionEvent and passes it to invoke the handler’s handle(ActionEvent) method to handle the event. The event object contains information pertinent to the event, which can be obtained using the methods. For example, you can use e.getSource() to obtain the source object that fired the event.

We now write a program that uses two buttons to enlarge and shrink a circle, as shown in Figure 15.6. We will develop this program incrementally. First, we write the program in ­Listing 15.2 that displays the user interface with a circle in the center (lines 15–19) and two buttons on the bottom (lines 21–27).

first version

[image: Two windows titled, Control Circle, each contain a circle, and two buttons labeled, enlarge, and, shrink. The circle on the right side is larger.]
Figure 15.6

The user clicks the Enlarge and Shrink buttons to enlarge and shrink the circle.

Listing 15.2 ControlCircleWithoutEventHandling.java

	 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.paint.Color;
 9 import javafx.scene.shape.Circle;
 10 import javafx.stage.Stage;
 11
 12 public class ControlCircleWithoutEventHandling extends Application {
 13 @Override // Override the start method in the Application class
 14 public void start(Stage primaryStage) {
 15 StackPane pane = new StackPane();
circle 16 Circle circle = new Circle(50);
 17 circle.setStroke(Color.BLACK);
 18 circle.setFill(Color.WHITE);
 19 pane.getChildren().add(circle);
 20
 21 HBox hBox = new HBox();
 22 hBox.setSpacing(10);
 23 hBox.setAlignment(Pos.CENTER);
buttons 24 Button btEnlarge = new Button("Enlarge");
 25 Button btShrink = new Button("Shrink");
 26 hBox.getChildren().add(btEnlarge);
 27 hBox.getChildren().add(btShrink);
 28
 29 BorderPane borderPane = new BorderPane();
 30 borderPane.setCenter(pane);
 31 borderPane.setBottom(hBox);
 32 BorderPane.setAlignment(hBox, Pos.CENTER);
 33
 34 // Create a scene and place it in the stage
 35 Scene scene = new Scene(borderPane, 200, 150);
 36 primaryStage.setTitle("ControlCircle"); // Set the stage title
 37 primaryStage.setScene(scene); // Place the scene in the stage
 38 primaryStage.show(); // Display the stage
 39 }
 49 }

How do you use the buttons to enlarge or shrink the circle? When the Enlarge button is clicked, you want the circle to be repainted with a larger radius. How can you accomplish this? You can expand and modify the program in Listing 15.2 into Listing 15.3 with the following features:

second version

	Define a new class named CirclePane for displaying the circle in a pane (lines 51–68). This new class displays a circle and provides the enlarge and shrink methods for increasing and decreasing the radius of the circle (lines 60–62 and 64–67). It is a good strategy to design a class to model a circle pane with supporting methods so these related methods along with the circle are coupled in one object.

	Create a CirclePane object and declare circlePane as a data field to reference this object (line 15) in the ControlCircle class. The methods in the ControlCircle class can now access the CirclePane object through this data field.

	Define a handler class named EnlargeHandler that implements EventHandler<ActionEvent> (lines 43–48). To make the reference variable ­circlePane accessible from the handle method, define EnlargeHandler as an inner class of the ControlCircle class. (Inner classes are defined inside another class. We use an inner class here and will introduce it fully in the next section.)

inner class

	Register the handler for the Enlarge button (line 29) and implement the handle method in EnlargeHandler to invoke circlePane.enlarge() (line 46).

Handler and its registration

Listing 15.3 ControlCircle.java

 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.StackPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.BorderPane;
 10 import javafx.scene.paint.Color;
 11 import javafx.scene.shape.Circle;
 12 import javafx.stage.Stage;
 13
 14 public class ControlCircle extends Application {
 15 private CirclePane circlePane = new CirclePane();
 16
 17 @Override // Override the start method in the Application class
 18 public void start(Stage primaryStage) {
 19 // Hold two buttons in an HBox
 20 HBox hBox = new HBox();
 21 hBox.setSpacing(10);
 22 hBox.setAlignment(Pos.CENTER);
 23 Button btEnlarge = new Button("Enlarge");
 24 Button btShrink = new Button("Shrink");
 25 hBox.getChildren().add(btEnlarge);
 26 hBox.getChildren().add(btShrink);
 27
 28 // Create and register the handler
create/register handler 29 btEnlarge.setOnAction(new EnlargeHandler());
 30
 31 BorderPane borderPane = new BorderPane();
 32 borderPane.setCenter(circlePane);
 33 borderPane.setBottom(hBox);
 34 BorderPane.setAlignment(hBox, Pos.CENTER);
 35
 36 // Create a scene and place it in the stage
 37 Scene scene = new Scene(borderPane, 200, 150);
 38 primaryStage.setTitle("ControlCircle"); // Set the stage title
 39 primaryStage.setScene(scene); // Place the scene in the stage
 40 primaryStage.show(); // Display the stage
 41 }
 42
handler class 43 class EnlargeHandler implements EventHandler<ActionEvent> {
 44 @Override // Override the handle method
 45 public void handle(ActionEvent e) {
 46 circlePane.enlarge();
 47 }
 48 }
 49 }
 50
CirclePane class 51 class CirclePane extends StackPane {
 52 private Circle circle = new Circle(50);
 53
 54 public CirclePane() {
 55 getChildren().add(circle);
 56 circle.setStroke(Color.BLACK);
 57 circle.setFill(Color.WHITE);
 58 }
 59
enlarge method 60 public void enlarge() {
 61 circle.setRadius(circle.getRadius() + 2);
 62 }
 63
 64 public void shrink() {
 65 circle.setRadius(circle.getRadius() > 2 ?
 66 circle.getRadius() – 2 : circle.getRadius());
 67 }
 68 }

As an exercise, add the code for handling the Shrink button to display a smaller circle when the Shrink button is clicked.

the Shrink button

	15.3.1 Why must a handler be an instance of an appropriate handler interface?

	15.3.2 Explain how to register a handler object and how to implement a handler interface.

	15.3.3 What is the handler method for the EventHandler<ActionEvent> interface?

	15.3.4 What is the registration method for a button to register an ActionEvent handler?

15.4 Inner Classes

	An inner class, or nested class, is a class defined within the scope of another class. Inner classes are useful for defining handler classes.

The approach of this book is to introduce difficult programming concepts using practical examples. We introduce inner classes, anonymous inner classes, and lambda expressions using practical examples in this section and following two sections.

Inner classes are used in the preceding section. This section introduces inner classes in detail. First, let us see the code in Figure 15.7. The code in Figure 15.7a defines two separate classes, Test and A. The code in Figure 15.7b defines A as an inner class in Test.

Figure 15.7

An inner class is defined as a member of another class.

public class Test {
 ...
}
public class A {
 ...
}

(a)

public class Test {
 ...
 // Inner class
 public class A {
 …
 }
}

(b)

// OuterClass.java: inner class demo
public class OuterClass {
 private int data;
 /** A method in the outer class */
 public void m() {
 // Do something
 }
 // An inner class
 class InnerClass {
 /** A method in the inner class */
 public void mi() {
 // Directly reference data and method
 // defined in its outer class
 data++;
 m();
 }
 }
}

(c)

The class InnerClass defined inside OuterClass in Figure 15.7c is another example of an inner class. An inner class may be used just like a regular class. Normally, you define a class as an inner class if it is used only by its outer class. An inner class has the following features:

	An inner class is compiled into a class named OuterClassName$InnerClassName.class. For example, the inner class A in Test is compiled into Test$A.class in Figure 15.7b.

	An inner class can reference the data and the methods defined in the outer class in which it nests, so you need not pass the reference of an object of the outer class to the constructor of the inner class. For this reason, inner classes can make programs simple and concise. For example, circlePane is defined in ControlCircle in Listing 15.3 (line 15). It can be referenced in the inner class EnlargeHandler in line 46.

	An inner class can be defined with a visibility modifier subject to the same visibility rules applied to a member of the class.

	An inner class can be defined as static. A static inner class can be accessed using the outer class name. A static inner class cannot access nonstatic members of the outer class.

	Objects of an inner class are often created in the outer class. However, you can also create an object of an inner class from another class. If the inner class is nonstatic, you must first create an instance of the outer class, then use the following syntax to create an object for the inner class:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

	If the inner class is static, use the following syntax to create an object for it:

OuterClass.InnerClass innerObject = new OuterClass.InnerClass();

A simple use of inner classes is to combine dependent classes into a primary class. This reduces the number of source files. It also makes class files easy to organize since they are all named with the primary class as the prefix. For example, rather than creating the two source files Test.java and A.java as shown in Figure 15.7a, you can merge class A into class Test and create just one source file, Test.java as shown in Figure 15.7b. The resulting class files are Test.class and Test$A.class.

Another practical use of inner classes is to avoid class-naming conflicts. Two versions of A are defined in Figure 15.7a and 15.7b. You can define them as inner classes to avoid a conflict.

A handler class is designed specifically to create a handler object for a GUI component (e.g., a button). The handler class will not be shared by other applications and therefore is appropriate to be defined inside the main class as an inner class.

	15.4.1 Can an inner class be used in a class other than the class in which it nests?

	15.4.2 Can the modifiers public, protected, private, and static be used for inner classes?

15.5 Anonymous Inner-Class Handlers

	An anonymous inner class is an inner class without a name. It combines defining an inner class and creating an instance of the class into one step.

Inner-class handlers can be shortened using anonymous inner classes. The inner class in Listing 15.3 can be replaced by an anonymous inner class as shown below. The complete code is available at liveexample.pearsoncmg.com/html/ControlCircleWithAnonymousInnerClass.html.

anonymous inner class

[image: Two code diagrams, labeled ay and b.]

Description

The syntax for an anonymous inner class is shown below.

new SuperClassName/InterfaceName() {
 // Implement or override methods in superclass or interface

 // Other methods if necessary
}

Since an anonymous inner class is a special kind of inner class, it is treated like an inner class with the following features:

	An anonymous inner class must always extend a superclass or implement an interface, but it cannot have an explicit extends or implements clause.

	An anonymous inner class must implement all the abstract methods in the superclass or in the interface.

	An anonymous inner class always uses the no-arg constructor from its superclass to create an instance. If an anonymous inner class implements an interface, the constructor is Object().

	An anonymous inner class is compiled into a class named OuterClassName$n.class. For example, if the outer class Test has two anonymous inner classes, they are compiled into Test$1.class and Test$2.class.

Listing 15.4 gives an example that displays a text and uses four buttons to move a text up, down, left, and right, as shown in Figure 15.8.

[image: A window titled, Anonymous Handler Demo, displays the text, Programming is fun, above a row of buttons labeled, up, down, left, and, right.]
Figure 15.8

The program handles the events from four buttons.

Anonymous handler

Listing 15.4 AnonymousHandlerDemo.java

 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
 10 import javafx.scene.text.Text;
 11 import javafx.stage.Stage;
 12
 13 public class AnonymousHandlerDemo extends Application {
 14 @Override // Override the start method in the Application class
 15 public void start(Stage primaryStage) {
 16 Text text = new Text(40, 40, "Programming is fun");
 17 Pane pane = new Pane(text);
 18
 19 // Hold four buttons in an HBox
 20 Button btUp = new Button("Up");
 21 Button btDown = new Button("Down");
 22 Button btLeft = new Button("Left");
 23 Button btRight = new Button("Right");
 24 HBox hBox = new HBox(btUp, btDown, btLeft, btRight);
 25 hBox.setSpacing(10);
 26 hBox.setAlignment(Pos.CENTER);
 27
 28 BorderPane borderPane = new BorderPane(pane);
 29 borderPane.setBottom(hBox);
 30
 31 // Create and register the handler
anonymous handler 32 btUp.setOnAction(new EventHandler<ActionEvent>() {
 33 @Override // Override the handle method
handle event 34 public void handle(ActionEvent e) {
 35 text.setY(text.getY() > 10 ? text.getY() − 5 : 10);
 36 }
 37 });
 38
 39 btDown.setOnAction(new EventHandler<ActionEvent>() {
 40 @Override // Override the handle method
 41 public void handle(ActionEvent e) {
 42 text.setY(text.getY() < pane.getHeight() ?
 43 text.getY() + 5 : pane.getHeight());
 44 }
 45 });
 46
 47 btLeft.setOnAction(new EventHandler<ActionEvent>() {
 48 @Override // Override the handle method
 49 public void handle(ActionEvent e) {
 50 text.setX(text.getX() > 0 ? text.getX() − 5 : 0);
 51 }
 52 });
 53
 54 btRight.setOnAction(new EventHandler<ActionEvent>() {
 55 @Override // Override the handle method
 56 public void handle(ActionEvent e) {
 57 text.setX(text.getX() < pane.getWidth() − 100?
 58 text.getX() + 5 : pane.getWidth() − 100);
 59 }
 60 });
 61
 62 // Create a scene and place it in the stage
 63 Scene scene = new Scene(borderPane, 400, 350);
 64 primaryStage.setTitle("AnonymousHandlerDemo"); // Set title
 65 primaryStage.setScene(scene); // Place the scene in the stage
 66 primaryStage.show(); // Display the stage
 67 }
 68 }

The program creates four handlers using anonymous inner classes (lines 32–60). Without using anonymous inner classes, you would have to create four separate classes. An anonymous handler works the same way as that of an inner-class handler. The program is condensed using an anonymous inner class. Another benefit of using anonymous inner class is the handler can access local variables. In this example, the event handler references local variable text (lines 35, 42, 50, and 57).

The anonymous inner classes in this example are compiled into ­AnonymousHandlerDemo$1.class, AnonymousHandlerDemo$2.class, AnonymousHandlerDemo$3.class, and AnonymousHandlerDemo$4.class.

	15.5.1 If class A is an inner class in class B, what is the .class file for A? If class B contains two anonymous inner classes, what are the .class file names for these two classes?

	15.5.2 What is wrong in the following code?

	public class Test extends Application {
 public void start(Stage stage) {
 Button btOK = new Button("OK");
 }
 private class Handler implements
 EventHandler<ActionEvent> {
 public void handle(Action e) {
 System.out.println(e.getSource());
 }
 }
}

	
	public class Test extends Application {
 public void start(Stage stage) {
 Button btOK = new Button("OK");
 btOK.setOnAction(
 new EventHandler<ActionEvent> {
 public void handle
 (ActionEvent e) {
 System.out.println
 (e.getSource());
 }
 } // Something missing here
 }
}

	(a)

	
	(b)

15.6 Simplifying Event Handling Using Lambda Expressions

	Lambda expressions can be used to greatly simplify coding for event handling.

Lambda expression is a new feature in Java 8. Lambda expressions can be viewed as an anonymous class with a concise syntax. For example, the following code in (a) can be greatly simplified using a lambda expression in (b) in three lines. The complete code that contains the lambda expression in (b) can be seen at liveexample.pearsoncmg.com/html/ControlCircleWithLambdaExpression.html.

lambda expression

	btEnlarge.setOnAction {
 new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 // Code for processing event e
 }
 }
});

	
	btEnlarge.setOnAction(e –> {
 // Code for processing event e
});

	(a) Anonymous inner class event handler

	
	(b) Lambda expression event handler

The basic syntax for a lambda expression is either

(type1 param1, type2 param2, . . .) −> expression

or

(type1 param1, type2 param2, . . .) −> { statements; }

The data type for a parameter may be explicitly declared or implicitly inferred by the compiler. The parentheses can be omitted if there is only one parameter without an explicit data type. The curly braces can be omitted if there is only one statement. For example, the following lambda expressions are all equivalent. Note there is no semicolon after the statement in (d).

	(ActiionEvent e) −> {
 circlePane.enlarge(); }

	
	(e) −> {
 circlePane.enlarge(); }

	(a) Lambda expression with one statement

	
	(b) Omit parameter data type

	e −> {
 circlePane.enlarge(); }

	
	e −>
 circlePane.enlarge()

	(c) Omit parentheses

	
	(d) Omit braces

The compiler treats a lambda expression as if it is an object created from an anonymous inner class. The compiler processes a lambda expression in three steps: (1) identify the lambda expression type, (2) identify the parameter types, and (3) identify statements. Consider the following lambda expression:

btEnlarge.setOnAction(
 e −> {
 // Code for processing event e
 }
);

It is processed as follows:

	Step 1: The compiler recognizes that the object must be an instance of EventHandler<ActionEvent>, since the expression is an argument of the setOnAction method as shown in the following figure:

[image: An annotated code diagram.]

Description

	Step 2:: Since the EventHandler interface defines the handle method with a parameter of the ActionEvent type, the compiler recognizes that e is a parameter of the ActionEvent type.

	Step 3:: The compiler recognizes that the code for processing e is the statements in the body of the handle method.

The EventHandler interface contains just one method named handle. The statements in the lambda expression are all for that method. If it contains multiple methods, the compiler will not be able to compile the lambda expression. Therefore, for the compiler to understand lambda expressions, the interface must contain exactly one abstract method. Such an interface is known as a Single Abstract Method (SAM) interface.

SAM interface

In essence, a lambda expression creates an object and the object performs a function by invoking this single method. Thus, a SAM interface is also known as a functional interface, and an instance of a functional interface is known as a function object. Since a lambda expression is squarely on defining a function, a lambda expression is also called a lambda function. The terms lambda expression and lambda function are interchangeable.

functional interface

function object

lambda function

functional programming

Listing 15.4 can be simplified using lambda expressions as shown in Listing 15.5.

Listing 15.5 LambdaHandlerDemo.java

 1 import javafx.application.Application;
 2 import javafx.event.ActionEvent;
 3 import javafx.event.EventHandler;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
 10 import javafx.scene.text.Text;
 11 import javafx.stage.Stage;
 12
 13 public class LambdaHandlerDemo extends Application {
 14 @Override // Override the start method in the Application class
 15 public void start(Stage primaryStage) {
 16 Text text = new Text(40, 40, "Programming is fun");
 17 Pane pane = new Pane(text);
 18
 19 // Hold four buttons in an HBox
		 20 Button btUp = new Button("Up");
 21 Button btDown = new Button("Down");
 22 Button btLeft = new Button("Left");
 23 Button btRight = new Button("Right");
 24 HBox hBox = new HBox(btUp, btDown, btLeft, btRight);
 25 hBox.setSpacing(10);
 26 hBox.setAlignment(Pos.CENTER);
 27
 28 BorderPane borderPane = new BorderPane(pane);
 29 borderPane.setBottom(hBox);
 30
 31 // Create and register the handler
lambda handler 32 btUp.setOnAction((ActionEvent e) −> {
 33 text.setY(text.getY() > 10 ? text.getY() − 5 : 10);
 34 });
 35
lambda handler 36 btDown.setOnAction((e) −> {
 37 text.setY(text.getY() < pane.getHeight() ?
 38 text.getY() + 5 : pane.getHeight());
 39 });
 40
lambda handler 41 btLeft.setOnAction(e −> {
 42 text.setX(text.getX() > 0 ? text.getX() − 5 : 0);
 43 });
 44
lambda handler 45 btRight.setOnAction(e −>
 46 text.setX(text.getX() < pane.getWidth() − 100?
 47 text.getX() + 5 : pane.getWidth() − 100)
 48);
 49
 50 // Create a scene and place it in the stage
 51 Scene scene = new Scene(borderPane, 400, 350);
 52 primaryStage.setTitle("AnonymousHandlerDemo"); // Set title
 53 primaryStage.setScene(scene); // Place the scene in the stage
 54 primaryStage.show(); // Display the stage
 55 }
 56 }

The program creates four handlers using lambda expressions (lines 32–48). Using lambda expressions, the code is shorter and cleaner. As seen in this example, lambda expressions may have many variations. Line 32 uses a declared type. Line 36 uses an inferred type since the type can be determined by the compiler. Line 41 omits the parentheses for a single inferred type. Line 45 omits the braces for a single statement in the body.

You can handle events by defining handler classes using inner classes, anonymous inner classes, or lambda expressions. We recommend you use lambda expressions because it produces a shorter, clearer, and cleaner code.

inner class, anonymous class, or Lambda?

Using lambda expressions not only simplifies the syntax, but also simplifies the event-handling concept. For the statement in line 45,

simplify syntax

simplify concept

[image: Line 45 reads as follows: b t Right dot set On Action, opening parenthesis, e, minus >, move the test right, closing parenthesis, semicolon. When the button is clicked, as indicated by the syntax, b t Right, the function inside the parentheses is performed.]

you can now simply say that when the btRight button is clicked, the lambda function is invoked to move the text right.

You can define a custom functional interface and use it in a lambda expression. Consider the following example:

 1 public class TestLambda {
 2 public static void main(String[] args) {
 3 TestLambda test = new TestLambda();
 4 test.setAction1(() –> System.out.print("Action 1! "));
 5 test.setAction2(e –> System.out.print(e + " "));
 6 System.out.println(test.getValue((e1, e2) –> e1 + e2));
 7 }
 8
 9 public void setAction1(T1 t) {
10 t.m1();
11 }
12
13 public void setAction2(T2 t) {
14 t.m2(4.5);
15 }
16
17 public int getValue(T3 t) {
18 return t.m3(5, 2);
19 }
20 }
21
22 @FunctionalInterface
23 interface T1 {
24 public void m1();
25 }
26
27 @FunctionalInterface
28 interface T2 {
29 public void m2(Double d);
30 }
31
32 @FunctionalInterface
33 interface T3 {
34 public int m3(int d1, int d2);
35 }

The annotation @FunctionalInterface tells the compiler that the interface is a functional interface. Since T1, T2, and T3 are all functional interfaces, a lambda expression can be used with the methods setAction1(T1), setAction2(T2), and getValue(T3). The statement in line 4 is equivalent to using an anonymous inner class, as follows:

test.setAction1(new T1() {
 @Override
 public void m1() {
 System.out.print("Action 1! ");
 }
});

	15.6.1 What is a lambda expression? What is the benefit of using lambda expressions for event handling? What is the syntax of a lambda expression?

	15.6.2 What is a functional interface? Why is a functional interface required for a lambda expression?

	15.6.3 Replace the code in lines 5 and 6 in TestLambda.java using anonymous inner classes.

15.7 Case Study: Loan Calculator

	This case study develops a loan calculator using event-driven programming with GUI controls.

Now, we will write the program for the loan-calculator problem presented at the beginning of this chapter. Here are the major steps in the program:

	Create the user interface, as shown in Figure 15.9.

	Create a GridPane. Add labels, text fields, and button to the pane.

	Set the alignment of the button to the right.

	Process the event.

[image: The labels and their corresponding text fields are arranged in a list in the window’s grid pane, with right-aligned text fields positioned to the right of their respective labels. A button labeled, calculate, is right aligned below the fields.]
Figure 15.9

The program computes loan payments.

Create and register the handler for processing the button-clicking action event. The handler obtains the user input on the loan amount, interest rate, and number of years, computes the monthly and total payments, and displays the values in the text fields.

The complete program is given in Listing 15.6.

Listing 15.6 LoanCalculator.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.geometry.HPos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.TextField;
 8 import javafx.scene.layout.GridPane;
 9 import javafx.stage.Stage;
 10
 11 public class LoanCalculator extends Application {
text fields 12 private TextField tfAnnualInterestRate = new TextField();
 13 private TextField tfNumberOfYears = new TextField();
 14 private TextField tfLoanAmount = new TextField();
 15 private TextField tfMonthlyPayment = new TextField();
 16 private TextField tfTotalPayment = new TextField();
button 17 private Button btCalculate = new Button("Calculate");
 18
 19 @Override // Override the start method in the Application class
 20 public void start(Stage primaryStage) {
 21 // Create UI
create a grid pane 22 GridPane gridPane = new GridPane();
 23 gridPane.setHgap(5);
 24 gridPane.setVgap(5);
add to grid pane 25 gridPane.add(new Label("Annual Interest Rate:"), 0, 0);
 26 gridPane.add(tfAnnualInterestRate, 1, 0);
 27 gridPane.add(new Label("Number of Years:"), 0, 1);
 28 gridPane.add(tfNumberOfYears, 1, 1);
 29 gridPane.add(new Label("Loan Amount:"), 0, 2);
 30 gridPane.add(tfLoanAmount, 1, 2);
 31 gridPane.add(new Label("Monthly Payment:"), 0, 3);
 32 gridPane.add(tfMonthlyPayment, 1, 3);
 33 gridPane.add(new Label("Total Payment:"), 0, 4);
 34 gridPane.add(tfTotalPayment, 1, 4);
 35 gridPane.add(btCalculate, 1, 5);
 36
 37 // Set properties for UI
 38 gridPane.setAlignment(Pos.CENTER);
 39 tfAnnualInterestRate.setAlignment(Pos.BOTTOM_RIGHT);
 40 tfNumberOfYears.setAlignment(Pos.BOTTOM_RIGHT);
 41 tfLoanAmount.setAlignment(Pos.BOTTOM_RIGHT);
 42 tfMonthlyPayment.setAlignment(Pos.BOTTOM_RIGHT);
 43 tfTotalPayment.setAlignment(Pos.BOTTOM_RIGHT);
 44 tfMonthlyPayment.setEditable(false);
 45 tfTotalPayment.setEditable(false);
 46 GridPane.setHalignment(btCalculate, HPos.RIGHT);
 47
 48 // Process events
register handler 49 btCalculate.setOnAction(e –> calculateLoanPayment());
 50
 51 // Create a scene and place it in the stage
 52 Scene scene = new Scene(gridPane, 400, 250);
 53 primaryStage.setTitle("LoanCalculator"); // Set title
 54 primaryStage.setScene(scene); // Place the scene in the stage
 55 primaryStage.show(); // Display the stage
 56 }
 57
 58 private void calculateLoanPayment() {
 59 // Get values from text fields
 60 double interest =
get input 61 Double.parseDouble(tfAnnualInterestRate.getText());
 62 int year = Integer.parseInt(tfNumberOfYears.getText());
 63 double loanAmount =
 64 Double.parseDouble(tfLoanAmount.getText());
 65
 66 // Create a loan object. Loan defined in Listing 10.2
create loan 67 Loan loan = new Loan(interest, year, loanAmount);
 68
 69 // Display monthly payment and total payment
set result 70 tfMonthlyPayment.setText(String.format("$%.2f",
 71 loan.getMonthlyPayment()));
 72 tfTotalPayment.setText(String.format("$%.2f",
 73 loan.getTotalPayment()));
 74 }
 75 }

The user interface is created in the start method (lines 22–46). The button is the source of the event. A handler is created and registered with the button (line 49). The button handler invokes the calculateLoanPayment() method to get the interest rate (line 60), number of years (line 62), and loan amount (line 64). Invoking tfAnnualInterestRate.getText() returns the string text in the tfAnnualInterestRate text field. The Loan class is used for computing the loan payments. This class was introduced in Listing 10.2, Loan.java. Invok­ing loan.getMonthlyPayment() returns the monthly payment for the loan (line 71). The String.format method, introduced in Section 10.10.7, is used to format a number into a desirable format and returns it as a string (lines 70 and 72). Invoking the setText method on a text field sets a string value in the text field.

15.8 Mouse Events

	A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved, or dragged on a node or a scene.

The MouseEvent object captures the event, such as the number of clicks associated with it, the location (the x- and y-coordinates) of the mouse, or which mouse button was pressed, as shown in Figure 15.10.

[image: An annotated U M L diagram for the class, java f x dot scene dot input dot Mouse Event.]
Figure 15.10

The MouseEvent class encapsulates information for mouse events.

Description

Four constants—PRIMARY, SECONDARY, MIDDLE, and NONE—are defined in MouseButton to indicate the left, right, middle, and none mouse buttons, respectively. You can use the ­getButton() method to detect which button is pressed. For example, getButton() == MouseButton.SECONDARY tests if the right button was pressed. You can also use the ­isPrimaryButtonDown(), isSecondaryButtonDown(), and isMiddleButtonDown() to test if the primary button, second button, or middle button is pressed.

detect mouse buttons

The mouse events and their corresponding registration methods for handlers are listed in Table 15.1. To demonstrate using mouse events, we give an example that displays a message in a pane and enables the message to be moved using a mouse. The message moves as the mouse is dragged, and it is always displayed at the mouse point. Listing 15.7 gives the program. A sample run of the program is shown in Figure 15.11.

[image: A window titled, Mouse Event Demo. A mouse cursor hovers over the window, and the text, Programming is fun, aligns to the cursor.]
Figure 15.11

You can move the message by dragging the mouse.

Move message using the mouse

Listing 15.7 MouseEventDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.stage.Stage;
 6
 7 public class MouseEventDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
 10 // Create a pane and set its properties
create a pane 11 Pane pane = new Pane();
create a text 12 Text text = new Text(20, 20, "Programming is fun");
add text to a pane 13 pane.getChildren().addAll(text);
lambda handler 14 text.setOnMouseDragged(e –> {
reset text position 15 text.setX(e.getX());
 16 text.setY(e.getY());
 17 });
 18
 19 // Create a scene and place it in the stage
 20 Scene scene = new Scene(pane, 300, 100);
 21 primaryStage.setTitle("MouseEventDemo"); // Set the stage title
			22 primaryStage.setScene(scene); // Place the scene in the stage
 23 primaryStage.show(); // Display the stage
 24 }
 25 }

Each node or scene can fire mouse events. The program creates a Text (line 12) and registers a handler to handle move dragged event (line 14). Whenever a mouse is dragged, the text’s x- and y-coordinates are set to the mouse position (lines 15 and 16).

	15.8.1 What method do you use to get the mouse-point position for a mouse event?

	15.8.2 What methods do you use to register a handler for mouse-pressed, -released, -clicked, -entered, -exited, -moved, and -dragged events?

15.9 Key Events

	A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a scene.

Key events enable the use of the keys to control and perform actions, or get input from the keyboard. The KeyEvent object describes the nature of the event (namely, that a key has been pressed, released, or typed) and the value of the key, as shown in Figure 15.12.

[image: An annotated U M L diagram for the class, The constructors and methods section reads as follows, with notes following each line. Line 1: +, get Character, opening parenthesis, closing parenthesis, colon, String. Returns the character associated with the key in this event. Line 2: +, get Code, opening parenthesis, closing parenthesis, colon, Key Code. Returns the key code associated with the key in this event. Line 3: +, get Text, opening parenthesis, closing parenthesis, colon, String. Returns a string describing the key code. Line 4: +, is Alt Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the, Alt, key is pressed on this event. Line 5: +, is Control Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the, Control, key is pressed on this event. Line 6: +, is Meta Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the mouse, Meta, button is pressed on this event. Line 7: +, is Shift Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the, Shift, key is pressed on this event.]
Figure 15.12

The KeyEvent class encapsulates information about key events.

The key events key pressed, key released, and key typed and their corresponding registration methods for handlers are listed in Table 15.1. The key pressed handler is invoked when a key is pressed, the key released handler is invoked when a key is released, and the key typed handler is invoked when a Unicode character is entered. If a key does not have a Unicode (e.g., function keys, modifier keys, action keys, arrow keys, and control keys), the key typed handler will not be invoked.

Every key event has an associated code that is returned by the getCode() method in KeyEvent. The key codes are constants defined in KeyCode. Table 15.2 lists some constants. KeyCode is an enum type. For use of enum types, see Appendix I. For the key-pressed and key-released events, getCode() returns the value as defined in the table, getText() returns a string that describes the key code, and getCharacter() returns an empty string. For the key-typed event, getCode() returns UNDEFINED and getCharacter() returns the Unicode character or a sequence of characters associated with the key-typed event.

key code

Table 15.2 KeyCode Constants

	Constant

	Description

	HOME

	The Home key

	END

	The End key

	PAGE_UP

	The Page Up key

	PAGE_DOWN

	The Page Down key

	UP

	The up-arrow key

	DOWN

	The down-arrow key

	LEFT

	The left-arrow key

	RIGHT

	The right-arrow key

	ESCAPE

	The Esc key

	TAB

	The Tab key

	CONTROL

	The Control key

	SHIFT

	The Shift key

	BACK_SPACE

	The Backspace key

	CAPS

	The Caps Lock key

	NUM_LOCK

	The Num Lock key

	ENTER

	The Enter key

	UNDEFINED

	The keyCode unknown

	F1 to F12

	The function keys from F1 to F12

	0 to 9

	The number keys from 0 to 9

	A to Z

	The letter keys from A to Z

The program in Listing 15.8 displays a user-input character. The user can move the ­character up, down, left, and right, using the up-, down-, left-, and right-arrow keys, respectively. ­Figure 15.13 contains a sample run of the program.

[image: A window titled, Key Event Demo, contains a capital letter, Ay, in blue font.]
Figure 15.13

The program responds to key events by displaying a character and moving it up, down, left, or right.

Listing 15.8 KeyEventDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.stage.Stage;
 6
 7 public class KeyEventDemo extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
 10 // Create a pane and set its properties
create a pane 11 Pane pane = new Pane();
 12 Text text = new Text(20, 20, "A");
 13
 14 pane.getChildren().add(text);
register handler 15 text.setOnKeyPressed(e –> {
get the key pressed 16 switch (e.getCode()) {
move a character 17 case DOWN: text.setY(text.getY() + 10); break;
 18 case UP: text.setY(text.getY() – 10); break;
 19 case LEFT: text.setX(text.getX() – 10); break;
 20 case RIGHT: text.setX(text.getX() + 10); break;
 21 default:
 22 if (e.getText().length > 0)
set a new character 23 text.setText(e.getText());
 24 }
 25 });
 26
 27 // Create a scene and place it in the stage
 28 Scene scene = new Scene(pane);
 29 primaryStage.setTitle("KeyEventDemo"); // Set the stage title
 30 primaryStage.setScene(scene); // Place the scene in the stage
 31 primaryStage.show(); // Display the stage
 32
request focus on text 33 text.requestFocus(); // text is focused to receive key input
 34 }
 35 }

The program creates a pane (line 11), creates a text (line 12), and places the text into the pane (line 14). The text registers the handler for the key-pressed event in lines 15–25. When a key is pressed, the handler is invoked. The program uses e.getCode() (line 16) to obtain the key code and e.getText() (line 23) to get the character for the key. Note for a nonprintable character such as a CTRL key or SHIFT key, e.getText() returns an empty string. When a non-arrow key is pressed, the character is displayed (lines 22 and 23). When an arrow key is pressed, the character moves in the direction indicated by the arrow key (lines 17–20). Note in a switch statement for an enum-type value, the cases are for the enum constants (lines 16–24). The constants are unqualified. For example, using KeyCode.DOWN in the case clause would be wrong (see Appendix I).

requestFocus()

Only a focused node can receive KeyEvent. Invoking requestFocus() on text enables text to receive key input (line 33). This method must be invoked after the stage is displayed. The program would work fine if text is replaced by scene in line 21 as follows:

scene.setOnKeyPressed(e –> { ... });

You don’t need to invoke scene.requestFocus() because scene is a top-level container for receiving key events.

We can now add more control for our ControlCircle example in Listing 15.3 to increase/decrease the circle radius by clicking the left/right mouse button or by pressing the up and down arrow keys. The new program is given in Listing 15.9.

Listing 15.9 ControlCircleWithMouseAndKey.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.input.KeyCode;
 6 import javafx.scene.input.MouseButton;
 7 import javafx.scene.layout.HBox;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.stage.Stage;
 10
 11 public class ControlCircleWithMouseAndKey extends Application {
 12 private CirclePane circlePane = new CirclePane();
 13
 14 @Override // Override the start method in the Application class
 15 public void start(Stage primaryStage) {
 16 // Hold two buttons in an HBox
 17 HBox hBox = new HBox();
 18 hBox.setSpacing(10);
 19 hBox.setAlignment(Pos.CENTER);
 20 Button btEnlarge = new Button("Enlarge");
 21 Button btShrink = new Button("Shrink");
 22 hBox.getChildren().add(btEnlarge);
 23 hBox.getChildren().add(btShrink);
 24
 25 // Create and register the handler
button handler 26 btEnlarge.setOnAction(e –> circlePane.enlarge());
 27 btShrink.setOnAction(e –> circlePane.shrink());
 28
 29 BorderPane borderPane = new BorderPane();
 30 borderPane.setCenter(circlePane);
 31 borderPane.setBottom(hBox);
 32 BorderPane.setAlignment(hBox, Pos.CENTER);
 33
 34 // Create a scene and place it in the stage
 35 Scene scene = new Scene(borderPane, 200, 150);
 36 primaryStage.setTitle("ControlCircle"); // Set the stage title
 37 primaryStage.setScene(scene); // Place the scene in the stage
 38 primaryStage.show(); // Display the stage
 39
mouse-click handler 40 circlePane.setOnMouseClicked(e –> {
 41 if (e.getButton() == MouseButton.PRIMARY) {
 42 circlePane.enlarge();
 43 }
 44 else if (e.getButton() == MouseButton.SECONDARY) {
 45 circlePane.shrink();
 46 }
 47 });
 48
key-pressed handler 49 scene.setOnKeyPressed(e –> {
Up-arrow key pressed 50 if (e.getCode() == KeyCode.UP) {
 51 circlePane.enlarge();
 52 }
Down-arrow key pressed 53 else if (e.getCode() == KeyCode.DOWN) {
 54 circlePane.shrink();
 55 }
 56 });
 57 }
 58 }

The CirclePane class (line 12) is already defined in Listing 15.3 and can be reused in this program.

A handler for mouse-clicked events is created in lines 40–47. If the left mouse button is clicked, the circle is enlarged (lines 41–43); if the right mouse button is clicked, the circle is shrunk (lines 44–46).

mouse-clicked event

A handler for key-pressed events is created in lines 49–56. If the up arrow key is pressed, the circle is enlarged (lines 50–52); if the down arrow key is pressed, the circle is shrunk (lines 53–55).

key-pressed event

	15.9.1 What methods do you use to register handlers for key-pressed, key-released, and key-typed events? In which classes are these methods defined? (See Table 15.1.)

	15.9.2 What method do you use to get the key character for a key-typed event? What method do you use to get the key code for a key-pressed or key-released event?

	15.9.3 How do you set focus on a node so it can listen for key events?

	15.9.4 If the following code is inserted in line 57 in Listing 15.9 , what is the output if the user presses the key for letter A? What is the output if the user presses the up arrow key?

circlePane.setOnKeyPressed(e –>
 System.out.println("Key pressed " + e.getCode()));
circlePane.setOnKeyTyped(e –>
 System.out.println("Key typed " + e.getCode()));

15.10 Listeners for Observable Objects

	You can add a listener to process a value change in an observable object.

An instance of Observable is known as an observable object, which contains the addListener(InvalidationListener listener) method for adding a listener. The listener class must implement the functional interface InvalidationListener to override the invalidated(Observable o) method for handling the value change. Once the value is changed in the Observable object, the listener is notified by invoking its invalidated(Observable o) method. Every binding property is an instance of ­Observable. Listing 15.10 gives an example of observing and handling a change in a ­DoubleProperty object balance.

observable object

Listing 15.10 ObservablePropertyDemo.java

 1 import javafx.beans.InvalidationListener;
 2 import javafx.beans.Observable;
 3 import javafx.beans.property.DoubleProperty;
 4 import javafx.beans.property.SimpleDoubleProperty;
 5
 6 public class ObservablePropertyDemo {
 7 public static void main(String[] args) {
observable property 8 DoubleProperty balance = new SimpleDoubleProperty();
add listener 9 balance.addListener(new InvalidationListener() {
handle change 10 public void invalidated(Observable ov) {
 11 System.out.println("The new value is " +
 12 balance.doubleValue());
 13 }
 14 });
 15
 16 balance.set(4.5);
 17 }
 18 }

The new value is 4.5

When line 16 is executed, it causes a change in balance, which notifies the listener by ­invoking the listener’s invalidated method.

Note the anonymous inner class in lines 9–14 can be simplified using a lambda ­expression as follows:

 balance.addListener(ov –> {
 System.out.println("The new value is " +
 balance.doubleValue());
 });

Listing 15.11 gives a program that displays a circle with its bounding rectangle, as shown in Figure 15.14. The circle and rectangle are automatically resized when the user resizes the window.

[image: A window titled, Resizable Circle Rectangle, contains a shaded circle, inscribed inside a square.]
Figure 15.14

The program places a rectangle and a circle inside a stack pane, and ­automatically sets their sizes when the window is resized.

Listing 15.11 ResizableCircleRectangle.java

 1 import javafx.application.Application;
 2 import javafx.scene.paint.Color;
 3 import javafx.scene.shape.Circle;
 4 import javafx.scene.shape.Rectangle;
 5 import javafx.stage.Stage;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.StackPane;
 9
 10 public class ResizableCircleRectangle extends Application {
 11 // Create a circle and a rectangle
 12 private Circle circle = new Circle(60);
 13 private Rectangle rectangle = new Rectangle(120, 120);
 14
 15 // Place clock and label in border pane
 16 private StackPane pane = new StackPane();
 17
 18 @Override // Override the start method in the Application class
 19 public void start(Stage primaryStage) {
 20 circle.setFill(Color.GRAY);
 21 rectangle.setFill(Color.WHITE);
 22 rectangle.setStroke(Color.BLACK);
 23 pane.getChildren().addAll(rectangle, circle);
 24
 25 // Create a scene and place the pane in the stage
 26 Scene scene = new Scene(pane, 140, 140);
 27 primaryStage.setTitle("ResizableCircleRectangle");
 28 primaryStage.setScene(scene); // Place the scene in the stage
 29 primaryStage.show(); // Display the stage
 30
set a new width for clock 31 pane.widthProperty().addListener(ov –> resize());
set a new height for clock 32 pane.heightProperty().addListener(ov –> resize());
 33 }
 34
 35 private void resize() {
 36 double length = Math.min(pane.getWidth(), pane.getHeight());
				 37 circle.setRadius(length / 2 – 15);
 38 rectangle.setWidth(length – 30);
				 39 rectangle.setHeight(length – 30);
 40 }
 41 }

The program registers the listeners for the stack pane’s width and height properties (lines 31 and 32). When the user resizes the window, the pane’s size is changed, so the listeners are called to invoke the resize() method to change the size of the circle and rectangle (lines 35–40).

	15.10.1 What would happen if you replace pane with scene or primaryStage in lines 31–32?

15.11 Animation

	JavaFX provides the Animation class with the core functionality for all animations.

Animate a rising flag

Suppose you want to write a program that animates a rising flag, as shown in Figure 15.15. How do you accomplish the task? There are several ways to program this. An effective one is to use the subclasses of the JavaFX Animation class, which is the subject of this section.

[image: A window titled, Flag Rising Animation, is shown 3 times, with an American flag at progressively higher positions in its pane.]
Figure 15.15

The animation simulates a flag rising.

Source: booka/Fotolia.

The abstract Animation class provides the core functionalities for animations in JavaFX, as shown in Figure 15.16. Many concrete subclasses of Animation are provided in JavaFX. This section introduces PathTransition, FadeTransition, and Timeline.

[image: An annotated U M L diagram for the class, java dot f x dot animation dot Animation.]
Figure 15.16

The abstract Animation class is the root class for JavaFX animations.

Description

The autoReverse is a Boolean property that indicates whether an animation will reverse its direction on the next cycle. The cycleCount indicates the number of the cycles for the animation. You can use the constant Timeline.INDEFINITE to indicate an indefinite number of cycles. The rate defines the speed of the animation. A negative rate value indicates the opposite direction for the animation. The status is a read-only property that indicates the status of the animation (Animation.Status.PAUSED, Animation.Status.RUNNING, and Animation.Status.STOPPED). The methods pause(), play(), and stop() pause, play, and stop an animation, respectively.

15.11.1 PathTransition

The PathTransition class animates the moves of a node along a path from one end to the other over a given time. PathTransition is a subtype of Animation. The UML class ­diagram for the class is shown in Figure 15.17.

[image: An annotated U M L diagram for the class, java f x dot animation dot Path Transition.]
Figure 15.17

The PathTransition class defines an animation for a node along a path.

Description

The Duration class defines a duration of time. It is an immutable class. The class defines constants INDEFINITE, ONE, UNKNOWN, and ZERO to represent an indefinte duration, one ­millisecond, unknown, and zero duration, respectively. You can use new Duration(double millis) to create an instance of Duration, the add, subtract, ­multiply, and divide methods to perform arithmetic operations, and the toHours(), ­toMinutes(), toSeconds(), and toMillis() to return the number of hours, minutes, seconds, and milliseconds in this duration, respectively. You can also use compareTo to compare two durations.

The constants NONE and ORTHOGONAL_TO_TANGENT are defined in PathTransition .OrientationType. The latter specifies that the node is kept perpendicular to the path’s ­tangent along the geometric path.

Listing 15.12 gives an example that moves a rectangle along the outline of a circle, as shown in Figure 15.18a.

[image: Figures ay and b contain windows titled, Path Transition Demo. In figure ay, the window shows a circle overlapping a shaded rectangle. In figure b, the rectangle is askew from its position in ay, and the circle is not shown.]
Figure 15.18

The PathTransition animates a rectangle moving along the circle.

Listing 15.12 PathTransitionDemo.java

 1 import javafx.animation.PathTransition;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Rectangle;
 8 import javafx.scene.shape.Circle;
 9 import javafx.stage.Stage;
 10 import javafx.util.Duration;
 11
 12 public class PathTransitionDemo extends Application {
 13 @Override // Override the start method in the Application class
 14 public void start(Stage primaryStage) {
 15 // Create a pane
create a pane 16 Pane pane = new Pane();
 17
 18 // Create a rectangle
create a rectangle 19 Rectangle rectangle = new Rectangle (0, 0, 25, 50);
 20 rectangle.setFill(Color.ORANGE);
 21
 22 // Create a circle
create a circle 23 Circle circle = new Circle(125, 100, 50);
 24 circle.setFill(Color.WHITE);
 25 circle.setStroke(Color.BLACK);
 26
 27 // Add circle and rectangle to the pane
add circle to pane 28 pane.getChildren().add(circle);
add rectangle to pane 29 pane.getChildren().add(rectangle);
 30
 31 // Create a path transition
create a PathTransition 32 PathTransition pt = new PathTransition();
set transition duration 33 pt.setDuration(Duration.millis(4000));
set path in transition 34 pt.setPath(circle);
set node in transition 35 pt.setNode(rectangle);
set orientation 36 pt.setOrientation(
 37 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
set cycle count indefinite 38 pt.setCycleCount(Timeline.INDEFINITE);
set auto reverse true 39 pt.setAutoReverse(true);
play animation 40 pt.play(); // Start animation
 41
pause animation 42 circle.setOnMousePressed(e –> pt.pause());
resume animation 43 circle.setOnMouseReleased(e –> pt.play());
 44
 45 // Create a scene and place it in the stage
 46 Scene scene = new Scene(pane, 250, 200);
 47 primaryStage.setTitle("PathTransitionDemo"); // Set the stage title
 48 primaryStage.setScene(scene); // Place the scene in the stage
 49 primaryStage.show(); // Display the stage
 50 }
 51 }

The program creates a pane (line 16), a rectangle (line 19), and a circle (line 23). The circle and rectangle are placed in the pane (lines 28 and 29). If the circle was not placed in the pane, you will see the screen shot as shown in Figure 15.18b.

The program creates a path transition (line 32), sets its duration to 4 seconds for one cycle of animation (line 33), sets circle as the path (line 34), sets rectangle as the node (line 35), and sets the orientation to orthogonal to tangent (line 36).

The cycle count is set to indefinite (line 38) so the animation continues forever. The auto reverse is set to true (line 39) so the direction of the move is reversed in the alternating cycle. The program starts animation by invoking the play() method (line 40).

If the pause() method is replaced by the stop() method in line 42, the animation will start over from the beginning when it restarts.

Listing 15.13 gives the program that animates a flag rising, as shown in Figure 15.14.

Listing 15.13 FlagRisingAnimation.java

 1 import javafx.animation.PathTransition;
 2 import javafx.application.Application;
 3 import javafx.scene.Scene;
 4 import javafx.scene.image.ImageView;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.shape.Line;
 7 import javafx.stage.Stage;
 8 import javafx.util.Duration;
 9
 10 public class FlagRisingAnimation extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 // Create a pane
create a pane 14 Pane pane = new Pane();
 15
create an image view 16 // Add an image view and add it to pane
add image view to pane 17 ImageView imageView = new ImageView("image/us.gif");
 18 pane.getChildren().add(imageView);
 19
 20 // Create a path transition
create a path transition 21 PathTransition pt = new PathTransition(Duration.millis(10000),
 22 new Line(100, 200, 100, 0), imageView);
set cycle count 23 pt.setCycleCount(5);
play animation 24 pt.play(); // Start animation
 25
 26 // Create a scene and place it in the stage
 27 Scene scene = new Scene(pane, 250, 200);
 28 primaryStage.setTitle("FlagRisingAnimation"); // Set the stage title
 29 primaryStage.setScene(scene); // Place the scene in the stage
 30 primaryStage.show(); // Display the stage
 31 }
 32 }

The program creates a pane (line 14), an image view from an image file (line 17), and places the image view to the pane (line 18). A path transition is created with a duration of 10 seconds using a line as a path and the image view as the node (lines 21 and 22). The image view will move along the line. Since the line is not placed in the scene, you will not see the line in the window.

The cycle count is set to 5 (line 23) so the animation is repeated five times.

15.11.2 FadeTransition

The FadeTransition class animates the change of the opacity in a node over a given time. FadeTransition is a subtype of Animation. The UML class diagram for the class is shown in Figure 15.19.

[image: An annotated U M L diagram for the class, java f x dot animation dot Fade Transition.]
Figure 15.19

The FadeTransition class defines an animation for the change of opacity in a node.

Description

Listing 15.14 gives an example that applies a fade transition to the filled color in an ellipse, as shown in Figure 15.20.

[image: A window titled, Fade Transition Demo, is shown twice. The ellipse to the left is shaded lighter than the ellipse to the right.]
Figure 15.20

The FadeTransition animates the change of opacity in the ellipse.

Listing 15.14 FadeTransitionDemo.java

 1 import javafx.animation.FadeTransition;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.Pane;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.Ellipse;
 8 import javafx.stage.Stage;
 9 import javafx.util.Duration;
 10
 11 public class FadeTransitionDemo extends Application {
 12 @Override // Override the start method in the Application class
 13 public void start(Stage primaryStage) {
 14 // Place an ellipse to the pane
create a pane 15 Pane pane = new Pane();
create an ellipse 16 Ellipse ellipse = new Ellipse(10, 10, 100, 50);
set ellipse fill color 17 ellipse.setFill(Color.RED);
set ellipse stroke color 18 ellipse.setStroke(Color.BLACK);
bind ellipse properties 19 ellipse.centerXProperty().bind(pane.widthProperty().divide(2));
 20 ellipse.centerYProperty().bind(pane.heightProperty().divide(2));
 21 ellipse.radiusXProperty().bind(
 22 pane.widthProperty().multiply(0.4));
 23 ellipse.radiusYProperty().bind(
 24 pane.heightProperty().multiply(0.4));
add ellipse to pane 25 pane.getChildren().add(ellipse);
 26
 27 // Apply a fade transition to ellipse
create a FadeTransition 28 FadeTransition ft =
 29 new FadeTransition(Duration.millis(3000), ellipse);
set start opaque value 30 ft.setFromValue(1.0);
set end opaque value 31 ft.setToValue(0.1);
set cycle count 32 ft.setCycleCount(Timeline.INDEFINITE);
set auto reverse true 33 ft.setAutoReverse(true);
play animation 34 ft.play(); // Start animation
 35
 36 // Control animation
pause animation 37 ellipse.setOnMousePressed(e –> ft.pause());
resume animation 38 ellipse.setOnMouseReleased(e –> ft.play());
 39
 40 // Create a scene and place it in the stage
 41 Scene scene = new Scene(pane, 200, 150);
 42 primaryStage.setTitle("FadeTransitionDemo"); // Set the stage title
 43 primaryStage.setScene(scene); // Place the scene in the stage
 44 primaryStage.show(); // Display the stage
 45 }
 46 }

The program creates a pane (line 15) and an ellipse (line 16) and places the ellipse into the pane (line 25). The ellipse’s centerX, centerY, radiusX, and radiusY properties are bound to the pane’s size (lines 19–24).

A fade transition is created with a duration of 3 seconds for the ellipse (line 29). It sets the start opaque to 1.0 (line 30) and the stop opaque to 0.1 (line 31). The cycle count is set to infinite so the animation is repeated indefinitely (line 32). When the mouse is pressed, the animation is paused (line 37). When the mouse is released, the animation resumes from where it was paused (line 38).

15.12.3  Timeline

PathTransition and FadeTransition define specialized animations. The Timeline class can be used to program any animation using one or more KeyFrames. Each KeyFrame is executed sequentially at a specified time interval. Timeline inherits from Animation. You can construct a Timeline using the constructor new Timeline(KeyFrame...keyframes). A KeyFrame can be constructed using

new KeyFrame(Duration duration, EventHandler<ActionEvent> onFinished)

The handler onFinished is called when the duration for the key frame is elapsed.

Listing 15.15 gives an example that displays a flashing text, as shown in Figure 15.21. The text is on and off alternating to animate flashing.

[image: The window…is shown three times, in a row. The text, Programming is fun, is centered in the panes on the left and the right. The middle pane is blank.]
Figure 15.21

The handler is called to set the text to “Programming is fun” or empty in turn.

Flashing text

Listing 15.15 TimelineDemo.java

 1 import javafx.animation.Animation;
 2 import javafx.application.Application;
 3 import javafx.stage.Stage;
 4 import javafx.animation.KeyFrame;
 5 import javafx.animation.Timeline;
 6 import javafx.event.ActionEvent;
 7 import javafx.event.EventHandler;
 8 import javafx.scene.Scene;
 9 import javafx.scene.layout.StackPane;
 10 import javafx.scene.paint.Color;
 11 import javafx.scene.text.Text;
 12 import javafx.util.Duration;
 13
 14 public class TimelineDemo extends Application {
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
create a stack pane 17 StackPane pane = new StackPane();
create a text 18 Text text = new Text(20, 50, "Programming is fun");
 19 text.setFill(Color.RED);
add text to pane 20 pane.getChildren().add(text); // Place text into the stack pane
 21
 22 // Create a handler for changing text
handler for changing text 23 EventHandler<ActionEvent> eventHandler = e –> {
 24 if (text.getText().length() != 0) {
set text empty 25 text.setText("");
 26 }
 27 else {
set text 28 text.setText("Programming is fun");
 29 }
 30 };
 31
 32 // Create an animation for alternating text
create a Timeline 33 Timeline animation = new Timeline(
create a KeyFrame for handler 34 new KeyFrame(Duration.millis(500), eventHandler));
set cycle count indefinite 35 animation.setCycleCount(Timeline.INDEFINITE);
play animation 36 animation.play(); // Start animation
 37
 38 // Pause and resume animation
 39 text.setOnMouseClicked(e –> {
 40 if (animation.getStatus() == Animation.Status.PAUSED) {
resume animation 41 animation.play();
 42 }
 43 else {
pause animation 44 animation.pause();
 45 }
 46 });
 47
 48 // Create a scene and place it in the stage
 49 Scene scene = new Scene(pane, 250, 250);
 50 primaryStage.setTitle("TimelineDemo"); // Set the stage title
 51 primaryStage.setScene(scene); // Place the scene in the stage
 52 primaryStage.show(); // Display the stage
 53 }
 54 }

The program creates a stack pane (line 17) and a text (line 18) and places the text into the pane (line 20). A handler is created to change the text to empty (lines 24–26) if it is not empty or to Progrmming is fun if it is empty (lines 27–29). A KeyFrame is created to run an action event in every half second (line 34). A Timeline animation is created to contain a key frame (lines 33 and 34). The animation is set to run indefinitely (line 35).

The mouse-clicked event is set for the text (lines 39–46). A mouse click on the text resumes the animation if the animation is paused (lines 40–42), and a mouse click on the text pauses the animation if the animation is running (lines 43–45).

In Section 14.12,, Case Study: The ClockPane Class, you drew a clock to show the current time. The clock does not tick after it is displayed. What can you do to make the clock display a new current time every second? The key to making the clock tick is to repaint it every second with a new current time. You can use a Timeline to control the repainting of the clock with the code in Listing 15.16. The sample run of the program is shown in Figure 15.22.

[image: A window titled, Clock Animation, is shown three times. The panes display analog clock faces, with progressively later times from left to right.]
Figure 15.22

A live clock is displayed in the window.

Listing 15.16 ClockAnimation.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.animation.KeyFrame;
 4 import javafx.animation.Timeline;
 5 import javafx.event.ActionEvent;
 6 import javafx.event.EventHandler;
 7 import javafx.scene.Scene;
 8 import javafx.util.Duration;
 9
 10 public class ClockAnimation extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
create a clock 13 ClockPane clock = new ClockPane(); // Create a clock
 14
 15 // Create a handler for animation
create a handler 16 EventHandler<ActionEvent> eventHandler = e –> {
 17 clock.setCurrentTime(); // Set a new clock time
 18 };
 19
 20 // Create an animation for a running clock
create a time line 21 Timeline animation = new Timeline(
create a key frame 22 new KeyFrame(Duration.millis(1000), eventHandler));
set cycle count indefinite 23 animation.setCycleCount(Timeline.INDEFINITE);
play animation 24 animation.play(); // Start animation
 25
 26 // Create a scene and place it in the stage
 27 Scene scene = new Scene(clock, 250, 50);
 28 primaryStage.setTitle("ClockAnimation"); // Set the stage title
 29 primaryStage.setScene(scene); // Place the scene in the stage
 30 primaryStage.show(); // Display the stage
 31 }
 32 }

The program creates an instance clock of ClockPane for displaying a clock (line 13). The ClockPane class is defined in Listing 14.21. The clock is placed in the scene in line 27. An event handler is created for setting the current time in the clock (lines 16–18). This handler is called every second in the key frame in the time line animation (lines 21–24). Thus, the clock time is updated every second in the animation.

	15.11.1 How do you set the cycle count of an animation to infinite? How do you auto reverse an animation? How do you start, pause, and stop an animation?

	15.11.2 Are PathTransition, FadeTransition, and Timeline subtypes of Animation?

	15.11.3 How do you create a PathTransition? How do you create a ­FadeTransition? How do you create a Timeline?

	15.11.4 How do you create a KeyFrame?

15.12 Case Study: Bouncing Ball

	This section presents an animation that displays a ball bouncing in a pane.

The program uses Timeline to animate ball bouncing, as shown in Figure 15.23.

[image: A window titled, Bounce Ball Control, is shown three times. Left to right, the panes show a shaded circle near the pane’s top-left corner, then near its center, then near its bottom-right corner.]
Figure 15.23

A ball is bouncing in a pane.

Here are the major steps to write this program:

	Define a subclass of Pane named BallPane to display a ball bouncing, as shown in Listing 15.17.

	Define a subclass of Application named BounceBallControl to control the bouncing ball with mouse actions, as shown in Listing 15.18. The animation pauses when the mouse is pressed, and resumes when the mouse is released. Pressing the up and down arrow keys increases/decreases the animation speed.

The relationship among these classes is shown in Figure 15.24.

[image: A U M L diagram for bounce ball control.]
Figure 15.24

BounceBallControl contains BallPane.

Description

Listing 15.17 BallPane.java

 1 import javafx.animation.KeyFrame;
 2 import javafx.animation.Timeline;
 3 import javafx.beans.property.DoubleProperty;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.paint.Color;
 6 import javafx.scene.shape.Circle;
 7 import javafx.util.Duration;
 8
 9 public class BallPane extends Pane {
 10 public final double radius = 20;
 11 private double x = radius, y = radius;
 12 private double dx = 1, dy = 1;
 13 private Circle circle = new Circle(x, y, radius);
 14 private Timeline animation;
 15
 16 public BallPane() {
 17 circle.setFill(Color.GREEN); // Set ball color
 18 getChildren().add(circle); // Place a ball into this pane
 19
 20 // Create an animation for moving the ball
create animation 21 animation = new Timeline(
 22 new KeyFrame(Duration.millis(50), e –> moveBall()));
keep animation running 23 animation.setCycleCount(Timeline.INDEFINITE);
start animation 24 animation.play(); // Start animation
 25 }
 26
 27 public void play() {
play animation 28 animation.play();
 29 }
 30
 31 public void pause() {
pause animation 32 animation.pause();
 33 }
 34
 35 public void increaseSpeed() {
increase animation rate 36 animation.setRate(animation.getRate() + 0.1);
 37 }
 38
 39 public void decreaseSpeed() {
decrease animation rate 40 animation.setRate(
 41 animation.getRate() > 0 ? animation.getRate() – 0.1 : 0);
 42 }
 43
 44 public DoubleProperty rateProperty() {
 45 return animation.rateProperty();
 46 }
 47
 48 protected void moveBall() {
 49 // Check boundaries
 50 if (x < radius || x > getWidth() – radius) {
change horizontal direction 51 dx *= –1; // Change ball move direction
 52 }
 53 if (y < radius || y > getHeight() – radius) {
change vertical direction 54 dy *= –1; // Change ball move direction
 55 }
 56
 57 // Adjust ball position
set new ball position 58 x += dx;
 59 y += dy;
 60 circle.setCenterX(x);
 61 circle.setCenterY(y);
 62 }
 63 }

BallPane extends Pane to display a moving ball (line 9). An instance of Timeline is created to control animation (lines 21 and 22). This instance contains a KeyFrame object that invokes the moveBall() method at a fixed rate. The moveBall() method moves the ball to simulate animation. The center of the ball is at (x, y), which changes to (x + dx, y + dy) on the next move (lines 58–61). When the ball is out of the horizontal boundary, the sign of dx is changed (from positive to negative or vice versa) (lines 50–52). This causes the ball to change its horizontal movement direction. When the ball is out of the vertical boundary, the sign of dy is changed (from positive to negative or vice versa) (lines 53–55). This causes the ball to change its vertical movement direction. The pause and play methods (lines 27–33) can be used to pause and resume the animation. The increaseSpeed() and ­decreaseSpeed() methods (lines 35–42) can be used to increase and decrease animation speed. The rateProperty() method (lines 44–46) returns a binding property value for rate. This binding property will be useful for binding the rate in future applications in the next chapter.

Listing 15.18 BounceBallControl.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.input.KeyCode;
 5
 6 public class BounceBallControl extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
create a ball pane 9 BallPane ballPane = new BallPane(); // Create a ball pane
 10
 11 // Pause and resume animation
pause animation 12 ballPane.setOnMousePressed(e –> ballPane.pause());
resume animation 13 ballPane.setOnMouseReleased(e –> ballPane.play());
 14
 15 // Increase and decrease animation
 16 ballPane.setOnKeyPressed(e –> {
 17 if (e.getCode() == KeyCode.UP) {
increase speed 18 ballPane.increaseSpeed();
 19 }
 20 else if (e.getCode() == KeyCode.DOWN) {
decrease speed 21 ballPane.decreaseSpeed();
 22 }
 23 });
 24
 25 // Create a scene and place it in the stage
 26 Scene scene = new Scene(ballPane, 250, 150);
 27 primaryStage.setTitle("BounceBallControl"); // Set the stage title
 28 primaryStage.setScene(scene); // Place the scene in the stage
 29 primaryStage.show(); // Display the stage
 30
 31 // Must request focus after the primary stage is displayed
request focus on pane 32 ballPane.requestFocus();
 33 }
 34 }

The BounceBallControl class is the main JavaFX class that extends Application to display the ball pane with control functions. The mouse-pressed and mouse-released handlers are implemented for the ball pane to pause the animation and resume the animation (lines 12 and 13). When the UP arrow key is pressed, the ball pane’s increaseSpeed() method is invoked to increase the ball’s movement (line 18). When the down arrow key is pressed, the ball pane’s decreaseSpeed() method is invoked to reduce the ball’s movement (line 21).

Invoking ballPane.requestFocus() in line 32 sets the input focus to ballPane.

	15.12.1 How does the program make the ball appear to be moving?

	15.12.2 How does the code in Listing 15.17 , BallPane.java, change the direction of the ball movement?

	15.12.3 What does the program do when the mouse is pressed on the ball pane? What does the program do when the mouse is released on the ball pane?

	15.12.4 If line 32 in Listing 15.18 , BounceBall.java, is not in the program, what would happen when you press the up or the down arrow key?

	15.12.5 If line 23 is not in Listing 15.17 , what would happen?

15.13 Case Study: US Map

	This section presents a program that draws, colors, and resizes a US map.

The program reads the GPS coordinates for each state in the 48 continental United States, and draws a polygon to connect the coordinates and displays all the polygons, as shown in Figure 15.25.

[image: A window titled, U S Map, is shown 2 times. On the left, the map is smaller, with 5 states shaded. On the right, the map is larger, with 30 states shaded.]
Figure 15.25

The program displays, colors, and resizes the US map.

The coordinates are contained in a file at https://liveexample.pearsoncmg.com/LiveRun/faces/data/usmap.txt. For each state, the file contains the state name (e.g., Alabama) and all the coordinates (­latitude and longitude) for the state. For example, the following is an example for Alabama and Arkansas:

Alabama
 35.0041 –88.1955
 34.9918 –85.6068
 …
 34.9479 –88.1721
 34.9107 –88.1461
Arkansas
 33.0225 –94.0416
 33.0075 –91.2057
 …

A polygon is displayed in red, blue, or white when the primary, secondary, or middle mouse button is clicked in the polygon. The map size is increased when the up arrow key is pressed, and decreased when the down arrow key is pressed. Listing 15.19 gives the code for this program.

Listing 15.19 USMap.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.paint.Color;
 4 import javafx.stage.Stage;
 5 import javafx.scene.shape.Polygon;
 6 import javafx.scene.Group;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.input.*;
 9 import javafx.geometry.Point2D;
 10 import java.util.*;
 11
 12 public class USMap extends Application {
 13 @Override // Override the start method in the Application class
 14 public void start(Stage primaryStage) {
create a map 15 MapPane map = new MapPane();
 16 Scene scene = new Scene(map, 1200, 800);
 17 primaryStage.setTitle("USMap"); // Set the stage title
 18 primaryStage.setScene(scene); // Place the scene in the stage
 19 primaryStage.show(); // Display the stage
 20
listen to key event 21 map.setOnKeyPressed(e –> {
 22 if (e.getCode() == KeyCode.UP) {
enlarge map 23 map.enlarge(); // Enlarge the map
 24 }
 25 else if (e.getCode() == KeyCode.DOWN) {
shrink map 26 map.shrink(); // SHrink the map
 27 }
 28 });
request focus 29 map.requestFocus();
 30 }
 31
extends BorderPane 32 class MapPane extends BorderPane {
create a Group 33 private Group group = new Group();
 34
 35 MapPane() {
 36 // Load coordinates from a file
get coordinates for state 37 ArrayList<ArrayList<Point2D>> points = getPoints();
 38
 39 // Add points to the polygon list
 40 for (int i = 0; i < points.size(); i++) {
 41 Polygon polygon = new Polygon();
 42 // Add points to the polygon list
 43 for (int j = 0; j < points.get(i).size(); j++)
add coordinates 44 polygon.getPoints().addAll(points.get(i).get(j).getX(),
 45 –points.get(i).get(j).getY());
 46 polygon.setFill(Color.WHITE);
 47 polygon.setStroke(Color.BLACK);
set polygon stroke width 48 polygon.setStrokeWidth(1 / 14.0);
 49
set listener for mouse click 50 polygon.setOnMouseClicked(e –> {
color polygon 51 if (e.getButton() == MouseButton.PRIMARY) {
 52 polygon.setFill(Color.RED);
 53 }
 54 else if (e.getButton() == MouseButton.SECONDARY) {
 55 polygon.setFill(Color.BLUE);
 56 }
 57 else {
 58 polygon.setFill(Color.WHITE);
 59 }
 60 });
 61
add a polygon to group 62 group.getChildren().add(polygon);
 63 }
 64
scale polygon 65 group.setScaleX(14);
center group in the map 66 group.setScaleY(14);
 67 this.setCenter(group);
 68 }
 69
enlarge map 70 public void enlarge() {
 71 group.setScaleX(1.1 * group.getScaleX());
 72 group.setScaleY(1.1 * group.getScaleY());
 73 }
 74
shrink map 75 public void shrink() {
 76 group.setScaleX(0.9 * group.getScaleX());
 77 group.setScaleY(0.9 * group.getScaleY());
 78 }
 79
 80 private ArrayList<ArrayList<Point2D>> getPoints() {
create array list 81 ArrayList<ArrayList<Point2D>> points = new ArrayList<>();
try-with-resource 82
open an Internet resource 83 try (Scanner input = new Scanner(new java.net.URL(
 84 "https://liveexample.pearsoncmg.com/data/usmap.txt")
 85 .openStream())) {
 86 while (input.hasNext()) {
read a string 87 String s = input.nextLine();
start a state 88 if (Character.isAlphabetic(s.charAt(0))) {
create a state list 89 points.add(new ArrayList<>()); // For a new state
 90 }
 91 else {
 92 Scanner scanAString = new Scanner(s); // Scan one point
read latitude value 93 double y = scanAString.nextDouble();
read longitude value 94 double x = scanAString.nextDouble();
add a point to list 95 points.get(points.size() – 1).add(new Point2D(x, y));
 96 }
 97 }
 98 }
 99 catch (Exception ex) {
 100 ex.printStackTrace();
 101 }
 102
return list of points 103 return points;
 104 }
 105 }
 106 }

The program defines MapPane that extends BorderPane to display a map in the center of the border pane (line 32). The program needs to resize the polygons in the map. An instance of the Group class is created to hold all the polygons (line 33). Grouping the polygons enables all polygons to be resized in one operation. Resizing the group will cause all polygons in the group to resize accordingly. Resizing can be done by applying the scaleX and scaleY properties in the group (lines 65 and 66).

the Group class

the scaleX property

the scaleY property

The getPoints() method is used to return all the coordinates in an array list (line 80). The array list consists of sublists. Each sublist contains the coordinates for a state and is added to the array list (line 89). A Point2D object represents the x- and y-coordinates of the point (line 81). The method creates a Scanner object to read data for the map coordinates from a file on the Internet (lines 83–85). The program reads lines from the file. For each line, if the first character is an alphabet, the line is for a new state name (line 88) and a new sublist is created and added to the points array list (line 89). Otherwise, the line contains the two coordinates. The latitude becomes the y-coordinate for the point (line 93), and the longitude corresponds to the x-coordinate of the point (line 94). The program stores the points for a state in a sublist (line 95). points is an array list that contains 48 sublists.

the scaleX property

the scaleY property

The constructor of MapPane obtains sublists of the coordinates from the file (line 37). For each sublist of the points, a polygon is created (line 41). The points are added to the polygon (lines 43–45). Since the y-coordinates increase upward in the conventional coordinate system, but downward in the Java coordinate system, the program changes the sign for the y-coordinates in line 45. The polygon properties are set in lines 46–48. Note the strokeWidth is set to 1 / 14.0 (line 48) because all the polygons are scaled up 14 times in lines 65 and 66. If the strokeWidth is not set to this value, the stroke width will be very thick. Since polygons are very small, applying the setScaleX and setScaleY methods on the group causes all the nodes inside the group to be enlarged (lines 65 and 66). MapPane is a BorderPane. The group is placed in the center of the border pane (line 67).

The enlarge() and shrink() methods are defined in MapPane (lines 70–78). They can be called to enlarge or shrink the group to cause all the polygons in the group to scale up or down.

Each polygon is set to listen to mouse-clicked event (lines 50–60). When clicking the primary/secondary/middle mouse button on a polygon, the polygon is filled red/blue/white.

The program creates an instance of MapPane (line 15) and places it in the scene (line 16). The map listens to the key-pressed event to enlarge or shrink the map upon pressing the up and down arrow key (lines 21–28). Since the map is inside the scene, invoking map.requestFocus() enables the map to receive key events (line 29).

	15.13.1 What would happen if line 29 in Listing 15.19 is removed?

	15.13.2 What would happen if map is replaced by scene in line 21 in Listing 15.19 ?

	15.13.3 What would happen if map is replaced by primaryStage in line 21 in Listing 15.19 ?

Key Terms

	anonymous inner class 602

	event 596

	event-driven programming 596

	event handler 597

	event–handler interface 597

	event object 596

	event source object 596

	functional interface 607

	inner class 599

	key code 613

	lambda expression 605

	observable object 616

	single abstract method interface 607

Chapter Summary

	The root class of the JavaFX event classes is javafx.event.Event, which is a ­subclass of java.util.EventObject. The subclasses of Event deal with special types of events, such as action events, window events, mouse events, and key events. If a node can fire an event, any subclass of the node can fire the same type of event.

	The handler object’s class must implement the corresponding event–handler interface. JavaFX provides a handler interface EventHandler<T extends Event> for every event class T. The handler interface contains the handle(T e) method for handling event e.

	The handler object must be registered by the source object. Registration methods depend on the event type. For an action event, the method is setOnAction. For a mouse-pressed event, the method is setOnMousePressed. For a key-pressed event, the method is setOnKeyPressed.

	An inner class, or nested class, is defined within the scope of another class. An inner class can reference the data and methods defined in the outer class in which it nests, so you need not pass the reference of the outer class to the constructor of the inner class.

	An anonymous inner class can be used to shorten the code for event handling. ­Furthermore, a lambda expression can be used to greatly simplify the event-handling code for functional interface handlers.

	A functional interface is an interface with exactly one abstract method. This is also known as a single abstract method (SAM) interface.

	A MouseEvent is fired whenever a mouse button is pressed, released, clicked, moved, or dragged on a node or a scene. The getButton() method can be used to detect which mouse button is pressed for the event.

	A KeyEvent is fired whenever a key is pressed, released, or typed on a node or a scene. The getCode() method can be used to return the code value for the key.

	An instance of Observable is known as an observable object, which contains the add-Listener(InvalidationListener listener) method for adding a listener. Once the value is changed in the property, a listener is notified. The listener class should implement the InvalidationListener interface, which uses the invalidated method to handle the property value change.

	The abstract Animation class provides the core functionalities for animations in JavaFX. PathTransition, FadeTransition, and Timeline are specialized classes for implementing animations.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Sections 15.2–15.7

	*15.1 (Pick four cards) Write a program that lets the user click the Refresh button to display four cards from a deck of 52 cards, as shown in Figure 15.26a . (See the hint in Programming Exercise 14.3 on how to obtain four random cards.)

[image: Figures ay, b, and c show sample runs.]
Figure 15.26

(a) Exercise 15.1 displays four cards randomly.

Source: Fotolia. (b) Exercise 15.2 rotates the rectangle. (c) Exercise 15.3 uses the buttons to move the ball.

Description

	15.2 (Rotate a rectangle) Write a program that rotates a rectangle 15 degrees to the right when the Rotate button is clicked, as shown in Figure 15.26b .

	*15.3 (Move the ball) Write a program that moves the ball in a pane. You should define a pane class for displaying the ball and provide the methods for moving the ball left, right, up, and down, as shown in Figure 15.26c . Check the boundary to prevent the ball from moving out of sight completely.

Simple calculator

	*15.4 (Create a simple calculator) Write a program to perform addition, subtraction, multiplication, and division, as shown in Figure 15.27a .

[image: Figures ay and b show sample runs.]
Figure 15.27

(a) Exercise 15.4 performs addition, subtraction, multiplication, and division on double numbers. (b) The user enters the investment amount, years, and interest rate to compute future value.

Description

	*15.5 (Create an investment-value calculator) Write a program that calculates the future value of an investment at a given interest rate for a specified number of years. The formula for the calculation is

futureValue = investmentAmount * (1 + monthlyInterestRate)years*12

Use text fields for the investment amount, number of years, and annual interest rate. Display the future amount in a text field when the user clicks the Calculate button, as shown in Figure 15.27b .

Sections 15.8 and 15.9

	**15.6 (Alternate two messages) Write a program to display the text Java is fun and Java is powerful alternately with a mouse click.

	*15.7 (Change color using a mouse) Write a program that displays the color of a circle as black when the mouse button is pressed, and as white when the mouse button is released.

	*15.8 (Display the mouse position) Write two programs, such that one displays the mouse position when the mouse button is clicked (see Figure 15.28a), and the other displays the mouse position when the mouse button is pressed and ceases to display it when the mouse button is released.

[image: Figures ay and b show sample runs.]
Figure 15.28

(a) Exercise 15.8 displays the mouse position. (b) Exercise 15.9 uses the arrow keys to draw the lines.

Description

	*15.9 (Draw lines using the arrow keys) Write a program that draws line segments using the arrow keys. The line starts from (100, 100) in the pane and draws toward east, north, west, or south when the right-arrow key, up-arrow key, left-arrow key, or down-arrow key is pressed, as shown in Figure 15.28b .

	**15.10 (Enter and display a string) Write a program that receives a string from the keyboard and displays it on a pane. The Enter key signals the end of a string. Whenever a new string is entered, it is displayed on the pane.

	*15.11 (Move a circle using keys) Write a program that moves a circle up, down, left, or right using the arrow keys.

	**15.12 (Geometry: inside a circle?) Write a program that draws a fixed circle centered at (100, 60) with radius 50. Whenever the mouse is moved, display a message indicating whether the mouse point is inside the circle at the mouse point or outside of it, as shown in Figure 15.29a .

[image: Figures ay, b, and c respectively show a circle, a rectangle, and a polygon. The mouse point is inside the shape in figure ay, but outside the shapes in figures b and c.]
Figure 15.29

Detect whether a point is inside a circle, a rectangle, or a polygon.

Check mouse-point location

	**15.13 (Geometry: inside a rectangle?) Write a program that draws a fixed rectangle centered at (100, 60) with width 100 and height 40. Whenever the mouse is moved, display a message indicating whether the mouse point is inside the rectangle at the mouse point or outside of it, as shown in Figure 15.29b . To detect whether a point is inside a polygon, use the contains method defined in the Node class.

	**15.14 (Geometry: inside a polygon?) Write a program that draws a fixed polygon with points at (40, 20), (70, 40), (60, 80), (45, 45), and (20, 60). Whenever the mouse is moved, display a message indicating whether the mouse point is inside the polygon at the mouse point or outside of it, as shown in ­Figure 15.29c . To detect whether a point is inside a polygon, use the contains method defined in the Node class.

	**15.15 (Geometry: add and remove points) Write a program that lets the user click on a pane to dynamically create and remove points (see Figure 15.30a). When the user left-clicks the mouse (primary button), a point is created and displayed at the mouse point. The user can remove a point by pointing to it and right-clicking the mouse (secondary button).

[image: Figures ay and b show sample runs.]
Figure 15.30

(a) Exercise 15.15 allows the user to create/remove points dynamically. (b) Exercise 15.16 displays two vertices and a connecting edge.

Description

	*15.16 (Two movable vertices and their distances) Write a program that displays two circles with radius 10 at location (40, 40) and (120, 150) with a line connecting the two circles, as shown in Figure 15.30b . The distance between the circles is displayed along the line. The user can drag a circle. When that happens, the circle and its line are moved, and the distance between the circles is updated.

	**15.17 (Geometry: find the bounding rectangle) Write a program that enables the user to add and remove points in a two-dimensional plane dynamically, as shown in Figure 15.31a . A minimum bounding rectangle is updated as the points are added and removed. Assume the radius of each point is 10 pixels.

[image: Figures ay, b, and c show sample runs.]
Figure 15.31

(a) Exercise 15.17 enables the user to add/remove points dynamically and displays the bounding ­rectangle. (b) When you click a circle, a new circle is displayed at a random location. (c) After 20 circles are clicked, the time spent is displayed in the pane.

Description

	**15.18 (Move a rectangle using mouse) Write a program that displays a rectangle. You can point the mouse inside the rectangle and drag (i.e., move with mouse pressed) the rectangle wherever the mouse goes. The mouse point becomes the center of the rectangle.

	**15.19 (Game: eye–hand coordination) Write a program that displays a circle of radius 10 pixels filled with a random color at a random location on a pane, as shown in Figure 15.31b . When you click the circle, it disappears and a new random-color circle is displayed at another random location. After 20 circles are clicked, display the time spent in the pane, as shown in Figure 15.31c .

	**15.20 (Geometry: display angles) Write a program that enables the user to drag the vertices of a triangle and displays the angles dynamically as the triangle shape changes, as shown in Figure 15.32a . The formula to compute angles is given in Listing 4.1 .

[image: Figures ay and b show sample runs.]
Figure 15.32

(a) Exercise 15.20 enables the user to drag vertices and display the angles dynamically. (b) Exercise 15.21 enables the user to drag vertices and display the angles in the triangle dynamically.

Description

	*15.21 (Drag points) Draw a circle with three random points on the circle. Connect the points to form a triangle. Display the angles in the triangle. Use the mouse to drag a point along the perimeter of the circle. As you drag it, the triangle and angles are redisplayed dynamically, as shown in Figure 15.32b . For computing angles in a triangle, see Listing 4.1 .

Section 15.10

	*15.22 (Auto resize cylinder) Rewrite Programming Exercise 14.10 so the cylinder’s width and height are automatically resized when the window is resized.

	*15.23 (Auto resize stop sign) Rewrite Programming Exercise 14.15 so the stop sign’s width and height are automatically resized when the window is resized.

Section 15.11

	**15.24 (Animation: pendulum swing) Write a program that animates a pendulum swing, as shown in Figure 15.33 . Press/release the mouse to pause/resume the animation.

[image: Three windows titled, Exercise 15, underscore, 24, show a pendulum, represented by a shaded ball, moving left to right across its downward-curved range of motion.]
Figure 15.33

The program animates a pendulum swing.

	**15.25 (Animation: ball on curve) Write a program that animates a ball moving along a sine curve, as shown in Figure 15.34 . When the ball gets to the right border, it starts over from the left. Enable the user to resume/pause the animation with a click on the left/right mouse button.

[image: Two windows show different points in an animation.]
Figure 15.34

The program animates a ball traveling along a sine curve.

Description

	*15.26 (Change opacity) Rewrite Programming Exercise 15.24 so the ball’s ­opacity is changed as it swings.

	*15.27 (Control a moving text) Write a program that displays a moving text, as shown in Figures 15.35a and b. The text moves from left to right circularly. When it disappears in the right, it reappears from the left. The text freezes when the mouse is pressed, and moves again when the button is released.

[image: Figures ay, b, and c show sample runs.]
Figure 15.35

(a and b) A text is moving from left to right circularly. (c) The program simulates a fan running.

Description

	**15.28 (Display a running fan) Write a program that displays a running fan, as shown in Figure 15.35c . Use the Pause, Resume, and Reverse buttons to pause, resume, and reverse fan running.

Display a running fan

	**15.29 (Racing car) Write a program that simulates car racing, as shown in ­Figure 15.36a . The car moves from left to right. When it hits the right end, it restarts from the left and continues the same process. You can use a timer to control animation. Redraw the car with new base coordinates (x, y), as shown in ­Figure 15.36b . Also let the user pause/resume the animation with a button press/release and increase/decrease the car speed by pressing the up and down arrow keys.

[image: Figures ay and b use a simple, angular drawing of a car.]
Figure 15.36

(a) The program displays a moving car. (b) You can redraw a car with a new base point.

Description

	**15.30 (Slide show) Twenty-five slides are stored as image files (slide0.jpg, slide1.jpg, ..., slide24.jpg) in the image directory downloadable along with the source code in the book. The size of each image is

800×600.

 Write a program that automatically displays the slides repeatedly. Each slide is shown for two seconds. The slides are displayed in order. When the last slide finishes, the first slide is redisplayed, and so on. Click to pause if the animation is currently playing. Click to resume if the animation is currently paused.

	**15.31 (Geometry: pendulum) Write a program that animates a pendulum swinging, as shown in Figure 15.37 . Press the up arrow key to increase the speed, and the down arrow key to decrease it. Press the S key to stop animation of and the R key to resume it.

[image: Three windows titled, Exercise 15, underscore, 31, show a pendulum at three points in its left to right path.]
Figure 15.37

Exercise 15.31 animates a pendulum swinging.

	*15.32 (Control a clock) Modify Listing 14.21 , ClockPane.java, to add the animation into this class and add two methods start() and stop() to start and stop the clock, respectively. Write a program that lets the user control the clock with the Start and Stop buttons, as shown in Figure 15.38a .

[image: Figure ay is a window titled, Exercise 15, underscore, 32, displaying an analog clock face above buttons labeled, start, and, stop. Figures b and c show a bean machine game, in progress and then completed, respectively.]
Figure 15.38

(a) Exercise 15.32 allows the user to start and stop a clock. (b and c) The balls are dropped into the bean machine.

	***15.33 (Game: bean-machine animation) Write a program that animates the bean machine introduced in Programming Exercise 7.37 . The animation terminates after 10 balls are dropped, as shown in Figures 15.38b and c.

	***15.34 (Simulation: self-avoiding random walk) A self-avoiding walk in a lattice is a path from one point to another that does not visit the same point twice. Self-avoiding walks have applications in physics, chemistry, and mathematics. They can be used to model chain-like entities such as solvents and polymers. Write a program that displays a random path that starts from the center and ends at a point on the boundary, as shown in Figure 15.39a , or ends at a dead-end point (i.e., surrounded by four points that have already been visited), as shown in Figure 15.39b . Assume the size of the lattice is 16 by 16.

[image: Four figures, labeled ay to d.]
Figure 15.39

(a) A path ends at a boundary point. (b) A path ends at dead-end point. (c and d) Animation shows the progress of a path step by step.

Description

	***15.35 (Animation: self-avoiding random walk) Revise the preceding exercise to display the walk step by step in an animation, as shown in Figures 15.39c and d.

	**15.36 (Simulation: self-avoiding random walk) Write a simulation program to show that the chance of getting dead-end paths increases as the grid size increases. Your program simulates lattices with size from 10 to 80 with increments of 5. For each lattice size, simulate a self-avoiding random walk 10,000 times and ­display the probability of the dead-end paths, as shown in the following sample output:

For a lattice of size 10, the probability of dead-end paths is 10.6%
For a lattice of size 15, the probability of dead-end paths is 14.0%
...
For a lattice of size 80, the probability of dead-end paths is 99.5%

CHAPTER 16 JavaFX UI Controls and Multimedia

Objectives

	To create graphical user interfaces with various user-interface controls (§§16.2–16.11).

	To create a label with text and graphics using the Label class, and explore properties in the abstract Labeled class (§16.2).

	To create a button with text and graphic using the Button class, and set a handler using the setOnAction method in the abstract ButtonBase class (§16.3).

	To create a check box using the CheckBox class (§16.4).

	To create a radio button using the RadioButton class, and group radio buttons using a ToggleGroup (§16.5).

	To enter data using the TextField class and password using the PasswordField class (§16.6).

	To enter data in multiple lines using the TextArea class (§16.7).

	To select a single item using ComboBox (§16.8).

	To select a single or multiple items using ListView (§16.9).

	To select a range of values using ScrollBar (§16.10).

	To select a range of values using Slider and explore differences between ScrollBar and Slider (§16.11).

	To develop a tic-tac-toe game (§16.12).

	To view and play video and audio using the Media, MediaPlayer, and MediaView (§16.13).

	To develop a case study for showing the national flag and playing the national anthem (§16.14).

16.1 Introduction

	JavaFX provides many UI controls for developing a comprehensive user interface.

A graphical user interface (GUI) makes a program user-friendly and easy to use. Creating a GUI requires creativity and knowledge of how UI controls work. Since the UI controls in JavaFX are very flexible and versatile, you can create a wide assortment of useful user interfaces for rich GUI applications.

GUI

Oracle provides tools for visually designing and developing GUIs. This enables the programmer to rapidly assemble the elements of a GUI with minimum coding. Tools, however, cannot do everything. You have to modify the programs they produce. Consequently, before you begin to use the visual tools, you must understand the basic concepts of JavaFX GUI programming.

Previous chapters used UI controls such as Button, Label, and TextField. This chapter introduces the frequently used UI controls in detail (see Figure 16.1).

[image: A diagram demonstrates U I controls.]
Figure 16.1

These UI controls are frequently used to create user interfaces.

Description

naming convention for controls

 Note

Throughout this book, the prefixes lbl, bt, chk, rb, tf, pf, ta, cbo, lv, scb, sld, and mp are used to name reference variables for Label, Button, CheckBox, RadioButton, TextField, PasswordField, TextArea, ComboBox, ListView, ScrollBar, Slider, and MediaPlayer, respectively.

16.2 Labeled and Label

	A label is a display area for a short text, a node, or both. It is often used to label other controls (usually text fields).

Labels and buttons share many common properties. These common properties are defined in the Labeled class, as shown in Figure 16.2.

[image: An annotated U M L diagram with the italicized name, java f x dot scene dot control dot labeled.]
Figure 16.2

Labeled defines common properties for Label, Button, CheckBox, and RadioButton.

Description

A Label can be constructed using one of the three constructors shown in Figure 16.3.

[image: An annotated U M L diagram with the name, with 2 parts.]
Figure 16.3

Label is created to display a text or a node, or both.

Description

The graphic property can be any node such as a shape, an image, or a control. Listing 16.1 gives an example that displays several labels with text and images in the label, as shown in Figure 16.4.

[image: A window titled, Label With Graphic, contains elements as follows: an American flag labeled, U S, 50 States; a circle, rectangle, and ellipse, with their respective labels; and a pane inside a label, reading, Java F X.]
Figure 16.4

The program displays labels with texts and nodes.

Source: booka/Fotolia.

Listing 16.1 LabelWithGraphic.java

				 1 import javafx.application.Application;
				 2 import javafx.stage.Stage;
				 3 import javafx.scene.Scene;
				 4 import javafx.scene.control.ContentDisplay;
				 5 import javafx.scene.control.Label;
				 6 import javafx.scene.image.Image;
				 7 import javafx.scene.image.ImageView;
				 8 import javafx.scene.layout.HBox;
				 9 import javafx.scene.layout.StackPane;
				10 import javafx.scene.paint.Color;
				11 import javafx.scene.shape.Circle;
				12 import javafx.scene.shape.Rectangle;
				13 import javafx.scene.shape.Ellipse;
				14
				15 public class LabelWithGraphic extends Application {
				16 @Override // Override the start method in the Application class
				17 public void start(Stage primaryStage) {
				18 ImageView us = new ImageView(new Image("image/us.gif"));
create a label 		19 Label lb1 = new Label("US\n50 States", us);
				20 lb1.setStyle("−fx−border−color: green; −fx-border−width: 2");
set node position		21 lb1.setContentDisplay(ContentDisplay.BOTTOM);
				22 lb1.setTextFill(Color.RED);
				23
create a label 		24 Label lb2 = new Label("Circle", new Circle(50, 50, 25));
				25 lb2.setContentDisplay(ContentDisplay.TOP);
				26 lb2.setTextFill(Color.ORANGE);
set node position		27
create a label		 28 Label lb3 = new Label("Rectangle", new Rectangle(10, 10, 50, 25));
				29 lb3.setContentDisplay(ContentDisplay.RIGHT);
				30
create a label			31 Label lb4 = new Label("Ellipse", new Ellipse(50, 50, 50, 25));
				32 lb4.setContentDisplay(ContentDisplay.LEFT);
				33
				34 Ellipse ellipse = new Ellipse(50, 50, 50, 25);
				35 ellipse.setStroke(Color.GREEN);
				36 ellipse.setFill(Color.WHITE);
				37 StackPane stackPane = new StackPane();
				38 stackPane.getChildren().addAll(ellipse, new Label("JavaFX"));
create a label 		39 Label lb5 = new Label("A pane inside a label", stackPane);
				40 lb5.setContentDisplay(ContentDisplay.BOTTOM);
				41
				42 HBox pane = new HBox(20);
add labels to pane		43 pane.getChildren().addAll(lb1, lb2, lb3, lb4, lb5);
				44
				45 // Create a scene and place it in the stage
				46 Scene scene = new Scene(pane, 450, 150);
				47 primaryStage.setTitle("LabelWithGraphic"); // Set the stage title
				48 primaryStage.setScene(scene); // Place the scene in the stage
				49 primaryStage.show(); // Display the stage
				50 }
				60 }

The program creates a label with a text and an image (line 19). The text is US\n50 States, so it is displayed in two lines. Line 21 specifies that the image is placed at the bottom of the text.

The program creates a label with a text and a circle (line 24). The circle is placed on top of the text (line 25). The program creates a label with a text and a rectangle (line 28). The rectangle is placed on the right of the text (line 29). The program creates a label with a text and an ellipse (line 31). The ellipse is placed on the left of the text (line 32).

The program creates an ellipse (line 34), places it along with a label to a stack pane (line 38), and creates a label with a text and the stack pane as the node (line 39). As seen from this example, you can place any node in a label.

The program creates an HBox (line 42) and places all five labels into the HBox (line 43).

	16.2.1 How do you create a label with a node without a text?

	16.2.2 How do you place a text on the right of the node in a label?

	16.2.3 Can you display multiple lines of text in a label?

	16.2.4 Can the text in a label be underlined?

16.3 Button

	A button is a control that triggers an action event when clicked.

JavaFX provides regular buttons, toggle buttons, check box buttons, and radio buttons. The common features of these buttons are defined in ButtonBase and Labeled classes as shown in Figure 16.5.

[image: An annotated U M L diagram, with 3 parts.]
Figure 16.5

ButtonBase extends Labeled and defines common features for all buttons.

Description

The Labeled class defines the common properties for labels and buttons. A button is just like a label, except that the button has the onAction property defined in the ButtonBase class, which sets a handler for handling a button’s action.

Listing 16.2 gives a program that uses the buttons to control the movement of a text, as shown in Figure 16.6.

[image: Two windows titled, button demo, with buttons labeled, left, and, right, in their lower sections. The areas above the buttons contain the phrase, Java F X Programming, in different positioned inside the pane.]
Figure 16.6

The program demonstrates using buttons.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Listing 16.2 ButtonDemo.java

				 1 import javafx.application.Application;
				 2 import javafx.stage.Stage;
				 3 import javafx.geometry.Pos;
				 4 import javafx.scene.Scene;
				 5 import javafx.scene.control.Button;
				 6 import javafx.scene.image.ImageView;
				 7 import javafx.scene.layout.BorderPane;
				 8 import javafx.scene.layout.HBox;
				 9 import javafx.scene.layout.Pane;
				10 import javafx.scene.text.Text;
				11
				12 public class ButtonDemo extends Application {
				13 protected Text text = new Text(50, 50, "JavaFX Programming");
				14
				15 protected BorderPane getPane() {
				16 HBox paneForButtons = new HBox(20);
create a button		 17 Button btLeft = new Button("Left",
				18 new ImageView("image/left.gif"));
				19 Button btRight = new Button("Right",
				20 new ImageView("image/right.gif"));
add buttons to pane		21 paneForButtons.getChildren().addAll(btLeft, btRight);
				22 paneForButtons.setAlignment(Pos.CENTER);
				23 paneForButtons.setStyle("−fx−border−color: green");
				24
create a border pane		25 BorderPane pane = new BorderPane();
add buttons to the bottom	26 pane.setBottom(paneForButtons);
				27
				28 Pane paneForText = new Pane();
				29 paneForText.getChildren().add(text);
				30 pane.setCenter(paneForText);
				31
add an action handler		32 btLeft.setOnAction(e –> text.setX(text.getX() – 10));
				33 btRight.setOnAction(e –> text.setX(text.getX() + 10));
				34
return a pane 		35 return pane;
				36 }
				37
				38 @Override // Override the start method in the Application class
				39 public void start(Stage primaryStage) {
				40 // Create a scene and place it in the stage
set pane to scene		41 Scene scene = new Scene(getPane(), 450, 200);
				42 primaryStage.setTitle("ButtonDemo"); // Set the stage title
				43 primaryStage.setScene(scene); // Place the scene in the stage
				44 primaryStage.show(); // Display the stage
				45 }
				46 }

The program creates two buttons, btLeft and btRight, with each button containing a text and an image (lines 17–20). The buttons are placed in an HBox (line 21) and the HBox is placed in the bottom of a border pane (line 26). A text is created in line 13 and is placed in the center of the border pane (line 30). The action handler for btLeft moves the text to the left (line 32). The action handler for btRight moves the text to the right (line 33).

getPane() protected

The program purposely defines a protected getPane() method to return a pane (line 15). This method will be overridden by subclasses in the upcoming examples to add more nodes in the pane. The text is declared protected so it can be accessed by subclasses (line 13).

	16.3.1 How do you create a button with a text and a node? Can you apply all the methods for Labeled to Button?

	16.3.2 Why is the getPane() method protected in Listing 16.2? Why is the data field text protected?

	16.3.3 How do you set a handler for processing a button-clicked action?

16.4 CheckBox

	A CheckBox is used for the user to make a selection.

Like Button, CheckBox inherits all the properties such as onAction, text, graphic, alignment, graphicTextGap, textFill, and contentDisplay from ButtonBase and Labeled, as shown in Figure 16.7. In addition, it provides the selected property to indicate whether a check box is selected.

[image: An annotated U M L diagram, with 3 parts.]
Figure 16.7

CheckBox contains the properties inherited from ButtonBase and Labeled.

Description

Here is an example of a check box with text US, a graphic image, green text color, black border, and initially selected.

CheckBox chkUS = new CheckBox("US");
chkUS.setGraphic(new ImageView("image/usIcon.gif"));
chkUS.setTextFill(Color.GREEN);
chkUS.setContentDisplay(ContentDisplay.LEFT);
chkUS.setStyle("−fx−border−color: black");
chkUS.setSelected(true);
chkUS.setPadding(new Insets(5, 5, 5, 5));

[image: A black border surrounds a row of figures, left to right, as follows: a marked checkbox, a miniature U S flag, and the letters, U S.]
When a check box is clicked (checked or unchecked), it fires an ActionEvent. To see if a check box is selected, use the isSelected() method.

We now write a program that adds two check boxes named Bold and Italic to the preceding example to let the user specify whether the message is in bold or italic, as shown in Figure 16.8.

[image: The button demo windows now have a right-aligned V Box, above the H Box, containing check boxes labeled, bold, and, italic. Bold is marked in both windows. Italic is marked in the right window. Selections are reflected in the displayed text.]
Figure 16.8

The program demonstrates check boxes.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

There are at least two approaches to writing this program. The first is to revise the preceding ButtonDemo class to insert the code for adding the check boxes and processing their events. The second is to define a subclass that extends ButtonDemo. Please implement the first approach as an exercise. Listing 16.3 gives the code to implement the second approach.

[image: A, U M L, diagram. Hollow arrows and solid lines connect elements labeled as follows: Check Box Demo; Button Demo; begin italics, Application, end italics.]
Listing 16.3 CheckBoxDemo.java

				 1 import javafx.event.ActionEvent;
				 2 import javafx.event.EventHandler;
				 3 import javafx.geometry.Insets;
				 4 import javafx.scene.control.CheckBox;
				 5 import javafx.scene.layout.BorderPane;
				 6 import javafx.scene.layout.VBox;
				 7 import javafx.scene.text.Font;
				 8 import javafx.scene.text.FontPosture;
				 9 import javafx.scene.text.FontWeight;
				10
				11 public class CheckBoxDemo extends ButtonDemo {
				12 @Override // Override the getPane() method in the super class
override getPane()		13 protected BorderPane getPane() {
invoke super.getPane()		14 BorderPane pane = super.getPane();
				15
create fonts 		 16 Font fontBoldItalic = Font.font("Times New Roman",
				17 FontWeight.BOLD, FontPosture.ITALIC, 20);
				18 Font fontBold = Font.font("Times New Roman",
				19 FontWeight.BOLD, FontPosture.REGULAR, 20);
				20 Font fontItalic = Font.font("Times New Roman",
				21 FontWeight.NORMAL, FontPosture.ITALIC, 20);
				22 Font fontNormal = Font.font("Times New Roman",
				23 FontWeight.NORMAL, FontPosture.REGULAR, 20);
				24
				25 text.setFont(fontNormal);
				26
pane for check boxes		27 VBox paneForCheckBoxes = new VBox(20);
				28 paneForCheckBoxes.setPadding(new Insets(5, 5, 5, 5));
				29 paneForCheckBoxes.setStyle("−fx−border−color: green");
create check boxes		30 CheckBox chkBold = new CheckBox("Bold");
				31 CheckBox chkItalic = new CheckBox("Italic");
				32 paneForCheckBoxes.getChildren().addAll(chkBold, chkItalic);
				33 pane.setRight(paneForCheckBoxes);
				34
create a handler		35 EventHandler<ActionEvent> handler = e −> {
				36 if (chkBold.isSelected() && chkItalic.isSelected()) {
				37 text.setFont(fontBoldItalic); // Both check boxes checked
				38 }
				39 else if (chkBold.isSelected()) {
				40 text.setFont(fontBold); // The Bold check box checked
				41 }
				42 else if (chkItalic.isSelected()) {
				43 text.setFont(fontItalic); // The Italic check box checked
				44 }
				45 else {
				46 text.setFont(fontNormal); // Both check boxes unchecked
				47 }
				48 };
				49
set handler for action		50 chkBold.setOnAction(handler);
				51 chkItalic.setOnAction(handler);
				52
return a pane 		53 return pane; // Return a new pane
				54 }
				55
				56 public static void main(String[] args) {
				57 launch(args);
				58 }
				59 }

CheckBoxDemo extends ButtonDemo and overrides the getPane() method (line 13). The new getPane() method invokes the super.getPane() method from the ButtonDemo class to obtain a border pane that contains the buttons and a text (line 14). The check boxes are created and added to paneForCheckBoxes (lines 30–32). paneForCheckBoxes is added to the border pane (lines 33).

The handler for processing the action event on check boxes is created in lines 35–48. It sets the appropriate font based on the status of the check boxes.

The start method for this JavaFX program is defined in ButtonDemo and inherited in CheckBoxDemo. Therefore, when you run CheckBoxDemo, the start method in ­ButtonDemo is invoked. Since the getPane() method is overridden in CheckBoxDemo, the method in CheckBoxDemo is invoked from line 41 in Listing 16.2, ButtonDemo.java. For additional information, see CheckPoint question 16.4.1.

	16.4.1 What is the output of the following code?

public class Test {
 public static void main(String[] args) {
 Test test = new Test();
 test.new B().start();
 }
 class A {
 public void start() {
 System.out.println(getP());
 }
 public int getP() {
 return 1;
 }
 }
 class B extends A {
 public int getP() {
 return 2 + super.getP();
 }
 }
}

	16.4.2 How do you test if a check box is selected?

	16.4.3 Can you apply all the methods for Labeled to CheckBox?

	16.4.4 Can you set a node for the graphic property in a check box?

16.5 RadioButton

	Radio buttons, also known as option buttons, enable you to choose a single item from a group of choices.

In appearance, radio buttons resemble check boxes, but check boxes display a square that is either checked or blank, whereas radio buttons display a circle that is either filled (if selected) or blank (if not selected).

option buttons

RadioButton is a subclass of ToggleButton. The difference between a radio button and a toggle button is that a radio button displays a circle, but a toggle button is rendered similar to a button. The UML diagrams for ToggleButton and RadioButton are shown in Figure 16.9.

[image: An annotated U M L diagram, with 2 parts.]
Figure 16.9

ToggleButton and RadioButton are specialized buttons for making selections.

Description

Here is an example of a radio button with text US, a graphic image, green text color, black border, and initially selected.

RadioButton rbUS = new RadioButton("US");
rbUS.setGraphic(new ImageView("image/usIcon.gif"));
rbUS.setTextFill(Color.GREEN);
rbUS.setContentDisplay(ContentDisplay.LEFT);
rbUS.setStyle("−fx−border−color: black");
rbUS.setSelected(true);
rbUS.setPadding(new Insets(5, 5, 5, 5));

[image: A black border surrounds a row of figures, left to right, as follows: a selected radio button, a miniature U S flag, and the letters, U S.]
To group radio buttons, you need to create an instance of ToggleGroup and set a radio button’s toggleGroup property to join the group, as follows:

 ToggleGroup group = new ToggleGroup();
 rbRed.setToggleGroup(group);
 rbGreen.setToggleGroup(group);
 rbBlue.setToggleGroup(group);

This code creates a button group for radio buttons rbRed, rbGreen, and rbBlue so buttons rbRed, rbGreen, and rbBlue are selected mutually exclusively. Without grouping, these buttons would be independent.

When a radio button is changed (selected or deselected), it fires an ActionEvent. To see if a radio button is selected, use the isSelected() method.

We now give a program that adds three radio buttons named Red, Green, and Blue to the preceding example to let the user choose the color of the message, as shown in Figure 16.10.

[image: The button demo window now has a left-aligned V Box, containing radio buttons as follows: red, which is selected, then green, then blue. The text in the center of the window changes shade accordingly.]
Figure 16.10

The program demonstrates using radio buttons.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Again, there are at least two approaches to writing this program. The first is to revise the preceding CheckBoxDemo class to insert the code for adding the radio buttons and processing their events. The second is to define a subclass that extends CheckBoxDemo. Listing 16.4 gives the code to implement the second approach.

[image: A, U M L, diagram. Hollow arrows and solid lines connect elements labeled as follows: Radio Button Demo; Check Box Demo; Button Demo; begin italics, Application, end italics.]
Listing 16.4 RadioButtonDemo.java

 1 import javafx.geometry.Insets;
 2 import javafx.scene.control.RadioButton;
 3 import javafx.scene.control.ToggleGroup;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.layout.VBox;
 6 import javafx.scene.paint.Color;
 7
 8 public class RadioButtonDemo extends CheckBoxDemo {
 9 @Override // Override the getPane() method in the super class
override getPane() 10 protected BorderPane getPane() {
invoke super.getPane() 11 BorderPane pane = super.getPane();
 12
pane for radio buttons 13 VBox paneForRadioButtons = new VBox(20);
 14 paneForRadioButtons.setPadding(new Insets(5, 5, 5, 5));
 15 paneForRadioButtons.setStyle
 16 ("−fx−border−width: 2px; −fx−border−color: green");
 17
create radio buttons 18 RadioButton rbRed = new RadioButton("Red");
 19 RadioButton rbGreen = new RadioButton("Green");
 20 RadioButton rbBlue = new RadioButton("Blue");
 21 paneForRadioButtons.getChildren().addAll(rbRed, rbGreen, rbBlue);
add to border pane 22 pane.setLeft(paneForRadioButtons);
 23
group radio buttons 24 ToggleGroup group = new ToggleGroup();
 25 rbRed.setToggleGroup(group);
 26 rbGreen.setToggleGroup(group);
 27 rbBlue.setToggleGroup(group);
 28
handle radio button 29 rbRed.setOnAction(e −> {
 30 if (rbRed.isSelected()) {
 31 text.setFill(Color.RED);
 32 }
 33 });
 34
 35 rbGreen.setOnAction(e −> {
 36 if (rbGreen.isSelected()) {
 37 text.setFill(Color.GREEN);
 38 }
 39 });
 40
 41 rbBlue.setOnAction(e −> {
 42 if (rbBlue.isSelected()) {
 43 text.setFill(Color.BLUE);
 44 }
 45 });
 46
return border pane 47 return pane;
 48 }
 49
 50 public static void main(String[] args) {
 51 launch(args);
 52 }
 53 }

RadioButtonDemo extends CheckBoxDemo and overrides the getPane() method (line 10). The new getPane() method invokes the getPane() method from the ­CheckBoxDemo class to create a border pane that contains the check boxes, buttons, and a text (line 11). This border pane is returned from invoking super.getPane(). The radio buttons are created and added to ­paneForRadioButtons (lines 18–21). paneForRadioButtons is added to the border pane (line 22).

The radio buttons are grouped together in lines 24–27. The handlers for processing the action event on radio buttons are created in lines 29–45. It sets the appropriate color based on the status of the radio buttons.

The start method for this JavaFX program is defined in ButtonDemo and inherited in ­CheckBoxDemo then in RadioButtonDemo. Thus, when you run RadioButtonDemo, the start method in ButtonDemo is invoked. Since the getPane() method is overridden in ­RadioButtonDemo, the method in RadioButtonDemo is invoked from line 41 in ­Listing 16.2, ButtonDemo.java.

	16.5.1 How do you test if a radio button is selected?

	16.5.2 Can you apply all the methods for Labeled to RadioButton?

	16.5.3 Can you set any node in the graphic property in a radio button?

	16.5.4 How do you group radio buttons?

16.6 TextField

	A text field can be used to enter or display a string.

TextField is a subclass of TextInputControl. Figure 16.11 lists the properties and constructors in TextField.

[image: An annotated U M L diagram, with 2 parts.]
Figure 16.11

TextField enables the user to enter or display a string.

Description

Here is an example of creating a noneditable text field with red text color, a specified font, and right horizontal alignment:

TextField tfMessage = new TextField("T-Storm");
tfMessage.setEditable(false);
tfMessage.setStyle("−fx−text−fill: red");
tfMessage.setFont(Font.font("Times", 20));
tfMessage.setAlignment(Pos.BASELINE_RIGHT);

[image: A text field contains the right-aligned text, T-Storm.]
When you move the cursor in the text field and press the Enter key, it fires an ActionEvent.

Listing 16.5 gives a program that adds a text field to the preceding example to let the user set a new message, as shown in Figure 16.12.

[image: The, Button Demo, window.]
Figure 16.12

The program demonstrates using text fields.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

[image: A, U M L, diagram. Hollow arrows and solid lines connect elements as follows: Test Field Demo; Radio Button Demo; Check Box Demo; Button Demo; begin italics, Application, end italics.]
Listing 16.5 TextFieldDemo.java

 1 import javafx.geometry.Insets;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.TextField;
 5 import javafx.scene.layout.BorderPane;
 6
 7 public class TextFieldDemo extends RadioButtonDemo {
 8 @Override // Override the getPane() method in the super class
override getPane() 9 protected BorderPane getPane() {
invoke super.getPane() 10 BorderPane pane = super.getPane();
 11
pane for label and text field 12 BorderPane paneForTextField = new BorderPane();
 13 paneForTextField.setPadding(new Insets(5, 5, 5, 5));
 14 paneForTextField.setStyle("−fx−border−color: green");
 15 paneForTextField.setLeft(new Label("Enter a new message: "));
 16
create text field 17 TextField tf = new TextField();
 18 tf.setAlignment(Pos.BOTTOM_RIGHT);
 19 paneForTextField.setCenter(tf);
add to border pane 20 pane.setTop(paneForTextField);
 21
handle text field action 22 tf.setOnAction(e −> text.setText(tf.getText()));
 23
return border pane 24 return pane;
 25 }
 26
 27 public static void main(String[] args) {
 28 launch(args);
 29 }
 30 }

TextFieldDemo extends RadioButtonDemo (line 7) and adds a label and a text field to let the user enter a new text (lines 12–20). After you set a new text in the text field and press the Enter key, a new message is displayed (line 22). Pressing the Enter key on the text field triggers an action event.

PasswordField

 Note

If a text field is used for entering a password, use PasswordField to replace ­TextField. PasswordField extends TextField and hides the input text with echo characters ******.

	16.6.1 Can you disable editing of a text field?

	16.6.2 Can you apply all the methods for TextInputControl to TextField?

	16.6.3 Can you set a node as the graphic property in a text field?

	16.6.4 How do you align the text in a text field to the right?

16.7 TextArea

	A TextArea enables the user to enter multiple lines of text.

If you want to let the user enter multiple lines of text, you may create several instances of TextField. A better alternative, however, is to use TextArea, which enables the user to enter multiple lines of text. Figure 16.13 lists the properties and constructors in TextArea.

[image: An annotated U M L diagram, with 2 parts.]
Figure 16.13

TextArea enables the user to enter or display multiple lines of characters.

Description

Here is an example of creating a text area with 5 rows and 20 columns, wrapped to the next line, red text color, and Courier font 20 pixels.

 TextArea taNote = new TextArea("This is a text area");
 taNote.setPrefColumnCount(20);
 taNote.setPrefRowCount(5);
 taNote.setWrapText(true);
 taNote.setStyle("-fx-text-fill: red");
 taNote.setFont(Font.font("Times", 20));

TextArea provides scrolling, but often it is useful to create a ScrollPane object to hold an instance of TextArea and let ScrollPane handle scrolling for TextArea, as follows:

// Create a scroll pane to hold text area
ScrollPane scrollPane = new ScrollPane(taNote);

ScrollPane

 Tip

You can place any node in a ScrollPane. ScrollPane automatically provides vertical and ­horizontal scrolling if the node is too large to fit in the viewing area.

We now give a program that displays an image and a short text in a label, and a long text in a text area, as shown in Figure 16.14.

[image: The contents of the window, Text Area Demo, are labeled, Description Pane. On the left is a label showing the image of a Canadian flag, and the text, Canada. On the right is a text area inside a scroll pane, reading, The Canadian national flag, ellipsis.]
Figure 16.14

The program displays an image in a label, a title in a label, and text in the text area.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Here are the major steps in the program:

	Define a class named DescriptionPane that extends BorderPane, as shown in ­Listing 16.6. This class contains a text area inside a scroll pane and a label for displaying an image icon and a title. The class DescriptionPane will be reused in later examples.

	Define a class named TextAreaDemo that extends Application, as shown in ­Listing 16.7. Create an instance of DescriptionPane and add it to the scene. The relationship between DescriptionPane and TextAreaDemo is shown in Figure 16.15.

[image: An annotated U M L diagram, with 4 parts.]
Figure 16.15

TextAreaDemo uses DescriptionPane to display an image, title, and text description of a national flag.

Description

Listing 16.6 DescriptionPane.java

 1 import javafx.geometry.Insets;
 2 import javafx.scene.control.Label;
 3 import javafx.scene.control.ContentDisplay;
 4 import javafx.scene.control.ScrollPane;
 5 import javafx.scene.control.TextArea;
 6 import javafx.scene.image.ImageView;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.text.Font;
 9
 10 public class DescriptionPane extends BorderPane {
 11 /** Label for displaying an image and a title */
lable 12 private Label lblImageTitle = new Label();
 13
 14 /** Text area for displaying text */
text area 15 private TextArea taDescription = new TextArea();
 16
 17 public DescriptionPane() {
 18 // Center the icon and text and place the text under the icon
label properties 19 lblImageTitle.setContentDisplay(ContentDisplay.TOP);
 20 lblImageTitle.setPrefSize(200, 100);
 21
 22 // Set the font in the label and the text field
 23 lblImageTitle.setFont(new Font("SansSerif", 16));
 24 taDescription.setFont(new Font("Serif", 14));
 25
wrap text 26 taDescription.setWrapText(true);
read only 27 taDescription.setEditable(false);
 28
 29 // Create a scroll pane to hold the text area
scroll pane 30 ScrollPane scrollPane = new ScrollPane(taDescription);
 31
 32 // Place label and scroll pane in the border pane
 33 setLeft(lblImageTitle);
 34 setCenter(scrollPane);
 35 setPadding(new Insets(5, 5, 5, 5));
 36 }
 37
 38 /** Set the title */
 39 public void setTitle(String title) {
 40 lblImageTitle.setText(title);
 41 }
 42
 43 /** Set the image view */
 44 public void setImageView(ImageView icon) {
 45 lblImageTitle.setGraphic(icon);
 46 }
 47
 48 /** Set the text description */
 49 public void setDescription(String text) {
 50 taDescription.setText(text);
 51 }
 52 }

The text area is inside a ScrollPane (line 30), which provides scrolling functions for the text area.

The wrapText property is set to true (line 26) so the line is automatically wrapped when the text cannot fit in one line. The text area is set as noneditable (line 27), so you cannot edit the description in the text area.

It is not necessary to define a separate class for DescriptionPane in this example. However, this class was defined for reuse in the next section, where you will use it to display a description pane for various images.

Listing 16.7 TextAreaDemo.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.image.ImageView;
 5
 6 public class TextAreaDemo extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Declare and create a description pane
create descriptionPane 10 DescriptionPane descriptionPane = new DescriptionPane();
 11
 12 // Set title, text, and image in the description pane
set title 13 descriptionPane.setTitle("Canada");
 14 String description = "The Canadian national flag ... ";
set image 15 descriptionPane.setImageView(new ImageView("image/ca.gif"));
 16 descriptionPane.setDescription(description);
 17
 18 // Create a scene and place it in the stage
add descriptionPane 19 Scene scene = new Scene(descriptionPane, 450, 200);
 to scene 20 primaryStage.setTitle("TextAreaDemo"); // Set the stage title
 21 primaryStage.setScene(scene); // Place the scene in the stage
 22 primaryStage.show(); // Display the stage
 23 }
 24 }

The program creates an instance of DescriptionPane (line 10) and sets the title (line 13), image (line 15), and text (line 16) in the description pane. DescriptionPane is a subclass of Pane. DescriptionPane contains a label for displaying an image, a title, and a text area for displaying a description of the image.

	16.7.1 How do you create a text area with 10 rows and 20 columns?

	16.7.2 How do you obtain the text from a text area?

	16.7.3 Can you disable editing of a text area?

	16.7.4 What method do you use to wrap text to the next line in a text area?

16.8 ComboBox

	A combo box, also known as a choice list or drop-down list, contains a list of items from which the user can choose.

A combo box is useful for limiting a user’s range of choices and avoids the cumbersome validation of data input. Figure 16.16 lists several frequently used properties and constructors in ComboBox. ComboBox is defined as a generic class like the ArrayList class. The generic type T specifies the element type for the elements stored in a combo box.

[image: An annotated U M L diagram, with 2 parts.]
Figure 16.16

ComboBox enables the user to select an item from a list of items.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

The following statements create a combo box with four items, red color, and value set to the first item:

ComboBox<String> cbo = new ComboBox<>();
cbo.getItems().addAll("Item 1", "Item 2",
 "Item 3", "Item 4");
cbo.setStyle("−fx−color: red");
cbo.setValue("Item 1");

[image: A drop-down menu with options reading, Item 1, through, Item 4.]
ComboBox inherits from ComboBoxBase. ComboBox can fire an ActionEvent. Whenever an item is selected, an ActionEvent is fired. ObservableList is a subinterface of java.util.List. Therefore, you can apply all the methods defined in List for an ­ObservableList. For convenience, JavaFX provides the static method FXCollections.observableArrayList(arrayOfElements) for creating an ObservableList from an array of elements.

Listing 16.8 gives a program that lets the user view an image and a description of a country’s flag by selecting the country from a combo box, as shown in Figure 16.17.

[image: The, Combo Box Demo, window.]
Figure 16.17

Information about a country, including an image and a description of its flag, is displayed when the country is selected in the combo box.

Description
The window contains a drop down labeled, select a country, at the top. The combo box displaying the selection, Canada. On the left is a label showing the image of a Canadian flag, and the text, Canada. On the right is the description pane, a text area inside a scroll pane, reading, The Canadian national flag, ellipsis.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Here are the major steps in the program:

	Create the user interface.

Create a combo box with country names as its selection values. Create a DescriptionPane object (the DescriptionPane class was introduced in the preceding section). Place the combo box at the top of the border pane, and the description pane in the center of the border pane.

	Process the event.

Create a handler for handling action event from the combo box to set the flag title, image, and text in the description pane for the selected country name.

Listing 16.8 ComboBoxDemo.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.collections.FXCollections;
 4 import javafx.collections.ObservableList;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.ComboBox;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
 10
 11 public class ComboBoxDemo extends Application {
 12 // Declare an array of Strings for flag titles
countries 13 private String[] flagTitles = {"Canada", "China", "Denmark",
 14 "France", "Germany", "India", "Norway", "United Kingdom",
 15 "United States of America"};
 16
 17 // Declare an ImageView array for the national flags of 9 countries
image views 18 private ImageView[] flagImage = {new ImageView("image/ca.gif"),
 19 new ImageView("image/china.gif"),
 20 new ImageView("image/denmark.gif"),
 21 new ImageView("image/fr.gif"),
 22 new ImageView("image/germany.gif"),
 23 new ImageView("image/india.gif"),
 24 new ImageView("image/norway.gif"),
 25 new ImageView("image/uk.gif"), new ImageView("image/us.gif")};
 26
 27 // Declare an array of strings for flag descriptions
description 28 private String[] flagDescription = new String[9];
 29
 30 // Declare and create a description pane
combo box 31 private DescriptionPane descriptionPane = new DescriptionPane();
 32
 33 // Create a combo box for selecting countries
 34 private ComboBox<String> cbo = new ComboBox<>(); // flagTitles;
 35
 36 @Override // Override the start method in the Application class
 37 public void start(Stage primaryStage) {
 38 // Set text description
 39 flagDescription[0] = "The Canadian national flag ... ";
 40 flagDescription[1] = "Description for China ... ";
 41 flagDescription[2] = "Description for Denmark ... ";
 42 flagDescription[3] = "Description for France ... ";
 43 flagDescription[4] = "Description for Germany ... ";
 44 flagDescription[5] = "Description for India ... ";
 45 flagDescription[6] = "Description for Norway ... ";
 46 flagDescription[7] = "Description for UK ... ";
 47 flagDescription[8] = "Description for US ... ";
 48
 49 // Set the first country (Canada) for display
 50 setDisplay(0);
 51
 52 // Add combo box and description pane to the border pane
 53 BorderPane pane = new BorderPane();
 54
 55 BorderPane paneForComboBox = new BorderPane();
 56 paneForComboBox.setLeft(new Label("Select a country: "));
 57 paneForComboBox.setCenter(cbo);
 58 pane.setTop(paneForComboBox);
 59 cbo.setPrefWidth(400);
 60 cbo.setValue("Canada");
set combo box value 61
observable list 62 ObservableList<String> items =
 63 FXCollections.observableArrayList(flagTitles);
add to combo box 64 cbo.getItems().addAll(items);
 65 pane.setCenter(descriptionPane);
 66
 67 // Display the selected country
 68 cbo.setOnAction(e −> setDisplay(items.indexOf(cbo.getValue())));
 69
 70 // Create a scene and place it in the stage
				 71 Scene scene = new Scene(pane, 450, 170);
 72 primaryStage.setTitle("ComboBoxDemo"); // Set the stage title
 73 primaryStage.setScene(scene); // Place the scene in the stage
 74 primaryStage.show(); // Display the stage
 75 }
 76
 77 /** Set display information on the description pane */
 78 public void setDisplay(int index) {
 79 descriptionPane.setTitle(flagTitles[index]);
 80 descriptionPane.setImageView(flagImage[index]);
 81 descriptionPane.setDescription(flagDescription[index]);
 82 }
 83 }

The program stores the flag information in three arrays: flagTitles, flagImage, and flagDescription (lines 13–28). The array flagTitles contains the names of nine countries, the array flagImage contains image views of each of the nine countries’ flags, and the array flagDescription contains descriptions of the flags.

The program creates an instance of DescriptionPane (line 31), which was presented in Listing 16.6, DescriptionPane.java. The program creates a combo box with values from flagTitles (lines 62 and 63). The getItems() method returns a list from the combo box (line 64) and the addAll method adds multiple items into the list.

When the user selects an item in the combo box, the action event triggers the execution of the handler. The handler finds the selected index (line 68) and invokes the setDisplay(int index) method to set its corresponding flag title, flag image, and flag description on the pane (lines 78–82).

	16.8.1 How do you create a combo box and add three items to it?

	16.8.2 How do you retrieve an item from a combo box? How do you retrieve a selected item from a combo box?

	16.8.3 How do you get the number of items in a combo box? How do you retrieve an item at a specified index in a combo box?

	16.8.4 What events would a ComboBox fire upon selecting a new item?

16.9 ListView

	A list view is a control that basically performs the same function as a combo box, but it enables the user to choose a single value or multiple values.

Use ListView

Figure 16.18 lists several frequently used properties and constructors in ListView. ListView is defined as a generic class like the ArrayList class. The generic type T specifies the element type for the elements stored in a list view.

[image: An annotated U M L diagram with the title, java f x dot scene dot control dot List View, <, T, >.]
Figure 16.18

ListView enables the user to select one or multiple items from a list of items.

Description

The getSelectionModel() method returns an instance of SelectionModel, which contains the methods for setting a selection mode and obtaining selected indices and items. The selection mode is defined in one of the two constants SelectionMode.MULTIPLE and SelectionMode.SINGLE, which indicates whether a single item or multiple items can be selected. The default value is SelectionMode.SINGLE. Figure 16.19a shows a single selection and Figures 16.19b and c show multiple selections.

[image: Three figures show different selection methods.]
Figure 16.19

SelectionMode has two selection modes: single selection and multiple-interval selection.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

The following statements create a list view of six items with multiple selections allowed:

 ObservableList<String> items =
 FXCollections.observableArrayList("Item 1", "Item 2",
 "Item 3", "Item 4", "Item 5", "Item 6");
 ListView<String> lv = new ListView<>(items);
 lv.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

The selection model in a list view has the selectedItemProperty property, which is an instance of Observable. As discussed in Section 15.10, you can add a listener to this property for handling the property change as follows:

 lv.getSelectionModel().selectedItemProperty().addListener(
 new InvalidationListener() {
 public void invalidated(Observable ov) {
 System.out.println("Selected indices: "
 + lv.getSelectionModel().getSelectedIndices());
 System.out.println("Selected items: "
 + lv.getSelectionModel().getSelectedItems());
 }
 });

This anonymous inner class can be simplified using a lambda expression as follows:

 lv.getSelectionModel().selectedItemProperty().addListener(ov -> {
 System.out.println("Selected indices: "
 + lv.getSelectionModel().getSelectedIndices());
 System.out.println("Selected items: "
 + lv.getSelectionModel().getSelectedItems());
 });

Listing 16.9 gives a program that lets users select the countries in a list and displays the flags of the selected countries in the image views. Figure 16.20 shows a sample run of the program.

[image: A window titled, List View Demo.]
Figure 16.20

When the countries in the list are selected, corresponding images of their flags are displayed in the image views.

Source: booka/Fotolia.

Description

Here are the major steps in the program:

	Create the user interface.

Create a list view with nine country names as selection values and place the list view inside a scroll pane. Place the scroll pane on the left of a border pane. Create nine image views to be used to display the countries’ flag images. Create a flow pane to hold the image views and place the pane in the center of the border pane.

	Process the event.

Create a listener to implement the invalidated method in the ­InvalidationListener interface to place the selected countries’ flag image views in the pane.

Listing 16.9 ListViewDemo.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.collections.FXCollections;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ListView;
 6 import javafx.scene.control.ScrollPane;
 7 import javafx.scene.control.SelectionMode;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
 10 import javafx.scene.layout.FlowPane;
 11
 12 public class ListViewDemo extends Application {
 13 // Declare an array of Strings for flag titles
 14 private String[] flagTitles = {"Canada", "China", "Denmark",
 15 "France", "Germany", "India", "Norway", "United Kingdom",
 16 "United States of America"};
 17
 18 // Declare an ImageView array for the national flags of 9 countries
 19 private ImageView[] ImageViews = {
 20 new ImageView("image/ca.gif"),
 21 new ImageView("image/china.gif"),
 22 new ImageView("image/denmark.gif"),
 23 new ImageView("image/fr.gif"),
 24 new ImageView("image/germany.gif"),
 25 new ImageView("image/india.gif"),
 26 new ImageView("image/norway.gif"),
 27 new ImageView("image/uk.gif"),
 28 new ImageView("image/us.gif")
 29 };
 30
 31 @Override // Override the start method in the Application class
 32 public void start(Stage primaryStage) {
create a list view 33 ListView<String> lv = new ListView<>
 34 (FXCollections.observableArrayList(flagTitles));
set list view properties 35 lv.setPrefSize(400, 400);
 36 lv.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
 37
 38 // Create a pane to hold image views
 39 FlowPane imagePane = new FlowPane(10, 10);
 40 BorderPane pane = new BorderPane();
place list view in pane 41 pane.setLeft(new ScrollPane(lv));
 42 pane.setCenter(imagePane);
 43
listen to item selected 44 lv.getSelectionModel().selectedItemProperty().addListener(
 45 ov −> {
 46 imagePane.getChildren().clear();
 47 for (Integer i: lv.getSelectionModel().getSelectedIndices()) {
add image views of selected 48 imagePane.getChildren().add(ImageViews[i]);
 items 49 }
 50 });
 51
 52 // Create a scene and place it in the stage
 53 Scene scene = new Scene(pane, 450, 170);
 54 primaryStage.setTitle("ListViewDemo"); // Set the stage title
 55 primaryStage.setScene(scene); // Place the scene in the stage
 56 primaryStage.show(); // Display the stage
 57 }
 58 }

The program creates an array of strings for countries (lines 14–16) and an array of nine image views for displaying flag images for nine countries (lines 19–29) in the same order as in the array of countries. The items in the list view are from the array of countries (line 34). Thus, the index 0 of the image view array corresponds to the first country in the list view.

The list view is placed in a scroll pane (line 41) so it can be scrolled when the number of items in the list extends beyond the viewing area.

By default, the selection mode of the list view is single. The selection mode for the list view is set to multiple (line 36), which allows the user to select multiple items in the list view. When the user selects countries in the list view, the listener’s handler (lines 44–50) is executed, which gets the indices of the selected items and adds their corresponding image views to the flow pane.

	16.9.1 How do you create an observable list with an array of strings?

	16.9.2 How do you set the orientation in a list view?

	16.9.3 What selection modes are available for a list view? What is the default selection mode? How do you set a selection mode?

	16.9.4 How do you obtain the selected items and selected indices?

16.10 ScrollBar

	ScrollBar is a control that enables the user to select from a range of values.

Figure 16.21 shows a scroll bar. Normally, the user changes the value of a scroll bar by making a gesture with the mouse. For example, the user can drag the scroll bar’s thumb, click on the scroll bar track, or the scroll bar’s left or right buttons.

[image: A scroll bar is represented by a long rectangle, with buttons at the minimal and maximal ends that move the, thumb, along the length of the, track.]
Figure 16.21

A scroll bar graphically represents a range of values.

ScrollBar has the following properties, as shown in Figure 16.22.

[image: An annotated U M L diagram with the title, java f x dot scene dot control dot Scroll Bar.]
Figure 16.22

ScrollBar enables the user to select from a range of values.

Description

 Note

The width of the scroll bar’s track corresponds to max + visibleAmount. When a scroll bar is set to its maximum value, the left side of the bubble is at max, and the right side is at max + visibleAmount.

When the user changes the value of the scroll bar, it notifies the listener of the change. You can register a listener on the scroll bar’s valueProperty for responding to this change as follows:

 ScrollBar sb = new ScrollBar();
 sb.valueProperty().addListener(ov −> {
 System.out.println("old value: " + oldVal);
 System.out.println("new value: " + newVal);
 });

Listing 16.10 gives a program that uses horizontal and vertical scroll bars to move a text displayed on a pane. The horizontal scroll bar is used to move the text to the left and the right, and the vertical scroll bar to move it up and down. A sample run of the program is shown in Figure 16.23.

[image: A window titled, Scroll Bar Demo, contains the text, Java F X Programming, toward the left side of the pane. The right and bottom sides of the pane have a vertical and a horizontal scroll bar, respectively.]
Figure 16.23

The scroll bars move the message on a pane horizontally and vertically.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Here are the major steps in the program:

	Create the user interface.

Create a Text object and place it in a pane and place the pane in the center of the border pane. Create a vertical scroll bar and place it on the right of the border pane. Create a horizontal scroll bar and place it at the bottom of the border pane.

	Process the event.

Create listeners to move the text according to the bar movement in the scroll bars upon the change of the value property.

horizontal scroll bar

vertical scroll bar

Listing 16.10 ScrollBarDemo.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Orientation;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ScrollBar;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.text.Text;
 9
 10 public class ScrollBarDemo extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 Text text = new Text(20, 20, "JavaFX Programming");
 14
horizontal scroll bar 15 ScrollBar sbHorizontal = new ScrollBar();
vertical scroll bar 16 ScrollBar sbVertical = new ScrollBar();
 17 sbVertical.setOrientation(Orientation.VERTICAL);
 18
 19 // Create a text in a pane
 20 Pane paneForText = new Pane();
 21 paneForText.getChildren().add(text);
add text to a pane 22
 23 // Create a border pane to hold text and scroll bars
border pane 24 BorderPane pane = new BorderPane();
 25 pane.setCenter(paneForText);
 26 pane.setBottom(sbHorizontal);
 27 pane.setRight(sbVertical);
 28
 29 // Listener for horizontal scroll bar value change
 30 sbHorizontal.valueProperty().addListener(ov −>
set new location for text 31 text.setX(sbHorizontal.getValue() * paneForText.getWidth() /
 32 sbHorizontal.getMax()));
 33
 34 // Listener for vertical scroll bar value change
 35 sbVertical.valueProperty().addListener(ov −>
set new location for text 36 text.setY(sbVertical.getValue() * paneForText.getHeight() /
 37 sbVertical.getMax()));
 38
 39 // Create a scene and place it in the stage
 40 Scene scene = new Scene(pane, 450, 170);
 41 primaryStage.setTitle("ScrollBarDemo"); // Set the stage title
 42 primaryStage.setScene(scene); // Place the scene in the stage
 43 primaryStage.show(); // Display the stage
 44 }
 45 }

The program creates a text (line 13) and two scroll bars (sbHorizontal and sbVertical) (lines 15 and 16). The text is placed in a pane (line 21) that is then placed in the center of the border pane (line 25). If the text were directly placed in the center of the border pane, the position of the text could not be changed by resetting its x and y properties. The sbHorizontal and sbVertical are placed on the right and at the bottom of the border pane (lines 26 and 27), respectively.

You can specify the properties of the scroll bar. By default, the property value is 100 for max, 0 for min, 10 for blockIncrement, and 15 for visibleAmount.

A listener is registered to listen for the sbHorizontal value property change (lines 30–32). When the value of the scroll bar changes, the listener is notified by invoking the handler to set a new x value for the text that corresponds to the current value of sbHorizontal (lines 31 and 32).

A listener is registered to listen for the sbVertical value property change (lines 35–37). When the value of the scroll bar changes, the listener is notified by invoking the handler to set a new y value for the text that corresponds to the current value of sbVertical (lines 36 and 37).

Alternatively, the code in lines 30–37 can be replaced by using binding properties as follows:

 text.xProperty().bind(sbHorizontal.valueProperty().
 multiply(paneForText.widthProperty()).
 divide(sbHorizontal.maxProperty()));

 text.yProperty().bind(sbVertical.valueProperty().multiply(
 paneForText.heightProperty().divide(
 sbVertical.maxProperty())));

	16.10.1 How do you create a horizontal scroll bar? How do you create a vertical scroll bar?

	16.10.2 How do you write the code to respond to the value property change of a scroll bar?

	16.10.3 How do you get the value from a scroll bar? How do you get the maximum value from a scroll bar?

16.11 Slider

	Slider is similar to ScrollBar, but Slider has more properties and can appear in many forms.

Use Slider

Figure 16.24 shows two sliders. Slider lets the user graphically select a value by sliding a knob within a bounded interval. The slider can show both major and minor tick marks between them. The number of pixels between the tick marks is specified by the majorTickUnit and minorTickUnit properties. Sliders can be displayed horizontally or vertically, with or without ticks, and with or without labels.

[image: A window titled, Slider Demo.]
Figure 16.24

The sliders move the message on a pane horizontally and vertically.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

The frequently used constructors and properties in Slider are shown in Figure 16.25.

[image: An annotated U M L diagram with the title, java f x dot scene dot control dot Slider.]
Figure 16.25

Slider enables the user to select from a range of values.

Description

 Note

The values of a vertical scroll bar increase from top to bottom, but the values of a vertical slider decrease from top to bottom.

You can add a listener to listen for the value property change in a slider in the same way as in a scroll bar. We now rewrite the program in the preceding section using the sliders to move a text displayed on a pane in Listing 16.11. A sample run of the program is shown in Figure 16.24.

Listing 16.11 SliderDemo.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Orientation;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Slider;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.text.Text;
 9
 10 public class SliderDemo extends Application {
 11 @Override // Override the start method in the Application class
 12 public void start(Stage primaryStage) {
 13 Text text = new Text(20, 20, "JavaFX Programming");
 14
horizontal slider 15 Slider slHorizontal = new Slider();
set slider properties 16 slHorizontal.setShowTickLabels(true);
 17 slHorizontal.setShowTickMarks(true);
 18
vertical slider 19 Slider slVertical = new Slider();
set slider properties 20 slVertical.setOrientation(Orientation.VERTICAL);
 21 slVertical.setShowTickLabels(true);
 22 slVertical.setShowTickMarks(true);
 23 slVertical.setValue(100);
 24
 25 // Create a text in a pane
 26 Pane paneForText = new Pane();
 27 paneForText.getChildren().add(text);
add text to a pane 28
 29 // Create a border pane to hold text and scroll bars
border pane 30 BorderPane pane = new BorderPane();
 31 pane.setCenter(paneForText);
 32 pane.setBottom(slHorizontal);
 33 pane.setRight(slVertical);
 34
 35 slHorizontal.valueProperty().addListener(ov −>
set new location for text 36 text.setX(slHorizontal.getValue() * paneForText.getWidth() /
 37 slHorizontal.getMax()));
 38
 39 slVertical.valueProperty().addListener(ov −>
set new location for text 40 text.setY((slVertical.getMax() – slVertical.getValue())
 41 * paneForText.getHeight() / slVertical.getMax()));
 42
 43 // Create a scene and place it in the stage
 44 Scene scene = new Scene(pane, 450, 170);
 45 primaryStage.setTitle("SliderDemo"); // Set the stage title
 46 primaryStage.setScene(scene); // Place the scene in the stage
 47 primaryStage.show(); // Display the stage
 48 }
 49 }

Slider is similar to ScrollBar but has more features. As shown in this example, you can specify labels, major ticks, and minor ticks on a Slider (lines 16 and 17).

A listener is registered to listen for the slHorizontal value property change (lines 35–37) and another one is for the sbVertical value property change (lines 39–41). When the value of the slider changes, the listener is notified by invoking the handler to set a new position for the text (lines 36 and 37 and 40 and 41). Note since the value of a vertical slider decreases from top to bottom, the corresponding y value for the text is adjusted accordingly.

The code in lines 35–41 can be replaced by using binding properties as follows:

 text.xProperty().bind(slHorizontal.valueProperty().
 multiply(paneForText.widthProperty()).
 divide(slHorizontal.maxProperty()));

 text.yProperty().bind((slVertical.maxProperty().subtract(
 slVertical.valueProperty()).multiply(
 paneForText.heightProperty().divide(
 slVertical.maxProperty()))));

Listing 15.17 gives a program that displays a bouncing ball. You can add a slider to control the speed of the ball movement, as shown in Figure 16.26. The new program is given in ­Listing 16.12.

[image: A window titled, Bounce Ball Slider, is shown twice.]
Figure 16.26

You can increase or decrease the speed of the ball using a slider.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

Listing 16.12 BounceBallSlider.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Slider;
 5 import javafx.scene.layout.BorderPane;
 6
 7 public class BounceBallSlider extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
create a ball pane 10 BallPane ballPane = new BallPane();
create a slider 11 Slider slSpeed = new Slider();
set max value for slider 12 slSpeed.setMax(20);
bind rate with slider value 13 ballPane.rateProperty().bind(slSpeed.valueProperty());
 14
create a border pane 15 BorderPane pane = new BorderPane();
add ball pane to center 16 pane.setCenter(ballPane);
add slider to the bottom 17 pane.setBottom(slSpeed);
 18
 19 // Create a scene and place it in the stage
 20 Scene scene = new Scene(pane, 250, 250);
 21 primaryStage.setTitle("BounceBallSlider"); // Set the stage title
 22 primaryStage.setScene(scene); // Place the scene in the stage
 23 primaryStage.show(); // Display the stage
 24 }
 25 }

The BallPane class defined in Listing 15.17 animates a ball bouncing in a pane. The ­rateProperty() method in BallPane returns a property value for the animation rate. The animation stops if the rate is 0. If the rate is greater than 20, the animation will be too fast. Therefore, we purposely set the rate to a value between 0 and 20. This value is bound to the slider value (line 13). Thus, the slider max value is set to 20 (line 12).

	16.11.1 How do you create a horizontal slider? How do you create a vertical slider?

	16.11.2 How do you add a listener to handle the property value change of a slider?

	16.11.3 How do you get the value from a slider? How do you get the maximum value from a slider?

16.12 Case Study: Developing a Tic-Tac-Toe Game

	This section develops a program for playing tic-tac-toe game.

From the many examples in this and earlier chapters, you have learned about objects, classes, arrays, class inheritance, GUI, and event-driven programming. Now it is time to put what you have learned to work in developing comprehensive projects. In this section, we will develop a JavaFX program with which to play the popular game of tic-tac-toe.

Tic-Tac-Toe

Two players take turns marking an available cell in a

3×3

 grid with their respective tokens (either X or O). When one player has placed three tokens in a horizontal, vertical, or diagonal row on the grid, the game is over and that player has won. A draw (no winner) occurs when all the cells on the grid have been filled with tokens and neither player has achieved a win. Figure 16.27 shows the representative sample runs of the game.

[image: Three windows titled, Tic Tac Toe, show games with different outcomes.]
Figure 16.27

Two players play a tic-tac-toe game.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

All the examples you have seen so far show simple behaviors that are easy to model with classes. The behavior of the tic-tac-toe game is somewhat more complex. To define classes that model the behavior, you need to study and understand the game.

Assume all the cells are initially empty, and that the first player takes the X token and the second player the O token. To mark a cell, the player points the mouse to the cell and clicks it. If the cell is empty, the token (X or O) is displayed. If the cell is already filled, the player’s action is ignored.

From the preceding description, it should be obvious that a cell is a GUI object that handles the mouse-click event and displays tokens. There are many choices for this object. We will use a pane to model a cell and to display a token (X or O). How do you know the state of the cell (empty, X, or O)? You use a property named token of the char type in the Cell class. The Cell class is responsible for drawing the token when an empty cell is clicked, so you need to write the code for listening to the mouse-clicked action and for painting the shapes for tokens X and O. The Cell class can be defined as shown in Figure 16.28.

[image: An annotated U M L diagram, with 2 parts.]
Figure 16.28

The Cell class displays the token in a cell.

Description

The tic-tac-toe board consists of nine cells, created using new Cell[3][3]. To determine which player’s turn it is, you can introduce a variable named whoseTurn of the char type. whoseTurn is initially 'X', then changes to 'O', and subsequently changes between 'X' and 'O' whenever a new cell is occupied. When the game is over, set whoseTurn to ' '.

How do you know whether the game is over, whether there is a winner, and who is the winner, if any? You can define a method named isWon(char token) to check whether a specified token has won and a method named isFull() to check whether all the cells are occupied.

Clearly, two classes emerge from the foregoing analysis. One is the Cell class, which handles operations for a single cell; the other is the TicTacToe class, which plays the whole game and deals with all the cells. The relationship between these two classes is shown in Figure 16.29.

[image: An annotated U M L diagram, with 3 parts.]
Figure 16.29

The TicTacToe class contains nine cells.

Description

Since the Cell class is only to support the TicTacToe class, it can be defined as an inner class in TicTacToe. The complete program is given in Listing 16.13.

Listing 16.13 TicTacToe.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.GridPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.paint.Color;
 9 import javafx.scene.shape.Line;
 10 import javafx.scene.shape.Ellipse;
 11
main class TicTacToe 12 public class TicTacToe extends Application {
 13 // Indicate which player has a turn, initially it is the X player
 14 private char whoseTurn = 'X';
 15
 16 // Create and initialize cell
 17 private Cell[][] cell = new Cell[3][3];
 18
 19 // Create and initialize a status label
 20 private Label lblStatus = new Label("X's turn to play");
 21
 22 @Override // Override the start method in the Application class
 23 public void start(Stage primaryStage) {
 24 // Pane to hold cell
hold nine cells 25 GridPane pane = new GridPane();
 26 for (int i = 0; i < 3; i++)
 27 for (int j = 0; j < 3; j++)
create a cell 28 pane.add(cell[i][j] = new Cell(), j, i);
 29
 30 BorderPane borderPane = new BorderPane();
tic-tac-toe cells in center 31 borderPane.setCenter(pane);
label at bottom 32 borderPane.setBottom(lblStatus);
 33
 34 // Create a scene and place it in the stage
 35 Scene scene = new Scene(borderPane, 450, 170);
 36 primaryStage.setTitle("TicTacToe"); // Set the stage title
 37 primaryStage.setScene(scene); // Place the scene in the stage
 38 primaryStage.show(); // Display the stage
 39 }
 40
 41 /** Determine if the cell are all occupied */
check isFull 42 public boolean isFull() {
 43 for (int i = 0; i < 3; i++)
 44 for (int j = 0; j < 3; j++)
 45 if (cell[i][j].getToken() == ' ')
 46 return false;
 47
 48 return true;
 49 }
 50
 51 /** Determine if the player with the specified token wins */
 52 public boolean isWon(char token) {
check rows 53 for (int i = 0; i < 3; i++)
 54 if (cell[i][0].getToken() == token
 55 && cell[i][1].getToken() == token
 56 && cell[i][2].getToken() == token) {
 57 return true;
 58 }
 59
check columns 60 for (int j = 0; j < 3; j++)
 61 if (cell[0][j].getToken() == token
 62 && cell[1][j].getToken() == token
 63 && cell[2][j].getToken() == token) {
 64 return true;
 65 }
 66
check major diagonal 67 if (cell[0][0].getToken() == token
 68 && cell[1][1].getToken() == token
 69 && cell[2][2].getToken() == token) {
 70 return true;
 71 }
 72
check subdiagonal 73 if (cell[0][2].getToken() == token
 74 && cell[1][1].getToken() == token
 75 && cell[2][0].getToken() == token) {
 76 return true;
 77 }
 78
 79 return false;
 80 }
 81
 82 // An inner class for a cell
inner class Cell 83 public class Cell extends Pane {
 84 // Token used for this cell
 85 private char token = ' ';
 86
 87 public Cell() {
 88 setStyle("−fx−border−color: black");
 89 this.setPrefSize(2000, 2000);
register listener 90 this.setOnMouseClicked(e −> handleMouseClick());
 91 }
 92
 93 /** Return token */
 94 public char getToken() {
 95 return token;
 96 }
 97
 98 /** Set a new token */
 99 public void setToken(char c) {
 100 token = c;
 101
display X 102 if (token == 'X') {
 103 Line line1 = new Line(10, 10,
 104 this.getWidth() – 10, this.getHeight() – 10);
 105 line1.endXProperty().bind(this.widthProperty().subtract(10));
 106 line1.endYProperty().bind(this.heightProperty().subtract(10));
 107 Line line2 = new Line(10, this.getHeight() – 10,
 108 this.getWidth() – 10, 10);
 109 line2.startYProperty().bind(
 110 this.heightProperty().subtract(10));
 111 line2.endXProperty().bind(this.widthProperty().subtract(10));
 112
 113 // Add the lines to the pane
 114 this.getChildren().addAll(line1, line2);
 115 }
display O 116 else if (token == 'O') {
 117 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
 118 this.getHeight() / 2, this.getWidth() / 2 – 10,
 119 this.getHeight() / 2 – 10);
 120 ellipse.centerXProperty().bind(
 121 this.widthProperty().divide(2));
 122 ellipse.centerYProperty().bind(
 123 this.heightProperty().divide(2));
 124 ellipse.radiusXProperty().bind(
 125 this.widthProperty().divide(2).subtract(10));
 126 ellipse.radiusYProperty().bind(
 127 this.heightProperty().divide(2).subtract(10));
 128 ellipse.setStroke(Color.BLACK);
 129 ellipse.setFill(Color.WHITE);
 130
 131 getChildren().add(ellipse); // Add the ellipse to the pane
 132 }
 133 }
 134
 135 /* Handle a mouse click event */
handle mouse click 136 private void handleMouseClick() {
 137 // If cell is empty and game is not over
 138 if (token == ' ' && whoseTurn != ' ') {
 139 setToken(whoseTurn); // Set token in the cell
 140
 141 // Check game status
 142 if (isWon(whoseTurn)) {
 143 lblStatus.setText(whoseTurn + " won! The game is over");
 144 whoseTurn = ' '; // Game is over
 145 }
 146 else if (isFull()) {
 147 lblStatus.setText("Draw! The game is over");
 148 whoseTurn = ' '; // Game is over
 149 }
 150 else {
 151 // Change the turn
 152 whoseTurn = (whoseTurn == 'X') ? 'O' : 'X';
 153 // Display whose turn
 154 lblStatus.setText(whoseTurn + "'s turn");
 155 }
 156 }
 157 }
 158 }
 159 }

The TicTacToe class initializes the user interface with nine cells placed in a grid pane (lines 25–28). A label named lblStatus is used to show the status of the game (line 20). The ­variable whoseTurn (line 14) is used to track the next type of token to be placed in a cell. The methods isFull (lines 42–49) and isWon (lines 52–80) are for checking the status of the game.

Since Cell is an inner class in TicTacToe, the variable whoseTurn and methods isFull and isWon defined in TicTacToe can be referenced from the Cell class. The inner class makes programs simple and concise. If Cell were not defined as an inner class of TicTacToe, you would have to pass an object of TicTacToe to Cell in order for the variables and methods in TicTacToe to be used in Cell.

The listener for the mouse-click action is registered for the cell (line 90). If an empty cell is clicked and the game is not over, a token is set in the cell (line 138). If the game is over, whoseTurn is set to ' ' (lines 144 and 148). Otherwise, whoseTurn is alternated to a new turn (line 152).

incremental development and testing

 Tip

Use an incremental approach in developing and testing a Java project of this kind. For example, this program can be divided into five steps:

	Lay out the user interface and display a fixed token X on a cell.

	Enable the cell to display a fixed token X upon a mouse click.

	Coordinate between the two players so as to display tokens X and O alternately.

	Check whether a player wins, or whether all the cells are occupied without a winner.

	Implement displaying a message on the label upon each move by a player.

	16.12.1 When the game starts, what value is in whoseTurn? When the game is over, what value is in whoseTurn?

	16.12.2 What happens when the user clicks on an empty cell if the game is not over? What happens when the user clicks on an empty cell if the game is over?

	16.12.3 How does the program check whether a player wins? How does the program check whether all cells are filled?

16.13 Video and Audio

	You can use the Media class to obtain the source of the media, the MediaPlayer class to play and control the media, and the MediaView class to display the video.

Use Media, MediaPlayer, and MediaView

Media (video and audio) is essential in developing rich GUI applications. JavaFX provides the Media, MediaPlayer, and MediaView classes for working with media. Currently, JavaFX supports MP3, AIFF, WAV, and MPEG-4 audio formats and FLV and MPEG-4 video formats.

The Media class represents a media source with properties duration, width, and height, as shown in Figure 16.30. You can construct a Media object from an Internet URL string.

[image: An annotated U M L diagram with the title, java f x dot scene dot media dot Media.]
Figure 16.30

Media represents a media source such as a video or an audio.

Description

The MediaPlayer class plays and controls the media with properties such as a­utoPlay, currentCount, cycleCount, mute, volume, and totalDuration, as shown in ­Figure 16.31. You can construct a MediaPlayer object from a media and use the pause() and play() methods to pause and resume playing.

[image: An annotated U M L diagram with the title, java f x dot scene dot media dot Media Player.]
Figure 16.31

MediaPlayer plays and controls a media.

Description

The MediaView class is a subclass of Node that provides a view of the Media being played by a MediaPlayer. The MediaView class provides the properties for viewing the media, as shown in Figure 16.32.

[image: An annotated U M L diagram with the title, java f x dot scene dot media dot Media View.]
Figure 16.32

MediaView provides the properties for viewing the media.

Description

Listing 16.14 gives an example that displays a video in a view, as shown in Figure 16.33. You can use the play/pause button to play or pause the video and use the rewind button to restart the video, and use the slider to control the volume of the audio.

[image: A window titled, Media Demo, is filled almost entirely by a frame of video. A pane at the bottom contains a pause button, a rewind button, and a slider labeled, volume.]
Figure 16.33

The program controls and plays a video.

Listing 16.14 MediaDemo.java

 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.Slider;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.HBox;
 10 import javafx.scene.layout.Region;
 11 import javafx.scene.media.Media;
 12 import javafx.scene.media.MediaPlayer;
 13 import javafx.scene.media.MediaView;
 14 import javafx.util.Duration;
 15
 16 public class MediaDemo extends Application {
 17 private static final String MEDIA_URL =
 18 "http://liveexample.pearsoncmg.com/common/sample.mp4";
 19
 20 @Override // Override the start method in the Application class
 21 public void start(Stage primaryStage) {
create a media 22 Media media = new Media(MEDIA_URL);
create a media player 23 MediaPlayer mediaPlayer = new MediaPlayer(media);
create a media view 24 MediaView mediaView = new MediaView(mediaPlayer);
 25
create a play/pause button 26 Button playButton = new Button(">");
add handler for button action 27 playButton.setOnAction(e –> {
 28 if (playButton.getText().equals(">")) {
play media 29 mediaPlayer.play();
 30 playButton.setText("||");
 31 } else {
pause media 32 mediaPlayer.pause();
 33 playButton.setText(">");
 34 }
 35 });
 36
create a rewind button 37 Button rewindButton = new Button("<<");
create a handler for rewinding 38 rewindButton.setOnAction(e –> mediaPlayer.seek(Duration.ZERO));
 39
create a slider for volume 40 Slider slVolume = new Slider();
 41 slVolume.setPrefWidth(150);
 42 slVolume.setMaxWidth(Region.USE_PREF_SIZE);
 43 slVolume.setMinWidth(30);
set current volume 44 slVolume.setValue(50);
bind volume with slider 45 mediaPlayer.volumeProperty().bind(
 46 slVolume.valueProperty().divide(100));
 47
 48 HBox hBox = new HBox(10);
 49 hBox.setAlignment(Pos.CENTER);
add buttons, slider to hBox 50 hBox.getChildren().addAll(playButton, rewindButton,
 51 new Label("Volume"), slVolume);
 52
 53 BorderPane pane = new BorderPane();
place media view in a pane 54 pane.setCenter(mediaView);
 55 pane.setBottom(hBox);
 56
 57 // Create a scene and place it in the stage
 58 Scene scene = new Scene(pane, 650, 500);
 59 primaryStage.setTitle("MediaDemo"); // Set the stage title
 60 primaryStage.setScene(scene); // Place the scene in the stage
 61 primaryStage.show(); // Display the stage
 62 }
 63 }

 The source of the media is a URL string defined in lines 17 and 18. The program creates a Media object from this URL (line 22), a MediaPlayer from the Media object (line 23), and a MediaView from the MediaPlayer object (line 24). The relationship among these three objects is shown in Figure 16.34.

[image: A, U M L, diagram. Hollow diamonds and solid lines connect elements as follows: media, colon, Media; media Player, colon, Media Player; media View, colon, Media View.]
Figure 16.34

The media represents the source, the media player controls the playing, and the media view displays the video.

A Media object supports live streaming. You can now download a large media file and play it in the same time. A Media object can be shared by multiple media players and different views can use the same MediaPlayer object.

A play button is created (line 26) to play/pause the media (line 29). The button’s text is changed to || (line 30) if the button’s current text is > (line 28). If the button’s current text is ||, it is changed to > (line 33) and the player is paused (line 32).

A rewind button is created (line 37) to reset the playback time to the beginning of the media stream by invoking seek(Duration.ZERO) (line 38).

A slider is created (line 40) to set the volume. The media player’s volume property is bound to the slider (lines 45 and 46).

The buttons and slider are placed in an HBox (lines 48–51) and the media view is placed in the center of the border pane (line 54) and the HBox is placed at the bottom of the border pane (line 55).

	16.13.1 How do you create a Media from a URL? How do you create a MediaPlayer? How do you create a MediaView?

	16.13.2 If the URL is typed as liveexample.pearsoncmg.com/common/sample.mp4 ­without http:// in front of it, will it work?

	16.13.3 Can you place a Media in multiple MediaPlayers? Can you place a ­MediaPlayer in multiple MediaViews? Can you place a MediaView in multiple Panes?

16.14 Case Study: National Flags and Anthems

	This case study presents a program that displays a nation’s flag and plays its anthem.

The images for seven national flags, named flag0.gif, flag1.gif, . . . , flag6.gif for Denmark, Germany, China, India, Norway, the United Kingdom, and the United States are stored under http://liveexample.pearsoncmg.com/common/image. The audio consists of national anthems for these seven nations, named anthem0.mp3, anthem1.mp3, . . . , anthem6.mp3. They are stored under http://liveexample.pearsoncmg.com/common/audio.

The program enables the user to select a nation from a combo box, then displays its flag and plays its anthem. The user can suspend the audio by clicking the || button, and resume it by clicking the < button, as shown in Figure 16.35.

[image: Two windows titled, Flag Anthem.]
Figure 16.35

The program displays a national flag and plays its anthem.

Source: booka/Fotolia.

Description

The program is given in Listing 16.15.

Listing 16.15 FlagAnthem.java

 1 import javafx.application.Application;
 2 import javafx.collections.FXCollections;
 3 import javafx.collections.ObservableList;
 4 import javafx.stage.Stage;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Button;
 8 import javafx.scene.control.ComboBox;
 9 import javafx.scene.control.Label;
 10 import javafx.scene.image.Image;
 11 import javafx.scene.image.ImageView;
 12 import javafx.scene.layout.BorderPane;
 13 import javafx.scene.layout.HBox;
 14 import javafx.scene.media.Media;
 15 import javafx.scene.media.MediaPlayer;
 16
 17 public class FlagAnthem extends Application {
 18 private final static int NUMBER_OF_NATIONS = 7;
 19 private final static String URLBase =
URLBase for image and audio 20 "https://liveexample.pearsoncmg.com/common";
track current image/audio 21 private int currentIndex = 0;
 22
 23 @Override // Override the start method in the Application class
 24 public void start(Stage primaryStage) {
image array 25 Image[] images = new Image[NUMBER_OF_NATIONS];
media player array 26 MediaPlayer[] mp = new MediaPlayer[NUMBER_OF_NATIONS];
 27
 28 // Load images and audio
 29 for (int i = 0; i < NUMBER_OF_NATIONS; i++) {
load image 30 images[i] = new Image(URLBase + "/image/flag" + i + ".gif");
load audio 31 mp[i] = new MediaPlayer(new Media(
 32 URLBase + "/audio/anthem/anthem" + i + ".mp3"));
 33 }
 34
create play button 35 Button btPlayPause = new Button("||");
handle button action 36 btPlayPause.setOnAction(e –> {
 37 if (btPlayPause.getText().equals(">")) {
 38 btPlayPause.setText("||");
play audio 39 mp[currentIndex].play();
 40 }
 41 else {
 42 btPlayPause.setText(">");
pause audio 43 mp[currentIndex].pause();
 44 }
 45 });
 46
create image view 47 ImageView imageView = new ImageView(images[currentIndex]);
create combo box 48 ComboBox<String> cboNation = new ComboBox<>();
create observable list 49 ObservableList<String> items = FXCollections.observableArrayList
 50 ("Denmark", "Germany", "China", "India", "Norway", "UK", "US");
 51 cboNation.getItems().addAll(items);
 52 cboNation.setValue(items.get(0));
process combo selection 53 cboNation.setOnAction(e −> {
 54 mp[currentIndex].stop();
 55 currentIndex = items.indexOf(cboNation.getValue());
choose a new nation 56 imageView.setImage(images[currentIndex]);
play audio 57 mp[currentIndex].play();
 58 btPlayPause.setText("||");
 59 });
 60
 61 HBox hBox = new HBox(10);
 62 hBox.getChildren().addAll(btPlayPause,
 63 new Label("Select a nation: "), cboNation);
 64 hBox.setAlignment(Pos.CENTER);
 65
 66 // Create a pane to hold nodes
 67 BorderPane pane = new BorderPane();
 68 pane.setCenter(imageView);
 69 pane.setBottom(hBox);
 70
 71 // Create a scene and place it in the stage
 72 Scene scene = new Scene(pane, 350, 270);
 73 primaryStage.setTitle("FlagAnthem"); // Set the stage title
 74 primaryStage.setScene(scene); // Place the scene in the stage
 75 primaryStage.show(); // Display the stage
 76 mp[currentIndex].play(); // Play the current selected anthem
 77 }
 78 }

The program loads the image and audio from the Internet (lines 29–33). A play/pause button is created to control the playing of the audio (line 35). When the button is clicked, if the button’s current text is > (line 37), its text is changed to || (line 38) and the player is paused (line 39); If the button’s current text is ||, it is changed to > (line 42) and the player is paused (line 43).

An image view is created to display a flag image (line 47). A combo box is created for selecting a nation (line 48–51). When a new country name in the combo box is selected, the current audio is stopped (line 54), the newly selected nation’s image is displayed (line 56) and the new anthem is played (line 57).

JavaFX also provides the AudioClip class for creating auto clips. An AudioClip object can be created using new AudioClip(URL). An audio clip stores the audio in memory. ­AudioClip is more efficient for playing a small audio clip in the program than using ­MediaPlayer. AudioClip has the similar methods as in the MediaPlayer class.

	16.14.1 In Listing 16.15 , which code sets the initial image icon and which code plays the audio?

	16.14.2 In Listing 16.15 , what does the program do when a new nation is selected in the combo box?

Chapter Summary

	The abstract Labeled class is the base class for Label, Button, CheckBox, and RadioButton. It defines properties alignment, contentDisplay, text, graphic, graphicTextGap, textFill, underline, and wrapText.

	The abstract ButtonBase class is the base class for Button, CheckBox, and ­RadioButton. It defines the onAction property for specifying a handler for action events.

	The abstract TextInputContorl class is the base class for TextField and TextArea. It defines the properties text and editable.

	A TextField fires an action event when clicking the Enter key with the text field focused. A TextArea is often used for editing a multiline text.

	ComboBox<T> and ListView<T> are generic classes for storing elements of type T. The elements in a combo box or a list view are stored in an observable list.

	A ComboBox fires an action event when a new item is selected.

	You can set a single item or multiple items selection for a ListView and add a listener for processing selected items.

	You can use a ScrollBar or Slider to select a range of values and add a listener to the value property to respond to the change of the value.

	JavaFX provides the Media class for loading a media, the MediaPlayer class for controlling a media, and the MediaView for displaying a media.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 16.2–16.5

	*16.1 (Use radio buttons) Write a GUI program as shown in Figure 16.36a . You can use buttons to move the message to the left and right and use the radio buttons to change the color for the message displayed.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 0 1, and, 0 2.]
Figure 16.36

(a) The <= and => buttons move the message, and the radio buttons change the color for the message. (b) The program displays a circle, rectangle, and ellipse when you select a shape type.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*16.2 (Select geometric figures) Write a program that draws various figures, as shown in Figure 16.36b . The user selects a figure from a radio button and uses a check box to specify whether it is filled.

	**16.3 (Traffic lights) Write a program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green. When a radio button is selected, the light is turned on. Only one light can be on at a time (see ­Figure 16.37a). No light is on when the program starts.

[image: Figures ay, b, and c are windows respectively titled Exercise 16, underscore, 0 3, 0 4, and 0 5.]
Figure 16.37

(a) The radio buttons are grouped to let you turn only one light on at a time. (b) The program ­converts miles to kilometers and vice versa. (c) The program converts among decimal, hex, and binary numbers.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*16.4 (Create a miles/kilometers converter) Write a program that converts miles and kilometers, as shown in Figure 16.37b . If you enter a value in the Mile text field and press the Enter key, the corresponding kilometer measurement is displayed in the Kilometer text field. Likewise, if you enter a value in the Kilometer text field and press the Enter key, the corresponding miles is displayed in the Mile text field.

	*16.5 (Convert numbers) Write a program that converts among decimal, hex, and binary numbers, as shown in Figure 16.37c . When you enter a decimal value in the decimal-value text field and press the Enter key, its corresponding hex and binary numbers are displayed in the other two text fields. Likewise, you can enter values in the other fields and convert them accordingly. (Hint: Use the Integer.parseInt(s, radix) method to parse a string to a decimal and use ­Integer.toHexString(decimal) and Integer.toBinaryString(decimal) to obtain a hex number or a binary number from a decimal.)

	*16.6 (Demonstrate TextField properties) Write a program that sets the horizontal-alignment and column-size properties of a text field dynamically, as shown in Figure 16.38a .

[image: Figures ay and b are windows titled, Exercise 16, underscore, 0 6, and 0 7.]
Figure 16.38

(a) You can set a text field’s properties for the horizontal alignment and ­column size dynamically. (b) The program displays the time specified in the text fields.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

Use radio buttons and text fields

	*16.7 (Set clock time) Write a program that displays a clock and sets the time with the input from three text fields, as shown in Figure 16.38b . Use the ClockPane in Listing 14.21 . Resize the clock to the center of the pane.

	**16.8 (Geometry: two circles intersect?) Write a program that enables the user to specify the location and size of the circles, and displays whether the two circles intersect, as shown in Figure 16.39a . Enable the user to point the mouse inside a circle and drag it. As the circle is being dragged, the circle’s center coordinates in the text fields are updated.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 0 8, and 0 9.]
Figure 16.39

Check whether two circles and two rectangles are overlapping.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**16.9 (Geometry: two rectangles intersect?) Write a program that enables the user to specify the location and size of the rectangles and displays whether the two rectangles intersect, as shown in Figure 16.39b . Enable the user to point the mouse inside a rectangle and drag it. As the rectangle is being dragged, the rectangle’s center coordinates in the text fields are updated.

Sections 16.6–16.8

	**16.10 (Text viewer) Write a program that displays a text file in a text area, as shown in Figure 16.40a . The user enters a file name in a text field and clicks the View button; the file is then displayed in a text area.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 10, and 11.]
Figure 16.40

(a) The program displays the text from a file in a text area. (b) The program displays a histogram that shows the occurrences of each letter in the file.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**16.11 (Create a histogram for occurrences of letters) Write a program that reads a file and displays a histogram to show the occurrences of each letter in the file, as shown in Figure 16.40b . The file name is entered from a text field. Pressing the Enter key on the text field causes the program to start to read, process the file, and display the histogram. The histogram is displayed in the center of the window. Define a class named Histogram that extends Pane. The class contains the property counts that is an array of 26 elements. counts[0] stores the number of A, counts[1] the number of B, and so on. The class also contains a setter method for setting a new counts and displaying the histogram for the new counts.

	*16.12 (Demonstrate TextArea properties) Write a program that demonstrates the properties of a text area. The program uses a check box to indicate whether the text is wrapped onto next line, as shown in Figure 16.41a .

[image: Figures ay and b are windows titled, Exercise 16, underscore, 12, and 13.]
Figure 16.41

(a) You can set the options to enable text editing and text wrapping. (b) The program displays a table for monthly payments and total payments on a given loan based on various interest rates.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*16.13 (Compare loans with various interest rates) Rewrite Programming Exercise 5.21 to create a GUI, as shown in Figure 16.41b . Your program should let the user enter the loan amount and loan period in the number of years from text fields, and it should display the monthly and total payments for each interest rate starting from 5% to 8%, with increments of one-eighth, in a text area.

	**16.14 (Select a font) Write a program that can dynamically change the font of a text in a label displayed on a stack pane. The text can be displayed in bold and italic at the same time. You can select the font name or font size from combo boxes, as shown in Figure 16.42a . The available font names can be obtained using Font.getFontNames(). The combo box for the font size is initialized with numbers from 1 to 100.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 14, and 15.]
Figure 16.42

You can dynamically set the font for the message. (b) You can set the alignment and text-position ­properties of a label dynamically.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

Set fonts

	**16.15 (Demonstrate Label properties) Write a program to let the user dynamically set the properties contentDisplay and graphicTextGap, as shown in Figure 16.42b .

	*16.16 (Use ComboBox and ListView) Write a program that demonstrates selecting items in a list. The program uses a combo box to specify a selection mode, as shown in Figure 16.43a . When you select items, they are displayed in a label below the list.

[image: Figures ay, b, and c are windows respectively titled Exercise 16, underscore, 16, 17, and 18.]
Figure 16.43

(a) You can choose single or multiple selection modes in a list. (b) The color changes in the text as you adjust the scroll bars. (c) The program simulates a running fan.

Source: Copyright © 1995–2016 Oracle and/or its ­affiliates. All rights reserved. Used with permission.

Description

Sections 16.6–16.8

	**16.17 (Use ScrollBar and Slider) Write a program that uses scroll bars or sliders to select the color for a text, as shown in Figure 16.43b . Four horizontal scroll bars are used for selecting the colors: red, green, blue, and opacity percentages.

	**16.18 (Simulation: a running fan) Rewrite Programming Exercise 15.28 to add a slider to control the speed of the fan, as shown in Figure 16.43c .

	**16.19 (Control a group of fans) Write a program that displays three fans in a group, with control buttons to start and stop all of them, as shown in Figure 16.44 .

[image: A window titled, Exercise 16, underscore, 19, contains a row of three fans with individual rows of buttons and sliders, followed by 2 centered buttons at the bottom of the pane labeled, start all, stop all.]
Figure 16.44

The program runs and controls a group of fans.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	*16.20 (Count-up stopwatch) Write a program that simulates a stopwatch, as shown in Figure 16.45a . When the user clicks the Start button, the button’s label is changed to Pause, as shown in Figure 16.45b . When the user clicks the Pause button, the button’s label is changed to Resume, as shown in Figure 16.45c . The Clear button resets the count to 0 and resets the button’s label to Start.

[image: Figures ay, b, and c are windows titled, Exercise 16, underscore, 20. Figure d contains 3 windows titled, Exercise 16, underscore, 21.]
Figure 16.45

(a–c) The program counts up the time. (d) The program counts down the time.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*16.21 (Count-down stopwatch) Write a program that allows the user to enter time in seconds in the text field and press the Enter key to count down the seconds, as shown in Figure 16.45d . The remaining seconds are redisplayed every ­second. When the seconds are expired, the program starts to play music continuously.

	16.22 (Play, loop, and stop a sound clip) Write a program that meets the following requirements:

	Get an audio file from the class directory using AudioClip.

	Place three buttons labeled Play, Loop, and Stop, as shown in Figure 16.46a .

	If you click the Play button, the audio file is played once. If you click the Loop button, the audio file keeps playing repeatedly. If you click the Stop button, the playing stops.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 22, and 23.]
Figure 16.46

(a) Click Play to play an audio clip once, click Loop to play an audio repeatedly, and click Stop to ­terminate playing.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with ­permission. (b) The program lets the user specify image files, an audio file, and the ­animation speed.

Description

	**16.23 (Create an image animator with audio) Create animation in Figure 16.46b to meet the following requirements:

	Allow the user to specify the animation speed in a text field.

	Get the number of images and image’s file-name prefix from the user. For example, if the user enters n for the number of images and L for the image prefix, then the files are L1.gif, L2.gif, and so on, to Ln.gif. Assume the images are stored in the image directory, a subdirectory of the program’s class directory. The animation displays the images one after the other.

	Allow the user to specify an audio file URL. The audio is played while the animation runs.

	**16.24 (Revise Listing 16.14 MediaDemo.java) Add a slider to enable the user to set the current time for the video and a label to display the current time and the total time for the video. As shown in Figure 16.47a , the total time is 5 minutes and 3 seconds and the current time is 3 minutes and 58 seconds. As the video plays, the slider value and current time are continuously updated.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 24, and 25.]
Figure 16.47

(a) A slider for current video time and a label to show the current time and total time are added. (b) You can set the speed for each car.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**16.25 (Racing cars) Write a program that simulates four cars racing, as shown in ­Figure 16.47b . You can set the speed for each car, with a maximum of 100.

	**16.26 (Simulation: raise flag and play anthem) Write a program that displays a flag rising up, as shown in Figure 15.15 . As the national flag rises, play the national anthem. (You may use a flag image and anthem audio file from Listing 16.15 .)

Comprehensive

	**16.27 (Display country flag and flag description) Listing 16.8 , ComboBoxDemo.java, gives a program that lets the user view a country’s flag image and description by selecting the country from a combo box. The description is a string coded in the program. Rewrite the program to read the text description from a file. Suppose the descriptions are stored in the files description0.txt, . . . , and ­description8.txt under the text directory for the nine countries Canada, China, Denmark, France, Germany, India, Norway, the United Kingdom, and the United States, in this order.

	**16.28 (Slide show) Programming Exercise 15.30 developed a slide show using images. Rewrite that program to develop a slide show using text files. Suppose that 10 text files named slide0.txt, slide1.txt, . . . , slide9.txt are stored in the text directory. Each slide displays the text from one file. Each slide is shown for one second, and the slides are displayed in order. When the last slide finishes, the first slide is redisplayed, and so on. Use a text area to display the slide.

	***16.29 (Display a calendar) Write a program that displays the calendar for the ­current month. You can use the Prior and Next buttons to show the calendar of the ­previous or next month. Display the dates in the current month in black and ­display the dates in the previous month and next month in gray, as shown in Figure 16.48 .

[image: A window titled, Exercise 16, underscore, 29, contains a calendar for the month of January 2016. The month starts on a Friday and ends on Sunday the thirty-first. At the bottom of the window, 2 centered buttons read, Prior, and Next.]
Figure 16.48

The program displays the calendar for the current month.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**16.30 (Pattern recognition: consecutive four equal numbers) Write a GUI program for Programming Exercise 8.19 , as shown in Figures 16.49a–b . Let the user enter the numbers in the text fields in a grid of 6 rows and 7 columns. The user can click the Solve button to highlight a sequence of four equal numbers, if it exists. Initially, the values in the text fields are randomly filled with numbers from 0 to 9.

[image: Figures ay and b are windows titled, Exercise 16, underscore, 30. Figure c is a window titled, Exercise 16, underscore, 31.]
Figure 16.49

(a and b) Clicking the Solve button highlights the four consecutive numbers in a row, a column, or a diagonal.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission. (c) The program enables two players to play the connect-four game.

Description

	***16.31 (Game: connect four) Programming Exercise 8.20 enables two players to play the connect-four game on the console. Rewrite a GUI version for the program, as shown in Figure 16.49c . The program enables two players to place red and yellow discs in turn. To place a disk, the player needs to click an available cell. An available cell is unoccupied and its downward neighbor is occupied. The program flashes the four winning cells if a player wins, and reports no winners if all cells are occupied with no winners.

CHAPTER 17 Binary I/O

Objectives

	To discover how I/O is processed in Java (§17.2).

	To distinguish between text I/O and binary I/O (§17.3).

	To read and write bytes using FileInputStream and ­FileOutputStream (§17.4.1).

	To filter data using the base classes FilterInputStream and ­FilterOutputStream (§17.4.2).

	To read and write primitive values and strings using ­DataInputStream and DataOutputStream (§17.4.3).

	To improve I/O performance by using BufferedInputStream and BufferedOutputStream (§17.4.4).

	To write a program that copies a file (§17.5).

	To store and restore objects using ObjectOutputStream and ObjectInputStream (§17.6).

	To implement the Serializable interface to make objects ­serializable (§17.6.1).

	To serialize arrays (§17.6.2).

	To read and write files using the RandomAccessFile class (§17.7).

17.1 Introduction

	Java provides many classes for performing text I/O and binary I/O.

Files can be classified as either text or binary. A file that can be processed (read, created, or modified) using a text editor such as Notepad on Windows or vi on UNIX is called a text file. All other files are called binary files. You cannot read binary files using a text ­editor—they are designed to be read by programs. For example, Java source programs are text files and can be read by a text editor, but Java class files are binary files and are read by the JVM.

text file

binary file

Although it is not technically precise and correct, you can envision a text file as consisting of a sequence of characters, and a binary file as consisting of a sequence of bits. Characters in a text file are encoded using a character-encoding scheme such as ASCII or Unicode. For example, the decimal integer 199 is stored as a sequence of three characters 199 in a text file, and the same integer is stored as a byte-type value C7 in a binary file, because decimal 199 equals hex C7 (199=12×161+7). The advantage of binary files is that they are more efficient to process than text files.

why binary I/O?

Java offers many classes for performing file input and output. These can be categorized as text I/O classes and binary I/O classes. In Section 12.11, File Input and Output, you learned how to read and write strings and numeric values from/to a text file using Scanner and PrintWriter. This chapter introduces the classes for performing binary I/O.

text I/O

binary I/O

17.2 How Is Text I/O Handled in Java?

	Text data are read using the Scanner class and written using the PrintWriter class.

Recall that a File object encapsulates the properties of a file or a path but does not contain the methods for reading/writing data from/to a file. In order to perform I/O, you need to create objects using appropriate Java I/O classes. The objects contain the methods for reading/writing data from/to a file. For example, to write text to a file named temp.txt, you can create an object using the PrintWriter class as follows:

PrintWriter output = new PrintWriter("temp.txt");

You can now invoke the print method on the object to write a string to the file. For example, the following statement writes Java 101 to the file:

output.print("Java 101");

The following statement closes the file:

output.close();

There are many I/O classes for various purposes. In general, these can be classified as input classes and output classes. An input class contains the methods to read data, and an output class contains the methods to write data. PrintWriter is an example of an output class, and Scanner is an example of an input class. The following code creates an input object for the file temp.txt and reads data from the file.

Scanner input = new Scanner(new File("temp.txt"));
System.out.println(input.nextLine());

If temp.txt contains the text Java 101, input.nextLine() returns the string "Java 101".

Figure 17.1 illustrates Java I/O programming. An input object reads a stream of data from a file, and an output object writes a stream of data to a file. An input object is also called an input stream and an output object an output stream.

stream

input stream

output stream

[image: An input stream of data is sent from the file to the program, where an input object is created from an input class. When an output object is created from an output class, an output stream is sent to the file.]
Figure 17.1

The program receives data through an input object and sends data through an output object.

	17.2.1 What is a text file and what is a binary file? Can you view a text file or a binary file using a text editor?

	17.2.2 How do you read or write text data in Java? What is a stream?

17.3 Text I/O vs. Binary I/O

	Binary I/O does not involve encoding or decoding and thus is more efficient than text I/O.

Computers do not differentiate between binary files and text files. All files are stored in binary format, and thus all files are essentially binary files. Text I/O is built upon binary I/O to provide a level of abstraction for character encoding and decoding, as shown in Figure 17.2a. Encoding and decoding are automatically performed for text I/O. The JVM converts Unicode to a file-specific encoding when writing a character, and converts a file-specific encoding to Unicode when reading a character. For example, suppose you write the string "199" using text I/O to a file, each character is written to the file. Since the Unicode for character 1 is 0x0031, the Unicode 0x0031 is converted to a code that depends on the encoding scheme for the file. (Note the prefix 0x denotes a hex number.) In the United States, the default encoding for text files on Windows is ASCII. The ASCII code for character 1 is 49 (0x31 in hex) and for character 9 is 57 (0x39 in hex). Thus, to write the characters 199, three bytes—0x31, 0x39, and 0x39—are sent to the output, as shown in Figure 17.2a.

[image: Figures ay and b demonstrate differences in input and output methods.]
Figure 17.2

Text I/O requires encoding and decoding, whereas binary I/O does not.

Description

Binary I/O does not require conversions. If you write a numeric value to a file using binary I/O, the exact value in the memory is copied into the file. For example, a byte-type value 199 is represented as 0xC7 (199=12×161+7) in the memory and appears exactly as 0xC7 in the file, as shown in Figure 17.2b. When you read a byte using binary I/O, one byte value is read from the input.

In general, you should use text input to read a file created by a text editor or a text output program, and use binary input to read a file created by a Java binary output program.

Binary I/O is more efficient than text I/O because binary I/O does not require encoding and decoding. Binary files are independent of the encoding scheme on the host machine and thus are portable. J. This is why Java class files are binary files. Java claava programs on any machine can read a binary file created by a Java programss files can run on a JVM on any machine.

 Note

For consistency, this book uses the extension .txt to name text files and .dat to name binary files.

.txt and .dat

	17.3.1 What are the differences between text I/O and binary I/O?

	17.3.2 How is a Java character represented in the memory, and how is a character represented in a text file?

	17.3.3 If you write the string "ABC" to an ASCII text file, what values are stored in the file?

	17.3.4 If you write the string "100" to an ASCII text file, what values are stored in the file? If you write a numeric byte-type value 100 using binary I/O, what values are stored in the file?

	17.3.5 What is the encoding scheme for representing a character in a Java program? By default, what is the encoding scheme for a text file on Windows?

17.4 Binary I/O Classes

	The abstract InputStream is the root class for reading binary data, and the abstract OutputStream is the root class for writing binary data.

The design of the Java I/O classes is a good example of applying inheritance, where common operations are generalized in superclasses, and subclasses provide specialized operations. Figure 17.3 lists some of the classes for performing binary I/O. InputStream is the root for binary input classes, and OutputStream is the root for binary output classes. Figures 17.4 and 17.5 list all the methods in the classes InputStream and OutputStream.

[image: A diagram represents input stream and output stream.]
Figure 17.3

InputStream, OutputStream, and their subclasses are for performing binary I/O.

Description

[image: An annotated U M L diagram with the italicized name, java dot i o dot Input Stream.]
Figure 17.4

The abstract InputStream class defines the methods for the input stream of bytes.

Description

 Note

All the methods in the binary I/O classes are declared to throw java.io.IOException or a subclass of java.io.IOException.

throws IOException

[image: An annotated U M L diagram with the italicized name, java dot i o dot Output Stream.]
Figure 17.5

The abstract OutputStream class defines the methods for the output stream of bytes.

Description

17.4.1  FileInputStream/FileOutputStream

FileInputStream/FileOutputStream are for reading/writing bytes from/to files. All the methods in these classes are inherited from InputStream and OutputStream. FileInputStream/FileOutputStream do not introduce new methods. To construct a ­FileInputStream, use the constructors shown in Figure 17.6.

[image: An annotated U M L diagram, with 2 parts.]
Figure 17.6

FileInputStream inputs a stream of bytes from a file.

Description

A java.io.FileNotFoundException will occur if you attempt to create a ­FileInputStream with a nonexistent file.

FileNotFoundException

To construct a FileOutputStream, use the constructors shown in Figure 17.7.

If the file does not exist, a new file will be created. If the file already exists, the first two constructors will delete the current content of the file. To retain the current content and append new data into the file, use the last two constructors and pass true to the append parameter.

[image: An annotated U M L diagram, with 2 parts.]
Figure 17.7

FileOutputStream outputs a stream of bytes to a file.

Description

Almost all the methods in the I/O classes throw java.io.IOException. Therefore, you have to declare to throw java.io.IOException in the method or place the code in a try-catch block, as shown below:

IOException

	Declaring exception in the method

	Using try-catch block

	public static void main(String[] args)
 throws IOException {
 // Perform I/O operations
}

	public static void main(String[] args) {
 try {
 // Perform I/O operations
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
}

Listing 17.1 uses binary I/O to write 10 byte values from 1 to 10 to a file named temp.dat and reads them back from the file.

Listing 17.1  TestFileStream.java

import	 1 import java.io.*;
	 2
 	 3 public class TestFileStream {
	 4 public static void main(String[] args) throws IOException {
	 5 try (
	 6 // Create an output stream to the file
output stream 7 FileOutputStream output = new FileOutputStream("temp.dat");
 8) {
	 9 // Output values to the file
	 10 for (int i = 1; i <= 10; i++)
output 11 output.write(i);
	 12 }
	 13
	 14 try (
	 15 // Create an input stream for the file
input stream 16 FileInputStream input = new FileInputStream("temp.dat");
	 17) {
	 18 // Read values from the file
	 19 int value;
input	 20 while ((value = input.read()) != −1)
	 21 System.out.print(value + " ");
	 22 }
	 23 }
	 24 }

1 2 3 4 5 6 7 8 9 10

The program uses the try-with-resources to declare and create input and output streams so they will be automatically closed after they are used. The java.io.InputStream and java.io.OutputStream classes implement the AutoClosable interface. The ­AutoClosable interface defines the close() method that closes a resource. Any object of the AutoClosable type can be used with the try-with-resources syntax for automatic closing.

AutoClosable

A FileOutputStream is created for the file temp.dat in line 7. The for loop writes 10 byte values into the file (lines 10 and 11). Invoking write(i) is the same as invoking write((byte)i). Line 16 creates a FileInputStream for the file temp.dat. Values are read from the file and displayed on the console in lines 19–21. The expression ((value = input.read()) != −1) (line 20) reads a byte from input.read(), assigns it to value, and checks whether it is −1. The input value of −1 signifies the end of a file.

The file temp.dat created in this example is a binary file. It can be read from a Java program but not from a text editor, as shown in Figure 17.8.

end of a file

[image: A window titled, command prompt.]
Figure 17.8

A binary file cannot be displayed in text mode.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

 Tip

When a stream is no longer needed, always close it using the close() method or automatically close it using a try-with-resource statement. Not closing streams may cause data corruption in the output file or other programming errors.

close stream

 Note

The root directory for the file is the classpath directory. For the example in this book, the root directory is c:\book, so the file temp.dat is located at c:\book. If you wish to place temp.dat in a specific directory, replace line 6 with

FileOutputStream output =
 new FileOutputStream ("directory/temp.dat");

where is the file?

 Note

An instance of FileInputStream can be used as an argument to construct a ­Scanner, and an instance of FileOutputStream can be used as an argument to construct a PrintWriter. You can create a PrintWriter to append text into a file using

appending to text file

new PrintWriter(new FileOutputStream("temp.txt", true));

If temp.txt does not exist, it is created. If temp.txt already exists, new data are appended to the file. See Programming Exercise 17.1.

17.4.2 FilterInputStream/FilterOutputStream

Filter streams are streams that filter bytes for some purpose. The basic byte input stream provides a read method that can be used only for reading bytes. If you want to read integers, doubles, or strings, you need a filter class to wrap the byte input stream. Using a filter class enables you to read integers, doubles, and strings instead of bytes and characters. FilterInputStream and FilterOutputStream are the base classes for filtering data. When you need to process primitive numeric types, use DataInputStream and DataOutputStream to filter bytes.

17.4.3 DataInputStream/DataOutputStream

DataInputStream reads bytes from the stream and converts them into appropriate primitive-type values or strings. DataOutputStream converts primitive-type values or strings into bytes and outputs the bytes to the stream.

DataInputStream extends FilterInputStream and implements the DataInput interface, as shown in Figure 17.9. DataOutputStream extends FilterOutputStream and implements the DataOutput interface, as shown in Figure 17.10.

[image: An annotated U M L diagram, with 4 parts.]
Figure 17.9

DataInputStream filters an input stream of bytes into primitive data-type values and strings.

Description

[image: An annotated U M L diagram, with 4 parts.]
Figure 17.10

DataOutputStream enables you to write primitive data-type values and strings into an output stream.

Description

DataInputStream implements the methods defined in the DataInput interface to read primitive data-type values and strings. DataOutputStream implements the methods defined in the DataOutput interface to write primitive data-type values and strings. Primitive values are copied from memory to the output without any conversions. Characters in a string may be written in several ways, as discussed in the next section.

Characters and Strings in Binary I/O

A Unicode character consists of two bytes. The writeChar(char c) method writes the Unicode of character c to the output. The writeChars(String s) method writes the Unicode for each character in the string s to the output. The writeBytes(String s) method writes the lower byte of the Unicode for each character in the string s to the output. The high byte of the Unicode is discarded. The writeBytes method is suitable for strings that consist of ASCII characters, since an ASCII code is stored only in the lower byte of a Unicode. If a string consists of non-ASCII characters, you have to use the writeChars method to write the string.

The writeUTF(String s) method writes a string using the UTF coding scheme. UTF is efficient for compressing a string with Unicode characters. For more information on UTF, see Supplement III.Z, UTF in Java. The readUTF() method reads a string that has been written using the writeUTF method.

Creating DataInputStream/DataOutputStream

DataInputStream/DataOutputStream are created using the following constructors (see Figures 17.9 and 17.10):

public DataInputStream(InputStream instream)
public DataOutputStream(OutputStream outstream)

The following statements create data streams. The first statement creates an input stream for the file in.dat; the second statement creates an output stream for the file out.dat.

DataInputStream input =
 new DataInputStream(new FileInputStream("in.dat"));
DataOutputStream output =
 new DataOutputStream(new FileOutputStream("out.dat"));

Listing 17.2 writes student names and scores to a file named temp.dat and reads the data back from the file.

Listing 17.2 TestDataStream.java

	 1 import java.io.*;
	 2
	 3 public class TestDataStream {
	 4 public static void main(String[] args) throws IOException {
	 5 try (// Create an output stream for file temp.dat
output stream 6 DataOutputStream output =
	 7 new DataOutputStream(new FileOutputStream("temp.dat"));
	 8) {
	 9 // Write student test scores to the file
output	 10 output.writeUTF("John");
	 11 output.writeDouble(85.5);
	 12 output.writeUTF("Jim");
	 13 output.writeDouble(185.5);
	 14 output.writeUTF("George");
	 15 output.writeDouble(105.25);
	 16 }
	 17
	 18 try (// Create an input stream for file temp.dat
input stream 19 DataInputStream input =
	 20 new DataInputStream(new FileInputStream("temp.dat"));
	 21) {
	 22 // Read student test scores from the file
input 23 System.out.println(input.readUTF() + " " + input.readDouble());
	 24 System.out.println(input.readUTF() + " " + input.readDouble());
	 25 System.out.println(input.readUTF() + " " + input.readDouble());
	 26 }
	 27 }
	 28 }

John 85.5
Susan 185.5
Kim 105.25

A DataOutputStream is created for file temp.dat in lines 6 and 7. Student names and scores are written to the file in lines 10–15. A DataInputStream is created for the same file in lines 19 and 20. Student names and scores are read back from the file and displayed on the console in lines 23–25.

DataInputStream and DataOutputStream read and write Java primitive-type values and strings in a machine-independent fashion, thereby enabling you to write a data file on one machine and read it on another machine that has a different operating system or file structure. An application uses a data output stream to write data that can later be read by a program using a data input stream.

DataInputStream filters data from an input stream into appropriate primitive-type ­values or strings. DataOutputStream converts primitive-type values or strings into bytes and ­outputs the bytes to an output stream. You can view DataInputStream/FileInputStream and DataOutputStream/FileOutputStream working in a pipe line as shown in Figure 17.11.

[image: Two diagrams show how the, pipe line, connects to an external file.]
Figure 17.11

DataInputStream filters an input stream of byte to data and ­DataOutputStream converts data into a stream of bytes.

Description

 Caution

You have to read data in the same order and format in which they are stored. For ­example, since names are written in UTF using writeUTF, you must read names using readUTF.

Detecting the End of a File

If you keep reading data at the end of an InputStream, an EOFException will occur. This exception can be used to detect the end of a file, as shown in Listing 17.3.

Listing 17.3  DetectEndOfFile.java

	 1 import java.io.*;
	 2
	 3 public class DetectEndOfFile {
	 4 public static void main(String[] args) {
	 5 try {
output stream 6 try (DataOutputStream output =
	 7 new DataOutputStream(new FileOutputStream("test.dat"))) {
output	 8 output.writeDouble(4.5);
	 9 output.writeDouble(43.25);
	 10 output.writeDouble(3.2);
	 11 }
	 12
input stream 13 try (DataInputStream input =
	 14 new DataInputStream(new FileInputStream("test.dat"))) {
	 15 while (true)
input	 16 System.out.println(input.readDouble());
	 17 }
	 18 }
EOFException 19 catch (EOFException ex) {
 20 System.out.println("All data were read");
	 21 }
	 22 catch (IOException ex) {
	 23 ex.printStackTrace();
	 24 }
	 25 }
	 26 }

4.5
43.25
3.2
All data were read

The program writes three double values to the file using DataOutputStream (lines 6–11) and reads the data using DataInputStream (lines 13–17). When reading past the end of the file, an EOFException is thrown. The exception is caught in line 19.

17.4.4 BufferedInputStream/BufferedOutputStream

BufferedInputStream/BufferedOutputStream can be used to speed up input and output by reducing the number of disk reads and writes. Using BufferedInputStream, the whole block of data on the disk is read into the buffer in the memory once. The individual data are then loaded to your program from the buffer, as shown in Figure 17.12a. Using ­BufferedOutputStream, the individual data are first written to the buffer in the memory. When the buffer is full, all data in the buffer are written to the disk once, as shown in Figure 17.12b.

[image: Two diagrams show a buffer between data and a program.]
Figure 17.12

Buffer I/O places data in a buffer for fast processing.

Description

BufferedInputStream/BufferedOutputStream does not contain new methods. All the methods in BufferedInputStream/BufferedOutputStream are inherited from the InputStream/OutputStream classes. BufferedInputStream/BufferedOutputStream manages a buffer behind the scene and automatically reads/writes data from/to disk on demand.

You can wrap a BufferedInputStream/BufferedOutputStream on any InputStream/ OutputStream using the constructors shown in Figures 17.13 and 17.14.

[image: An annotated U M L diagram, with 3 parts.]
Figure 17.13

BufferedInputStream buffers an input stream.

Description

[image: An annotated U M L diagram, with 3 parts.]
Figure 17.14

BufferedOutputStream buffers an output stream.

Description

If no buffer size is specified, the default size is 512 bytes. You can improve the performance of the TestDataStream program in Listing 17.2 by adding buffers in the stream in lines 6–9 and 19–20, as follows:

DataOutputStream output = new DataOutputStream(
 new BufferedOutputStream(new FileOutputStream("temp.dat")));

DataInputStream input = new DataInputStream(
 new BufferedInputStream(new FileInputStream("temp.dat")));

 Tip

You should always use buffered I/O to speed up input and output. For small files, you may not notice performance improvements. However, for large files—over 100 MB—you will see substantial improvements using buffered I/O.

		 17.4.1	 Why do you have to declare to throw IOException in the method or use a ­try-catch block to handle IOException for Java I/O programs?

		 17.4.2	 Why should you always close streams? How do you close streams?

		 17.4.3	 The read() method in InputStream reads a byte. Why does it return an int instead of a byte? Find the abstract methods in InputStream and OutputStream.

		 17.4.4	 Does FileInputStream/FileOutputStream introduce any new methods beyond the methods inherited from InputStream/OutputStream? How do you create a FileInputStream/FileOutputStream?

		 17.4.5	 What will happen if you attempt to create an input stream on a nonexistent file? What will happen if you attempt to create an output stream on an existing file? Can you append data to an existing file?

		 17.4.6	 How do you append data to an existing text file using java.io.PrintWriter?

		 17.4.7	 Suppose a file contains an unspecified number of double values that were ­written to the file using the writeDouble method using a DataOutputStream. How do you write a program to read all these values? How do you detect the end of a file?

		 17.4.8	 What is written to a file using writeByte(91) on a FileOutputStream?

		 17.4.9	 How do you check the end of a file in an input stream (FileInputStream, DataInputStream)?

	17.4.10 What is wrong in the following code?

import java.io.*;
public class Test {
 public static void main(String[] args) {
 try (
 FileInputStream fis = new FileInputStream("test.dat");) {
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 catch (FileNotFoundException ex) {
 ex.printStackTrace();
 }
 }
}

	17.4.11 Suppose you run the following program on Windows using the default ASCII encoding after the program is finished. How many bytes are there in the file t.txt? Show the contents of each byte.

public class Test {
 public static void main(String[] args)
 throws java.io.IOException {
 try (java.io.PrintWriter output =
 new java.io.PrintWriter("t.txt");) {
 output.printf("%s", "1234");
 output.printf("%s", "5678");
 output.close();
 }
 }
}

	17.4.12 After the following program is finished, how many bytes are there in the file t.dat? Show the contents of each byte.

import java.io.*;

public class Test {
 public static void main(String[] args) throws IOException {
 try (DataOutputStream output = new DataOutputStream(
 new FileOutputStream("t.dat"));) {
 output.writeInt(1234);
 output.writeInt(5678);
 output.close();
 }
 }
}

	17.4.13 For each of the following statements on a DataOutputStream output, how many bytes are sent to the output?

output.writeChar('A');
output.writeChars("BC");
output.writeUTF("DEF");

	17.4.14 What are the advantages of using buffered streams? Are the following statements correct?

BufferedInputStream input1 =
 new BufferedInputStream(new FileInputStream("t.dat"));

DataInputStream input2 = new DataInputStream(
 new BufferedInputStream(new FileInputStream("t.dat")));

DataOutputStream output = new DataOutputStream(
 new BufferedOutputStream(new FileOutnputStream("t.dat")));

17.5 Case Study: Copying Files

	This section develops a useful utility for copying files.

Copy file

In this section, you will learn how to write a program that lets users copy files. The user needs to provide a source file and a target file as command-line arguments using the command

java Copy source target

The program copies the source file to the target file and displays the number of bytes in the file. The program should alert the user if the source file does not exist or if the target file already exists. A sample run of the program is shown in Figure 17.15.

[image: A window titled, command prompt.]
Figure 17.15

The program copies a file.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

To copy the contents from a source file to a target file, it is appropriate to use an input stream to read bytes from the source file, and an output stream to send bytes to the target file, regardless of the file’s contents. The source file and the target file are specified from the command line. Create an InputFileStream for the source file, and an ­OutputFileStream for the target file. Use the read() method to read a byte from the input stream and then use the write(b) method to write the byte to the output stream. Use BufferedInputStream and BufferedOutputStream to improve the performance. Listing 17.4 gives the solution to the problem.

Listing 17.4  Copy.java

	 1 import java.io.*;
	 2
	 3 public class Copy {
	 4 /** Main method
	 5 @param args[0] for sourcefile
	 6 @param args[1] for target file
	 7 */
	 8 public static void main(String[] args) throws IOException {
	 9 // Check command−line parameter usage
check usage 10 if (args.length != 2) {
	 11 System.out.println(
	 12 "Usage: java Copy sourceFile targetfile");
	 13 System.exit(1);
	 14 }
	 15
	 16 // Check if source file exists
source file 17 File sourceFile = newFile(args[0]);
	 18 if (!sourceFile.exists()) {
	 19 System.out.println("Source file " + args[0]
	 20 + " does not exist");
	 21 System.exit(2);
	 22 }
	 23
	 24 // Check if target file exists
target file 25 File targetFile = newFile(args[1]);
	 26 if (targetFile.exists()) {
	 27 System.out.println("Target file " + args[1]
	 28 + " already exists");
	 29 System.exit(3);
	 30 }
	 31
	 32 try (
	 33 // Create an input stream
input stream 34 BufferedInputStream input =
	 35 new BufferedInputStream(new FileInputStream(sourceFile));
	 36
	 37 // Create an output stream
output stream 38 BufferedOutputStream output =
	 39 new BufferedOutputStream(new FileOutputStream(targetFile));
	 40) {
	 41 // Continuously read a byte from input and write it to output
	 42 int r, numberOfBytesCopied = 0;
read	 43 while ((r = input.read()) != −1) {
write	 44 output.write((byte)r);
	 45 numberOfBytesCopied++;
	 46 }
	 47
	 48 // Display the file size
	 49 System.out.println(numberOfBytesCopied + " bytes copied");
	 50 }
	 51 }
	 52 }

The program first checks whether the user has passed the two required arguments from the command line in lines 10–14.

The program uses the File class to check whether the source file and target file exist. If the source file does not exist (lines 18–22), or if the target file already exists (lines 25–30), the program ends.

An input stream is created using BufferedInputStream wrapped on FileInputStream in lines 34–35, and an output stream is created using BufferedOutputStream wrapped on FileOutputStream in lines 38–39.

The expression ((r = input.read()) != −1) (line 43) reads a byte from input.read(), assigns it to r, and checks whether it is −1. The input value of −1 signifies the end of a file. The program continuously reads bytes from the input stream and sends them to the output stream until all of the bytes have been read.

	17.5.1 How does the program check if a file already exists?

	17.5.2 How does the program detect the end of the file while reading data?

	17.5.3 How does the program count the number of bytes read from the file?

17.6 Object I/O

	ObjectInputStream/ObjectOutputStream classes can be used to read/write ­serializable objects.

Object I/O

DataInputStream/DataOutputStream enables you to perform I/O for primitive-type ­values and strings. ObjectInputStream/ObjectOutputStream enables you to perform I/O for objects in addition to primitive-type values and strings. Since ObjectInputStream/ ObjectOutputStream contains all the functions of DataInputStream/DataOutputStream, you can replace DataInputStream/DataOutputStream completely with ObjectInput Stream/ObjectOutputStream.

ObjectInputStream extends InputStream and implements ObjectInput and ObjectStreamConstants, as shown in Figure 17.16. ObjectInput is a subinterface of DataInput (DataInput is shown in Figure 17.9). ObjectStreamConstants contains the constants to support ObjectInputStream/ObjectOutputStream.

[image: An annotated U M L diagram, with 5 parts.]
Figure 17.16

ObjectInputStream can read objects, primitive-type values, and strings.

Description

ObjectOutputStream extends OutputStream and implements ObjectOutput and ObjectStreamConstants, as shown in Figure 17.17. ObjectOutput is a subinterface of DataOutput (DataOutput is shown in Figure 17.10).

[image: An annotated U M L diagram, with 5 parts.]
Figure 17.17

ObjectOutputStream can write objects, primitive-type values, and strings.

Description

You can wrap an ObjectInputStream/ObjectOutputStream on any InputStream/ OutputStream using the following constructors:

// Create an ObjectInputStream
public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream
public ObjectOutputStream(OutputStream out)

Listing 17.5 writes students’ names, scores, and the current date to a file named object.dat.

Listing 17.5 TestObjectOutputStream.java

	 1 import java.io.*;
	 2
	 3 public class TestObjectOutputStream {
	 4 public static void main(String[] args) throws IOException {
	 5 try (// Create an output stream for file object.dat
output stream 6 ObjectOutputStream output =
	 7 new ObjectOutputStream(new FileOutputStream("object.dat"));
	 8) {
	 9 // Write a string, double value, and object to the file
output string 10 output.writeUTF("John");
	 11 output.writeDouble(85.5);
output object 12 output.writeObject(new java.util.Date());
	 13 }
	 14 }
	 15 }

An ObjectOutputStream is created to write data into the file object.dat in lines 6 and 7. A string, a double value, and an object are written to the file in lines 10–12. To improve performance, you may add a buffer in the stream using the following statement to replace lines 6 and 7:

ObjectOutputStream output = new ObjectOutputStream(
 new BufferedOutputStream(new FileOutputStream("object.dat")));

Multiple objects or primitives can be written to the stream. The objects must be read back from the corresponding ObjectInputStream with the same types and in the same order as they were written. Java’s safe casting should be used to get the desired type. Listing 17.6 reads data from object.dat.

Listing 17.6 TestObjectInputStream.java

	 1 import java.io.*;
	 2
	 3 public class TestObjectInputStream {
	 4 public static void main(String[] args)
	 5 throws ClassNotFoundException, IOException {
	 6 try (// Create an input stream for file object.dat
input stream 7 ObjectInputStream input =
	 8 new ObjectInputStream(new FileInputStream("object.dat"));
	 9) {
	 10 // Read a string, double value, and object from the file
input string 11 String name = input.readUTF();
	 12 double score = input.readDouble();
input object 13 java.util.Date date = (java.util.Date)(input.readObject());
	 14 System.out.println(name + " " + score + " " + date);
	 15 }
	 16 }
	 17 }

John 85.5 Sun Dec 04 10:35:31 EST 2011

ClassNotFoundException

The readObject() method may throw java.lang.ClassNotFoundException because when the JVM restores an object, it first loads the class for the object if the class has not been loaded. Since ClassNotFoundException is a checked exception, the main method declares to throw it in line 5. An ObjectInputStream is created to read input from object.dat in lines 7–8. You have to read the data from the file in the same order and format as they were ­written to the file. A string, a double value, and an object are read in lines 11–13. Since ­readObject() returns an Object, it is cast into Date and assigned to a Date variable in line 13.

17.6.1 The Serializable Interface

Not every object can be written to an output stream. Objects that can be so written are said to be serializable. A serializable object is an instance of the java.io.Serializable interface, so the object’s class must implement Serializable.

serializable

The Serializable interface is a marker interface. Since it has no methods, you don’t need to add additional code in your class that implements Serializable. Implementing this interface enables the Java serialization mechanism to automate the process of storing objects and arrays.

To appreciate this automation feature, consider what you otherwise need to do in order to store an object. Suppose that you wish to store an ArrayList object. To do this, you need to store all the elements in the list. Each element is an object that may contain other objects. As you can see, this would be a very tedious process. Fortunately, you don’t have to go through it manually. Java provides a built-in mechanism to automate the process of writing objects. This process is referred as object serialization, which is implemented in ­ObjectOutputStream. In contrast, the process of reading objects is referred as object deserialization, which is implemented in ObjectInputStream.

serialization

Many classes in the Java API implement Serializable. All the wrapper classes for primitive-type values, java.math.BigInteger, java.math.BigDecimal, java.lang.String, java.lang.StringBuilder, java.lang.StringBuffer, java.util.Date, and java.util.ArrayList implement java.io.Serializable. Attempting to store an object that does not support the Serializable interface would cause a NotSerializableException.

deserialization

NotSerializableException

When a serializable object is stored, the class of the object is encoded; this includes the class name and the signature of the class, the values of the object’s instance variables, and the closure of any other objects referenced by the object. The values of the object’s static variables are not stored.

 Note
Nonserializable fields

If an object is an instance of Serializable but contains nonserializable instance data fields, can it be serialized? The answer is no. To enable the object to be serialized, mark these data fields with the transient keyword to tell the JVM to ignore them when writing the object to an object stream. Consider the following class:

public class C implements java.io.Serializable {
 private int v1;
 private static double v2;
 private transient A v3 = new A();
}

class A { } // A is not serializable

When an object of the C class is serialized, only variable v1 is serialized. Variable v2 is not serialized because it is a static variable, and variable v3 is not serialized because it is marked transient. If v3 were not marked transient, a java.io.NotSerializableException would occur.

transient

 Note
Duplicate objects

If an object is written to an object stream more than once, will it be stored in multiple copies? No, it will not. When an object is written for the first time, a serial number is created for it. The JVM writes the complete contents of the object along with the serial number into the object stream. After the first time, only the serial number is stored if the same object is written again. When the objects are read back, their references are the same since only one object is actually created in the memory.

17.6.2 Serializing Arrays

An array is serializable if all its elements are serializable. An entire array can be saved into a file using writeObject and later can be restored using readObject. Listing 17.7 stores an array of five int values and an array of three strings, and reads them back to display on the console.

Listing 17.7  TestObjectStreamForArray.java

	 1 import java.io.*;
	 2
	 3 public class TestObjectStreamForArray {
	 4 public static void main(String[] args)
	 5 throws ClassNotFoundException, IOException {
	 6 int[] numbers = {1, 2, 3, 4, 5};
	 7 String[] strings = {"John", "Susan", "Kim"};
	 8
	 9 try (// Create an output stream for file array.dat
output stream 10 ObjectOutputStream output = new ObjectOutputStream(new
	 11 FileOutputStream("array.dat",true));
	 12) {
	 13 // Write arrays to the object output stream
store array 14 output.writeObject(numbers);
	 15 output.writeObject(strings);
	 16 }
	 17
	 18 try (// Create an input stream for file array.dat
input stream 19 ObjectInputStream input =
	 20 new ObjectInputStream(new FileInputStream("array.dat"));
	 21) {
restore array 22 int[] newNumbers = (int[])(input.readObject());
	 23 String[] newStrings = (String[])(input.readObject());
	 24
	 25 // Display arrays
	 26 for (int i = 0; i < newNumbers.length; i++)
	 27 System.out.print(newNumbers[i] + " ");
	 28 System.out.println();
	 29
	 30 for (int i = 0; i < newStrings.length; i++)
	 31 System.out.print(newStrings[i] + " ");
	 32 }
	 33 }
	 34 }

1 2 3 4 5
John Susan Kim

Lines 14–15 write two arrays into file array.dat. Lines 22–23 read two arrays back in the same order they were written. Since readObject() returns Object, casting is used to cast the objects into int[] and String[].

	17.6.1 What types of objects can be stored using the ObjectOutputStream? What is the method for writing an object? What is the method for reading an object? What is the return type of the method that reads an object from ObjectInputStream?

	17.6.2 If you serialize two objects of the same type, will they take the same amount of space? If not, give an example.

	17.6.3 Is it true that any instance of java.io.Serializable can be successfully serialized? Are the static variables in an object serialized? How do you mark an instance variable not to be serialized?

	17.6.4 Can you write an array to an ObjectOutputStream?

	17.6.5 Is it true that DataInputStream/DataOutputStream can always be replaced by ObjectInputStream/ObjectOutputStream?

	17.6.6 What will happen when you attempt to run the following code?

import java.io.*;

public class Test {
 public static void main(String[] args) throws IOException {
 try (ObjectOutputStream output =
 new ObjectOutputStream(new FileOutputStream("object.dat"));) {
 output.writeObject(new A());
 }
 }
}

class A implements Serializable {
 B b = new B();
}

class B {
}

17.7 Random-Access Files

	Java provides the RandomAccessFile class to allow data to be read from and ­written to at any locations in the file.

All of the streams you have used so far are known as read-only or write-only streams. These streams are called sequential streams. A file that is opened using a sequential stream is called a sequential-access file. The contents of a sequential-access file cannot be updated. However, it is often necessary to modify files. Java provides the RandomAccessFile class to allow data to be read from and written to at any locations in the file. A file that is opened using the ­RandomAccessFile class is known as a random-access file.

read-only

write-only

sequential-access file

random-access file

The RandomAccessFile class implements the DataInput and DataOutput interfaces, as shown in Figure 17.18. The DataInput interface (see Figure 17.9) defines the methods for reading primitive-type values and strings (e.g., readInt, readDouble, readChar, readBoolean, and readUTF) and the DataOutput interface (see Figure 17.10) defines the methods for writing primitive-type values and strings (e.g., writeInt, writeDouble, writeChar, writeBoolean, and writeUTF).

[image: An annotated U M L diagram, with 3 parts.]
Figure 17.18

RandomAccessFile implements the DataInput and DataOutput interfaces with additional methods to support random access.

Description

When creating a RandomAccessFile, you can specify one of the two modes: r or rw. Mode r means that the stream is read-only, and mode rw indicates that the stream allows both read and write. For example, the following statement creates a new stream, raf, that allows the program to read from and write to the file test.dat:

RandomAccessFile raf = new RandomAccessFile("test.dat", "rw");

If test.dat already exists, raf is created to access it; if test.dat does not exist, a new file named test.dat is created and raf is created to access the new file. The method raf.length() returns the number of bytes in test.dat at any given time. If you append new data into the file, raf.length() increases.

 Tip

If the file is not intended to be modified, open it with the r mode. This prevents unintentional modification of the file.

file pointer

A random-access file consists of a sequence of bytes. A special marker called a file pointer is positioned at one of these bytes. A read or write operation takes place at the location of the file pointer. When a file is opened, the file pointer is set at the beginning of the file. When you read from or write data to the file, the file pointer moves forward to the next data item. For example, if you read an int value using readInt(), the JVM reads 4 bytes from the file pointer and now the file pointer is 4 bytes ahead of the previous location, as shown in Figure 17.19.

[image: The file pointer begins 4 bytes behind its position after, read I N T, opening parenthesis, closing parenthesis.]
Figure 17.19

After an int value is read, the file pointer is moved 4 bytes ahead.

For a RandomAccessFile raf, you can use the raf.seek(position) method to move the file pointer to a specified position. raf.seek(0) moves it to the beginning of the file and raf.seek(raf.length()) moves it to the end of the file. Listing 17.8 demonstrates RandomAccessFile. A large case study of using RandomAccessFile to organize an address book is given in Supplement VI.D.

Listing 17.8 TestRandomAccessFile.java

		 1 import java.io.*;
	 2
		 3 public class TestRandomAccessFile {
		 4 public static void main(String[] args) throws IOException {
		 5 try (// Create a random access file
RandomAccessFile 6 RandomAccessFile inout = new RandomAccessFile("inout.dat","rw");
		 7) {
		 8 // Clear the file to destroy the old contents if exists
empty file	 9 inout.setLength(0);
	 10
		11 // Write new integers to the file
		12 for (int i = 0; i < 200; i++)
write		13 inout.writeInt(i);
	 14
		15 // Display the current length of the file
		16 System.out.println("Current file length is " + inout.length());
		17
		18 // Retrieve the first number
move pointer 19 inout.seek(0); // Move the file pointer to the beginning
read		20 System.out.println("The first number is " + inout.readInt());
	 21
		22 // Retrieve the second number
		23 inout.seek(1 * 4); // Move the file pointer to the second number
		24 System.out.println("The second number is " + inout.readInt());
		25
		26 // Retrieve the tenth number
		27 inout.seek(9 * 4); // Move the file pointer to the tenth number
		28 System.out.println("The tenth number is " + inout.readInt());
		29
		30 // Modify the eleventh number
		31 inout.writeInt(555);
		32
		33 // Append a new number
		34 inout.seek(inout.length()); // Move the file pointer to the end
		35 inout.writeInt(999);
		36
		37 // Display the new length
		38 System.out.println("The new length is " + inout.length());
		39
		40 // Retrieve the new eleventh number
		41 inout.seek(10 * 4); // Move the file pointer to the eleventh number
		42 System.out.println("The eleventh number is " + inout.readInt());
		43 }
		44 }
		45 }

Current file length is 800
The first number is 0
The second number is 1
The tenth number is 9
The new length is 804
The eleventh number is 555

A RandomAccessFile is created for the file named inout.dat with mode rw to allow both read and write operations in line 6.

inout.setLength(0) sets the length to 0 in line 9. This, in effect, deletes the old contents of the file.

The for loop writes 200 int values from 0 to 199 into the file in lines 12–13. Since each int value takes 4 bytes, the total length of the file returned from inout.length() is now 800 (line 16), as shown in the sample output.

Invoking inout.seek(0) in line 19 sets the file pointer to the beginning of the file. inout.readInt() reads the first value in line 20 and moves the file pointer to the next number. The second number is read in line 24.

inout.seek(9 * 4) (line 27) moves the file pointer to the tenth number. ­inout.­readInt() reads the tenth number and moves the file pointer to the eleventh number in line 28. inout.write(555) writes a new eleventh number at the current position (line 31). The previous eleventh number is deleted.

inout.seek(inout.length()) moves the file pointer to the end of the file (line 34). inout.writeInt(999) writes a 999 to the file (line 35). Now the length of the file is increased by 4, so inout.length() returns 804 (line 38).

inout.seek(10 * 4) moves the file pointer to the eleventh number in line 41. The new eleventh number, 555, is displayed in line 42.

	17.7.1 Can RandomAccessFile streams read and write a data file created by ­DataOutputStream? Can RandomAccessFile streams read and write objects?

	17.7.2 Create a RandomAccessFile stream for the file address.dat to allow the ­updating of student information in the file. Create a DataOutputStream for the file address.dat. Explain the differences between these two statements.

	17.7.3 What happens if the file test.dat does not exist when you attempt to compile and run the following code?

import java.io.*;

public class Test {
 public static void main(String[] args) {
 try (RandomAccessFile raf =
 new RandomAccessFile("test.dat", "r");) {
 int i = raf.readInt();
 }
 catch (IOException ex) {
 System.out.println("IO exception");
 }
 }
}

Key Terms

	binary I/O 692

	deserialization 709

	file pointer 712

	random-access file 711

	sequential-access file 711

	serialization 709

	stream 692

	text I/O 692

Chapter Summary

	I/O can be classified into text I/O and binary I/O. Text I/O interprets data in sequences of characters. Binary I/O interprets data as raw binary values. How text is stored in a file depends on the encoding scheme for the file. Java automatically performs encoding and decoding for text I/O.

	The InputStream and OutputStream classes are the roots of all binary I/O classes. FileInputStream/FileOutputStream associates a file for input/output. Buffered InputStream/BufferedOutputStream can be used to wrap any binary I/O stream to improve performance. DataInputStream/DataOutputStream can be used to read/write primitive values and strings.

	ObjectInputStream/ObjectOutputStream can be used to read/write objects in addition to primitive values and strings. To enable object serialization, the object’s defining class must implement the java.io.Serializable marker interface.

	The RandomAccessFile class enables you to read and write data to a file. You can open a file with the r mode to indicate that it is read-only, or with the rw mode to indicate that it is updateable. Since the RandomAccessFile class implements DataInput and DataOutput interfaces, many methods in RandomAccessFile are the same as those in DataInputStream and DataOutputStream.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Section 17.3

		*17.1	(Create a text file) Write a program to create a file named Exercise17_01.txt if it does not exist. Append new data to it if it already exists. Write 100 integers created randomly into the file using text I/O. Integers are separated by a space.

Section 17.4

		*17.2	(Create a binary data file) Write a program to create a file named Exercise17_02.dat if it does not exist. Append new data to it if it already exists. Write 100 integers created randomly into the file using binary I/O.

		*17.3	(Sum all the integers in a binary data file) Suppose a binary data file named ­Exercise17_02.dat has been created from Programming Exercise 17.2 and its data are created using writeInt(int) in DataOutputStream. The file contains an unspecified number of integers. Write a program to find the sum of the integers.

		*17.4	(Convert a text file into UTF) Write a program that reads lines of characters from a text file and writes each line as a UTF string into a binary file. Display the sizes of the text file and the binary file. Use the following command to run the program:

java Exercise17_04 Welcome.java Welcome.utf

Section 17.6

		*17.5	(Store objects and arrays in a file) Write a program that stores an array of the five int values 1, 2, 3, 4, and 5, a Date object for the current time, and the double value 5.5 into the file named Exercise17_05.dat. In the same program, write the code to read and display the data.

		*17.6	(Store Loan objects) The Loan class in Listing 10.2 does not implement ­Serializable. Rewrite the Loan class to implement Serializable. Write a ­pro­gram that creates five Loan objects and stores them in a file named ­Exercise17_06.dat.

		*17.7	(Restore objects from a file) Suppose a file named Exercise17_06.dat has been created using the ObjectOutputStream from the preceding programming exercises. The file contains Loan objects. The Loan class in Listing 10.2 does not implement Serializable. Rewrite the Loan class to implement ­Serializable. Write a program that reads the Loan objects from the file and displays the total loan amount. Suppose that you don’t know how many Loan objects are there in the file, use EOFException to end the loop.

Section 17.7

		*17.8	(Update count) Suppose that you wish to track how many times a program has been executed. You can store an int to count the file. Increase the count by 1 each time this program is executed. Let the program be Exercise17_08.txt and store the count in Exercise17_08.dat.

		***17.9	(Address book) Write a program that stores, retrieves, adds, and updates addresses as shown in Figure 17.20. Use a fixed-length string for storing each attribute in the address. Use random-access file for reading and writing an address. Assume the sizes of the name, street, city, state, and zip are 32, 32, 20, 2, and 5 bytes, respectively.

[image: A console shows a sample run.]
Figure 17.20

The application can store, retrieve, and update addresses from a file.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

Comprehensive

Split a large file

		*17.10	(Split files) Suppose you want to back up a huge file (e.g., a 10-GB AVI file) to a CD-R. You can achieve it by splitting the file into smaller pieces and backing up these pieces separately. Write a utility program that splits a large file into smaller ones using the following command:

java Exercise17_10 SourceFile numberOfPieces

The command creates the files SourceFile.1, SourceFile.2, ..., SourceFile.n, where n is numberOfPieces and the output files are about the same size.

		**17.11	(Split files GUI) Rewrite Exercise 17.10 with a GUI, as shown in Figure 17.21a.

[image: Figures ay and b are similarly formatted windows titled, Exercise 17, underscore, 11, and, underscore, 13.]
Figure 17.21

(a) The program splits a file.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission. (b) The program combines files into a new file.

Description

		*17.12	(Combine files) Write a utility program that combines the files together into a new file using the following command:

java Exercise17_12 SourceFile1 ... SourceFilen TargetFile

The command combines SourceFile1, ..., and SourceFilen into TargetFile.

		*17.13	(Combine files GUI) Rewrite Exercise 17.12 with a GUI, as shown in Figure 17.21b.

	17.14 (Encrypt files) Encode the file by adding 5 to every byte in the file. Write a program that prompts the user to enter an input file name and an output file name and saves the encrypted version of the input file to the output file.

	17.15 (Decrypt files) Suppose a file is encrypted using the scheme in Programming Exercise 17.14. Write a program to decode an encrypted file. Your program should prompt the user to enter an input file name for the encrypted file and an output file name for the unencrypted version of the input file.

	17.16 (Frequency of characters) Write a program that prompts the user to enter the name of an ASCII text file and displays the frequency of the characters in the file.

		**17.17	(BitOutputStream) Implement a class named BitOutputStream, as shown in Figure 17.22, for writing bits to an output stream. The writeBit (char bit) method stores the bit in a byte variable. When you create a ­BitOutputStream, the byte is empty. After invoking writeBit('1'), the byte becomes 00000001. After invoking writeBit("0101"), the byte becomes 00010101. The first three bits are not filled yet. When a byte is full, it is sent to the output stream. Now the byte is reset to empty. You must close the stream by invoking the close() method. If the byte is neither empty nor full, the close() method first fills the zeros to make a full 8 bits in the byte and then outputs the byte and closes the stream. For a hint, see Programming Exercise 5.44. Write a test program that sends the bits 010000100100001001101 to the file named Exercise17_17.dat.

[image: An annotated U M L diagram with the name, Bit Output Stream.]
Figure 17.22

BitOutputStream outputs a stream of bits to a file.

Description

		*17.18	(View bits) Write the following method that displays the bit representation for the last byte in an integer:

public static String getBits(int value)

For a hint, see Programming Exercise 5.44. Write a program that prompts the user to enter a file name, reads bytes from the file, and displays each byte’s binary representation.

		*17.19	(View hex) Write a program that prompts the user to enter a file name, reads bytes from the file, and displays each byte’s hex representation. (Hint: You can first convert the byte value into an 8-bit string, then convert the bit string into a two-digit hex string.)

		**17.20	(Binary editor) Write a GUI application that lets the user to enter a file name in the text field and press the Enter key to display its binary representation in a text area. The user can also modify the binary code and save it back to the file, as shown in Figure 17.23a.

[image: Two figures, labeled ay and b.]
Figure 17.23

The programs enable the user to manipulate the contents of the file in (a) binary (b) hex.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

		**17.21	(Hex editor) Write a GUI application that lets the user to enter a file name in the text field and press the Enter key to display its hex representation in a text area. The user can also modify the hex code and save it back to the file, as shown in Figure 17.23b.

CHAPTER 18 Recursion

Objectives

	To describe what a recursive method is and the benefits of using recursion (§18.1).

	To develop recursive methods for recursive mathematical functions (§§18.2 and 18.3).

	To explain how recursive method calls are handled in a call stack (§§18.2 and 18.3).

	To solve problems using recursion (§18.4).

	To use an overloaded helper method to design a recursive method (§18.5).

	To implement a selection sort using recursion (§18.5.1).

	To implement a binary search using recursion (§18.5.2).

	To get the directory size using recursion (§18.6).

	To solve the Tower of Hanoi problem using recursion (§18.7).

	To draw fractals using recursion (§18.8).

	To discover the relationship and difference between recursion and iteration (§18.9).

	To know tail-recursive methods and why they are desirable (§18.10).

18.1 Introduction

	Recursion is a technique that leads to elegant solutions to problems that are difficult to program using simple loops.

Suppose you want to find all the files under a directory that contains a particular word. How do you solve this problem? There are several ways to do so. An intuitive and effective solution is to use recursion by searching the files in the subdirectories recursively.

search word problem

H-tree problem

H-trees, depicted in Figure 18.1, are used in a very large-scale integration (VLSI) design as a clock distribution network for routing timing signals to all parts of a chip with equal propagation delays. How do you write a program to display H-trees? A good approach is to use recursion.

[image: Figures ay to d show H trees of increasing orders.]

Figure 18.1

An H-tree can be displayed using recursion.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

To use recursion is to program using recursive methods—that is, to use methods that invoke themselves. Recursion is a useful programming technique. In some cases, it enables you to develop a natural, straightforward, simple solution to an otherwise difficult problem. This chapter introduces the concepts and techniques of recursive programming and illustrates with examples of how to “think recursively.”

recursive method

18.2 Case Study: Computing Factorials

	A recursive method is one that invokes itself directly or indirectly.

Many mathematical functions are defined using recursion. Let’s begin with a simple example. The factorial of a number n can be recursively defined as follows:

0! = 1;
n! = n × (n − 1)!; n > 0

How do you find n! for a given n? To find 1! is easy because you know that 0! is 1 and 1! is 1 × 0!. Assuming that you know (n − 1)!, you can obtain n! immediately by using n × (n − 1)!. Thus, the problem of computing n! is reduced to computing (n − 1)!. When computing (n − 1)!, you can apply the same idea recursively until n is reduced to 0.

Let factorial(n) be the method for computing n!. If you call the method with n = 0, it immediately returns the result. The method knows how to solve the simplest case, which is referred to as the base case or the stopping condition. If you call the method with n > 0, it reduces the problem into a subproblem for computing the factorial of n − 1. The subproblem is essentially the same as the original problem, but it is simpler or smaller. Because the subproblem has the same property as the original problem, you can call the method with a different argument, which is referred to as a recursive call.

base case or stopping condition

recursive call

The recursive algorithm for computing factorial(n) can be simply described as follows:

if (n == 0)
 return 1;
else
 return n * factorial(n − 1);

A recursive call can result in many more recursive calls because the method keeps on dividing a subproblem into new subproblems. For a recursive method to terminate, the problem must eventually be reduced to a stopping case, at which point the method returns a result to its caller. The caller then performs a computation and returns the result to its own caller. This process continues until the result is passed back to the original caller. The original problem can now be solved by multiplying n by the result of factorial(n − 1).

Listing 18.1 gives a complete program that prompts the user to enter a nonnegative integer and displays the factorial for the number.

Listing 18.1 ComputeFactorial.java

		1 import java.util.Scanner;
		2
		3 public class ComputeFactorial {
		4 /** Main method */
		5 public static void main(String[] args) {
		6 // Create a Scanner
		7 Scanner input = new Scanner(System.in);
		8 System.out.print("Enter a nonnegative integer: ");
		9 int n = input.nextInt();
	 10
	 11 // Display factorial
	 12 System.out.println("Factorial of " + n + " is " + factorial(n));
	 13 }
	 14
	 15 /** Return the factorial for the specified number */
	 16 public static long factorial(int n) {
base case 17 if (n == 0) // Base case
	 18 return 1;
	 19 else
recursion 20 return n * factorial(n − 1); // Recursive call
	 21 }
	 22 }

Enter a nonnegative integer: 4
Factorial of 4 is 24

Enter a nonnegative integer: 10
Factorial of 10 is 3628800

The factorial method (lines 16–21) is essentially a direct translation of the recursive mathematical definition for the factorial into Java code. The call to factorial is recursive because it calls itself. The parameter passed to factorial is decremented until it reaches the base case of 0.

You see how to write a recursive method. How does recursion work behind the scenes? Figure 18.2 illustrates the execution of the recursive calls, starting with n = 4. The use of stack space for recursive calls is shown in Figure 18.3.

how does it work?

[image: A diagram for the process involved with factorial 4.]

Figure 18.2

Invoking factorial(4) spawns recursive calls to factorial.

Description

[image: A diagram shows stack spacing during the recursion.]

Figure 18.3

When factorial(4) is being executed, the factorial method is called recursively, causing the stack space to dynamically change.

Description

 Pedagogical Note

It is simpler and more efficient to implement the factorial method using a loop. However, we use the recursive factorial method here to demonstrate the concept of recursion. Later in this chapter, we will present some problems that are inherently recursive, and are difficult to solve without using recursion.

 Note

If recursion does not reduce the problem in a manner that allows it to eventually converge into the base case or a base case is not specified, infinite recursion can occur. For example, suppose you mistakenly write the factorial method as follows:

public static long factorial(int n) {
 return n * factorial(n − 1);
 }

The method runs infinitely and causes a StackOverflowError.

infinite recursion

The example discussed in this section shows a recursive method that invokes itself. This is known as direct recursion. It is also possible to create indirect recursion. This occurs when method A invokes method B, which in turn directly or indirectly invokes method A.

direct recursion

indirect recursion

	18.2.1 What is a recursive method? What is an infinite recursion?

	18.2.2 How many times is the factorial method in Listing 18.1 invoked for factorial(6)?

	18.2.3 Show the output of the following programs and identify base cases and recursive calls.

	public class Test {
 public static void main(String[] args) {
 System.out.println(
 "Sum is " + xMethod(5));
 }

 public static int xMethod(int n) {
 if (n == 1)
 return 1;
 else
 return n + xMethod(n − 1);
 }
}

	
	public class Test {
 public static void main(String[] args) {
 xMethod(1234567);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 System.out.print(n % 10);
 xMethod(n / 10);
 }
 }
}

	18.2.4 Write a recursive mathematical definition for computing

2
 n

 for a positive integer n.

	18.2.5 Write a recursive mathematical definition for computing

 x
 n

 for a positive integer n and a real number x.

	18.2.6 Write a recursive mathematical definition for computing

1+2+3+…+n
 for a positive integer n.

18.3 Case Study: Computing Fibonacci Numbers

	In some cases, recursion enables you to create an intuitive, straightforward, simple solution to a problem.

The factorial method in the preceding section could easily be rewritten without using recursion. In this section, we show an example for creating an intuitive solution to a problem using recursion. Consider the well-known Fibonacci-series problem:

	The series:

	0
	1

	1

	2

	3

	5

	8

	13

	21

	34

	55

	89

	…

	indexes:

	0
	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	

The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the preceding two. The series can be recursively defined as:

	fib(0) = 0;
 fib(1) = 1;
 fib(index) = fib(index − 2) + fib(index − 1); index >= 2

The Fibonacci series was named for Leonardo Fibonacci, a medieval mathematician, who originated it to model the growth of the rabbit population. It can be applied in numeric optimization and in various other areas.

How do you find fib(index) for a given index? It is easy to find fib(2) because you know fib(0) and fib(1). Assuming you know fib(index − 2) and fib(index − 1), you can obtain fib(index) immediately. Thus, the problem of computing fib(index) is reduced to computing fib(index − 2) and fib(index − 1). When doing so, you apply the idea recursively until index is reduced to 0 or 1.

The base case is index = 0 or index = 1. If you call the method with index = 0 or index = 1, it immediately returns the result. If you call the method with index >= 2, it divides the problem into two subproblems for computing fib(index − 1) and fib(index − 2) using recursive calls. The recursive algorithm for computing fib(index) can be simply described as follows:

if (index == 0)
 return 0;
else if (index == 1)
 return 1;
else
 return fib(index − 1) + fib(index − 2);

Listing 18.2 gives a complete program that prompts the user to enter an index and computes the Fibonacci number for that index.

Listing 18.2 ComputeFibonacci.java

 1 import java.util.Scanner;
 2
 3 public class ComputeFibonacci {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter an index for a Fibonacci number: ");
 9 int index = input.nextInt();
 10
 11 // Find and display the Fibonacci number
 12 System.out.println("The Fibonacci number at index "
 13 + index + " is " + fib(index));
 14 }
 15
 16 /** The method for finding the Fibonacci number */
 17 public static long fib(long index) {
base case 18 if (index == 0) // Base case
 19 return 0;
base case 20 else if (index == 1) // Base case
recursion 21 return 1;
 22 else // Reduction and recursive calls
 23 return fib(index − 1) + fib(index − 2);
 24 }
 25 }

Enter an index for a Fibonacci number: 1
The Fibonacci number at index 1 is 1

Enter an index for a Fibonacci number: 6
The Fibonacci number at index 6 is 8

Enter an index for a Fibonacci number: 7
The Fibonacci number at index 7 is 13

The program does not show the considerable amount of work done behind the scenes by the computer. Figure 18.4, however, shows the successive recursive calls for evaluating fib(4). The original method, fib(4), makes two recursive calls, fib(3) and fib(2), and then returns fib(3) + fib(2). However, in what order are these methods called? In Java, operands are evaluated from left to right, so fib(2) is called after fib(3) is completely evaluated. The labels in Figure 18.4 show the order in which the methods are called.

[image: A diagram demonstrates a series of recursive calls.]

Figure 18.4

Invoking fib(4) spawns recursive calls to fib.

Description

As shown in Figure 18.4, there are many duplicated recursive calls. For instance, fib(2) is called twice, fib(1) three times, and fib(0) twice. In general, computing fib(index) requires roughly twice as many recursive calls as does computing fib(index − 1). As you try larger index values, the number of calls substantially increases, as given in Table 18.1.

Table 18.1 Number of Recursive Calls in fib(index)

	index

	2

	3

	4

	10

	20

	30

	40

	50

	# of calls

	3

	5

	9

	177

	21,891

	2,692,537

	331,160,281

	2,075,316,483

 Pedagogical Note

The recursive implementation of the fib method is very simple and straightforward, but it isn’t efficient, because it requires more time and memory to run recursive methods. See Programming Exercise 18.2 for an efficient solution using loops. Though it is not practical, the recursive fib method is a good example of how to write recursive methods.

	18.3.1 Show the output of the following two programs:

	public class Test {
 public static void main(String[] args) {
 xMethod(5);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 System.out.print(n + " ");
 xMethod(n − 1);
 }
 }
}

	
	public class Test {
 public static void main(String[] args) {
 xMethod(5);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 xMethod(n − 1);
 System.out.print(n + " ");
 }
 }
}

	18.3.2 What is wrong in the following methods?

	public class Test {
 public static void main(String[] args) {
 xMethod(1234567);
 }

 public static void xMethod(double n) {
 if (n != 0) {
 System.out.print(n);
 xMethod(n / 10);
 }
 }
}

	
	public class Test {
 public static void main(String[] args) {
 Test test = new Test();
 System.out.println(test.toString());
 }

 public Test() {
 Test test = new Test();
 }
}

	18.3.3 How many times is the fib method in Listing 18.2 invoked for fib(6)?

18.4 Problem Solving Using Recursion

	If you think recursively, you can solve many problems using recursion.

The preceding sections presented two classic recursion examples. All recursive methods have the following characteristics:

recursion characteristics

if-else

	The method is implemented using an if−else or a switch statement that leads to different cases.

	One or more base cases (the simplest case) are used to stop recursion.

	Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

base cases

reduction

In general, to solve a problem using recursion, you break it into subproblems. Each subproblem is the same as the original problem, but smaller in size. You can apply the same approach to each subproblem to solve it recursively.

Recursion is everywhere. It is fun to think recursively. Consider drinking coffee. You may describe the procedure recursively as follows:

think recursively

public static void drinkCoffee(Cup cup) {
 if (!cup.isEmpty()) {
 cup.takeOneSip(); // Take one sip
 drinkCoffee(cup);
 }
}

Assume cup is an object for a cup of coffee with the instance methods isEmpty() and takeOneSip(). You can break the problem into two subproblems: One is to drink one sip of coffee, and the other is to drink the rest of the coffee in the cup. The second problem is the same as the original problem, but smaller in size. The base case for the problem is when the cup is empty.

Consider the problem of printing a message n times. You can break the problem into two subproblems: One is to print the message one time, and the other is to print it n − 1 times. The second problem is the same as the original problem, but it is smaller in size. The base case for the problem is n == 0. You can solve this problem using recursion as follows:

		public static void nPrintln(String message, int times) {
		 if (times >= 1) {
		 System.out.println(message);
recursive call	 nPrintln(message, times − 1);
		 } // The base case is times == 0
}

Note the fib method in the preceding section returns a value to its caller, but the ­drinkCoffee and nPrintln methods are void and they do not return a value.

If you think recursively, you can use recursion to solve many of the problems presented in earlier chapters of this book. Consider the palindrome problem in Listing 5.14. Recall that a string is a palindrome if it reads the same from the left and from the right. For example, “mom” and “dad” are palindromes, but “uncle” and “aunt” are not. The problem of checking whether a string is a palindrome can be divided into two subproblems:

think recursively

	Check whether the first character and the last character of the string are equal.

	Ignore the two end characters and check whether the rest of the substring is a palindrome.

The second subproblem is the same as the original problem, but smaller in size. There are two base cases: (1) the two end characters are not the same and (2) the string size is 0 or 1. In case 1, the string is not a palindrome; in case 2, the string is a palindrome. The recursive method for this problem can be implemented as given in Listing 18.3.

Listing 18.3 RecursivePalindromeUsingSubstring.java

			1 public class RecursivePalindromeUsingSubstring {
method header		2 public static boolean isPalindrome(String s) {
base case		3 if (s.length() <= 1) // Base case
			4 return true;
base case		5 else if (s.charAt(0) != s.charAt(s.length() − 1)) // Base case
			6 return false;
			7 else
recursive call		8 return isPalindrome(s.substring(1, s.length() − 1));
			9 }
		 10
		 11 public static void main(String[] args) {
		 12 System.out.println("Is moon a palindrome? "
		 13 + isPalindrome("moon"));
		 14 System.out.println("Is noon a palindrome? "
		 15 + isPalindrome("noon"));
		 16 System.out.println("Is a a palindrome? " + isPalindrome("a"));
		 17 System.out.println("Is aba a palindrome? " +
		 18 isPalindrome("aba"));
		 19 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
		 20 }
		 21 }

Is moon a palindrome? false
Is noon a palindrome? true
Is a a palindrome? true
Is aba a palindrome? true
Is ab a palindrome? false

The substring method in line 8 creates a new string that is the same as the original string except without the first and the last characters. Checking whether a string is a palindrome is equivalent to checking whether the substring is a palindrome if the two end characters in the original string are the same.

	18.4.1 Describe the characteristics of recursive methods.

	18.4.2 For the isPalindrome method in Listing 18.3 , what are the base cases? How many times is this method called when invoking isPalindrome("abdxcxdba")?

	18.4.3 Show the call stack for isPalindrome("abcba") using the method defined in Listing 18.3 .

18.5 Recursive Helper Methods

	Sometimes you can find a solution to the original problem by defining a recursive function to a problem similar to the original problem. This new method is called a recursive helper method. The original problem can be solved by invoking the recursive helper method.

The recursive isPalindrome method in Listing 18.3 is not efficient because it creates a new string for every recursive call. To avoid creating new strings, you can use the low and high indices to indicate the range of the substring. These two indices must be passed to the recursive method. Since the original method is isPalindrome(String s), you have to create the new method isPalindrome(String s, int low, int high) to accept additional information on the string, as given in Listing 18.4.

Listing 18.4 RecursivePalindrome.java

 1 public class RecursivePalindrome {
 2 public static boolean isPalindrome(String s) {
 3 return isPalindrome(s, 0, s.length() − 1);
 4 }
 5
helper method 6 private static boolean isPalindrome(String s, int low, int high) {
base case 7 if (high <= low) // Base case
 8 return true;
base case 9 else if (s.charAt(low) != s.charAt(high)) // Base case
 10 return false;
 11 else
 12 return isPalindrome(s, low + 1, high − 1);
 13 }
 14
 15 public static void main(String[] args) {
 16 System.out.println("Is moon a palindrome? "
 17 + isPalindrome("moon"));
 18 System.out.println("Is noon a palindrome? "
 19 + isPalindrome("noon"));
 20 System.out.println("Is a a palindrome? " + isPalindrome("a"));
 21 System.out.println("Is aba a palindrome? " + isPalindrome("aba"));
 22 System.out.println("Is ab a palindrome? " + isPalindrome("ab"));
 23 }
 24 }

Two overloaded isPalindrome methods are defined. The first method isPalindrome (String s) checks whether a string is a palindrome and the second method isPalindrome (String s, int low, int high) checks whether a substring s(low..high) is a palindrome. The first method passes the string s with low = 0 and high = s.length() – 1 to the second method. The second method can be invoked ­recursively to check a palindrome in an ever-shrinking substring. It is a common design ­technique in recursive programming to define a second method that receives additional ­parameters. Such a method is known as a recursive helper method.

recursive helper method

Helper methods are very useful in designing recursive solutions for problems involving strings and arrays. The sections that follow give two more examples.

18.5.1 Recursive Selection Sort

Selection sort was introduced in Section 7.11. Recall that it finds the smallest element in the list and swaps it with the first element. It then finds the smallest element remaining and swaps it with the first element in the remaining list and so on until the remaining list contains only a single element. The problem can be divided into two subproblems:

	Find the smallest element in the list and swap it with the first element.

	Ignore the first element and sort the remaining smaller list recursively.

The base case is that the list contains only one element. Listing 18.5 gives the recursive sort method.

Listing 18.5 RecursiveSelectionSort.java

		1 public class RecursiveSelectionSort {
		2 public static void sort(double[] list) {
		3 sort(list, 0, list.length − 1); // Sort the entire list
		4 }
		5
helper method	6 private static void sort(double[] list, int low, int high) {
base case	7 if (low < high) {
		8 // Find the smallest number and its index in list[low .. high]
		9 int indexOfMin = low;
	 10 double min = list[low];
	 11 for (int i = low + 1; i <= high; i++) {
	 12 if (list[i] < min) {
	 13 min = list[i];
	 14 indexOfMin = i;
	 15 }
	 16 }
	 17
	 18 // Swap the smallest in list[low .. high] with list[low]
	 19 list[indexOfMin] = list[low];
	 20 list[low] = min;
	 21
	 22 // Sort the remaining list[low+1 .. high]
recursive call 23 sort(list, low + 1, high);
	 24 }
	 25 }
	 26 }

Two overloaded sort methods are defined. The first method sort(double[] list) sorts an array in list[0..list.length − 1] and the second method sort(double[] list, int low, int high) sorts an array in list[low..high]. The second method can be invoked recursively to sort an ever-shrinking subarray.

18.5.2 Recursive Binary Search

Binary search

Binary search was introduced in Section 7.10.2. For binary search to work, the elements in the array must be in increasing order. The binary search first compares the key with the element in the middle of the array. Consider the following three cases:

	Case 1: If the key is less than the middle element, recursively search for the key in the first half of the array.

	Case 2: If the key is equal to the middle element, the search ends with a match.

	Case 3: If the key is greater than the middle element, recursively search for the key in the second half of the array.

Case 1 and Case 3 reduce the search to a smaller list. Case 2 is a base case when there is a match. Another base case is that the search is exhausted without a match. Listing 18.6 gives a clear, simple solution for the binary search problem using recursion.

Listing 18.6 RecursiveBinarySearch.java

 1 public class RecursiveBinarySearch {
 2 public static int recursiveBinarySearch(int[] list, int key) {
 3 int low = 0;
 4 int high = list.length − 1;
 5 return recursiveBinarySearch(list, key, low, high);
 6 }
 7
helper method 8 private static int recursiveBinarySearch(int[] list, int key,
 9 int low, int high) {
base case 10 if (low > high) // The list has been exhausted without a match
 11 return −low − 1;
 12
 13 int mid = (low + high) / 2;
 14 if (key < list[mid])
recursive call 15 return recursiveBinarySearch(list, key, low, mid − 1);
 16 else if (key == list[mid])
base case 17 return mid;
 18 else
recursive call 19 return recursiveBinarySearch(list, key, mid + 1, high);
 20 }
 21 }

The first method finds a key in the whole list. The second method finds a key in the list with index from low to high.

The first binarySearch method passes the initial array with low = 0 and high = list.length − 1 to the second binarySearch method. The second method is invoked recursively to find the key in an ever-shrinking subarray.

	18.5.1 Show the call stack for isPalindrome("abcba") using the method defined in Listing 18.4 .

	18.5.2 Show the call stack for selectionSort(new double[]{2, 3, 5, 1}) using the method defined in Listing 18.5 .

	18.5.3 What is a recursive helper method?

18.6 Case Study: Finding the Directory Size

	Recursive methods are efficient for solving problems with recursive structures.

Directory size

The preceding examples can easily be solved without using recursion. This section presents a problem that is difficult to solve without using recursion. The problem is to find the size of a directory. The size of a directory is the sum of the sizes of all files in the directory. A directory d may contain subdirectories. Suppose a directory contains files

 f
1

 ,
 f
2

 , …,
 f
 m

 and subdirectories

 d
1

 ,
 d
2

 , …,
 d
 n

 ,

 as shown in Figure 18.5.

[image: A directory contains files, such as f sub 1 to f sub m, and folders, such as d sub 1 to d sub n.]

Figure 18.5

A directory contains files and subdirectories.

The size of the directory can be defined recursively as follows:

 size(
 d
)=size(

 f
 1

)+size(

 f
 2

)+…+size(

 f
 m

)+size(

 d
 1

)+size(

 d
 2

)+…+size(

 d
 n

)

The File class, introduced in Section 12.10, can be used to represent a file or a directory and obtain the properties for files and directories. Two methods in the File class are useful for this problem:

	The length() method returns the size of a file.

	The listFiles() method returns an array of File objects under a directory.

Listing 18.7 gives a program that prompts the user to enter a directory or a file and displays its size.

Listing 18.7 DirectorySize.java

 1 import java.io.File;
 2 import java.util.Scanner;
 3
 4 public class DirectorySize {
 5 public static void main(String[] args) {
 6 // Prompt the user to enter a directory or a file
 7 System.out.print("Enter a directory or a file: ");
 8 Scanner input = new Scanner(System.in);
 9 String directory = input.nextLine();
 10
 11 // Display the size
invoke method 12 System.out.println(getSize(new File(directory)) + " bytes");
 13 }
 14
getSize method 15 public static long getSize(File file) {
 16 long size = 0; // Store the total size of all files
 17
is directory? 18 if (file.isDirectory()) {
all subitems 19 File[] files = file.listFiles(); // All files and subdirectories
 20 for (int i = 0; files != null && i < files.length; i++) {
recursive call 21 size += getSize(files[i]); // Recursive call
 22 }
 23 }
base case 24 else { // Base case
 25 size += file.length();
 26 }
 27
 28 return size;
 29 }
 30 }

Enter a directory or a file: c:\book
48619631 bytes

Enter a directory or a file: c:\book\Welcome.java
172 bytes

Enter a directory or a file: c:\book\NonExistentFile
0 bytes

If the file object represents a directory (line 18), each subitem (file or subdirectory) in the directory is recursively invoked to obtain its size (line 21). If the file object represents a file (line 24), the file size is obtained and added to the total size (line 25).

What happens if an incorrect or a nonexistent directory is entered? The program will detect that it is not a directory and invoke file.length() (line 25), which returns 0. Thus, in this case, the getSize method will return 0.

 Tip

To avoid mistakes, it is a good practice to test all cases. For example, you should test the program for an input of file, an empty directory, a nonexistent directory, and a ­nonexistent file.

testing all cases

	18.6.1 What is the base case for the getSize method?

	18.6.2 How does the program get all files and directories under a given directory?

	18.6.3 How many times will the getSize method be invoked for a directory if the ­directory has three subdirectories and each subdirectory has four files?

	18.6.4 Will the program work if the directory is empty (i.e., it does not contain any files)?

	18.6.5 Will the program work if line 20 is replaced by the following code?

for (int i = 0; i < files.length; i++)

	18.6.6 Will the program work if lines 20 and 21 are replaced by the following code?

for (File file: files)
 size += getSize(file); // Recursive call

18.7 Case Study: Tower of Hanoi

	The Tower of Hanoi problem is a classic problem that can be solved easily using recursion, but it is difficult to solve otherwise.

The problem involves moving a specified number of disks of distinct sizes from one tower to another while observing the following rules:

	There are n disks labeled 1, 2, 3, …, n and three towers labeled A, B, and C.

	No disk can be on top of a smaller disk at any time.

	All the disks are initially placed on tower A.

	Only one disk can be moved at a time and it must be the smallest disk on a tower.

The objective of the problem is to move all the disks from A to B with the assistance of C. For example, if you have three disks, the steps to move all of the disks from A to B are shown in Figure 18.6. For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/TowerOfHanoieBook.html.

[image: A diagram shows how to complete the Tower of Hanoi problem, in 7 steps.]

Description
The diagram consists of 8 boxes, numbered 0 to 7. Each box shows three disks spread across three positions. The disks are numbered 1, 2, and 3, smallest to largest, and the positions are labeled Ay, B, and C, left to right. Box 0 shows the original positioning, with disks 1, 2, and 3 stacked top to bottom above Ay. Box 1, step 1: move disk 1 from Ay to B. Box 2, step 2: move disk 2 from Ay to C. Box 3, step 3: move disk 1 from B to C. Box 4, step 4: move disk 3 from Ay to B. Box 5, step 5: move disk 1 from C to Ay. Box 6, step 6: move disk 2 from C to B. Box 7, step 7: move disk 1 from Ay to B.

Figure 18.6

The goal of the Tower of Hanoi problem is to move disks from tower A to tower B without breaking the rules.

In the case of three disks, you can find the solution manually. For a larger number of disks, however—even for four—the problem is quite complex. Fortunately, the problem has an inherently recursive nature, which leads to a straightforward recursive solution.

The base case for the problem is n = 1. If n == 1, you could simply move the disk from A to B. When n > 1, you could split the original problem into the following three subproblems and solve them sequentially.

	Move the first n − 1 disks from A to C recursively with the assistance of tower B, as shown in Step 1 in Figure 18.7.

	Move disk n from A to B, as shown in Step 2 in Figure 18.7.

	Move n − 1 disks from C to B recursively with the assistance of tower A, as shown in Step 3 in Figure 18.7.

[image: A diagram shows a decomposed completion, in 3 steps.]

Figure 18.7

The Tower of Hanoi problem can be decomposed into three subproblems.

Description

The following method moves n disks from the fromTower to the toTower with the assistance of the auxTower:

void moveDisks(int n, char fromTower, char toTower, char auxTower)

The algorithm for the method can be described as:

if (n == 1) // Stopping condition
 Move disk 1 from the fromTower to the toTower;
else {
 moveDisks(n − 1, fromTower, auxTower, toTower);
 Move disk n from the fromTower to the toTower;
 moveDisks(n − 1, auxTower, toTower, fromTower);
}

Listing 18.8 gives a program that prompts the user to enter the number of disks and invokes the recursive method moveDisks to display the solution for moving the disks.

Listing 18.8 TowerOfHanoi.java

			1 import java.util.Scanner;
			2
			3 public class TowerOfHanoi {
			4 /** Main method */
			5 public static void main(String[] args) {
			6 // Create a Scanner
			7 Scanner input = new Scanner(System.in);
			8 System.out.print("Enter number of disks: ");
			9 int n = input.nextInt();
		 10
		 11 // Find the solution recursively
		 12 System.out.println("The moves are:");
		 13 moveDisks(n, 'A', 'B', 'C')	;
		 14 }
		 15
		 16 /** The method for finding the solution to move n disks
		 17 from fromTower to toTower with auxTower */
		 18 public static void moveDisks(int n, char fromTower,
		 19 char toTower, char auxTower) {
base case	 20 if (n == 1) // Stopping condition
		 21 System.out.println("Move disk " + n + " from " +
		 22 fromTower + " to " + toTower);
		 23 else {
recursion	 24 moveDisks(n − 1, fromTower, auxTower, toTower);
		 25 System.out.println("Move disk " + n + " from " +
		 26 fromTower + " to " + toTower);
recursion	 27 moveDisks(n − 1, auxTower, toTower, fromTower);
		 28 }
		 29 }
		 30 }

Enter number of disks: 4
The moves are:
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B
Move disk 3 from A to C
Move disk 1 from B to A
Move disk 2 from B to C
Move disk 1 from A to C
Move disk 4 from A to B
Move disk 1 from C to B
Move disk 2 from C to A
Move disk 1 from B to A
Move disk 3 from C to B
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B

This problem is inherently recursive. Using recursion makes it possible to find a natural, simple solution. It would be difficult to solve the problem without using recursion.

Consider tracing the program for n = 3. The successive recursive calls are shown in Figure 18.8. As you can see, writing the program is easier than tracing the recursive calls. The system uses stacks to manage the calls behind the scenes. To some extent, recursion provides a level of abstraction that hides iterations and other details from the user.

[image: A diagram shows the relationships between move disks calls.]

Figure 18.8

Invoking moveDisks(3, 'A', 'B', 'C') spawns calls to moveDisks recursively.

Description

	18.7.1 How many times is the moveDisks method in Listing 18.8 invoked for ­moveDisks(5, 'A', 'B', 'C')?

18.8 Case Study: Fractals

	Using recursion is ideal for displaying fractals because fractals are inherently recursive.

Fractal (Sierpinski triangle)

A fractal is a geometrical figure, but unlike triangles, circles, and rectangles, fractals can be divided into parts, each of which is a reduced-size copy of the whole. There are many interesting examples of fractals. This section introduces a simple fractal, the Sierpinski triangle, named after a famous Polish mathematician.

A Sierpinski triangle is created as follows:

	Begin with an equilateral triangle, which is considered to be a Sierpinski fractal of order (or level) 0, as shown in Figure 18.9a.

[image: Figures ay to d show Sierpinski triangles of increasing orders.]

Figure 18.9

A Sierpinski triangle is a pattern of recursive triangles.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski triangle of order 1 (see Figure 18.9b).

	Leave the center triangle intact. Connect the midpoints of the sides of the three other triangles to create a Sierpinski triangle of order 2 (see Figure 18.9c).

	You can repeat the same process recursively to create a Sierpinski triangle of order 3, 4, . . . , and so on (see Figure 18.9d). For an interactive demo, see liveexample.pearsoncmg.com/dsanimation/SierpinskiTriangleUsingHTML.html.

The problem is inherently recursive. How do you develop a recursive solution for it? Consider the base case when the order is 0. It is easy to draw a Sierpinski triangle of order 0. How do you draw a Sierpinski triangle of order 1? The problem can be reduced to drawing three Sierpinski triangles of order 0. How do you draw a Sierpinski triangle of order 2? The problem can be reduced to drawing three Sierpinski triangles of order 1, so the problem of drawing a Sierpinski triangle of order n can be reduced to drawing three Sierpinski triangles of order n − 1.

Listing 18.9 gives a program that displays a Sierpinski triangle of any order, as shown in Figure 18.9. You can enter an order in a text field to display a Sierpinski triangle of the specified order.

Listing 18.9 SierpinskiTriangle.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Point2D;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.control.TextField;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
 10 import javafx.scene.paint.Color;
 11 import javafx.scene.shape.Polygon;
 12 import javafx.stage.Stage;
 13
 14 public class SierpinskiTriangle extends Application {
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
recursive triangle pane 17 SierpinskiTrianglePane pane = new SierpinskiTrianglePane();
 18 TextField tfOrder = new TextField();
 19 tfOrder.setOnAction(
listener for text field 20 e −> pane.setOrder(Integer.parseInt(tfOrder.getText())));
 21 tfOrder.setPrefColumnCount(4);
 22 tfOrder.setAlignment(Pos.BOTTOM_RIGHT);
 23
 24 // Pane to hold label, text field, and a button
hold label and text field 25 HBox hBox = new HBox(10);
 26 hBox.getChildren().addAll(new Label("Enter an order: "), tfOrder);
 27 hBox.setAlignment(Pos.CENTER);
 28
 29 BorderPane borderPane = new BorderPane();
 30 borderPane.setCenter(pane);
 31 borderPane.setBottom(hBox);
 32
 33 // Create a scene and place it in the stage
 34 Scene scene = new Scene(borderPane, 200, 210);
 35 primaryStage.setTitle("SierpinskiTriangle"); // Set the stage title
 36 primaryStage.setScene(scene); // Place the scene in the stage
 37 primaryStage.show(); // Display the stage
 38
listener for resizing 39 pane.widthProperty().addListener(ov −> pane.paint());
 40 pane.heightProperty().addListener(ov −> pane.paint());
 41 }
 42
 43 /** Pane for displaying triangles */
 44 static class SierpinskiTrianglePane extends Pane {
 45 private int order = 0;
 46
 47 /** Set a new order */
 48 public void setOrder(int order) {
 49 this.order = order;
 50 paint();
 51 }
 52
 53 SierpinskiTrianglePane() {
 54 }
 55
 56 protected void paint() {
 57 // Select three points in proportion to the pane size
three initial points 58 Point2D p1 = new Point2D(getWidth() / 2, 10);
 59 Point2D p2 = new Point2D(10, getHeight() − 10);
 60 Point2D p3 = new Point2D(getWidth() − 10, getHeight() − 10);
 61
clear the pane 62 this.getChildren().clear(); // Clear the pane before redisplay
 63
draw a triangle 64 displayTriangles(order, p1, p2, p3);
 65 }
 66
 67 private void displayTriangles(int order, Point2D p1,
 68 Point2D p2, Point2D p3) {
 69 if (order == 0) {
 70 // Draw a triangle to connect three points
create a triangle 71 Polygon triangle = new Polygon();
 72 triangle.getPoints().addAll(p1.getX(), p1.getY(), p2.getX(),
 73 p2.getY(), p3.getX(), p3.getY());
 74 triangle.setStroke(Color.BLACK);
 75 triangle.setFill(Color.WHITE);
 76
 77 this.getChildren().add(triangle);
 78 }
 79 else {
 80 // Get the midpoint on each edge in the triangle
 81 Point2D p12 = p1.midpoint(p2);
 82 Point2D p23 = p2.midpoint(p3);
 83 Point2D p31 = p3.midpoint(p1);
 84
 85 // Recursively display three triangles
top subtriangle 86 displayTriangles(order − 1, p1, p12, p31);
left subtriangle 87 displayTriangles(order − 1, p12, p2, p23);
right subtriangle 88 displayTriangles(order − 1, p31, p23, p3);
 89 }
 90 }
 91 }
 92 }

The initial triangle has three points set in proportion to the pane size (lines 58–60). If order == 0, the displayTriangles(order, p1, p2, p3) method displays a triangle that connects the three points p1, p2, and p3 (lines 71–77), as shown in Figure 18.10a. ­Otherwise, it performs the following tasks:

[image: A diagram shows a Sierpinski triangle.]

Figure 18.10

Drawing a Sierpinski triangle spawns calls to draw three small Sierpinski triangles recursively.

Description

displayTriangle method

	Obtain the midpoint between p1 and p2 (line 81), the midpoint between p2 and p3 (line 82), and the midpoint between p3 and p1 (line 83), as shown in Figure 18.10b.

	Recursively invoke displayTriangles with a reduced order to display three smaller Sierpinski triangles (lines 86–88). Note each small Sierpinski triangle is structurally identical to the original big Sierpinski triangle except that the order of a small triangle is one less, as shown in Figure 18.10b.

A Sierpinski triangle is displayed in a SierpinskiTrianglePane. The order property in the inner class SierpinskiTrianglePane specifies the order for the Sierpinski triangle. The Point2D class, introduced in Section 9.6.3 The Point2D Class, represents a point with x- and y-coordinates. Invoking p1.midpoint(p2) returns a new Point2D object that is the midpoint between p1 and p2 (lines 81–83).

	18.8.1 How do you obtain the midpoint between two points?

	18.8.2 What is the base case for the displayTriangles method?

	18.8.3 How many times is the displayTriangles method invoked for a Sierpinski triangle of order 0, order 1, order 2, and order n?

	18.8.4 What happens if you enter a negative order? How do you fix this problem in the code?

	18.8.5 Instead of drawing a triangle using a polygon, rewrite the code to draw a triangle by drawing three lines to connect the points in lines 71–77.

18.9 Recursion vs. Iteration

	Recursion is an alternative form of program control. It is essentially repetition without a loop.

When you use loops, you specify a loop body. The repetition of the loop body is controlled by the loop control structure. In recursion, the method itself is called repeatedly. A selection statement must be used to control whether to call the method recursively or not.

recursion overhead

Recursion bears substantial overhead. Each time the program calls a method, the system must allocate memory for all of the method’s local variables and parameters. This can consume considerable memory and requires extra time to manage the memory.

recursion advantages

Any problem that can be solved recursively can be solved nonrecursively with iterations. Recursion has some negative aspects: It uses up too much time and too much memory. Why, then, should you use it? In some cases, using recursion enables you to specify a clear, simple solution for an inherently recursive problem that would otherwise be difficult to obtain. Examples are the directory-size problem, the Tower of Hanoi problem, and the fractal problem, which are rather difficult to solve without using recursion.

recursion or iteration?

The decision whether to use recursion or iteration should be based on the nature of, and your understanding of, the problem you are trying to solve. The rule of thumb is to use whichever approach can best develop an intuitive solution that naturally mirrors the problem. If an iterative solution is obvious, use it. It will generally be more efficient than the recursive option.

 Note

Recursive programs can run out of memory, causing a StackOverflowError.

StackOverflowError

 Tip

If you are concerned about your program’s performance, avoid using recursion because it takes more time and consumes more memory than iteration. In general, recursion can be used to solve the inherent recursive problems such as Tower of Hanoi, recursive directories, and Sierpinski triangles.

performance concern

	18.9.1 Which of the following statements are true?

	Any recursive method can be converted into a nonrecursive method.

	Recursive methods take more time and memory to execute than nonrecursive methods.

	Recursive methods are always simpler than nonrecursive methods.

	There is always a selection statement in a recursive method to check whether a base case is reached.

	18.9.2 What is a cause for a stack-overflow exception?

18.10 Tail Recursion

	A tail-recursive method is efficient.

A recursive method is said to be tail recursive if there are no pending operations to be performed on return from a recursive call, as illustrated in Figure 18.11a. However, method B in Figure 18.11b is not tail recursive because there are pending operations after a method call is returned.

Figure 18.11

A tail-recursive method has no pending operations after a recursive call.

	Recursive method A
 …
 …
 …
 Invoke method A recursively

	
	Recursive method B
 …
 …
 Invoke method B recursively
 …
 …

	(a) Tail recursion

	
	(b) Nontail recursion

tail recursion

For example, the recursive isPalindrome method (lines 6–13) in Listing 18.4 is tail recursive because there are no pending operations after recursively invoking isPalindrome in line 12. However, the recursive factorial method (lines 16–21) in Listing 18.1 is not tail recursive because there is a pending operation, namely multiplication, to be performed on return from each recursive call.

Tail recursion is desirable because the method ends when the last recursive call ends, and there is no need to store the intermediate calls in the stack. Compilers can optimize tail recursion to reduce stack size.

A nontail-recursive method can often be converted to a tail-recursive method by using auxiliary parameters. These parameters are used to contain the result. The idea is to incorporate the pending operations into the auxiliary parameters in such a way that the recursive call no longer has a pending operation. You can define a new auxiliary recursive method with the auxiliary parameters. This method may overload the original method with the same name but a different signature. For example, the factorial method in Listing 18.1 is written in a tail-recursive way in Listing 18.10.

Listing 18.10 ComputeFactorialTailRecursion.java

			1 public class ComputeFactorialTailRecursion {
			2 /** Return the factorial for a specified number */
original method		3 public static long factorial(int n) {
invoke auxiliary method	4 return factorial(n, 1); // Call auxiliary method
			5 }
			6
			7 /** Auxiliary tail−recursive method for factorial */
auxiliary method	8 private static long factorial(int n, int result) {
			9 if (n == 0)
		 10 return result;
		 11 else
recursive call	 12 return factorial(n − 1, n * result); // Recursive call
		 13 }
		 14 }

The first factorial method (line 3) simply invokes the second auxiliary method (line 4). The second method contains an auxiliary parameter result that stores the result for the factorial of n. This method is invoked recursively in line 12. There is no pending operation after a call is returned. The final result is returned in line 10, which is also the return value from invoking factorial(n, 1) in line 4.

	18.10.1 Identify tail-recursive methods in this chapter.

	18.10.2 Rewrite the fib method in Listing 18.2 using tail recursion.

Key Terms

	base case 720

	direct recursion 723

	indirect recursion 723

	infinite recursion 723

	recursive helper method 729

	recursive method 720

	stopping condition 720

	tail recursion   740

Chapter Summary

	A recursive method is one that directly or indirectly invokes itself. For a recursive method to terminate, there must be one or more base cases.

	Recursion is an alternative form of program control. It is essentially repetition without a loop control. It can be used to write simple, clear solutions for inherently recursive problems that would otherwise be difficult to solve.

	Sometimes the original method needs to be modified to receive additional parameters in order to be invoked recursively. A recursive helper method can be defined for this purpose.

	Recursion bears substantial overhead. Each time the program calls a method, the system must allocate memory for all of the method’s local variables and parameters. This can consume considerable memory and requires extra time to manage the memory.

	A recursive method is said to be tail recursive if there are no pending operations to be performed on return from a recursive call. Some compilers can optimize tail recursion to reduce stack size.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 18.2 and 18.3

	*18.1 (Factorial) Using the BigInteger class introduced in Section 10.9, you can find the factorial for a large number (e.g., 100!). Implement the factorial method using recursion. Write a program that prompts the user to enter an integer and displays its factorial.

	*18.2 (Fibonacci numbers) Rewrite the fib method in Listing 18.2 using iterations.

Hint: To compute fib(n) without recursion, you need to obtain fib(n − 2) and fib(n − 1) first. Let f0 and f1 denote the two previous Fibonacci numbers. The current Fibonacci number would then be f0 + f1. The algorithm can be described as follows:

f0 = 0; // For fib(0)
f1 = 1; // For fib(1)

for (int i = 1; i <= n; i++) {
 currentFib = f0 + f1;
 f0 = f1;
 f1 = currentFib;
}
// After the loop, currentFib is fib(n)

Write a test program that prompts the user to enter an index and displays its Fibonacci number.

	*18.3 (Compute greatest common divisor using recursion) The gcd(m, n) can also be defined recursively as follows:

	If m % n is 0, gcd(m, n) is n.

	Otherwise, gcd(m, n) is gcd(n, m % n).

Write a recursive method to find the GCD. Write a test program that prompts the user to enter two integers and displays their GCD.

	18.4 (Sum series) Write a recursive method to compute the following series:

 m(
 i
)=1+
1
2

 +
1
3

 +…+
1
 i

Write a test program that displays m(i) for i
 =
 1, 2, . . . , 10.

	18.5 (Sum series) Write a recursive method to compute the following series:

m(i) = 
1
3

 + 
2
5

 + 
3
7

 + 
4
9

 + 
5

11

 + 
6

13

 + ⋯ + 
i

2i + 1

Write a test program that displays m(i) for i = 1, 2, . . . , 10.

	*18.6 (Sum series) Write a recursive method to compute the following series:

 m(
 i
)=
1
2

 +
2
3

 +…+
 i

 i+1

Write a test program that displays m(i) for i
 =
 1, 2, . . . , 10.

	*18.7 (Fibonacci series) Modify Listing 18.2 , ComputeFibonacci.java, so that the program finds the number of times the fib method is called. (Hint: Use a static variable and increment it every time the method is called.)

Section 18.4

	*18.8 (Print the digits in an integer reversely) Write a recursive method that displays an int value reversely on the console using the following header:

public static void reverseDisplay(int value)

For example, reverseDisplay(12345) displays 54321. Write a test program that prompts the user to enter an integer and displays its reversal.

	*18.9 (Print the characters in a string reversely) Write a recursive method that displays a string reversely on the console using the following header:

public static void reverseDisplay(String value)

For example, reverseDisplay("abcd") displays dcba. Write a test program that prompts the user to enter a string and displays its reversal.

	*18.10 (Occurrences of a specified character in a string) Write a recursive method that finds the number of occurrences of a specified letter in a string using the following method header:

public static int count(String str, char a)

For example, count("Welcome", 'e') returns 2. Write a test program that prompts the user to enter a string and a character, and displays the number of occurrences for the character in the string.

	*18.11 (Sum the digits in an integer using recursion) Write a recursive method that computes the sum of the digits in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits(234) returns

2+3+4=9.

 Write a test program that prompts the user to enter an integer and displays its sum.

Section 18.5

	**18.12 (Print the characters in a string reversely) Rewrite Programming Exercise 18.9 using a helper method to pass the substring high index to the method. The helper method header is

public static void reverseDisplay(String value, int high)

	*18.13 (Find the largest number in an array) Write a recursive method that returns the largest integer in an array. Write a test program that prompts the user to enter a list of eight integers and displays the largest element.

	*18.14 (Find the number of uppercase letters in a string) Write a recursive method to return the number of uppercase letters in a string. Write a test program that prompts the user to enter a string and displays the number of uppercase letters in the string.

	*18.15 (Occurrences of a specified character in a string) Rewrite Programming Exercise 18.10 using a helper method to pass the substring high index to the method. The helper method header is

public static int count(String str, char a, int high)

	*18.16 (Find the number of uppercase letters in an array) Write a recursive method to return the number of uppercase letters in an array of characters. You need to define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars)
public static int count(char[] chars, int high)

Write a test program that prompts the user to enter a list of characters in one line and displays the number of uppercase letters in the list.

	*18.17 (Occurrences of a specified character in an array) Write a recursive method that finds the number of occurrences of a specified character in an array. You need to define the following two methods. The second one is a recursive helper method.

public static int count(char[] chars, char ch)
public static int count(char[] chars, char ch, int high)

Write a test program that prompts the user to enter a list of characters in one line, and a character, and displays the number of occurrences of the character in the list.

Sections 18.6–18.10

	*18.18 (Tower of Hanoi) Modify Listing 18.8, TowerOfHanoi.java, so the program finds the number of moves needed to move n disks from tower A to tower B. (Hint: Use a static variable and increment it every time the method is called.)

	*18.19 (Sierpinski triangle) Revise Listing 18.9 to develop a program that lets the user use the

 +/2

 buttons, primary/secondary mouse buttons, and UP/DOWN arrow keys to increase or decrease the current order by 1, as shown in Figure 18.12a . The initial order is 0. If the current order is 0, the Decrease button is ignored.

	*18.20 (Display circles) Write a Java program that displays ovals, as shown in ­Figure 18.12b . The circles are centered in the pane. The gap between two adjacent circles is 10 pixels, and the gap between the border of the pane and the largest circle is also 10.

[image: Figure ay is a window titled, Exercise 18, underscore, 19, showing recursive triangles above buttons labeled, minus, and, +. Figure b is a window titled, Exercise 18, underscore, 20, showing concentric circles.]

Figure 18.12

(a) Programming Exercise 18.19 uses the
 +
 or
 −
 buttons to increase or decrease the current order by 1.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission. (b) Programming Exercise 18.20 draws ovals using a recursive method.

	*18.21 (Decimal to binary) Write a recursive method that converts a decimal number into a binary number as a string. The method header is

public static String dec2Bin(int value)

Write a test program that prompts the user to enter a decimal number and displays its binary equivalent.

	*18.22 (Decimal to hex) Write a recursive method that converts a decimal number into a hex number as a string. The method header is

public static String dec2Hex(int value)

Write a test program that prompts the user to enter a decimal number and displays its hex equivalent.

	*18.23 (Binary to decimal) Write a recursive method that parses a binary number as a string into a decimal integer. The method header is

public static int bin2Dec(String binaryString)

Write a test program that prompts the user to enter a binary string and displays its decimal equivalent.

	*18.24 (Hex to decimal) Write a recursive method that parses a hex number as a string into a decimal integer. The method header is

public static int hex2Dec(String hexString)

Write a test program that prompts the user to enter a hex string and displays its decimal equivalent.

	**18.25 (String permutation) Write a recursive method to print all the permutations of a string. For example, for the string abc, the permutation is

abc
acb
bac
bca
cab
cba

(Hint: Define the following two methods. The second is a helper method.)

public static void displayPermutation(String s)
public static void displayPermutation(String s1, String s2)

The first method simply invokes displayPermutation(" ", s). The second method uses a loop to move a character from s2 to s1 and recursively invokes it with new s1 and s2. The base case is that s2 is empty and prints s1 to the console.

Write a test program that prompts the user to enter a string and displays all its permutations.

	**18.26 (Create a maze) Write a program that will find a path in a maze, as shown in Figure 18.13a . The maze is represented by a

8×8

 board. The path must meet the following conditions:

[image: Figures ay and b show paths through sample mazes.]

Figure 18.13

The program finds a path from the upper-left corner to the bottom-right ­corner.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	The path is between the upper-left corner cell and the lower-right corner cell in the maze.

 	The program enables the user to place or remove a mark on a cell. A path consists of adjacent unmarked cells. Two cells are said to be adjacent if they are horizontal or vertical neighbors.

 	The path does not contain cells that form a square. The path in Figure 18.13b , for example, does not meet this condition. (The condition makes a path easy to identify on the board.)

	**18.27 (Koch snowflake fractal) The text presented the Sierpinski triangle fractal. In this exercise, you will write a program to display another fractal, called the Koch snowflake, named after a famous Swedish mathematician. A Koch snowflake is created as follows:

	Begin with an equilateral triangle, which is considered to be the Koch fractal of order (or level) 0, as shown in Figure 18.14a .

	Divide each line in the shape into three equal line segments and draw an outward equilateral triangle with the middle line segment as the base to create a Koch fractal of order 1, as shown in Figure 18.14b .

	Repeat Step 2 to create a Koch fractal of order 2, 3, . . . , and so on, as shown in Figures 18.14c and d.

[image: Figures ay to d show Koch snowflakes of increasing orders. The snowflake begins as a triangle at order 0, but at each successive order, each side of the snowflake gains 2 more sides, forming an outward peak.]

Figure 18.14

A Koch snowflake is a fractal starting with a triangle.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**18.28 (Nonrecursive directory size) Rewrite Listing 18.7 , DirectorySize.java, without using recursion.

	*18.29 (Number of files in a directory) Write a program that prompts the user to enter a directory and displays the number of the files in the directory.

Search a string in a directory

	**18.30 (Find words) Write a program that finds all occurrences of a word in all the files under a directory, recursively. Pass the parameters from the command line as follows:

java Exercise18_30 dirName word

	**18.31 (Replace words) Write a program that replaces all occurrences of a word with a new word in all the files under a directory, recursively. Pass the parameters from the command line as follows:

java Exercise18_31 dirName oldWord newWord

	***18.32 (Game: Knight’s Tour) The Knight’s Tour is an ancient puzzle. The objective is to move a knight, starting from any square on a chessboard, to every other square once, as shown in Figure 18.15a . Note the knight makes only L-shaped moves (two spaces in one direction and one space in a perpendicular direction). As shown in Figure 18.15b , the knight can move to eight squares. Write a program that displays the moves for the knight, as shown in Figure 18.15c . When you click a cell, the knight is placed at the cell. This cell will be the starting point for the knight. Click the Solve button to display the path for a solution.

[image: Figures ay, b, and c show diagrams pertaining to the knight’s tour.]

Figure 18.15

(a) A knight traverses all squares once. (b) A knight makes an L-shaped move. (c) A program displays a Knight’s Tour path.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

(Hint: A brute-force approach for this problem is to move the knight from one square to another available square arbitrarily. Using such an approach, your program will take a long time to finish. A better approach is to employ some heuristics. A knight has two, three, four, six, or eight possible moves, depending on its location. Intuitively, you should attempt to move the knight to the least accessible squares first and leave those more accessible squares open, so there will be a better chance of success at the end of the search.)

	***18.33 (Game: Knight’s Tour animation) Write a program for the Knight’s Tour problem. Your program should let the user move a knight to any starting square and click the Solve button to animate a knight moving along the path, as shown in Figure 18.16 .

[image: Figures ay to d show a window titled, Exercise 18, underscore, 33. The windows show several steps in the knight’s tour, with a continuous line drawn between the beginning and ending points at each step.]

Figure 18.16

A knight traverses along the path.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**18.34 (Game: Eight Queens) The Eight Queens problem is to find a solution to place a queen in each row on a chessboard such that no two queens can attack each other. Write a program to solve the Eight Queens problem using recursion and display the result as shown in Figure 18.17 .

[image: A window titled, Exercise 18, underscore, 34.]

Figure 18.17

The program displays a solution to the Eight Queens problem.

Source: ­Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**18.35 (H-tree fractal) An H-tree (introduced at the beginning of this chapter in ­Fig­ure 18.1) is a fractal defined as follows:

	Begin with a letter H. The three lines of H are of the same length, as shown in Figure 18.1a .

	The letter H (in its sans-serif form, H) has four endpoints. Draw an H centered at each of the four endpoints to an H-tree of order 1, as shown in Figure 18.1b . These Hs are half the size of the H that contains the four endpoints.

	Repeat Step 2 to create an H-tree of order 2, 3, . . . , and so on, as shown in Figures 18.1c and d.

Write a program that draws an H-tree, as shown in Figure 18.1 .

	18.36 (Sierpinski triangle) Write a program that lets the user to enter the order and display the filled Sierpinski triangles as shown in Figure 18.18 .

[image: Four windows titled, Exercise 18, underscore, 36, show recursive triangles, from order 0 to order 3. The original triangle is shaded, and the new, inverted triangles appearing inside it are unshaded.]

Figure 18.18

A filled Sierpinski triangle is displayed.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**18.37 (Hilbert curve) The Hilbert curve, first described by German mathematician David Hilbert in 1891, is a space-filling curve that visits every point in a square grid with a size of

2 × 2, 4 × 4, 8 × 8, 16 × 16,

 or any other power of 2. Write a program that displays a Hilbert curve for the specified order, as shown in Figure 18.19 .

[image: Figures ay to d show Hilbert curves of increasing orders.]

Figure 18.19

A Hilbert curve with the specified order is drawn.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**18.38 (Recursive tree) Write a program to display a recursive tree as shown in Figure 18.20 .

Recursive tree

[image: Figures ay to d show a recursive tree of increasing orders. At order 0, there is a single line. At order 1, the line branches, so it has 2 points. Branching continues such that at order 5, there are 32 points.]

Figure 18.20

A recursive tree with the specified depth is drawn.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**18.39 (Drag the tree) Revise Programming Exercise 18.38 to move the tree to where the mouse is dragged.

CHAPTER 19 Generics

Objectives

	To describe the benefits of generics (§19.2).

	To use generic classes and interfaces (§19.2).

	To define generic classes and interfaces (§19.3).

	To explain why generic types can improve reliability and readability (§19.3).

	To define and use generic methods and bounded generic types (§19.4).

	To develop a generic sort method to sort an array of Comparable objects (§19.5).

	To use raw types for backward compatibility (§19.6).

	To explain why wildcard generic types are necessary (§19.7).

	To describe generic-type erasure and list certain restrictions and l­imitations on generic types caused by type erasure (§19.8).

	To design and implement generic matrix classes (§19.9).

19.1 Introduction

	Generics enable you to detect errors at compile time rather than at runtime.

You have used a generic class ArrayList in Chapter 11, and generic interface Comparable in Chapter 13. Generics let you parameterize types. With this capability, you can define a class or a method with generic types that the compiler can replace with concrete types. For example, Java defines a generic ArrayList class for storing the elements of a generic type. From this generic class, you can create an ArrayList object for holding strings, and an ArrayList object for holding numbers. Here, strings and numbers are concrete types that replace the generic type.

what is generics?

The key benefit of generics is to enable errors to be detected at compile time rather than at runtime. A generic class or method permits you to specify allowable types of objects that the class or method can work with. If you attempt to use an incompatible object, the compiler will detect that error.

why generics?

This chapter explains how to define and use generic classes, interfaces, and methods and demonstrates how generics can be used to improve software reliability and readability. It can be intertwined with Chapter 13, Abstract Classes and Interfaces.

19.2 Motivations and Benefits

	The motivation for using Java generics is to detect errors at compile time.

Java has allowed you to define generic classes, interfaces, and methods since JDK 1.5. Several interfaces and classes in the Java API were modified using generics. For example, prior to JDK 1.5, the java.lang.Comparable interface was defined as shown in Figure 19.1a, but since JDK 1.5, it has been modified as shown in Figure 19.1b.

	
package java.lang;

public interface Comparable {
 public int compareTo(Object o)
}

	
	
package java.lang;
public interface Comparable<T> {
 public int compareTo(T o)
}

	(a) Prior to JDK 1.5

	
	(b) JDK 1.5

Figure 19.1 

The java.lang.Comparable interface was modified in JDK 1.5 with a generic type.

Here, <T> represents a formal generic type, which can be replaced later with an actual concrete type. Replacing a generic type is called a generic instantiation. By convention, a single capital letter such as E or T is used to denote a formal generic type.

formal generic type

actual concrete type

generic instantiation

To see the benefits of using generics, let us examine the code in Figure 19.2. The statement in Figure 19.2a declares that c is a reference variable whose type is Comparable and invokes the compareTo method to compare a Date object with a string. The code compiles fine, but it has a runtime error because a string cannot be compared with a date.

	
Comparable c = new Date();
System.out.println(c.compareTo("red"));

	
	
Comparable<Date> c = new Date();
System.out.println(c.compareTo("red"));

	(a) Prior to JDK 1.5

	
	(b) JDK 1.5

Figure 19.2 

The new generic type detects possible errors at compile time.

The statement in Figure 19.2b declares that c is a reference variable whose type is Comparable<Date> and invokes the compareTo method to compare a Date object with a string. This code has a compile error because the argument passed to the compareTo method must be of the Date type. Since the errors can be detected at compile time rather than at runtime, the generic type makes the program more reliable.

reliable

ArrayList was introduced in Section 11.11, The ArrayList Class. This class has been a generic class since JDK 1.5. Figure 19.3 shows the class diagram for ArrayList before and since JDK 1.5, respectively.

[image: Figures ay and b contain U M L diagrams.]
Figure 19.3 

ArrayList is a generic class since JDK 1.5.

Description

For example, the following statement creates a list for strings:

ArrayList<String> list = new ArrayList<>();

You can now add only strings into the list. For instance,

only strings allowed

list.add("Red");

If you attempt to add a nonstring, a compile error will occur. For example, the following statement is now illegal because list can contain only strings.

list.add(new Integer(1));

Generic types must be reference types. You cannot replace a generic type with a primitive type such as int, double, or char. For example, the following statement is wrong:

generic reference type

ArrayList<int> intList = new ArrayList<>();

To create an ArrayList object for int values, you have to use

ArrayList<Integer> intList = new ArrayList<>();

You can add an int value to intList. For example,

intList.add(5);

Java automatically wraps 5 into new Integer(5). This is called autoboxing, as introduced in Section 10.8, Automatic Conversion between Primitive Types and Wrapper Class Types.

autoboxing

Casting is not needed to retrieve a value from a list with a specified element type because the compiler already knows the element type. For example, the following statements create a list that contains strings, add strings to the list, and retrieve strings from the list.

no casting needed

1 ArrayList<String> list = new ArrayList<>();
2 list.add("Red");
3 list.add("White");
4 String s = list.get(0); // No casting is needed

Prior to JDK 1.5, without using generics, you would have had to cast the return value to String as:

String s = (String)(list.get(0)); // Casting needed prior to JDK 1.5

If the elements are of wrapper types, such as Integer, Double, and Character, you can directly assign an element to a primitive-type variable. This is called autounboxing, as introduced in Section 10.8. For example, see the following code:

autounboxing

1 ArrayList<Double> list = new ArrayList<>();
2 list.add(5.5); // 5.5 is automatically converted to new Double(5.5) 3 list.add(3.0); // 3.0 is automatically converted to new Double(3.0) 4 Double doubleObject = list.get(0); // No casting is needed
5 double d = list.get(1); // Automatically converted to double

In lines 2 and 3, 5.5 and 3.0 are automatically converted into Double objects and added to list. In line 4, the first element in list is assigned to a Double variable. No casting is necessary because list is declared for Double objects. In line 5, the second element in list is assigned to a double variable. The object in list.get(1) is automatically converted into a primitive-type value.

	19.2.1 Are there any compile errors in (a) and (b)?

	
ArrayList dates = new ArrayList();
dates.add(new Date());
dates.add(new String());

	
	ArrayList<Date> dates =
 new ArrayList<>();
dates.add(new Date());
dates.add(new String());

	(a) Prior to JDK 1.5

	
	(b) Since JDK 1.5

	19.2.2 What is wrong in (a)? Is the code in (b) correct?

	ArrayList dates = new ArrayList();
dates.add(new Date());
Date date = dates.get(0);

	
	ArrayList<Date> dates =
 new ArrayList<>();
dates.add(new Date());
Date date = dates.get(0);

	(a) Prior to JDK 1.5

	
	(b) Since JDK 1.5

	19.2.3 What are the benefits of using generic types?

19.3 Defining Generic Classes and Interfaces

	A generic type can be defined for a class or interface. A concrete type must be ­specified when using the class to create an object or using the class or interface to declare a reference variable.

Let us revise the stack class in Section 11.13, Case Study: A Custom Stack Class, to generalize the element type with a generic type. The new stack class, named GenericStack, is shown in Figure 19.4 and is implemented in Listing 19.1.

[image: An annotated U M L diagram with the name, Generic Stack, <, E, >, .]
Figure 19.4 

The GenericStack class encapsulates the stack storage and provides the operations for manipulating the stack.

Description

Listing 19.1 GenericStack.java

generic type E declared		 1 public class GenericStack<E> {
generic array list		 2 private java.util.ArrayList<E> list = new java.util.ArrayList<>();
				 3
getSize				 4 public int getSize() {
				 5 return list.size();
				 6 }
				 7
peek				 8 public E peek() {
				 9 return list.get(getSize() − 1);
				10 }
				11
push				12 public void push(E o) {
				13 list.add(o);
				14 }
				15
pop				16 public E pop() {
				17 E o = list.get(getSize() − 1);
				18 list.remove(getSize() − 1);
				19 return o;
				20 }
				21
isEmpty				22 public boolean isEmpty() {
				23 return list.isEmpty();
				24 }
				25
				26 @Override
				27 public String toString() {
				28 return "stack: " + list.toString();
				29 }
				30 }

The following example creates a stack to hold strings and adds three strings to the stack:

GenericStack<String> stack1 = new GenericStack<>();
stack1.push("London");
stack1.push("Paris");
stack1.push("Berlin");

This example creates a stack to hold integers and adds three integers to the stack:

GenericStack<Integer> stack2 = new GenericStack<>();
stack2.push(1); // autoboxing 1 to new Integer(1)
stack2.push(2);
stack2.push(3);

Instead of using a generic type, you could simply make the type element Object, which can accommodate any object type. However, using a specific concrete type can improve software reliability and readability because certain errors can be detected at compile time rather than at runtime. For example, because stack1 is declared GenericStack<String>, only strings can be added to the stack. It would be a compile error if you attempted to add an integer to stack1.

benefits of using generic types

 Caution

To create a stack of strings, you use new GenericStack<String>() or new GenericStack<>(). This could mislead you into thinking that the constructor of GenericStack should be defined as

generic class constructor

public GenericStack<E>()

This is wrong. It should be defined as

public GenericStack()

 Note

Occasionally, a generic class may have more than one parameter. In this case, place the parameters together inside the brackets, separated by commas—for example, <E1, E2, E3>.

multiple generic parameters

 Note

You can define a class or an interface as a subtype of a generic class or interface. For example, the java.lang.String class is defined to implement the Comparable interface in the Java API as follows:

public class String implements Comparable<String>

inheritance with generics

	19.3.1 What is the generic definition for java.lang.Comparable in the Java API?

	19.3.2 Since you create an instance of ArrayList of strings using new ArrayList <String>(), should the constructor in the ArrayList class be defined as

public ArrayList<E>()

	19.3.3 Can a generic class have multiple generic parameters?

	19.3.4 How do you declare a generic type in a class?

19.4 Generic Methods

	A generic type can be defined for a static method.

You can define generic interfaces (e.g., the Comparable interface in Figure 19.1b) and classes (e.g., the GenericStack class in Listing 19.1). You can also use generic types to define generic methods. For example, Listing 19.2 defines a generic method print (lines 10–14) to print an array of objects. Line 6 passes an array of integer objects to invoke the generic print method. Line 7 invokes print with an array of strings.

generic method

Listing 19.2 GenericMethodDemo.java

				 1 public class GenericMethodDemo {
				 2 public static void main(String[] args) {
				 3 Integer[] integers = {1, 2, 3, 4, 5};
				 4 String[] strings = {"London", "Paris", "New York", "Austin"};
				 5
				 6 GenericMethodDemo.<Integer>print(integers);
				 7 GenericMethodDemo.<String>print(strings);
				 8 }
				 9
generic method 		10 public static <E> void print(E[] list) {
				11 for (int i = 0; i < list.length; i++)
				12 System.out.print(list[i] + " ");
				13 System.out.println();
				14 }
				15 }

declare a generic method

To declare a generic method, you place the generic type <E> immediately after the keyword static in the method header. For example,

public static <E> void print(E[] list)

invoke generic method

To invoke a generic method, prefix the method name with the actual type in angle brackets. For example,

GenericMethodDemo.<Integer>print(integers);
GenericMethodDemo.<String>print(strings);

or simply invoke it as follows:

print(integers);
print(strings);

In the latter case, the actual type is not explicitly specified. The compiler automatically discovers the actual type.

bounded generic type

A generic type can be specified as a subtype of another type. Such a generic type is called bounded. For example, Listing 19.3 revises the equalArea method in Listing 13.4, ­TestGeometricObject.java, to test whether two geometric objects have the same area. The bounded generic type <E extends GeometricObject> (line 10) specifies that E is a generic subtype of GeometricObject. You must invoke equalArea by passing two instances of GeometricObject.

Listing 19.3 BoundedTypeDemo.java

				 1 public class BoundedTypeDemo {
				 2 public static void main(String[] args) {
Rectangle in Listing 13.3 3 Rectangle rectangle = new Rectangle(2, 2);
Circle in Listing 13.2 4 Circle circle = new Circle(2);
				 5
				 6 System.out.println("Same area? " +
				 7 equalArea(rectangle, circle));
				 8 }
				 9
bounded generic type		10 public static <E extends GeometricObject> boolean equalArea(
				11 E object1, E object2) {
				12 return object1.getArea() == object2.getArea();
				13 }
				14 }

 Note

An unbounded generic type <E> is the same as <E extends Object>.

 Note

To define a generic type for a class, place it after the class name, such as GenericStack<E>. To define a generic type for a method, place the generic type before the method return type, such as <E> void max(E o1, E o2).

generic class parameter vs. generic method parameter

	19.4.1 How do you declare a generic method? How do you invoke a generic method?

	19.4.2 What is a bounded generic type?

19.5 Case Study: Sorting an Array of Objects

	You can develop a generic method for sorting an array of Comparable objects.

This section presents a generic method for sorting an array of Comparable objects. The objects are instances of the Comparable interface and they are compared using the ­compareTo method. To test the method, the program sorts an array of integers, an array of double numbers, an array of characters, and an array of strings. The program is shown in Listing 19.4.

Listing 19.4 GenericSort.java

 1 public class GenericSort {
 2 public static void main(String[] args) {
 3 // Create an Integer array
 4 Integer[] intArray = {new Integer(2), new Integer(4),
 5 new Integer(3)};
 6
 7 // Create a Double array
 8 Double[] doubleArray = {new Double(3.4), new Double(1.3),
 9 new Double(−22.1)};
 10
 11 // Create a Character array
 12 Character[] charArray = {new Character('a'),
 13 new Character('J'), new Character('r')};
 14
 15 // Create a String array
 16 String[] stringArray = {"Tom", "Susan", "Kim"};
 17
 18 // Sort the arrays
sort Integer objects 19 sort(intArray);
sort Double objects 20 sort(doubleArray);
sort Character objects 21 sort(charArray);
sort String objects 22 sort(stringArray);
 23
 24 // Display the sorted arrays
 25 System.out.print("Sorted Integer objects: ");
 26 printList(intArray);
 27 System.out.print("Sorted Double objects: ");
 28 printList(doubleArray);
 29 System.out.print("Sorted Character objects: ");
 30 printList(charArray);
 31 System.out.print("Sorted String objects: ");
 32 printList(stringArray);
 33 }
 34
 35 /** Sort an array of comparable objects */
generic sort method 36 public static <E extends Comparable<E>> void sort(E[] list) {
 37 E currentMin;
 38 int currentMinIndex;
 39
 40 for (int i = 0; i < list.length − 1; i++) {
 41 // Find the minimum in the list[i+1..list.length−2]
 42 currentMin = list[i];
 43 currentMinIndex = i;
 44
 45 for (int j = i + 1; j < list.length; j++) {
compareTo 46 if (currentMin.compareTo(list[j]) > 0) {
 47 currentMin = list[j];
 48 currentMinIndex = j;
 49 }
 50 }
 51
 52 // Swap list[i] with list[currentMinIndex] if necessary;
 53 if (currentMinIndex != i) {
 54 list[currentMinIndex] = list[i];
 55 list[i] = currentMin;
 56 }
 57 }
 58 }
 59
 60 /** Print an array of objects */
 61 public static void printList(Object[] list) {
 62 for (int i = 0; i < list.length; i++)
 63 System.out.print(list[i] + " ");
 64 System.out.println();
 65 }
 66 }

Sorted Integer objects: 2 3 4
Sorted Double objects: −22.1 1.3 3.4
Sorted Character objects: J a r
Sorted String objects: Kim Susan Tom

The algorithm for the sort method is the same as in Listing 7.8, SelectionSort.java. The sort method in that program sorts an array of double values. The sort method in this example can sort an array of any object type, provided that the objects are also instances of the Comparable interface. The generic type is defined as <E extends Comparable<E>> (line 36). This has two meanings. First, it specifies that E is a subtype of Comparable. Second, it specifies that the elements to be compared are of the E type as well.

The sort method uses the compareTo method to determine the order of the objects in the array (line 46). Integer, Double, Character, and String implement Comparable, so the objects of these classes can be compared using the compareTo method. The program creates arrays of Integer objects, Double objects, Character objects, and String objects (lines 4–16) and invokes the sort method to sort these arrays (lines 19–22).

	19.5.1 Given int[] list = {1, 2, −1}, can you invoke sort(list) using the sort method in Listing 19.4 ?

	19.5.2 Given int[] list = {new Integer(1), new Integer(2), new Integer (−1)}, can you invoke sort(list) using the sort method in Listing 19.4 ?

19.6 Raw Types and Backward Compatibility

	A generic class or interface used without specifying a concrete type, called a raw type, enables backward compatibility with earlier versions of Java.

You can use a generic class without specifying a concrete type such as the following:

GenericStack stack = new GenericStack(); // raw type

This is roughly equivalent to

GenericStack<Object> stack = new GenericStack<Object>();

A generic class such as GenericStack and ArrayList used without a type parameter is called a raw type. Using raw types allows for backward compatibility with earlier versions of Java. For example, a generic type has been used in java.lang.Comparable since JDK 1.5, but a lot of code still uses the raw type Comparable, as given in Listing 19.5:

raw type

backward compatibility

Listing 19.5 Max.java

 1 public class Max {
 2 /** Return the maximum of two objects */
raw type 3 public static Comparable max(Comparable o1, Comparable o2) {
 4 if (o1.compareTo(o2) > 0)
 5 return o1;
 6 else
 7 return o2;
 8 }
 9 }

Comparable o1 and Comparable o2 are raw type declarations. Be careful: raw types are unsafe. For example, you might invoke the max method using

Max.max("Welcome", 23); // 23 is autoboxed into new Integer(23)

This would cause a runtime error because you cannot compare a string with an integer object. The Java compiler displays a warning on line 3 when compiled with the option –Xlint:unchecked, as shown in Figure 19.5.

[image: A window titled, command prompt.]
Figure 19.5 

The unchecked warnings are displayed using the compiler option –Xlint:unchecked.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

–Xlint:unchecked

A better way to write the max method is to use a generic type, as given in Listing 19.6.

Listing 19.6 MaxUsingGenericType.java

 1 public class MaxUsingGenericType {
 2 /** Return the maximum of two objects */
bounded type 3 public static <E extends Comparable<E>> E max(E o1, E o2) {
 4 if (o1.compareTo(o2) > 0)
 5 return o1;
 6 else
 7 return o2;
 8 }
 9 }

If you invoke the max method using

// 23 is autoboxed into new Integer(23)
MaxUsingGenericType.max("Welcome", 23);

a compile error will be displayed because the two arguments of the max method in ­MaxUsingGenericType must have the same type (e.g., two strings or two integer objects). Furthermore, the type E must be a subtype of Comparable<E>.

As another example, in the following code you can declare a raw type stack in line 1, assign new GenericStack<String> to it in line 2, and push a string and an integer object to the stack in lines 3 and 4:

1 GenericStack stack;
2 stack = new GenericStack<String>();
3 stack.push("Welcome to Java");
4 stack.push(new Integer(2));

However, line 4 is unsafe because the stack is intended to store strings, but an Integer object is added into the stack. Line 3 should be okay, but the compiler will show warnings for both line 3 and line 4, because it cannot follow the semantic meaning of the program. All the compiler knows is that stack is a raw type, and performing certain operations is unsafe. Therefore, warnings are displayed to alert potential problems.

 Tip

Since raw types are unsafe, this book will not use them from here on.

	19.6.1 What is a raw type? Why is a raw type unsafe? Why is the raw type allowed in Java?

	19.6.2 What is the syntax to declare an ArrayList reference variable using the raw type and assign a raw type ArrayList object to it?

19.7 Wildcard Generic Types

	You can use unbounded wildcards, bounded wildcards, or lower bound wildcards to specify a range for a generic type.

What are wildcard generic types, and why are they needed? Listing 19.7 gives an example to demonstrate the needs. The example defines a generic max method for finding the maximum in a stack of numbers (lines 12–22). The main method creates a stack of integer objects, adds three integers to the stack, and invokes the max method to find the maximum number in the stack.

Listing 19.7 WildCardNeedDemo.java

				 1 public class WildCardNeedDemo {
				 2 public static void main(String[] args) {
GenericStack<Integer> type	 3 GenericStack<Integer> intStack = new GenericStack<>();
				 4 intStack.push(1); // 1 is autoboxed into new Integer(1)
				 5 intStack.push(2);
				 6 intStack.push(−2);
				 7
				 8 System.out.print("The max number is " + max(intStack));
				 9 }
				10
				11 /** Find the maximum in a stack of numbers */
GenericStack<Number> type	12 public static double max(GenericStack<Number> stack) {
				13 double max = stack.pop().doubleValue(); // Initialize max
				14
				15 while (!stack.isEmpty()) {
				16 double value = stack.pop().doubleValue();
				17 if (value > max)
				18 max = value;
				19 }
				20
				21 return max;
				22 }
				23 }

The program in Listing 19.7 has a compile error in line 8 because intStack is not an instance of GenericStack<Number>. Thus, you cannot invoke max(intStack).

The fact is Integer is a subtype of Number, but GenericStack<Integer> is not a subtype of GenericStack<Number>. To circumvent this problem, use wildcard generic types. A wildcard generic type has three forms: ?, ? extends T, and ? super T, where T is a generic type.

The first form, ?, called an unbounded wildcard, is the same as ? extends Object. The second form, ? extends T, called a bounded wildcard, represents T or a subtype of T. The third form, ? super T, called a lower bound wildcard, denotes T or a supertype of T.

unbounded wildcard

bounded wildcard

lower bound wildcard

You can fix the error by replacing line 12 in Listing 19.7 as follows:

public static double max(GenericStack<? extends Number> stack) {

<? extends Number> is a wildcard type that represents Number or a subtype of ­Number, so it is legal to invoke max(new GenericStack<Integer>()) or max(new GenericStack<Double>()).

Listing 19.8 shows an example of using the ? wildcard in the print method that prints objects in a stack and empties the stack. <?> is a wildcard that represents any object type. It is equivalent to <? extends Object>. What happens if you replace ­GenericStack<?> with GenericStack<Object>? It would be wrong to invoke print(intStack) because intStack is not an instance of GenericStack<Object>. Note that GenericStack<Integer> is not a subtype of GenericStack<Object> even though ­Integer is a subtype of Object.

Listing 19.8 AnyWildCardDemo.java

 1 public class AnyWildCardDemo {
 2 public static void main(String[] args) {
GenericStack<Integer> type 3 GenericStack<Integer> intStack = new GenericStack<>();
 4 intStack.push(1); // 1 is autoboxed into new Integer(1)
 5 intStack.push(2);
 6 intStack.push(−2);
 7
 8 print(intStack);
 9 }
 10
 11 /** Prints objects and empties the stack */
wildcard type 12 public static void print(GenericStack<?> stack) {
 13 while (!stack.isEmpty()) {
 14 System.out.print(stack.pop() + " ");
 15 }
 16 }
 17 }

When is the wildcard <? super T> needed? Consider the example in Listing 19.9. The example creates a stack of strings in stack1 (line 3) and a stack of objects in stack2 (line 4) and invokes add(stack1, stack2) (line 8) to add the strings in stack1 into stack2. GenericStack<? super T> is used to declare stack2 in line 13. If <? super T> is replaced by <T>, a compile error will occur on add(stack1, stack2) in line 8 because stack1’s type is GenericStack<String> and stack2’s type is GenericStack<Object>. <? super T> represents type T or a supertype of T. Object is a supertype of String.

why <? Super T>

Listing 19.9 SuperWildCardDemo.java

				 1 public class SuperWildCardDemo {
				 2 public static void main(String[] args) {
GenericStack<String> type	 3 GenericStack<String> stack1 = new GenericStack<>();
				 4 GenericStack<Object> stack2 = new GenericStack<>();
				 5 stack2.push("Java");
				 6 stack2.push(2);
				 7 stack1.push("Sun");
				 8 add(stack1, stack2);
				 9 AnyWildCardDemo.print(stack2);
				10 }
				11
<? Super T> type		12 public static <T> void add(GenericStack<T> stack1,
				13 GenericStack<? super T> stack2) {
				14 while (!stack1.isEmpty())
				15 stack2.push(stack1.pop());
				16 }
				17 }

This program will also work if the method header in lines 12 and 13 is modified as follows:

public static <T> void add(GenericStack<? extends T> stack1,
 GenericStack<T> stack2)

The inheritance relationship involving generic types and wildcard types is summarized in ­Figure 19.6. In this figure, A and B represent classes or interfaces, and E is a generic-type parameter.

[image: Two diagrams show the relationships between generic and wild card types.]
Figure 19.6 

The relationship between generic types and wildcard types.

Description

	19.7.1 Is GenericStack the same as GenericStack<Object>?

	19.7.2 What is an unbounded wildcard, a bounded wildcard, and a lower bound wildcard?

	19.7.3 What happens if lines 12 and 13 in Listing 19.9 are changed to

 public static <T> void add(GenericStack<T> stack1,
 GenericStack<T> stack2)

	19.7.4 What happens if lines 12 and 13 in Listing 19.9 are changed to

 public static <T> void add(GenericStack<? extends T> stack1,
 GenericStack<T> stack2)

19.8 Erasure and Restrictions on Generics

	The information on generics is used by the compiler but is not available at runtime. This is called type erasure.

Generics are implemented using an approach called type erasure: The compiler uses the generic-type information to compile the code, but erases it afterward. Thus, the generic information is not available at runtime. This approach enables the generic code to be backward compatible with the legacy code that uses raw types.

type erasure

The generics are present at compile time. Once the compiler confirms that a generic type is used safely, it converts the generic type to a raw type. For example, the compiler checks whether the following code in (a) uses generics correctly, then translates it into the equivalent code in (b) for runtime use. The code in (b) uses the raw type.

erase generics

	
ArrayList<String> list = new ArrayList<>();
list.add("Oklahoma");
String state = list.get(0);

	
	ArrayList list = new ArrayList();
list.add("Oklahoma");
String state = (String)(list.get(0));

	(a)

	
	(b)

When generic classes, interfaces, and methods are compiled, the compiler replaces the generic type with the Object type. For example, the compiler would convert the following method in (a) into (b).

replace generic type

	public static <E> void print(E[] list) {
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 System.out.println();
}

	
	public static void print(Object[] list) {
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 System.out.println();
}

	(a)

	
	(b)

If a generic type is bounded, the compiler replaces it with the bounded type. For example, the compiler would convert the following method in (a) into (b).

replace bounded type

	public static <E extends GeometricObject>
 boolean equalArea(
 E object1,
 E object2) {
 return object1.getArea() ==
 object2.getArea();
}

	
	public static
 boolean equalArea(
 GeometricObject object1,
 GeometricObject object2) {
 return object1.getArea() ==
 object2.getArea();
}

	(a)

	
	(b)

important fact

It is important to note a generic class is shared by all its instances regardless of its actual concrete type. Suppose list1 and list2 are created as follows:

ArrayList<String> list1 = new ArrayList<>();
ArrayList<Integer> list2 = new ArrayList<>();

Although ArrayList<String> and ArrayList<Integer> are two types at compile time, only one ArrayList class is loaded into the JVM at runtime. list1 and list2 are both instances of ArrayList, so the following statements display true:

System.out.println(list1 instanceof ArrayList);
System.out.println(list2 instanceof ArrayList);

However, the expression list1 instanceof ArrayList<String> is wrong. Since ArrayList<String> is not stored as a separate class in the JVM, using it at runtime makes no sense.

Because generic types are erased at runtime, there are certain restrictions on how generic types can be used. Here are some of the restrictions:

Restriction 1: Cannot Use new E()

You cannot create an instance using a generic-type parameter. For example, the following statement is wrong:

E object = new E();

no new E()

The reason is new E() is executed at runtime, but the generic type E is not available at runtime.

Restriction 2: Cannot Use new E[]

You cannot create an array using a generic type parameter. For example, the following statement is wrong:

E[] elements = new E[capacity];

no new E[capacity]

You can circumvent this limitation by creating an array of the Object type then casting it to E[], as follows:

E[] elements = (E[])new Object[capacity];

unavoidable compile warning

However, casting to (E[]) causes an unchecked compile warning. The warning occurs because the compiler is not certain that casting will succeed at runtime. For example, if E is String and new Object[] is an array of Integer objects, (String[])(new Object[]) will cause a ClassCastException. This type of compile warning is a limitation of Java generics and is unavoidable.

Generic array creation using a generic class is not allowed, either. For example, the following code is wrong:

ArrayList<String>[] list = new ArrayList<String>[10];

You can use the following code to circumvent this restriction:

ArrayList<String>[] list = (ArrayList<String>[])new ArrayList[10];

However, you will still get a compile warning.

Restriction 3: A Generic Type Parameter of a Class Is Not Allowed in a Static Context

Since all instances of a generic class have the same runtime class, the static variables and methods of a generic class are shared by all its instances. Therefore, it is illegal to refer to a generic-type parameter for a class in a static method, field, or initializer. For example, the following code is illegal:

public class Test<E> {
 public static void m(E o1) { // Illegal
 }

 public static E o1; // Illegal

 static {
 E o2; // Illegal
 }
}

Restriction 4: Exception Classes Cannot Be Generic

A generic class may not extend java.lang.Throwable, so the following class declaration would be illegal:

public class MyException<T> extends Exception {
}

Why? If it were allowed, you would have a catch clause for MyException<T> as follows:

try {
 …
}
catch (MyException<T> ex) {
 …
 }

The JVM has to check the exception thrown from the try clause to see if it matches the type specified in a catch clause. This is impossible, because the type information is not present at runtime.

	19.8.1 What is erasure? Why are Java generics implemented using erasure?

	19.8.2 If your program uses ArrayList<String> and ArrayList<Date>, does the JVM load both of them?

	19.8.3 Can you create an instance using new E() for a generic type E? Why?

	19.8.4 Can a method that uses a generic class parameter be static? Why?

	19.8.5 Can you define a custom generic exception class? Why?

19.9 Case Study: Generic Matrix Class

	This section presents a case study on designing classes for matrix operations using generic types.

The addition and multiplication operations for all matrices are similar except that their element types differ. Therefore, you can design a superclass that describes the common operations shared by matrices of all types regardless of their element types, and you can define subclasses tailored to specific types of matrices. This case study gives implementations for two types: int and Rational. For the int type, the wrapper class Integer should be used to wrap an int value into an object, so the object is passed in the methods for operations.

The class diagram is shown in Figure 19.7. The methods addMatrix and ­multiplyMatrix add and multiply two matrices of a generic type E[][]. The static method printResult ­displays the matrices, the operator, and their result. The methods add, multiply, and zero are abstract because their implementations depend on the specific type of the array elements. For example, the zero() method returns 0 for the Integer type and 0/1 for the Rational type. These methods will be implemented in the subclasses in which the matrix element type is specified.

[image: A U M L diagram, with 3 parts.]
Figure 19.7 

The GenericMatrix class is an abstract superclass for IntegerMatrix and RationalMatrix.

Description

IntegerMatrix and RationalMatrix are concrete subclasses of ­GenericMatrix. These two classes implement the add, multiply, and zero methods defined in the ­GenericMatrix class.

Listing 19.10 implements the GenericMatrix class. <E extends Number> in line 1 specifies the generic type is a subtype of Number. Three abstract methods—add, ­multiply, and zero—are defined in lines 3, 6, and 9. These methods are abstract because we cannot implement them without knowing the exact type of the elements. The addMaxtrix (lines 12–30) and multiplyMatrix (lines 33–57) methods implement the methods for adding and multiplying two matrices. All these methods must be nonstatic because they use generic-type E for the class. The printResult method (lines 60–84) is static because it is not tied to specific instances.

The matrix element type is a generic subtype of Number. This enables you to use an object of any subclass of Number as long as you can implement the abstract add, multiply, and zero methods in subclasses.

The addMatrix and multiplyMatrix methods (lines 12–57) are concrete methods. They are ready to use as long as the add, multiply, and zero methods are implemented in the subclasses.

The addMatrix and multiplyMatrix methods check the bounds of the matrices before performing operations. If the two matrices have incompatible bounds, the program throws an exception (lines 16 and 36).

Listing 19.10 GenericMatrix.java

bounded generic type		 1 public abstract class GenericMatrix<E extends Number> {
				 2 /** Abstract method for adding two elements of the matrices */
abstract method 		 3 protected abstract E add(E o1, E o2);
				 4
				 5 /** Abstract method for multiplying two elements of the matrices */
abstract method 		 6 protected abstract E multiply(E o1, E o2);
				 7
				 8 /** Abstract method for defining zero for the matrix element */
				 9 protected abstract E zero(); abstract method
				10
				11 /** Add two matrices */
add two matrices		12 public E[][] addMatrix(E[][] matrix1, E[][] matrix2) {
				13 // Check bounds of the two matrices
				14 if ((matrix1.length != matrix2.length) ||
				15 (matrix1[0].length != matrix2[0].length)) {
				16 throw new RuntimeException(
				17 "The matrices do not have the same size");
				18 }
				19
				20 E[][] result =
				21 (E[][])new Number[matrix1.length][matrix1[0].length];
				22
				23 // Perform addition
				24 for (int i = 0; i < result.length; i++)
				25 for (int j = 0; j < result[i].length; j++) {
				26 result[i][j] = add(matrix1[i][j], matrix2[i][j]);
				27 }
				28
				29 return result;
				30 }
				31
				32 /** Multiply two matrices */
multiply two matrices		33 public E[][] multiplyMatrix(E[][] matrix1, E[][] matrix2) {
				34 // Check bounds
				35 if (matrix1[0].length != matrix2.length) {
				36 throw new RuntimeException(
				37 "The matrices do not have compatible size");
				38 }
				39
				40 // Create result matrix
				41 E[][] result =
				42 (E[][])new Number[matrix1.length][matrix2[0].length];
				43
				44 // Perform multiplication of two matrices
				45 for (int i = 0; i < result.length; i++) {
				46 for (int j = 0; j < result[0].length; j++) {
				47 result[i][j] = zero();
				48
				49 for (int k = 0; k < matrix1[0].length; k++) {
				50 result[i][j] = add(result[i][j],
				51 multiply(matrix1[i][k], matrix2[k][j]));
				52 }
				53 }
				54 }
				55
				56 return result;
				57 }
				58
				59 /** Print matrices, the operator, and their operation result */
				60 public static void printResult(display result
				61 Number[][] m1, Number[][] m2, Number[][] m3, char op) {
				62 for (int i = 0; i < m1.length; i++) {
				63 for (int j = 0; j < m1[0].length; j++)
				64 System.out.print(" " + m1[i][j]);
				65
				66 if (i == m1.length / 2)
				67 System.out.print(" " + op + " ");
				68 else
				69 System.out.print(" ");
				70
				71 for (int j = 0; j < m2.length; j++)
				72 System.out.print(" " + m2[i][j]);
				73
				74 if (i == m1.length / 2)
				75 System.out.print(" = ");
				76 else
				77 System.out.print(" ");
				78
				79 for (int j = 0; j < m3.length; j++)
				80 System.out.print(m3[i][j] + " ");
				81
				82 System.out.println();
				83 }
				84 }
				85 }

Listing 19.11 implements the IntegerMatrix class. The class extends GenericMatrix<Integer> in line 1. After the generic instantiation, the add method in GenericMatrix<Integer> is now Integer add(Integer o1, Integer o2). The add, multiply, and zero methods are implemented for Integer objects. These methods are still protected because they are invoked only by the addMatrix and multiplyMatrix methods.

Listing 19.11 IntegerMatrix.java

extends generic type		 1 public class IntegerMatrix extends GenericMatrix<Integer> {
				 2 @Override /** Add two integers */
implement add 		 3 protected Integer add(Integer o1, Integer o2) {
				 4 return o1 + o2;
				 5 }
				 6
				 7 @Override /** Multiply two integers */
implement multiply		 8 protected Integer multiply(Integer o1, Integer o2) {
				 9 return o1 * o2;
				10 }
				11
				12 @Override /** Specify zero for an integer */
implement zero			13 protected Integer zero() {
				14 return 0;
				15 }
				16 }

Listing 19.12 implements the RationalMatrix class. The Rational class was introduced in Listing 13.13, Rational.java. Rational is a subtype of Number. The ­RationalMatrix class extends GenericMatrix<Rational> in line 1. After the generic instantiation, the add method in GenericMatrix<Rational> is now Rational add(Rational r1, Rational r2). The add, multiply, and zero methods are implemented for Rational objects. These methods are still protected because they are invoked only by the addMatrix and ­multiplyMatrix methods.

Listing 19.12 RationalMatrix.java

extends generic type		 1 public class RationalMatrix extends GenericMatrix<Rational> {
				 2 @Override /** Add two rational numbers */
				 3 protected Rational add(Rational r1, Rational r2) {
implement add			 4 return r1.add(r2);
				 5 }
				 6
				 7 @Override /** Multiply two rational numbers */
				 8 protected Rational multiply(Rational r1, Rational r2) {
implement multiply		 9 return r1.multiply(r2);
				10 }
				11
				12 @Override /** Specify zero for a Rational number */
implement zero			13 protected Rational zero() {
				14 return new Rational(0, 1);
				15 }
				16 }

Listing 19.13 gives a program that creates two Integer matrices (lines 4 and 5) and an ­IntegerMatrix object (line 8), and adds and multiplies two matrices in lines 12 and 16.

Listing 19.13 TestIntegerMatrix.java

 1 public class TestIntegerMatrix {
 2 public static void main(String[] args) {
 3 // Create Integer arrays m1, m2
create matrices 4 Integer[][] m1 = new Integer[][]{{1, 2, 3}, {4, 5, 6}, {1, 1, 1}};
 5 Integer[][] m2 = new Integer[][]{{1, 1, 1}, {2, 2, 2}, {0, 0, 0}};
 6
 7 // Create an instance of IntegerMatrix
create IntegerMatrix 8 IntegerMatrix integerMatrix = new IntegerMatrix();
 9
 10 System.out.println("\nm1 + m2 is ");
 11 GenericMatrix.printResult(
add two matrices 12 m1, m2, integerMatrix.addMatrix(m1, m2), '+');
 13
 14 System.out.println("\nm1 * m2 is ");
 15 GenericMatrix.printResult(
multiply two matrices 16 m1, m2, integerMatrix.multiplyMatrix(m1, m2), '*');
 17 }
 18 }

m1 + m2 is
 1 2 3 1 1 1 2 3 4
 4 5 6 + 2 2 2 = 6 7 8
 1 1 1 0 0 0 1 1 1
m1 * m2 is
 1 2 3 1 1 1 5 5 5
 4 5 6 * 2 2 2 = 14 14 14
 1 1 1 0 0 0 3 3 3

Listing 19.14 gives a program that creates two Rational matrices (lines 4–10) and a RationalMatrix object (line 13) and adds and multiplies two matrices in lines 17 and 19.

Listing 19.14 TestRationalMatrix.java

 1 public class TestRationalMatrix {
 2 public static void main(String[] args) {
 3 // Create two Rational arrays m1 and m2
create matrices 4 Rational[][] m1 = new Rational[3][3];
 5 Rational[][] m2 = new Rational[3][3];
 6 for (int i = 0; i < m1.length; i++)
 7 for (int j = 0; j < m1[0].length; j++) {
create RationalMatrix 8 m1[i][j] = new Rational(i + 1, j + 5);
 9 m2[i][j] = new Rational(i + 1, j + 6);
 10 }
 11
 12 // Create an instance of RationalMatrix
 13 RationalMatrix rationalMatrix = new RationalMatrix();
 14
 15 System.out.println("\nm1 + m2 is ");
 16 GenericMatrix.printResult(
add two matrices 17 m1, m2, rationalMatrix.addMatrix(m1, m2), '+');
 18
 19 System.out.println("\nm1 * m2 is ");
 20 GenericMatrix.printResult(
 21 m1, m2, rationalMatrix.multiplyMatrix(m1, m2), '*');
 22 }
 23 }

multiply two matrices

m1 + m2 is
 1/5 1/6 1/7 1/6 1/7 1/8 11/30 13/42 15/56
 2/5 1/3 2/7 + 1/3 2/7 1/4 = 11/15 13/21 15/28
 3/5 1/2 3/7 1/2 3/7 3/8 11/10 13/14 45/56
m1 * m2 is
 1/5 1/6 1/7 1/6 1/7 1/8 101/630 101/735 101/840
 2/5 1/3 2/7 * 1/3 2/7 1/4 = 101/315 202/735 101/420
 3/5 1/2 3/7 1/2 3/7 3/8 101/210 101/245 101/280

	19.9.1 Why are the add, multiple, and zero methods defined abstract in the ­GenericMatrix class?

	19.9.2 How are the add, multiple, and zero methods implemented in the ­IntegerMatrix class?

	19.9.3 How are the add, multiple, and zero methods implemented in the ­RationalMatrix class?

	19.9.4 What would be wrong if the printResult method is defined as follows?

 public static void printResult(
 E[][] m1, E[][] m2, E[][] m3, char op)

Key Terms

	actual concrete type 752

	bounded generic type 757

	bounded wildcard (<? extends E>) 762

	formal generic type 752

	generic instantiation 752

	lower bound wildcard (<? super E>) 762

	raw type 760

	unbounded wildcard (<?>) 762

	type erasure (<?>) 764

Chapter Summary

	Generics give you the capability to parameterize types. You can define a class or a method with generic types, which are substituted with concrete types.

	The key benefit of generics is to enable errors to be detected at compile time rather than at runtime.

	A generic class or method permits you to specify allowable types of objects that the class or method can work with. If you attempt to use a class or method with an incompatible object, the compiler will detect the error.

	A generic type defined in a class, interface, or a static method is called a formal generic type, which can be replaced later with an actual concrete type. Replacing a generic type is called a generic instantiation.

	A generic class such as ArrayList used without a type parameter is called a raw type. Use of raw types allows for backward compatibility with the earlier versions of Java.

	A wildcard generic type has three forms: ?, ? extends T, and ? super T, where T is a generic type. The first form, ?, called an unbounded wildcard, is the same as ? extends Object. The second form, ? extends T, called a bounded wildcard, represents T or a subtype of T. The third form, ? super T, called a lower bound wildcard, denotes T or a supertype of T.

	Generics are implemented using an approach called type erasure. The compiler uses the generic-type information to compile the code but erases it afterward, so the generic information is not available at runtime. This approach enables the generic code to be backward compatible with the legacy code that uses raw types.

	You cannot create an instance using a generic-type parameter such as new E().

	You cannot create an array using a generic-type parameter such as new E[10].

	You cannot use a generic-type parameter of a class in a static context.

	Generic-type parameters cannot be used in exception classes.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	19.1 (Revising Listing 19.1) Revise the GenericStack class in Listing 19.1 to implement it using an array rather than an ArrayList. You should check the array size before adding a new element to the stack. If the array is full, create a new array that doubles the current array size and copy the elements from the current array to the new array.

	19.2 (Implement GenericStack using inheritance) In Listing 19.1 , GenericStack is implemented using composition. Define a new stack class that extends ArrayList.

Draw the UML diagram for the classes then implement GenericStack. Write a test program that prompts the user to enter five strings and displays them in reverse order.

	19.3 (Distinct elements in ArrayList) Write the following method that returns a new ArrayList. The new list contains the nonduplicate elements from the original list.

public static <E> ArrayList<E> removeDuplicates(ArrayList<E> list)

	19.4 (Generic linear search) Implement the following generic method for linear search:

public static <E extends Comparable<E>>
 int linearSearch(E[] list, E key)

	19.5 (Maximum element in an array) Implement the following method that returns the maximum element in an array:

public static <E extends Comparable<E>> E max(E[] list)

	19.6 (Maximum element in a two-dimensional array) Write a generic method that returns the maximum element in a two-dimensional array.

public static <E extends Comparable<E>> E max(E[][] list)

	19.7 (Generic binary search) Implement the following method using binary search:

public static <E extends Comparable<E>>
 int binarySearch(E[] list, E key)

	19.8 (Shuffle ArrayList) Write the following method that shuffles an ArrayList:

public static <E> void shuffle(ArrayList<E> list)

	19.9 (Sort ArrayList) Write the following method that sorts an ArrayList:

public static <E extends Comparable<E>>
 void sort(ArrayList<E> list)

	19.10 (Largest element in an ArrayList) Write the following method that returns the largest element in an ArrayList:

public static <E extends Comparable<E>> E max(ArrayList<E> list)

	19.11 (ComplexMatrix) Use the Complex class introduced in Programming Exercise 13.17 to develop the ComplexMatrix class for performing matrix operations involving complex numbers. The ComplexMatrix class should extend the ­GenericMatrix class and implement the add, multiple, and zero methods. You need to modify GenericMatrix and replace every occurrence of Number by Object because Complex is not a subtype of Number. Write a test program that ­creates the following two matrices and displays the result of addition and ­multiplication of the matrices by invoking the printResult method.

CHAPTER 20 Lists, Stacks, Queues, and Priority Queues

Objectives

	To explore the relationship between interfaces and classes in the Java Collections Framework hierarchy (§20.2).

	To use the common methods defined in the Collection interface for operating collections (§20.2).

	To use the Iterator interface to traverse the elements in a collection (§20.3).

	To use a foreach loop to traverse the elements in a collection (§20.3).

	To use a forEach method to perform an action on each element in a collection (§20.4).

	To explore how and when to use ArrayList or LinkedList to store a list of elements (§20.5).

	To compare elements using the Comparable interface and the ­Comparator interface (§20.6).

	To use the static utility methods in the Collections class for sorting, searching, shuffling lists, and finding the largest and smallest element in collections (§20.7).

	To develop a multiple bouncing balls application using ArrayList (§20.8).

	To distinguish between Vector and ArrayList and to use the Stack class for creating stacks (§20.9).

	To explore the relationships among Collection, Queue, LinkedList, and PriorityQueue and to create priority queues using the PriorityQueue class (§20.10).

	To use stacks to write a program to evaluate expressions (§20.11).

20.1 Introduction

	Choosing the best data structures and algorithms for a particular task is one of the keys to developing high-performance software.

Chapters 18–29 are typically taught in a data structures course. A data structure is a collection of data organized in some fashion. The structure not only stores data, but also supports operations for accessing and manipulating the data. Without knowing data structures, you can still write programs, but your program may not be efficient. With a good knowledge of data ­structures, you can build efficient programs, which are important for practical applications.

data structure

why learning data structure

In object-oriented thinking, a data structure, also known as a container or container object, is an object that stores other objects, referred to as data or elements. To define a data structure is essentially to define a class. The class for a data structure should use data fields to store data and provide methods to support such operations as search, insertion, and deletion. To create a data structure is therefore to create an instance from the class. You can then apply the methods on the instance to manipulate the data structure, such as inserting an element into or deleting an element from the data structure.

container

Section 11.11 introduced the ArrayList class, which is a data structure to store elements in a list. Java provides several more data structures (lists, vectors, stacks, queues, priority queues, sets, and maps) that can be used to organize and manipulate data efficiently. These are commonly known as Java Collections Framework. We will introduce the applications of lists, vectors, stacks, queues, and priority queues in this chapter, and sets and maps in the next chapter. The implementation of these data structures will be discussed in Chapters 24–27. Through implementation, students gain a deep understanding on the efficiency of data structures and on how and when to use certain data structures. Finally, we will introduce design and implement data structures and algorithms for graphs in Chapters 28 and 29.

Java Collections Framework

20.2 Collections

	The Collection interface defines the common operations for lists, vectors, stacks, queues, priority queues, and sets.

The Java Collections Framework supports two types of containers:

	One for storing a collection of elements is simply called a collection.

collection

	The other, for storing key/value pairs, is called a map.

map

Maps are efficient data structures for quickly searching an element using a key. We will ­introduce maps in the next chapter. Now we turn our attention to the following collections.

	Sets store a group of nonduplicate elements.

Set

	Lists store an ordered collection of elements.

List

	Stacks store objects that are processed in a last-in, first-out fashion.

Stack

	Queues store objects that are processed in a first-in, first-out fashion.

Queue

	PriorityQueues store objects that are processed in the order of their priorities.

PrioriryQueue

The common operations of these collections are defined in the interfaces, and implementations are provided in concrete classes, as shown in Figure 20.1.

[image: A diagram shows interfaces, abstract classes, and concrete classes.]
Figure 20.1 

A collection is a container that stores objects.

Description

 Note

All the interfaces and classes defined in the Java Collections Framework are grouped in the java.util package.

 Design Guide

The design of the Java Collections Framework is an excellent example of using interfaces, abstract classes, and concrete classes. The interfaces define the common operations. The abstract classes provide partial implementation. The concrete classes implement the interfaces with concrete data structures. Providing an abstract class that partially implements an interface makes it convenient for the user to write the code. The user can simply define a concrete class that extends the abstract class rather than implementing all the methods in the interface. The abstract classes such as AbstractCollection are provided for convenience. For this reason, they are called convenience abstract classes.

convenience abstract class

The Collection interface is the root interface for manipulating a collection of objects. Its public methods are listed in Figure 20.2. The AbstractCollection class provides partial implementation for the Collection interface. It implements all the methods in Collection except the add, size, and iterator methods. These are implemented in the concrete subclasses.

basic operations

[image: An annotated U M L diagram, with 3 parts.]
Figure 20.2 

The Collection interface contains the methods for manipulating the elements in a collection, and you can obtain an iterator object for traversing elements in the collection.

Description

The Collection interface provides the basic operations for adding and removing elements in a collection. The add method adds an element to the collection. The addAll method adds all the elements in the specified collection to this collection. The remove method removes an ­element from the collection. The removeAll method removes the elements from this collection that are present in the specified collection. The retainAll method retains the elements in this collection that are also present in the specified collection. All these methods return boolean. The return value is true if the collection is changed as a result of the method execution. The clear() method simply removes all the elements from the collection.

 Note

The methods addAll, removeAll, and retainAll are similar to the set union, ­difference, and intersection operations.

set operations

The Collection interface provides various query operations. The size method returns the number of elements in the collection. The contains method checks whether the collection contains the specified element. The containsAll method checks whether the collection contains all the elements in the specified collection. The isEmpty method returns true if the collection is empty.

query operations

The Collection interface provides the toArray() method, which returns an array of Object for the collection. It also provides the toArray(T[]) method, which returns an array of the T[] type.

 Design Guide

Some of the methods in the Collection interface cannot be implemented in the concrete subclass. In this case, the method would throw java.lang.UnsupportedOperationException, a subclass of RuntimeException. This is a good design you can use in your project. If a method has no meaning in the subclass, you can implement it as follows:

unsupported operations

public void someMethod() {
 throw new UnsupportedOperationException
 ("Method not supported");
}

Listing 20.1 gives an example to use the methods defined in the Collection interface.

Listing 20.1 TestCollection.java

 1 import java.util.*;
 2
 3 public class TestCollection {
 4 public static void main(String[] args) {
 create an array list 5 ArrayList<String> collection1 = new ArrayList<>();
 add elements 6 collection1.add("New York");
 7 collection1.add("Atlanta");
 8 collection1.add("Dallas");
 9 collection1.add("Madison");
 10
 11 System.out.println("A list of cities in collection1:");
 12 System.out.println(collection1);
 13
 14 System.out.println("\nIs Dallas in collection1? "
 contains? 15 + collection1.contains("Dallas"));
 16
 17 collection1.remove("Dallas");
 size? 18 System.out.println("\n" + collection1.size() +
 19 " cities are in collection1 now");
 20
 21 Collection<String> collection2 = new ArrayList<>();
 22 collection2.add("Seattle");
 23 collection2.add("Portland");
 24 collection2.add("Los Angeles");
 25 collection2.add("Atlanta");
 26
 27 System.out.println("\nA list of cities in collection2:");
 28 System.out.println(collection2);
 29
clone 30 ArrayList<String> c1 = (ArrayList<String>)(collection1.clone());
addAll 31 c1.addAll(collection2);
 32 System.out.println("\nCities in collection1 or collection2: ");
 33 System.out.println(c1);
 34
 35 c1 = (ArrayList<String>)(collection1.clone());
retainAll 36 c1.retainAll(collection2);
 37 System.out.print("\nCities in collection1 and collection2: ");
 38 System.out.println(c1);
 39
 40 c1 = (ArrayList<String>)(collection1.clone());
removeAll 41 c1.removeAll(collection2);
 42 System.out.print("\nCities in collection1, but not in 2: ");
 43 System.out.println(c1);
 44 }
 45 }

A list of cities in collection1:
[New York, Atlanta, Dallas, Madison]
Is Dallas in collection1? true
3 cities are in collection1 now
A list of cities in collection2:
[Seattle, Portland, Los Angeles, Atlanta]
Cities in collection1 or collection2:
[New York, Atlanta, Madison, Seattle, Portland, Los Angeles, Atlanta]
Cities in collection1 and collection2: [Atlanta]
Cities in collection1, but not in 2: [New York, Madison]

The program creates a concrete collection object using ArrayList (line 5) and invokes the ­Collection interface’s contains method (line 15), remove method (line 17), size method (line 18), addAll method (line 31), retainAll method (line 36), and removeAll method (line 41).

For this example, we use ArrayList. You can use any concrete class of Collection such as HashSet and LinkedList to replace ArrayList to test these methods defined in the Collection interface.

The program creates a copy of an array list (lines 30, 35, and 40). The purpose of this is to keep the original array list intact and use its copy to perform addAll, retainAll, and removeAll operations.

 Note

All the concrete classes in the Java Collections Framework implement the java.lang .Cloneable and java.io.Serializable interfaces except that java.util .PriorityQueue does not implement the Cloneable interface. Thus, all instances of Collection except priority queues can be cloned and all instances of Collection can be serialized.

Cloneable

Serializable

	20.2.1 What is a data structure?

	20.2.2 Describe the Java Collections Framework. List the interfaces, convenience abstract classes, and concrete classes under the Collection interface.

	20.2.3 Can a collection object be cloned and serialized?

	20.2.4 What method do you use to add all the elements from one collection to another collection?

	20.2.5 When should a method throw an UnsupportedOperationException?

20.3 Iterators

	Each collection is Iterable. You can obtain its Iterator object to traverse all the elements in the collection.

Iterator is a classic design pattern for walking through a data structure without having to expose the details of how data is stored in the data structure.

The Collection interface extends the Iterable interface. The Iterable interface defines the iterator method, which returns an iterator. The Iterator interface provides a uniform way for traversing elements in various types of collections. The iterator() method in the Iterable interface returns an instance of Iterator, as shown in Figure 20.2, which provides sequential access to the elements in the collection using the next() method. You can also use the hasNext() method to check whether there are more elements in the iterator, and the remove() method to remove the last element returned by the iterator.

Listing 20.2 gives an example that uses the iterator to traverse all the elements in an array list.

Listing 20.2 TestIterator.java

 1 import java.util.*;
 2
 3 public class TestIterator {
 4 public static void main(String[] args) {
create an array list 5 Collection<String> collection = new ArrayList<>();
add elements 6 collection.add("New York");
 7 collection.add("Atlanta");
 8 collection.add("Dallas");
 9 collection.add("Madison");
 10
iterator 11 Iterator<String> iterator = collection.iterator();
hasNext() 12 while (iterator.hasNext()) {
next() 13 System.out.print(iterator.next().toUpperCase() + " ");
 14 }
 15 System.out.println();
 16 }
 17 }

NEW YORK ATLANTA DALLAS MADISON

The program creates a concrete collection object using ArrayList (line 5) and adds four strings into the list (lines 6–9). The program then obtains an iterator for the collection (line 11) and uses the iterator to traverse all the strings in the list and displays the strings in uppercase (lines 12–14).

 Tip

You can simplify the code in lines 11–14 using a foreach loop without using an iterator, as follows:

for (String element: collection)
 System.out.print(element.toUpperCase() + " ");

foreach loop

This loop is read as “for each element in the collection, do the following.” The foreach loop can be used for arrays (see Section 7.2.7) as well as any instance of Iterable.

	20.3.1 How do you obtain an iterator from a collection object?

	20.3.2 What method do you use to obtain an element in the collection from an iterator?

	20.3.3 Can you use a foreach loop to traverse the elements in any instance of Collection?

	20.3.4 When using a foreach loop to traverse all elements in a collection, do you need to use the next() or hasNext() methods in an iterator?

20.4 Using the forEach Method

	You can use the forEach method to perform an action for each element in a collection.

Java 8 added a new default method forEach in the Iterable interface. The method takes an argument for specifying the action, which is an instance of a functional interface Consumer<? super E>. The Consumer interface defines the accept(E e) method for performing an action on the element e. You can rewrite the preceding example using a forEach method in Listing 20.3.

Listing 20.3 TestForEach.java

		 1 import java.util.*;
		 2
		 3 public class TestForEach {
		 4 public static void main(String[] args) {
create an array list 5 Collection<String> collection = new ArrayList<>();
add elements	 6 collection.add("New York");
		 7 collection.add("Atlanta");
		 8 collection.add("Dallas");
		 9 collection.add("Madison");
		 10
forEach method 11 collection.forEach(e −> System.out.print(e.toUpperCase() + " "));
 12 }
		 13 }

NEW YORK ATLANTA DALLAS MADISON

The statement in line 11 uses a lambda expression in (a), which is equivalent to using an anonymous inner class as shown in (b). Using a lambda expression not only simplifies the syntax but also simplifies the semantics.

	forEach(e −>
 System.out.print(e.toUppserCase() + " "))

	
	forEach(
 new java.util.function.Consumer<String>() {
 public void accept(String e) {
 System.out.print(e.toUpperCase() + " ");
 }
 }
)

	(a) Use a lambda expression

	
	(b) Use an anonymous inner class

You can write the code using a foreach loop or using a forEach method. Using a forEach is simpler in most cases.

	20.4.1 Can you use the forEach method on any instance of Collection? Where is the forEach method defined?

	20.4.2 Suppose each element in list is a StringBuilder, write a statement using a forEach method to change the first character to uppercase for each element in list.

20.5 Lists

	The List interface extends the Collection interface and defines a collection for storing elements in a sequential order. To create a list, use one of its two concrete classes: ArrayList or LinkedList.

We used ArrayList to test the methods in the Collection interface in the preceding ­sections. Now, we will examine ArrayList in more depth. We will also introduce another useful list, LinkedList, in this section.

20.5.1 The Common Methods in the List Interface

ArrayList and LinkedList are defined under the List interface. The List interface extends Collection to define an ordered collection with duplicates allowed. The List ­interface adds position-oriented operations as well as a new list iterator that enables a list to be traversed bidirectionally. The methods introduced in the List interface are shown in Figure 20.3.

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.3 

The List interface stores elements in sequence and permits duplicates.

Description

The add(index, element) method is used to insert an element at a specified index and the addAll(index, collection) method to insert a collection of elements at a specified index. The remove(index) method is used to remove an element at the specified index from the list. A new element can be set at the specified index using the set(index, element) method.

The indexOf(element) method is used to obtain the index of the specified element’s first occurrence in the list and the lastIndexOf(element) method to obtain the index of its last occurrence. A sublist can be obtained by using the subList(fromIndex, toIndex) method.

The listIterator() or listIterator(startIndex) method returns an instance of ListIterator. The ListIterator interface extends the Iterator interface to add ­bidirectional traversal of the list. The methods in ListIterator are listed in Figure 20.4.

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.4 

ListIterator enables traversal of a list bidirectionally.

Description

The add(element) method inserts the specified element into the list. The element is inserted immediately before the next element that would be returned by the next() method defined in the Iterator interface, if any, and after the element that would be returned by the previous() method, if any. If the list doesn’t contain any elements, the new element becomes the sole element in the list. The set(element) method can be used to replace the last element returned by the next method, or the previous method with the specified element.

The hasNext() method defined in the Iterator interface is used to check whether the iterator has more elements when traversed in the forward direction, and the hasPrevious() method to check whether the iterator has more elements when traversed in the backward direction.

The next() method defined in the Iterator interface returns the next element in the iterator, and the previous() method returns the previous element in the iterator. The ­nextIndex() method returns the index of the next element in the iterator, and the ­previousIndex() returns the index of the previous element in the iterator.

The AbstractList class provides a partial implementation for the List interface. The AbstractSequentialList class extends AbstractList to provide support for linked lists.

20.5.2 The ArrayList and LinkedList Classes

The ArrayList class and the LinkedList class are two concrete implementations of the List interface. ArrayList stores elements in an array. The array is dynamically created. If the capacity of the array is exceeded, a larger new array is created and all the elements from the current array are copied to the new array. LinkedList stores elements in a linked list. Which of the two classes you use depends on your specific needs. If you need to support random access through an index without inserting or removing elements at the beginning of the list, ArrayList is the most efficient. If, however, your application requires the insertion or deletion of elements at the beginning of the list, you should choose LinkedList. A list can grow or shrink dynamically. Once it is created, an array is fixed. If your application does not require the insertion or deletion of elements, an array is the most efficient data structure.

ArrayList vs. LinkedList

linked list

ArrayList is a resizable-array implementation of the List interface. It also provides methods for manipulating the size of the array used internally to store the list, as shown in Figure 20.5. Each ArrayList instance has a capacity, which is the size of the array used to store the elements in the list. It is always at least as large as the list size. As elements are added to an ArrayList, its capacity grows automatically. An ArrayList does not automatically shrink. You can use the trimToSize() method to reduce the array capacity to the size of the list. An ArrayList can be constructed using its no-arg constructor, ArrayList(Collection), or ArrayList(initialCapacity).

trimToSize()

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.5 

ArrayList implements List using an array.

Description

LinkedList is a linked list implementation of the List interface. In addition to implementing the List interface, this class provides the methods for retrieving, inserting, and removing elements from both ends of the list, as shown in Figure 20.6. A LinkedList can be constructed using its no-arg constructor or LinkedList(Collection).

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.6 

LinkedList provides methods for adding and inserting elements at both ends of the list.

Description

Listing 20.4 gives a program that creates an array list filled with numbers and inserts new elements into specified locations in the list. The example also creates a linked list from the array list and inserts and removes elements from the list. Finally, the example traverses the list forward and backward.

Listing 20.4 TestArrayAndLinkedList.java

 1 import java.util.*;
	 2
	 3 public class TestArrayAndLinkedList {
	 4 public static void main(String[] args) {
array list 5 List<Integer> arrayList = new ArrayList<>();
	 6 arrayList.add(1); // 1 is autoboxed to new Integer(1)
	 7 arrayList.add(2);
	 8 arrayList.add(3);
	 9 arrayList.add(1);
	 10 arrayList.add(4);
	 11 arrayList.add(0, 10);
	 12 arrayList.add(3, 30);
	 13
	 14 System.out.println("A list of integers in the array list:");
	 15 System.out.println(arrayList);
	 16
linked list 17 LinkedList<Object> linkedList = new LinkedList<Object>(arrayList);
	 18 linkedList.add(1, "red");
	 19 linkedList.removeLast();
	 20 linkedList.addFirst("green");
	 21
	 22 System.out.println("Display the linked list forward:");
list iterator 23 ListIterator<Object> listIterator = linkedList.listIterator();
 24 while (listIterator.hasNext()) {
	 25 System.out.print(listIterator.next() + " ");
	 26 }
	 27 System.out.println();
	 28
	 29 System.out.println("Display the linked list backward:");
list iterator 30 listIterator = linkedList.listIterator(linkedList.size());
 31 while (listIterator.hasPrevious()) {
	 32 System.out.print(listIterator.previous() + " ");
	 33 }
	 34 }
	 35 }

A list of integers in the array list:
[10, 1, 2, 30, 3, 1, 4]
Display the linked list forward:
green 10 red 1 2 30 3 1
Display the linked list backward:
1 3 30 2 1 red 10 green

A list can hold identical elements. Integer 1 is stored twice in the list (lines 6 and 9). ­ArrayList and LinkedList operate similarly. The critical difference between them pertains to internal implementation, which affects their performance. LinkedList is efficient for inserting and removing elements at the beginning of the list, and ArrayList is more efficient for all other operations. For examples of demonstrating the performance differences between ArrayList and LinkedList, see liveexample.pearsoncmg.com/supplement/ArrayListvsLinkedList.pdf.

The get(i) method is available for a linked list, but it is a time-consuming operation. Do not use it to traverse all the elements in a list as shown in (a). Instead, you should use a foreach loop as shown in (b) or a forEach method as shown in (c). Note (b) and (c) use an iterator implicitly. You will know the reason when you learn how to implement a linked list in Chapter 24.

	for (int i = 0; i < list.size(); i++)
 process list.get(i);
}

	
	for (listElementType e: list) {
 process e;
}

	
	list.forEach(e −>
 process e
)

	(a) Very inefficient

	
	(b) Efficient

	
	(c) Efficient

 Tip

Java provides the static asList method for creating a list from a variable-length list of arguments. Thus, you can use the following code to create a list of strings and a list of integers:

Arrays.asList(T… a) method

List<String> list1 = Arrays.asList("red", "green", "blue");
List<Integer> list2 = Arrays.asList(10, 20, 30, 40, 50);

	20.5.1 How do you add and remove elements from a list? How do you traverse a list in both directions?

	20.5.2 Suppose list1 is a list that contains the strings red, yellow, and green and list2 is another list that contains the strings red, yellow, and blue. Answer the following questions:

	What are list1 and list2 after executing list1.addAll(list2)?

	What are list1 and list2 after executing list1.add(list2)?

	What are list1 and list2 after executing list1.removeAll(list2)?

	What are list1 and list2 after executing list1.remove(list2)?

	What are list1 and list2 after executing list1.retainAll(list2)?

	What is list1 after executing list1.clear()?

	20.5.3 What are the differences between ArrayList and LinkedList? Which list should you use to insert and delete elements at the beginning of a list?

	20.5.4 Are all the methods in ArrayList also in LinkedList? What methods are in LinkedList but not in ArrayList?

	20.5.5 How do you create a list from an array of objects?

20.6 The Comparator Interface

	Comparator can be used to compare the objects of a class that doesn’t implement Comparable or define a new criteria for comparing objects.

You have learned how to compare elements using the Comparable interface (introduced in ­Section 13.6). Several classes in the Java API, such as String, Date, Calendar, ­BigInteger, BigDecimal, and all the numeric wrapper classes for the primitive types, implement the Comparable interface. The Comparable interface defines the compareTo method, which is used to compare two elements of the same class that implements the Comparable interface.

What if the elements’ classes do not implement the Comparable interface? Can these ­elements be compared? You can define a comparator to compare the elements of different classes. To do so, define a class that implements the java.util.Comparator<T> interface and overrides its compare method.

comparator

	public int compare(T element1, T element2)
Returns a negative value if element1 is less than element2, a positive value if element1 is greater than element2, and zero if they are equal.

The GeometricObject class was introduced in Section 13.2, Abstract Classes. The GeometricObject class does not implement the Comparable interface. To compare the objects of the GeometricObject class, you can define a comparator class, as given in ­Listing 20.5.

Listing 20.5 GeometricObjectComparator.java

		 1 import java.util.Comparator;
		 2
		 3 public class GeometricObjectComparator
implements Comparator 4 implements Comparator<GeometricObject>, java.io.Serializable {
implements compare 5 public int compare(GeometricObject o1, GeometricObject o2) {
		 6 double area1 = o1.getArea();
		 7 double area2 = o2.getArea();
		 8
		 9 if (area1 < area2)
		 10 return −1;
		 11 else if (area1 == area2)
		 12 return 0;
		 13 else
		 14 return 1;
		 15 }
		 16 }

Line 4 implements Comparator<GeometricObject>. Line 5 overrides the compare method to compare two geometric objects. The class also implements Serializable. It is generally a good idea for comparators to implement Serializable so they can be serialized.

Listing 20.6 gives a method that returns a larger object between two geometric objects. The objects are compared using the GeometricObjectComparator.

Listing 20.6 TestComparator.java

 1 import java.util.Comparator;
 2
 3 public class TestComparator {
 4 public static void main(String[] args) {
 5 GeometricObject g1 = new Rectangle(5, 5);
 6 GeometricObject g2 = new Circle(5);
 7
 8 GeometricObject g =
invoke max 9 max(g1, g2, new GeometricObjectComparator());
 10
 11 System.out.println("The area of the larger object is " +
 12 g.getArea());
 13 }
 14
the max method 15 public static GeometricObject max(GeometricObject g1,
 16 GeometricObject g2, Comparator<GeometricObject> c) {
invoke compare 17 if (c.compare(g1, g2) > 0)
 18 return g1;
 19 else
 20 return g2;
 21 }
 22 }

The area of the larger object is 78.53981633974483

The program creates a Rectangle and a Circle object in lines 5 and 6 (the Rectangle and Circle classes were defined in Section 13.2, Abstract Classes). They are all subclasses of GeometricObject. The program invokes the max method to obtain the geometric object with the larger area (lines 8 and 9).

The GeometricObjectComparator is created and passed to the max method (line 9) and this comparator is used in the max method to compare the geometric objects in line 17.

Since the Comparator interface is a single abstract method interface, you can use a lambda expression to simplify the program by replacing line 9 with the following code:

 max(g1, g2, (o1, o2) −> o1.getArea() > o2.getArea() ?
 1 : o1.getArea() == o2.getArea() ? 0 : −1);

Here, o1 and o2 are two parameters in the compare method in the Comparator interface. The method returns 1 if o1.getArea() > o2.getArea(), 0 if o1.getArea() == o2.getArea(), and −1 otherwise.

 Note

Comparing elements using the Comparable interface is referred to as comparing using natural order, and comparing elements using the Comparator interface is referred to as comparing using comparator.

Comparable vs. Comparator

natural order

using comparator

The preceding example defines a comparator for comparing two geometric objects since the GeometricObject class does not implement the Comparable interface. Sometimes a class implements the Comparable interface, but if you would like to compare their objects using a different criteria, you can define a custom comparator. Listing 20.7 gives an example that compares string by their length.

Listing 20.7 SortStringByLength.java

 1 public class SortStringByLength {
 2 public static void main(String[] args) {
 3 String[] cities = {"Atlanta", "Savannah", "New York", "Dallas"};
sort using comparator 4 java.util.Arrays.sort(cities, new MyComparator());
 5
 6 for (String s : cities) {
 7 System.out.print(s + " ");
 8 }
 9 }
 10
define custom comparator 11 public static class MyComparator implements
 12 java.util.Comparator<String> {
 13 @Override
override compare method 14 public int compare(String s1, String s2) {
 15 return s1.length() − s2.length();
 16 }
 17 }
 18 }

Dallas Atlanta Savannah New York

The program defines a comparator class by implementing the Comparator interface (lines 11 and 12). The compare method is implemented to compare two strings by their lengths (lines 14–16). The program invokes the sort method to sort an array of strings using a comparator (line 4).

Since Comparator is a functional interface, the code can be simplified using a lambda expression as follows:

java.util.Arrays.sort(cities,
 (s1, s2) −> {return s1.length() − s2.length();});

or simply

java.util.Arrays.sort(cities,
 (s1, s2) −> s1.length() − s2.length());

The List interface defines the sort(comparator) method that can be used to sort the elements in a list using a specified comparator. Listing 20.8 gives an example of using a comparator to sort strings in a list by ignoring cases.

Listing 20.8 SortStringIgnoreCase.java

		 1 public class SortStringIgnoreCase {
		 2 public static void main(String[] args) {
		 3 java.util.List<String> cities = java.util.Arrays.asList
		 4 ("Atlanta", "Savannah", "New York", "Dallas");
lambda comparator 5 cities.sort((s1, s2) −> s1.compareToIgnoreCase(s2));
		 6
		 7 for (String s: cities) {
		 8 System.out.print(s + " ");
		 9 }
		 10 }
		 11 }

Atlanta dallas new York Savannah

The program sorts a list of strings using a comparator that compares strings ignoring case (line 5). If you invoke list.sort(null), the list will be sorted using its natural order.

The comparator is created using a lambda expression. Note the lambda expression here does nothing but simply invokes the compareToIgnoreCase method. In the case like this, you can use a simpler and clearer syntax to replace the lambda expression as follows:

 cities.sort(String::compareToIgnoreCase);

Here String::compareToIgnoreCase is known as method reference, which is ­equivalent to a lambda expression. The compiler automatically translates a method reference to an ­equivalent lambda expression.

method reference

The Comparator interface also contains several useful static methods and default methods. You can use the static comparing(Function<? sup T, ? sup R> keyExtracter) method to create a Comparator<T> that compares the elements using the key extracted from a Function object. The Function object’s apply(T) method returns the key of type R for the object T. For example, the following code in (a) creates a Comparator that compares strings by their length using a lambda expression, which is equivalent to the code using an anonymous inner class in (b) and a method reference in (c).

Comparator.comparing method

	Comparator.comparing(e −> e.length())

	
	Comparator.comparing(
 new java.util.function.Function<String, Integer>() {
 public Integer apply(String s) {
 return s.length();
 }
 })

	(a) Use a lambda expression

	

	Comparator.comparing(String::length)

	

	(c) Use a method reference

	
	(b) Use an anonymous inner class

The comparing method in the Comparator interface is implemented essentially as follows for the preceding example:

// comparing returns a Comparator
public static Comparator<String> comparing(Function<String, Integer> f) {
 return (s1, s2) −> f.apply(s1).compareTo(f.apply(s2));
}

You can replace the comparator in Listing 20.7 using the following code:

java.util.Arrays.sort(cities, Comparator.comparing(String::length));

The Comparator.comparing method is particularly useful to create a Comparator using a property from an object. For example, the following code sorts a list of Loan objects (see Listing 10.2) based on their loanAmount property.

Loan[] list = {new Loan(5.5, 10, 2323), new Loan(5, 10, 1000)};
Arrays.sort(list, Comparator.comparing(Loan::getLoanAmount));

thenComparing method

You can sort using a primary criteria, second, third, and so on using the Comparator’s default thenComparing method. For example, the following code sorts a list of Loan objects first on their loanAmount then on annualInterestRate.

Loan[] list = {new Loan(5.5, 10, 100), new Loan(5, 10, 1000)};
Arrays.sort(list, Comparator.comparing(Loan::getLoanAmount)
 .thenComparing(Loan::getAnnualInterestRate));

The default reverse() method can be used to reverse the order for a comparator. For ­example, the following code sorts a list of Loan objects on their loanAmount property in a decreasing order.

Arrays.sort(list, Comparator.comparing(Loan::getLoanAmount).
 reverse());

	20.6.1 What are the differences between the Comparable interface and the ­Comparator interface? In which package is Comparable, and in which package is Comparator?

	20.6.2 How do you define a class A that implements the Comparable interface? Are two instances of class A comparable? How do you define a class B that implements the Comparator interface, and override the compare method to compare two objects of type B1? How do you invoke the sort method to sort a list of objects of the type B1 using a comparator?

	20.6.3 Write a lambda expression to create a comparator that compares two Loan objects by their annualInterestRate. Create a comparator using the Comparator.­comparing method to compare Loan objects on annualInterestRate. Create a comparator to compare Loan objects first on annualInterestRate then on loanAmount.

	20.6.4 Create a comparator using a lambda expression and the Comparator.­comparing method, respectively, to compare Collection objects on their size.

	20.6.5 Write a statement that sorts an array of Point2D objects on their y values and then on their x values.

	20.6.6 Write a statement that sorts an ArrayList of strings named list in increasing order of their last character.

	20.6.7 Write a statement that sorts a two-dimensional array of double[][] in increasing order of their second column. For example, if the array is double[][] x = {{3, 1}, {2, −1}, {2, 0}}, the sorted array will be {{2, −1}, {2, 0}, {3, 1}}.

	20.6.8 Write a statement that sorts a two-dimensional array of double[][] in ­increasing order of their second column as the primary order and the first column as the secondary order. For example, if the array is double[][] x = {{3, 1}, {2, −1}, {2, 0}, {1, −1}}, the sorted array will be {{1, −1}, {2, −1}, {2, 0}, {3, 1}}.

20.7 Static Methods for Lists and Collections

	The Collections class contains static methods to perform common operations in a collection and a list.

Section 11.12 introduced several static methods in the Collections class for array lists. The Collections class contains the sort, binarySearch, reverse, shuffle, copy, and fill methods for lists and max, min, disjoint, and frequency methods for collections, as shown in Figure 20.7.

[image: An annotated U M L diagram for the class, java dot u t i l dot Collections.]
Figure 20.7 

The Collections class contains static methods for manipulating lists and collections.

Description

You can sort the comparable elements in a list in its natural order with the compareTo method in the Comparable interface. You may also specify a comparator to sort elements. For example, the following code sorts strings in a list:

sort list

List<String> list = Arrays.asList("red", "green", "blue");
Collections.sort(list);
System.out.println(list);

The output is [blue, green, red].

ascending order

descending order

The preceding code sorts a list in ascending order. To sort it in descending order, you can simply use the Collections.reverseOrder() method to return a Comparator object that orders the elements in reverse of natural order. For example, the following code sorts a list of strings in descending order:

List<String> list = Arrays.asList("yellow", "red", "green", "blue");
Collections.sort(list, Collections.reverseOrder());
System.out.println(list);

The output is [yellow, red, green, blue].

You can use the binarySearch method to search for a key in a list. To use this method, the list must be sorted in increasing order. If the key is not in the list, the method returns − (insertion point+1).[&|minus| (insertion point|+|1).&] Recall that the insertion point is where the item would fall in the list if it were present. For example, the following code searches the keys in a list of integers and a list of strings:

binarySearch

List<Integer> list1 =
 Arrays.asList(2, 4, 7, 10, 11, 45, 50, 59, 60, 66);
System.out.println("(1) Index: " + Collections.binarySearch(list1, 7));
System.out.println("(2) Index: " + Collections.binarySearch(list1, 9));

List<String> list2 = Arrays.asList("blue", "green", "red");
System.out.println("(3) Index: " +
 Collections.binarySearch(list2, "red"));
System.out.println("(4) Index: " +
 Collections.binarySearch(list2, "cyan"));

The output of the preceding code is:

(1) Index: 2
(2) Index: −4
(3) Index: 2
(4) Index: −2

You can use the reverse method to reverse the elements in a list. For example, the ­following code displays [blue, green, red, yellow]:

reverse

List<String> list = Arrays.asList("yellow", "red", "green", "blue");
Collections.reverse(list);
System.out.println(list);

You can use the shuffle(List) method to randomly reorder the elements in a list. For example, the following code shuffles the elements in list:

shuffle

List<String> list = Arrays.asList("yellow", "red", "green", "blue");
Collections.shuffle(list);
System.out.println(list);

You can also use the shuffle(List, Random) method to randomly reorder the elements in a list with a specified Random object. Using a specified Random object is useful to generate a list with identical sequences of elements for the same original list. For example, the following code shuffles the elements in list:

List<String> list1 = Arrays.asList("yellow", "red", "green", "blue");
List<String> list2 = Arrays.asList("yellow", "red", "green", "blue");
Collections.shuffle(list1, new Random(20));
Collections.shuffle(list2, new Random(20));
System.out.println(list1);
System.out.println(list2);

You will see that list1 and list2 have the same sequence of elements before and after the shuffling.

You can use the copy(det, src) method to copy all the elements from a source list to a destination list on the same index. The destination list must be as long as the source list. If it is longer, the remaining elements in the source list are not affected. For example, the following code copies list2 to list1:

copy

List<String> list1 = Arrays.asList("yellow", "red", "green", "blue");
List<String> list2 = Arrays.asList("white", "black");
Collections.copy(list1, list2);
System.out.println(list1);

The output for list1 is [white, black, green, blue]. The copy method performs a shallow copy: Only the references of the elements from the source list are copied.

You can use the nCopies(int n, Object o) method to create an immutable list that consists of n copies of the specified object. For example, the following code creates a list with five Calendar objects:

nCopies

List<GregorianCalendar> list1 = Collections.nCopies
 (5, new GregorianCalendar(2005, 0, 1));

The list created from the nCopies method is immutable, so you cannot add, remove, or update elements in the list. All the elements have the same references.

You can use the fill(List list, Object o) method to replace all the elements in the list with the specified element. For example, the following code displays [black, black, black]:

fill

List<String> list = Arrays.asList("red", "green", "blue");
Collections.fill(list, "black");
System.out.println(list);

You can use the max and min methods for finding the maximum and minimum elements in a collection. The elements must be comparable using the Comparable interface or the ­Comparator interface. See the following code for examples:

max and min methods

Collection<String> collection = Arrays.asList("red", "green", "blue");
System.out.println(Collections.max(collection)); // Use Comparable
System.out.println(Collections.min(collection,
	 Comparator.comparing(String::length))); // Use Comparator

The disjoint(collection1, collection2) method returns true if the two collections have no elements in common. For example, in the following code, disjoint(collection1, collection2) returns false, but disjoint(collection1, collection3) returns true:

disjoint method

Collection<String> collection1 = Arrays.asList("red", "cyan");
Collection<String> collection2 = Arrays.asList("red", "blue");
Collection<String> collection3 = Arrays.asList("pink", "tan");
System.out.println(Collections.disjoint(collection1, collection2));
System.out.println(Collections.disjoint(collection1, collection3));

The frequency(collection, element) method finds the number of occurrences of the element in the collection. For example, frequency(collection, "red") returns 2 in the following code:

frequency method

Collection<String> collection = Arrays.asList("red", "cyan", "red");
System.out.println(Collections.frequency(collection, "red"));

	20.7.1 Are all the methods in the Collections class static?

	20.7.2 Which of the following static methods in the Collections class are for lists and which are for collections?

sort, binarySearch, reverse, shuffle, max, min, disjoint, frequency

	20.7.3 Show the output of the following code:

import java.util.*;

public class Test {
 public static void main(String[] args) {
 List<String> list =
 Arrays.asList("yellow", "red", "green", "blue");
 Collections.reverse(list);
 System.out.println(list);

 List<String> list1 =
 Arrays.asList("yellow", "red", "green", "blue");
 List<String> list2 = Arrays.asList("white", "black");
 Collections.copy(list1, list2);
 System.out.println(list1);

 Collection<String> c1 = Arrays.asList("red", "cyan");
 Collection<String> c2 = Arrays.asList("red", "blue");
 Collection<String> c3 = Arrays.asList("pink", "tan");
 System.out.println(Collections.disjoint(c1, c2));
 System.out.println(Collections.disjoint(c1, c3));

 Collection<String> collection =
 Arrays.asList("red", "cyan", "red");
 System.out.println(Collections.frequency(collection, "red"));
 }
}

	20.7.4 Which method can you use to sort the elements in an ArrayList or a LinkedList? Which method can you use to sort an array of strings?

	20.7.5 Which method can you use to perform binary search for elements in an ­ArrayList or a LinkedList? Which method can you use to perform binary search for an array of strings?

	20.7.6 Write a statement to find the largest element in an array of comparable objects.

20.8 Case Study: Bouncing Balls

	This section presents a program that displays bouncing balls and enables the user to add and remove balls.

Section 15.12 presents a program that displays one bouncing ball. This section presents a program that displays multiple bouncing balls. You can use two buttons to suspend and resume the movement of the balls, a scroll bar to control the ball speed, and the + or − button to add or remove a ball, as shown in Figure 20.8.

[image: A window titled, Multiple Bounce Ball, is shown three times, with the number of shaded circles in the pane increasing from 2, to 4, to 5.]
Figure 20.8 

Pressing the + or − button adds or removes a ball.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

The example in Section 15.12 only had to store one ball. How do you store multiple balls in this example? The Pane’s getChildren() method returns an ObservableList<Node>, a subtype of List<Node>, for storing the nodes in the pane. Initially, the list is empty. When a new ball is created, add it to the end of the list. To remove a ball, simply remove the last one in the list.

Each ball has its state: the x-, y-coordinates, color, and direction to move. You can define a class named Ball that extends javafx.scene.shape.Circle. The x-, y-coordinates and the color are already defined in Circle. When a ball is created, it starts from the upper-left corner and moves downward to the right. A random color is assigned to a new ball.

The MultiplBallPane class is responsible for displaying the ball and the ­MultipleBounceBall class places the control components and implements the control. The relationship of these classes is shown in Figure 20.9. Listing 20.9 gives the program.

[image: A U M L diagram, with 6 parts.]
Figure 20.9 

MultipleBounceBall contains MultipleBallPane and MultipleBallPane contains Ball.

Description

Listing 20.9 MultipleBounceBall.java

 1 import javafx.animation.KeyFrame;
 2 import javafx.animation.Timeline;
 3 import javafx.application.Application;
 4 import javafx.beans.property.DoubleProperty;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Node;
 7 import javafx.stage.Stage;
 8 import javafx.scene.Scene;
 9 import javafx.scene.control.Button;
 10 import javafx.scene.control.ScrollBar;
 11 import javafx.scene.layout.BorderPane;
 12 import javafx.scene.layout.HBox;
 13 import javafx.scene.layout.Pane;
 14 import javafx.scene.paint.Color;
 15 import javafx.scene.shape.Circle;
 16 import javafx.util.Duration;
 17
 18 public class MultipleBounceBall extends Application {
 19 @Override // Override the start method in the Application class
 20 public void start(Stage primaryStage) {
create a ball pane 21 MultipleBallPane ballPane = new MultipleBallPane();
set ball pane border 22 ballPane.setStyle("−fx−border−color: yellow");
 23
create buttons 24 Button btAdd = new Button("+");
 25 Button btSubtract = new Button("−");
 26 HBox hBox = new HBox(10);
add buttons to HBox 27 hBox.getChildren().addAll(btAdd, btSubtract);
 28 hBox.setAlignment(Pos.CENTER);
 29
 30 // Add or remove a ball
add a ball 31 btAdd.setOnAction(e −> ballPane.add());
remove a ball 32 btSubtract.setOnAction(e −> ballPane.subtract());
 33
 34 // Pause and resume animation
pause animation 35 ballPane.setOnMousePressed(e −> ballPane.pause());
resume animation 36 ballPane.setOnMouseReleased(e −> ballPane.play());
 37
 38 // Use a scroll bar to control animation speed
create a scroll bar 39 ScrollBar sbSpeed = new ScrollBar();
 40 sbSpeed.setMax(20);
 41 sbSpeed.setValue(10);
bind animation rate 42 ballPane.rateProperty().bind(sbSpeed.valueProperty());
 43
 44 BorderPane pane = new BorderPane();
 45 pane.setCenter(ballPane);
 46 pane.setTop(sbSpeed);
 47 pane.setBottom(hBox);
 48
 49 // Create a scene and place the pane in the stage
 50 Scene scene = new Scene(pane, 250, 150);
 51 primaryStage.setTitle("MultipleBounceBall"); // Set the stage title
 52 primaryStage.setScene(scene); // Place the scene in the stage
 53 primaryStage.show(); // Display the stage
 54 }
 55
 56 private class MultipleBallPane extends Pane {
 57 private Timeline animation;
 58
 59 public MultipleBallPane() {
 60 // Create an animation for moving the ball
 61 animation = new Timeline(
 62 new KeyFrame(Duration.millis(50), e −> moveBall()));
 63 animation.setCycleCount(Timeline.INDEFINITE);
 64 animation.play(); // Start animation
 65 }
 66
 67 public void add() {
 68 Color color = new Color(Math.random(),
 69 Math.random(), Math.random(), 0.5);
add a ball to pane 70 getChildren().add(new Ball(30, 30, 20, color));
 71 }
 72
 73 public void subtract() {
 74 if (getChildren().size() > 0) {
remove a ball 75 getChildren().remove(getChildren().size() − 1);
 76 }
 77 }
 78
 79 public void play() {
 80 animation.play();
 81 }
 82
 83 public void pause() {
 84 animation.pause();
 85 }
 86
 87 public void increaseSpeed() {
 88 animation.setRate(animation.getRate() + 0.1);
 89 }
 90
 91 public void decreaseSpeed() {
 92 animation.setRate(
 93 animation.getRate() > 0 ? animation.getRate() − 0.1 : 0);
 94 }
 95
 96 public DoubleProperty rateProperty() {
 97 return animation.rateProperty();
 98 }
 99
 100 protected void moveBall() {
move all balls 101 for (Node node: this.getChildren()) {
 102 Ball ball = (Ball)node;
 103 // Check boundaries
 104 if (ball.getCenterX() < ball.getRadius() ||
 105 ball.getCenterX() > getWidth() − ball.getRadius()) {
change x-direction 106 ball.dx *= −1; // Change ball move direction
 107 }
 108 if (ball.getCenterY() < ball.getRadius() ||
 109 ball.getCenterY() > getHeight() − ball.getRadius()) {
change y-direction 110 ball.dy *= −1; // Change ball move direction
 111 }
 112
 113 // Adjust ball position
adjust ball positions 114 ball.setCenterX(ball.dx + ball.getCenterX());
 115 ball.setCenterY(ball.dy + ball.getCenterY());
 116 }
 117 }
 118 }
 119
 120 class Ball extends Circle {
declare dx and dy 121 private double dx = 1, dy = 1;
 122
create a ball 123 Ball(double x, double y, double radius, Color color) {
 124 super(x, y, radius);
 125 setFill(color); // Set ball color 126 }
 127 }
 128 }

The add() method creates a new ball with a random color and adds it to the pane (line 70). The pane stores all the balls in a list. The subtract() method removes the last ball in the list (line 75).

When the user clicks the + button, a new ball is added to the pane (line 31). When the user clicks the − button, the last ball in the array list is removed (line 32).

The moveBall() method in the MultipleBallPane class gets every ball in the pane’s list and adjusts the balls’ positions (lines 114 and 115).

	20.8.1 What is the return value from invoking pane.getChildren() for a pane?

	20.8.2 How do you modify the code in the MutilpleBallApp program to remove the first ball in the list when the − button is clicked?

	20.8.3 How do you modify the code in the MutilpleBallApp program so each ball will get a random radius between 10 and 20?

20.9 Vector and Stack Classes

	Vector is a subclass of AbstractList and Stack is a subclass of Vector in the Java API.

The Java Collections Framework was introduced in Java 2. Several data structures were supported earlier, among them the Vector and Stack classes. These classes were redesigned to fit into the Java Collections Framework, but all their old-style methods are retained for compatibility.

Vector is the same as ArrayList, except that it contains synchronized methods for accessing and modifying the vector. Synchronized methods can prevent data corruption when a vector is accessed and modified by two or more threads concurrently. We will discuss synchronization in Chapter 32, Multithreading and Parallel Programming. For the many applications that do not require synchronization, using ArrayList is more efficient than using Vector.

The Vector class extends the AbstractList class. It also has the methods contained in the original Vector class defined prior to Java 2, as shown in Figure 20.10.

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.10 

Starting in Java 2, the Vector class extends AbstractList and also retains all the methods in the ­original Vector class.

Description

Most of the methods in the Vector class listed in the UML diagram in Figure 20.10 are similar to the methods in the List interface. These methods were introduced before the Java Collections Framework. For example, addElement(Object element) is the same as the add(Object element) method, except that the addElement method is synchronized. Use the ArrayList class if you don’t need synchronization. It works much faster than Vector.

 Note

The elements() method returns an Enumeration. The Enumeration interface was introduced prior to Java 2 and was superseded by the Iterator interface.

 Note

Vector is widely used in Java legacy code because it was the Java resizable-array implementation before Java 2.

In the Java Collections Framework, Stack is implemented as an extension of Vector, as illustrated in Figure 20.11.

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.11 

The Stack class extends Vector to provide a last-in, first-out data structure.

Description

The Stack class was introduced prior to Java 2. The methods shown in Figure 20.11 were used before Java 2. The empty() method is the same as isEmpty(). The peek() method looks at the element at the top of the stack without removing it. The pop() method removes the top element from the stack and returns it. The push(Object element) method adds the specified element to the stack. The search(Object element) method checks whether the specified element is in the stack.

	20.9.1 How do you create an instance of Vector? How do you add or insert a new element into a vector? How do you remove an element from a vector? How do you find the size of a vector?

	20.9.2 How do you create an instance of Stack? How do you add a new element to a stack? How do you remove an element from a stack? How do you find the size of a stack?

	20.9.3 Does Listing 20.1 , TestCollection.java, compile and run if all the occurrences of ArrayList are replaced by LinkedList, Vector, or Stack?

20.10 Queues and Priority Queues

	In a priority queue, the element with the highest priority is removed first.

A queue is a first-in, first-out data structure. Elements are appended to the end of the queue and are removed from the beginning of the queue. In a priority queue, elements are assigned priorities. When accessing elements, the element with the highest priority is removed first. This section introduces queues and priority queues in the Java API.

queue

priority queue

20.10.1 The Queue Interface

The Queue interface extends java.util.Collection with additional insertion, extraction, and inspection operations, as shown in Figure 20.12.

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.12 

The Queue interface extends Collection to provide additional insertion, extraction, and inspection operations.

Description

Queue interface

The offer method is used to add an element to the queue. This method is similar to the add method in the Collection interface, but the offer method is preferred for queues. The poll and remove methods are similar, except that poll() returns null if the queue is empty, whereas remove() throws an exception. The peek and element methods are similar, except that peek() returns null if the queue is empty, whereas element() throws an exception.

queue operations

20.10.2  Deque and LinkedList

The LinkedList class implements the Deque interface, which extends the Queue interface, as shown in Figure 20.13. Therefore, you can use LinkedList to create a queue. LinkedList is ideal for queue operations because it is efficient for inserting and removing elements from both ends of a list.

Figure 20.13 

LinkedList implements List and Deque.

Deque supports element insertion and removal at both ends. The name deque is short for “double-ended queue” and is usually pronounced “deck.” The Deque interface extends Queue with additional methods for inserting and removing elements from both ends of the queue. The methods addFirst(e), removeFirst(), addLast(e), removeLast(), getFirst(), and getLast() are defined in the Deque interface.

Listing 20.10 shows an example of using a queue to store strings. Line 3 creates a queue using LinkedList. Four strings are added to the queue in lines 4–7. The size() method defined in the Collection interface returns the number of elements in the queue (line 9). The remove() method retrieves and removes the element at the head of the queue (line 10).

Listing 20.10 TestQueue.java

			 1 public class TestQueue {
		 2 public static void main(String[] args) {
creates a queue		 3 java.util.Queue<String> queue = new java.util.LinkedList<>();
inserts an element	 4 queue.offer("Oklahoma");
			 5 queue.offer("Indiana");
			 6 queue.offer("Georgia");
			 7 queue.offer("Texas");
remove element		 8
remove element		 9 while (queue.size() > 0)
			 10 System.out.print(queue.remove() + " ");
			 11 }
			 12 }

Oklahoma Indiana Georgia Texas

The PriorityQueue class implements a priority queue, as shown in Figure 20.14. By default, the priority queue orders its elements according to their natural ordering using ­Comparable. The element with the least value is assigned the highest priority, and thus is removed from the queue first. If there are several elements with the same highest priority, the tie is broken arbitrarily. You can also specify an ordering using Comparator in the constructor PriorityQueue(initialCapacity, comparator).

PriorityQueue class

[image: An annotated U M L diagram, with 2 parts.]
Figure 20.14 

The PriorityQueue class implements a priority queue.

Description

Listing 20.11 shows an example of using a priority queue to store strings. Line 5 creates a priority queue for strings using its no-arg constructor. This priority queue orders the strings using their natural order, so the strings are removed from the queue in increasing order. Lines 16 and 17 create a priority queue using the comparator obtained from Collections.­reverseOrder(), which orders the elements in reverse order, so the strings are removed from the queue in decreasing order.

Listing 20.11 PriorityQueueDemo.java

 1 import java.util.*;
 2
 3 public class PriorityQueueDemo {
 4 public static void main(String[] args) {
a default queue 5 PriorityQueue<String> queue1 = new PriorityQueue<>();
inserts an element 6 queue1.offer("Oklahoma");
 7 queue1.offer("Indiana");
 8 queue1.offer("Georgia");
 9 queue1.offer("Texas");
 10
 11 System.out.println("Priority queue using Comparable:");
 12 while (queue1.size() > 0) {
 13 System.out.print(queue1.remove() + " ");
 14 }
 15
a queue with comparator 16 PriorityQueue<String> queue2 = new PriorityQueue<>(
 17 4, Collections.reverseOrder());
 18 queue2.offer("Oklahoma");
 19 queue2.offer("Indiana");
 20 queue2.offer("Georgia");
 21 queue2.offer("Texas");
 22
 23 System.out.println("\nPriority queue using Comparator:");
 24 while (queue2.size() > 0) {
 25 System.out.print(queue2.remove() + " ");
 26 }
 27 }
 28 }

Priority queue using Comparable:
Georgia Indiana Oklahoma Texas
Priority queue using Comparator:
Texas Oklahoma Indiana Georgia

	 20.10.1 Is java.util.Queue a subinterface of java.util.Collection, java.util.Set, or java.util.List? Does LinkedList implement Queue?

	 20.10.2 How do you create a priority queue for integers? By default, how are elements ordered in a priority queue? Is the element with the least value assigned the highest priority in a priority queue?

	20.10.3 How do you create a priority queue that reverses the natural order of the elements?

20.11 Case Study: Evaluating Expressions

	Stacks can be used to evaluate expressions.

Stacks and queues have many applications. This section gives an application that uses stacks to evaluate expressions. You can enter an arithmetic expression from Google to evaluate the expression, as shown in Figure 20.15.

[image: A Web browser is directed to Google by entering the following expression in the search field: 51, +, opening parenthesis, 54, asterisk, opening parenthesis, 3, +, 2, closing parenthesis, closing parenthesis. Google provides the answer, 321.]
Figure 20.15 

You can evaluate an arithmetic expression using a Google search engine.

Source: Google and the Google logo are registered trademarks of Google Inc., used with permission.

How does Google evaluate an expression? This section presents a program that evaluates a compound expression with multiple operators and parentheses (e.g., (15 + 2) * 34 − 2). For simplicity, assume the operands are integers, and the operators are of four types: +, −, *, and /.

compound expression

The problem can be solved using two stacks, named operandStack and operatorStack, for storing operands and operators, respectively. Operands and operators are pushed into the stacks before they are processed. When an operator is processed, it is popped from ­operatorStack and applied to the first two operands from operandStack (the two operands are popped from operandStack). The resultant value is pushed back to operandStack.

process an operator

The algorithm proceeds in two phases:

Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators, and the parentheses.

	1.1. If the extracted item is an operand, push it to operandStack.

	1.2. If the extracted item is a + or − operator, process all the operators at the top of operatorStack and push the extracted operator to operatorStack.

	1.3. If the extracted item is a * or / operator, process the * or / operators at the top of operatorStack and push the extracted operator to operatorStack.

	1.4. If the extracted item is a (symbol, push it to operatorStack.

	1.5. If the extracted item is a) symbol, repeatedly process the operators from the top of operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until operatorStack is empty.

Table 20.1 shows how the algorithm is applied to evaluate the expression (1 + 2) * 4 − 3.

Table 20.1 Evaluating an Expression

Listing 20.12 gives the program, and Figure 20.16 shows some sample output.

[image: A window titled, command prompt.]
Figure 20.16 

The program takes an expression as command-line arguments.

Source: ­Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

+ or − scanned

Listing 20.12 EvaluateExpression.java

			 1 import java.util.Stack;
		 2
			 3 public class EvaluateExpression {
			 4 public static void main(String[] args) {

			 5 // Check number of arguments passed
 check usage		 6 if (args.length != 1) {
			 7 System.out.println(
			 8 "Usage: java EvaluateExpression \"expression\"");
			 9 System.exit(1);
			10 }
			11
			12 try {
evaluate expression 13 System.out.println(evaluateExpression(args[0]));
			14 }
			15 catch (Exception ex) {
exception 16 System.out.println("Wrong expression: " + args[0]);
			17 }
			18 }
			19
			20 /** Evaluate an expression */
			21 public static int evaluateExpression(String expression) {
			22 // Create operandStack to store operands
operandStack		23 Stack<Integer> operandStack = new Stack<>();
			24
			25 // Create operatorStack to store operators
operatorStack		26 Stack<Character> operatorStack = new Stack<>();
			27
			28 // Insert blanks around (,), +, −, /, and *
prepare for extraction 29 expression = insertBlanks(expression);
		 30
			31 // Extract operands and operators
extract tokens		32 String[] tokens = expression.split(" ");
			33
			34 // Phase 1: Scan tokens
process tokens 35 for (String token: tokens) {
		 36 if (token.length() == 0) // Blank space
 37 continue; // Back to the while loop to extract the next token
+ or − scanned		38 else if (token.charAt(0) == '+' || token.charAt(0) == '−') {
			39 // Process all +, −, *, / in the top of the operator stack
			40 while (!operatorStack.isEmpty() &&
			41 (operatorStack.peek() == '+' ||
			42 operatorStack.peek() == '−' ||
			43 operatorStack.peek() == '*' ||
			44 operatorStack.peek() == '/')) {
			45 processAnOperator(operandStack, operatorStack);
			46 }
			47
			48 // Push the + or − operator into the operator stack
			49 operatorStack.push(token.charAt(0));
			50 }
* or / scanned 51 else if (token.charAt(0) == '*' || token.charAt(0) == '/') {
		 52 // Process all *, / in the top of the operator stack
			53 while (!operatorStack.isEmpty() &&
			54 (operatorStack.peek() == '*' ||
			55 operatorStack.peek() == '/')) {
			56 processAnOperator(operandStack, operatorStack);
			57 }
			58
			59 // Push the * or / operator into the operator stack
			60 operatorStack.push(token.charAt(0));
			61 }
(scanned 62 else if(token.trim().charAt(0) =='(') {
			63 operatorStack.push('('); // Push '(' to stack
			64 }
) scanned 65 else if (token.trim().charAt(0) ==')') {
		 66 // Process all the operators in the stack until seeing '('
			67 while (operatorStack.peek() != '(') {
			68 processAnOperator(operandStack, operatorStack);
			69 }
			70
			71 operatorStack.pop(); // Pop the '(' symbol from the stack
			72 }
			73 else { // An operand scanned
			74 // Push an operand to the stack
an operand scanned 75 operandStack.push(new Integer(token));
			76 }
			77 }
			78
			79 // Phase 2: Process all the remaining operators in the stack
clear operatorStack 80 while (!operatorStack.isEmpty()) {
			81 processAnOperator(operandStack, operatorStack);
			82 }
			83
			84 // Return the result
return result	 85 return operandStack.pop();
			86 }
			87
			88 /** Process one operator: Take an operator from operatorStack and
			89 * apply it on the operands in the operandStack */
			90 public static void processAnOperator(
			91 Stack<Integer> operandStack, Stack<Character> operatorStack) {
			92 char op = operatorStack.pop();
			93 int op1 = operandStack.pop();
			94 int op2 = operandStack.pop();
process +		95 if (op == '+')
			96 operandStack.push(op2 + op1);
process −		97 else if (op == '−')
		 98 operandStack.push(op2 − op1);
process *	 99 else if (op == '*')
		 100 operandStack.push(op2 * op1);
process /	 101 else if (op == '/')
	 102 operandStack.push(op2 / op1);
		 103 }
		 104
insert blanks	 105 public static String insertBlanks(String s) {
		 106 String result = "";
		 107
		 108 for (int i = 0; i < s.length(); i++) {
		 109 if (s.charAt(i) == '(' || s.charAt(i) == ')' ||
		 110 s.charAt(i) == '+' || s.charAt(i) == '−' ||
		 111 s.charAt(i) == '*' || s.charAt(i) == '/')
		 112 result += " " + s.charAt(i) + " ";
		 113 else
		 114 result += s.charAt(i);
		 115 }
		 116
		 117 return result;
		 118 }
		 119 }

You can use the GenericStack class provided by the book, or the java.util.Stack class defined in the Java API for creating stacks. This example uses the java.util.Stack class. The program will work if it is replaced by GenericStack.

The program takes an expression as a command-line argument in one string.

The evaluateExpression method creates two stacks, operandStack and ­operatorStack (lines 23 and 26), and extracts operands, operators, and parentheses delimited by space (lines 29–32). The insertBlanks method is used to ensure that operands, operators, and parentheses are separated by at least one blank (line 29).

The program scans each token in the for loop (lines 35–77). If a token is empty, skip it (line 37). If a token is an operand, push it to operandStack (line 75). If a token is a + or − operator (line 38), process all the operators from the top of operatorStack, if any (lines 40–46), and push the newly scanned operator into the stack (line 49). If a token is a * or / operator (line 51), process all the * and / operators from the top of operatorStack, if any (lines 53–57), and push the newly scanned operator to the stack (line 60). If a token is a (symbol (line 62), push it into operatorStack. If a token is a) symbol (line 65), process all the operators from the top of operatorStack until seeing the) symbol (lines 67–69) and pop the) symbol from the stack.

After all tokens are considered, the program processes the remaining operators in ­operatorStack (lines 80–82).

The processAnOperator method (lines 90–103) processes an operator. The method pops the operator from operatorStack (line 92) and pops two operands from operandStack (lines 93 and 94). Depending on the operator, the method performs an operation and pushes the result of the operation back to operandStack (lines 96, 98, 100, and 102).

	 20.11.1 Can the EvaluateExpression program evaluate the following expressions "1 + 2", "1 + 2", "(1) + 2", "((1)) + 2", and "(1 + 2)"?

	 20.11.2 Show the change of the contents in the stacks when evaluating "3 + (4 + 5) * (3 + 5) + 4 * 5" using the EvaluateExpression program.

	 20.11.3 If you enter an expression "4 + 5 5 5", the program will display 10. How do you fix this problem?

Key Terms

	collection 776

	comparator 787

	convenience abstract class 777

	data structure 776

	linked list 784

	list 776

	priority queue 776

	queue 776

Chapter Summary

	 The Collection interface defines the common operations for lists, vectors, stacks, queues, priority queues, and sets.

	 Each collection is Iterable. You can obtain its Iterator object to traverse all the elements in the collection.

	 All the concrete classes except PriorityQueue in the Java Collections Framework implement the Cloneable and Serializable interfaces. Thus, their instances can be cloned and serialized.

	 A list stores an ordered collection of elements. To allow duplicate elements to be stored in a collection, you need to use a list. A list not only can store duplicate elements but also allows the user to specify where they are stored. The user can access elements by an index.

	 Two types of lists are supported: ArrayList and LinkedList. ArrayList is a resizable-array implementation of the List interface. All the methods in ArrayList are defined in List. LinkedList is a linked-list implementation of the List interface. In addition to implementing the List interface, this class provides the methods for retrieving, inserting, and removing elements from both ends of the list.

	 Comparator can be used to compare the objects of a class that doesn’t implement Comparable.

	 The Vector class extends the AbstractList class. Starting with Java 2, Vector has been the same as ArrayList, except that the methods for accessing and modifying the vector are synchronized. The Stack class extends the Vector class and provides several methods for manipulating the stack.

	 The Queue interface represents a queue. The PriorityQueue class implements Queue for a priority queue.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 20.2–20.7

	*20.1 (Display words in ascending alphabetical order) Write a program that reads words from a text file and displays all the words (duplicates allowed) in ascending alphabetical order. The words must start with a letter. The text file is passed as a command-line argument.

	*20.2 (Store numbers in a linked list) Write a program that lets the user enter numbers from a graphical user interface and displays them in a text area, as shown in Figure 20.17a . Use a linked list to store the numbers. Do not store duplicate numbers. Add the buttons Sort, Shuffle, and Reverse to sort, shuffle, and reverse the list.

[image: Figures ay and b show sample runs.]
Figure 20.17 

(a) The numbers are stored in a list and displayed in the text area.

Source: Copyright © 1995–2016 ­Oracle and/or its affiliates. All rights reserved. Used with permission. (b) The colliding balls are combined.

Description

	*20.3 (Guessing the capitals) Rewrite Programming Exercise 8.37 to store the pairs of states and capitals so that the questions are displayed randomly.

	*20.4 (Sort points in a plane) Write a program that meets the following requirements. Randomly create 100 points using Point2D and apply the Arrays.sort(list, Comparator) method to sort the points in increasing order of their y-coordinates and then in increasing order of their x-coordinates. Display the x- and y-coordinates of the first five points.

	***20.5 (Combine colliding bouncing balls) The example in Section 20.8 displays ­multiple bouncing balls. Extend the example to detect collisions. Once two balls collide, remove the later ball that was added to the pane and add its radius to the other ball, as shown in Figure 20.17b . Use the Suspend button to suspend the animation, and the Resume button to resume the animation. Add a mouse-pressed handler that removes a ball when the mouse is pressed on the ball.

	20.6 (Use iterators on linked lists) Write a test program that stores 5 million integers in a linked list and test the time to traverse the list using an iterator vs. using the get(index) method.

	***20.7 (Game: hangman) Programming Exercise 7.35 presents a console version of the popular hangman game. Write a GUI program that lets a user play the game. The user guesses a word by entering one letter at a time, as shown in Figure 20.18 . If the user misses seven times, a hanging man swings. Once a word is finished, the user can press the Enter key to continue to guess another word.

[image: A game of hangman is shown over 12 panels. The game shows the player the number of letters in the word to be guessed, replacing asterisks with correctly guessed letters, showing a list of missed letters, and representing them with more pieces of the hanging man.]
Figure 20.18 

The program displays a hangman game.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**20.8 (Game: lottery) Revise Programming Exercise 3.15 to add an additional $2,000 award if two digits from the user input are in the lottery number. (Hint: Sort the three digits in the lottery number and three digits in the user input into two lists, and use the Collection’s containsAll method to check whether the two digits in the user input are in the lottery number.)

Sections 20.8–20.10

	***20.9 (Remove the largest ball first) Modify Listing 20.10 , MultipleBallApp .java to assign a random radius between 2 and 20 when a ball is created. When the − button is clicked, one of largest balls is removed.

	20.10 (Perform set operations on priority queues) Create two priority queues, {"George", "Jim", "John", "Blake", "Kevin", "Michael"} and {"George", "Katie", "Kevin", "Michelle", "Ryan"} and find their union, difference, and intersection.

	*20.11 (Match grouping symbols) A Java program contains various pairs of grouping symbols, such as:

	Parentheses: (and)

	Braces: { and }

	Brackets: [and]

Note the grouping symbols cannot overlap. For example, (a{b)} is illegal. Write a program to check whether a Java source-code file has correct pairs of grouping symbols. Pass the source-code file name as a command-line argument.

	20.12 (Clone PriorityQueue) Define MyPriorityQueue class that extends PriorityQueue to implement the Cloneable interface and implement the clone() method to clone a priority queue.

	**20.13 (Game: the 24-point card game) The 24-point card game is to pick any four cards from 52 cards, as shown in Figure 20.19 . Note the Jokers are excluded. Each card represents a number. An Ace, King, Queen, and Jack represent 1, 13, 12, and 11, respectively. You can click the Shuffle button to get four new cards. Enter an expression that uses the four numbers from the four selected cards. Each number must be used once and only once. You can use the operators (addition, subtraction, multiplication, and division) and parentheses in the expression. The expression must evaluate to 24. After entering the expression, click the Verify button to check whether the numbers in the expression are currently selected and whether the result of the expression is correct. Display the verification in a label before the Shuffle button. Assume that images are stored in files named 1.png, 2.png, . . . , 52.png, in the order of spades, hearts, diamonds, and clubs. Thus, the first 13 images are for spades 1, 2, 3, . . . , and 13.

[image: A window titled, Exercise 20, underscore, 13, is shown 3 times.]
Figure 20.19 

The user enters an expression consisting of the numbers in the cards and clicks the Verify button to check the answer.

Source: Fotolia.

Description

	**20.14 (Postfix notation) Postfix notation is a way of writing expressions without using parentheses. For example, the expression (1 + 2) * 3 would be written as 1 2 + 3 *. A postfix expression is evaluated using a stack. Scan a postfix expression from left to right. A variable or constant is pushed into the stack. When an operator is encountered, apply the operator with the top two operands in the stack and replace the two operands with the result. The following ­diagram shows how to evaluate 1 2 + 3 *:

[image: Evaluating an expression in postfix notation, using the stack.]

Description

Write a program to evaluate postfix expressions. Pass the expression as a command-line argument in one string.

	***20.15 (Game: the 24-point card game) Improve Programming Exercise 20.13 to enable the computer to display the expression if one exists, as shown in ­Figure 20.20 . Otherwise, report that the expression does not exist. Place the label for verification result at the bottom of the UI. The expression must use all four cards and evaluated to 24.

[image: A window titled, Exercise 20, underscore, 15, is shown 4 times.]
Figure 20.20 

The program can automatically find a solution if one exists.

Source: Fotolia.

Description

	**20.16 (Convert infix to postfix) Write a method that converts an infix expression into a postfix expression using the following header:

public static String infixToPostfix(String expression)

For example, the method should convert the infix expression (1 + 2) * 3 to 1 2 + 3 * and 2 * (1 + 3) to 2 1 3 + *. Write a program that accepts an expression in one argument from the command line and displays its corresponding postfix expression.

	***20.17 (Game: the 24-point card game) This exercise is a variation of the 24-point card game described in Programming Exercise 20.13 . Write a program to check whether there is a 24-point solution for the four specified numbers. The program lets the user enter four values, each between 1 and 13, as shown in Figure 20.21 . The user can then click the Solve button to display the solution or display “No solution” if none exists:

[image: A window titled, Exercise 20, underscore, 17, is shown 3 times.]
Figure 20.21 

The user enters four numbers and the program finds a solution.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*20.18 (Directory size) Listing 18.10 , DirectorySize.java, gives a recursive method for finding a directory size. Rewrite this method without using recursion. Your program should use a queue to store the subdirectories under a directory. The algorithm can be described as follows:

long getSize(File directory) {
 long size = 0;
 add directory to the queue;

 while (queue is not empty) {
 Remove an item from the queue into t;
 if (t is a file)
 size += t.length();
 else
 add all the files and subdirectories under t into the
 queue;
 }

 return size;
}

	***20.19 (Game: solution ratio for 24-point card game) When you pick four cards from a deck of 52 cards for the 24-point card game introduced in Programming Exercise 20.13 , the four cards may not have a 24-point solution. What is the number of all possible picks of four cards from 52 cards? Among all possible picks, how many of them have 24-point solutions? What is the success ratio—that is, (number of picks with solutions)/(number of all possible picks of four cards)? Write a program to find these answers.

	*20.20 (Directory size) Rewrite Programming Exercise 18.28 using a stack instead of a queue.

	*20.21 (Use Comparator) Write the following generic method using selection sort and a comparator:

public static <E> void selectionSort(E[] list,
 Comparator<? super E> comparator)

Write a test program that creates an array of 10 GeometricObjects and invokes this method using the GeometricObjectComparator introduced in Listing 20.5 to sort the elements. Display the sorted elements. Use the following statement to create the array:

GeometricObject[] list1 = {new Circle(5), new Rectangle(4, 5),
 new Circle(5.5), new Rectangle(2.4, 5), new Circle(0.5),
 new Rectangle(4, 65), new Circle(4.5), new Rectangle(4.4, 1),
 new Circle(6.5), new Rectangle(4, 5)};

Also in the same program, write the code that sorts six strings by their last character. Use the following statement to create the array:

String[] list2 = {"red", "blue", "green", "yellow", "orange", "pink"};

	*20.22 (Nonrecursive Tower of Hanoi) Implement the moveDisks method in ­Listing 18.8 using a stack instead of using recursion.

	**20.23 (Evaluate expression) Modify Listing 20.12 , EvaluateExpression.java to add operators ^ for exponent and % for remainder. For example, 3 ^ 2 is 9 and 3 % 2 is 1. The ^ operator has the highest precedence and the % operator has the same precedence as the * and / operators. Your program should prompt the user to enter an expression. Here is a sample run of the program:

Enter an expression: (5 * 2 ^ 3 + 2 * 3 % 2) * 4
(5 * 2 ^ 3 + 2 * 3 % 2) * 4 = 160

CHAPTER 21 Sets and Maps

Objectives

	To store unordered, nonduplicate elements using a set (§21.2).

	To explore how and when to use HashSet (§21.2.1), LinkedHashSet (§21.2.2), or TreeSet (§21.2.3) to store a set of elements.

	To compare the performance of sets and lists (§21.3).

	To use sets to develop a program that counts the keywords in a Java source file (§21.4).

	To tell the differences between Collection and Map and describe when and how to use HashMap, LinkedHashMap, or TreeMap to store values associated with keys (§21.5).

	To use maps to develop a program that counts the occurrence of the words in a text (§21.6).

	To obtain singleton sets, lists, and maps and unmodifiable sets, lists, and maps, use the static methods in the Collections class (§21.7).

21.1 Introduction

	A set is an efficient data structure for storing and processing nonduplicate elements. A map is like a dictionary that provides a quick lookup to retrieve a value using a key.

The “No-Fly” list is a list, created and maintained by the U.S. government’s Terrorist Screening Center, of people who are not permitted to board a commercial aircraft for travel in or out of the United States. Suppose we need to write a program that checks whether a person is on the No-Fly list. You can use a list to store names in the No-Fly list. However, a more efficient data structure for this application is a set.

why set?

Suppose your program also needs to store detailed information about terrorists in the No-Fly list. The detailed information such as gender, height, weight, and nationality can be retrieved using the name as the key. A map is an efficient data structure for such a task.

why map?

This chapter introduces sets and maps in the Java Collections Framework.

21.2 Sets

	You can create a set using one of its three concrete classes: HashSet, LinkedHashSet, or TreeSet.

set no duplicates

The Set interface extends the Collection interface, as shown in Figure 20.1. It does not introduce new methods or constants, but it stipulates that an instance of Set contains no duplicate elements. The concrete classes that implement Set must ensure that no duplicate elements can be added to the set. That is, no two elements e1 and e2 can be in the set such that e1.equals(e2) is true.

AbstractSet

The AbstractSet class extends AbstractCollection and partially implements Set. The AbstractSet class provides concrete implementations for the equals method and the hashCode method. The hash code of a set is the sum of the hash codes of all the elements in the set. Since the size method and iterator method are not implemented in the AbstractSet class, AbstractSet is an abstract class.

Three concrete classes of Set are HashSet, LinkedHashSet, and TreeSet, as shown in Figure 21.1.

[image: A U M L diagram, with 8 parts.]
Figure 21.1 

The Java Collections Framework provides three concrete set classes.

Description

21.2.1  HashSet

hash set

The HashSet class is a concrete class that implements Set. You can create an empty hash set using its no-arg constructor, or create a hash set from an existing collection. By default, the initial capacity is 16 and the load factor is 0.75. If you know the size of your set, you can specify the initial capacity and load factor in the constructor. Otherwise, use the default setting. The load factor is a value between 0.0 and 1.0.

load factor

The load factor measures how full the set is allowed to be before its capacity is increased. When the number of elements exceeds the product of the capacity and load factor, the capacity is automatically doubled. For example, if the capacity is 16 and load factor is 0.75, the capacity will be doubled to 32 when the size reaches 12 (16 ∗ 0.75=12).[&(16 |ast| 0.75|=|12).&] A higher load factor decreases the space costs but increases the search time. Generally, the default load factor 0.75 is a good trade-off between time and space costs. We will discuss more on the load factor in Chapter 27, Hashing.

hashCode()

A HashSet can be used to store duplicate-free elements. For efficiency, objects added to a hash set need to implement the hashCode method in a manner that properly disperses the hash code. The hashCode method is defined in the Object class. The hash codes of two objects must be the same if the two objects are equal. Two unequal objects may have the same hash code, but you should implement the hashCode method to avoid too many such cases. Most of the classes in the Java API implement the hashCode method. For example, the ­hashCode in the Integer class returns its int value. The hashCode in the Character class returns the Unicode of the character. The hashCode in the String class returns s0 ∗ 31(n−1)+s1 ∗ 31(n−2)+…+sn−1,[&~rom~s_{~normal~0} |ast| 31^{(~rom~n|-|~normal~1)}|+|~rom~s_{~normal~1} |ast| 31^{(~rom~n|-|~normal~2)}|+||cdots||+|~rom~s_{n|-|~normal~1},~norm~&] where si[&~rom~s_{i}~norm~&] is s.charAt(i).

Listing 21.1 gives a program that creates a hash set to store strings and uses a foreach loop and a forEach method to traverse the elements in the set.

Listing 21.1 TestHashSet.java

			 1 import java.util.*;
			 2
			 3 public class TestHashSet {
			 4 public static void main(String[] args) {
			 5 // Create a hash set
create a set		 6 Set<String> set = new HashSet<>();
			 7
			 8 // Add strings to the set
add element		 9 set.add("London");
			10 set.add("Paris");
			11 set.add("New York");
			12 set.add("San Francisco");
			13 set.add("Beijing");
			14 set.add("New York");
			15
			16 System.out.println(set);
			17
			18 // Display the elements in the hash set
traverse elements	19 for (String s: set) {
			20 System.out.print(s.toUpperCase() + " ");
			21 }
			22
			23 // Process the elements using a forEach method
			24 System.out.println();
forEach method		25 set.forEach(e −> System.out.print(e.toLowerCase() + " "));
			26 }
			27 }

[San Francisco, New York, Paris, Beijing, London]
SAN FRANCISCO NEW YORK PARIS BEIJING LONDON

The strings are added to the set (lines 9–14). New York is added to the set more than once, but only one string is stored because a set does not allow duplicates.

As shown in the output, the strings are not stored in the order in which they are inserted into the set. There is no particular order for the elements in a hash set. To impose an order on them, you need to use the LinkedHashSet class, which is introduced in the next section.

Recall that the Collection interface extends the Iterable interface, so the elements in a set are iterable. A foreach loop is used to traverse all the elements in the set (lines 19–21). You can also use a forEach method to process each element in a set (line 25).

Since a set is an instance of Collection, all methods defined in Collection can be used for sets. Listing 21.2 gives an example that applies the methods in the Collection interface on sets.

Listing 21.2 TestMethodsInCollection.java

 1 public class TestMethodsInCollection {
 2 public static void main(String[] args) {
 3 // Create set1
create a set 4 java.util.Set<String> set1 = new java.util.HashSet<>();
 5
 6 // Add strings to set1
add element 7 set1.add("London");
 8 set1.add("Paris");
		 9 set1.add("New York");
 10 set1.add("San Francisco");
 11 set1.add("Beijing");
 12
 13 System.out.println("set1 is " + set1);
get size 14 System.out.println(set1.size() + " elements in set1");
 15
 16 // Delete a string from set1
remove element 17 set1.remove("London");
 18 System.out.println("\nset1 is " + set1);
 19 System.out.println(set1.size() + " elements in set1");
 20
 21 // Create set2
create a set 22 java.util.Set<String> set2 = new java.util.HashSet<>();
 23
 24 // Add strings to set2
add element 25 set2.add("London");
 26 set2.add("Shanghai");
 27 set2.add("Paris");
 28 System.out.println("\nset2 is " + set2);
 29 System.out.println(set2.size() + " elements in set2");
 30
 31 System.out.println("\nIs Taipei in set2? "
contains element? 32 + set2.contains("Taipei"));
 33
addAll 34 set1.addAll(set2);
 35 System.out.println("\nAfter adding set2 to set1, set1 is "
 36 + set1);
 37
removeAll 38 set1.removeAll(set2);
 39 System.out.println("After removing set2 from set1, set1 is "
 40 + set1);
 41
retainAll 42 set1.retainAll(set2);
 43 System.out.println("After retaining common elements in set2 "
 44 + "and set2, set1 is " + set1);
 45 }
 46 }

set1 is [San Francisco, New York, Paris, Beijing, London]
5 elements in set1

set1 is [San Francisco, New York, Paris, Beijing]
4 elements in set1

set2 is [Shanghai, Paris, London]
3 elements in set2

Is Taipei in set2? false

After adding set2 to set1, set1 is
 [San Francisco, New York, Shanghai, Paris, Beijing, London]

After removing set2 from set1, set1 is
 [San Francisco, New York, Beijing]

After retaining common elements in set1 and set2, set1 is []

The program creates two sets (lines 4 and 22). The size() method returns the number of the elements in a set (line 14). Line 17

set1.remove("London");

removes London from set1.

	The contains method (line 32) checks whether an element is in the set.

	Line 34

set1.addAll(set2);

adds set2 to set1. Therefore, set1 becomes [San Francisco, New York, Shanghai, Paris, Beijing, London].

	Line 38

set1.removeAll(set2);

removes set2 from set1. Thus, set1 becomes [San Francisco, New York, Beijing].

	Line 42

set1.retainAll(set2);

retains the common elements in set1 and set2. Since set1 and set2 have no common ­elements, set1 becomes empty.

21.2.2  LinkedHashSet

LinkedHashSet extends HashSet with a linked-list implementation that supports an ­ordering of the elements in the set. The elements in a HashSet are not ordered, but the elements in a LinkedHashSet can be retrieved in the order in which they were inserted into the set. A LinkedHashSet can be created by using one of its four constructors, as shown in Figure 21.1. These constructors are similar to the constructors for HashSet.

Listing 21.3 gives a test program for LinkedHashSet. The program simply replaces ­HashSet by LinkedHashSet in Listing 21.1.

linked hash set

Listing 21.3 TestLinkedHashSet.java

 1 import java.util.*;
 2
 3 public class TestLinkedHashSet {
 4 public static void main(String[] args) {
 5 // Create a hash set
 create linked hash set 6 Set<String> set = new LinkedHashSet<>();
 7
 8 // Add strings to the set
add element 9 set.add("London");
 10 set.add("Paris");
 11 set.add("New York");
 12 set.add("San Francisco");
 13 set.add("Beijing");
 14 set.add("New York");
 15
 16 System.out.println(set);
 17
 18 // Display the elements in the hash set
display elements 19 for (String element: set)
 20 System.out.print(element.toLowerCase() + " ");
 21 }
 22 }

[London, Paris, New York, San Francisco, Beijing]
london paris new york san francisco beijing

A LinkedHashSet is created in line 6. As shown in the output, the strings are stored in the order in which they are inserted. Since LinkedHashSet is a set, it does not store duplicate elements.

The LinkedHashSet maintains the order in which the elements are inserted. To impose a different order (e.g., increasing or decreasing order), you can use the TreeSet class, which is introduced in the next section.

 Tip

If you don’t need to maintain the order in which the elements are inserted, use HashSet, which is more efficient than LinkedHashSet.

21.2.3 TreeSet

As shown in Figure 21.1, SortedSet is a subinterface of Set, which guarantees that the elements in the set are sorted. In addition, it provides the methods first() and last() for returning the first and last ­elements in the set, and headSet(toElement) and tailSet(fromElement) for returning a portion of the set whose elements are less than toElement and greater than or equal to fromElement, respectively.

NavigableSet extends SortedSet to provide navigation methods lower(e), floor(e), ceiling(e), and higher(e) that return elements, respectively, less than, less than or equal, greater than or equal, and greater than a given element and return null if there is no such element. The pollFirst() and pollLast() methods remove and return the first and last element in the tree set, respectively.

TreeSet implements the SortedSet interface. To create a TreeSet, use a constructor, as shown in Figure 21.1. You can add objects into a tree set as long as they can be compared with each other.

tree set

As discussed in Section 20.5, the elements can be compared in two ways: using the ­Comparable interface or the Comparator interface.

Listing 21.4 gives an example of ordering elements using the Comparable interface. The ­preceding example in Listing 21.3 displays all the strings in their insertion order. This example rewrites the preceding example to display the strings in alphabetical order using the TreeSet class.

Listing 21.4 TestTreeSet.java

 1 import java.util.*;
 2
 3 public class TestTreeSet {
 4 public static void main(String[] args) {
 5 // Create a hash set
create hash set 6 Set<String> set = new HashSet<>();
 7
 8 // Add strings to the set
 9 set.add("London");
 10 set.add("Paris");
 11 set.add("New York");
 12 set.add("San Francisco");
 13 set.add("Beijing");
 14 set.add("New York");
 15
create tree set 16 TreeSet<String> treeSet = new TreeSet<>(set);
 17 System.out.println("Sorted tree set: " + treeSet);
 18
 19 // Use the methods in SortedSet interface
display elements 20 System.out.println("first(): " + treeSet.first());
 21 System.out.println("last(): " + treeSet.last());
 22 System.out.println("headSet(\"New York\"): " +
 23 treeSet.headSet("New York"));
 24 System.out.println("tailSet(\"New York\"): " +
 25 treeSet.tailSet("New York"));
 26
 27 // Use the methods in NavigableSet interface
 28 System.out.println("lower(\"P\"): " + treeSet.lower("P"));
 29 System.out.println("higher(\"P\"): " + treeSet.higher("P"));
 30 System.out.println("floor(\"P\"): " + treeSet.floor("P"));
 31 System.out.println("ceiling(\"P\"): " + treeSet.ceiling("P"));
 32 System.out.println("pollFirst(): " + treeSet.pollFirst());
 33 System.out.println("pollLast(): " + treeSet.pollLast());
 34 System.out.println("New tree set: " + treeSet);
 35 }
 36 }

Sorted tree set: [Beijing, London, New York, Paris, San Francisco]
first(): Beijing
last(): San Francisco
headSet("New York"): [Beijing, London]
tailSet("New York"): [New York, Paris, San Francisco]
lower("P"): New York
higher("P"): Paris
floor("P"): New York
ceiling("P"): Paris
pollFirst(): Beijing
pollLast(): San Francisco
New tree set: [London, New York, Paris]

The example creates a hash set filled with strings, then creates a tree set for the same strings. The strings are sorted in the tree set using the compareTo method in the Comparable interface.

The elements in the set are sorted once you create a TreeSet object from a ­HashSet object using new TreeSet<>(set) (line 16). You may rewrite the program to create an instance of TreeSet using its no-arg constructor and add the strings into the TreeSet object.

treeSet.first() returns the first element in treeSet (line 20) and treeSet.last() returns the last element in treeSet (line 21). treeSet.headSet("New York") returns the elements in treeSet before New York (lines 22–23). treeSet.tailSet("New York") returns the elements in treeSet after New York, including New York (lines 24–25).

treeSet.lower("P") returns the largest element less than P in treeSet (line 28). ­treeSet.higher("P") returns the smallest element greater than P in treeSet (line 29). treeSet.floor("P") returns the largest element less than or equal to P in treeSet (line 30). treeSet.ceiling("P") returns the smallest element greater than or equal to P in treeSet (line 31). treeSet.pollFirst() removes the first element in treeSet and returns the removed element (line 32). treeSet.pollLast() removes the last element in treeSet and returns the removed element (line 33).

 Note

All the concrete classes in Java Collections Framework (see Figure 20.1) have at least two constructors. One is the no-arg constructor that constructs an empty collection. The other constructs instances from a collection. Thus the TreeSet class has the ­constructor TreeSet(Collection c) for constructing a TreeSet from a ­collection c. In this example, new TreeSet<>(set) creates an instance of TreeSet from the collection set.

 Tip

If you don’t need to maintain a sorted set when updating a set, you should use a hash set because it takes less time to insert and remove elements in a hash set. When you need a sorted set, you can create a tree set from the hash set.

If you create a TreeSet using its no-arg constructor, the compareTo method is used to compare the elements in the set, assuming the class of the elements implements the ­Comparable interface. To use a comparator, you have to use the constructor TreeSet(Comparator ­comparator) to create a sorted set that uses the compare method in the comparator to order the elements in the set.

Listing 21.5 gives a program that demonstrates how to sort elements in a tree set using the Comparator interface.

Listing 21.5 TestTreeSetWithComparator.java

			 1 import java.util.*;
			 2
			 3 public class TestTreeSetWithComparator {
			 4 public static void main(String[] args) {
			 5 // Create a tree set for geometric objects using a comparator
			 6 Set<GeometricObject> set =
tree set		 7 new TreeSet<>(new GeometricObjectComparator());
			 8 set.add(new Rectangle(4, 5));
			 9 set.add(new Circle(40));
			10 set.add(new Circle(40));
			11 set.add(new Rectangle(4, 1));
			12
			13 // Display geometric objects in the tree set
			14 System.out.println("A sorted set of geometric objects");
display elements	15 for (GeometricObject element: set)
			16 System.out.println("area = " + element.getArea());
			17 }
			18 }

A sorted set of geometric objects
area = 4.0
area = 20.0
area = 5021.548245743669

The GeometricObjectComparator class is defined in Listing 20.4. The program creates a tree set of geometric objects using the GeometricObjectComparator for comparing the elements in the set (lines 6 and 7).

The Circle and Rectangle classes were defined in Section 13.2, Abstract Classes. They are all subclasses of GeometricObject. They are added to the set (lines 8–11).

Two circles of the same radius are added to the tree set (lines 9 and 10), but only one is stored because the two circles are equal (determined by the comparator in this case) and the set does not allow duplicates.

	21.2.1 How do you create an instance of Set? How do you insert a new element in a set? How do you remove an element from a set? How do you find the size of a set?

	21.2.2 If two objects o1 and o2 are equal, what is o1.equals(o2) and o1.hashCode() == o2.hashCode()?

	21.2.3 What are the differences among HashSet, LinkedHashSet, and TreeSet?

	21.2.4 How do you traverse the elements in a set?

	21.2.5 How do you sort the elements in a set using the compareTo method in the ­Comparable interface? How do you sort the elements in a set using the ­Comparator interface? What would happen if you added an element that could not be compared with the existing elements in a tree set?

	21.2.6 Suppose set1 is a set that contains the strings red, yellow, and green and that set2 is another set that contains the strings red, yellow, and blue. Answer the following questions:

	What are in set1 and set2 after executing set1.addAll(set2)?

	What are in set1 and set2 after executing set1.add(set2)?

	What are in set1 and set2 after executing set1.removeAll(set2)?

	What are in set1 and set2 after executing set1.remove(set2)?

	What are in set1 and set2 after executing set1.retainAll(set2)?

	What is in set1 after executing set1.clear()?

	21.2.7 Show the output of the following code:

import java.util.*;

public class Test {
 public static void main(String[] args) {
 LinkedHashSet<String> set1 = new LinkedHashSet<>();
 set1.add("New York");
 LinkedHashSet<String> set2 = set1;
 LinkedHashSet<String> set3 =
 (LinkedHashSet<String>)(set1.clone());
 set1.add("Atlanta");
 System.out.println("set1 is " + set1);
 System.out.println("set2 is " + set2);
 System.out.println("set3 is " + set3);
 set1.forEach(e −> System.out.print(e + " "));
 }
}

	21.2.8 Show the output of the following code:

Set<String> set = new LinkedHashSet<>();
set.add("ABC");
set.add("ABD");
System.out.println(set);

	21.2.9 What will the output be if lines 6–7 in Listing 21.5 are replaced by the ­following code:

Set<GeometricObject> set = new HashSet<>();

	21.2.10 Show the output of the following code:

Set<String> set = new TreeSet<>(
 Comparator.comparing(String::length));
set.add("ABC");
set.add("ABD");
System.out.println(set);

21.3 Comparing the Performance of Sets and Lists

	Sets are more efficient than lists for storing nonduplicate elements. Lists are useful for accessing elements through the index.

The elements in a list can be accessed through the index. However, sets do not support indexing because the elements in a set are unordered. To traverse all elements in a set, use a foreach loop. We now conduct an interesting experiment to test the performance of sets and lists. ­Listing 21.6 gives a program that shows the execution time of (1) testing whether an element is in a hash set, linked hash set, tree set, array list, or linked list and (2) removing elements from a hash set, linked hash set, tree set, array list, and linked list.

Listing 21.6 SetListPerformanceTest.java

			 1 import java.util.*;
			 2
			 3 public class SetListPerformanceTest {
			 4 static final int N = 50000;
			 6 public static void main(String[] args) {
			 7 // Add numbers 0, 1, 2, …, N − 1 to the array list
create test data	 8 List<Integer> list = new ArrayList<>();
			 9 for (int i = 0; i < N; i++)
			10 list.add(i);
shuffle			11 Collections.shuffle(list); // Shuffle the array list
			12
			13 // Create a hash set, and test its performance
a hash set		14 Collection<Integer> set1 = new HashSet<>(list);
			15 System.out.println("Member test time for hash set is " +
			16 getTestTime(set1) + " milliseconds");
			17 System.out.println("Remove element time for hash set is " +
			18 getRemoveTime(set1) + " milliseconds");
			19
			20 // Create a linked hash set, and test its performance
a linked hash set	21 Collection<Integer> set2 = new LinkedHashSet<>(list);
			22 System.out.println("Member test time for linked hash set is " +
			23 getTestTime(set2) + " milliseconds");
			24 System.out.println("Remove element time for linked hash set is "
			25 + getRemoveTime(set2) + " milliseconds");
			26
			27 // Create a tree set, and test its performance
a tree set		28 Collection<Integer> set3 = new TreeSet<>(list);
			29 System.out.println("Member test time for tree set is " +
			30 getTestTime(set3) + " milliseconds");
			31 System.out.println("Remove element time for tree set is " +
			32 getRemoveTime(set3) + " milliseconds");
			33
			34 // Create an array list, and test its performance
an array list		35 Collection<Integer> list1 = new ArrayList<>(list);
			36 System.out.println("Member test time for array list is " +
			37 getTestTime(list1) + " milliseconds");
			38 System.out.println("Remove element time for array list is " +
			39 getRemoveTime(list1) + " milliseconds");
			40
			41 // Create a linked list, and test its performance
a linked list		42 Collection<Integer> list2 = new LinkedList<>(list);
			43 System.out.println("Member test time for linked list is " +
			44 getTestTime(list2) + " milliseconds");
			45 System.out.println("Remove element time for linked list is " +
			46 getRemoveTime(list2) + " milliseconds");
			47 }
			48
			49 public static long getTestTime(Collection<> c) {
start time		50 long startTime = System.currentTimeMillis();
			51
			52 // Test if a number is in the collection
			53 for (int i = 0; i < N; i++)
test membership		54 c.contains((int)(Math.random() * 2 * N));
			55
return execution time	56 return System.currentTimeMillis() − startTime;
			57 }
			58
			59 public static long getRemoveTime(Collection<Integer> c) {
			60 long startTime = System.currentTimeMillis();
			61
			62 for (int i = 0; i < N; i++)
remove from container	63 c.remove(i);
			64
return execution time	65 return System.currentTimeMillis() − startTime;
			66 }
			67 }

Member test time for hash set is 20 milliseconds
Remove element time for hash set is 27 milliseconds
Member test time for linked hash set is 27 milliseconds
Remove element time for linked hash set is 26 milliseconds
Member test time for tree set is 47 milliseconds
Remove element time for tree set is 34 milliseconds
Member test time for array list is 39802 milliseconds
Remove element time for array list is 16196 milliseconds
Member test time for linked list is 52197 milliseconds
Remove element time for linked list is 14870 milliseconds

The program creates a list for numbers from 0 to N−1 (for N =[&|eq|&] 50000) (lines 8–10) and shuffles the list (line 11). From this list, the program creates a hash set (line 14), a linked hash set (line 21), a tree set (line 28), an array list (line 35), and a linked list (line 42). The program obtains the execution time for testing whether a number is in the hash set (line 16), linked hash set (line 23), tree set (line 30), array list (line 37), or linked list (line 44) and obtains the execution time for removing the elements from the hash set (line 18), linked hash set (line 25), tree set (line 32), array list (line 39), and linked list (line 46).

The getTestTime method invokes the contains method to test whether a number is in the container (line 54) and the getRemoveTime method invokes the remove method to remove an element from the container (line 63).

As these runtimes illustrate, sets are much more efficient than lists for testing whether an element is in a set or a list. Therefore, the No-Fly list should be implemented using a hash set instead of a list, because it is much faster to test whether an element is in a hash set than in a list.

sets are better

You may wonder why sets are more efficient than lists. The questions will be answered in Chapters 24 and 27 when we introduce the implementations of lists and sets.

	21.3.1 Suppose you need to write a program that stores unordered, nonduplicate elements, what data structure should you use?

	21.3.2 Suppose you need to write a program that stores nonduplicate elements in the order of insertion, what data structure should you use?

	21.3.3 Suppose you need to write a program that stores nonduplicate elements in increasing order of the element values, what data structure should you use?

	21.3.4 Suppose you need to write a program that stores a fixed number of the elements (possibly duplicates), what data structure should you use?

	21.3.5 Suppose you need to write a program that stores the elements in a list with frequent operations to append and delete elements at the end of the list, what data structure should you use?

	21.3.6 Suppose you need to write a program that stores the elements in a list with frequent operations to insert and delete elements at the beginning of the list, what data structure should you use?

21.4 Case Study: Counting Keywords

	This section presents an application that counts the number of keywords in a Java source file.

For each word in a Java source file, we need to determine whether the word is a keyword. To handle this efficiently, store all the keywords in a HashSet and use the contains method to test if a word is in the keyword set. Listing 21.7 gives this program.

Listing 21.7 CountKeywords.java

			 1 import java.util.*;
			 2 import java.io.*;
			 3
			 4 public class CountKeywords {
			 5 public static void main(String[] args) throws Exception {
			 6 Scanner input = new Scanner(System.in);
			 7 System.out.print("Enter a Java source file: ");
enter a filename	 8 String filename = input.nextLine();
			 9
			10 File file = new File(filename);
file exists? 11 if (file.exists()) {
 12 System.out.println("The number of keywords in " + filename
count keywords		13 + " is " + countKeywords(file));
			14 }
			15 else {
			16 System.out.println("File " + filename + " does not exist");
			17 }
			18 }
			19
			20 public static int countKeywords(File file) throws Exception {
			21 // Array of all Java keywords + true, false and null
keywords		22 String[] keywordString = {"abstract", "assert", "boolean",
			23 "break", "byte", "case", "catch", "char", "class", "const",
			24 "continue", "default", "do", "double", "else", "enum",
			25 "extends", "for", "final", "finally", "float", "goto",
			26 "if", "implements", "import", "instanceof", "int",
			27 "interface", "long", "native", "new", "package", "private",
			28 "protected", "public", "return", "short", "static",
			29 "strictfp", "super", "switch", "synchronized", "this",
			30 "throw", "throws", "transient", "try", "void", "volatile",
			31 "while", "true", "false", "null"};
			32
keyword set		33 Set<String> keywordSet =
			34 new HashSet<>(Arrays.asList(keywordString));
			35 int count = 0;
			36
			37 Scanner input = new Scanner(file);
			38
			39 while (input.hasNext()) {
			40 String word = input.next();
is a keyword?		41 if (keywordSet.contains(word))
			42 count++;
			43 }
			44
			45 return count;
			46 }
			47 }

Enter a Java source file: c:\ Welcome.java
The number of keywords in c:\ Welcome.java is 5

Enter a Java source file: c:\ TTT.java
File c:\ TTT.java does not exist

The program prompts the user to enter a Java source filename (line 7) and reads the filename (line 8). If the file exists, the countKeywords method is invoked to count the keywords in the file (line 13).

The countKeywords method creates an array of strings for the keywords (lines 22–31) and creates a hash set from this array (lines 33–34). It then reads each word from the file and tests if the word is in the set (line 41). If so, the program increases the count by 1 (line 42).

You may rewrite the program to use a LinkedHashSet, TreeSet, ArrayList, or LinkedList to store the keywords. However, using a HashSet is the most efficient for this program.

	21.4.1 Will the CountKeywords program work if lines 33–34 are changed to

Set<String> keywordSet =
 new LinkedHashSet<>(Arrays.asList(keywordString));

	21.4.2 Will the CountKeywords program work if lines 33–34 are changed to

List<String> keywordSet =
 new ArrayList<>(Arrays.asList(keywordString));

21.5 Maps

	You can create a map using one of its three concrete classes: HashMap, ­LinkedHashMap, or TreeMap.

A map is a container object that stores a collection of key/value pairs. It enables fast retrieval, deletion, and updating of the pair through the key. A map stores the values along with the keys. The keys are like indexes. In List, the indexes are integers. In Map, the keys can be any objects. A map cannot contain duplicate keys. Each key maps to one value. A key and its corresponding value form an entry stored in a map, as shown in Figure 21.2a. Figure 21.2b shows a map in which each entry consists of a Social Security number as the key and a name as the value.

[image: Two figures demonstrate how data is stored in maps.]Figure 21.2

The entries consisting of key/value pairs are stored in a map.

Description

map

There are three types of maps: HashMap, LinkedHashMap, and TreeMap. The ­common features of these maps are defined in the Map interface. Their relationship is shown in Figure 21.3.

[image: A diagram for map stores and key value pairs.]
Figure 21.3 

A map stores key/value pairs.

Description

The Map interface provides the methods for querying, updating, and obtaining a collection of values and a set of keys, as shown in Figure 21.4.

[image: An annotated U M L diagram titled, interface, begin italics, java dot u t i l dot Map, <, K, comma, V, >, end italics.]
Figure 21.4 

The Map interface maps keys to values.

Description

The update methods include clear, put, putAll, and remove. The clear() method removes all entries from the map. The put(K key, V value) method adds an entry for the specified key and value in the map. If the map formerly contained an entry for this key, the old value is replaced by the new value, and the old value associated with the key is returned. The putAll(Map m) method adds all entries in m to this map. The remove(Object key) method removes the entry for the specified key from the map.

update methods

The query methods include containsKey, containsValue, isEmpty, and size. The containsKey(Object key) method checks whether the map contains an entry for the specified key. The containsValue(Object value) method checks whether the map contains an entry for this value. The isEmpty() method checks whether the map contains any entries. The size() method returns the number of entries in the map.

query methods

You can obtain a set of the keys in the map using the keySet() method, and a collection of the values in the map using the values() method. The entrySet() method returns a set of entries. The entries are instances of the Map.Entry<K, V> interface, where Entry is an inner interface for the Map interface, as shown in Figure 21.5. Each entry in the set is a key/value pair in the underlying map.

[image: An annotated U M L diagram titled, interface, begin italics, java dot u t i l dot Map dot Entry, <, K, comma, V, >, end italics.]
Figure 21.5 

The Map.Entry interface operates on an entry in the map.

Description

keySet()

values()

entrySet()

Java 8 added a default forEach method in the Map interface for performing an action on each entry in the map. This method can be used like an iterator for traversing the entries in the map.

forEach method

The AbstractMap class is a convenience abstract class that implements all the methods in the Map interface except the entrySet() method.

AbstractMap

The HashMap, LinkedHashMap, and TreeMap classes are three concrete implementations of the Map interface, as shown in Figure 21.6.

[image: A U M L diagram, with 7 parts.]
Figure 21.6 

The Java Collections Framework provides three concrete map classes.

Description

concrete implementation

The HashMap class is efficient for locating a value, inserting an entry, and deleting an entry.

HashMap

LinkedHashMap extends HashMap with a linked-list implementation that supports an ordering of the entries in the map. The entries in a HashMap are not ordered, but the entries in a LinkedHashMap can be retrieved either in the order in which they were inserted into the map (known as the insertion order) or in the order in which they were last accessed, from least recently to most recently accessed (access order). The no-arg constructor constructs a ­LinkedHashMap with the insertion order. To construct a LinkedHashMap with the access order, use LinkedHashMap(initialCapacity, loadFactor, true).

LinkedHashMap

insertion order

access order

The TreeMap class is efficient for traversing the keys in a sorted order. The keys can be sorted using the Comparable interface or the Comparator interface. If you create a TreeMap using its no-arg constructor, the compareTo method in the Comparable interface is used to compare the keys in the map, assuming the class for the keys implements the Comparable interface. To use a comparator, you have to use the TreeMap(Comparator comparator) constructor to create a sorted map that uses the compare method in the comparator to order the entries in the map based on the keys.

TreeMap

SortedMap is a subinterface of Map, which guarantees the entries in the map are sorted. In addition, it provides the methods firstKey() and lastKey() for returning the first and the last keys in the map, and headMap(toKey) and tailMap(fromKey) for returning a portion of the map whose keys are less than toKey and greater than or equal to fromKey, respectively.

SortedMap

NavigableMap extends SortedMap to provide the navigation methods lowerKey(key), floorKey(key), ceilingKey(key), and higherKey(key) that return keys, respectively, less than, less than or equal, greater than or equal, and greater than a given key and return null if there is no such key. The pollFirstEntry() and pollLastEntry() methods remove and return the first and the last entry in the tree map, respectively.

NavigableMap

 Note

Prior to Java 2, java.util.Hashtable was used for mapping keys with values. ­Hashtable was redesigned to fit into the Java Collections Framework with all its ­methods retained for compatibility. Hashtable implements the Map interface and is used in the same way as HashMap, except that the update methods in Hashtable are synchronized.

Hashtable

Listing 21.8 gives an example that creates a hash map, a linked hash map, and a tree map for mapping students to ages. The program first creates a hash map with the student’s name as its key and the age as its value. The program then creates a tree map from the hash map and ­displays the entries in ascending order of the keys. Finally, the program creates a linked hash map, adds the same entries to the map, and displays the entries.

Listing 21.8 TestMap.java

			 1 import java.util.*;
			 2
			 3 public class TestMap {
			 4 public static void main(String[] args) {
			 5 // Create a HashMap
create map		 6 Map<String, Integer> hashMap = new HashMap<>();
add entry		 7 hashMap.put("Smith", 30);
			 8 hashMap.put("Anderson", 31);
			 9 hashMap.put("Lewis", 29);
			10 hashMap.put("Cook", 29);
			11
			12 System.out.println("Display entries in HashMap");
			13 System.out.println(hashMap + "\n");
			14
			15 // Create a TreeMap from the preceding HashMap
tree map		16 Map<String, Integer> treeMap = new TreeMap<>(hashMap);
			17 System.out.println("Display entries in ascending order of key");
			18 System.out.println(treeMap);
			19
			20 // Create a LinkedHashMap
			21 Map<String, Integer> linkedHashMap =
linked hash map		22 new LinkedHashMap<>(16, 0.75f, true);
			23 linkedHashMap.put("Smith", 30);
			24 linkedHashMap.put("Anderson", 31);
			25 linkedHashMap.put("Lewis", 29);
			26 linkedHashMap.put("Cook", 29);
			27
			28 // Display the age for Lewis
			29 System.out.println("\nThe age for " + "Lewis is " +
			30 linkedHashMap.get("Lewis"));
			31
			32 System.out.println("Display entries in LinkedHashMap");
			33 System.out.println(linkedHashMap);
			34
			35 // Display each entry with name and age
			36 System.out.print("\nNames and ages are ");
forEach method		37 treeMap.forEach(
			38 (name, age) −> System.out.print(name + ": " + age + " "));
			39 }
			40 }

Display entries in HashMap
{Cook=29, Smith=30, Lewis=29, Anderson=31}
Display entries in ascending order of key
{Anderson=31, Cook=29, Lewis=29, Smith=30}
The age for Lewis is 29
Display entries in LinkedHashMap
{Smith=30, Anderson=31, Cook=29, Lewis=29}
Names and ages are Anderson: 31 Cook: 29 Lewis: 29 Smith: 30

As shown in the output, the entries in the HashMap are in random order. The entries in the TreeMap are in increasing order of the keys. The entries in the LinkedHashMap are in the order of their access, from least recently accessed to most recently.

All the concrete classes that implement the Map interface have at least two constructors. One is the no-arg constructor that constructs an empty map, and the other constructs a map from an instance of Map. Thus, new TreeMap<>(hashMap) (line 16) constructs a tree map from a hash map.

You can create an insertion- or access-ordered linked hash map. An access-ordered linked hash map is created in lines 21–22. The most recently accessed entry is placed at the end of the map. The entry with the key Lewis is last accessed in line 30, so it is displayed last in line 33.

It is convenient to process all the entries in the map using the forEach method. The ­program uses a forEach method to display a name and its age (lines 37–38).

 Tip

If you don’t need to maintain an order in a map when updating it, use a HashMap. When you need to maintain the insertion order or access order in the map, use a ­LinkedHashMap. When you need the map to be sorted on keys, use a TreeMap.

	21.5.1 How do you create an instance of Map? How do you add an entry to a map consisting of a key and a value? How do you remove an entry from a map? How do you find the size of a map? How do you traverse entries in a map?

	21.5.2 Describe and compare HashMap, LinkedHashMap, and TreeMap.

	21.5.3 Show the output of the following code:

import java.util.*;
public class Test {
 public static void main(String[] args) {
 Map<String, String> map = new LinkedHashMap<>();
 map.put("123", "John Smith");
 map.put("111", "George Smith");
 map.put("123", "Steve Yao");
 map.put("222", "Steve Yao");
 System.out.println("(1) " + map);
 System.out.println("(2) " + new TreeMap<String, String>(map));
 map.forEach((k, v) −> {
 if (k.equals("123")) System.out.println(v);});
 }
}

21.6 Case Study: Occurrences of Words

	This case study writes a program that counts the occurrences of words in a text and displays the words and their occurrences in alphabetical order of the words.

The program uses a TreeMap to store an entry consisting of a word and its count. For each word, check whether it is already a key in the map. If not, add an entry to the map with the word as the key and value 1. Otherwise, increase the value for the word (key) by 1 in the map. Assume the words are case insensitive; for example, Good is treated the same as good.

Listing 21.9 gives the solution to the problem.

Listing 21.9 CountOccurrenceOfWords.java

	 1 import java.util.*;
 	 2
	 3 public class CountOccurrenceOfWords {
	 4 public static void main(String[] args) {
	 5 // Set text in a string
	 6 String text = "Good morning. Have a good class. " +
	 7 "Have a good visit. Have fun!";
	 8
	 9 // Create a TreeMap to hold words as key and count as value
tree map 10 Map<String, Integer> map = new TreeMap<>();
	 11
split string 12 String[] words = text.split("[\\s+\\p{P}]");
	 13 for (int i = 0; i < words.length; i++) {
	 14 String key = words[i].toLowerCase();
	 15
	 16 if (key.length() > 0) {
	 17 if (!map.containsKey(key)) {
add entry 18 map.put(key, 1);
	 19 }
	 20 else {
	 21 int value = map.get(key);
	 22 value++;
update entry	23 map.put(key, value);
	 24 }
	 25 }
	 26 }
	 27
	 28 // Display key and value for each entry
display entry 29 map.forEach((k, v) −> System.out.println(k + "\t" + v));
	 30 }
	 31 }

a 2
class 1
fun 1
good 3
have 3
morning 1
visit 1

The program creates a TreeMap (line 10) to store pairs of words and their occurrence counts. The words serve as the keys. Since all values in the map must be stored as objects, the count is wrapped in an Integer object.

The program extracts a word from a text using the split method (line 12) in the String class (see Section 10.10.4 and Appendix H). The text is split into words using a whitespace \s or punctuation \p{P} as a delimiter. For each word extracted, the program checks whether it is already stored as a key in the map (line 17). If not, a new pair consisting of the word and its initial count (1) is stored in the map (line 18). Otherwise, the count for the word is incremented by 1 (lines 21–23).

The program displays the count and the key in each entry using the forEach method in the Map class (line 29).

Since the map is a tree map, the entries are displayed in increasing order of words. To display them in ascending order of the occurrence counts, see Programming Exercise 21.8.

Now sit back and think how you would write this program without using map. Your new program would be longer and more complex. You will find that map is a very efficient and powerful data structure for solving problems such as this.

Java Collections Framework provides comprehensive support of organizing and manipulating data. Suppose you wish to display the words in increasing order of their occurrence values, how do you modify the program? This can be done simply by creating a list of map entries and creating a Comparator for sorting the entries on their values as follows:

List<Map.Entry<String, Integer>> entries =
 new ArrayList<>(map.entrySet());
Collections.sort(entries, (entry1, entry2) −> {
 return entry1.getValue().compareTo(entry2.getValue()); });
for (Map.Entry<String, Integer> entry: entries) {
 System.out.println(entry.getKey() + "\t" + entry.getValue());
}

	21.6.1 Will the CountOccurrenceOfWords program work if line 10 is changed to

Map<String, int> map = new TreeMap<>();

	21.6.2 Will the CountOccurrenceOfWords program work if line 17 is changed to

if (map.get(key) == null) {

	21.6.3 Will the CountOccurrenceOfWords program work if line 29 is changed to

for (String key: map)
 System.out.println(key + "\t" + map.getValue(key));

	21.6.4 How do you simplify the code in lines 17–24 in Listing 21.9 in one line using a conditional expression?

21.7 Singleton and Unmodifiable Collections and Maps

	You can create singleton sets, lists, and maps and unmodifiable sets, lists, and maps using the static methods in the Collections class.

The Collections class contains the static methods for lists and collections. It also contains the methods for creating immutable singleton sets, lists, and maps and for creating read-only sets, lists, and maps, as shown in Figure 21.7.

[image: An annotated U M L diagram titled, java dot u t i l dot collections.]
Figure 21.7 

The Collections class contains the static methods for creating singleton and read-only sets, lists, and maps.

Description

The Collections class defines three constants—EMPTY_SET, EMPTY_LIST, and EMPTY_MAP—for an empty set, an empty list, and an empty map. These collections are immutable. The class also provides the singleton(Object o) method for creating an immutable set containing only a single item, the singletonList(Object o) method for creating an immutable list containing only a single item, and the singletonMap(Object key, Object value) method for creating an immutable map containing only a single entry.

The Collections class also provides six static methods for returning read-only views for collections: unmodifiableCollection(Collection c), unmodifiableList(List list), unmodifiableMap(Map m), unmodifiableSet(Set set), unmodifiableSortedMap(SortedMap m), and unmodifiableSortedSet(SortedSet s). This type of view is like a reference to the actual collection. However, you cannot modify the collection through a read-only view. Attempting to modify a collection through a read-only view will cause an UnsupportedOperationException.

read-only view

	21.7.1 What is wrong in the following code?

Set<String> set = Collections.singleton("Chicago");
set.add("Dallas");

	21.7.2 What happens when you run the following code?

List list = Collections.unmodifiableList(Arrays.asList("Chicago",
 "Boston"));
list.remove("Dallas");

Key Terms

	hash map 831

	hash set 816

	linked hash map 831

	linked hash set 820

	map 828

	read-only view 835

	set 816

	tree map 831

	tree set 821

Chapter Summary

	A set stores nonduplicate elements. To allow duplicate elements to be stored in a ­collection, you need to use a list.

	A map stores key/value pairs. It provides a quick lookup for a value using a key.

	Three types of sets are supported: HashSet, LinkedHashSet, and TreeSet. ­HashSet stores elements in an unpredictable order. LinkedHashSet stores elements in the order they were inserted. TreeSet stores elements sorted. HashSet, LinkedHashSet, and TreeSet are subtypes of Collection.

	The Map interface maps keys to the elements. The keys are like indexes. In List, the indexes are integers. In Map, the keys can be any objects. A map cannot contain duplicate keys. Each key can map to at most one value. The Map interface provides the methods for querying, updating, and obtaining a collection of values and a set of keys.

	Three types of maps are supported: HashMap, LinkedHashMap, and TreeMap. ­HashMap is efficient for locating a value, inserting an entry, and deleting an entry. ­LinkedHashMap supports ordering of the entries in the map. The entries in a HashMap are not ordered, but the entries in a LinkedHashMap can be retrieved either in the order in which they were inserted into the map (known as the insertion order) or in the order in which they were last accessed, from least recently accessed to most recently (access order). TreeMap is efficient for traversing the keys in a sorted order. The keys can be sorted using the Comparable interface or the Comparator interface.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 21.2–21.4

	21.1 (Perform set operations on hash sets) Create two linked hash sets {"George", "Jim", "John", "Blake", "Kevin", "Michael"} and …[&|cbo|&]"George", "Katie", "Kevin", "Michelle", "Ryan"…[&|cbc|&] and find their union, difference, and intersection. (You can clone the sets to preserve the original sets from being changed by these set methods.)

	21.2 (Display nonduplicate words in ascending order) Write a program that reads words from a text file and displays all the nonduplicate words in ascending order. The text file is passed as a command-line argument.

	**21.3 (Count the keywords in Java source code) Revise the program in Listing 21.7 . If a keyword is in a comment or in a string, don’t count it. Pass the Java file name from the command line. Assume the Java source code is correct and line comments and paragraph comments do not overlap.

	*21.4 (Count consonants and vowels) Write a program that prompts the user to enter a text file name and displays the number of vowels and consonants in the file. Use a set to store the vowels A, E, I, O, and U.

	***21.5 (Syntax highlighting) Write a program that converts a Java file into an HTML file. In the HTML file, the keywords, comments, and literals are displayed in bold navy, green, and blue, respectively. Use the command line to pass a Java file and an HTML file. For example, the following command

 java Exercise21_05 Welcome.java Welcome.html

converts Welcome.java into Welcome.html. Figure 21.8a shows a Java file. The corresponding HTML file is shown in Figure 21.8b .

[image: Figures ay and b show Java code in two programs.]
Figure 21.8 

The Java code in plain text in (a) is displayed in HTML with syntax highlighted in (b).

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

Sections 21.5–21.7

	*21.6 (Count the occurrences of numbers entered) Write a program that reads an unspecified number of integers and finds the one that has the most occurrences. The input ends when the input is 0. For example, if you entered 2 3 40 3 5 4 –3 3 3 2 0, the number 3 occurred most often. If not one but several numbers have the most occurrences, all of them should be reported. For example, since 9 and 3 appear twice in the list 9 30 3 9 3 2 4, both occurrences should be reported.

	**21.7 (Revise Listing 21.9 , CountOccurrenceOfWords.java) Rewrite Listing 21.9 to display the words in ascending order of occurrence counts.

	**21.8 (Count the occurrences of words in a text file) Rewrite Listing 21.9 to read the text from a text file. The text file is passed as a command-line argument. Words are delimited by whitespace characters, punctuation marks (,;.:?), quotation marks ('"), and parentheses. Count words in case-insensitive fashion (e.g., ­consider Good and good to be the same word). The words must start with a letter. Display the output in alphabetical order of words, with each word preceded by its occurrence count.

	**21.9 (Guess the capitals using maps) Rewrite Programming Exercise 8.37 to store pairs of each state and its capital in a map. Your program should prompt the user to enter a state, and should display the capital for the state.

	*21.10 (Count the occurrences of each keyword) Rewrite Listing 21.7 , CountKeywords.java to read in a Java source-code file and count the occurrence of each keyword in the file, but don’t count the keyword if it is in a comment or in a string literal.

	**21.11 (Baby name popularity ranking) Use the data files from Programming ­Exercise 12.31 to write a program that enables the user to select a year, gender, and enter a name to display the ranking of the name for the selected year and gender, as shown in Figure 21.9 . To achieve the best efficiency, create two arrays for boy’s names and girl’s names, respectively. Each array has 10 elements for 10 years. Each element is a map that stores a name and its ranking in a pair with the name as the key.

[image: A window titled, Exercise 21, underscore, 11, is shown 3 times.]
Figure 21.9 

The user selects a year and gender, enters a year, and clicks the Find Ranking button to display the ranking.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**21.12 (Name for both genders) Write a program that prompts the user to enter one of the filenames described in Programming Exercise 12.31 and displays the names that are used for both genders in the file. Use sets to store names and find ­common names in two sets. Here is a sample run:

Enter a file name for baby name ranking: babynamesranking2001.txt
69 names used for both genders
They are Tyler Ryan Christian …

	**21.13 (Baby name popularity ranking) Revise Programming Exercise 21.11 to prompt the user to enter year, gender, and name and display the ranking for the name. Prompt the user to enter another inquiry or exit the program. Here is a sample run:

Enter the year: 2010
Enter the gender: M
Enter the name: Javier
Boy name Javier is ranked #190 in year 2010
Enter another inquiry? Y
Enter the year: 2001
Enter the gender: F
Enter the name: Emily
Girl name Emily is ranked #1 in year 2001
Enter another inquiry? N

	**21.14 (Web crawler) Rewrite Listing 12.18 , WebCrawler.java, to improve the performance by using appropriate new data structures for listOfPendingURLs and listofTraversedURLs.

	**21.15 (Addition quiz) Rewrite Programming Exercise 11.16 to store the answers in a set rather than a list.

CHAPTER 22 Developing Efficient Algorithms

Objectives

	To estimate algorithm efficiency using the Big O notation (§22.2).

	To explain growth rates and why constants and nondominating terms can be ignored in the estimation (§22.2).

	To determine the complexity of various types of algorithms (§22.3).

	To analyze the binary search algorithm (§22.4.1).

	To analyze the selection sort algorithm (§22.4.2).

	To analyze the Tower of Hanoi algorithm (§22.4.3).

	To describe common growth functions (constant, logarithmic, log-linear, quadratic, cubic, and exponential) (§22.4.4).

	To design efficient algorithms for finding Fibonacci numbers using dynamic programming (§22.5).

	To find the GCD using Euclid’s algorithm (§22.6).

	To find prime numbers using the sieve of Eratosthenes (§22.7).

	To design efficient algorithms for finding the closest pair of points using the divide-and-conquer approach (§22.8).

	To solve the Eight Queens problem using the backtracking approach (§22.9).

	To design efficient algorithms for finding a convex hull for a set of points (§22.10).

22.1 Introduction

	Algorithm design is to develop a mathematical process for solving a problem. Algorithm analysis is to predict the performance of an algorithm.

The preceding two chapters introduced classic data structures (lists, stacks, queues, ­priority queues, sets, and maps) and applied them to solve problems. This chapter will use a ­variety of examples to introduce common algorithmic techniques (dynamic programming, ­divide-and-conquer, and backtracking) for developing efficient algorithms. Later in the book, we will introduce efficient algorithms in Chapters 23–29. Before introducing developing ­efficient algorithms, we need to address the question on how to measure algorithm efficiency.

22.2 Measuring Algorithm Efficiency Using Big O Notation

	The Big O notation obtains a function for measuring algorithm time complexity based on the input size. You can ignore multiplicative constants and nondominating terms in the function.

Suppose two algorithms perform the same task, such as search (linear search vs. binary search). Which one is better? To answer this question, you might implement these algorithms and run the programs to get execution times. However, there are two problems with this approach:

what is algorithm efficiency?

	First, many tasks run concurrently on a computer. The execution time of a particular program depends on the system load.

	Second, the execution time depends on specific input. Consider, for example, linear search and binary search. If an element to be searched happens to be the first in the list, linear search will find the element quicker than binary search.

It is very difficult to compare algorithms by measuring their execution times. To overcome these problems, a theoretical approach was developed to analyze algorithms independent of computers and specific input. This approach approximates the effect of a change on the size of the input. In this way, you can see how fast an algorithm’s execution time increases as the input size increases, so you can compare two algorithms by examining their growth rates.

growth rates

Consider linear search. The linear search algorithm compares the key with the elements in the array sequentially until the key is found or the array is exhausted. If the key is not in the array, it requires n comparisons for an array of size n. If the key is in the array, it requires n/2 comparisons on average. The algorithm’s execution time is proportional to the size of the array. If you double the size of the array, you will expect the number of comparisons to double. The algorithm grows at a linear rate. The growth rate has an order of magnitude of n. Computer scientists use the Big O notation to represent the “order of magnitude.” Using this notation, the complexity of the linear search algorithm is O(n), pronounced as “order of n.” We call an algorithm with a time complexity of O(n) linear algorithm, and it exhibits a linear growth rate.

Big O notation

For the same input size, an algorithm’s execution time may vary, depending on the input. An input that results in the shortest execution time is called the best-case input, and an input that results in the longest execution time is the worst-case input. Best-and worst-case analyses are to analyze the algorithms for their best- and worst-case inputs. Best- and worst-case analyses are not representative, but worst-case analysis is very useful. You can be assured that the algorithm will never be slower than the worst case. An average-case analysis attempts to determine the average amount of time among all possible inputs of the same size. Average-case analysis is ideal, but difficult to perform because for many problems it is hard to determine the relative probabilities and distributions of various input instances. Worst-case analysis is easier to perform, so the analysis is generally conducted for the worst case.

best-case input

worst-case input

average-case analysis

The linear search algorithm requires n comparisons in the worst case and n/2 comparisons in the average case if you are nearly always looking for something known to be in the list. Using the Big O notation, both the cases require O(n) time. The multiplicative constant (1/2) can be omitted. Algorithm analysis is focused on growth rate. The multiplicative constants have no impact on growth rates. The growth rate for n/2 or 100n is the same as for n, as ­illustrated in Table 22.1. Therefore, O(n)=O(n/2)=O(100n).[&O(n)|=|O(n/2)|=|O(100n).&]

Table 22.1 Growth Rates

[image: A table shows growth rates.]
Description

ignoring multiplicative constants

Consider the algorithm for finding the maximum number in an array of n elements. To find the maximum number if n is 2, it takes one comparison and if n is 3, it takes two comparisons. In general, it takes n−1[&n|-|1&] comparisons to find the maximum number in a list of n elements. Algorithm analysis is for large input size. If the input size is small, there is no significance in estimating an algorithm’s efficiency. As n grows larger, the n part in the expression n−1[&n|-|1&] dominates the complexity. The Big O notation allows you to ignore the nondominating part (e.g., −1 in the expression n−1[&n|-|1&]) and highlight the important part (e.g., n in the expression n−1[&n|-|1&]). Therefore, the complexity of this algorithm is O(n).

large input size

ignoring nondominating terms

The Big O notation estimates the execution time of an algorithm in relation to the input size. If the time is not related to the input size, the algorithm is said to take constant time with the notation O(1). For example, a method that retrieves an element at a given index in an array takes constant time because the time does not grow as the size of the array increases.

constant time

The following mathematical summations are often useful in algorithm analysis:

useful summations

1+2+3 + . . . + (n−2) + (n−1) = n(n−1)2=O(n2)

1+2+3 + . . . + (n−1) + n = n(n+1)2=O(n2)

a0+a1+a2+a3+ . . . + a(n−1) + an = a(n+1)−1a−1=O(an)

20+21+22+23+ . . . + 2(n−1) + 2n = 2(n+1)−12−1=2n−1−1=O(2n)

 Note

Time complexity is a measure of execution time using the Big O notation. Similarly, you can also measure space complexity using the Big O notation. Space complexity measures the amount of memory space used by an algorithm. The space complexity for most algorithms presented in this book is O(n), that is, they exhibit linear growth rate to the input size. For example, the space complexity for linear search is O(n).

time complexity

space complexity

	22.2.1 Why is a constant factor ignored in the Big O notation? Why is a nondominating term ignored in the Big O notation?

	22.2.2 What is the order of each of the following functions?

(
n
2

+1)

2

n

,

(
n
2

+

log

2

n
2

n

,
n
3

+100
n
2

+n,
2
n

+45n,n
2
n

+
n
2

2
n

22.3 Examples: Determining Big O

	This section gives several examples of determining Big O for repetition, sequence, and selection statements.

Example 1

Consider the time complexity for the following loop:

for (int i = 1; i <= n; i++) {
 k = k + 5;
}

It is a constant time, c, for executing

k = k + 5;

Since the loop is executed n times, the time complexity for the loop is

T(n) = (a constant c) * n = O(n).

The theoretical analysis predicts the performance of the algorithm. To see how this algorithm performs, we run the code in Listing 22.1 to obtain the execution time for n=1,000,000,[&n|=|1,000,000,&]10,000,000, 100,000,000, and 1,000,000,000.

Listing 22.1 PerformanceTest.java

 1 public class PerformanceTest {
 2 public static void main(String[] args) {
input size 1,000,000 3 getTime(1000000);
input size 10,000,000 4 getTime(10000000);
input size 100,000,000 5 getTime(100000000);
input size 1,000,000,000 6 getTime(1000000000);
 7 }
 8
 9 public static void getTime(long n) {
time before execution 10 long startTime = System.currentTimeMillis();
 11 long k = 0;
 12 for (long i = 1; i <= n; i++) {
 13 k = k + 5;
 14 }
time after execution 15 long endTime = System.currentTimeMillis();
 16 System.out.println("Execution time for n = " + n
 17 + " is " + (endTime − startTime) + " milliseconds");
 18 }
 19 }

Execution time for n = 1,000,000 is 6 milliseconds
Execution time for n = 10,000,000 is 61 milliseconds
Execution time for n = 100,000,000 is 610 milliseconds
Execution time for n = 1,000,000,000 is 6048 milliseconds

Our analysis predicts a linear time complexity for this loop. As shown in the sample output, when the input size increases 10 times, the runtime increases roughly 10 times. The execution confirms to the prediction.

Example 2

What is the time complexity for the following loop?

for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= n; j++) {
 k = k + i + j;
 }
}

It is a constant time, c, for executing

k = k + i + j;

The outer loop executes n times. For each iteration in the outer loop, the inner loop is executed n times. Thus, the time complexity for the loop is

T(n)=(a constant c)*n*n=O(n2)

quadratic time

An algorithm with the O(n2)[&O(n^{2})&] time complexity is called a quadratic algorithm and it ­exhibits a quadratic growth rate. The quadratic algorithm grows quickly as the problem size increases. If you double the input size, the time for the algorithm is quadrupled. Algorithms with a nested loop are often quadratic.

Example 3

Consider the following loop:

for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= i; j++) {
 k = k + i + j;
 }
}

The outer loop executes n times. For i=1,2, . . . ,[&i|=|1, 2, |elip|,&] the inner loop is executed one time, two times, and n times. Thus, the time complexity for the loop is

T(n)=c+2c+3c+4c+ . . .+ nc =cn(n+1)/2 =(c/2) n2+(c/2)n =O(n2)

Example 4

Consider the following loop:

for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= 20; j++) {
 k = k + i + j;
 }
}

The inner loop executes 20 times and the outer loop n times. Therefore, the time ­complexity for the loop is

T(n) = 20 * c * n = O(n)

Example 5

Consider the following sequences:

for (int j = 1; j <= 10; j++) {
 k = k + 4;
}
for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= 20; j++) {
 k = k + i + j;
 }
}

The first loop executes 10 times and the second loop 20 * n times. Thus, the time ­complexity for the loop is

T(n)=10 ∗ c+20 ∗ c ∗ n=O(n)

Example 6

Consider the following selection statement:

if (list.contains(e)) {
 System.out.println(e);
}
else
 for (Object t: list) {
 System.out.println(t);
 }

Suppose the list contains n elements. The execution time for list.contains(e) is O(n). The loop in the else clause takes O(n) time. Hence, the time complexity for the entire statement is

T(n)=if test time+worst-case time (if clause, else clause) =O(n)+O(n)=O(n)

Example 7

Consider the computation of an[&a^{n}&] for an integer n. A simple algorithm would multiply a n times, as follows:

result = 1;
for (int i = 1; i <= n; i++)
 result *= a;

The algorithm takes O(n) time. Without loss of generality, assume that n=2k.[&n|=|2^{k}.&] You can improve the algorithm using the following scheme:

result = a;
for (int i = 1; i <= k; i++)
 result = result * result;

The algorithm takes O(log n) time. For an arbitrary n, you can revise the algorithm and prove that the complexity is still O(log n). (See CheckPoint Question 22.3.5.)

 Note

An algorithm with the O(logn) time complexity is called a logarithmic algorithm and it exhibits a logarithmic growth rate. The base of the log is 2, but the base does not affect a logarithmic growth rate, so it can be omitted. In algorithm analysis, the base is usually 2.

omitting base

	22.3.1 Count the number of iterations in the following loops.

	int count = 1;
while (count < 30) {
 count = count * 2;
}

	
	int count = 15;
while (count < 30) {
 count = count * 3;
}

	(a)

	
	(b)

	int count = 1;
while (count < n) {
 count = count * 2;
}

	
	int count = 15;
while (count < n) {
 count = count * 3;
}

	(c)

	
	(d)

	22.3.2 How many stars are displayed in the following code if n is 10? How many if n is 20? Use the Big O notation to estimate the time complexity.

	for (int i = 0; i < n; i++) {
 System.out.print('*');
}

	
	for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 System.out.print('*');
 }
}

	(a)

	
	(b)

	for (int k = 0; k < n; k++) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 System.out.print('*');
 }
 }
}

	
	for (int k = 0; k < 10; k++) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 System.out.print('*');
 }
 }
}

	(c)

	
	(d)

	22.3.3 Use the Big O notation to estimate the time complexity of the following methods:

	public static void mA(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print(Math.random());
 }
}

	
	public static void mB(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++)
 System.out.print(Math.random());
 }
}

	(a)

	
	(b)

	public static void mC(int[] m) {
 for (int i = 0; i < m.length; i++) {
 System.out.print(m[i]);
 }

 for (int i = m.length − 1; i >= 0;)
 {
 System.out.print(m[i]);
 i−−;
 }
}

	
	public static void mD(int[] m) {
 for (int i = 0; i < m.length; i++) {
 for (int j = 0; j < i; j++)
 System.out.print(m[i] * m[j]);
 }
}

	(c)

	
	(d)

	22.3.4 Design an O(n) time algorithm for computing the sum of numbers from n1 to n2 for (n1<n2).[&(n1|less|n2).&] Can you design an O(1) for performing the same task?

	22.3.5 Example 7 in Section 22.3 assumes n=2k.[&n|=|2^{k}.&] Revise the algorithm for an arbitrary n and prove that the complexity is still O(logn).

22.4 Analyzing Algorithm Time Complexity

	This section analyzes the complexity of several well-known algorithms: binary search, selection sort, and Tower of Hanoi.

22.4.1 Analyzing Binary Search

The binary search algorithm presented in Listing 7.7, BinarySearch.java, searches for a key in a sorted array. Each iteration in the algorithm contains a fixed number of operations, denoted by c. Let T(n) denote the time complexity for a binary search on a list of n elements. Without loss of generality, assume n is a power of 2 and k=logn.[&k|=|~rom~log~normal~n.~norm~&] Since a binary search ­eliminates half of the input after two comparisons,

binary search animation on the Companion Website

T(n)=T(n2)+c=T(n22)+c+c=T(n2k)+kc=T(1)+c logn=1+(logn)c=O(logn)

Ignoring constants and nondominating terms, the complexity of the binary search algorithm is O(logn). This is a logarithmic algorithm. The logarithmic algorithm grows slowly as the problem size increases. In the case of binary search, each time you double the array size, at most one more comparison will be required. If you square the input size of any logarithmic-time algorithm, you only double the time of execution. Therefore, a logarithmic-time algorithm is very efficient.

logarithmic time

22.4.2 Analyzing Selection Sort

The selection sort algorithm presented in Listing 7.8, SelectionSort.java, finds the smallest element in the list and swaps it with the first element. It then finds the smallest element remaining and swaps it with the first element in the remaining list, and so on until the remaining list contains only one element left to be sorted. The number of comparisons is n−1 for the first iteration, n−2[&n|-|1&] for the second iteration, and so on. Let T(n) denote the complexity for selection sort and c denote the total number of other operations such as assignments and additional comparisons in each iteration. Thus,

selection sort animation on the Companion Website

T(n)=(n−1)+c+(n−2)+c+…+ 2+c+1+c=(n−1)(n−1+1)2+c(n−1)=n22−n2+cn−c=O(n2) [&O(n^{2}).&]

Therefore, the complexity of the selection sort algorithm is
O(
n
2

).

22.4.3 Analyzing the Tower of Hanoi Problem

The Tower of Hanoi problem presented in Listing 18.8, TowerOfHanoi.java, recursively moves n disks from tower A to tower B with the assistance of tower C as follows:

	Move the first n−1[&n|-|1&] disks from A to C with the assistance of tower B.

	Move disk n from A to B.

	Move n−1[&n|-|1&] disks from C to B with the assistance of tower A.

The complexity of this algorithm is measured by the number of moves. Let T(n) denote the number of moves for the algorithm to move n disks from tower A to tower B with T(1)=1.[&T(1)|=|1.&] Thus,

T(n)=T(n−1)+1+T(n−1)=2T(n−1)+1=2(2T(n−2)+1)+1=2(2(2T(n−3)+1)+1)+1=2n−1T(1)+2n−2+…+ 2+1=2n−1+2n−2+…+ 2+1=(2n−1)=O(2n)

An algorithm with O(2n)[&O(2^{n})&] time complexity is called an exponential algorithm and it exhibits an exponential growth rate. As the input size increases, the time for the exponential algorithm grows exponentially. Exponential algorithms are not practical for large input size. Suppose the disk is moved at a rate of 1 per second. It would take 232/(365 ∗ 24 ∗ 60 ∗ 60)=136[&2^{32}/(365 |ast| 24 |ast| 60 |ast| 60)|=|136&] years to move 32 disks and 264/(365 ∗ 24 ∗ 60 ∗ 60)=585[&2^{64}/(365 |ast| 24 |ast| 60 |ast| 60)|=|585&] billion years to move 64 disks.

O(2n)

exponential time

22.4.4 Common Recurrence Relations

Recurrence relations are a useful tool for analyzing algorithm complexity. As shown in the preceding examples, the complexity for binary search, selection sort, and the Tower of Hanoi is T(n)=T (n2)+c, T(n)=T(n−1)+O(n),[&T(n)|=|T|thn||3(|*frac*{n}{2}|3)||+|c, T(n)|=|T(n|-|1)|+|O(n),&] and T(n)=2T(n−1)+O(1),[&T(n)|=|2T(n|-|1)|+|O(1),&] ­respectively. Table 22.2 summarizes the common recurrence relations.

Table 22.2 Common Recurrence Functions

	Recurrence Relation

	Result

	Example

	T(n)=T(n/2)+O(1)[&T(n)|=|T(n/2)|+|O(1)&]

	T(n)=O(logn)[&T(n)|=|O(~rom~log~normal~n)~norm~&]

	Binary search, Euclid’s GCD

	T(n)=T(n−1)+O(1)[&T(n)|=|T(n|-|1)|+|O(1)&]

	T(n)=O(n)[&T(n)|=|O(n)&]

	Linear search

	T(n)=2T(n/2)+O(1)[&T(n)|=|2T(n/2)|+|O(1)&]

	T(n)=O(n)[&T(n)|=|O(n)&]

	CheckPoint Question 22.8.2

	T(n)=2T(n/2)+O(n)[&T(n)|=|2T(n/2)|+|O(n)&]

	T(n)=O(n logn)[&T(n)|=|O(n ~rom~log~normal~n)~norm~&]

	Merge sort (Chapter 23)

	T(n)=T(n−1)+O(n)[&T(n)|=|T(n|-|1)|+|O(n)&]

	T(n)=O(n2)[&T(n)|=|O(n^{2})&]

	Selection sort

	T(n)=2T(n−1)+O(1)[&T(n)|=|2T(n|-|1)|+|O(1)&]

	T(n)=O(2n)[&T(n)|=|O(2^{n})&]

	Tower of Hanoi

	T(n)=T(n−1)+T(n−2)+O(1)[&T(n)|=|T(n|-|1)|+|T(n|-|2)|+|O(1)&]

	T(n)=O(2n)[&T(n)|=|O(2^{n})&]

	Recursive Fibonacci algorithm

22.4.5 Comparing Common Growth Functions

The preceding sections analyzed the complexity of several algorithms. Table 22.3 lists some common growth functions and shows how growth rates change as the input size doubles from n=25[&n|=|25&] to n=50.[&n|=|50.&]

Table 22.3 Change of Growth Rates

	Function

	Name

	n=25[&n|=|25&]

	n=50[&n|=|50&]

	f(50) and f(25)

	O(1)

	Constant time

	1

	1

	1

	O(logn)

	Logarithmic time

	4.64

	5.64

	1.21

	O(n)

	Linear time

	25

	50

	2

	O(n logn)

	Log-linear time

	116

	282

	2.43

	O(n2)[&O(n^{2})&]

	Quadratic time

	625

	2,500

	4

	O(n3)[&O(n^{3})&]

	Cubic time

	15,625

	125,000

	8

	O(2n)[&O(2^{n})&]

	Exponential time

	3.36×107[&3.36|multi|10^{7}&]

	1.27×1015[&1.27|multi|10^{15}&]

	3.35×107[&3.35|multi|10^{7}&]

These functions are ordered as follows, as illustrated in Figure 22.1.

O(1)<O(logn)<O(n)<O(n logn)<O(n2)<O(n3)<O(2n)

[image: A line graph shows plots for 7 functions.]
Figure 22.1 

As the size n increases, the function grows.

Description

	22.4.1 Put the following growth functions in order:

5n34,032, 44 logn, 10n logn, 500, 2n2, 2n45, 3n

	22.4.2 Estimate the time complexity for adding two n×m[&n|multi|m&] matrices and multiplying an n×m[&n|multi|m&] matrix by an m×k[&m|multi|k&] matrix.

	22.4.3 Describe an algorithm for finding the occurrence of the max element in an array. Analyze the complexity of the algorithm.

	22.4.4 Describe an algorithm for removing duplicates from an array. Analyze the ­complexity of the algorithm.

	22.4.5 Analyze the following sorting algorithm:

for (int i = 0; i < list.length − 1; i++) {
 if (list[i] > list[i + 1]) {
 swap list[i] with list[i + 1];
 i = −1;
 }
}

	22.4.6 Analyze the complexity for computing a polynomial f(x) of degree n for a given x value using a brute-force approach and the Horner’s approach, respectively. A brute-force approach is to compute each term in the polynomial and add them together. The Horner’s approach was introduced in Section 6.7

f(x)=anxn+an−1xn−1+an−2xn−2+…+ a1x1+a0

22.5 Finding Fibonacci Numbers Using Dynamic Programming

	This section analyzes and designs an efficient algorithm for finding Fibonacci ­numbers using dynamic programming.

Section 18.3, Case Study: Computing Fibonacci Numbers, gave a recursive method for finding the Fibonacci number, as follows:

/** The method for finding the Fibonacci number */
public static long fib(long index) {
 if (index == 0) // Base case
 return 0;
 else if (index == 1) // Base case
 return 1;
 else // Reduction and recursive calls
 return fib(index − 1) + fib(index − 2);
}

We can now prove that the complexity of this algorithm is O(2n).[&O(2^{n}).&] For convenience, let the index be n. Let T(n) denote the complexity for the algorithm that finds fib(n), and c denote the constant time for comparing the index with 0 and 1. Thus,

T(n)=T(n−1)+T(n−2)+c ≤2T(n−1)+c ≤2(2T(n−2)+c)+c =22T(n−2)+2c+c [&O(2^{n}).&]

Similar to the analysis of the Tower of Hanoi problem, we can show that T(n) is O(2n).[&O(2^{n}).&]

This algorithm is not efficient. Is there an efficient algorithm for finding a ­Fibonacci number? The trouble with the recursive fib method is that the method is invoked redundantly with the same arguments. For example, to compute fib(4), fib(3) and fib(2) are invoked. To compute fib(3), fib(2) and fib(1) are invoked. Note fib(2) is redundantly invoked. We can improve it by avoiding repeatedly calling of the fib method with the same argument. Note a new Fibonacci number is obtained by adding the preceding two numbers in the sequence. If you use the two variables f0 and f1 to store the two preceding numbers, the new number, f2, can be immediately obtained by adding f0 with f1. Now you should update f0 and f1 by assigning f1 to f0 and assigning f2 to f1, as shown in Figure 22.2.

Figure 22.2 

Variables f0, f1, and f2 store three consecutive Fibonacci numbers in the series.

	f0	f1	f2
Fibonacci series: 0	1	1	2	3	5	8	13	21	34	55	89 …
 indices: 0	1	2	3	4	5	6	7	8	9	10	11
		f0	f1	f2
Fibonacci series: 0	1	1	2	3	5	8	13	21	34	55	89 …
 indices: 0	1	2	3	4	5	6	7	8	9	10	11
									f0	f1	f2
Fibonacci series: 0	1	1	2	3	5	8	13	21	34	55	89 …
 indices: 0	1	2	3	4	5	6	7	8	9	10	11

The new method is implemented in Listing 22.2.

Listing 22.2 ImprovedFibonacci.java

 1 import java.util.Scanner;
 2
 3 public class ImprovedFibonacci {
 4 /** Main method */
 5 public static void main(String args[]) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter an index for the Fibonacci number: ");
input 9 int index = input.nextInt();
 10
 11 // Find and display the Fibonacci number
 12 System.out.println(
invoke fib 13 "Fibonacci number at index " + index + " is " + fib(index));
 14 }
 15
 16 /** The method for finding the Fibonacci number */
 17 public static long fib(long n) {
f0 18 long f0 = 0; // For fib(0)
f1 19 long f1 = 1; // For fib(1)
f2 20 long f2 = 1; // For fib(2)
 21
 22 if (n == 0)
 23 return f0;
 24 else if (n == 1)
 25 return f1;
 26 else if (n == 2)
 27 return f2;
 28
 29 for (int i = 3; i <= n; i++) {
update f0, f1, f2 30 f0 = f1;
 31 f1 = f2;
 32 f2 = f0 + f1;
 33 }
 34
 35 return f2;
 36 }
 37 }

Enter an index for the Fibonacci number: 6
Fibonacci number at index 6 is 8

Enter an index for the Fibonacci number: 7
Fibonacci number at index 7 is 13

Obviously, the complexity of this new algorithm is O(n). This is a tremendous improvement over the recursive O(n2)[&O(2^{n})&] algorithm.

O(n)

dynamic programming

The algorithm for computing Fibonacci numbers presented here uses an approach known as dynamic programming. Dynamic programming is the process of solving subproblems, then combining the solutions of the subproblems to obtain an overall solution. This naturally leads to a recursive solution. However, it would be inefficient to use recursion because the subproblems overlap. The key idea behind dynamic programming is to solve each subproblem only once and store the results for subproblems for later use to avoid redundant computing of the subproblems.

	22.5.1 What is dynamic programming? Give an example of dynamic programming.

	22.5.2 Why is the recursive Fibonacci algorithm inefficient, but the nonrecursive ­Fibonacci algorithm efficient?

22.6 Finding Greatest Common Divisors Using Euclid’s Algorithm

	This section presents several algorithms in the search for an efficient algorithm for finding the greatest common divisor of two integers.

The greatest common divisor (GCD) of two integers is the largest number that can evenly divide both integers. Listing 5.9, GreatestCommonDivisor.java, presented a brute-force algorithm for finding the GCD of two integers m and n. Brute force refers to an algorithmic approach that solves a problem in the simplest or most direct or obvious way. As a result, such an algorithm can end up doing far more work to solve a given problem than a cleverer or more sophisticated algorithm might do. On the other hand, a brute-force algorithm is often easier to implement than a more sophisticated one and, because of this simplicity, sometimes it can be more efficient.

GCD

brute force

The brute-force algorithm checks whether k (for k =[&|eq|&] 2, 3, 4, and so on) is a common ­divisor for n1 and n2, until k is greater than n1 or n2. The algorithm can be described as follows:

public static int gcd(int m, int n) {
 int gcd = 1;

 for (int k = 2; k <= m && k <= n; k++) {
 if (m % k == 0 && n % k == 0)
 gcd = k;
 }

 return gcd;
}

Assuming m≥n,[&m|geq|n,&] the complexity of this algorithm is obviously O(n).

assume m≥n,

Is there a better algorithm for finding the GCD? Rather than searching a possible divisor from 1 up, it is more efficient to search from n down. Once a divisor is found, the divisor is the GCD. Therefore, you can improve the algorithm using the following loop:

O(n)

improved solutions

for (int k = n; k >= 1; k−−) {
 if (m % k == 0 && n % k == 0) {
 gcd = k;
 break;
 }
}

This algorithm is better than the preceding one, but its worst-case time complexity is still O(n).

A divisor for a number n cannot be greater than n / 2, so you can further improve the algorithm using the following loop:

for (int k = m / 2; k >= 1; k−−) {
 if (m % k == 0 && n % k == 0) {
 gcd = k;
 break;
 }
}

However, this algorithm is incorrect because n can be a divisor for m. This case must be considered. The correct algorithm is shown in Listing 22.3.

check divisor

GCD found

input

input

Listing 22.3 GCD.java

 1 import java.util.Scanner;
 2
 3 public class GCD {
 4 /** Find GCD for integers m and n */
 5 public static int gcd(int m, int n) {
 6 int gcd = 1;
 7
check divisor 8 if (m % n == 0) return n;
 9
 10 for (int k = n / 2; k >= 1; k−−) {
 11 if (m % k == 0 && n % k == 0) {
GCD found 12 gcd = k;
 13 break;
 14 }
 15 }
 16
 17 return gcd;
 18 }
 19
 20 /** Main method */
 21 public static void main(String[] args) {
 22 // Create a Scanner
 23 Scanner input = new Scanner(System.in);
 24
 25 // Prompt the user to enter two integers
 26 System.out.print("Enter first integer: ");
input 27 int m = input.nextInt();
input 28 System.out.print("Enter second integer: ");
 29 int n = input.nextInt();
 30
 31 System.out.println("The greatest common divisor for " + m +
 32 " and " + n + " is " + gcd(m, n));
 33 }
 34 }

Enter first integer: 2525
Enter second integer: 125
The greatest common divisor for 2525 and 125 is 25

Enter first integer: 3
Enter second integer: 3
The greatest common divisor for 3 and 3 is 3

Assuming m≥n,[&m|geq|n,&] the for loop is executed at most n/2 times, which cuts the time by half from the previous algorithm. The time complexity of this algorithm is still O(n), but practically, it is much faster than the algorithm in Listing 5.9.

O(n)

 Note

The Big O notation provides a good theoretical estimate of algorithm efficiency. However, two algorithms of the same time complexity are not necessarily equally efficient. As shown in the preceding example, both algorithms in Listinga 5.9 and 22.3 have the same complexity, but in practice, the one in Listing 22.3 is obviously better.

practical consideration

A more efficient algorithm for finding the GCD was discovered by Euclid around 300 B.C. This is one of the oldest known algorithms. It can be defined recursively as follows:

Euclid’s algorithm

Let gcd(m, n) denote the GCD for integers m and n:

	If m % n is 0, gcd(m, n) is n.

	Otherwise, gcd(m, n) is gcd(n, m % n).

It is not difficult to prove the correctness of this algorithm. Suppose m % n = r. Thus, m = qn + r, where q is the quotient of m / n. Any number that divides m and n evenly must also divide r evenly. Therefore, gcd(m, n) is the same as gcd(n, r), where r = m % n. The algorithm can be implemented as in Listing 22.4.

Listing 22.4 GCDEuclid.java

				 1 import java.util.Scanner;
				 2
				 3 public class GCDEuclid {
				 4 /** Find GCD for integers m and n */
				 5 public static int gcd(int m, int n) {
base case 		 6 if (m % n == 0)
				 7 return n;
				 8 else
reduction			 9 return gcd(n, m % n);
				10 }
				11
				12 /** Main method */
				13 public static void main(String[] args) {
				14 // Create a Scanner
				15 Scanner input = new Scanner(System.in);
				16
				17 // Prompt the user to enter two integers
				18 System.out.print("Enter first integer: ");
input				19 int m = input.nextInt();
				20 System.out.print("Enter second integer: ");
input				21 int n = input.nextInt();
				22
				23 System.out.println("The greatest common divisor for " + m +
				24 " and " + n + " is " + gcd(m, n));
				25 }
				26 }

Enter first integer: 2525
Enter second integer: 125
The greatest common divisor for 2525 and 125 is 25

Enter first integer: 3
Enter second integer: 3
The greatest common divisor for 3 and 3 is 3

In the best case when m % n is 0, the algorithm takes just one step to find the GCD. It is ­difficult to analyze the average case. However, we can prove that the worst-case time complexity is O(log n).

best case

average case

Assuming m≥n,[&m|geq|n,&] we can show that m % n < m / 2, as follows:

worst case

	If n <= m / 2, m % n < m / 2, since the remainder of m divided by n is always less than n.

	If n > m / 2, m % n = m – n < m / 2. Therefore, m % n < m / 2.

Euclid’s algorithm recursively invokes the gcd method. It first calls gcd(m, n), then calls gcd(n, m % n) and gcd(m % n, n % (m % n)), and so on, as follows:

 gcd(m, n)
= gcd(n, m % n)
= gcd(m % n, n % (m % n))
= . . .

Since m % n < m / 2 and n % (m % n) < n / 2, the argument passed to the gcd method is reduced by half after every two iterations. After invoking gcd two times, the second parameter is less than n/2. After invoking gcd four times, the second parameter is less than n/4. After invoking gcd six times, the second parameter is less than n23.[&*frac*{n}{2^{3}}.&] Let k be the number of times the gcd method is invoked. After invoking gcd k times, the second parameter is less than n2(k/2),[&*frac*{n}{2^{(k/2)}},&] which is greater than or equal to 1. That is,

n2(k/2)≥1 ⇒ n≥2(k/2) ⇒ logn≥k/2 ⇒ k≤2 logn

Therefore, k≤2 logn.[&k|leq|2 ~rom~log~normal~n.~norm~&] Thus, the time complexity of the gcd method is O(log n).

The worst case occurs when the two numbers result in the most divisions. It turns out that two successive Fibonacci numbers will result in the most divisions. Recall that the Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the preceding two ­numbers in the series, such as:

0 1 1 2 3 5 8 13 21 34 55 89…

The series can be recursively defined as

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index − 2) + fib(index − 1); index >= 2

For two successive Fibonacci numbers fib(index) and fib(index − 1),

gcd(fib(index), fib(index − 1))
= gcd(fib(index − 1), fib(index − 2))
= gcd(fib(index − 2), fib(index − 3))
= gcd(fib(index − 3), fib(index − 4))
= . . .
= gcd(fib(2), fib(1))
= 1

For example,

gcd(21, 13)
= gcd(13, 8)
= gcd(8, 5)
= gcd(5, 3)
= gcd(3, 2)
= gcd(2, 1)
= 1

Therefore, the number of times the gcd method is invoked is the same as the index. We can prove that index≤1.44 logn,[&index|leq|1.44 ~rom~log~normal~n,~norm~&] where n=fib (index−1).[&n|=|~rom~fib~normal~ (~rom~index|-|~normal~1).~norm~&] This is a tighter bound than index≤2 logn.[&~rom~index|leq|~normal~2 ~rom~log~normal~n.~norm~&]

Table 22.4 summarizes the complexity of three algorithms for finding the GCD.

Table 22.4 Comparisons of GCD Algorithms

	Algorithm

	Complexity

	Description

	Listing 5.9

	O(n)

	Brute-force, checking all possible divisors

	Listing 22.3

	O(n)

	Checking half of all possible divisors

	Listing 22.4

	O(log n)

	Euclid’s algorithm

	22.6.1 Prove the following algorithm for finding the GCD of the two integers m and n is incorrect:

int gcd = 1;
for (int k = Math.min(Math.sqrt(n), Math.sqrt(m)); k >= 1; k−−) {
 if (m % k == 0 && n % k == 0) {
 gcd = k;
 break;
 }
}

22.7 Efficient Algorithms for Finding Prime Numbers

	This section presents several algorithms in the search for an efficient algorithm for finding prime numbers.

A $150,000 award awaits the first individual or group who discovers a prime number with at least 100,000,000 decimal digits (w2.eff.org/awards/coop-prime-rules.php).

Can you design a fast algorithm for finding prime numbers?

An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3, 5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

what is prime?

How do you determine whether a number n is prime? Listing 5.15 presented a brute-force algorithm for finding prime numbers. The algorithm checks whether 2, 3, 4, 5, . . . , or n − 1 is divisible by n. If not, n is prime. This algorithm takes O(n) time to check whether n is prime. Note you need to check only whether 2, 3, 4, 5, . . . , and n/2 is divisible by n. If not, n is prime. This algorithm is slightly improved, but it is still of O(n).

In fact, we can prove that if n is not a prime, n must have a factor that is greater than 1 and less than or equal to n. Here is the proof. Since n is not a prime, there exist two numbers p and q such that n =[&|eq|&] pq with 1<p≤q.[&1|less|p|leq|q.&] Note that n=n n.[&n|=|*rad*{n} *rad*{n}.&] p must be less than or equal to n.[&*rad*{n}.&] Hence, you need to check only whether 2, 3, 4, 5, . . . , or n is divisible by n. If not, n is prime. This significantly reduces the time complexity of the algorithm to O(n).[&*rad*{n}&]

Now consider the algorithm for finding all the prime numbers up to n. A straightforward implementation is to check whether i is prime for i=[&O|N(|*rad*{n}|N)|.&] 2, 3, 4, . . . , n. The program is given in Listing 22.5.

Listing 22.5 PrimeNumbers.java

 1 import java.util.Scanner;
 2
 3 public class PrimeNumbers {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Find all prime numbers <= n, enter n: ");
 7 int n = input.nextInt();
 8
 9 final int NUMBER_PER_LINE = 10; // Display 10 per line
 10 int count = 0; // Count the number of prime numbers
 11 int number = 2; // A number to be tested for primeness
 12
 13 System.out.println("The prime numbers are:");
 14
 15 // Repeatedly find prime numbers
 16 while (number <= n) {
 17 // Assume the number is prime
 18 boolean isPrime = true; // Is the current number prime?
 19
 20 // Test if number is prime
check prime 21 for (int divisor = 2; divisor <= (int)(Math.sqrt(number));
 22 divisor++) {
 23 if (number % divisor == 0) { // If true, number is not prime
 24 isPrime = false; // Set isPrime to false
 25 break; // Exit the for loop
 26 }
 27 }
 28
 29 // Print the prime number and increase the count
increase count 30 if (isPrime) {
 31 count++; // Increase the count
 32
 33 if (count % NUMBER_PER_LINE == 0) {
 34 // Print the number and advance to the new line
 35 System.out.printf("%7d\n", number);
 36 }
 37 else
 38 System.out.printf("%7d", number);
 39 }
 40
 41 // Check if the next number is prime
check next number 42 number++;
 43 }
 44
 45 System.out.println("\n" + count +
 46 " prime(s) less than or equal to " + n);
 47 }
 48 }

Find all prime numbers <= n, enter n: 1000
The prime numbers are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
…
…
168 prime(s) less than or equal to 1000

The program is not efficient if you have to compute Math.sqrt(number) for every iteration of the for loop (line 21). A good compiler should evaluate Math.sqrt(number) only once for the entire for loop. To ensure this happens, you can explicitly replace line 21 with the following two lines:

int squareRoot = (int)(Math.sqrt(number));
for (int divisor = 2; divisor <= squareRoot; divisor++) {

In fact, there is no need to actually compute Math.sqrt(number) for every number. You need to look only for the perfect squares such as 4, 9, 16, 25, 36, 49, and so on. Note for all the numbers between 36 and 48, inclusively, their (int)(Math.sqrt(number)) is 6. With this insight, you can replace the code in lines 16–26 with the following:

…
int squareRoot = 1;

// Repeatedly find prime numbers
while (number <= n) {
 // Assume the number is prime
 boolean isPrime = true; // Is the current number prime?

 if (squareRoot * squareRoot < number) squareRoot++;

 // Test if number is prime
 for (int divisor = 2; divisor <= squareRoot; divisor++) {
 if (number % divisor == 0) { // If true, number is not prime
 isPrime = false; // Set isPrime to false
 break; // Exit the for loop
 }
 }
…

Now we turn our attention to analyzing the complexity of this program. Since it takes i[&*rad*{i}&] steps in the for loop (lines 21–27) to check whether number i is prime, the algorithm takes
2+3+4+…+ n[&*rad*{2}|+|*rad*{3}|+|*rad*{4}|+||cdots||plus| *rad*{n}&] steps to find all the prime numbers less than or equal to n. Observe that

2+3+4+…+ n≤nn

Therefore, the time complexity for this algorithm is O(nn).[&O|N(|n*rad*{n}|N)|.&]

To determine whether i is prime, the algorithm checks whether 2, 3, 4, 5, . . . , and i[&*rad*{i}&] are divisible by i. This algorithm can be further improved. In fact, you need to check only whether the prime numbers from 2 to i[&*rad*{i}&] are possible divisors for i.

We can prove that if i is not prime, there must exist a prime number p such that i=pq[&i|=|pq&] and p≤q.[&p|leq|q.&] Here is the proof. Assume i is not prime; let p be the smallest factor of i. p must be prime, otherwise, p has a factor k with 2≤k<p.[&2|leq|k|less|p.&] k is also a factor of i, which contradicts that p be the smallest factor of i. Therefore, if i is not prime, you can find a prime number from 2 to i[&*rad*{i}&] that is divisible by i. This leads to a more efficient algorithm for finding all prime numbers up to n, as given in Listing 22.6.

Listing 22.6 EfficientPrimeNumbers.java

 1 import java.util.Scanner;
 2
 3 public class EfficientPrimeNumbers {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Find all prime numbers <= n, enter n: ");
 7 int n = input.nextInt();
 8
 9 // A list to hold prime numbers
 10 java.util.List<Integer> list =
 11 new java.util.ArrayList<>();
 12
 13 final int NUMBER_PER_LINE = 10; // Display 10 per line
 14 int count = 0; // Count the number of prime numbers
 15 int number = 2; // A number to be tested for primeness
 16 int squareRoot = 1; // Check whether number <= squareRoot
 17
 18 System.out.println("The prime numbers are \n");
 19
 20 // Repeatedly find prime numbers
 21 while (number <= n) {
 22 // Assume the number is prime
 23 boolean isPrime = true; // Is the current number prime?
 24
 25 if (squareRoot * squareRoot < number) squareRoot++;
 26
 27 // Test whether number is prime
check prime 28 for (int k = 0; k < list.size()
 29 && list.get(k) <= squareRoot; k++) {
 30 if (number % list.get(k) == 0) { // If true, not prime
 31 isPrime = false; // Set isPrime to false
 32 break; // Exit the for loop
 33 }
 34 }
 35
 36 // Print the prime number and increase the count
 37 if (isPrime) {
increase count 38 count++; // Increase the count
 39 list.add(number); // Add a new prime to the list
 40 if (count % NUMBER_PER_LINE == 0) {
 41 // Print the number and advance to the new line
 42 System.out.println(number);
 43 }
 44 else
 45 System.out.print(number + " ");
 46 }
 47
 48 // Check whether the next number is prime
check next number 49 number++;
 50 }
 51
 52 System.out.println("\n" + count +
 53 " prime(s) less than or equal to " + n);
 54 }
 55 }

Find all prime numbers <= n, enter n: 1000
The prime numbers are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
…
…
168 prime(s) less than or equal to 1000

Let π[&|pi|&] (i) denote the number of prime numbers less than or equal to i. The primes under 20 are 2, 3, 5, 7, 11, 13, 17, and 19. Therefore, π (2) is 1, π (3) is 2, π (6) is 3, and π (20) is 8. It has been proved that π[&|pi|&] (i) is approximately ilogi[&*frac*{i}{~rom~log~normal~i}~norm~&] (see primes.utm.edu/howmany.shtml).

For each number i, the algorithm checks whether a prime number less than or equal to i[&*rad*{i}&] is divisible by i. The number of the prime numbers less than or equal to i[&*rad*{i}&] is

ilogi=2ilogi

Thus, the complexity for finding all prime numbers up to n is

22log 2+23log 3+24log 4+25log 5+26log 6+27log 7+28log 8+…+ 2nlogn

Since ilog i<nlogn[&*frac*{*rad*{i}}{~rom~log~normal~ i}|less|~norm~*frac*{*rad*{n}}{~rom~log~normal~n}~norm~&] for i<n[&i|less|n&] and n≥16,[&n|geq|16,&]

22log 2+23log 3+24log 4+25log 5+26log 6+27log 7+28log 8+…+ 2nlogn<2nnlogn

Therefore, the complexity of this algorithm is O(nnlogn).[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~.&]

This algorithm is another example of dynamic programming. The algorithm stores the results of the subproblems in the array list and uses them later to check whether a new number is prime.

dynamic programming

Is there any algorithm better than O(nnlogn)?[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~?&] Let us examine the well-known Eratosthenes algorithm for finding prime numbers. Eratosthenes (276–194 B.C.) was a Greek mathematician who devised a clever algorithm, known as the Sieve of Eratosthenes, for finding all prime numbers≤n.[&|leq|n.&] His algorithm is to use an array named primes of n Boolean values. Initially, all elements in primes are set true. Since the multiples of 2 are not prime, set primes[2 * i] to false for all 2≤i≤n/2,[&2|leq|i|leq|n/2,&] as shown in Figure 22.3. Since we don’t care about primes[0] and primes[1], these values are marked×in the figure.[&~rom~marked|multi|in the figure~normal~.~norm~&]

Figure 22.3 

The values in primes are changed with each prime number k.

Sieve of Eratosthenes

Since the multiples of 3 are not prime, set primes[3 * i] to false for all 3≤i≤n/3.[&3|leq|i|leq|n/3.&] Because the multiples of 5 are not prime, set primes[5 * i] to false for all 5≤i≤n/5.[&5|leq|i|leq|n/5.&] Note you don’t need to consider the multiples of 4 because the multiples of 4 are also the multiples of 2, which have already been considered. Similarly, multiples of 6, 8, and 9 need not be considered. You only need to consider the multiples of a prime number k = 2, 3, 5, 7, 11, . . . , and set the corresponding element in primes to false. Afterward, if primes[i] is still true, then i is a prime number. As shown in Figure 22.3, 2, 3, 5, 7, 11, 13, 17, 19, and 23 are prime numbers. Listing 22.7 gives the program for finding the prime numbers using the Sieve of Eratosthenes algorithm.

Listing 22.7 SieveOfEratosthenes.java

 1 import java.util.Scanner;
 2
 3 public class SieveOfEratosthenes {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Find all prime numbers <= n, enter n: ");
 7 int n = input.nextInt();
 8
 sieve 9 boolean[] primes = new boolean[n + 1]; // Prime number sieve
 10
 11 // Initialize primes[i] to true
 12 for (int i = 0; i < primes.length; i++) {
initialize sieve 13 primes[i] = true;
 14 }
 15
 16 for (int k = 2; k <= n / k; k++) {
 17 if (primes[k]) {
 18 for (int i = k; i <= n / k; i++) {
nonprime 19 primes[k * i] = false; // k * i is not prime
 20 }
 21 }
 22 }
 23
 24 final int NUMBER_PER_LINE = 10; // Display 10 per line
 25 int count = 0; // Count the number of prime numbers found so far
 26 // Print prime numbers
 27 for (int i = 2; i < primes.length; i++) {
 28 if (primes[i]) {
 29 count++;
 30 if (count % NUMBER_PER_LINE == 0)
 31 System.out.printf("%7d\n", i);
 32 else
 33 System.out.printf("%7d", i);
 34 }
 35 }
 36
 37 System.out.println("\n" + count +
 38 " prime(s) less than or equal to " + n);
 39 }
 40 }

Find all prime numbers <= n, enter n: 1000
The prime numbers are:
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
…
…
168 prime(s) less than or equal to 1000

Note k <= n / k (line 16). Otherwise, k * i would be greater than n (line 19). What is the time complexity of this algorithm?

For each prime number k (line 17), the algorithm sets primes[k * i] to false (line 19). This is performed n / k − k + 1 times in the for loop (line 18). Thus, the complexity for finding all prime numbers up to n is

n2−2+1+n3−3+1+n5−5+1+n7−7+1+n11−11+1…   =O (n2+n3+n5+n7+n11+…)<O(nπ(n))  =O (n nlogn)                           ↖The number of items in the series is π(n).

This upper bound O(nnlogn) is very loose. The actual time complexity is much better than O(nnlogn). The Sieve of Eratosthenes algorithm is good for a small n such that the array primes can fit in the memory.

Table 22.5 summarizes the complexity of these three algorithms for finding all prime ­numbers up to n.

Table 22.5 Comparisons of Prime-Number Algorithms

	Algorithm

	Complexity

	Description

	Listing 5.15

	O(n2)[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~&]

	Brute-force, checking all possible divisors

	Listing 22.5

	O(nn)[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~&]

	Checking divisors up to n[&*rad*{n}&]

	Listing 22.6

	O(nnlogn)[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~&]

	Checking prime divisors up to n[&*rad*{n}&]

	Listing 22.7

	O(nnlogn)[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~&]

	Sieve of Eratosthenes

	22.7.1 Prove that if n is not prime, there must exist a prime number p such that p <= n[&p |lessns||eq| *rad*{n}&] and p is a factor of n.

	22.7.2 Describe how the sieve of Eratosthenes is used to find the prime numbers.

 Pedagogical Note

The following sections present interesting and challenging problems. It is time that you begin to study advanced algorithms to become a proficient programmer. We recommend that you study the algorithms and implement them in the exercises.

22.8 Finding the Closest Pair of Points Using Divide-and-Conquer

	This section presents efficient algorithms for finding the closest pair of points using divide-and-conquer.

Given a set of points, the closest-pair problem is to find the two points that are nearest to each other. As shown in Figure 22.4, a line is drawn to connect the two nearest points in the ­closest-pair animation.

[image: A window titled, Exercise 22, underscore, 17.]
Figure 22.4 

The closet-pair animation draws a line to connect the closest pair of points dynamically as points are added and removed interactively.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

closest-pair animation on Companion Website

Section 8.6, Case Study: Finding the Closest Pair, presented a brute-force algorithm for finding the closest pair of points. The algorithm computes the distances between all pairs of points and finds the one with the minimum distance. Clearly, the algorithm takes O(n2)[&O(n^{2})&] time. Can we design a more efficient algorithm?

divide-and-conquer

We will use an approach called divide-and-conquer to solve this problem. The approach divides the problem into subproblems, solves the subproblems, then combines the solutions of the subproblems to obtain the solution for the entire problem. Unlike the dynamic programming approach, the subproblems in the divide-and-conquer approach don’t overlap. A ­subproblem is like the original problem with a smaller size, so you can apply recursion to solve the problem. In fact, all the solutions for recursive problems follow the divide-and-conquer approach.

Listing 22.8 describes how to solve the closest pair problem using the divide-and-conquer approach.

Listing 22.8 Algorithm for Finding the Closest Pair

	Step 1: Sort the points in increasing order of x-coordinates. For the points with the same x-coordinates, sort on y-coordinates. This results in a sorted list S of points.

	Step 2: Divide S into two subsets, S1 and S2, of equal size using the midpoint in the sorted list. Let the midpoint be in S1. Recursively find the closest pair in S1 and S2. Let d1 and d2 denote the distance of the closest pairs in the two subsets, respectively.

	Step 3: Find the closest pair between a point in S1 and a point in S2 and denote their distance as d3. The closest pair is the one with the ­distance min(d1, d2, d3).

Selection sort takes O(n2)[&O(n^{2})&] time. In Chapter 23, we will introduce merge sort and heap sort. These sorting algorithms take O(n log n) time. Step 1 can be done in O(n log n) time.

Step 3 can be done in O(n) time. Let d=min(d1, d2).[&d|=|~rom~min~normal~(d_{1}, d_{2}).~norm~&] We already know that the closest-pair distance cannot be larger than d. For a point in S1[&S_{1}&] and a point in S2[&S_{2}&] to form the closest pair in S, the left point must be in stripL and the right point in stripR, as illustrated in Figure 22.5a.

[image: Data points are divided into different sets.]
Figure 22.5 

The midpoint divides the points into two sets of equal size.

Description

For a point p in stripL, you need only consider a right point within the d×2d[&d|multi|2d&] rectangle, as shown in 22.5b. Any right point outside the rectangle cannot form the closest pair with p. Since the closest-pair distance in S2[&S_{2}&] is greater than or equal to d, there can be at most six points in the rectangle. Thus, for each point in stripL, at most six points in stripR need to be considered.

For each point p in stripL, how do you locate the points in the corresponding d×2d[&d|multi|2d&] rectangle area in stripR? This can be done efficiently if the points in stripL and stripR are sorted in increasing order of their y-coordinates. Let pointsOrderedOnY be the list of the points sorted in increasing order of y-coordinates. pointsOrderedOnY can be obtained beforehand in the algorithm. stripL and stripR can be obtained from pointsOrderedOnY in Step 3 as given in Listing 22.9.

Listing 22.9 Algorithm for Obtaining stripL and stripR

 1 for each point p in pointsOrderedOnY
 2 if (p is in S1 and mid.x − p.x <= d)
 stripL 3 append p to stripL;
 4 else if (p is in S2 and p.x − mid.x <= d)
 stripR 5 append p to stripR;

Let the points in stripL and stripR be { p0, p1, …, pk }[&|cbo|p_{0}, p_{1}, |elip|, p_{k}|cbc|&] and { q0, q1, …, qt },[&|cbo|q_{0}, q_{1}, |elip|, q_{t}|cbc|,&] as shown in Figure 22.5c. The closest pair between a point in stripL and a point in stripR can be found using the algorithm described in Listing 22.10.

Listing 22.10 Algorithm for Finding the Closest Pair in Step 3

 1 d = min(d1, d2);
 2 r = 0; // r is the index of a point in stripR
 3 for (each point p in stripL) {
 4 // Skip the points in stripR below p.y − d
 5 while (r < stripR.length && q[r].y <= p.y − d)
 6 r++;
 7
 8 let r1 = r;
 9 while (r1 < stripR.length && |q[r1].y − p.y| <= d) {
 10 // Check if (p, q[r1]) is a possible closest pair
 11 if (distance(p, q[r1]) < d) {
update closest pair 12 d = distance(p, q[r1]);
 13 (p, q[r1]) is now the current closest pair;
 14 }
 15
 16 r1 = r1 + 1;
 17 }
 18 }

The points in stripL are considered from p0, p1, …, pk[&p_{0}, p_{1}, |elip|, p_{k}&] in this order. For a point p in stripL, skip the points in stripR that are below p.y − d (lines 5–6). Once a point is skipped, it will no longer be considered. The while loop (lines 9–17) checks whether (p, q[r1]) is a possible closest pair. There are at most six such q[r1] pairs, because the distance between two points in stripR cannot be less than d. Thus, the complexity for finding the closest pair in Step 3 is O(n).

Note Step 1 in Listing 22.8 is performed only once to presort the points. Assume all the points are presorted. Let T(n) denote the time complexity for this algorithm. Thus,

Step 2Step 3  ↓     ↓T(n)=2T(n/2)+O(n)=O(n logn)

Therefore, the closest pair of points can be found in O(n log n) time. The complete implementation of this algorithm is left as an exercise (see Programming Exercise 22.7).

	22.8.1 What is divide-and-conquer approach? Give an example.

	22.8.2 What is the difference between divide-and-conquer and dynamic programming?

	22.8.3 Can you design an algorithm for finding the minimum element in a list using divide-and-conquer? What is the complexity of this algorithm?

22.9 Solving the Eight Queens Problem Using Backtracking

	This section solves the Eight Queens problem using the backtracking approach.

The Eight Queens problem is to find a solution to place a queen in each row on a chessboard such that no two queens can attack each other. The problem can be solved using recursion (see Programming Exercise 18.34). In this section, we will introduce a common algorithm design technique called backtracking for solving this problem. The backtracking approach searches for a candidate solution incrementally, abandoning that option as soon as it determines that the candidate cannot possibly be a valid solution, and then looks for a new candidate.

backtracking

You can use a two-dimensional array to represent a chessboard. However, since each row can have only one queen, it is sufficient to use a one-dimensional array to denote the position of the queen in the row. Thus, you can define the queens array as

int[] queens = new int[8];

Assign j to queens[i] to denote that a queen is placed in row i and column j. Figure 22.6a shows the contents of the queens array for the chessboard in Figure 22.6b.

[image: Figures ay and b show a solution to the Eight Queens problem as an array, and on a board, respectively.]
Figure 22.6 

queens[i] denotes the position of the queen in row i.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

The search starts from the first row with k=0[&k|=|0&], where k is the index of the current row being considered. The algorithm checks whether a queen can be possibly placed in the jth column in the row for j=0, 1, …, 7,[&j|=|0, 1, |elip|, 7,&] in this order. The search is implemented as follows:

search algorithm

Eight Queens animation on the Companion Website

	If successful, it continues to search for a placement for a queen in the next row. If the current row is the last row, a solution is found.

	If not successful, it backtracks to the previous row and continues to search for a new placement in the next column in the previous row.

	If the algorithm backtracks to the first row and cannot find a new placement for a queen in this row, no solution can be found.

To see how the algorithm works, go to http://liveexample.pearsoncmg.com/dsanimation/EightQueens.html.

Listing 22.11 gives the program that displays a solution for the Eight Queens problem.

Listing 22.11 EightQueens.java

				 1 import javafx.application.Application;
				 2 import javafx.geometry.Pos;
				 3 import javafx.stage.Stage;
				 4 import javafx.scene.Scene;
				 5 import javafx.scene.control.Label;
				 6 import javafx.scene.image.Image;
				 7 import javafx.scene.image.ImageView;
				 8 import javafx.scene.layout.GridPane;
				 9
				10 public class EightQueens extends Application {
				11 public static final int SIZE = 8; // The size of the chessboard
				12 // queens are placed at (i, queens[i])
				13 // −				1 indicates that no queen is currently placed in the ith row
				14 // Initially, place a queen at (0, 0) in the 0th row
queen positions 		15 private int[] queens = {−1, −1, −1, −1, −1, −1, −1, −1};
				16
				17 @Override // Override the start method in the Application class
				18 public void start(Stage primaryStage) {
search for solution		19 search(); // Search for a solution
				20
				21 // Display chessboard
				22 GridPane chessBoard = new GridPane();
				23 chessBoard.setAlignment(Pos.CENTER);
				24 Label[][] labels = new Label[SIZE][SIZE];
				25 for (int i = 0; i < SIZE; i++)
				26 for (int j = 0; j < SIZE; j++) {
create cells			27 chessBoard.add(labels[i][j] = new Label(), j, i);
				28 labels[i][j].setStyle("−fx−border−color: black");
				29 labels[i][j].setPrefSize(55, 55);
				30 }
				31
				32 // Display queens
				33 Image image = new Image("image/queen.png");
				34 for (int i = 0; i < SIZE; i++)
set queen image 		35 labels[i][queens[i]].setGraphic(new ImageView(image));
				36
				37 // Create a scene and place it in the stage
				38 Scene scene = new Scene(chessBoard, 55 * SIZE, 55 * SIZE);
				39 primaryStage.setTitle("EightQueens"); // Set the stage title
				40 primaryStage.setScene(scene); // Place the scene in the stage
				41 primaryStage.show(); // Display the stage
				42 }
				43
				44 /** Search for a solution */
				45 private boolean search() {
				46 // k − 				1 indicates the number of queens placed so far
				47 // We are looking for a position in the kth row to place a queen
				48 int k = 0;
				49 while (k >= 0 && k < SIZE) {
				50 // Find a position to place a queen in the kth row
find a column 		51 int j = findPosition(k);
				52 if (j < 0) {
				53 queens[k] = −1;
backtrack			54 k−−; // Backtrack to the previous row
				55 } else {
place a queen 		56 queens[k] = j;
search the next row		57 k++;
				58 }
				59 }
				60
				61 if (k == −1)
				62 return false; // No solution
				63 else
				64 return true; // A solution is found
				65 }
				66
				67 public int findPosition(int k) {
				68 int start = queens[k] + 1; // Search for a new placement
				69
				70 for (int j = start; j < SIZE; j++) {
				71 if (isValid(k, j))
				72 return j; // (k, j) is the place to put the queen now
				73 }
				74
				75 return −1;
				76 }
				77
				78 /** Return true if a queen can be placed at (row, column) */
				79 public boolean isValid(int row, int column) {
				80 for (int i = 1; i <= row; i++)
				81 if (queens[row − i] == column // Check column
				82 || queens[row − i] == column − i // Check upleft diagonal
				83 || queens[row − i] == column + i) // Check upright diagonal
				84 return false; // There is a conflict
				85 return true; // No conflict
				86 }
				87 }

The program invokes search() (line 19) to search for a solution. Initially, no queens are placed in any rows (line 15). The search now starts from the first row with k = 0 (line 48) and finds a place for the queen (line 51). If successful, place it in the row (line 56) and consider the next row (line 57). If not successful, backtrack to the previous row (lines 53–54).

The findPosition(k) method searches for a possible position to place a queen in row k starting from queen[k] + 1 (line 68). It checks whether a queen can be placed at start, start + 1, . . . , and 7, in this order (lines 70–73). If possible, return the column index (line 72); otherwise, return −1 (line 75).

The isValid(row, column) method is called to check whether placing a queen at the specified position causes a conflict with the queens placed earlier (line 71). It ensures that no queen is placed in the same column (line 81), in the upper-left diagonal (line 82), or in the upper-right diagonal (line 83), as shown in Figure 22.7.

[image: A diagram shows invocation of is valid.]
Figure 22.7 

Invoking isValid(row, column) checks whether a queen can be placed at (row, column).

Description

	22.9.1 What is backtracking? Give an example.

	22.9.2 If you generalize the Eight Queens problem to the n-Queens problem in an n-by-n chessboard, what will be the complexity of the algorithm?

22.10 Computational Geometry: Finding a Convex Hull

	This section presents efficient geometric algorithms for finding a convex hull for a set of points.

Computational geometry is to study the algorithms for geometrical problems. It has applications in computer graphics, games, pattern recognition, image processing, robotics, geographical information systems, and computer-aided design and manufacturing. Section 22.8 presented a geometrical algorithm for finding the closest pair of points. This section introduces geometrical algorithms for finding a convex hull.

Given a set of points, a convex hull is the smallest convex polygon that encloses all these points, as shown in Figure 22.8a. A polygon is convex if every line connecting two vertices is inside the polygon. For example, the vertices v0, v1, v2, v3, v4, and v5 in Figure 22.8a form a convex polygon, but not in Figure 22.8b, because the line that connects v3 and v1 is not inside the polygon.

[image: A diagram shows the creation of a convex hull.]
Figure 22.8 

A convex hull is the smallest convex polygon that contains a set of points.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

convex hull

A convex hull has many applications in game programming, pattern recognition, and image processing. Before we introduce the algorithms, it is helpful to get acquainted with the concept using an interactive tool from liveexample.pearsoncmg.com/dsanimation/ConvexHull.html, as shown in Figure 22.8c. This tool allows you to add and remove points and displays the convex hull dynamically.

convex hull animation on the Companion Website

Many algorithms have been developed to find a convex hull. This section introduces two popular algorithms: the gift-wrapping algorithm and Graham’s algorithm.

22.10.1 Gift-Wrapping Algorithm

An intuitive approach called the gift-wrapping algorithm works as described in Listing 22.12.

Listing 22.12 Finding a Convex Hull Using ­Gift-­Wrapping Algorithm

	Step 1: Given a list of points S, let the points in S be labeled s0, s1, . . . , sk. Select the rightmost lowest point S. As shown in ­Figure 22.9a, h0 is such a point. Add h0 to list H. (H is initially empty. H will hold all points in the convex hull after the algorithm is finished.) Let t0 be h0.

[image: A diagram shows the process for creating a convex hull.]
Figure 22.9 

(a) h0[&h_{0}&] is the rightmost lowest point in S. (b) Step 2 finds point t1.[&t_{1}.&] (c) A convex hull is expanded ­repeatedly. (d) A convex hull is found when t1[&t_{1}&] becomes h0[&h_{0}&]

Description

	
Step 2: Let t1 be s0.
 For every point p in S,
 if p is on the right side of the direct line from t0 to t1, then
 let t1 be p.
(After Step 2, no points lie on the right side of the direct line from t0 to t1, as shown in Figure 22.9b.)

	Step 3: If t1 is h0 (see Figure 22.9d), the points in H form a convex hull for S. Otherwise, add t1 to H, let t0 be t1, and go back to Step 2 (see Figure 22.9c).

The convex hull is expanded incrementally. The correctness is supported by the fact that no points lie on the right side of the direct line from t0[&t_{0}&] to t1[&t_{1}&] after Step 2. This ensures that every line segment with two points in S falls inside the polygon.

correctness of the algorithm

Finding the rightmost lowest point in Step 1 can be done in O(n) time. Whether a point is on the left side of a line, right side, or on the line can be determined in O(1) time (see Programming Exercise 3.32). Thus, it takes O(n) time to find a new point t1[&t_{1}&] in Step 2. Step 2 is repeated h times, where h is the size of the convex hull. Therefore, the algorithm takes O(hn) time. In the worst-case, h is n.

time complexity of the algorithm

The implementation of this algorithm is left as an exercise (see Programming Exercise 22.9).

22.10.2 Graham’s Algorithm

A more efficient algorithm was developed by Ronald Graham in 1972, as given in Listing 22.13.

Listing 22.13 Finding a Convex Hull Using Graham’s Algorithm

	Step 1: Given a list of points S, select the rightmost lowest point and name it p0. As shown in Figure 22.10a, p0 is such a point.

[image: A diagram shows the creation of the convex hull.]
Figure 22.10 

(a) p0[&p_{0}&] is the rightmost lowest point in S. (b) Points are sorted by their angles. (c–d) A convex hull is ­discovered incrementally.

Description

	Step 2: Sort the points in S angularly along the x-axis with p0 as the center, as shown in Figure 22.10b. If there is a tie and two points have the same angle, discard the one that is closer to p0. The points in S are now sorted as p0, p1, p2, . . . , pn−1.

	Step 3: Push p0, p1, and p2 into stack H. (After the algorithm finishes, H contains all the points in the convex hull.)

	Step 4:
 i = 3;
 while (i < n) {
 Let t1 and t2 be the top first and second element in stack H;
 if (pi is on the left side of the direct line from t2 to t1) {
 Push pi to H;
 i++; // Consider the next point in S.
 }
 else
 Pop the top element off stack H.
 }

	Step 5: The points in H form a convex hull.

The convex hull is discovered incrementally. Initially, p0, p1,[&p_{0}, p_{1},&] and p2[&p_{2}&] form a convex hull. Consider p3. p3[&p_{3}. p_{3}&] is outside of the current convex hull since points are sorted in increasing order of their angles. If p3[&p_{3}&] is strictly on the left side of the line from p1[&p_{1}&] to p2[&p_{2}&] (see Figure 22.10c), push p3[&p_{3}&] into H. Now p0, p1, p2,[&p_{0}, p_{1}, p_{2},&] and p3[&p_{3}&] form a convex hull. If p3[&p_{3}&] is on the right side of the line from p1[&p_{1}&] to p2[&p_{2}&] (see Figure 22.10d), pop p2[&p_{2}&] out of H and push p3[&p_{3}&] into H. Now p0,p1[&p_{0}, p_{1},&] and p3[&p_{3}&] form a convex hull and p2[&p_{2}&] is inside this convex hull. You can prove by induction that all the points in H in Step 5 form a convex hull for all the points in the input list S.

correctness of the algorithm

Finding the rightmost lowest point in Step 1 can be done in O(n) time. The angles can be computed using trigonometry functions. However, you can sort the points without actually computing their angles. Observe p2[&p_{2}&] would make a greater angle than p1[&p_{1}&] if and only if p2[&p_{2}&] lies on the left side of the line from p0[&p_{0}&] to p1[&p_{1}.&] Whether a point is on the left side of a line can be determined in O(1) time, as shown in Programming Exercise 3.32. Sorting in Step 2 can be done in O(n log n) time using the merge-sort or heap-sort algorithms that will be introduced in Chapter 23. Step 4 can be done in O(n) time. Therefore, the algorithm takes O(n logn) time.

time complexity of the algorithm

The implementation of this algorithm is left as an exercise (see Programming Exercise 22.11).

	22.10.1 What is a convex hull?

	22.10.2 Describe the gift-wrapping algorithm for finding a convex hull. Should list H be implemented using an ArrayList or a LinkedList?

	22.10.3 Describe Graham’s algorithm for finding a convex hull. Why does the algorithm use a stack to store the points in a convex hull?

Key Terms

	average-case analysis 840

	backtracking approach 864

	best-case input 840

	Big O notation 840

	brute force 851

	constant time 841

	convex hull 867

	divide-and-conquer approach 862

	dynamic programming approach 850

	exponential time 847

	growth rate 840

	logarithmic time 846

	quadratic time 843

	space complexity 841

	time complexity 841

	worst-case input 840

Chapter Summary

	 The Big O notation is a theoretical approach for analyzing the performance of an ­algorithm. It estimates how fast an algorithm’s execution time increases as the input size increases, which enables you to compare two algorithms by examining their growth rates.

	An input that results in the shortest execution time is called the best-case input, and one that results in the longest execution time is called the worst-case input. Best- and ­worst-case analyses are not representative, but worst-case analysis is very useful. You can be assured that the algorithm will never be slower than the worst case.

	 An average-case analysis attempts to determine the average amount of time among all possible input of the same size. Average-case analysis is ideal, but difficult to perform because for many problems, it is hard to determine the relative probabilities and distributions of various input instances.

	 If the time is not related to the input size, the algorithm is said to take constant time with the notation O(1).

	 Linear search takes O(n) time. An algorithm with the O(n) time complexity is called a linear algorithm and it exhibits a linear growth rate. Binary search takes O(logn) time. An algorithm with the O(log n) time complexity is called a logarithmic algorithm and it exhibits a logarithmic growth rate.

	 The worst-time complexity for selection sort is O(n2).[&O(n^{2}).&] An algorithm with the O(n2).[&O(n^{2}).&] time complexity is called a quadratic algorithm and it exhibits a quadratic growth rate.

	 The time complexity for the Tower of Hanoi problem is O(2n).[&O(2^{n}).&] An algorithm with the O(2n)[&O(2^{n}).&] time complexity is called an exponential algorithm, and it exhibits an exponential growth rate.

	 A Fibonacci number at a given index can be found in O(n) time using dynamic programming approach.

	 Dynamic programming is the process of solving subproblems, then combining the solutions of the subproblems to obtain an overall solution. The key idea behind dynamic programming is to solve each subproblem only once and store the results for subproblems for later use to avoid redundant computing of the subproblems.

	 Euclid’s GCD algorithm takes O(logn) time.

	 All prime numbers less than or equal to n can be found in O(nnlogn)[&O|mpbo|*frac*{n*rad*{n}}{~rom~log~normal~n}|mpbc|~norm~&] time.

	 The closest pair can be found in O(n logn) time using the divide-and-conquer approach.

	 The divide-and-conquer approach divides the problem into subproblems, solves the subproblems, and then combines the solutions of the subproblems to obtain the solution for the entire problem. Unlike the dynamic programming approach, the subproblems in the divide-and-conquer approach don’t overlap. A subproblem is like the original problem with a smaller size, so you can apply recursion to solve the problem.

	 The Eight Queens problem can be solved using backtracking.

	 The backtracking approach searches for a candidate solution incrementally, abandoning that option as soon as it determines the candidate cannot possibly be a valid solution, then looks for a new candidate.

	 A convex hull for a set of points can be found in O(n2)[&O(n^{2})&] time using the gift-wrapping algorithm, and in O(n logn) time using the Graham’s algorithm.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	*22.1 (Maximum consecutive increasingly ordered substring) Write a program that prompts the user to enter a string and displays the maximum consecutive increasingly ordered substring. Analyze the time complexity of your program. Here is a sample run:

Enter a string: abcabcdgabxy
abcdg

Enter a string: abcabcdgabmnsxy
abmnsxy

	**22.2 (Maximum increasingly ordered subsequence) Write a program that prompts the user to enter a string and displays the maximum increasingly ordered subsequence of characters. Analyze the time complexity of your program. Here is a sample run:

Enter a string: Welcome
Welo

	*22.3 (Pattern matching) Write an O(n) time program that prompts the user to enter two strings and tests whether the second string is a substring of the first string. Suppose the neighboring characters in the string are distinct. (Don’t use the indexOf method in the String class.) Here is a sample run of the program:

Enter a string s1: Welcome to Java
Enter a string s2: come
matched at index 3

	*22.4 (Pattern matching) Write a program that prompts the user to enter two strings and tests whether the second string is a substring of the first string. (Don’t use the indexOf method in the String class.) Analyze the time complexity of your algorithm. Here is a sample run of the program:

Enter a string s1: Mississippi
Enter a string s2: sip
matched at index 6

	*22.5 (Same-number subsequence) Write an O(n) time program that prompts the user to enter a sequence of integers ending with 0 and finds the longest subsequence with the same number. Here is a sample run of the program:

Enter a series of numbers ending with 0:
2 4 4 8 8 8 8 2 4 4 0
The longest same number sequence starts at index 3 with 4 values of 8

	*22.6 (Execution time for GCD) Write a program that obtains the execution time for finding the GCD of every two consecutive Fibonacci numbers from the index 40 to index 45 using the algorithms in Listings 22.3 and 22.4. Your program should print a table like this:

	

	40

	41

	42

	43

	44

	45

	Listing 22.3 GCD

	

	

	

	

	

	

	Listing 22.4 GCDEuclid

	

	

	

	

	

	

(Hint: You can use the following code template to obtain the execution time.)

long startTime = System.currentTimeMillis();
perform the task;
long endTime = System.currentTimeMillis();
long executionTime = endTime − startTime;

	**22.7 (Closest pair of points) Section 22.8 introduced an algorithm for finding the closest pair of points using a divide-and-conquer approach. Implement the algorithm to meet the following requirements:

	Define a class named Pair with the data fields p1 and p2 to represent two points and a method named getDistance() that returns the distance between the two points.

	Implement the following methods:

 /** Return the distance of the closest pair of points */
 public static Pair getClosestPair(double[][] points)

 /** Return the distance of the closest pair of points */
 public static Pair getClosestPair(Point2D[] points)

 /** Return the distance of the closest pair of points
 * in pointsOrderedOnX[low..high]. This is a recursive
 * method. pointsOrderedOnX and pointsOrderedOnY are
 * not changed in the subsequent recursive calls.
 */
 public static Pair distance(Point2D[] pointsOrderedOnX,
 int low, int high, Point2D[] pointsOrderedOnY)

 /** Compute the distance between two points p1 and p2 */
 public static double distance(Point2D p1, Point2D p2)

 /** Compute the distance between points (x1, y1) and (x2, y2) */
 public static double distance(double x1, double y1,
 double x2, double y2)

	**22.8 (All prime numbers up to 10,000,000,000) Write a program that finds all prime numbers up to 10,000,000,000. There are approximately 455,052,511 such prime numbers. Your program should meet the following requirements:

	Your program should store the prime numbers in a binary data file, named PrimeNumbers.dat. When a new prime number is found, the number is appended to the file.

	To find whether a new number is prime, your program should load the prime numbers from the file to an array of the long type of size 10000. If no number in the array is a divisor for the new number, continue to read the next 10000 prime numbers from the data file, until a divisor is found or all numbers in the file are read. If no divisor is found, the new number is prime.

	Since this program takes a long time to finish, you should run it as a batch job from a UNIX machine. If the machine is shut down and rebooted, your program should resume by using the prime numbers stored in the binary data file rather than start over from scratch.

	**22.9 (Geometry: gift-wrapping algorithm for finding a convex hull) Section 22.10.1 introduced the gift-wrapping algorithm for finding a convex hull for a set of points. Assume Java’s coordinate system is used for the points. Implement the algorithm using the following method:

 /** Return the points that form a convex hull */
 public static ArrayList<Point2D> getConvexHull(double[][] s)

Point2D is defined in Section 9.6.3.

Write a test program that prompts the user to enter the set size and the points, and displays the points that form a convex hull. Here is a sample run:

How many points are in the set? 6
Enter 6 points: 1 2.4 2.5 2 1.5 34.5 5.5 6 6 2.4 5.5 9
The convex hull is
 (1.5, 34.5) (5.5, 9.0) (6.0, 2.4) (2.5, 2.0) (1.0, 2.4)

	22.10 (Number of prime numbers) Programming Exercise 22.8 stores the prime ­numbers in a file named PrimeNumbers.dat. Write a program that finds the number of prime numbers that are less than or equal to 10, 100, 1,000, 10,000, 100,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, and 10,000,000,000. Your program should read the data from PrimeNumbers.dat.

	**22.11 (Geometry: Graham’s algorithm for finding a convex hull) Section 22.10.2 introduced Graham’s algorithm for finding a convex hull for a set of points. Assume Java’s coordinate system is used for the points. Implement the algorithm using the following method:

 /** Return the points that form a convex hull */
 public static ArrayList<MyPoint> getConvexHull(double[][] s)
MyPoint is a static inner class defined as follows:
 private static class MyPoint implements Comparable<MyPoint> {
 double x, y;

 MyPoint rightMostLowestPoint;

 MyPoint(double x, double y) {
 this.x = x; this.y = y;
 }

 public void setRightMostLowestPoint(MyPoint p) {
 rightMostLowestPoint = p;
 }

 @Override
 public int compareTo(MyPoint o) {
 // Implement it to compare this point with point o
 // angularly along the x-axis with rightMostLowestPoint
 // as the center, as shown in Figure 22.10b. By implementing
 // the Comparable interface, you can use the Array.sort
 // method to sort the points to simplify coding.
 }
 }

Write a test program that prompts the user to enter the set size and the points, and displays the points that form a convex hull. Here is a sample run:

How many points are in the set? 6
Enter six points: 1 2.4 2.5 2 1.5 34.5 5.5 6 6 2.4 5.5 9
The convex hull is
 (1.5, 34.5) (5.5, 9.0) (6.0, 2.4) (2.5, 2.0) (1.0, 2.4)

	*22.12 (Last 100 prime numbers) Programming Exercise 22.8 stores the prime ­numbers in a file named PrimeNumbers.dat. Write an efficient program that reads the last 100 numbers in the file. (Hint: Don’t read all numbers from the file. Skip all numbers before the last 100 numbers in the file.)

	*22.13 (Geometry: convex hull animation) Programming Exercise 22.11 finds a ­convex hull for a set of points entered from the console. Write a program that enables the user to add or remove points by clicking the left or right mouse button and displays a convex hull, as shown in Figure 22.8c .

	*22.14 (Execution time for prime numbers) Write a program that obtains the ­execution time for finding all the prime numbers less than 8,000,000, 10,000,000, 12,000,000, 14,000,000, 16,000,000, and 18,000,000 using the algorithms in Listings 22.5 –22.7. Your program should print a table like this:

	

	8,000,000

	10,000,000

	12,000,000

	14,000,000

	16,000,000

	18,000,000

	Listing 22.5

	

	

	

	

	

	

	Listing 22.6

	

	

	

	

	

	

	Listing 22.7

	

	

	

	

	

	

	**22.15 (Geometry: noncrossed polygon) Write a program that enables the user to add or remove points by clicking the left or right mouse button and displays a noncrossed polygon that links all the points, as shown in Figure 22.11a . A polygon is crossed if two or more sides intersect, as shown in Figure 22.11b . Use the following algorithm to construct a polygon from a set of points:

[image: Part ay: For Exercise 22 15, software is used to create a polygon. Part b: A crossed polygon consists of 2 triangles with a common vertex.]
Figure 22.11 

(a) Programming Exercise 22.15 displays a noncrossed polygon for a set of points.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission. (b) Two or more sides intersect in a crossed polygon.

	Step 1: Given a set of points S, select the rightmost lowest point p0 in the set S.

	Step 2: Sort the points in S angularly along the x-axis with p0 as the center. If there is a tie and two points have the same angle, the one that is closer to p0 is considered greater. The points in S are now sorted as p0, p1, p2, …, pn−1.

	Step 3: The sorted points form a noncrossed polygon.

	**22.16 (Linear search animation) Write a program that animates the linear search algorithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a random order. The array elements are displayed in a histogram, as shown in Figure 22.12 . You need to enter a search key in the text field. Clicking the Step button causes the program to perform one comparison in the algorithm and repaints the histogram with a bar indicating the search position. This button also freezes the text field to prevent its value from being changed. When the algorithm is finished, display the status in the label at the top of the border pane to inform the user. Clicking the Reset button creates a new random array for a new start. This button also makes the text field editable.

[image: A program generates two bar graphs for exercise 22 16.]
Figure 22.12 

The program animates a linear search.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**22.17 (Closest-pair animation) Write a program that enables the user to add/remove points by clicking the left/right mouse button and displays a line that connects the pair of nearest points, as shown in Figure 22.4 .

	**22.18 (Binary search animation) Write a program that animates the binary search algorithm. Create an array with numbers from 1 to 20 in this order. The array elements are displayed in a histogram, as shown in Figure 22.13 . You need to enter a search key in the text field. Clicking the Step button causes the program to perform one comparison in the algorithm. Use a light-gray color to paint the bars for the numbers in the current search range, and use a black color to paint the bar indicating the middle number in the search range. The Step button also freezes the text field to prevent its value from being changed. When the algorithm is finished, display the status in a label at the top of a border pane. Clicking the Reset button enables a new search to start. This button also makes the text field editable.

[image: Two animations for a binary search for the key in double = 5, exercises 22 18.]
Figure 22.13 

The program animates a binary search.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*22.19 (Largest block) The problem for finding a largest block is described in ­Programming Exercise 8.35 . Design a dynamic programming algorithm for solving this problem in O(n2)[&O(n^{2})&] time. Write a test program that displays a 10-­by-10 square matrix, as shown in Figure 22.14a . Each element in the matrix is 0 or 1, randomly generated with a click of the Refresh button. Display each number centered in a text field. Use a text field for each entry. Allow the user to change the entry value. Click the Find Largest Block button to find a largest square submatrix that consists of 1s. Highlight the numbers in the block, as shown in Figure 22.14b . See liveexample.pearsoncmg.com/dsanimation/LargestBlock.html for an interactive test.

[image: Two displays for exercise 22 19 show a 10 by 10 array of ones and zeros.]
Figure 22.14 

The program finds the largest block of 1s.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	***22.20 (Game: multiple Sudoku solutions) The complete solution for the Sudoku ­problem is given in Supplement VI.A. A Sudoku problem may have multiple solutions. Modify Sudoku.java in Supplement VI.A to display the total number of solutions. Display two solutions if multiple solutions exist.

	***22.21 (Game: Sudoku) The complete solution for the Sudoku problem is given in Supplement VI.C. Write a program that lets the user enter the input from the text fields, as shown in Figure 22.15a . Clicking the Solve button displays the result, as shown in Figures 22.15b and c .

[image: Three Sudoku displays for exercise 22 21.]
Figure 22.15 

The program solves the Sudoku problem.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	***22.22 (Game: recursive Sudoku) Write a recursive solution for the Sudoku problem.

	***22.23 (Game: multiple Eight Queens solution) Write a program to display all possible solutions for the Eight Queens puzzle in a scroll pane, as shown in Figure 22.16 . For each solution, put a label to denote the solution number. (Hint: Place all solution panes into an HBox and place this one pane into a ScrollPane. If you run into a StackOverflowError, run the program using java –Xss200m Exercise22_23 from the command window.)

[image: Three possible outcomes for the 8 queens solution in exercise 22 23.]
Figure 22.16 

All solutions are placed in a scroll pane.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*22.24 (Find the smallest number) Write a method that uses the divide-and-conquer approach to find the smallest number in a list.

	***22.25 (Game: Sudoku) Revise Programming Exercise 22.21 to display all solutions for the Sudoku game, as shown in Figure 22.17a . When you click the Solve button, the program stores all solutions in an ArrayList. Each element in the list is a two-dimensional 9-by-9 grid. If the program has multiple solutions, the Next button appears as shown in Figure 22.17b . You can click the Next button to display the next solution and also add a label to show the solution count. When the Clear button is clicked, the cells are cleared and the Next button is hidden as shown in Figure 22.17c .

[image: Parts ay, b, and c for exercised 22 25 repeat the initial and solved Sudoku puzzles from exercise 22 21, followed by a blank puzzle.]
Figure 22.17 

The program can display multiple Sudoku solutions.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	*22.26 (Bin packing with smallest object first) The bin packing problem is to pack the objects of various weights into containers. Assume each container can hold a maximum of 10 pounds. The program uses an algorithm that places an object with the smallest weight into the first bin in which it would fit. Your program should prompt the user to enter the total number of objects and the weight of each object. The program displays the total number of containers needed to pack the objects, and the contents of each container. Here is a sample run of the program:

Enter the number of objects: 6
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 2 3 5
Container 2 contains objects with weight 5
Container 3 contains objects with weight 7
Container 4 contains objects with weight 8

Does this program produce an optimal solution, that is, finding the minimum number of containers to pack the objects?

	**22.27 (Optimal bin packing) Rewrite the preceding program so that it finds an optimal solution that packs all objects using the smallest number of containers. Here is a sample run of the program:

Enter the number of objects: 6
Enter the weights of the objects: 7 5 2 3 5 8
Container 1 contains objects with weight 7 3
Container 2 contains objects with weight 5 5
Container 3 contains objects with weight 2 8
The optimal number of bins is 3

What is the time complexity of your program?

CHAPTER 23 Sorting

Objectives

	To study and analyze time complexity of various sorting algorithms (§§23.2–23.7).

	To design, implement, and analyze insertion sort (§23.2).

	To design, implement, and analyze bubble sort (§23.3).

	To design, implement, and analyze merge sort (§23.4).

	To design, implement, and analyze quick sort (§23.5).

	To design and implement a binary heap (§23.6).

	To design, implement, and analyze heap sort (§23.6).

	To design, implement, and analyze bucket and radix sorts (§23.7).

	To design, implement, and analyze external sort for files that have a large amount of data (§23.8).

23.1 Introduction

	Sorting algorithms are good examples for studying algorithm design and analysis.

When president Barack Obama visited Google in 2007, Google as a candidate CEO Eric Schmidt asked Obama the most efficient way to sort a million 32-bit integers (www.youtube.com/watch?v=k4RRi_ntQc8). Obama answered that the bubble sort would be the wrong way to go. Was he right? We will examine different sorting algorithms in this chapter and see if he was correct.

why study sorting?

Sorting is a classic subject in computer science. There are three reasons to study sorting algorithms.

	First, sorting algorithms illustrate many creative approaches to problem solving, and these approaches can be applied to solve other problems.

	Second, sorting algorithms are good for practicing fundamental programming techniques using selection statements, loops, methods, and arrays.

	Third, sorting algorithms are excellent examples to demonstrate algorithm performance.

The data to be sorted might be integers, doubles, characters, or objects. Section 7.11, Sorting Arrays, presented selection sort. The selection-sort algorithm was extended to sort an array of objects in Section 19.5, Case Study: Sorting an Array of Objects. The Java API contains ­several overloaded sort methods for sorting primitive-type values and objects in the java .util.Arrays and java.util.Collections classes. For simplicity, this chapter assumes

what data to sort?

	data to be sorted are integers,

	data are stored in an array, and

	data are sorted in ascending order.

The programs can be easily modified to sort other types of data, to sort in descending order, or to sort data in an ArrayList or a LinkedList.

There are many algorithms for sorting. You have already learned selection sort. This chapter introduces insertion sort, bubble sort, merge sort, quick sort, bucket sort, radix sort, and external sort.

23.2 Insertion Sort

	
The insertion-sort algorithm sorts a list of values by repeatedly inserting a new element into a sorted sublist until the whole list is sorted.

Figure 23.1 shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using insertion sort. For an interactive demo on how insertion sort works, go to liveexample.pearsoncmg.com/dsanimation/InsertionSortNeweBook.html.

[image: The diagram shows the steps in insertion sort.]
Figure 23.1 

Insertion sort repeatedly inserts a new element into a sorted sublist.

Description

insertion-sort animation on Companion Website

The algorithm can be described as follows:

for (int i = 1; i < list.length; i++) {
 insert list[i] into a sorted sublist list[0..i−1] so that
 list[0..i] is sorted.
}

To insert list[i] into list[0..i−1], save list[i] into a temporary variable, say ­currentElement. Move list[i−1] to list[i] if list[i−1] > currentElement, move list[i−2] to list[i−1] if list[i−2] > currentElement, and so on, until list[i−k] <= currentElement or k > i (we pass the first element of the sorted list). Assign currentElement to list[i−k+1]. For example, to insert 4 into {2, 5, 9} in Step 4 in Figure 23.2, move list[2] (9) to list[3] since 9 > 4 and move list[1] (5) to list[2] since 5 > 4. Finally, move currentElement (4) to list[1].

[image: A diagram shows the process of list sorting.]
Figure 23.2 

A new element is inserted into a sorted sublist.

Description

The algorithm can be expanded and implemented as in Listing 23.1.

Listing 23.1 InsertionSort.java

		 1 public class InsertionSort {
 2 /** The method for sorting the numbers */
 3 public static void insertionSort(int[] list) {
 4 for (int i = 1; i < list.length; i++) {
 5 /** Insert list[i] into a sorted sublist list[0..i−1] so that
 6 list[0..i] is sorted. */
 7 int currentElement = list[i];
 8 int k;
shift 9 for (k = i − 1; k >= 0 && list[k] > currentElement; k−−) {
 10 list[k + 1] = list[k];
 11 }
 12
 13 // Insert the current element into list[k + 1]
insert 14 list[k + 1] = currentElement;
 15 }
 16 }
 17 }

The insertionSort(int[] list) method sorts an array of int elements. The method is implemented with a nested for loop. The outer loop (with the loop control variable i) (line 4) is iterated in order to obtain a sorted sublist, which ranges from list[0] to list[i]. The inner loop (with the loop control variable k) inserts list[i] into the sublist from list[0] to list[i−1].

To better understand this method, trace it with the following statements:

int[] list = {1, 9, 4, 6, 5, −4};
InsertionSort.insertionSort(list);

The insertion-sort algorithm presented here sorts a list of elements by repeatedly inserting a new element into a sorted partial array until the whole array is sorted. At the kth iteration, to insert an element into an array of size k, it may take k comparisons to find the insertion position and k moves to insert the element. Let T(n) denote the complexity for insertion sort, and c denote the total number of other operations such as assignments and additional comparisons in each iteration. Thus,

insertion-sort time complexity

T(n)=(2+c)+(2×2+c)+…+(2×(n−1)+c)=2(1+2+…+n−1)+c(n−1)=2 (n−1)n2+cn−c =n2−n+cn−c=O(n2)[&*AS*T(n)*AP*|=|(2|+|c)|+|(2|multi|2|+|c)|+||cdots||+|(2|multi|(n|-|1)|+|c)&]

[&*AS**AP*|=|2(1|+|2|+||cdots||+|n|-|1)|+|c(n|-|1)&]

[&*AS**AP*|=|2|thn|*frac*{(n|-|1)n}{2}|+|cn|-|c|=|n^{2}|-|n|+|cn|-|c&]

[&*AS**AP*|=|O(n^{2})&]

Therefore, the complexity of the insertion-sort algorithm is O(n2).[&O(n^{2}).&] Hence, the selection and insertion sorts are of the same time complexity.

	23.2.1 Describe how an insertion sort works. What is the time complexity for an insertion sort?

	23.2.2 Use Figure 23.1 as an example to show how to apply an insertion sort on {45, 11, 50, 59, 60, 2, 4, 7, 10}.

	23.2.3 If a list is already sorted, how many comparisons will the insertionSort method perform?

23.3 Bubble Sort

	A bubble sort sorts the array in multiple passes. Each pass successively swaps the neighboring elements if the elements are not in order.

The bubble-sort algorithm makes several passes through the array. On each pass, successive neighboring pairs are compared. If a pair is in decreasing order, its values are swapped; otherwise, the values remain unchanged. The technique is called a bubble sort or sinking sort because the smaller values gradually “bubble” their way to the top and the larger values sink to the bottom. After the first pass, the last element becomes the largest in the array. After the second pass, the second-to-last element becomes the second largest in the array. This process is continued until all elements are sorted.

bubble sort

Figure 23.3a shows the first pass of a bubble sort on an array of six elements (2 9 5 4 8 1). Compare the elements in the first pair (2 and 9) and no swap is needed because they are already in order. Compare the elements in the second pair (9 and 5) and swap 9 with 5 because 9 is greater than 5. Compare the elements in the third pair (9 and 4) and swap 9 with 4. Compare the elements in the fourth pair (9 and 8) and swap 9 with 8. Compare the elements in the fifth pair (9 and 1) and swap 9 with 1. The pairs being compared are highlighted and the numbers already sorted are italicized in Figure 23.3. For an interactive demo on how bubble sort works, go to liveexample.pearsoncmg.com/dsanimation/BubbleSortNeweBook.html.

[image: A diagram shows different passes of comparing paired values for sorting.]
Figure 23.3 

Each pass compares and orders the pairs of elements sequentially.

Description

bubble-sort illustration

bubble sort animation on the ­Companion Website

The first pass places the largest number (9) as the last in the array. In the second pass, as shown in Figure 23.3b, you compare and order pairs of elements sequentially. There is no need to consider the last pair because the last element in the array is already the largest. In the third pass, as shown in Figure 23.3c, you compare and order pairs of elements sequentially except the last two elements because they are already in order. Thus, in the kth pass, you don’t need to consider the last k−1[&k|-|1&] elements because they are already ordered.

The algorithm for a bubble sort is described in Listing 23.2.

algorithm

Listing 23.2 Bubble-Sort Algorithm

1 for (int k = 1; k < list.length; k++) {
2 // Perform the kth pass
3 for (int i = 0; i < list.length − k; i++) {
4 if (list[i] > list[i + 1])
5 swap list[i] with list[i + 1];
6 }
7 }

Note if no swap takes place in a pass, there is no need to perform the next pass because all the elements are already sorted. You can use this property to improve the algorithm in Listing 23.2, as in Listing 23.3.

Listing 23.3 Improved Bubble-Sort Algorithm

 1 boolean needNextPass = true;
 2 for (int k = 1; k < list.length && needNextPass; k++) {
 3 // Array may be sorted and next pass not needed
 4 needNextPass = false;
 5 // Perform the kth pass
 6 for (int i = 0; i < list.length – k; i++) {
 7 if (list[i] > list[i + 1]) {
 8 swap list[i] with list[i + 1];
 9 needNextPass = true; // Next pass still needed
10 }
11 }
12 }

The algorithm can be implemented in Listing 23.4.

Listing 23.4 BubbleSort.java

 1 public class BubbleSort {
 2 /** Bubble sort method */
 3 public static void bubbleSort(int[] list) {
 4 boolean needNextPass = true;
 5
 6 for (int k = 1; k < list.length && needNextPass; k++) {
 7 // Array may be sorted and next pass not needed
 8 needNextPass = false;
perform one pass 9 for (int i = 0; i < list.length − k; i++) {
 10 if (list[i] > list[i + 1]) {
 11 // Swap list[i] with list[i + 1]
 12 int temp = list[i];
 13 list[i] = list[i + 1];
 14 list[i + 1] = temp;
 15
 16 needNextPass = true; // Next pass still needed
 17 }
 18 }
 19 }
 20 }
 21
 22 /** A test method */
 23 public static void main(String[] args) {
 24 int[] list = {2, 3, 2, 5, 6, 1, −2, 3, 14, 12};
 25 bubbleSort(list);
 26 for (int i = 0; i < list.length; i++)
 27 System.out.print(list[i] + " ");
 28 }
 29 }

−2 1 2 2 3 3 5 6 12 14

In the best case, the bubble-sort algorithm needs just the first pass to find that the array is already sorted—no next pass is needed. Since the number of comparisons is n−1[&n|-|1&] in the first pass, the best-case time for a bubble sort is O(n).

bubble-sort time complexity

In the worst case, the bubble-sort algorithm requires n−1[&n|-|1&] passes. The first pass makes n−1[&n|-|1&] comparisons, the second pass makes n−2[&n|-|2&] comparisons, and so on; the last pass makes 1 comparison. Thus, the total number of comparisons is as follows:

(n−1)+(n−2)+…+2+1=(n−1)n2=n22−n2=O(n2)[&(n|-|1)|+|(n|-|2)|+||cdots||+|2|+|1&]
[&|=|*frac*{(n|-|1)n}{2}|=|*frac*{n^{2}}{2}|-|*frac*{n}{2}|=|O(n^{2})&]

Therefore, the worst-case time for a bubble sort is O(n2).[&O(n^{2}).&]

	23.3.1 Describe how a bubble sort works. What is the time complexity for a bubble sort?

	23.3.2 Use Figure 23.3 as an example to show how to apply a bubble sort on {45, 11, 50, 59, 60, 2, 4, 7, 10}.

	23.3.3 If a list is already sorted, how many comparisons will the bubbleSort method perform?

23.4 Merge Sort

	The merge-sort algorithm can be described recursively as follows: The algorithm divides the array into two halves and applies a merge sort on each half recursively. After the two halves are sorted, the algorithm then merges them.

The algorithm for a merge sort is given in Listing 23.5.

merge sort

Listing 23.5 Merge-Sort Algorithm

1 public static void mergeSort(int[] list) {
2 if (list.length > 1) {
3 mergeSort(list[0 … list.length / 2);
4 mergeSort(list[list.length / 2 + 1 … list.length]);
5 merge list[0 … list.length / 2] with
6 list[list.length / 2 + 1 … list.length];
7 }
8 }

base condition

sort first half

sort second half

merge two halves

Figure 23.4 illustrates a merge sort of an array of eight elements (2 9 5 4 8 1 6 7). The original array is split into (2 9 5 4) and (8 1 6 7). Apply a merge sort on these two subarrays recursively to split (2 9 5 4) into (2 9) and (5 4) and (8 1 6 7) into (8 1) and (6 7). This process continues until the subarray contains only one element. For example, array (2 9) is split into the subarrays (2) and (9). Since array (2) contains a single element, it cannot be further split. Now merge (2) with (9) into a new sorted array (2 9) and (5) with (4) into a new sorted array (4 5). Merge (2 9) with (4 5) into a new sorted array (2 4 5 9) and finally merge (2 4 5 9) with (1 6 7 8) into a new sorted array (1 2 4 5 6 7 8 9).

[image: A diagram represents merge, sort.]
Figure 23.4 

Merge sort employs a divide-and-conquer approach to sort the array.

Description

merge-sort illustration

The recursive call continues dividing the array into subarrays until each subarray contains only one element. The algorithm then merges these small subarrays into larger sorted subarrays until one sorted array results.

The merge-sort algorithm is implemented in Listing 23.6.

Listing 23.6 MergeSort.java

 1 public class MergeSort {
 2 /** The method for sorting the numbers */
 3 public static void mergeSort(int[] list) {
base case 4 if (list.length > 1) {
 5 // Merge sort the first half
 6 int[] firstHalf = new int[list.length / 2];
 7 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
sort first half 8 mergeSort(firstHalf);
 9
 10 // Merge sort the second half
 11 int secondHalfLength = list.length − list.length / 2;
 12 int[] secondHalf = new int[secondHalfLength];
 13 System.arraycopy(list, list.length / 2,
 14 secondHalf, 0, secondHalfLength);
sort second half 15 mergeSort(secondHalf);
 16
 17 // Merge firstHalf with secondHalf into list
merge two halves 18 merge(firstHalf, secondHalf, list);
 19 }
 20 }
 21
 22 /** Merge two sorted lists */
 23 public static void merge(int[] list1, int[] list2, int[] temp) {
 24 int current1 = 0; // Current index in list1
 25 int current2 = 0; // Current index in list2
 26 int current3 = 0; // Current index in temp
 27
 28 while (current1 < list1.length && current2 < list2.length) {
 29 if (list1[current1] < list2[current2])
list1 to temp 30 temp[current3++] = list1[current1++];
 31 else
list2 to temp 32 temp[current3++] = list2[current2++];
 33 }
 34
rest of list1 to temp 35 while (current1 < list1.length)
 36 temp[current3++] = list1[current1++];
 37
rest of list2 to temp 38 while (current2 < list2.length)
 39 temp[current3++] = list2[current2++];
 40 }
 41
 42 /** A test method */
 43 public static void main(String[] args) {
 44 int[] list = {2, 3, 2, 5, 6, 1, −2, 3, 14, 12};
 45 mergeSort(list);
 46 for (int i = 0; i < list.length; i++)
 47 System.out.print(list[i] + " ");
 48 }
 49}

The mergeSort method (lines 3–20) creates a new array firstHalf, which is a copy of the first half of list (line 7). The algorithm invokes mergeSort recursively on firstHalf (line 8). The length of the firstHalf is list.length / 2 and the length of the secondHalf is list.length − list.length / 2. The new array secondHalf was created to contain the second part of the original array list. The algorithm invokes mergeSort recursively on secondHalf (line 15). After firstHalf and secondHalf are sorted, they are merged to list (line 18). Thus, array list is now sorted.

The merge method (lines 23–40) merges two sorted arrays list1 and list2 into array temp. current1 and current2 point to the current element to be considered in list1 and list2 (lines 24–26). The method repeatedly compares the current elements from list1 and list2 and moves the smaller one to temp. current1 is increased by 1 (line 30) if the smaller one is in list1, and current2 is increased by 1 (line 32) if the smaller one is in list2. Finally, all the elements in one of the lists are moved to temp. If there are still unmoved elements in list1, copy them to temp (lines 35–36). If there are still unmoved elements in list2, copy them to temp (lines 38–39).

Figure 23.5 illustrates how to merge the two arrays list1 (2 4 5 9) and list2 (1 6 7 8). Initially, the current elements to be considered in the arrays are 2 and 1. Compare them and move the smaller element 1 to temp, as shown in Figure 23.5a. current2 and current3 are increased by 1. Continue to compare the current elements in the two arrays and move the smaller one to temp until one of the arrays is completely moved. As shown in Figure 23.5b, all the elements in list2 are moved to temp and current1 points to element 9 in list1. Copy 9 to temp, as shown in Figure 23.5c. For an interactive demo on how merge works, go to liveexample.pearsoncmg.com/dsanimation/MergeSortNeweBook.html.

[image: A diagram shows two sorted arrays.]
Figure 23.5 

Two sorted arrays are merged into one sorted array.

Description

merge animation on ­Companion Website

The mergeSort method creates two temporary arrays (lines 6 and 12) during the dividing process, copies the first half and the second half of the array into the temporary arrays (lines 7 and 13), sorts the temporary arrays (lines 8 and 15), then merges them into the original array (line 18), as shown in Figure 23.6a. You can rewrite the code to recursively sort the first half of the array and the second half of the array without creating new temporary arrays, then merge the two arrays into a temporary array and copy its contents to the original array, as shown in Figure 23.6b. This is left for you to do in Programming Exercise 23.20.

[image: A diagram shows the use of temporary arrays in a merge sort.]
Figure 23.6 

Temporary arrays are created to support a merge sort.

Description

 Note

A merge sort can be implemented efficiently using parallel processing. See Section 32.16, Parallel Programming, for a parallel implementation of a merge sort.

Let T(n) denote the time required for sorting an array of n elements using a merge sort. Without loss of generality, assume n is a power of 2. The merge-sort algorithm splits the array into two subarrays, sorts the subarrays using the same algorithm recursively, then merges the subarrays. Therefore,

merge-sort time complexity

T(n)=T (n2)+T (n2)+mergetime[&T(n)|=|T|thn||3(|*frac*{n}{2}|3)||+|T|thn||3(|*frac*{n}{2}|3)||+|mergetime&]

The first T (n2)[&T|thn||3(|*frac*{n}{2}|3)|&] is the time for sorting the first half of the array and the second T (n2)[&T|thn||3(|*frac*{n}{2}|3)|&] is the time for sorting the second half. To merge two subarrays, it takes at most n−1[&n|-|1&] comparisons to compare the elements from the two subarrays, and n moves to move elements to the temporary array. Thus, the total time is 2n−1.[&2n|-|1.&] Therefore,

T(n)=T (n2)+T (n2)+2n−1=O(n log n)[&T(n)|=|T|thn||3(|*frac*{n}{2}|3)||+|T|thn||3(|*frac*{n}{2}|3)||+|2n|-|1|=|O(n ~rom~log~normal~ n)~norm~&]

The complexity of a merge sort is O(n logn). This algorithm is better than selection sort, insertion sort, and bubble sort because the time complexity of these algorithms is O(n2).[&O(n^{2}).&] The sort method in the java.util.Arrays class is implemented using a variation of the merge-sort algorithm.

O(n logn) merge sort

	23.4.1 Describe how a merge sort works. What is the time complexity for a merge sort?

	23.4.2 Use Figure 23.4 as an example to show how to apply a merge sort on {45, 11, 50, 59, 60, 2, 4, 7, 10}.

	23.4.3 What is wrong if lines 6–15 in Listing 23.6 , MergeSort.java, are replaced by the following code?

 // Merge sort the first half
 int[] firstHalf = new int[list.length / 2 + 1];
 System.arraycopy(list, 0, firstHalf, 0, list.length / 2 + 1);
 mergeSort(firstHalf);

 // Merge sort the second half
 int secondHalfLength = list.length − list.length / 2 − 1;
 int[] secondHalf = new int[secondHalfLength];
 System.arraycopy(list, list.length / 2 + 1,
 secondHalf, 0, secondHalfLength);
 mergeSort(secondHalf);

23.5 Quick Sort

	A quick sort works as follows: The algorithm selects an element, called the pivot, in the array. It divides the array into two parts so all the elements in the first part are less than or equal to the pivot, and all the elements in the second part are greater than the pivot. The quick-sort algorithm is then recursively applied to the first part and then the second part.

quick sort

The quick-sort algorithm, developed by C.A.R. Hoare in 1962, is described in Listing 23.7.

Listing 23.7 Quick-Sort Algorithm

 1 public static void quickSort(int[] list) {
base condition 2 if (list.length > 1) {
select the pivot 3 select a pivot;
partition the list 4 partition list into list1 and list2 such that
 5 all elements in list1 <= pivot and
 6 all elements in list2 > pivot;
sort first part 7 quickSort(list1);
sort second part 8 quickSort(list2);
 9 }
 10 }

[image: A rectangle is divided into sections from left to right as follows: list 1; pivot; list 2.]

Each partition places the pivot in the right place. The selection of the pivot affects the performance of the algorithm. Ideally, the algorithm should choose the pivot that divides the two parts evenly. For simplicity, assume that the first element in the array is chosen as the pivot. (Programming Exercise 23.4 proposes an alternative strategy for selecting the pivot.)

how to partition

Figure 23.7 illustrates how to sort an array (5 2 9 3 8 4 0 1 6 7) using quick sort. Choose the first element, 5, as the pivot. The array is partitioned into two parts, as shown in ­Figure 23.7b. The highlighted pivot is placed in the right place in the array. Apply quick sort on two subarrays (4 2 1 3 0) then (8 9 6 7). The pivot 4 partitions (4 2 1 3 0) into just one subarrays (0 2 1 3), as shown in Figure 23.7c. Apply quick sort on (0 2 1 3). The pivot 0 ­partitions it into just one subarrays (2 1 3), as shown in Figure 23.7d. Apply quick sort on (2 1 3). The pivot 2 partitions it into (1) and (3), as shown in Figure 23.7e. Apply quick sort on (1). Since the array contains just one element, no further partition is needed.

[image: A diagram shows the quick sort algorithm.]
Figure 23.7 

The quick-sort algorithm is recursively applied to subarrays.

Description

quick-sort illustration

The quick-sort algorithm is implemented in Listing 23.8. There are two overloaded ­quickSort methods in the class. The first method (line 2) is used to sort an array. The second is a helper method (line 6) that sorts a subarray with a specified range.

Listing 23.8 QuickSort.java

			 1 public class QuickSort {
sort method		 2 public static void quickSort(int[] list) {
			 3 quickSort(list, 0, list.length − 1);
			 4 }
			 5
helper method		 6 public static void quickSort(int[] list, int first, int last) {
			 7 if (last > first) {
			 8 int pivotIndex = partition(list, first, last);
recursive call		 9 quickSort(list, first, pivotIndex − 1);
			10 quickSort(list, pivotIndex + 1, last);
			11 }
			12 }
			13
			14 /** Partition the array list[first..last] */
			15 public static int partition(int[] list, int first, int last) {
			16 int pivot = list[first]; // Choose the first element as the pivot
			17 int low = first + 1; // Index for forward search
			18 int high = last; // Index for backward search
			19
			20 while (high > low) {
			21 // Search forward from left
forward			22 while (low <= high && list[low] <= pivot)
			23 low++;
			24
			25 // Search backward from right
backward		26 while (low <= high && list[high] > pivot)
			27 high−−;
			28
			29 // Swap two elements in the list
			30 if (high > low) {
swap			31 int temp = list[high];
			32 list[high] = list[low];
			33 list[low] = temp;
			34 }
			35 }
			36
			37 while (high > first && list[high] >= pivot)
			38 high−−;
			39
			40 // Swap pivot with list[high]
			41 if (pivot > list[high]) {
			42 list[first] = list[high];
place pivot		43 list[high] = pivot;
pivot’s new index	44 return high;
			45 }
			46 else {
pivot’s original index	47 return first;
			48 }
			49 }
			50
			51 /** A test method */
			52 public static void main(String[] args) {
			53 int[] list = {2, 3, 2, 5, 6, 1, −2, 3, 14, 12};
			54 quickSort(list);
			55 for (int i = 0; i < list.length; i++)
			56 System.out.print(list[i] + " ");
			57 }
			58 }

−2 1 2 2 3 3 5 6 12 14

The partition method (lines 15–49) partitions the array list[first..last] using the pivot. The first element in the partial array is chosen as the pivot (line 16). Initially, low points to the second element in the subarrays (line 17) and high points to the last element in the subarrays (line 18).

Starting from the left, the method searches forward in the array for the first element that is greater than the pivot (lines 22–23), then searches from the right backward for the first element in the array that is less than or equal to the pivot (lines 26–27). It then swaps these two elements and repeats the same search and swap operations until all the elements are searched in a while loop (lines 20–35).

The method returns the new index for the pivot that divides the subarrays into two parts if the pivot has been moved (line 44). Otherwise, it returns the original index for the pivot (line 47).

Figure 23.8 illustrates how to partition an array (5 2 9 3 8 4 0 1 6 7). Choose the first element, 5, as the pivot. Initially, low is the index that points to element 2 and high points to element 7, as shown in Figure 23.8a. Advance index low forward to search for the first element (9) that is greater than the pivot, and move index high backward to search for the first element (1) that is less than or equal to the pivot, as shown in Figure 23.8b. Swap 9 with 1, as shown in ­Figure 23.8c. Continue the search and move low to point to element 8 and high to point to element 0, as shown in Figure 23.8d. Swap element 8 with 0, as shown in Figure 23.8e. Continue to move low until it passes high, as shown in Figure 23.8f. Now all the elements are examined. Swap the pivot with element 4 at index high. The final partition is shown in Figure 23.8g. The index of the pivot is returned when the method is finished. For an interactive demo on how partition works, go to liveexample.pearsoncmg.com/dsanimation/QuickSortNeweBook.html.

[image: A diagram shows the partition method.]
Figure 23.8 

The partition method returns the index of the pivot after it is put in the correct place.

Description

partition illustration

partition animation on ­Companion Website

To partition an array of n elements, it takes n comparisons and n moves in the worst case. Thus, the time required for partition is O(n).

O(n) partition time

In the worst case, the pivot divides the array each time into one big subarray with the other array empty. The size of the big subarray is one less than the one before divided. The algorithm requires (n−1)+(n−2)+…+2+1=O(n2)[&(n|-|1)|+|(n|-|2)|+||cdots||+|2|+|1|=|O(n^{2})&] time.

O(n2). worst-case time

In the best case, the pivot divides the array each time into two parts of about the same size. Let T(n) denote the time required for sorting an array of n elements using quick sort. Thus,

O(n logn) best-case time

[image: T of n equals the recursive quick sort of two subarrays, plus partition time, or, T of one-half n, +, T of one-half n, + n.]
Similar to the merge-sort analysis, T(n)=O(n log n).[&T(n)|=|O(n ~rom~log~normal~ n).&]

On the average, the pivot will not divide the array into two parts of the same size or one empty part each time. Statistically, the sizes of the two parts are very close. Therefore, the average time is O(n logn). The exact average-case analysis is beyond the scope of this book.

O(n logn) average-case time

Both merge and quick sorts employ the divide-and-conquer approach. For merge sort, the bulk of the work is to merge two sublists, which takes place after the sublists are sorted. For quick sort, the bulk of the work is to partition the list into two sublists, which takes place before the sublists are sorted. Merge sort is more efficient than quick sort in the worst case, but the two are equally efficient in the average case. Merge sort requires a temporary array for sorting two subarrays. Quick sort does not need additional array space. Thus, quick sort is more space efficient than merge sort.

quick sort vs. merge sort

	23.5.1 Describe how quick sort works. What is the time complexity for a quick sort?

	23.5.2 Why is quick sort more space efficient than merge sort?

	23.5.3 Use Figure 23.7 as an example to show how to apply a quick sort on {45, 11, 50, 59, 60, 2, 4, 7, 10}.

	23.5.4 If lines 37–38 in the QuickSort program is removed, will it still work? Give a counter example to show that it will not work.

23.6 Heap Sort

	A heap sort uses a binary heap. It first adds all the elements to a heap and then removes the largest elements successively to obtain a sorted list.

Heap sorts use a binary heap, which is a complete binary tree. A binary tree is a hierarchical structure. It either is empty or it consists of an element, called the root, and two distinct binary trees, called the left subtree and right subtree. The length of a path is the number of the edges in the path. The depth of a node is the length of the path from the root to the node. A node is called a leaf if it does not have subtrees.

heap sort

root

left subtree

right subtree

length

depth

leaf

A binary heap is a binary tree with the following properties:

	Shape property: It is a complete binary tree.

	Heap property: Each node is greater than or equal to any of its children.

A binary tree is complete if each of its levels is full, except that the last level may not be full and all the leaves on the last level are placed leftmost. For example, in Figure 23.9, the binary trees in (a) and (b) are complete, but the binary trees in (c) and (d) are not complete. Further, the binary tree in (a) is a heap, but the binary tree in (b) is not a heap because the root (39) is less than its right child (42).

[image: Binary trees show a binary heap.]
Figure 23.9 

A binary heap is a special complete binary tree.

Description

complete binary tree

 Note

Heap is a term with many meanings in computer science. In this chapter, heap means a binary heap.

heap

 Pedagogical Note

A heap can be implemented efficiently for inserting keys and deleting the root. For an interactive demo on how a heap works, go to liveexample.pearsoncmg.com/dsanimation/HeapeBook.html, as shown in Figure 23.10.

heap animation on ­Companion Website

[image: A heap animation shows the following tree. 80 to 43 and 50. 43 to 11 and 25. 50 to 2.]
Figure 23.10 

The heap animation tool enables you to insert a key and delete the root visually.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

23.6.1 Storing a Heap

A heap can be stored in an ArrayList or an array if the heap size is known in advance. The heap in Figure 23.11a can be stored using the array in Figure 23.11b. The root is at position 0, and its two children are at positions 1 and 2. For a node at position i, its left child is at position 2i+1,[&2i|+|1,&] its right child is at position 2i+2,[&2i|+|2,&] and its parent is (i−1)/2.[&(i|-|1)/2.&] For example, the node for element 39 is at position 4, so its left child (element 14) is at 9 (2×4+1),[&9 (2|multi|4|+|1),&] its right child (element 33) is at 10 (2×4+2),[&10 (2|multi|4|+|2),&] and its parent (element 42) is at 1 ((4−1)/2).[&1 ((4|-|1)/2).&]

[image: A binary tree and list represent a heap.]
Figure 23.11 

A binary heap can be implemented using an array.

Description

23.6.2 Adding a New Node

To add a new node to the heap, first add it to the end of the heap then rebuild the tree as follows:

Let the last node be the current node;
while (the current node is greater than its parent) {
 Swap the current node with its parent;
 Now the current node is one level up;
}

Suppose a heap is initially empty. That heap is shown in Figure 23.12, after adding numbers 3, 5, 1, 19, 11, and 22 in this order.

[image: A diagram uses trees to show the insertion of values into a heap.]
Figure 23.12 

Elements 3, 5, 1, 19, 11, and 22 are inserted into the heap.

Description

Now consider adding 88 into the heap. Place the new node 88 at the end of the tree, as shown in Figure 23.13a. Swap 88 with 19, as shown in Figure 23.13b. Swap 88 with 22, as shown in Figure 23.13c.

[image: Three trees.]
Figure 23.13 

Rebuild the heap after adding a new node.

Description

23.6.3 Removing the Root

Often you need to remove the maximum element, which is the root in a heap. After the root is removed, the tree must be rebuilt to maintain the heap property. The algorithm for rebuilding the tree can be described as follows:

Move the last node to replace the root;
Let the root be the current node;
while (the current node has children and the current node is
 smaller than one of its children) {
 Swap the current node with the larger of its children;
 Now the current node is one level down;
}

Figure 23.14 shows the process of rebuilding a heap after the root 62 is removed from Figure 23.11a. Move the last node 9 to the root, as shown in Figure 23.14a. Swap 9 with 59, as shown in Figure 23.14b; swap 9 with 44, as shown in Figure 23.14c; and swap 9 with 30, as shown in Figure 23.14d.

[image: Four trees.]
Figure 23.14 

Rebuild the heap after the root 62 is removed.

Description

Figure 23.15 shows the process of rebuilding a heap after the root 59 is removed from Figure 23.14d. Move the last node 17 to the root, as shown in Figure 23.15a. Swap 17 with 44, as shown in Figure 23.15b, then swap 17 with 30, as shown in Figure 23.15c.

[image: Three trees.]
Figure 23.15 

Rebuild the heap after the root 59 is removed.

Description

23.6.4 The Heap Class

Now you are ready to design and implement the Heap class. The class diagram is shown in Figure 23.16. Its implementation is given in Listing 23.9.

[image: An annotated U M L diagram, titled, Heap, <, E extends Comparable, <, E, >, >.]
Figure 23.16 

The Heap class provides operations for manipulating a heap.

Description

Listing 23.9 Heap.java

 1 public class Heap<E extends Comparable<E>> {
internal heap representation 2 private java.util.ArrayList<E> list = new java.util.ArrayList<>();
 3
 4 /** Create a default heap */
no-arg constructor 5 public Heap() {
 6 }
 7
 8 /** Create a heap from an array of objects */
constructor 9 public Heap(E[] objects) {
 10 for (int i = 0; i < objects.length; i++)
 11 add(objects[i]);
 12 }
 13
 14 /** Add a new object into the heap */
add a new object 15 public void add(E newObject) {
append the object 16 list.add(newObject); // Append to the heap
 17 int currentIndex = list.size() − 1; // The index of the last node
 18
 19 while (currentIndex > 0) {
 20 int parentIndex = (currentIndex − 1) / 2;
 21 // Swap if the current object is greater than its parent
 22 if (list.get(currentIndex).compareTo(
 23 list.get(parentIndex)) > 0) {
swap with parent 24 E temp = list.get(currentIndex);
 25 list.set(currentIndex, list.get(parentIndex));
 26 list.set(parentIndex, temp);
 27 }
 28 else
heap now 29 break; // The tree is a heap now
 30
 31 currentIndex = parentIndex;
 32 }
 33 }
 34
 35 /** Remove the root from the heap */
remove the root 36 public E remove() {
 37 if (list.size() == 0) return null;
empty heap 38
 39 E removedObject = list.get(0);
root 40 list.set(0, list.get(list.size() − 1));
new root 41 list.remove(list.size() − 1);
remove the last 42
 43 int currentIndex = 0;
 44 while (currentIndex < list.size()) {
adjust the tree 45 int leftChildIndex = 2 * currentIndex + 1;
 46 int rightChildIndex = 2 * currentIndex + 2;
 47
 48 // Find the maximum between two children
 49 if (leftChildIndex >= list.size()) break; // The tree is a heap
 50 int maxIndex = leftChildIndex;
 51 if (rightChildIndex < list.size()) {
compare two children 52 if (list.get(maxIndex).compareTo(
 53 list.get(rightChildIndex)) < 0) {
 54 maxIndex = rightChildIndex;
 55 }
 56 }
 57
 58 // Swap if the current node is less than the maximum
 59 if (list.get(currentIndex).compareTo(
 60 list.get(maxIndex)) < 0) {
 61 E temp = list.get(maxIndex);
swap with the larger child 62 list.set(maxIndex, list.get(currentIndex));
 63 list.set(currentIndex, temp);
 64 currentIndex = maxIndex;
 65 }
 66 else
 67 break; // The tree is a heap
 68 }
 69
 70 return removedObject;
 71 }
 72
 73 /** Get the number of nodes in the tree */
 74 public int getSize() {
 75 return list.size();
 76 }
 77 }

A heap is represented using an array list internally (line 2). You can change the array list to other data structures, but the Heap class contract will remain unchanged.

The add(E newObject) method (lines 15–33) appends the object to the tree then swaps the object with its parent if the object is greater than its parent. This process continues until the new object becomes the root or is not greater than its parent.

The remove() method (lines 36–71) removes and returns the root. To maintain the heap property, the method moves the last object to the root position and swaps it with its larger child if it is less than the larger child. This process continues until the last object becomes a leaf or is not less than its children.

23.6.5 Sorting Using the Heap Class

To sort an array using a heap, first create an object using the Heap class, add all the elements to the heap using the add method, and remove all the elements from the heap using the remove method. The elements are removed in descending order. Listing 23.10 gives a program for sorting an array using a heap.Y

Listing 23.10 HeapSort.java

 1 public class HeapSort {
 2 /** Heap sort method */
 3 public static <E extends Comparable<E>> void heapSort(E[] list) {
 4 // Create a Heap of integers
create a Heap 5 Heap<E> heap = new Heap<>();
 6
 7 // Add elements to the heap
 8 for (int i = 0; i < list.length; i++)
add element 9 heap.add(list[i]);
 10
 11 // Remove elements from the heap
 12 for (int i = list.length − 1; i >= 0; i−−)
remove element 13 list[i] = heap.remove();
 14 }
 15
 16 /** A test method */
 17 public static void main(String[] args) {
 18 Integer[] list = {−44, −5, −3, 3, 3, 1, −4, 0, 1, 2, 4, 5, 53};
invoke sort method 19 heapSort(list);
 20 for (int i = 0; i < list.length; i++)
 21 System.out.print(list[i] + " ");
 22 }
 23 }

−44 −5 −4 −3 0 1 1 2 3 3 4 5 53

23.6.6 Heap Sort Time Complexity

Let us turn our attention to analyzing the time complexity for the heap sort. Let h denote the height for a heap of n elements. The height of a nonempty tree is the length of the path from the root node to its furthest leaf. The height of a tree that contains a single node is 0. Conventionally, the height of an empty tree is −1. Since a heap is a complete binary tree, the first level has 1 (20)[&(2^{0})&] node, the second level has 2 (21)[&(2^{1})&] nodes, the kth level has 2k−1[&2^{k|-|1}&] nodes, the h level has 2h−1[&2^{h|-|1}&] nodes, and the last (h+1)th[&(h|+|1)~rom~th~normal~&] level has at least 1 and at most 2h[&2^{h}&] nodes. Therefore,

height of a heap

1+2+…+2h−1<n≤1+2+…+2h−1+2h[&1|+|2|+||cdots||+|2^{h|-|1}|less|n|leq|1|+|2|+||cdots||+|2^{h|-|1}|+|2^{h}&]

That is,

2h−1<n≤2h+1−12h<n+1≤2h+1h<log(n+1)≤h+1[&2^{h}|-|1|less|n|leq|2^{h|+|1}|-|1&]
[&2^{h}|less|n|+|1|leq|2^{h|+|1}&]
[&h|less|~rom~log~normal~(n|+|1)|leq|h|+|1~norm~&]

Thus, h<log(n+1)[&h|less|~rom~log~normal~(n|+|1)&] and h≥log(n+1)−1.[&h|geq|~rom~log~normal~(n|+|1)|-|1.&] Therefore, log(n+1)−1≤h<log(n+1).[&~rom~log~normal~(n|+|1)|-|1|leq|h|less|&][&~rom~log~normal~(n|+|1).&] Hence, the height of a heap is O(logn). More precisely, you can prove that h=⌊ log n ⌋.[&h|=||lfloor|~rom~log~normal~ n|rfloor|.&] for a non-empty tree.

Since the add method traces a path from a leaf to a root, it takes at most h steps to add a new element to the heap. Thus, the total time for constructing an initial heap is O(n logn) for an array of n elements. Since the remove method traces a path from a root to a leaf, it takes at most h steps to rebuild a heap after removing the root from the heap. Since the remove method is invoked n times, the total time for producing a sorted array from a heap is O(n logn).

O(n logn) worst-case time

Both merge and heap sorts require O(n logn) time. A merge sort requires a temporary array for merging two subarrays; a heap sort does not need additional array space. Therefore, a heap sort is more space efficient than a merge sort.

heap sort vs. merge sort

	23.6.1 What is a complete binary tree? What is a heap? Describe how to remove the root from a heap and how to add a new object to a heap.

	23.6.2 What is the return value from invoking the remove method if the heap is empty?

	23.6.3 Add the elements 4, 5, 1, 2, 9, and 3 into a heap in this order. Draw the diagrams to show the heap after each element is added.

	23.6.4 Show the heap after the root in the heap in Figure 23.15c is removed.

	23.6.5 What is the time complexity of inserting a new element into a heap, and what is the time complexity of deleting an element from a heap?

	23.6.6 Show the steps of creating a heap using {45, 11, 50, 59, 60, 2, 4, 7, 10}.

	23.6.7 Given the following heap, show the steps of removing all nodes from the heap.

[image: A tree: 62 to 42 and 59. 42 to 32 and 39. 32 to 22 and 29. 39 to 14 and 33. 59 to 44 and 13. 44 to 17 and 30. 13 to 9.]

	23.6.8 Which of the following statements are wrong?

1 Heap<Object> heap1 = new Heap<>();
2 Heap<Number> heap2 = new Heap<>();
3 Heap<BigInteger> heap3 = new Heap<>();
4 Heap<Calendar> heap4 = new Heap<>();
5 Heap<String> heap5 = new Heap<>();

	23.6.9 What is the height of a nonempty heap? What is the height of a heap with 16, 17, and 512 elements? If the height of a heap is 5, what is the maximum number of nodes in the heap?

23.7 Bucket and Radix Sorts

	Bucket and radix sorts are efficient for sorting integers.

All sort algorithms discussed so far are general sorting algorithms that work for any types of keys (e.g., integers, strings, and any comparable objects). These algorithms sort the elements by comparing their keys. It has been proven that no sorting algorithms based on comparisons can perform better than O(n logn). However, if the keys are integers, you can use a bucket sort without having to compare the keys.

The bucket sort algorithm works as follows. Assume the keys are in the range from 0 to t. We need t + 1 buckets labeled 0, 1, . . . , and t. If an element’s key is i, the element is put into the bucket i. Each bucket holds the elements with the same key value.

bucket sort

[image: The buckets contain the following elements identified by key: bucket 0, key 0; bucket 1, key 1; bucket 2, key 2; and so on, to bucket t, key t.]
You can use an ArrayList to implement a bucket. The bucket-sort algorithm for sorting a list of elements can be described as follows:

public static void bucketSort(E[] list) {
 E[] bucket = (E[])new java.util.ArrayList[t+1];

 // Distribute the elements from list to buckets
 for (int i = 0; i < list.length; i++) {
 int key = list[i].getKey(); // Assume element has the getKey() method

 if (bucket[key] == null)
 bucket[key] = new java.util.ArrayList<>();
 bucket[key].add(list[i]);
 }

 // Now move the elements from the buckets back to list
 int k = 0; // k is an index for list
 for (int i = 0; i < bucket.length; i++) {
 if (bucket[i] != null) {
 for (int j = 0; j < bucket[i].size(); j++)
 list[k++] = bucket[i].get(j);
 }
 }
}

Clearly, it takes O(n+t)[&O(n|+|t)&] time to sort the list and uses O(n+t)[&O(n|+|t)&] space, where n is the list size.

Note if t is too large, using the bucket sort is not desirable. Instead, you can use a radix sort. The radix sort is based on the bucket sort, but a radix sort uses only 10 buckets.

stable

It is worthwhile to note a bucket sort is stable, meaning that if two elements in the original list have the same key value, their order is not changed in the sorted list. That is, if element e1[&e_{1}&] and element e2[&e_{2}&] have the same key and e1[&e_{1}&] precedes e2[&e_{2}&] in the original list, e1[&e_{1}&] still precedes e2[&e_{2}&] in the sorted list.

Assume the keys are positive integers. The idea for the radix sort is to divide the keys into subgroups based on their radix positions. It applies a bucket sort repeatedly for the key values on radix positions, starting from the least-significant position.

radix sort

radix sort on ­Companion Website

Consider sorting the elements with the following keys:

331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9

Apply the bucket sort on the last radix position, and the elements are put into the buckets as follows:

queue

[image: The following list provides the number of each bucket, followed by its entries: 0, 2 3 0; 1, 3 3 1, 2 3 1; 2, empty; 3, 3 4 3, 4 5 3; 4, 4 5 4, 3 4; 5, 4 5, 3 4 5; 6, empty; 7, empty; 8, empty; 9, 59, 9.]
After collecting the elements from the buckets, the elements are in the following order:

230, 331, 231, 343, 453, 454, 34, 45, 345, 59, 9

Apply the bucket sort on the second-to-last radix position, and the elements are put into the buckets as follows:

queue

[image: Buckets 0 to 9. The entries for each bucket are as follows: bucket 0, 9; bucket 3, 2 3 0, 3 3 1, 2 3 1, 3 4; bucket 4, 3 4 3, 4 5, 3 4 5; bucket 5, 4 5 3, 4 5 4, 5 9.]
After collecting the elements from the buckets, the elements are in the following order:

9, 230, 331, 231, 34, 343, 45, 345, 453, 454, 59

(Note 9 is 009.)

Apply the bucket sort on the third-to-last radix position, and the elements are put into the buckets as follows:

queue

[image: Buckets 0 to 9. The entries for each bucket are as follows: bucket 0, 9, 3 4, 4 5, 5 9; bucket 2, 2 3 0, 2 3 1; bucket 3, 3 3 1, 3 4 3 3 4 5; bucket 4, 4 5 3, 4 5 4.]
After collecting the elements from the buckets, the elements are in the following order:

9, 34, 45, 59, 230, 231, 331, 343, 345, 453, 454
The elements are now sorted.

Radix sort takes O(dn) time to sort n elements with integer keys, where d is the maximum number of the radix positions among all keys.

	23.7.1 Can you sort a list of strings using a bucket sort?

	23.7.2 Show how the radix sort works using the numbers 454, 34, 23, 43, 74, 86, and 76.

23.8 External Sort

	You can sort a large amount of data using an external sort.

All the sort algorithms discussed in the preceding sections assume all the data to be sorted are available at one time in internal memory, such as in an array. To sort data stored in an external file, you must first bring the data to the memory then sort it internally. However, if the file is too large, all the data in the file cannot be brought to memory at one time. This section discusses how to sort data in a large external file. This is called an external sort.

external sort

For simplicity, assume two million int values are stored in a binary file named ­largedata .dat. This file was created using the program in Listing 23.11.

Listing 23.11 CreateLargeFile.java

				 1 import java.io.*;
				 2
				 3 public class CreateLargeFile {
				 4 public static void main(String[] args) throws Exception {
a binary output stream		 5 DataOutputStream output = new DataOutputStream(
				 6 new BufferedOutputStream(
				 7 new FileOutputStream("largedata.dat"));
				 8
				 9 for (int i = 0; i < 2_000_000; i++)
output an int value		10 output.writeInt((int)(Math.random() * 1000000)));
				11
close output file		12 output.close();
				13
				14 // Display first 100 numbers 15 DataInputStream input = new DataInputStream(
				16 new BufferedInputStream(new FileInputStream("largedata.dat")));
				17 for (int i = 0; i < 100; i++)
read an int value		18 System.out.print(input.readInt() + " ");
				19
close input file		20 input.close();
				21 }
				22 }

569193 131317 608695 776266 767910 624915 458599 5010 … (omitted)

A variation of merge sort can be used to sort this file in two phases:

	Phase I: Repeatedly bring data from the file to an array, sort the array using an internal sorting algorithm, and output the data from the array to a temporary file. This process is shown in Figure 23.17. Ideally, you want to create a large array, but its maximum size ­depends on how much memory is allocated to the JVM by the operating system. Assume the maximum array size is 100,000 int values. In the temporary file, every 100,000 int values are sorted. They are denoted as S1, S2, …,[&S_{1}, S_{2}, |elip|,&] and Sk,[&S_{k},&] where the last segment, Sk,[&S_{k},&] may contain less than 100,000 values.

[image: The unsorted original file enters an array in the program, which generates a temporary file with sorted segments S sub 1 to S sub k.]
Figure 23.17 

The original file is sorted in segments.

	Phase II: Merge a pair of sorted segments (e.g., S1[&S_{1}&] with S2, S3[&S_{2}, S_{3}&] with S4, …,[&S_{4}, |elip|,&] and so on) into a larger sorted segment and save the new segment into a new temporary file. Continue the same process until only one sorted segment results. Figure 23.18 shows how to merge eight segments.

[image: The original set consists of segments S sub 1 to S sub k. Consecutive pairs of segments are combined over a series of merge steps, producing the final sorted segment consisting of all segments merged.]
Figure 23.18 

Sorted segments are merged iteratively.

 Note

It is not necessary to merge two successive segments. For example, you can merge S1[&~it~S_{~goudybk~1}~norm~&] with S5, S2[&~it~S_{~goudybk~5},~norm~&][&~it~S_{~goudybk~2}~norm~&] with S6, S3[&~it~S_{~goudybk~6}, ~it~S_{~goudybk~3}~norm~&] with S7,[&~it~S_{~goudybk~7},~norm~&] and S4[&~it~S_{~goudybk~4}~norm~&] with S8,[&~it~S_{~goudybk~8},~norm~&] in the first merge step. This observation is useful in implementing Phase II efficiently.

23.8.1 Implementing Phase I

Listing 23.12 gives the method that reads each segment of data from a file, sorts the segment, and stores the sorted segments into a new file. The method returns the number of segments.

Listing 23.12 Creating Initial Sorted Segments

				1 /** Sort original file into sorted segments */
				2 private static int initializeSegments
				3 (int segmentSize, String originalFile, String f1)
				4 throws Exception {
				5 int[] list = new int[segmentSize];
				6 DataInputStream input = new DataInputStream(
original file			7 new BufferedInputStream(new FileInputStream(originalFile)));
				8 DataOutputStream output = new DataOutputStream(
file with sorted segments	9 new BufferedOutputStream(new FileOutputStream(f1)));
			 10
			 11 int numberOfSegments = 0;
			 12 while (input.available() > 0) {
			 13 numberOfSegments++;
			 14 int i = 0;
			 15 for (; input.available() > 0 && i < segmentSize; i++) {
			 16 list[i] = input.readInt();
			 17 }
			 18
			 19 // Sort an array list[0..i−1]
sort a segment		 20 java.util.Arrays.sort(list, 0, i);
			 21
			 22 // Write the array to f1.dat
			 23 for (int j = 0; j < i; j++) {
output to file		 24 output.writeInt(list[j]);
			 25 }
			 26 }
			 27
close file		 28 input.close();
			 29 output.close();
			 30
return # of segments	 31 return numberOfSegments;
			 32 }

The method creates an array with the maximum size in line 5, a data input stream for the original file in line 6, and a data output stream for a temporary file in line 8. Buffered streams are used to improve performance.

Lines 14–17 read a segment of data from the file into the array. Line 20 sorts the array. Lines 23–25 write the data in the array to the temporary file.

The number of segments is returned in line 31. Note every segment has MAX_ARRAY_SIZE number of elements except the last segment, which may have fewer elements.

23.8.2 Implementing Phase II

In each merge step, two sorted segments are merged to form a new segment. The size of the new segment is doubled. The number of segments is reduced by half after each merge step. A segment is too large to be brought to an array in memory. To implement a merge step, copy half the number of segments from the file f1.dat to a temporary file f2.dat. Then, merge the first remaining segment in f1.dat with the first segment in f2.dat into a temporary file named f3.dat, as shown in Figure 23.19.

[image: A diagram shows segments merged iteratively.]
Figure 23.19 

Sorted segments are merged iteratively.

Description

 Note

f1.dat may have one segment more than f2.dat. If so, move the last segment into f3.dat after the merge.

Listing 23.13 gives a method that copies the first half of the segments in f1.dat to f2.dat. Listing 23.14 gives a method that merges a pair of segments in f1.dat and f2.dat. Listing 23.15 gives a method that merges two segments.

Listing 23.13 Copying First Half Segments

 1 private static void copyHalfToF2(int numberOfSegments,
input stream f1 2 int segmentSize, DataInputStream f1, DataOutputStream f2)
output stream f2 3 throws Exception {
 4 for (int i = 0; i < (numberOfSegments / 2) * segmentSize; i++) {
segments copied 5 f2.writeInt(f1.readInt());
 6 }
 7 }

Listing 23.14 Merging All Segments

 1 private static void mergeSegments(int numberOfSegments,
input stream f1 and f2 2 int segmentSize, DataInputStream f1, DataInputStream f2,
output stream f3 3 DataOutputStream f3) throws Exception {
 4 for (int i = 0; i < numberOfSegments; i++) {
merge two segments 5 mergeTwoSegments(segmentSize, f1, f2, f3);
 6 }
 7
 8 // If f1 has one extra segment, copy it to f3
extra segment in f1? 9 while (f1.available() > 0) {
 10 f3.writeInt(f1.readInt());
 11 }
 12 }

Listing 23.15 Merging Two Segments

 1 private static void mergeTwoSegments(int segmentSize,
input stream f1 and f2 2 DataInputStream f1, DataInputStream f2,
output stream f3 3 DataOutputStream f3) throws Exception {
read from f1 4 int intFromF1 = f1.readInt();
read from f2 5 int intFromF2 = f2.readInt();
 6 int f1Count = 1;
 7 int f2Count = 1;
 8
 9 while (true) {
 10 if (intFromF1 < intFromF2) {
write to f3 11 f3.writeInt(intFromF1);
 12 if (f1.available() == 0 || f1Count++ >= segmentSize) {
 13 f3.writeInt(intFromF2);
segment in f1 finished 14 break;
 15 }
 16 else {
 17 intFromF1 = f1.readInt();
 18 }
 19 }
 20 else {
write to f3 21 f3.writeInt(intFromF2);
 22 if (f2.available() == 0 || f2Count++ >= segmentSize) {
 23 f3.writeInt(intFromF1);
segment in f2 finished 24 break;
 25 }
 26 else {
 27 intFromF2 = f2.readInt();
 28 }
 29 }
 30 }
 31
remaining f1 segment 32 while (f1.available() > 0 && f1Count++ < segmentSize) {
 33 f3.writeInt(f1.readInt());
 34 }
 35
remaining f2 segment 36 while (f2.available() > 0 && f2Count++ < segmentSize) {
 37 f3.writeInt(f2.readInt());
 38 }
 39 }

23.8.3 Combining Two Phases

Listing 23.16 gives the complete program for sorting int values in largedata.dat and storing the sorted data in sortedfile.dat.

Listing 23.16 SortLargeFile.java

				 1 import java.io.*;
				 2
				 3 public class SortLargeFile {
max array size			 4 public static final int MAX_ARRAY_SIZE = 100000;
I/O stream buffer size		 5 public static final int BUFFER_SIZE = 100000;
				 6
				 7 public static void main(String[] args) throws Exception {
				 8 // Sort largedata.dat to sortedfile.dat
				 9 sort("largedata.dat", "sortedfile.dat");
				10
				11 // Display the first 100 numbers in the sorted file
				12 displayFile("sortedfile.dat");
				13 }
				14
				15 /** Sort data in source file and into target file */
				16 public static void sort(String sourcefile, String targetfile)
				17 throws Exception {
				18 // Implement Phase 1: Create initial segments
				19 int numberOfSegments =
create initial segments		20 initializeSegments(MAX_ARRAY_SIZE, sourcefile, "f1.dat");
				21
				22 // Implement Phase 2: Merge segments recursively
merge recursively		23 merge(numberOfSegments, MAX_ARRAY_SIZE,
				24 "f1.dat", "f2.dat", "f3.dat", targetfile);
				25 }
				26
				27 /** Sort original file into sorted segments */
				28 private static int initializeSegments
				29 (int segmentSize, String originalFile, String f1)
				30 throws Exception {
				31 // Same as Listing 23.12, so omitted
				32 }
				33
				34 private static void merge(int numberOfSegments, int segmentSize,
				35 String f1, String f2, String f3, String targetfile)
				36 throws Exception {
				37 if (numberOfSegments > 1) {
merge one step			38 mergeOneStep(numberOfSegments, segmentSize, f1, f2, f3);
merge recursively		39 merge((numberOfSegments + 1) / 2, segmentSize * 2,
				40 f3, f1, f2, targetfile);
				41 }
				42 else { // Rename f1 as the final sorted file
final sorted file		43 File sortedFile = new File(targetfile);
				44 if (sortedFile.exists()) sortedFile.delete();
				45 new File(f1).renameTo(sortedFile);
				46 }
				47 }
				48
				49 private static void mergeOneStep(int numberOfSegments,
				50 int segmentSize, String f1, String f2, String f3)
				51 throws Exception {
input streamf1Input		52 DataInputStream f1Input = new DataInputStream(
				53 new BufferedInputStream(new FileInputStream(f1), BUFFER_SIZE));
output stream f2Output		54 DataOutputStream f2Output = new DataOutputStream(
				55 new BufferedOutputStream(new FileOutputStream(f2), BUFFER_SIZE));
				56
				57 // Copy half number of segments from f1.dat to f2.dat
copy half segments to f2	58 copyHalfToF2(numberOfSegments, segmentSize, f1Input, f2Output);
close f2Output			59 f2Output.close();
				60
				61 // Merge remaining segments in f1 with segments in f2 into f3
input stream f2Input		62 DataInputStream f2Input = new DataInputStream(
				63 new BufferedInputStream(new FileInputStream(f2), BUFFER_SIZE));
output stream f3Output		64 DataOutputStream f3Output = new DataOutputStream(
				65 new BufferedOutputStream(new FileOutputStream(f3), BUFFER_SIZE));
				66
merge two segments		67 mergeSegments(numberOfSegments / 2,
				68 segmentSize, f1Input, f2Input, f3Output);
				69
close streams			70 f1Input.close();
				71 f2Input.close();
				72 f3Output.close();
				73 }
				74
				75 /** Copy first half number of segments from f1.dat to f2.dat */
				76 private static void copyHalfToF2(int numberOfSegments,
				77 int segmentSize, DataInputStream f1, DataOutputStream f2)
				78 throws Exception {
				79 // Same as Listing 23.13, so omitted
				80 }
				81
				82 /** Merge all segments */
				83 private static void mergeSegments(int numberOfSegments,
				84 int segmentSize, DataInputStream f1, DataInputStream f2,
				85 DataOutputStream f3) throws Exception {
				86 // Same as Listing 23.14, so omitted
				87 }
				88
				89 /** Merges two segments */
				90 private static void mergeTwoSegments(int segmentSize,
				91 DataInputStream f1, DataInputStream f2,
				92 DataOutputStream f3) throws Exception {
				93 // Same as Listing 23.15, so omitted
				94 }
				95
				96 /** Display the first 100 numbers in the specified file */
display file			97 public static void displayFile(String filename) {
				98 try {
				99 DataInputStream input =
		 100 new DataInputStream(new FileInputStream(filename));
		 101 for (int i = 0; i < 100; i++)
		 102 System.out.print(input.readInt() + " ");
		 103 input.close();
		 104 }
		 105 catch (IOException ex) {
		 106 ex.printStackTrace();
		 107 }
		 108 }
		 109 }

0 1 1 1 2 2 2 3 3 4 5 6 8 8 9 9 9 10 10 11…(omitted)

Before you run this program, first run Listing 23.11, CreateLargeFile.java, to create the file largedata.dat. Invoking sort("largedata.dat", "sortedfile.dat") (line 9) reads data from largedata.dat and writes sorted data to sortedfile.dat. Invoking displayFile("sortedfile.dat") (line 12) displays the first 100 numbers in the specified file. Note the files are created using binary I/O. You cannot view them using a text editor such as Notepad.

The sort method first creates initial segments from the original array and stores the sorted segments in a new file, f1.dat (lines 19–20), then produces a sorted file in targetfile (lines 23–24).

The merge method

merge(int numberOfSegments, int segmentSize,
 String f1, String f2, String f3, String targetfile)

merges the segments in f1 into f3 using f2 to assist the merge. The merge method is invoked recursively with many merge steps. Each merge step reduces the numberOfSegments by half and doubles the sorted segment size. After the completion of one merge step, the next merge step merges the new segments in f3 to f2 using f1 to assist the merge. The statement to invoke the new merge method is

merge((numberOfSegments + 1) / 2, segmentSize * 2,
 f3, f1, f2, targetfile);

The numberOfSegments for the next merge step is (numberOfSegments + 1) / 2. For example, if numberOfSegments is 5, numberOfSegments is 3 for the next merge step because every two segments are merged but one is left unmerged.

The recursive merge method ends when numberOfSegments is 1. In this case, f1 ­contains sorted data. File f1 is renamed to targetfile (line 45).

23.8.4 External Sort Complexity

In the external sort, the dominating cost is that of I/O. Assume n is the number of elements to be sorted in the file. In Phase I, n number of elements are read from the original file and output to a temporary file. Therefore, the I/O for Phase I is O(n).

In Phase II, before the first merge step, the number of sorted segments is nc,[&*frac*{n}{c},&] where c is
MAX_ARRAY_SIZE. Each merge step reduces the number of segments by half. Thus, after the
first merge step, the number of segments is n2c.[&*frac*{n}{2c}.&] After the second merge step, the number of segments is n22c,[&*frac*{n}{2^{2}c},&] and after the third merge step the number of segments is n23c.[&*frac*{n}{2^{3}c}.&] After log(nc)[&~rom~log|3(|~normal~*frac*{n}{c}|3)|&] merge steps, the number of segments is reduced to 1. Therefore, the total number of merge steps is log(nc).[&~rom~log|3(|~normal~*frac*{n}{c}|3)|.&]

In each merge step, half the number of segments are read from file f1 then written into a temporary file f2. The remaining segments in f1 are merged with the segments in f2. The number of I/Os in each merge step is O(n). Since the total number of merge steps is log(nc),[&~rom~log|3(|~normal~*frac*{n}{c}|3)|,&] the total number of I/Os is

O(n)×log(nc)=O(n log n)[&O(n)|multi|~rom~log|3(|~normal~*frac*{n}{c}|3)||=|O(n ~rom~log~normal~ n)&]

Therefore, the complexity of the external sort is O(n logn).

	23.8.1 Describe how external sort works. What is the complexity of the external sort algorithm?

	23.8.2 Ten numbers {2, 3, 4, 0, 5, 6, 7, 9, 8, 1} are stored in the external file largedata.dat. Trace the SortLargeFile program by hand with MAX_ARRAY_SIZE 2.

Key Terms

	bubble sort 884

	bucket sort 901

	complete binary tree 895

	external sort 903

	heap 895

	heap sort 894

	height of a heap 900

	merge sort 900

	quick sort 890

	radix sort 902

Chapter Summary

	 The worst-case complexity for a selection sort, insertion sort, bubble sort, and quick sort is O(n2).[&O(n^{2}).&]

	 The average- and worst-case complexity for a merge sort is O(n logn). The average time for a quick sort is also O(n logn).

	 Heaps are a useful data structure for designing efficient algorithms such as sorting. You learned how to define and implement a heap class, and how to insert and delete elements to/from a heap.

	 The time complexity for a heap sort is O(n logn).

	 Bucket and radix sorts are specialized sorting algorithms for integer keys. These algorithms sort keys using buckets rather than by comparing keys. They are more efficient than general sorting algorithms.

	A variation of the merge sort—called an external sort—can be applied to sort large amounts of data from external files.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 23.3–23.5

	 23.1 (Generic bubble sort) Write the following two generic methods using bubble sort. The first method sorts the elements using the Comparable interface, and the second uses the Comparator interface.

public static <E extends Comparable<E>>
 void bubbleSort(E[] list)
public static <E> void bubbleSort(E[] list,
 Comparator<? super E> comparator)

	23.2 (Generic merge sort) Write the following two generic methods using merge sort. The first method sorts the elements using the Comparable interface and the second uses the Comparator interface.

public static <E extends Comparable<E>>
 void mergeSort(E[] list)
public static <E> void mergeSort(E[] list,
 Comparator<? super E> comparator)

	23.3 (Generic quick sort) Write the following two generic methods using quick sort. The first method sorts the elements using the Comparable interface, and the second uses the Comparator interface.

public static <E extends Comparable<E>>
 void quickSort(E[] list)
public static <E> void quickSort(E[] list,
 Comparator<? super E> comparator)

	23.4 (Improve quick sort) The quick-sort algorithm presented in the book selects the first element in the list as the pivot. Revise it by selecting the median among the first, middle, and the last elements in the list.

	*23.5 (Generic Heap using Comparator) Revise Heap in Listing 23.9 , using a generic parameter and a Comparator for comparing objects. Define the class as follows:

class HeapWithComparator<E> {
 private Comparator<? super E> comparator; // For comparing elements

 public HeapWithComparator() {
 // Implement no−arg constructor by creating a comparator for         natural order
 }

 public HeapWithComparator(Comparator<? super E> comparator) {
 this.comparator = comparator;
 }
 // Implement all add, remove, and getSize method
}

	23.6 (Check order) Write the following overloaded methods that check whether an array is ordered in ascending order or descending order. By default, the method checks ascending order. To check descending order, pass false to the ascending argument in the method.

public static boolean ordered(int[] list)
public static boolean ordered(int[] list, boolean ascending)
public static boolean ordered(double[] list)
public static boolean ordered
 (double[] list, boolean ascending)
public static <E extends Comparable<E>>
 boolean ordered(E[] list)
public static <E extends Comparable<E>> boolean ordered
 (E[] list, boolean ascending)
public static <E> boolean ordered(E[] list,
 Comparator<? super E> comparator)
public static <E> boolean ordered(E[] list,
 Comparator<? super E> comparator, boolean ascending)

Section 23.6

	23.7 (Min-heap) The heap presented in the text is also known as a max-heap, in which each node is greater than or equal to any of its children. A min-heap is a heap in which each node is less than or equal to any of its children. Min-heaps are often used to implement priority queues. Revise the Heap class in Listing 23.9 to implement a min-heap.

max-heap

min-heap

	23.8 (Generic insertion sort) Write the following two generic methods using insertion sort. The first method sorts the elements using the Comparable interface, and the second uses the Comparator interface.

public static <E extends Comparable<E>>
 void insertionSort(E[] list)
public static <E> void insertionSort(E[] list,
 Comparator<? super E> comparator)

	*23.9 (Generic heap sort) Write the following two generic methods using heap sort. The first method sorts the elements using the Comparable interface, and the second uses the Comparator interface. (Hint: Use the Heap class in ­Programming Exercise 23.5 .)

public static <E extends Comparable<E>>
 void heapSort(E[] list)
public static <E> void heapSort(E[] list,
 Comparator<? super E> comparator)

	**23.10 (Heap visualization) Write a program that displays a heap graphically, as shown in Figure 23.10 . The program lets you insert and delete an element from the heap.

	23.11 (Heap clone and equals) Implement the clone and equals method in the Heap class.

Section 23.7

	*23.12 (Radix sort) Write a program that randomly generates 1,000,000 integers and sorts them using radix sort.

	 *23.13 (Execution time for sorting) Write a program that obtains the execution time of selection sort, bubble sort, merge sort, quick sort, heap sort, and radix sort for input size 50,000, 100,000, 150,000, 200,000, 250,000, and 300,000. Your program should create data randomly and print a table like this:

	Array size

	Selection Sort

	Bubble Sort

	Merge Sort

	Quick Sort

	Heap Sort

	Radix Sort

	50,000

	
	
	
	
	
	

	100,000

	
	
	
	
	
	

	150,000

	
	
	
	
	
	

	200,000

	
	
	
	
	
	

	250,000

	
	
	
	
	
	

	300,000

	
	
	
	
	
	

(Hint: You can use the following code template to obtain the execution time.)

long startTime = System.nanoTime();
perform the task;
long endTime = System.nanoTime();
long executionTime = endTime − startTime;

Section 23.8

	 *23.14 (Execution time for external sorting) Write a program that obtains the execution time of external sorts for integers of size 5,000,000, 10,000,000, 15,000,000, 20,000,000, 25,000,000, and 30,000,000. Your program should print a table like this:

	File size

	5,000,000

	10,000,000

	15,000,000

	20,000,000

	25,000,000

	30,000,000

	Time

	
	
	
	
	
	

Comprehensive

	*23.15 (Selection-sort animation) Write a program that animates the selection-sort algorithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a random order. The array elements are displayed in a histogram, as shown in ­Figure 23.20a . Clicking the Step button causes the program to perform an iteration of the outer loop in the algorithm and repaints the histogram for the new array. Color the last bar in the sorted subarray. When the algorithm is finished, display a message to inform the user. Clicking the Reset button creates a new random array for a new start. (You can easily modify the program to animate the insertion algorithm.)

[image: Part ay, selection sort: 1 2 3 4 5 6 7 8 9 10 11 16 17 20 18 15 19 14 12 13, with 11 shaded. Part b, bubble sort: 6 7 5 1 4 14 15 11 13 16 2 8 12 10 17 19 3 18 9 20, with 15 shaded.]
Figure 23.20 

(a) The program animates selection sort.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission. (b) The program animates bubble sort.

	*23.16 (Bubble-sort animation) Write a program that animates the bubble-sort algorithm. Create an array that consists of 20 distinct numbers from 1 to 20 in a random order. The array elements are displayed in a histogram, as shown in ­Figure 23.20b . Clicking the Step button causes the program to perform one comparison in the algorithm and repaints the histogram for the new array. Color the bar that represents the number being considered in the swap. When the algorithm is finished, display a message to inform the user. Clicking the Reset button ­creates a new random array for a new start.

	*23.17 (Radix-sort animation) Write a program that animates the radix-sort algorithm. Create an array that consists of 20 random numbers from 0 to 1,000. The array elements are displayed, as shown in Figure 23.21 . Clicking the Step button causes the program to place a number in a bucket. The number that has just been placed is displayed in red. Once all the numbers are placed in the buckets, clicking the Step button collects all the numbers from the buckets and moves them back to the array. When the algorithm is finished, clicking the Step button displays a message to inform the user. Clicking the Reset button creates a new random array for a new start.

[image: A radix sort animation for exercise 23 17.]
Figure 23.21 

The program animates radix sort.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*23.18 (Merge animation) Write a program that animates the merge of two sorted lists. ­Create two arrays, list1 and list2, each of which consists of 8 random numbers from 1 to 999. The array elements are displayed, as shown in Figure 23.22a . Clicking the Step button causes the program to move an element from list1 or list2 to temp. Clicking the Reset button creates two new random arrays for a new start. When the algorithm is finished, clicking the Step button displays a message to inform the user.

[image: Two animations for exercise 23 18.]
Figure 23.22 

The program animates a merge of two sorted lists.

Source: Copyright © 1995–2016 Oracle and/or its ­affiliates. All rights reserved. Used with permission. (b) The program animates a partition for quick sort.

Description

	*23.19 (Quick-sort partition animation) Write a program that animates the partition for a quick sort. The program creates a list that consists of 20 random numbers from 1 to 999. The list is displayed, as shown in Figure 23.22b . Clicking the Step button causes the program to move low to the right or high to the left, or swap the elements at low and high. Clicking the Reset button creates a new list of random numbers for a new start. When the algorithm is finished, clicking the Step button displays a message to inform the user.

	*23.20 (Modify merge sort) Rewrite the mergeSort method to recursively sort the first half of the array and the second half of the array without creating new temporary arrays, then merge the two into a temporary array and copy its contents to the original array, as shown in Figure 23.6b .

CHAPTER 24 Implementing Lists, Stacks, Queues, and Priority Queues

Objectives

	To design common operations of lists in an interface and make the interface a subtype of Collection (§24.2).

	To design and implement an array list using an array (§24.3).

	To design and implement a linked list using a linked structure (§24.4).

	To design and implement a stack class using an array list and a queue class using a linked list (§24.5).

	To design and implement a priority queue using a heap (§24.6).

24.1 Introduction

	This chapter focuses on implementing data structures.

Lists, stacks, queues, and priority queues are classic data structures typically covered in a data structures course. They are supported in the Java API, and their uses were presented in Chapter 20, Lists, Stacks, Queues, and Priority Queues. This chapter will examine how these data structures are implemented under the hood. Implementation of sets and maps will be covered in Chapter 27. Through these implementations, you will gain valuable insight on data structures and learn how to design and implement custom data structures.

24.2 Common Operations for Lists

	Common operations of lists are defined in the List interface.

A list is a popular data structure for storing data in sequential order—for example, a list of students, a list of available rooms, a list of cities, and a list of books. You can perform the following operations on a list:

	Retrieve an element from the list.

	Insert a new element into the list.

	Delete an element from the list.

	Find out how many elements are in the list.

	Determine whether an element is in the list.

	Check whether the list is empty.

There are two ways to implement a list. One is to use an array to store the elements. Array size is fixed. If the capacity of the array is exceeded, you need to create a new, larger array and copy all the elements from the current array to the new array. The other approach is to use a linked structure. A linked structure consists of nodes. Each node is dynamically created to hold an element. All the nodes are linked together to form a list. Thus, you can define two classes for lists. For convenience, let’s name these two classes ­MyArrayList and MyLinkedList. These two classes have common operations but different implementations.

 Design Guide

Prior to Java 8, a popular design strategy for Java data structures is to define common operations in interfaces and provide convenient abstract classes for partially implementing the interfaces. So, the concrete classes can simply extend the convenient abstract classes without implementing the full interfaces. Java 8 enables you to define default methods. You can provide default implementation for some of the methods in the ­interfaces rather than in convenient abstract classes. Using default methods eliminate the need for convenient abstract classes.

default methods in interfaces

 Pedagogical Note

For an interactive demo on how array lists and linked lists work, go to liveexample.pearsoncmg.com/dsanimation/ArrayListeBook.html and liveexample.pearsoncmg.com/dsanimation/LinkedListeBook.html, as shown in Figure 24.1.

list animation on Companion Website

[image: part ay: an array list animation shows array list empty, size = 0, and capacity is 4. Part b: linked list animation. Head 3, 23, 4, tail 5.]
Figure 24.1 

The animation tool enables you to see how array lists and linked lists work.

Description

Let us name the interface MyList and define it as a subtype of Collection so the common operations in the Collection interface are also available in MyList. Figure 24.2 shows the relationship of ­Collection, MyList, MyArrayList, and MyLinkedList. The methods in MyList are shown in Figure 24.3. ­Listing 24.1 gives the source code for MyList.

[image: A U M L diagram.]
Figure 24.2 

MyList defines a common interface for MyArrayList and MyLinkedList.

Description

[image: A U M L diagram.]
Figure 24.3 

MyList defines the methods for manipulating a list and partially implements some of the methods defined in the Collection interface.

Description

Listing 24.1 MyList.java

 1 import java.util.Collection;
 2
 3 public interface MyList<E> extends Collection<E> {
 4 /** Add a new element at the specified index in this list */
add(index, e) 5 public void add(int index, E e);
 6
 7 /** Return the element from this list at the specified index */
get(index) 8 public E get(int index);
 9
 10 /** Return the index of the first matching element in this list.
 11 * Return −1 if no match. */
indexOf(e) 12 public int indexOf(Object e);
 13
 14 /** Return the index of the last matching element in this list
 15 * Return −1 if no match. */
lastIndexOf(e) 16 public int lastIndexOf(E e);
 17
 18 /** Remove the element at the specified position in this list
 19 * Shift any subsequent elements to the left.
 20 * Return the element that was removed from the list. */
remove(e) 21 public E remove(int index);
 22
 23 /** Replace the element at the specified position in this list
 24 * with the specified element and returns the new set. */
set(index, e) 25 public E set(int index, E e);
 26
 27 @Override /** Add a new element at the end of this list */
default add(e) 28 public default boolean add(E e) {
 29 add(size(), e);
 30 return true;
 31 }
 32
 33 @Override /** Return true if this list contains no elements */
default isEmpty() 34 public default boolean isEmpty() {
 35 return size() == 0;
 36 }
 37
 38 @Override /** Remove the first occurrence of the element e
 39 * from this list. Shift any subsequent elements to the left.
 40 * Return true if the element is removed. */
implement remove(E e) 41 public default boolean remove(Object e) {
 42 if (indexOf(e) >= 0) {
 43 remove(indexOf(e));
 44 return true;
 45 }
 46 else
 47 return false;
 48 }
 49
 50 @Override
implement containsAll 51 public default boolean containsAll(Collection<?> c) {
 52 // Left as an exercise
 53 return true;
 54 }
 55
 56 @Override
implement addAll 57 public default boolean addAll(Collection<? extends E> c) {
 58 // Left as an exercise
 59 return true;
 60 }
 61
 62 @Override
implement removeAll 63 public default boolean removeAll(Collection<?> c) {
 64 // Left as an exercise
 65 return true;
 66 }
 67
 68 @Override
implement retainAll 69 public default boolean retainAll(Collection<?> c) {
 70 // Left as an exercise
 71 return true;
 72 }
 73
 74 @Override
implement toArray() 75 public default Object[] toArray() {
 76 // Left as an exercise
 77 return null;
 78 }
 79
 80 @Override
implement toArray(T[]) 81 public default <T> T[] toArray(T[] array) {
 82 // Left as an exercise
 83 return null;
 84 }
 85 }

The methods isEmpty(), add(E), remove(E), containsAll, addAll, removeAll, retainAll, toArray(), and toArray(T[]) are defined in the Collection interface. Since these methods are implementable in MyList, they are overridden in the MyList ­interface as default methods. The implementation for isEmpty(), add(E), and remove(E) are provided and the implementation for other default methods are left as exercises in ­Programming ­Exercise 24.1.

The following sections give the implementation for MyArrayList and MyLinkedList, respectively.

	24.2.1 Suppose list is an instance of MyList, can you get an iterator for list using list .iterator()?

	24.2.2 Can you create a list using new MyList()?

	24.2.3 What methods in Collection are overridden as default methods in MyList?

	24.2.4 What are the benefits of overriding the methods in Collection as default ­methods in MyList?

24.3 Array Lists

	An array list is implemented using an array.

An array is a fixed-size data structure. Once an array is created, its size cannot be changed. Nevertheless, you can still use arrays to implement dynamic data structures. The trick is to create a larger new array to replace the current array, if the current array cannot hold new ­elements in the list.

Initially, an array, say data of E[] type, is created with a default size. When inserting a new element into the array, first make sure there is enough room in the array. If not, create a new array twice as large as the current one. Copy the elements from the current array to the new array. The new array now becomes the current array. Before inserting a new element at a specified index, shift all the elements after the index to the right and increase the list size by 1, as shown in Figure 24.4.

[image: A diagram shows the insertion of an element into an array.]
Figure 24.4 

Inserting a new element into the array requires that all the elements after the insertion point be shifted one position to the right, so the new element can be inserted at the insertion point.

Description

 Note

The data array is of type E[]. Each cell in the array actually stores the reference of an object.

To remove an element at a specified index, shift all the elements after the index to the left by one position and decrease the list size by 1, as shown in Figure 24.5.

[image: A diagram shows the deletion of an element from an array.]
Figure 24.5 

Deleting an element from the array requires that all the elements after the deletion point be shifted one position to the left.

Description

MyArrayList uses an array to implement MyList, as shown in Figure 24.6. Its implementation is given in Listing 24.2.

[image: An annotated U M L diagram, with 2 parts.]
Figure 24.6 

MyArrayList implements a list using an array.

Description

Listing 24.2 MyArrayList.java

				 1 public class MyArrayList<E> implements MyList<E> {
initial capacity		 2 public static final int INITIAL_CAPACITY = 16;
create an array 		 3 private E[] data = (E[])new Object[INITIAL_CAPACITY];
number of elements		 4 private int size = 0; // Number of elements in the list
				 5
				 6 /** Create an empty list */
no-arg constructor		 7 public MyArrayList() {
				 8 }
				 9
				 10 /** Create a list from an array of objects */
constructor			 11 public MyArrayList(E[] objects) {
				 12 for (int i = 0; i < objects.length; i++)
				 13 add(objects[i]); // Warning: don't use super(objects)!
				 14 }
				 15
				 16 @Override /** Add a new element at the specified index */
add				 17 public void add(int index, E e) {
				 18 // Ensure the index is in the right range
				 19 if (index < 0 || index > size)
				 20 throw new IndexOutOfBoundsException
				 21 ("Index: " + index + ", Size: " + size);
				 22
				 23 ensureCapacity();
				 24
				 25 // Move the elements to the right after the specified index
				 26 for (int i = size − 1; i >= index; i−−)
				 27 data[i + 1] = data[i];
				 28
				 29 // Insert new element to data[index]
				 30 data[index] = e;
				 31
				 32 // Increase size by 1
				 33 size++;
				 34 }
				 35
				 36 /** Create a new larger array, double the current size + 1 */
ensureCapacity			 37 private void ensureCapacity() {
				 38 if (size >= data.length) {
double capacity + 1		 39 E[] newData = (E[])(new Object[size * 2 + 1]);
				 40 System.arraycopy(data, 0, newData, 0, size);
				 41 data = newData;
				 42 }
				 43 }
				 44
				 45 @Override /** Clear the list */
clear				 46 public void clear() {
				 47 data = (E[])new Object[INITIAL_CAPACITY];
				 48 size = 0;
				 49 }
				 50
				 51 @Override /** Return true if this list contains the element */
contains			 52 public boolean contains(Object e) {
				 53 for (int i = 0; i < size; i++)
				 54 if (e.equals(data[i])) return true;
				 55
				 56 return false;
				 57 }
				 58
				 59 @Override /** Return the element at the specified index */
get				 60 public E get(int index) {
				 61 checkIndex(index);
				 62 return data[index];
				 63 }
				 64
checkIndex			 65 private void checkIndex(int index) {
				 66 if (index < 0 || index >= size)
				 67 throw new IndexOutOfBoundsException
				 68 ("Index: " + index + ", Size: " + size);
				 69 }
				 70
				 71 @Override /** Return the index of the first matching element
				 72 * in this list. Return −1 if no match. */
indexOf				 73 public int indexOf(Object e) {
				 74 for (int i = 0; i < size; i++)
				 75 if (e.equals(data[i])) return i;
				 76
				 77 return −1;
				 78 }
				 79
				 80 @Override /** Return the index of the last matching element
				 81 * in this list. Return −1 if no match. */
lastIndexOf			 82 public int lastIndexOf(E e) {
				 83 for (int i = size − 1; i >= 0; i−−)
				 84 if (e.equals(data[i])) return i;
				 85
				 86 return −1;
				 87 }
				 88
				 89 @Override /** Remove the element at the specified position
				 90 * in this list. Shift any subsequent elements to the left.
				 91 * Return the element that was removed from the list. */
remove				 92 public E remove(int index) {
				 93 checkIndex(index);
				 94
				 95 E e = data[index];
				 96
				 97 // Shift data to the left
				 98 for (int j = index; j < size − 1; j++)
				 99 data[j] = data[j + 1];
				 100
				 101 data[size − 1] = null; // This element is now null
				 102
				 103 // Decrement size
				 104 size−−;
				 105
				 106 return e;
				 107 }
				 108
				 109 @Override /** Replace the element at the specified position
				 110 * in this list with the specified element. */
set				 111 public E set(int index, E e) {
				 112 checkIndex(index);
				 113 E old = data[index];
				 114 data[index] = e;
				 115 return old;
				 116 }
				 117
				 118 @Override
toString			 119 public String toString() {
				 120 StringBuilder result = new StringBuilder("[");
				 121
				 122 for (int i = 0; i < size; i++) {
				 123 result.append(data[i]);
				 124 if (i < size − 1) result.append(", ");
				 125 }
				 126
				 127 return result.toString() + "]";
				 128 }
				 129
				 130 /** Trims the capacity to current size */
trimToSize			 131 public void trimToSize() {
				 132 if (size != data.length) {
				 133 E[] newData = (E[])(new Object[size]);
				 134 System.arraycopy(data, 0, newData, 0, size);
				 135 data = newData;
				 136 } // If size == capacity, no need to trim
				 137 }
				 138
				 139 @Override /** Override iterator() defined in Iterable */
iterator			 140 public java.util.Iterator<E> iterator() {
				 141 return new ArrayListIterator();
				 142 }
				 143
				 144 private class ArrayListIterator
				 145 implements java.util.Iterator<E> {
				 146 private int current = 0; // Current index
				 147
				 148 @Override
				 149 public boolean hasNext() {
				 150 return current < size;
				 151 }
				 152
				 153 @Override
				 154 public E next() {
				 155 return data[current++];
				 156 }
				 157
				 158 @Override // Remove the element returned by the last next()
				 159 public void remove() {
				 160 if (current == 0) // next() has not been called yet
				 161 throw new IllegalStateException();
				 162 MyArrayList.this.remove(−−current);
				 163 }
				 164 }
				 165
				 166 @Override /** Return the number of elements in this list */
size				 167 public int size() {
				 168 return size;
				 169 }
				 170 }

The constant INITIAL_CAPACITY (line 2) is used to create an initial array data (line 3). Owing to generics type erasure (see Restriction 2 in Section 19.8), you cannot create a generic array using the syntax new e[INITIAL_CAPACITY]. To circumvent this limitation, an array of the Object type is created in line 3 and cast into E[]. The size data field tracks the number of elements in the list (line 4).

The add(int index, E e) method (lines 17–34) inserts the element e at the specified index in the array. This method first invokes ensureCapacity() (line 23), which ensures that there is a space in the array for the new element. It then shifts all the elements after the index one position to the right before inserting the element (lines 26 and 27). After the element is added, size is incremented by 1 (line 33).

add

The ensureCapacity() method (lines 37–43) checks whether the array is full. If so, the program creates a new array that doubles the current array +1 copies the current array to the new array using the System.arraycopy method, and sets the new array as the current array. Note the current size might be 0 after invoking the trimToSize() method. new Object[2 * size + 1] (line 39) ensures that the new size is not 0.

ensureCapacity

clear

The clear() method (lines 46–49) creates a new array using the size as INITIAL_­CAPACITY and resets the variable size to 0. The class will work if line 47 is deleted. However, the class will have a memory leak because the elements are still in the array, although they are no longer needed. By creating a new array and assigning it to data, the old array and the elements stored in the old array become garbage, which will be automatically ­collected by the JVM.

The contains(Object e) method (lines 52–57) checks whether element e is contained in the array by comparing e with each element in the array using the equals method.

contains

The get(int index) method (lines 60–63) checks if index is within the range and returns data[index] if index is in the range.

The checkIndex(int index) method (lines 65–69) checks if index is within the range. If not, the method throws an IndexOutOfBoundsException (line 67).

checkIndex

The indexOf(Object e) method (lines 73–78) compares element e with the elements in the array, starting from the first one. If a match is found, the index of the element is returned; otherwise, −1 is returned.

indexOf

The lastIndexOf(Object e) method (lines 82–87) compares element e with the elements in the array, starting from the last one. If a match is found, the index of the element is returned; otherwise, −1 is returned.

lastIndexOf

The remove(int index) method (lines 92–107) shifts all the elements after the index one position to the left (lines 98 and 99) and decrements size by 1 (line 104). The last element is not used anymore and is set to null (line 101).

remove

The set(int index, E e) method (lines 111–116) simply assigns e to data[index] to replace the element at the specified index with element e.

set

The toString() method (lines 119–128) overrides the toString method in the Object class to return a string representing all the elements in the list.

toString

The trimToSize() method (lines 131–137) creates a new array whose size matches the current array-list size (line 133), copies the current array to the new array using the System.arraycopy method (line 134), and sets the new array as the current array (line 135). Note if size == capacity, there is no need to trim the size of the array.

trimToSize

The iterator() method defined in the java.lang.Iterable interface is implemented to return an instance on java.util.Iterator (lines 140–142). The ArrayListIterator class implements Iterator with concrete methods for hasNext, next, and remove (lines 144–164). It uses current to denote the current position of the element being traversed (line 146).

iterator

The size() method simply returns the number of elements in the array list (lines 167–169).

size()

Listing 24.3 gives an example that creates a list using MyArrayList. It uses the add method to add strings to the list, and the remove method to remove strings. Since M­yArrayList ­implements Iterable, the elements can be traversed using a foreach loop (lines 35 and 36).

Listing 24.3 TestMyArrayList.java

				 1 public class TestMyArrayList {
				 2 public static void main(String[] args) {
				 3 // Create a list
create a list 		 4 MyList<String> list = new MyArrayList<>();
				 5
				 6 // Add elements to the list
				 7 list.add("America"); // Add it to the list
add to list			 8 System.out.println("(1) " + list);
				 9
				10 list.add(0, "Canada"); // Add it to the beginning of the list
				11 System.out.println("(2) " + list);
				12
				13 list.add("Russia"); // Add it to the end of the list
				14 System.out.println("(3) " + list);
				15
				16 list.add("France"); // Add it to the end of the list
				17 System.out.println("(4) " + list);
				18
				19 list.add(2, "Germany"); // Add it to the list at index 2
				20 System.out.println("(5) " + list);
				21
				22 list.add(5, "Norway"); // Add it to the list at index 5
				23 System.out.println("(6) " + list);
				24
				25 // Remove elements from the list
				26 list.remove("Canada"); // Same as list.remove(0) in this case
				27 System.out.println("(7) " + list);
				28
remove from list		29 list.remove(2); // Remove the element at index 2
				30 System.out.println("(8) " + list);
				31
				32 list.remove(list.size() − 1); // Remove the last element
				33 System.out.print("(9) " + list + "\n(10) ");
				34
use iterator			35 for (String s: list)
				36 System.out.print(s.toUpperCase() + " ");
				37 }
				38 }

(1) [America]
(2) [Canada, America]
(3) [Canada, America, Russia]
(4) [Canada, America, Russia, France]
(5) [Canada, America, Germany, Russia, France]
(6) [Canada, America, Germany, Russia, France, Norway]
(7) [America, Germany, Russia, France, Norway]
(8) [America, Germany, France, Norway]
(9) [America, Germany, France]
(10) AMERICA GERMANY FRANCE

	
24.3.1 What are the limitations of the array data type?

	24.3.2 MyArrayList is implemented using an array, and an array is a fixed-size data structure. Why is MyArrayList considered a dynamic data structure?

	24.3.3 Show the length of the array in MyArrayList after each of the following statements is executed:

1 MyArrayList<Double> list = new MyArrayList<>();
2 list.add(1.5);
3 list.trimToSize();
4 list.add(3.4);
5 list.add(7.4);
6 list.add(17.4);

	24.3.4 What is wrong if lines 11 and 12 in Listing 24.2 , MyArrayList.java,

 for (int i = 0; i < objects.length; i++)
 add(objects[i]);

are replaced by

data = objects;
size = objects.length;

	24.3.5 If you change the code in line 33 in Listing 24.2 , MyArrayList.java, from

E[] newData = (E[])(new Object[size * 2 + 1]);

to

E[] newData = (E[])(new Object[size * 2]);

the program is incorrect. Can you find the reason?

	24.3.6 Will the MyArrayList class have memory leak if the following code in line 41 is deleted?

data = (E[])new Object[INITIAL_CAPACITY];

	24.3.7 The get(index) method invokes the checkIndex(index) method (lines 59–63 in Listing 24.2) to throw an IndexOutOfBoundsException if the index is out of bounds. Suppose the add(index, e) method is implemented as follows:

public void add(int index, E e) {
 checkIndex(index);

 // Same as lines 23−33 in Listing 24.2 MyArrayList.java
}

		What will happen if you run the following code?

MyArrayList<String> list = new MyArrayList<>();
list.add("New York");

24.4 Linked Lists

	A linked list is implemented using a linked structure.

Since MyArrayList is implemented using an array, the methods get(int index) and set(int index, E e) for accessing and modifying an element through an index and the add(E e) method for adding an element at the end of the list are efficient. However, the methods add(int index, E e) and remove(int index) are inefficient because they require shifting a potentially large number of elements. You can use a linked structure to implement a list to improve efficiency for adding and removing an element at the beginning of a list.

24.4.1 Nodes

In a linked list, each element is contained in an object, called the node. When a new element is added to the list, a node is created to contain it. Each node is linked to its next neighbor, as shown in Figure 24.7.

A node can be created from a class defined as follows:

class Node<E> {
 E element;
 Node<E> next;

 public Node(E e) {
 element = e;
 }
}

[image: The linked list reads as follows: head, node 1 with element 1, next to node 2 with element 2, and so on, to the tail at node n with element n, null.]
Figure 24.7 

A linked list consists of any number of nodes chained together.

We use the variable head to refer to the first node in the list and the variable tail to the last node. If the list is empty, both head and tail are null. Here is an example that creates a linked list to hold three nodes. Each node stores a string element.

	Step 1: Declare head and tail.

Node<String> head = null; The list is empty now
Node<String> tail = null;

head and tail are both null. The list is empty.

	Step 2: Create the first node and append it to the list, as shown in Figure 24.8. After the first node is inserted in the list, head and tail point to this node.

[image: The head = new node <> left parenthesis quote Chicago quote right parenthesis. The tail = head. After this node is inserted, the head and tail appear in the box above next colon null.]
Figure 24.8 

Append the first node to the list.

	Step 3: Create the second node and append it into the list, as shown in Figure 24.9a. To append the second node to the list, link the first node with the new node. The new node is now the tail node, so you should move tail to point to this new node, as shown in Figure 24.9b.

[image: A diagram shows the process of adding a node to a list.]
Figure 24.9 

Append the second node to the list.

Description

	Step 4: Create the third node and append it to the list, as shown in Figure 24.10a. To append the new node to the list, link the last node in the list with the new node. The new node is now the tail node, so you should move tail to point to this new node, as shown in Figure 24.10b.

[image: A diagram shows the process of appending a node to a list.]
Figure 24.10 

Append the third node to the list.

Description

Each node contains the element and a data field named next that points to the next ­element. If the node is the last in the list, its pointer data field next contains the value null. You can use this property to detect the last node. For example, you can write the following loop to traverse all the nodes in the list:

current pointer			 1 Node<E> current = head;
check last node			 2 while (current != null) {
				 3 System.out.println(current.element);
next node			 4 current = current.next;
				 5 }

The variable current points initially to the first node in the list (line 1). In the loop, the ­element of the current node is retrieved (line 3) then current points to the next node (line 4). The loop continues until the current node is null.

24.4.2 The MyLinkedList Class

The MyLinkedList class uses a linked structure to implement a dynamic list. It implements MyList. In addition, it provides the methods addFirst, addLast, removeFirst, ­removeLast, getFirst, and getLast, as shown in Figure 24.11.

[image: A U M L diagram for My Linked List.]
Figure 24.11 

MyLinkedList implements a list using a linked list of nodes.

Description

Assuming the class has been implemented, Listing 24.4 gives a test program that uses the class.

Listing 24.4 TestMyLinkedList.java

 1 public class TestMyLinkedList {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create a list for strings
create list 5 MyLinkedList<String> list = new MyLinkedList<>();
 6
 7 // Add elements to the list
append element 8 list.add("America"); // Add it to the list
print list 9 System.out.println("(1) " + list);
 10
insert element 11 list.add(0, "Canada"); // Add it to the beginning of the list
 12 System.out.println("(2) " + list);
 13
append element 14 list.add("Russia"); // Add it to the end of the list
 15 System.out.println("(3) " + list);
 16
append element 17 list.addLast("France"); // Add it to the end of the list
 18 System.out.println("(4) " + list);
 19
insert element 20 list.add(2, "Germany"); // Add it to the list at index 2
 21 System.out.println("(5) " + list);
 22
insert element 23 list.add(5, "Norway"); // Add it to the list at index 5
 24 System.out.println("(6) " + list);
 25
insert element 26 list.add(0, "Poland"); // Same as list.addFirst("Poland")
 27 System.out.println("(7) " + list);
 28
 29 // Remove elements from the list
remove element 30 list.remove(0); // Same as list.remove("Poland") in this case
 31 System.out.println("(8) " + list);
 32
remove element 33 list.remove(2); // Remove the element at index 2
 34 System.out.println("(9) " + list);
 35
remove element 36 list.remove(list.size() − 1); // Remove the last element
 37 System.out.print("(10) " + list + "\n(11) ");
 38
traverse using iterator 39 for (String s: list)
 40 System.out.print(s.toUpperCase() + " ");
 41
 42 list.clear();
 43 System.out.println("\nAfter clearing the list, the list size is "
 44 + list.size());
 45 }
 46 }

(1) [America]
(2) [Canada, America]
(3) [Canada, America, Russia]
(4) [Canada, America, Russia, France]
(5) [Canada, America, Germany, Russia, France]
(6) [Canada, America, Germany, Russia, France, Norway]
(7) [Poland, Canada, America, Germany, Russia, France, Norway]
(8) [Canada, America, Germany, Russia, France, Norway]
(9) [Canada, America, Russia, France, Norway]
(10) [Canada, America, Russia, France]
(11) CANADA AMERICA RUSSIA FRANCE
After clearing the list, the list size is 0

24.4.3 Implementing MyLinkedList

Now let us turn our attention to implementing the MyLinkedList class. We will discuss how to implement the methods addFirst, addLast, add(index, e), removeFirst, removeLast, and remove(index) and leave the other methods in the MyLinkedList class as exercises.

24.4.3.1 Implementing addFirst(e)

The addFirst(e) method creates a new node for holding element e. The new node becomes the first node in the list. It can be implemented as follows:

				 1 public void addFirst(E e) {
create a node			 2 Node<E> newNode = new Node<>(e); // Create a new node
link with head			 3 newNode.next = head; // link the new node with the head
head to new node		 4 head = newNode; // head points to the new node
increase size			 5 size++; // Increase list size
				 6
was empty?			 7 if (tail == null) // The new node is the only node in list
				 8 tail = head;
				 9 }

The addFirst(e) method creates a new node to store the element (line 2) and inserts the node at the beginning of the list (line 3), as shown in Figure 24.12a. After the insertion, head should point to this new element node (line 4), as shown in Figure 24.12b.

[image: A diagram shows the addition of a new node to the beginning of a list.]
Figure 24.12 

A new element is added to the beginning of the list.

Description

If the list is empty (line 7), both head and tail will point to this new node (line 8). After the node is created, size should be increased by 1 (line 5).

24.4.3.2 Implementing addLast(e)

The addLast(e) method creates a node to hold the element and appends the node at the end of the list. It can be implemented as follows:

 1 public void addLast(E e) {
create a node 2 Node<E> newNode = new Node<>(e); // Create a new node for e
 3
 4 if (tail == null) {
 5 head = tail = newNode; // The only node in list
 6 }
 7 else {
 8 tail.next = newNode; // Link the new node with the last node
 9 tail = newNode; // tail now points to the last node
 10 }
 11
increase size 12 size++; // Increase size
 13 }

The addLast(e) method creates a new node to store the element (line 2) and appends it to the end of the list. Consider two cases:

	If the list is empty (line 4), both head and tail will point to this new node (line 5);

	Otherwise, link the node with the last node in the list (line 8). tail should now point to this new node (line 9). Figures 24.13a and 13b show the new node for element e before and after the insertion.

In any case, after the node is created, the size should be increased by 1 (line 12).

[image: A diagram shows the insertion of an element at the end of the list.]
Figure 24.13 

A new element is added at the end of the list.

Description

24.4.3.3 Implementing add(index, e)

The add(index, e) method inserts an element into the list at the specified index. It can be implemented as follows:

 1 public void add(int index, E e) {
insert first 2 if (index == 0) addFirst(e); // Insert first
insert last 3 else if (index >= size) addLast(e); // Insert last
 4 else { // Insert in the middle
 5 Node<E> current = head;
 6 for (int i = 1; i < index; i++)
 7 current = current.next;
 8 Node<E> temp = current.next;
create a node 9 current.next = new Node<>(e);
 10 (current.next).next = temp;
increase size 11 size++;
 12 }
 13 }

There are three cases when inserting an element into the list:

	If index is 0, invoke addFirst(e) (line 2) to insert the element at the beginning of the list.

	If index is greater than or equal to size, invoke addLast(e) (line 3) to insert the element at the end of the list.

	Otherwise, create a new node to store the new element and locate where to insert it. As shown in Figure 24.14a, the new node is to be inserted between the nodes ­current and temp. The method assigns the new node to current.next and assigns temp to the new node’s next, as shown in Figure 24.14b. The size is now increased by 1 (line 11).

[image: Part ay: Before the node is inserted e sub i is the current, e sub i + 1 is the temp, and e is inserted between them. Part b: After a new node is inserted, the list includes sublist e sub i, e, e sub i + 1.]
Figure 24.14 

A new element is inserted in the middle of the list.

24.4.3.4 Implementing removeFirst()

The removeFirst() method removes the first element from the list. It can be implemented as follows:

				 1 public E removeFirst() {
nothing to remove		 2 if (size == 0) return null; // Nothing to delete
				 3 else {
keep old head			 4 Node<E> temp = head; // Keep the first node temporarily
new head			 5 head = head.next; // Move head to point to next node
decrease size			 6 size−−; // Reduce size by 1
destroy the node		 7 if (head == null) tail = null; // List becomes empty
				 8 return temp.element; // Return the deleted element
				 9 }
				10 }

Consider two cases:

	If the list is empty, there is nothing to delete, so return null (line 2).

	Otherwise, remove the first node from the list by pointing head to the second node. Figures 24.15a and 15b show the linked list before and after the deletion. The size is reduced by 1 after the deletion (line 6). If the list becomes empty, after removing the element, tail should be set to null (line 7).

[image: Part ay: Before deletion, the head of the list is e sub 0. part b: After the node is deleted, the head of the list is e sub 1.]
Figure 24.15 

The first node is deleted from the list.

24.4.3.5 Implementing removeLast()

The removeLast() method removes the last element from the list. It can be implemented as follows:

empty? 1 public E removeLast() {
size 1? 2 if (size == 0) return null; // Nothing to remove
 3 else if (size == 1) { // Only one element in the list
 4 Node<E> temp = head;
head and tail null 5 head = tail = null; // list becomes empty
size is 0 6 size = 0;
return element 7 return temp.element;
 8 }
size>1 9 else {
 10 Node<E> current = head;
 11
 12 for (int i = 0; i < size − 2; i++)
 13 current = current.next;
 14
 15 Node<E> temp = tail;
move tail 16 tail = current;
 17 tail.next = null;
reduce size 18 size−−;
return element 19 return temp.element;
 20 }
 21 }

Consider three cases:

	If the list is empty, return null (line 2).

	If the list contains only one node, this node is destroyed; head and tail both become null (line 5). The size becomes 0 after the deletion (line 6) and the element value of the deleted node is returned (line 7).

	Otherwise, the last node is destroyed (line 17) and the tail is repositioned to point to the second-to-last node. Figures 24.16a and 16b show the last node before and after it is deleted. The size is reduced by 1 after the deletion (line 18) and the element value of the deleted node is returned (line 19).

[image: Part ay: Before deletion, the tail of the list is e sub k. Part b: After deletion, the tail of the list is e sub k minus 1.]
Figure 24.16 

The last node is deleted from the list.

24.4.3.6 Implementing remove(index)

The remove(index) method finds the node at the specified index then removes it. It can be implemented as follows:

				 1 public E remove(int index) {
out of range			 2 if (index < 0 || index >= size) return null; // Out of range
remove first			 3 else if (index == 0) return removeFirst(); // Remove first
remove last			 4 else if (index == size − 1) return removeLast(); // Remove last
				 5 else {
				 6 Node<E> previous = head;
				 7
locate previous			 8 for (int i = 1; i < index; i++) {
				 9 previous = previous.next;
				10 }
				11
locate current			12 Node<E> current = previous.next;
remove from list		13 previous.next = current.next;
reduce size=			14 size−−;
return element			15 return current.element;
				16 }
				17 }

Consider four cases:

	If index is beyond the range of the list (i.e., index < 0 || index >= size), return null (line 2).

	If index is 0, invoke removeFirst() to remove the first node (line 3).

	If index is size − 1, invoke removeLast() to remove the last node (line 4).

	Otherwise, locate the node at the specified index. Let current denote this node and previous denote the node before this node, as shown in Figure 24.17a. Assign ­current.next to previous.next to eliminate the current node, as shown in Figure 24.17b.

[image: Part ay: Before deletion, current e sub k is between previous e sub k minus 1 and current dot next e sub k minus 1. Part b: After deletion, the list progresses directly from previous e sub k minus 1 to current dot next e sub k minus 1.]
Figure 24.17 

A node is deleted from the list.

iterator

Listing 24.5 gives the implementation of MyLinkedList. The implementation of get(index), indexOf(e), lastIndexOf(e), contains(e), and set(index, e) is omitted and left as an exercise. The iterator() method defined in the java.lang .­Iterable interface is implemented to return an instance on java.util.Iterator (lines 128–130). The LinkedListIterator class implements Iterator with concrete methods for hasNext, next, and remove (lines 132–152). This implementation uses current to point to the current position of the element being traversed (line 134). Initially, current points to the head of the list.

Listing 24.5 MyLinkedList.java

 1 public class MyLinkedList<E> implements MyList<E> {
head, tail 2 private Node<E> head, tail;
number of elements 3 private int size = 0; // Number of elements in the list
 4
 5 /** Create an empty list */
no-arg constructor 6 public MyLinkedList() {
 7 }
 8
 9 /** Create a list from an array of objects */
constructor 10 public MyLinkedList(E[] objects) {
 11 for (int i = 0; i < objects.length; i++)
 12 add(objects[i]);
 13 }
 14
 15 /** Return the head element in the list */
getFirst 16 public E getFirst() {
 17 if (size == 0) {
 18 return null;
 19 }
 20 else {
 21 return head.element;
 22 }
 23 }
 24
 25 /** Return the last element in the list */
getLast 26 public E getLast() {
 27 if (size == 0) {
 28 return null;
 29 }
 30 else {
 31 return tail.element;
 32 }
 33 }
 34
 35 /** Add an element to the beginning of the list */
addFirst 36 public void addFirst(E e) {
 37 // Implemented in Section 24.4.3.1, so omitted here
 38 }
 39
 40 /** Add an element to the end of the list */
addLast 41 public void addLast(E e) {
 42 // Implemented in Section 24.4.3.2, so omitted here
 43 }
 44
 45 @Override /** Add a new element at the specified index
 46 * in this list. The index of the head element is 0 */
add 47 public void add(int index, E e) {
 48 // Implemented in Section 24.4.3.3, so omitted here
 49 }
 50
 51 /** Remove the head node and
 52 * return the object that is contained in the removed node. */
removeFirst 53 public E removeFirst() {
 54 // Implemented in Section 24.4.3.4, so omitted here
 55 }
 56
 57 /** Remove the last node and
 58 * return the object that is contained in the removed node. */
removeLast 59 public E removeLast() {
 60 // Implemented in Section 24.4.3.5, so omitted here
 61 }
 62
 63 @Override /** Remove the element at the specified position in this
 64 * list. Return the element that was removed from the list. */
remove 65 public E remove(int index) {
 66 // Implemented earlier in Section 24.4.3.6, so omitted
 67 }
 68
 69 @Override /** Override toString() to return elements in the list */
toString 70 public String toString() {
 71 StringBuilder result = new StringBuilder("[");
 72
 73 Node<E> current = head;
 74 for (int i = 0; i < size; i++) {
 75 result.append(current.element);
 76 current = current.next;
 77 if (current != null) {
 78 result.append(", "); // Separate two elements with a comma
 79 }
 80 else {
 81 result.append("]"); // Insert the closing] in the string
 82 }
 83 }
 84
 85 return result.toString();
 86 }
 87
 88 @Override /** Clear the list */
clear 89 public void clear() {
 90 size = 0;
 91 head = tail = null;
 92 }
 93
 94 @Override /** Return true if this list contains the element e */
contains 95 public boolean contains(Object e) {
 96 // Left as an exercise
 97 return true;
 98 }
 99
 100 @Override /** Return the element at the specified index */
get 101 public E get(int index) {
 102 // Left as an exercise
 103 return null;
 104 }
 105
 106 @Override /** Return the index of the head matching element in
 107 * this list. Return −1 if no match. */
indexOf 108 public int indexOf(Object e) {
 109 // Left as an exercise
 110 return 0;
 111 }
 112
 113 @Override /** Return the index of the last matching element in
 114 * this list. Return −1 if no match. */
lastIndexOf 115 public int lastIndexOf(E e) {
 116 // Left as an exercise
 117 return 0;
 118 }
 119
 120 @Override /** Replace the element at the specified position
 121 * in this list with the specified element. */
set 122 public E set(int index, E e) {
 123 // Left as an exercise
 124 return null;
 125 }
 126
 127 @Override /** Override iterator() defined in Iterable */
iterator 128 public java.util.Iterator<E> iterator() {
 129 return new LinkedListIterator();
 130 }
 131
LinkedListIterator class 132 private class LinkedListIterator
 133 implements java.util.Iterator<E> {
 134 private Node<E> current = head; // Current index
 135
 136 @Override
 137 public boolean hasNext() {
 138 return (current != null);
 139 }
 140
 141 @Override
 142 public E next() {
 143 E e = current.element;
 144 current = current.next;
 145 return e;
 146 }
 147
 148 @Override
 149 public void remove() {
 150 // Left as an exercise
 151 }
 152 }
 153
Node inner class 154 private static class Node<E> {
 155 E element;
 156 Node<E> next;
 157
 158 public Node(E element) {
 159 this.element = element;
 160 }
 161 }
 162
 163 @Override /** Return the number of elements in this list */
 164 public int size() {
 165 return size;
 166 }
 167 }

24.6.4  MyArrayList vs. MyLinkedList

Both MyArrayList and MyLinkedList can be used to store a list. MyArrayList is implemented using an array, and MyLinkedList is implemented using a linked list. The overhead of MyArrayList is smaller than that of MyLinkedList. However, MyLinkedList is more efficient if you need to insert elements into and delete elements from the beginning of the list. Table 24.1 summarizes the complexity of the methods in MyArrayList and MyLinkedList. Note MyArrayList is the same as java.util.ArrayList, and MyLinkedList is the same as java.util.LinkedList.

Table 24.1 Time Complexities for Methods in MyArrayList and MyLinkedList

	Methods

	MyArrayList/ArrayList

	MyLinkedList/LinkedList

	add(e: E)

	O(1)

	O(1)

	add(index: int, e: E)

	O(n)

	O(n)

	clear()

	O(1)

	O(1)

	contains(e: E)

	O(n)

	O(n)

	get(index: int)

	O(1)

	O(n)

	indexOf(e: E)

	O(n)

	O(n)

	isEmpty()

	O(1)

	O(1)

	lastIndexOf(e: E)

	O(n)

	O(n)

	remove(e: E)

	O(n)

	O(n)

	size()

	O(1)

	O(1)

	remove(index: int)

	O(n)

	O(n)

	set(index: int, e: E)

	O(n)

	O(n)

	addFirst(e: E)

	O(n)

	O(1)

	removeFirst()

	O(n)

	O(1)

24.4.5 Variations of Linked Lists

The linked list introduced in the preceding sections is known as a singly linked list. It contains a pointer to the list’s first node, and each node contains a pointer to the next node sequentially. Several variations of the linked list are useful in certain applications.

A circular, singly linked list is like a singly linked list, except that the pointer of the last node points back to the first node, as shown in Figure 24.18a. Note tail is not needed for circular linked lists. head points to the current node in the list. Insertion and deletion take place at the current node. A good application of a circular linked list is in the operating system that serves multiple users in a timesharing fashion. The system picks a user from a circular list and grants a small amount of CPU time then moves on to the next user in the list.

[image: A diagram shows the different forms of linked lists.]
Figure 24.18 

Linked lists may appear in various forms.

Description

A doubly linked list contains nodes with two pointers. One points to the next node and the other to the previous node, as shown in Figure 24.18b. These two pointers are conveniently called a forward pointer and a backward pointer. Thus, a doubly linked list can be traversed forward and backward. The java.util.LinkedList class is implemented using a doubly linked list, and it supports traversing of the list forward and backward using the ListIterator.

A circular, doubly linked list is like a doubly linked list, except that the forward pointer of the last node points to the first node, and the backward pointer of the first pointer points to the last node, as shown in Figure 24.18c.

The implementations of these linked lists are left as exercises.

	24.4.1 If a linked list does not contain any nodes, what are the values in head and tail?

	24.4.2 If a linked list has only one node, is head == tail true? List all cases in which head == tail is true.

	24.4.3 When a new node is inserted to the head of a linked list, will the head and the tail be changed?

	24.4.4 When a new node is appended to the end of a linked list, will the head and the tail be changed?

	24.4.5 Both MyArrayList and MyLinkedList are used to store a list of objects. Why do we need both types of lists?

	24.4.6 Draw a diagram to show the linked list after each of the following statements is executed:

MyLinkedList<Double> list = new MyLinkedList<>();
list.add(1.5);
list.add(6.2);
list.add(3.4);
list.add(7.4);
list.remove(1.5);
list.remove(2);

	24.4.7 What is the time complexity of the addFirst(e) and removeFirst() methods in MyLinkedList?

	24.4.8 Suppose you need to store a list of elements. If the number of elements in the program is fixed, what data structure should you use? If the number of elements in the program changes, what data structure should you use?

	24.4.9 If you have to add or delete the elements at the beginning of a list, should you use MyArrayList or MyLinkedList? If most of the operations on a list involve retrieving an element at a given index, should you use MyArrayList or MyLinkedList?

	24.4.10 Simplify the code in lines 77–82 in Listing 24.5 using a conditional expression.

	24.4.11 Simplify the code for the removeLast() method by invoking the ­removeFirst() method when the size is less than or equal to 1. Is the new code more efficient in execution time?

24.5 Stacks and Queues

	Stacks can be implemented using array lists and queues can be implemented using linked lists.

A stack can be viewed as a special type of list whose elements are accessed, inserted, and deleted only from the end (top), as shown in Figure 10.11. A queue represents a waiting list. It can be viewed as a special type of list whose elements are inserted into the end (tail) of the queue and are accessed and deleted from the beginning (head), as shown in Figure 24.19.

[image: The accepts data 1, data 2, and data 3. The queue then releases data 1, data 2, and data 3.]
Figure 24.19 

A queue holds objects in a first-in, first-out fashion.

 Pedagogical Note

For an interactive demo on how stacks and queues work, go to liveexample.pearsoncmg.com/dsanimation/StackeBook.html, and liveexample.pearsoncmg.com/dsanimation/QueueeBook.html, as shown in Figure 24.20.

stack and queue animation on Companion Website

[image: Part ay: The stack animation shows vertical list 22, 2, 4. Part b: The queue animation shows horizontal list head 30, 2, 12, tail 82.]
Figure 24.20 

The animation tool enables you to see how stacks and queues work.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Since the insertion and deletion operations on a stack are made only at the end of the stack, it is more efficient to implement a stack with an array list than a linked list. Since deletions are made at the beginning of the list, it is more efficient to implement a queue using a linked list than an array list. This section implements a stack class using an array list and a queue class using a linked list.

There are two ways to design the stack and queue classes:

	Using inheritance: You can define a stack class by extending ArrayList, and a queue class by extending LinkedList, as shown in Figure 24.21a.

inheritance

	Using composition: You can define an array list as a data field in the stack class and a linked list as a data field in the queue class, as shown in Figure 24.21b.

composition

[image: Part ay: Array list inherits generic stack, and linked list inherits generic queue. part b: Generic stack aggregates array list, and generic queue aggregates linked list.]
Figure 24.21 

GenericStack and GenericQueue may be implemented using inheritance or composition.

Both designs are fine, but using composition is better because it enables you to define a completely new stack class and queue class without inheriting the unnecessary and inappropriate methods from the array list and linked list. The implementation of the stack class using the composition approach was given in Listing 19.1, GenericStack.java. Listing 24.6 implements the GenericQueue class using the composition approach. Figure 24.22 shows the UML of the class.

[image: An annotated U M L diagram, with the title, Generic Queue, <, E, >.]
Figure 24.22 

GenericQueue uses a linked list to provide a first-in, first-out data structure.

Description

Listing 24.6 GenericQueue.java

				 1 public class GenericQueue<E> {
linked list			 2 private java.util.LinkedList<E> list
				 3 = new java.util.LinkedList<>();
				 4
enqueue				 5 public void enqueue(E e) {
				 6 list.addLast(e);
				 7 }
				 8
dequeue				 9 public E dequeue() {
				10 return list.removeFirst();
				11 }
				12
getSize				13 public int getSize() {
				14 return list.size();
				15 }
				16
				17 @Override
				18 public String toString() {
toString			19 return "Queue: " + list.toString();
				20 }
				21 }

A linked list is created to store the elements in a queue (lines 2 and 3). The enqueue(e) method (lines 5–7) adds element e into the tail of the queue. The dequeue() method (lines 9–11) removes an element from the head of the queue and returns the removed element. The ­getSize() method (lines 13–15) returns the number of elements in the queue.

Listing 24.7 gives an example that creates a stack using GenericStack and a queue using GenericQueue. It uses the push (enqueue) method to add strings to the stack (queue) and the pop (dequeue) method to remove strings from the stack (queue).

Listing 24.7 TestStackQueue.java

 1 public class TestStackQueue {
 2 public static void main(String[] args) {
 3 // Create a stack
 4 GenericStack<String> stack = new GenericStack<>();
 5
 6 // Add elements to the stack
 7 stack.push("Tom"); // Push it to the stack
 8 System.out.println("(1) " + stack);
 9
10 stack.push("Susan"); // Push it to the the stack
11 System.out.println("(2) " + stack);
12
13 stack.push("Kim"); // Push it to the stack
14 stack.push("Michael"); // Push it to the stack
15 System.out.println("(3) " + stack);
16
17 // Remove elements from the stack
18 System.out.println("(4) " + stack.pop());
19 System.out.println("(5) " + stack.pop());
20 System.out.println("(6) " + stack);
21
22 // Create a queue
23 GenericQueue<String> queue = new GenericQueue<>();
24
25 // Add elements to the queue
26 queue.enqueue("Tom"); // Add it to the queue
27 System.out.println("(7) " + queue);
28
29 queue.enqueue("Susan"); // Add it to the queue
30 System.out.println("(8) " + queue);
31
32 queue.enqueue("Kim"); // Add it to the queue
33 queue.enqueue("Michael"); // Add it to the queue
34 System.out.println("(9) " + queue);
35
36 // Remove elements from the queue
37 System.out.println("(10) " + queue.dequeue());
38 System.out.println("(11) " + queue.dequeue());
39 System.out.println("(12) " + queue);
40 }
41 }

(1) stack: [Tom]
(2) stack: [Tom, Susan]
(3) stack: [Tom, Susan, Kim, Michael]
(4) Michael
(5) Kim
(6) stack: [Tom, Susan]
(7) Queue: [Tom]
(8) Queue: [Tom, Susan]
(9) Queue: [Tom, Susan, Kim, Michael]
(10) Tom
(11) Susan
(12) Queue: [Kim, Michael]

For a stack, the push(e) method adds an element to the top of the stack, and the pop() method removes the top element from the stack and returns the removed element. It is easy to see that the time complexity for the push and pop methods is O(1).

stack time complexity

For a queue, the enqueue(e) method adds an element to the tail of the queue, and the dequeue() method removes the element from the head of the queue. It is easy to see that the time complexity for the enqueue and dequeue methods is O(1).

queue time complexity

	24.5.1 You can use inheritance or composition to design the data structures for stacks and queues. Discuss the pros and cons of these two approaches.

	24.5.2 If LinkedList is replaced by ArrayList in lines 2 and 3 in Listing 24.6 , GenericQueue.java, what will be the time complexity for the enqueue and dequeue methods.

	24.5.3 Which lines of the following code are wrong?

1 List<String> list = new ArrayList<>();
2 list.add("Tom");
3 list = new LinkedList<>();
4 list.add("Tom");
5 list = new GenericStack<>();
6 list.add("Tom");

24.6 Priority Queues

	Priority queues can be implemented using heaps.

An ordinary queue is a first-in, first-out data structure. Elements are appended to the end of the queue and removed from the beginning. In a priority queue, elements are assigned with priorities. When accessing elements, the element with the highest priority is removed first. For example, the emergency room in a hospital assigns priority numbers to patients; the patient with the highest priority is treated first.

A priority queue can be implemented using a heap, in which the root is the object with the highest priority in the queue. Heaps were introduced in Section 23.6, Heap Sort. The class diagram for the priority queue is shown in Figure 24.23. Its implementation is given in ­Listing 24.8.

[image: A U M L diagram.]
Figure 24.23 

MyPriorityQueue uses a heap to provide a largest-in, first-out data structure.

Description

Listing 24.8 MyPriorityQueue.java

				 1 public class MyPriorityQueue<E extends Comparable<E>> {
heap for priority queue		 2 private Heap<E> heap = new Heap<>();
				 3
enqueue 		 4 public void enqueue(E newObject) {
				 5 heap.add(newObject);
				 6 }
				 7
dequeue 			 8 public E dequeue() {
				 9 return heap.remove();
				10 }
				11
getsize				12 public int getSize() {
				13 return heap.getSize();
				14 }
				15 }

Listing 24.9 gives an example of using a priority queue for patients. The Patient class is defined in lines 19–37. Four patients are created with associated priority values in lines 3–6. Line 8 creates a priority queue. The patients are enqueued in lines 10–13. Line 16 dequeues a patient from the queue.

Listing 24.9 TestPriorityQueue.java

 1 public class TestPriorityQueue {
 2 public static void main(String[] args) {
create a patient 3 Patient patient1 = new Patient("John", 2);
 4 Patient patient2 = new Patient("Jim", 1);
 5 Patient patient3 = new Patient("Tim", 5);
 6 Patient patient4 = new Patient("Cindy", 7);
 7
create a priority queue 8 MyPriorityQueue<Patient> priorityQueue
 9 = new MyPriorityQueue<>();
add to queue 10 priorityQueue.enqueue(patient1);
 11 priorityQueue.enqueue(patient2);
 12 priorityQueue.enqueue(patient3);
 13 priorityQueue.enqueue(patient4);
 14
 15 while (priorityQueue.getSize() > 0)
remove from queue 16 System.out.print(priorityQueue.dequeue() + " ");
 17 }
 18
inner class Patient 19 static class Patient implements Comparable<Patient> {
 20 private String name;
 21 private int priority;
 22
 23 public Patient(String name, int priority) {
 24 this.name = name;
 25 this.priority = priority;
 26 }
 27
 28 @Override
 29 public String toString() {
 30 return name + "(priority:" + priority + ")";
 31 }
 32
 33 @Override
compareTo 34 public int compareTo(Patient patient) {
 35 return this.priority − patient.priority;
 36 }
 37 }
 38 }

Cindy(priority:7) Tim(priority:5) John(priority:2) Jim(priority:1)

	24.6.1 What is a priority queue?

	24.6.2 What are the time complexity of the enqueue, dequeue, and getSize methods in MyPriorityQueue?

	24.6.3 Which of the following statements are wrong?

1 MyPriorityQueue<Object> q1 = new MyPriorityQueue<>();
2 MyPriorityQueue<Number> q2 = new MyPriorityQueue<>();
3 MyPriorityQueue<Integer> q3 = new MyPriorityQueue<>();
4 MyPriorityQueue<Date> q4 = new MyPriorityQueue<>();
5 MyPriorityQueue<String> q5 = new MyPriorityQueue<>();

Chapter Summary

	You learned how to implement array lists, linked lists, stacks, and queues.

	To define a data structure is essentially to define a class. The class for a data structure should use data fields to store data and provide methods to support operations such as insertion and deletion.

	To create a data structure is to create an instance from the class. You can then apply the methods on the instance to manipulate the data structure, such as inserting an element into the data structure or deleting an element from the data structure.

	You learned how to implement a priority queue using a heap.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	24.1 (Implement set operations in MyList) The implementations of the methods addAll, removeAll, retainAll, toArray(), and toArray(T[]) are ­omitted in the MyList interface. Implement these methods. Test your new MyList class using the code at liveexample.pearsoncmg.com/test/Exercise24_01Test.txt.

	*24.2 (Implement MyLinkedList) The implementations of the methods contains(E e), get(int index), indexOf(E e), lastIndexOf(E e), and set(int index, E e) are omitted in the MyLinkedList class. Implement these methods.

	*24.3 (Implement a doubly linked list) The MyLinkedList class used in Listing 24.5 is a one-way directional linked list that enables one-way traversal of the list. Modify the Node class to add the new data field name previous to refer to the previous node in the list, as follows:

public class Node<E> {
 E element;
 Node<E> next;
 Node<E> previous;

 public Node(E e) {
 element = e;
 }
}

Implement a new class named TwoWayLinkedList that uses a doubly linked list to store elements. Define TwoWayLinkedList to implements MyList. You need to implement all the methods defined in MyLinkedList as well as the methods listIterator() and listIterator(int index). Both return an instance of java.util.ListIterator<E> (see Figure 20.4). The former sets the cursor to the head of the list and the latter to the element at the specified index.

	24.4 (Use the GenericStack class) Write a program that displays the first 50 prime numbers in descending order. Use a stack to store the prime numbers.

	24.5 (Implement GenericQueue using inheritance) In Section 24.5 , Stacks and Queues, GenericQueue is implemented using composition. Define a new queue class that extends java.util.LinkedList.

	*24.6 (Generic PriorityQueue using Comparator) Revise MyPriorityQueue in Listing 24.8 , using a generic parameter for comparing objects. Define a new ­constructor with a Comparator as its argument as follows:

PriorityQueue(Comparator<? super E> comparator)

	**24.7 (Animation: linked list) Write a program to animate search, insertion, and deletion in a linked list, as shown in Figure 24.1b . The Search button searches the specified value in the list. The Delete button deletes the specified value from the list. The Insert button appends the value into the list if the index is not specified; otherwise, it inserts the value into the specified index in the list.

	*24.8 (Animation: array list) Write a program to animate search, insertion, and deletion in an array list, as shown in Figure 24.1a . The Search button searches the specified value in the list. The Delete button deletes the specified value from the list. The Insert button appends the value into the list if the index is not specified; otherwise, it inserts the value into the specified index in the list.

	*24.9 (Animation: array list in slow motion) Improve the animation in the preceding programming exercise by showing the insertion and deletion operations in a slow motion.

	*24.10 (Animation: stack) Write a program to animate push and pop in a stack, as shown in Figure 24.20a .

	*24.11 (Animation: doubly linked list) Write a program to animate search, insertion, and deletion in a doubly linked list, as shown in Figure 24.24 . The Search button searches the specified value in the list. The Delete button deletes the specified value from the list. The Insert button appends the value into the list if the index is not specified; otherwise, it inserts the value into the specified index in the list. Also add two buttons named Forward Traversal and ­Backward ­Traversal for displaying the elements in a forward and backward order, respectively, using iterators, as shown in Figure 24.24 . The elements are displayed in a label.

[image: A doubly linked list animation.]
Figure 24.24 

The program animates the work of a doubly linked list.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	*24.12 (Animation: queue) Write a program to animate the enqueue and dequeue operations on a queue, as shown in Figure 24.20b .

	*24.13 (Fibonacci number iterator) Define an iterator class named ­Fibonacci ­Iterator for iterating Fibonacci numbers. The constructor takes an argument that specifies the limit of the maximum Fibonacci number. For example, new FibonacciIterator(23302) creates an iterator that iterates Fibonacci numbers less than or equal to 23302. Write a test program that uses this iterator to display all Fibonacci numbers less than or equal to 100000.

	*24.14 (Prime number iterator) Define an iterator class named PrimeIterator for ­iterating prime numbers. The constructor takes an argument that specifies the limit of the maximum prime number. For example, new PrimeIterator(23302) creates an iterator that iterates prime numbers less than or equal to 23302. Write a test program that uses this iterator to display all prime numbers less than or equal to 100000.

	**24.15 (Test MyArrayList) Design and write a complete test program to test if the MyArrayList class in Listing 24.2 meets all requirements.

	**24.16 (Test MyLinkedList) Design and write a complete test program to test if the MyLinkedList class in Listing 24.5 meets all requirements.

	**24.17 (Revise MyPriorityQueue) Listing 24.8 uses a heap to implement the priority queue. Revise the implementation using a sorted array list to store the elements and name the new class PriorityUsingSortedArrayList. The elements in the array list are sorted in increasing order of their priority with the last element having the highest priority. Write a test program that generates 5 million integers and enqueues them to the priority and dequeues from the queue. Use the same numbers for MyPriorityQueue and PriorityUsingSortedArrayList and display their execution times.

CHAPTER 25 Binary Search Trees

Objectives

	To design and implement a binary search tree (§25.2).

	To represent binary trees using linked data structures (§25.2.1).

	To search an element in a binary search tree (§25.2.2).

	To insert an element into a binary search tree (§25.2.3).

	To traverse elements in a binary tree (§25.2.4).

	To design and implement the Tree interface and the BST class (§25.2.5).

	To delete elements from a binary search tree (§25.3).

	To display a binary tree graphically (§25.4).

	To create iterators for traversing a binary tree (§25.5).

	To implement Huffman coding for compressing data using a binary tree (§25.6).

25.1 Introduction

	A binary search tree is more efficient than a list for search, insertion, and deletion operations.

The preceding chapter gives the implementation for array lists and linked lists. The time complexity of search, insertion, and deletion operations in these data structures is O(n). This chapter presents a new data structure called binary search tree, which takes O(logn) average time for search, insertion, and deletion of elements.

25.2 Binary Search Trees

	A binary search tree can be implemented using a linked structure.

Recall that lists, stacks, and queues are linear structures that consist of a sequence of elements. A binary tree is a hierarchical structure. It either is empty or consists of an element, called the root, and two distinct binary trees, called the left subtree and right subtree, either or both of which may be empty, as shown in Figure 25.1a. Examples of binary trees are shown in ­Figures 25.1a and b.

binary tree

root

left subtree

right subtree

[image: Three trees.]
Figure 25.1 

Each node in a binary tree has zero, one, or two subtrees.

Description

length

depth

level

sibling

leaf

height

The length of a path is the number of the edges in the path. The depth of a node is the length of the path from the root to the node. The set of all nodes at a given depth is sometimes called a level of the tree. Siblings are nodes that share the same parent node. The root of a left (right) subtree of a node is called a left (right) child of the node. A node without children is called a leaf. The height of a nonempty tree is the length of the path from the root node to its furthest leaf. The height of a tree that contains a single node is 0. Conventionally, the height of an empty tree is -1. Consider the tree in Figure 25.1b. The length of the path from node 60 to 45 is 2. The depth of node 60 is 0, the depth of node 55 is 1, and the depth of node 45 is 2. The height of the tree is 2. Nodes 45 and 57 are siblings. Nodes 45, 57, 67, and 107 are at the same level.

A special type of binary tree called a binary search tree (BST) is often useful. A BST (with no duplicate elements) has the property that for every node in the tree, the value of any node in its left subtree is less than the value of the node, and the value of any node in its right subtree is greater than the value of the node. The binary trees in Figures 25.1b-c are all BSTs.

binary search tree

 Pedagogical Note

For an interactive GUI demo to see how a BST works, go to liveexample.pearsoncmg.com/dsanimation/BSTeBook.html, as shown in Figure 25.2.

BST animation on Companion Website

[image: The binary search tree animation.]
Figure 25.2 

The animation tool enables you to insert, delete, and search elements.

Source: Copyright © 1995–2016 ­Oracle and/or its affiliates. All rights reserved. Used with permission.

25.2.1 Representing Binary Search Trees

A binary tree can be represented using a set of linked nodes. Each node contains a value and two links named left and right that reference the left child and right child, respectively, as shown in Figure 25.3.

[image: A tree: root 60 branches to 55 and 100. 55 branches to 45 and 57. 100 branches to 67 and 107.]
Figure 25.3 

A binary tree can be represented using a set of linked nodes.

A node can be defined as a class, as follows:

class TreeNode<E> {
 protected E element;
 protected TreeNode<E> left;
 protected TreeNode<E> right;

 public TreeNode(E e) {
 element = e;
 }
}

We use the variable root to refer to the root node of the tree. If the tree is empty, root is null. The following code creates the first three nodes of the tree in Figure 25.3:

// Create the root node
TreeNode<Integer> root = new TreeNode<>(60);
// Create the left child node
root.left = new TreeNode<>(55);
// Create the right child node
root.right = new TreeNode<>(100);

25.2.2 Searching for an Element

To search for an element in the BST, you start from the root and scan down from it until a match is found or you arrive at an empty subtree. The algorithm is described in Listing 25.1. Let current point to the root (line 2). Repeat the following steps until current is null (line 4) or the element matches current.element (line 12):

	If element is less than current.element, assign current.left to current (line 6).

	If element is greater than current.element, assign current.right to ­current (line 9).

	If element is equal to current.element, return true (line 12).

If current is null, the subtree is empty and the element is not in the tree (line 14).

Listing 25.1 Searching for an Element in a BST

 1 public boolean search(E element) {
start from root 2 TreeNode<E> current = root; // Start from the root
 3
 4 while (current != null)
 5 if (element < current.element) {
left subtree 6 current = current.left; // Go left
 7 }
 8 else if (element > current.element) {
right subtree 9 current = current.right; // Go right
 10 }
 11 else // Element matches current.element
found 12 return true; // Element is found
 13
not found 14 return false; // Element is not in the tree
 15 }

25.2.3 Inserting an Element into a BST

To insert an element into a BST, you need to locate where to insert it in the tree. The key idea is to locate the parent for the new node. Listing 25.2 gives the algorithm.

Listing 25.2 Inserting an Element into a BST

 1 boolean insert(E e) {
 2 if (tree is empty)
create a new node 3 // Create the node for e as the root;
 4 else {
 5 // Locate the parent node
 6 parent = current = root;
locate parent 7 while (current != null)
 8 if (e < the value in current.element) {
 9 parent = current; // Keep the parent
left child 10 current = current.left; // Go left
 11 }
 12 else if (e > the value in current.element) {
 13 parent = current; // Keep the parent
right child 14 current = current.right; // Go right
 15 }
 16 else
 17 return false; // Duplicate node not inserted
 18
 19 // Create a new node for e and attach it to parent
 20
 21 return true; // Element inserted
 22 }
 23 }

If the tree is empty, create a root node with the new element (lines 2 and 3). Otherwise, locate the parent node for the new element node (lines 6–17). Create a new node for the element and link this node to its parent node. If the new element is less than the parent element, the node for the new element will be the left child of the parent. If the new element is greater than the parent element, the node for the new element will be the right child of the parent.

For example, to insert 101 into the tree in Figure 25.3, after the while loop finishes in the algorithm, parent points to the node for 107, as shown in Figure 25.4a. The new node for 101 becomes the left child of the parent. To insert 59 into the tree, after the while loop finishes in the algorithm, the parent points to the node for 57, as shown in Figure 25.4b. The new node for 59 becomes the right child of the parent.

[image: Two trees.]
Figure 25.4 

Two new elements are inserted into the tree.

Description

25.2.4 Tree Traversal

Tree traversal is the process of visiting each node in the tree exactly once. There are several ways to traverse a tree. This section presents inorder, postorder, preorder, depth-first, and breadth-first traversals.

tree traversal

With inorder traversal, the left subtree of the current node is visited first recursively, then the current node, and finally the right subtree of the current node recursively. The inorder traversal displays all the nodes in a BST in increasing order.

inorder traversal

With postorder traversal, the left subtree of the current node is visited recursively first, then recursively the right subtree of the current node, and finally the current node itself.

postorder traversal

With preorder traversal, the current node is visited first, then recursively the left subtree of the current node, and finally the right subtree of the current node recursively.

preorder traversal

 Note

You can reconstruct a binary search tree by inserting the elements in their preorder. The reconstructed tree preserves the parent and child relationship for the nodes in the original binary search tree.

reconstruct a tree

Depth-first traversal is to visit the root then recursively visit its left subtree and right subtree in an arbitrary order. The preorder traversal can be viewed as a special case of depth-first traversal, which recursively visits its left subtree then its right subtree.

depth-first traversal

With breadth-first traversal, the nodes are visited level by level. First the root is visited, then all the children of the root from left to right, then the grandchildren of the root from left to right, and so on.

breadth-first traversal

For example, in the tree in Figure 25.4b, the inorder is

45 55 57 59 60 67 100 101 107

The postorder is

45 59 57 55 67 101 107 100 60

The preorder is

60 55 45 57 59 100 67 107 101

The breadth-first traversal is

60 55 100 45 57 67 107 59 101

You can use the following simple tree to help remember inorder, postorder, and preorder.

[image: A tree: plus branches to 1 and 2.]

The inorder is 1 + 2, the postorder is 1 2 +, and the preorder is + 1 2.

25.2.5 The BST Class

Following the design pattern for Java Collections Framework and utilizing the default methods in Java 8, we use an interface named Tree to define all common operations for trees and define Tree to be a subtype of Collection so we can use common operations in Collection for trees, as shown in Figure 25.5. A concrete BST class can be defined to implement Tree, as shown in Figure 25.6.

[image: A U M L diagram.]
Figure 25.5 

The Tree interface defines common operations for trees, and partially implements Collection.

Description

[image: An annotated U M L diagram, with 3 parts.]
Figure 25.6 

The BST class defines a concrete BST.

Description

Listing 25.3 gives the implementation for Tree. It provides default implementations for the add, isEmpty, remove, containsAll, addAll, removeAll, retainAll, toArray(), and toArray(T[]) methods inherited from the Collection interface as well as the inorder(), preorder(), and postorder() defined in the Tree interface.

Listing 25.3 Tree.java

 1 import java.util.Collection;
 2
interface 3 public interface Tree<E> extends Collection<E> {
 4 /** Return true if the element is in the tree */
search 5 public boolean search(E e);
 6
 7 /** Insert element e into the binary tree
 8 * Return true if the element is inserted successfully */
insert 9 public boolean insert(E e);
 10
 11 /** Delete the specified element from the tree
 12 * Return true if the element is deleted successfully */
delete 13 public boolean delete(E e);
 14
 15 /** Get the number of elements in the tree */
getSize 16 public int getSize();
 17
 18 /** Inorder traversal from the root*/
inorder 19 public default void inorder() {
 20 }
 21
 22 /** Postorder traversal from the root */
postorder 23 public default void postorder() {
 24 }
 25
 26 /** Preorder traversal from the root */
preorder 27 public default void preorder() {
 28 }
 29
 30 @Override /** Return true if the tree is empty */
default isEmpty 31 public default boolean isEmpty() {
 32 return size() == 0;
 33 }
 34
 35 @Override
default contains 36 public default boolean contains(Object e) {
 37 return search((E)e);
 38 }
 39
 40 @Override
default add 41 public default boolean add(E e) {
 42 return insert(e);
 43 }
 44
 45 @Override
default remove 46 public default boolean remove(Object e) {
 47 return delete((E)e);
 48 }
 49
 50 @Override
default size 51 public default int size() {
 52 return getSize();
 53 }
 54
 55 @Override
default containsAll 56 public default boolean containsAll(Collection<?> c) {
 57 // Left as an exercise
 58 return false;
 59 }
 60
 61 @Override
default addAll 62 public default boolean addAll(Collection<? extends E> c) {
 63 // Left as an exercise
 64 return false;
 65 }
 66
 67 @Override
default removeAll 68 public default boolean removeAll(Collection<?> c) {
 69 // Left as an exercise
 70 return false;
 71 }
 72
 73 @Override
default retainAll 74 public default boolean retainAll(Collection<?> c) {
 75 // Left as an exercise
 76 return false;
 77 }
 78
 79 @Override
default toArray() 80 public default Object[] toArray() {
 81 // Left as an exercise
 82 return null;
 83 }
 84
 85 @Override
default toArray(T[]) 86 public default <T> T[] toArray(T[] array) {
 87 // Left as an exercise
 88 return null;
 89 }
 90 }

Listing 25.4 gives the implementations for the BST class.

Listing 25.4 BST.java

BST class		 1 public class BST<E extends Comparable<E>> implements Tree<E> {
root			 2 protected TreeNode<E> root;
size			 3 protected int size = 0
			 4
			 5 /** Create an empty binary tree */
no-arg constructor	 6 public BST() {
			 7 }
			 8
			 9 /** Create a binary tree from an array of objects */
			 10 public BST(E[] objects) {
constructor		 11 for (int i = 0; i < objects.length; i++)
			 12 add(objects[i]);
			 13 }
			 14
			 15 @Override /** Returns true if the element is in the tree */
search			 16 public boolean search(E e) {
			 17 TreeNode<E> current = root; // Start from the root
			 18
			 19 while (current != null) {
compare objects		 20 if (e.compareTo(current.element) < 0) {
			 21 current = current.left;
			 22 }
			 23 else if (e.compareTo(current.element) > 0) {
			 24 current = current.right;
			 25 }
			 26 else // element matches current.element
			 27 return true; // Element is found
			 28 }
			 29
			 30 return false;
			 31 }
			 32
			 33 @Override /** Insert element e into the binary tree
			 34 * Return true if the element is inserted successfully */
insert			 35 public boolean insert(E e) {
			 36 if (root == null)
new root		 37 root = createNewNode(e); // Create a new root
			 38 else {
			 39 // Locate the parent node
			 40 TreeNode<E> parent = null;
			 41 TreeNode<E> current = root;
			 42 while (current != null)
compare objects		 43 if (e.compareTo(current.element) < 0) {
			 44 parent = current;
			 45 current = current.left;
			 46 }
			 47 else if (e.compareTo(current.element) > 0) {
			 48 parent = current;
			 49 current = current.right;
			 50 }
			 51 else
			 52 return false; // Duplicate node not inserted
			 53
			 54 // Create the new node and attach it to the parent node
link to parent		 55 if (e.compareTo(parent.element) < 0)
			 56 parent.left = createNewNode(e);
			 57 else
			 58 parent.right = createNewNode(e);
			 59 }
			 60
increase size		 61 size++;
		 62 return true; // Element inserted successfully
			 63 }
			 64
create new node		 65 protected TreeNode<E> createNewNode(E e) {
			 66 return new TreeNode<>(e);
			 67 }
			 68
			 69 @Override /** Inorder traversal from the root */
inorder			 70 public void inorder() {
			 71 inorder(root);
			 72 }
			 73
			 74 /** Inorder traversal from a subtree */
recursive helper method 75 protected void inorder(TreeNode<E> root) {
			 76 if (root == null) return;
			 77 inorder(root.left);
			 78 System.out.print(root.element + " ");
			 79 inorder(root.right);
			 80 }
			 81
			 82 @Override /** Postorder traversal from the root */
postorder		 83 public void postorder() {
			 84 postorder(root);
			 85 }
			 86
			 87 /** Postorder traversal from a subtree */
recursive helper method 88 protected void postorder(TreeNode<E> root) {
			 89 if (root == null) return;
			 90 postorder(root.left);
			 91 postorder(root.right);
			 92 System.out.print(root.element + " ");
			 93 }
			 94
			 95 @Override /** Preorder traversal from the root */
preorder 96 public void preorder() {
			 97 preorder(root);
			 98 }
			 99
			 100 /** Preorder traversal from a subtree */
recursive helper method 101 protected void preorder(TreeNode<E> root) {
			 102 if (root == null) return;
			 103 System.out.print(root.element + " ");
			 104 preorder(root.left);
			 105 preorder(root.right);
			 106 }
			 107
			 108 /** This inner class is static, because it does not access
			 109 any instance members defined in its outer class */
inner class 110 public static class TreeNode<E> {
			 111 protected E element;
getSize 112 protected TreeNode<E> left;
			 113 protected TreeNode<E> right;
			 114
			 115 public TreeNode(E e) {
			 116 element = e;
			 117 }
			 118 }
			 119
			 120 @Override /** Get the number of nodes in the tree */
			 121 public int getSize() {
			 122 return size;
			 123 }
			 124
			 125 /** Returns the root of the tree */
getRoot			 126 public TreeNode<E> getRoot() {
			 127 return root;
			 128 }
			 129
			 130 /** Returns a path from the root leading to the specified element */
path 131 public java.util.ArrayList<TreeNode<E>> path(E e) {
			 132 java.util.ArrayList<TreeNode<E>> list =
			 133 new java.util.ArrayList<>();
			 134 TreeNode<E> current = root; // Start from the root
			 135
			 136 while (current != null) {
			 137 list.add(current); // Add the node to the list
			 138 if (e.compareTo(current.element) < 0) {
			 139 current = current.left;
			 140 }
			 141 else if (e.compareTo(current.element) > 0) {
			 142 current = current.right;
			 143 }
			 144 else
			 145 break;
			 146 }
			 147
			 148 return list; // Return an array list of nodes
			 149 }
			 150
			 151 @Override /** Delete an element from the binary tree.
			 152 * Return true if the element is deleted successfully
			 153 * Return false if the element is not in the tree */
delete 154 public boolean delete(E e) {
			 155 // Locate the node to be deleted and also locate its parent node
locate parent		 156 TreeNode<E> parent = null;
locate current		 157 TreeNode<E> current = root;
			 158 while (current != null) {
			 159 if (e.compareTo(current.element) < 0) {
			 160 parent = current;
			 161 current = current.left;
			 162 }
			 163 else if (e.compareTo(current.element) > 0) {
			 164 parent = current;
			 165 current = current.right;
			 166 }
			 167 else
current found		 168 break; // Element is in the tree pointed at by current
			 169 }
			 170
not found		 171 if (current == null)
			 172 return false; // Element is not in the tree
			 173
			 174 // Case 1: current has no left child
Case 1			 175 if (current.left == null) {
			 176 // Connect the parent with the right child of the current node
			 177 if (parent == null) {
			 178 root = current.right;
			 179 }
			 180 else {
			 181 if (e.compareTo(parent.element) < 0)
reconnect parent	 182 parent.left = current.right;
			 183 else
reconnect parent	 184 parent.right = current.right;
			 185 }
			 186 }
			 187 else {
Case 2			 188 // Case 2: The current node has a left child
			 189 // Locate the rightmost node in the left subtree of
			 190 // the current node and also its parent
locate parentOfRightMost 191 TreeNode<E> parentOfRightMost = current;
locate rightMost 192 TreeNode<E> rightMost = current.left;
			 193
			 194 while (rightMost.right != null) {
			 195 parentOfRightMost = rightMost;
			 196 rightMost = rightMost.right; // Keep going to the right
			 197 }
			 198
			 199 // Replace the element in current by the element in rightMost
replace current		 200 current.element = rightMost.element;
			 201
			 202 // Eliminate rightmost node
			 203 if (parentOfRightMost.right == rightMost)
			 204 parentOfRightMost.right = rightMost.left;
reconnect		 205 else
parentOfRightMost 206 // Special case: parentOfRightMost == current
			 207 parentOfRightMost.left = rightMost.left;
			 208 }
			 209
reduce size		 210 size−−;
successful deletion	 211 return true; // Element deleted successfully
			 212 }
			 213
			 214 @Override /** Obtain an iterator. Use inorder. */
iterator		 215 public java.util.Iterator<E> iterator() {
			 216 return new InorderIterator();
			 217 }
			 218
			 219 // Inner class InorderIterator
iterator class		 220 private class InorderIterator implements java.util.Iterator<E> {
			 221 // Store the elements in a list
internal list		 222 private java.util.ArrayList<E> list =
 223 new java.util.ArrayList<>();
current position	 224 private int current = 0; // Point to the current element in list
			 225
			 226 public InorderIterator() {
			 227 inorder(); // Traverse binary tree and store elements in list
			 228 }
			 229
			 230 /** Inorder traversal from the root*/
			 231 private void inorder() {
			 232 inorder(root);
obtain inorder list	 233 }
			 234
			 235 /** Inorder traversal from a subtree */
			 236 private void inorder(TreeNode<E> root) {
			 237 if (root == null)return;
			 238 inorder(root.left);
			 239 list.add(root.element);
			 240 inorder(root.right);
			 241 }
			 242
			 243 @Override /** More elements for traversing? */
hasNext in iterator?	 244 public boolean hasNext() {
			 245 if (current < list.size())
			 246 return true;
			 247
			 248 return false;
			 249 }
			 250
			 251 @Override /** Get the current element and move to the next */
get next element	 252 public E next() {
 253 return list.get(current++);
			 254 }
			 255
			 256 @Override /** Remove the current element */
remove the current	 257 public void remove() {
			 258 if (current == 0) // next() has not been called yet
			 259 throw new IllegalStateException();
			 260
			 261 delete(list.get(––current));
refresh list		 262 list.clear(); // Clear the list
clear list 263 inorder(); // Rebuild the list
			 264 }
			 265 }
			 266
			 267 @Override /** Remove all elements from the tree */
tree clear method	 268 public void clear() {
			 269 root = null;
			 270 size = 0;
			 271 }
			 272 }

The insert(E e) method (lines 35–63) creates a node for element e and inserts it into the tree. If the tree is empty, the node becomes the root. Otherwise, the method finds an appropriate parent for the node to maintain the order of the tree. If the element is already in the tree, the method returns false; otherwise it returns true.

The inorder() method (lines 70–80) invokes inorder(root) to traverse the entire tree. The method inorder(TreeNode root) traverses the tree with the specified root. This is a recursive method. It recursively traverses the left subtree, then the root, and finally the right subtree. The traversal ends when the tree is empty.

The postorder() method (lines 83–93) and the preorder() method (lines 96–106) are implemented similarly using recursion.

The path(E e) method (lines 131–149) returns a path of the nodes as an array list. The path starts from the root leading to the element. The element may not be in the tree. For example, in Figure 25.4a, path(45) contains the nodes for elements 60, 55, and 45, and path(58) contains the nodes for elements 60, 55, and 57.

The implementation of delete() and iterator() (lines 154–265) will be discussed in Sections 25.3 and 25.5.

Listing 25.5 gives an example that creates a binary search tree using BST (line 4). The program adds strings into the tree (lines 5–11), traverses the tree in inorder, postorder, and preorder (lines 14–20), searches for an element (line 24), and obtains a path from the node containing Peter to the root (lines 28–31).

Listing 25.5 TestBST.java

 1 public class TestBST {
 2 public static void main(String[] args) {
 3 // Create a BST
create tree 4 BST<String> tree = new BST<>();
insert 5 tree.insert("George");
 6 tree.insert("Michael");
 7 tree.insert("Tom");
 8 tree.insert("Adam");
 9 tree.insert("Jones");
 10 tree.insert("Peter");
 11 tree.insert("Daniel");
 12
 13 // Traverse tree
 14 System.out.print("Inorder (sorted): ");
inorder 15 tree.inorder();
 16 System.out.print("\nPostorder: ");
postorder 17 tree.postorder();
 18 System.out.print("\nPreorder: ");
preorder 19 tree.preorder();
getSize 20 System.out.print("\nThe number of nodes is " + tree.getSize());
 21
 22 // Search for an element
 23 System.out.print("\nIs Peter in the tree? " +
search 24 tree.search("Peter"));
 25
 26 // Get a path from the root to Peter
 27 System.out.print("\nA path from the root to Peter is: ");
 28 java.util.ArrayList<BST.TreeNode<String>> path
 29 = tree.path("Peter");
 30 for (int i = 0; path != null && i < path.size(); i++)
 31 System.out.print(path.get(i).element + " ");
 32
 33 Integer[] numbers = {2, 4, 3, 1, 8, 5, 6, 7};
 34 BST<Integer> intTree = new BST<>(numbers);
 35 System.out.print("\nInorder (sorted): ");
 36 intTree.inorder();
 37 }
 38 }

Inorder (sorted): Adam Daniel George Jones Michael Peter Tom
Postorder: Daniel Adam Jones Peter Tom Michael George
Preorder: George Adam Daniel Michael Jones Tom Peter
The number of nodes is 7
Is Peter in the tree? true
A path from the root to Peter is: George Michael Tom Peter
Inorder (sorted): 1 2 3 4 5 6 7 8

The program checks path != null in line 30 to ensure that the path is not null before invoking path.get(i). This is an example of defensive programming to avoid potential runtime errors.

The program creates another tree for storing int values (line 34). After all the elements are inserted in the trees, the trees should appear as shown in Figure 25.7.

[image: Two trees.Part ay: Root George to Adam and Michael. Adam to Daniel. Michael to Jones and Tom. tom to Peter. Part b: Root 2 to 1 and 4. 4 to 3 and 8. 8 to 5. 5 to 6. 6 to 7.]
Figure 25.7 

The BSTs in Listing 25.5 are pictured here after they are created.

If the elements are inserted in a different order (e.g., Daniel, Adam, Jones, Peter, Tom, Michael, and George), the tree will look different. However, the inorder traversal prints elements in the same order as long as the set of elements is the same. The inorder traversal displays a sorted list.

	25.2.1 Show the result of inserting 44 into Figure 25.4b .

	25.2.2 Show the inorder, preorder, and postorder of traversing the elements in the binary tree shown in Figure 25.1c .

	25.2.3 If a set of elements is inserted into a BST in two different orders, will the two corresponding BSTs look the same? Will the inorder traversal be the same? Will the postorder traversal be the same? Will the preorder traversal be the same?

	25.2.4 What is the time complexity of inserting an element into a BST?

	25.2.5 Implement the search(element) method using recursion.

25.3 Deleting Elements from a BST

	To delete an element from a BST, first locate it in the tree then consider two cases—whether or not the node has a left child—before deleting the element and reconnecting the tree.

The insert(element) method is presented in Section 25.2.3. Often, you need to delete an element from a binary search tree. Doing so is far more complex than adding an element into a binary search tree.

To delete an element from a binary search tree, you need to first locate the node that contains the element and also its parent node. Let current point to the node that contains the element in the binary search tree and parent point to the parent of the current node. The current node may be a left child or a right child of the parent node. There are two cases to consider.

locating element

Case 1: The current node does not have a left child, as shown in Figure 25.8a. In this case, simply connect the parent with the right child of the current node, as shown in Figure 25.8b.

For example, to delete node 10 in Figure 25.9a, you would connect the parent of node 10 with the right child of node 10, as shown in Figure 25.9b.

[image: Two trees.]
Figure 25.8 

Case 1: The current node has no left child.

Description

[image: Two trees.]
Figure 25.9 

Case 1: Deleting node 10 from (a) results in (b).

Description

 Note

If the current node is a leaf, it falls into Case 1. For example, to delete element 16 in Figure 25.9a, connect its right child (in this case, it is null) to the parent of node 16.

delete a leaf

Case 2: The current node has a left child. Let rightMost point to the node that contains the largest element in the left subtree of the current node and parentOfRightMost point to the parent node of the rightMost node, as shown in Figure 25.10a. Note the rightMost node cannot have a right child but may have a left child. Replace the element value in the current node with the one in the rightMost node, connect the parentOfRightMost node with the left child of the rightMost node, and delete the rightMost node, as shown in Figure 25.10b.

For example, consider deleting node 20 in Figure 25.11a. The rightMost node has the element value 16. Replace the element value 20 with 16 in the current node and make node 10 the parent for node 14, as shown in Figure 25.11b.

[image: Two trees.]
Figure 25.10 

Case 2: The current node has a left child.

Description

[image: Two trees.]
Figure 25.11 

Case 2: Deleting node 20 from (a) results in (b).

Description

 Note

If the left child of current does not have a right child, current.left points to the largest element in the left subtree of current. In this case, rightMost is current.left and parentOfRightMost is current. You have to take care of this special case to reconnect the left child of rightMost with parentOfRightMost.

special case

The algorithm for deleting an element from a binary search tree can be described in Listing 25.6.

delete method

Listing 25.6 Deleting an Element from a BST

 1 boolean delete(E e) {
not in the tree 2 Locate element e in the tree;
 3 if element e is not found
 4 return true;
 5
locate current 6 Let current be the node that contains e and parent be
locate parent 7 the parent of current;
 8
Case 1 9 if (current has no left child) // Case 1
 10 Connect the right child of current with parent;
 11 Now current is not referenced, so it is eliminated;
Case 2 12 else // Case 2
 13 Locate the rightmost node in the left subtree of current.
 14 Copy the element value in the rightmost node to current.
 15 Connect the parent of the rightmost node to the left child
 16 of rightmost node;
 17
 18 return true; // Element deleted
 19 }

The complete implementation of the delete method is given in lines 154–212 in Listing 25.4. The method locates the node (named current) to be deleted and also locates its parent (named parent) in lines 156–169. If current is null, the element is not in the tree. Therefore, the method returns false (line 172). Please note that if current is root, parent is null. If the tree is empty, both current and parent are null.

Case 1 of the algorithm is covered in lines 175–186. In this case, the current node has no left child (i.e., current.left == null). If parent is null, assign current.right to root (lines 177–179). Otherwise, assign current.right to either parent.left or parent.right, depending on whether current is a left or a right child of parent (181–184).

Case 2 of the algorithm is covered in lines 187–208. In this case, current has a left child. The algorithm locates the rightmost node (named rightMost) in the left subtree of the current node and also its parent (named parentOfRightMost) (lines 194–197). Replace the element in current by the element in rightMost (line 200); assign rightMost.left to either parentOfRightMost.right or parentOfRightMost.left (lines 203–207), depending on whether rightMost is a right or a left child of parentOfRightMost.

Listing 25.7 gives a test program that deletes the elements from the binary search tree.

Listing 25.7 TestBSTDelete.java

		 1 public class TestBSTDelete {
		 2 public static void main(String[] args) {
		 3 BST<String> tree = new BST<>();
		 4 tree.insert("George");
		 5 tree.insert("Michael");
		 6 tree.insert("Tom");
		 7 tree.insert("Adam");
		 8 tree.insert("Jones");
		 9 tree.insert("Peter");
		 10 tree.insert("Daniel");
		 11 printTree(tree);
		 12
		 13 System.out.println("\nAfter delete George:");
delete an element 14 tree.delete("George");
		 15 printTree(tree);
		 16
		 17 System.out.println("\nAfter delete Adam:");
delete an element 18 tree.delete("Adam");
	 19 printTree(tree);
		 20
		 21 System.out.println("\nAfter delete Michael:");
delete an element 22 tree.delete("Michael");
		 23 printTree(tree);
		 24 }
		 25
		 26 public static void printTree(BST tree) {
		 27 // Traverse tree
		 28 System.out.print("Inorder (sorted): ");
		 29 tree.inorder();
		 30 System.out.print("\nPostorder: ");
		 31 tree.postorder();
		 32 System.out.print("\nPreorder: ");
		 33 tree.preorder();
		 34 System.out.print("\nThe number of nodes is " + tree.getSize());
		 35 System.out.println();
		 36 }
		 37 }

Inorder (sorted): Adam Daniel George Jones Michael Peter Tom
Postorder: Daniel Adam Jones Peter Tom Michael George
Preorder: George Adam Daniel Michael Jones Tom Peter
The number of nodes is 7

After delete George:
Inorder (sorted): Adam Daniel Jones Michael Peter Tom
Postorder: Adam Jones Peter Tom Michael Daniel
Preorder: Daniel Adam Michael Jones Tom Peter
The number of nodes is 6

After delete Adam:
Inorder (sorted): Daniel Jones Michael Peter Tom
Postorder: Jones Peter Tom Michael Daniel
Preorder: Daniel Michael Jones Tom Peter
The number of nodes is 5

After delete Michael:
Inorder (sorted): Daniel Jones Peter Tom
Postorder: Peter Tom Jones Daniel
Preorder: Daniel Jones Tom Peter
The number of nodes is 4

Figures 25.12–25.14 show how the tree evolves as the elements are deleted from it.

[image: Two trees.]
Figure 25.12 

Deleting George falls into Case 2.

Description

[image: Two trees.]
Figure 25.13 

Deleting Adam falls into Case 1.

Description

[image: Two trees. Part ay: deleting Michael. Root Daniel right to Michael. Michael to Jones and Tom. Tom left to Peter. Part b: Root Daniel right to Jones. Jones right to Tom. Tom left to Peter.]
Figure 25.14 

Deleting Michael falls into Case 2.

 Note

It is obvious that the time complexity for the inorder, preorder, and postorder is O(n), since each node is traversed only once. The time complexity for search, insertion, and deletion is the height of the tree. In the worst case, the height of the tree is O(n). On average, the height of the tree is O(logn). So, the average time for search, insertion, deletion in a BST is O(logn).

BST time complexity

	25.3.1 Show the result of deleting 55 from the tree in Figure 25.4b .

	25.3.2 Show the result of deleting 60 from the tree in Figure 25.4b .

	25.3.3 What is the time complexity of deleting an element from a BST?

	25.3.4 Is the algorithm correct if lines 203–207 in Listing 25.4 in Case 2 of the delete() method are replaced by the following code?

parentOfRightMost.right = rightMost.left;

25.4 Tree Visualization and MVC

	You can use recursion to display a binary tree.

 Pedagogical Note

One challenge facing the data-structure course is to motivate students. Displaying a binary tree graphically will not only help you understand the working of a binary tree but perhaps also stimulate your interest in programming. This section introduces the techniques to visualize binary trees. You can also apply visualization techniques to other projects.

How do you display a binary tree? It is a recursive structure, so you can display a binary tree using recursion. You can simply display the root, then display the two subtrees recursively. The techniques for displaying the Sierpinski triangle in Listing 18.9 can be applied to displaying a binary tree. For simplicity, we assume that the keys are positive integers less than 100. Listings 25.8 and 25.9 give the program, and Figure 25.15 shows some sample runs of the program.

[image: The B S T Ay animation shows three trees. Tree 1: empty. tree 2: 4 branches to 2 and 34. Tree 3: 4 is removed, so 2 branches right to 34.]
Figure 25.15 

A binary tree is displayed graphically.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Listing 25.8 BSTAnimation.java

 1 import javafx.application.Application;
		 2 import javafx.geometry.Pos;
		 3 import javafx.stage.Stage;
		 4 import javafx.sceneScene;
		 5 import javafx.scene.control.Button;
		 6 import javafx.scene.control.Label;
		 7 import javafx.scene.control.TextField;
		 8 import javafx.scene.layout.BorderPane;
		 9 import javafx.scene.layout.HBox;
		 10
		 11 public class BSTAnimation extends Application {
		 12 @Override // Override the start method in the Application class
		 13 public void start(Stage primaryStage) {
create a tree 14 BST<Integer> tree = new BST<>(); // Create a tree
		 15
		 16 BorderPane pane = new BorderPane();
view for tree	 17 BTView view = new BTView(tree); // Create a View
place tree view	 18 pane.setCenter(view);
		 19
		 20 TextField tfKey = new TextField();
		 21 tfKey.setPrefColumnCount(3);
		 22 tfKey.setAlignment(Pos.BASELINE_RIGHT);
		 23 Button btInsert = new Button("Insert");
		 24 Button btDelete = new Button("Delete");
		 25 HBox hBox = new HBox(5);
		 26 hBox.getChildren().addAll(new Label("Enter a key: "),
		 27 tfKey, btInsert, btDelete);
		 28 hBox.setAlignment(Pos.CENTER);
place hBox	 29 pane.setBottom(hBox);
		 30
handle insertion 31 btInsert.setOnAction(e -> {
		 32 int key = Integer.parseInt(tfKey.getText());
		 33 if (tree.search(key)) { // key is in the tree already
		 34 view.displayTree();
		 35 view.setStatus(key + " is already in the tree");
		 36 }
		 37 else {
insert key	 38 tree.insert(key); // Insert a new key
display the tree 39 view.displayTree();
		 40 view.setStatus(key + " is inserted in the tree");
		 41 }
		 42 });
		 43
handle deletion 44 btDelete.setOnAction(e -> {
	 45 int key = Integer.parseInt(tfKey.getText());
		 46 if (!tree.search(key)) { // key is not in the tree
		 47 view.displayTree();
		 48 view.setStatus(key + " is not in the tree");
		 49 }
		 50 else {
delete key	 51 tree.delete(key); // Delete a key
display the tree 52 view.displayTree();
	 53 view.setStatus(key + " is deleted from the tree");
		 54 }
		 55 });
		 56
		 57 // Create a scene and place the pane in the stage
		 58 Scene scene = new Scene(pane, 450, 250);
		 59 primaryStage.setTitle("BSTAnimation"); // Set the stage title
		 60 primaryStage.setScene(scene); // Place the scene in the stage
		 61 primaryStage.show(); // Display the stage
		 62 }
		 63 }

Listing 25.9 BTView.java

 1 import javafx.scene.layout.Pane;
 2 import javafx.scene.paint.Color;
 3 import javafx.scene.shape.Circle;
 4 import javafx.scene.shape.Line;
 5 import javafx.scene.text.Text;
 6
 7 public class BTView extends Pane {
tree to display 8 private BST<Integer> tree = new BST<>();
 9 private double radius = 15; // Tree node radius
 10 private double vGap = 50; // Gap between two levels in a tree
 11
			 12 BTView(BST<Integer> tree) {
set a tree 13 this.tree = tree;
 14 setStatus("Tree is empty");
 15 }
 16
 17 public void setStatus(String msg) {
 18 getChildren().add(new Text(20, 20, msg));
 19 }
 20
 21 public void displayTree() {
clear the display 22 this.getChildren().clear(); // Clear the pane
 23 if (tree.getRoot() != null) {
 24 // Display tree recursively
display tree recursively 25 displayTree(tree.getRoot(), getWidth() / 2, vGap,
 26 getWidth() / 4);
 27 }
 28 }
 29
 30 /** Display a subtree rooted at position (x, y) */
 31 private void displayTree(BST.TreeNode<Integer> root,
 32 double x, double y, double hGap) {
 33 if (root.left != null) {
 34 // Draw a line to the left node
connect two nodes 35 getChildren().add(new Line(x - hGap, y + vGap, x, y));
 36 // Draw the left subtree recursively
draw left subtree 37 displayTree(root.left, x − hGap, y + vGap, hGap / 2);
 38 }
 39
 40 if (root.right != null) {
 41 // Draw a line to the right node
connect two nodes 42 getChildren().add(new Line(x + hGap, y + vGap, x, y));
 43 // Draw the right subtree recursively
draw right subtree 44 displayTree(root.right, x + hGap, y + vGap, hGap / 2);
 45 }
 46
 47 // Display a node
 48 Circle circle = new Circle(x, y, radius);
 49 circle.setFill(Color.WHITE);
 50 circle.setStroke(Color.BLACK);
display a node 51 getChildren().addAll(circle,
 52 new Text(x - 4, y + 4, root.element + ""));
 53 }
 54 }

In Listing 25.8, BSTAnimation.java, a tree is created (line 14) and a tree view is placed in the pane (line 18). After a new key is inserted into the tree (line 38), the tree is repainted (line 39) to reflect the change. After a key is deleted (line 51), the tree is repainted (line 52) to reflect the change.

In Listing 25.9, BTView.java, the node is displayed as a circle with radius 15 (line 48). The distance between two levels in the tree is defined in vGap 50 (line 25). hGap (line 32) defines the distance between two nodes horizontally. This value is reduced by half (hGap / 2) in the next level when the displayTree method is called recursively (lines 37 and 44). Note that vGap is not changed in the tree.

The method displayTree is recursively invoked to display a left subtree (lines 33–38) and a right subtree (lines 40–45) if a subtree is not empty. A line is added to the pane to connect two nodes (lines 35 and 42). Note the method first adds the lines to the pane then adds the circle into the pane (line 52) so the circles will be painted on top of the lines to achieve desired visual effects.

The program assumes the keys are integers. You can easily modify the program with a generic type to display keys of characters or short strings.

Tree visualization is an example of the model-view-controller (MVC) software architecture. This is an important architecture for software development. The model is for storing and handling data. The view is for visually presenting the data. The controller handles the user interaction with the model and controls the view, as shown in Figure 25.16.

[image: The B S T Ay animation informs the controller, which produces the view and model. The view is informed by B T view, and it in turn influences the model, which also depends on the B S T.]
Figure 25.16 

The controller obtains data and stores it in a model. The view displays the data stored in the model.

The MVC architecture separates data storage and handling from the visual representation of the data. It has two major benefits:

	It makes multiple views possible so data can be shared through the same model. For example, you can create a new view that displays the tree with the root on the left and the tree grows horizontally to the right (see Programming Exercise 25.11).

	It simplifies the task of writing complex applications and makes the components scalable and easy to maintain. Changes can be made to the view without affecting the model, and vice versa.

	25.4.1 How many times will the displayTree method be invoked if the tree is empty? How many times will the displayTree method be invoked if the tree has 100 nodes?

	25.4.2 In what order are the nodes in the tree visited by the displayTree method: inorder, preorder, or postorder?

	25.4.3 What would happen if the code in lines 47–52 in Listing 25.9 , BTView.java is moved to line 33?

	25.4.4 What is MVC? What are the benefits of the MVC?

	25.4.5 Write one statement that displays the maximum and minimum element in a BST object named tree.

25.5 Iterators

	BST is iterable because it is defined as a subtype of the java.lang.Iterable interface.

The methods inorder(), preorder(), and postorder() display the elements in inorder, preorder, and postorder in a binary tree. These methods are limited to displaying the elements in a tree. If you wish to process the elements in a binary tree rather than display them, these methods cannot be used. Recall that an iterator is provided for traversing the elements in a set or list. You can apply the same approach in a binary tree to provide a uniform way of traversing the elements in a binary tree.

iterator

The java.lang.Iterable interface defines the iterator method, which returns an instance of the java.util.Iterator interface. The java.util.Iterator interface (see Figure 25.17) defines the common features of iterators.

[image: An annotated U M L diagram titled, interface, begin italics, java dot u t i l dot Iterator, <, E, >, end italics.]
Figure 25.17 

The Iterator interface defines a uniform way of traversing the elements in a container.

Description

The Tree interface extends java.util.Collection. Since Collection extends java.lang.Iterable, BST is also a subclass of Iterable. The Iterable interface contains the iterator() method that returns an instance of java.util.Iterator.

You can traverse a binary tree in inorder, preorder, or postorder. Since inorder is used frequently, we will use inorder for traversing the elements in a binary tree. We define an iterator class named InorderIterator to implement the java.util.Iterator interface in Listing 25.4 (lines 220–265). The iterator method simply returns an instance of InorderIterator (line 216).

how to create an iterator

The InorderIterator constructor invokes the inorder method (line 227). The inorder(root) method (lines 236–241) stores all the elements from the tree in list. The elements are traversed in inorder.

Once an Iterator object is created, its current value is initialized to 0 (line 224), which points to the first element in the list. Invoking the next() method returns the current element and moves current to point to the next element in the list (line 252).

The hasNext() method checks whether current is still in the range of list (line 245).

The remove() method removes the element returned by the last next() (line 258). Afterward, a new list is created (lines 261–262). Note that current does not need to be changed.

Listing 25.10 gives a test program that stores the strings in a BST and displays all strings in uppercase.

Listing 25.10 TestBSTWithIterator.java

 1 public class TestBSTWithIterator {
 2 public static void main(String[] args) {
 3 BST<String> tree = new BST<>();
 4 tree.insert("George");
 5 tree.insert("Michael");
 6 tree.insert("Tom");
 7 tree.insert("Adam");
 8 tree.insert("Jones");
 9 tree.insert("Peter");
 10 tree.insert("Daniel");
 11
use an iterator 12 for (String s: tree)
get uppercase letters 13 System.out.print(s.toUpperCase() + " ");
 14 }
 15 }

The foreach loop (lines 12 and 13) uses an iterator to traverse all elements in the tree.

ADAM DANIEL GEORGE JONES MICHAEL PETER TOM

iterator pattern

advantages of iterators

 Design Guide

Iterator is an important software design pattern. It provides a uniform way of traversing the elements in a container, while hiding the container’s structural details. By implementing the same interface java.util.Iterator, you can write a program that traverses the elements of all containers in the same way.

 Note

java.util.Iterator defines a forward iterator, which traverses the elements in the iterator in a forward direction, and each element can be traversed only once. The Java API also provides the java.util.ListIterator, which supports traversing in both forward and backward directions. If your data structure warrants flexible traversing, you may define iterator classes as a subtype of java.util.ListIterator.

variations of iterators

The implementation of the iterator is not efficient. Every time you remove an element through the iterator, the whole list is rebuilt (line 263 in Listing 25.4, BST.java). The client should always use the delete method in the BST class to remove an element. To prevent the user from using the remove method in the iterator, implement the iterator as follows:

public void remove() {
 throw new UnsupportedOperationException
 ("Removing an element from the iterator is not supported");
}

After making the remove method unsupported by the iterator class, you can implement the iterator more efficiently without having to maintain a list for the elements in the tree. You can use a stack to store the nodes, and the node on the top of the stack contains the element that is to be returned from the next() method. If the tree is well balanced, the maximum stack size will be O(logn).

	25.5.1 What is an iterator?

	25.5.2 What method is defined in the java.lang.Iterable<E> interface?

	25.5.3 Suppose you delete implements Collection<E> from line 3 in Listing 25.3 , Tree.java. Will Listing 25.10 still compile?

	25.5.4 What is the benefit of being a subtype of Iterable<E>?

	25.5.5 Write one statement that displays the maximum and minimum element in a BST object named tree.

25.6 Case Study: Data Compression

	Huffman coding compresses data by using fewer bits to encode characters that occur more frequently. The codes for the characters are constructed based on the ­occurrence of the characters in the text using a binary tree, called the Huffman coding tree.

Compressing data is a common task. There are many utilities available for compressing files. This section introduces Huffman coding, invented by David Huffman in 1952.

Huffman coding

In ASCII, every character is encoded in 8 bits. If a text consists of 100 characters, it will take 800 bits to represent the text. The idea of Huffman coding is to use a fewer bits to encode frequently used characters in the text and more bits to encode less frequently used characters to reduce the overall size of the file. In Huffman coding, the characters’ codes are constructed based on the characters’ occurrence in the text using a binary tree, called the Huffman coding tree. Suppose the text is Mississippi. Its Huffman tree is as shown in Figure 25.18a. The left and right edges of a node are assigned the values 0 and 1, respectively. Each character is a leaf in the tree. The code for the character consists of the edge values in the path from the root to the leaf, as shown in Figure 25.18b. Since i and s appear more than M and p in the text, they are assigned shorter codes.

[image: A tree and a table for Huffman codes.]
Figure 25.18 

The codes for characters are constructed based on the occurrence of ­characters in the text using a coding tree.

Description

The coding tree is also used for decoding a sequence of bits into characters. To do so, start with the first bit in the sequence and determine whether to go to the left or right branch of the tree’s root based on the bit value. Consider the next bit and continue to go down to the left or right branch based on the bit value. When you reach a leaf, you have found a character. The next bit in the stream is the first bit of the next character. For example, the stream 011001 is decoded to sip, with 01 matching s, 1 matching i, and 001 matching p.

decoding

Based on the coding scheme in Figure 25.18,

 Mississippi

 ===========>

 is encoded to

 000101011010110010011

 ===========>

 is decoded to

 Mississippi

[&*2frac*{|thn|}{~rom~Mississippi~normal~}~norm~ *2frac*{|em|~rom~is encoded to|em|~normal~}{|eq||eq||eq||eq||eq||eq||eq||eq||eq|}~norm~*2frac*{|thn|}{|gtrns|} *2frac*{|thn|}{000101011010110010011} *2frac*{|em|~rom~is decoded to|em|~normal~}{|eq||eq||eq||eq||eq||eq||eq||eq||eq||eq|}~norm~*2frac*{|thn|}{|gtrns|} *2frac*{|thn|}{~rom~Mississippi~normal~}~norm~&]

To construct a Huffman coding tree, use the following algorithm:

construct coding tree

	Begin with a forest of trees. Each tree contains a node for a character. The weight of the node is the frequency of the character in the text.

	Repeat the following action to combine trees until there is only one tree: Choose two trees with the smallest weight and create a new node as their parent. The weight of the new tree is the sum of the weight of the subtrees.

	For each interior node, assign its left edge a value 0 and right edge a value 1. All leaf nodes represent characters in the text.

Here is an example of building a coding tree for the text Mississippi. The frequency table for the characters is shown in Figure 25.18b. Initially, the forest contains single-node trees, as shown in Figure 25.19a. The trees are repeatedly combined to form large trees until only one tree is left, as shown in Figures 25.19b–d.

[image: Four diagrams show the construction of a weighted tree.]
Figure 25.19 

The coding tree is built by repeatedly combining the two smallest-weighted trees.

Description

It is worth noting that no code is a prefix of another code. This property ensures that the streams can be decoded unambiguously.

prefix property

greedy algorithm

The algorithm used here is an example of a greedy algorithm. A greedy algorithm is often used in solving optimization problems. The algorithm makes the choice that is optimal locally in the hope that this choice will lead to a globally optimal solution. In this case, the algorithm always chooses two trees with the smallest weight and creates a new node as their parent. This intuitive optimal local solution indeed leads to a final optimal solution for constructing a ­Huffman tree. As another example, consider changing money into the fewest possible coins. A greedy algorithm would take the largest possible coin first. For example, for 98¢, you would use three quarters to make 75¢, additional two dimes to make 95¢, and additional three pennies to make the 98¢. The greedy algorithm finds an optimal solution for this problem. However, a greedy algorithm is not always going to find the optimal result; see the bin packing problem in Programming Exercise 11.19.

Listing 25.11 gives a program that prompts the user to enter a string, displays the frequency table of the characters in the string, and displays the Huffman code for each character.

Listing 25.11 HuffmanCode.java

 1 import java.util.Scanner;
 2
 3 public class HuffmanCode {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Enter text: ");
 7 String text = input.nextLine();
 8
count frequency 9 int[] counts = getCharacterFrequency(text); // Count frequency
 10
 11 System.out.printf("%-15s%-15s%-15s%-15s\n",
 12 "ASCII Code", "Character", "Frequency", "Code");
 13
get Huffman tree 14 Tree tree = getHuffmanTree(counts); // Create a Huffman tree
code for each character 15 String[] codes = getCode(tree.root); // Get codes
 16
 17 for (int i = 0; i < codes.length; i++)
 18 if (counts[i] != 0) // (char)i is not in text if counts[i] is 0
 19 System.out.printf("%−15d%−15s%−15d%−15s\n",
 20 i, (char)i + "", counts[i], codes[i]);
 21 }
 22
 23 /** Get Huffman codes for the characters
 24 * This method is called once after a Huffman tree is built
 25 */
getCode			26 public static String[] getCode(Tree.Node root) {
 27 if (root == null) return null;
 28 String[] codes = new String[2 * 128];
 29 assignCode(root, codes);
 30 return codes;
 31 }
 32
 33 /* Recursively get codes to the leaf node */
assignCode		34 private static void assignCode(Tree.Node root, String[] codes) {
 35 if (root.left != null) {
 36 root.left.code = root.code + "0";
 37 assignCode(root.left, codes);
 38
 39 root.right.code = root.code + "1";
 40 assignCode(root.right, codes);
 41 }
 42 else {
 43 codes[(int)root.element] = root.code;
 44 }
 45 }
 46
 47 /** Get a Huffman tree from the codes */
getHuffmanTree		48 public static Tree getHuffmanTree(int[] counts) {
 49 // Create a heap to hold trees
 50 Heap<Tree> heap = new Heap<>(); // Defined in Listing 23.9
 51 for (int i = 0; i < counts.length; i++) {
 52 if (counts[i] > 0)
 53 heap.add(new Tree(counts[i], (char)i)); // A leaf node tree
 54 }
 55
 56 while (heap.getSize() > 1) {
 57 Tree t1 = heap.remove(); // Remove the smallest−weight tree
 58 Tree t2 = heap.remove(); // Remove the next smallest
 59 heap.add(new Tree(t1, t2)); // Combine two trees
 60 }
 61
 62 return heap.remove(); // The final tree
 63 }
 64
 65 /** Get the frequency of the characters */
getCharacterFrequency	66 public static int[] getCharacterFrequency(String text) {
 67 int[] counts = new int[256]; // 256 ASCII characters
 68
 69 for (int i = 0; i < text.length(); i++)
 70 counts[(int)text.charAt(i)]++; // Count the characters in text
 71
 72 return counts;
 73 }
 74
 75 /** Define a Huffman coding tree */
Huffman tree 76 public static class Tree implements Comparable<Tree> {
 77 Node root; // The root of the tree
 78
 79 /** Create a tree with two subtrees */
 80 public Tree(Tree t1, Tree t2) {
 81 root = new Node();
 82 root.left = t1.root;
 83 root.right = t2.root;
 84 root.weight = t1.root.weight + t2.root.weight;
 85 }
 86
 87 /** Create a tree containing a leaf node */
 88 public Tree(int weight, char element) {
 89 root = new Node(weight, element);
 90 }
 91
 92 @Override /** Compare trees based on their weights */
 93 public int compareTo(Tree t) {
 94 if (root.weight < t.root.weight) // Purposely reverse the order
 95 return 1;
 96 else if (root.weight == t.root.weight)
 97 return 0;
 98 else
 99 return -1;
 100 }
 101
tree node 102 public class Node {
 103 char element; // Stores the character for a leaf node
 104 int weight; // weight of the subtree rooted at this node
 105 Node left; // Reference to the left subtree
 106 Node right; // Reference to the right subtree
 107 String code = ""; // The code of this node from the root
 108
 109 /** Create an empty node */
 110 public Node() {
 111 }
 112
 113 /** Create a node with the specified weight and character */
		 114 public Node(int weight, char element) {
 115 this.weight = weight;
 116 this.element = element;
 117 }
 118 }
 119 }
 120 }

Enter text: Welcome

	ASCII Code

	Character

	Frequency

	Code

	87

	W

	1

	110

	99

	c

	1

	111

	101

	e

	2

	10

	108

	l

	1

	011

	109

	m

	1

	010

	111

	o

	1

	00

The program prompts the user to enter a text string (lines 5–7) and counts the frequency of the characters in the text (line 9). The getCharacterFrequency method (lines 66–73) creates an array counts to count the occurrences of each of the 256 ASCII characters in the text. If a character appears in the text, its corresponding count is increased by 1 (line 70).

getCharacterFrequency

The program obtains a Huffman coding tree based on counts (line 14). The tree consists of linked nodes. The Node class is defined in lines 102–118. Each node consists of properties element (storing character), weight (storing weight of the subtree under this node), left (linking to the left subtree), right (linking to the right subtree), and code (storing the ­Huffman code for the character). The Tree class (lines 76–119) contains the root property. From the root, you can access all the nodes in the tree. The Tree class implements Comparable. The trees are comparable based on their weights. The compare order is purposely reversed (lines 93–100) so the smallest-weight tree is removed first from the heap of trees.

Node class

Tree class

The getHuffmanTree method returns a Huffman coding tree. Initially, the single-node trees are created and added to the heap (lines 50–54). In each iteration of the while loop (lines 56–60), two smallest-weight trees are removed from the heap and are combined to form a big tree, then the new tree is added to the heap. This process continues until the heap contains just one tree, which is our final Huffman tree for the text.

getHuffmanTree

The assignCode method assigns the code for each node in the tree (lines 34–45). The getCode method gets the code for each character in the leaf node (lines 26–31). The element codes[i] contains the code for character (char)i, where i is from 0 to 255. Note codes[i] is null if (char)i is not in the text.

assignCode

getCode

	25.6.1 Every internal node in a Huffman tree has two children. Is it true?

	25.6.2 What is a greedy algorithm? Give an example.

	25.6.3 If the Heap class in line 50 in Listing 25.9 is replaced by java.util.­PriorityQueue, will the program still work?

	25.6.4 How do you replace lines 94–99 in Listing 25.11 using one line?

Key Terms

	binary search tree 954

	binary tree 954

	breadth-first traversal 958

	depth 954

	depth-first traversal 958

	greedy algorithm 979

	height 954

	Huffman coding 978

	inorder traversal 957

	leaf 954

	length 954

	level 954

	postorder traversal 957

	preorder traversal 957

	sibling 954

	tree traversal 957

Chapter Summary

	 A binary search tree (BST) is a hierarchical data structure. You learned how to define and implement a BST class, how to insert and delete elements into/from a BST, and how to traverse a BST using inorder, postorder, preorder, depth-first, and breadth-first searches.

	 An iterator is an object that provides a uniform way of traversing the elements in a container, such as a set, a list, or a binary tree. You learned how to define and implement iterator classes for traversing the elements in a binary tree.

	 Huffman coding is a scheme for compressing data by using fewer bits to encode ­characters that occur more frequently. The codes for characters are constructed based on the occurrence of characters in the text using a binary tree, called the Huffman coding tree.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Sections 25.2–25.6

	*25.1 (Add new methods in BST) Add the following new methods in BST.

/** Display the nodes in a breadth-first traversal */
public void breadthFirstTraversal()
/** Return the height of this binary tree */
public int height()

	*25.2 (Test perfect binary tree) A perfect binary tree is a complete binary tree with all levels fully filled. Add a method in the BST class to return true if the tree is a perfect binary tree. (Hint: The number of nodes in a nonempty perfect binary tree is 2height−1[&2^{~rom~height}|-|~normal~1&])

/** Returns true if the tree is a perfect binary tree */
boolean isPerfectBST()

	**25.3 (Implement inorder traversal without using recursion) Implement the inorder method in BST using a stack instead of recursion. Write a test program that prompts the user to enter 10 integers, stores them in a BST, and invokes the inorder method to display the elements.

	**25.4 (Implement preorder traversal without using recursion) Implement the preorder method in BST using a stack instead of recursion. Write a test program that prompts the user to enter 10 integers, stores them in a BST, and invokes the preorder method to display the elements.

	**25.5 (Implement postorder traversal without using recursion) Implement the postorder method in BST using a stack instead of recursion. Write a test program that prompts the user to enter 10 integers, stores them in a BST, and invokes the postorder method to display the elements.

	**25.6 (Find the leaves) Add a method in the BST class to return the number of the leaves as follows:

/** Return the number of leaf nodes */
public int getNumberOfLeaves()

	**25.7 (Find the nonleaves) Add a method in the BST class to return the number of the nonleaves as follows:

/** Return the number of nonleaf nodes */
public int getNumberofNonLeaves()

	***25.8 (Implement bidirectional iterator) The java.util.Iterator interface defines a forward iterator. The Java API also provides the java.util.ListIterator interface that defines a bidirectional iterator. Study ListIterator and define a bidirectional iterator for the BST class.

	**25.9 (Tree clone and equals) Implement the clone and equals methods in the BST class. Two BST trees are equal if they contain the same elements. The clone method returns an identical copy of a BST.

	25.10 (Preorder iterator) Add the following method in the BST class that returns an iterator for traversing the elements in a BST in preorder.

/** Return an iterator for traversing the elements in preorder */
java.util.Iterator<E> preorderIterator()

	25.11 (Display tree) Write a new view class that displays the tree horizontally with the root on the left as shown in Figure 25.20 .

[image: A B S T animation. Root 5 branches upward to 35 and downward to 4. 35 branches downward to 14, and 4 branches downward to 3.]
Figure 25.20 

A binary tree is displayed horizontally.

	**25.12 (Test BST) Design and write a complete test program to test if the BST class in Listing 25.4 meets all requirements.

	**25.13 (Add new buttons in BSTAnimation) Modify Listing 25.8, BSTAnimation.java, to add three new buttons—Show Inorder, Show Preorder, and Show Postorder—to display the result in a label, as shown in Figure 25.21 . You need also to modify Listing 25.4 , BST.java to implement the inorderList(), preorderList(), and postorderList() methods so each of these methods returns a List of the node elements in inorder, preorder, and postorder, as follows:

[image: A B S T animation. 45 to 12 and 47. 12 to 10 and 23. 23 left to 13. 47 right to 56.]
Figure 25.21 

When you click the Show Inorder, Show Preorder, or Show Postorder button, the elements are displayed in an inorder, preorder, or postorder in a label.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

public java.util.List<E> inorderList();
public java.util.List<E> preorderList();
public java.util.List<E> postorderList();

	*25.14 (Modify BST using Comparator) Revise BST in Listing 25.4 using a Comparator for comparing objects. Define the new class as BST<E> with two constructors:

BST(); // Compare elements using their natural order BST(Comparator<? super E> comparator)

Hint: You need to add a data field for Comparator in the BST class as follows:

protected Comparator<E> c = (e1, e2) ->
 ((Comparable<E>)e1).compareTo(e2);

		The lambda expression gives the default comparator using a natural order. You need to use comparator c to replace e.compareTo(anotherElement) with c.compare(e, anotherElement) in Listing 25.4 .

	*25.15 (Parent reference for BST) Redefine TreeNode by adding a reference to a node’s parent, as shown below:

[image: A U M L diagram titled, B S T dot Tree Node, <, E, >.]
Description
Line 1: number sign, element, colon, E.Line 2: number sign, left, colon, Tree Node, <, E, >.Line 3: number sign, right, colon, Tree Node, <, E, >.Line 4, shaded: number sign, parent, colon, Tree Node, <, E, >.

Reimplement the insert and delete methods in the BST class to update the parent for each node in the tree. Add the following new method in BST:

/** Return the node for the specified element.
 * Return null if the element is not in the tree. */
private TreeNode<E> getNode(E element)
/** Return true if the node for the element is a leaf */
private boolean isLeaf(E element)

/** Return the path of elements from the specified element
 * to the root in an array list. */
public ArrayList<E> getPath(E e)

Write a test program that prompts the user to enter 10 integers, adds them to the tree, deletes the first integer from the tree, and displays the paths for all leaf nodes. Here is a sample run:

Enter 10 integers: 45 54 67 56 50 45 23 59 23 67
[50, 54, 23]
[59, 56, 67, 54, 23]

	***25.16 (Data compression: Huffman coding) Write a program that prompts the user to enter a file name, then displays the frequency table of the characters in the file and the Huffman code for each character.

	***25.17 (Data compression: Huffman coding animation) Write a program that enables the user to enter text and displays the Huffman coding tree based on the text, as shown in Figure 25.22a . Display the weight of the subtree inside the subtree’s root circle. Display each leaf node’s character. Display the encoded bits for the text in a label. When the user clicks the Decode Text button, a bit string is decoded into text displayed in the label, as shown in Figure 25.22b .

[image: Two trees in a Huffman coding animation.]
Figure 25.22 

(a) The animation shows the coding tree for a given text string and the encoded bits for the text are displayed in the label; (b) You can enter a bit string to display its text in the label.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	***25.18 (Compress a file) Write a program that compresses a source file into a target file using the Huffman coding method. First, use ObjectOutputStream to output the Huffman codes into the target file, then use BitOutputStream in Programming Exercise 17.17 to output the encoded binary contents to the target file. Pass the files from the command line using the following command:

java Exercise25_18 sourcefile targetfile

	***25.19(Decompress a file) The preceding exercise compresses a file. The compressed file contains the Huffman codes and the compressed contents. Write a program that decompresses a source file into a target file using the following command:

java Exercise25_19 sourcefile targetfile

CHAPTER 26 AVL Trees

Objectives

	To know what an AVL tree is (§26.1).

	To understand how to rebalance a tree using the LL rotation, LR rotation, RR rotation, and RL rotation (§26.2).

	To design the AVLTree class by extending the BST class (§26.3).

	To insert elements into an AVL tree (§26.4).

	To implement tree rebalancing (§26.5).

	To delete elements from an AVL tree (§26.6).

	To implement the AVLTree class (§26.7).

	To test the AVLTree class (§26.8).

	To analyze the complexity of search, insertion, and deletion operations in AVL trees (§26.9).

26.1 Introduction

	AVL Tree is a balanced binary search tree.

Chapter 25 introduced binary search trees. The search, insertion, and deletion times for a binary tree depend on the height of the tree. In the worst case, the height is O(n). If a tree is ­perfectly balanced—that is, a complete binary tree—its height is log n. Can we maintain a perfectly ­balanced tree? Yes, but doing so will be costly. The compromise is to maintain a ­well-balanced tree—that is, the heights of every node’s two subtrees are about the same. This chapter introduces AVL trees. Web Chapters 40 and 41 will introduce 2–4 trees and red–black trees.

perfectly balanced tree

well-balanced tree

AVL trees are well balanced. AVL trees were invented in 1962 by two Russian computer scientists, G. M. Adelson-Velsky and E. M. Landis (hence the name AVL). In an AVL tree, the difference between the heights of every node’s two subtrees is 0 or 1. It can be shown that the maximum height of an AVL tree is O(log n).

AVL tree

The process for inserting or deleting an element in an AVL tree is the same as in a binary search tree, except that you may have to rebalance the tree after an insertion or deletion ­operation. The balance factor of a node is the height of its right subtree minus the height of its left subtree. For example, the balance factor for the node 87 in Figure 26.1a is 0, for the node 67 is 1, and for the node 55 is −1. A node is said to be balanced if its balance factor is −1, 0, or 1. A node is considered left-heavy if its balance factor is −1 or less, and right-heavy if its balance factor is +1 or greater.

O(log n)

[image: Two Ay V L trees.]
Figure 26.1 

A balance factor determines whether a node is balanced.

Description

balance factor

balanced

left-heavy

right-heavy

 Pedagogical Note

For an interactive GUI demo to see how an AVL tree works, go to liveexample.­pearsoncmg.com/dsanimation/AVLTreeeBook.html, as shown in Figure 26.2.

[image: The Ay V L tree animation tool.]
Figure 26.2 

The animation tool enables you to insert, delete, and search elements.

Source: Copyright © 1995–2016 ­Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

AVL tree animation on ­Companion Website

26.2 Rebalancing Trees

	After inserting or deleting an element from an AVL tree, if the tree becomes ­unbalanced, perform a rotation operation to rebalance the tree.

If a node is not balanced after an insertion or deletion operation, you need to rebalance it. The process of rebalancing a node is called rotation. There are four possible rotations: LL, RR, LR, and RL.

rotation

LL rotation: An LL imbalance occurs at a node A, such that A has a balance factor of −2 and a left child B with a balance factor of −1 or 0, as shown in Figure 26.3a. This type of imbalance can be fixed by performing a single right rotation at A, as shown in Figure 26.3b.

LL rotation

LL imbalance

[image: Two Ay V L trees.]
Figure 26.3 

An LL rotation fixes an LL imbalance.

Description

RR rotation: An RR imbalance occurs at a node A, such that A has a balance factor of +2 and a right child B with a balance factor of +1 or 0, as shown in Figure 26.4a. This type of imbalance can be fixed by performing a single left rotation at A, as shown in Figure 26.4b.

RR rotation

[image: Two Ay V L trees.]
Figure 26.4 

An RR rotation fixes an RR imbalance.

Description

RR imbalance

LR rotation: An LR imbalance occurs at a node A, such that A has a balance factor of −2 and a left child B with a balance factor of +1, as shown in Figure 26.5a. Assume B’s right child is C. This type of imbalance can be fixed by performing a double rotation (first a single left rotation at B, then a single right rotation at A), as shown in Figure 26.5b.

[image: Two Ay V L trees.]
Figure 26.5 

An LR rotation fixes an LR imbalance.

Description

LR rotation

LR imbalance

RL rotation: An RL imbalance occurs at a node A, such that A has a balance factor of +2 and a right child B with a balance factor of −1, as shown in Figure 26.6a. Assume B’s left child is C. This type of imbalance can be fixed by performing a double rotation (first a single right rotation at B, then a single left rotation at A), as shown in Figure 26.6b.

[image: Two Ay V L trees]
Figure 26.6 

An RL rotation fixes an RL imbalance.

Description

RL rotation

RL imbalance

	26.2.1 What is an AVL tree? Describe the following terms: balance factor, left-heavy, and right-heavy.

	26.2.2 Show the balance factor of each node in the trees shown in Figure 26.1 .

	26.2.3 Describe LL rotation, RR rotation, LR rotation, and RL rotation for an AVL tree.

26.3 Designing Classes for AVL Trees

	Since an AVL tree is a binary search tree, AVLTree is designed as a subclass of BST.

An AVL tree is a binary tree, so you can define the AVLTree class to extend the BST class, as shown in Figure 26.7. The BST and TreeNode classes were defined in Section 25.2.5.

[image: An annotated U M L diagram, with 4 parts.]
Figure 26.7 

The AVLTree class extends BST with new implementations for the insert and delete methods.

Description

In order to balance the tree, you need to know each node’s height. For convenience, store the height of each node in AVLTreeNode and define AVLTreeNode to be a subclass of BST.TreeNode. Note that TreeNode is defined as a static inner class in BST. AVLTreeNode will be defined as a static inner class in AVLTree. TreeNode contains the data fields element, left, and right, which are inherited by AVLTreeNode. Thus, AVLTreeNode contains four data fields, as shown in Figure 26.8.

[image: An annotated U M L diagram titled, begin underline, node, colon, AY V L Tree Node, <, E, >, end underline.]
Figure 26.8 

An AVLTreeNode contains the protected data fields element, height, left, and right.

Description

AVLTreeNode

In the BST class, the createNewNode() method creates a TreeNode object. This method is overridden in the AVLTree class to create an AVLTreeNode. Note the return type of the createNewNode() method in the BST class is TreeNode, but the return type of the ­createNewNode() method in the AVLTree class is AVLTreeNode. This is fine, since ­AVLTreeNode is a subclass of TreeNode.

createNewNode()

Searching for an element in an AVLTree is the same as searching in a binary search tree, so the search method defined in the BST class also works for AVLTree.

The insert and delete methods are overridden to insert and delete an element and ­perform rebalancing operations if necessary to ensure that the tree is balanced.

	26.3.1 What are the data fields in the AVLTreeNode class?

	26.3.2 True or false: AVLTreeNode is a subclass of TreeNode.

	26.3.3 True or false: AVLTree is a subclass of BST.

26.4 Overriding the insert Method

	Inserting an element into an AVL tree is the same as inserting it to a BST, except that the tree may need to be rebalanced.

A new element is always inserted as a leaf node. As a result of adding a new node, the heights of the new leaf node’s ancestors may increase. After inserting a new node, check the nodes along the path from the new leaf node up to the root. If an unbalanced node is found, perform an appropriate rotation using the algorithm in Listing 26.1.

Listing 26.1 Balancing Nodes on a Path

 1 balancePath(E e) {
get the path 2 Get the path from the node that contains element e to the root,
 3 as illustrated in Figure 26.9;
 4 for each node A in the path leading to the root {
update node height 5 Update the height of A;
get parent node 6 Let parentOfA denote the parent of A,
 7 which is the next node in the path, or null if A is the root;
 8
is balanced? 9 switch (balanceFactor(A)) {
 10 case −2: if balanceFactor(A.left) == −1 or 0
LL rotation 11 Perform LL rotation; // See Figure 26.3
 12 else
LR rotation 13 Perform LR rotation; // See Figure 26.5
 14 break;
 15 case +2: if balanceFactor(A.right) == +1 or 0
RR rotation 16 Perform RR rotation; // See Figure 26.4
 17 else
RL rotation 18 Perform RL rotation; // See Figure 26.6
 19 } // End of switch
 20 } // End of for
 21 } // End of method

[image: The path leads from the root at the top vertex of the triangle through nodes parent 0 f Ay and Ay to a node on the base of the triangle. The path then continues to a new node containing element e.]
Figure 26.9 

The nodes along the path from the new leaf node may become unbalanced.

The algorithm considers each node in the path from the new leaf node to the root. Update the height of the node on the path. If a node is balanced, no action is needed. If a node is not balanced, perform an appropriate rotation.

	26.4.1 For the AVL tree in Figure 26.1a , show the new AVL tree after adding element 40. What rotation do you perform in order to rebalance the tree? Which node was unbalanced?

	26.4.2 For the AVL tree in Figure 26.1a , show the new AVL tree after adding element 50. What rotation do you perform in order to rebalance the tree? Which node was unbalanced?

	26.4.3 For the AVL tree in Figure 26.1a , show the new AVL tree after adding element 80. What rotation do you perform in order to rebalance the tree? Which node was unbalanced?

	26.4.4 For the AVL tree in Figure 26.1a , show the new AVL tree after adding element 89. What rotation do you perform in order to rebalance the tree? Which node was unbalanced?

26.5 Implementing Rotations

	An unbalanced tree becomes balanced by performing an appropriate rotation operation.

Section 26.2, Rebalancing Trees, illustrated how to perform rotations at a node. Listing 26.2 gives the algorithm for the LL rotation, as illustrated in Figure 26.3.

Listing 26.2 LL Rotation Algorithm

 1 balanceLL(TreeNode A, TreeNode parentOfA) {
 left child of A 2 Let B be the left child of A.
 left child of A 3
reconnect B’s parent 4 if (A is the root)
 5 Let B be the new root
 6 else {
 7 if (A is a left child of parentOfA)
 8 Let B be a left child of parentOfA;
 9 else
 10 Let B be a right child of parentOfA;
 11 }
 12
move subtrees 13 Make T2 the left subtree of A by assigning B.right to A.left;
 14 Make A the right child of B by assigning A to B.right;
adjust height 15 Update the height of node A and node B;
 16 } // End of method

Note the height of nodes A and B can be changed, but the heights of other nodes in the tree are not changed. You can implement the RR, LR, and RL rotations in a similar manner.

	26.5.1 Use Listing 26.2 as a template to describe the algorithms for implementing the RR, LR, and RL rotations.

26.6 Implementing the delete Method

	Deleting an element from an AVL tree is the same as deleting it from a BST, except that the tree may need to be rebalanced.

As discussed in Section 25.3, Deleting Elements from a BST, to delete an element from a binary tree, the algorithm first locates the node that contains the element. Let current point to the node that contains the element in the binary tree and parent point to the parent of the current node. The current node may be a left child or a right child of the parent node. Two cases arise when deleting an element.

Case 1: The current node does not have a left child, as shown in Figure 25.10a. To delete the current node, simply connect the parent node with the right child of the current node, as shown in Figure 25.10b.

The height of the nodes along the path from the parent node up to the root may have decreased. To ensure that the tree is balanced, invoke

balancePath(parent.element); // Defined in Listing 26.1

Case 2: The current node has a left child. Let rightMost point to the node that contains the largest element in the left subtree of the current node and parentOfRightMost point to the parent node of the rightMost node, as shown in Figure 25.12a. The rightMost node cannot have a right child, but may have a left child. Replace the element value in the current node with the one in the rightMost node, connect the parentOfRightMost node with the left child of the rightMost node, and delete the rightMost node, as shown in Figure 25.12b.

The height of the nodes along the path from parentOfRightMost up to the root may have decreased. To ensure the tree is balanced, invoke

balancePath(parentOfRightMost); // Defined in Listing 26.1

	26.6.1 For the AVL tree in Figure 26.1a , show the new AVL tree after deleting element 107. What rotation do you perform in order to rebalance the tree? Which node was unbalanced?

	26.6.2 For the AVL tree in Figure 26.1a , show the new AVL tree after deleting element 60. What rotation do you perform in order to rebalance the tree? Which node was unbalanced?

	26.6.3 For the AVL tree in Figure 26.1a , show the new AVL tree after deleting element 55. What rotation did you perform in order to rebalance the tree? Which node was unbalanced?

	26.6.4 For the AVL tree in Figure 26.1b , show the new AVL tree after deleting elements 67 and 87. What rotation did you perform in order to rebalance the tree? Which node was unbalanced?

26.7 The AVLTree Class

	TheAVLTree class extends the BST class to override the insert and delete methods to rebalance the tree if necessary.

Listing 26.3 gives the complete source code for the AVLTree class.

Listing 26.3 AVLTree.java

 1 public class AVLTree<E extends Comparable<E>> extends BST<E> {
 2 /** Create an empty AVL tree */
no-arg constructor 3 public AVLTree() {
 4 }
 5
 6 /** Create an AVL tree from an array of objects */
constructor 7 public AVLTree(E[] objects) {
 8 super(objects);
 9 }
 10
 11 @Override /** Override createNewNode to create an AVLTreeNode */
create AVL tree node 12 protected AVLTreeNode<E> createNewNode(E e) {
 13 return new AVLTreeNode<E>(e);
 14 }
 15
 16 @Override /** Insert an element and rebalance if necessary */
override insert 17 public boolean insert(E e) {
 18 boolean successful = super.insert(e);
 19 if (!successful)
 20 return false; // e is already in the tree
 21 else {
override insert 22 balancePath(e); // Balance from e to the root if necessary
 23 }
 24
 25 return true; // e is inserted
 26 }
 27
 28 /** Update the height of a specified node */
update node height 29 private void updateHeight(AVLTreeNode<E> node) {
 30 if (node.left == null && node.right == null) // node is a leaf
 31 node.height = 0;
 32 else if (node.left == null) // node has no left subtree
 33 node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
 34 else if (node.right == null) // node has no right subtree
 35 node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
 36 else
 37 node.height = 1 +
 38 Math.max(((AVLTreeNode<E>)(node.right)).height,
 39 ((AVLTreeNode<E>)(node.left)).height);
 40 }
 41
 42 /** Balance the nodes in the path from the specified
 43 * node to the root if necessary
 44 */
balance nodes 45 private void balancePath(E e) {
get path 46 java.util.ArrayList<TreeNode<E>> path = path(e);
 47 for (int i = path.size() − 1; i >= 0; i—–) {
consider a node 48 AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
update height 49 updateHeight(A);
get height 50 AVLTreeNode<E> parentOfA = (A == root) ? null :
 51 (AVLTreeNode<E>)(path.get(i − 1));
 52
 53 switch (balanceFactor(A)) {
left-heavy 54 case −2:
 55 if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
LL rotation 56 balanceLL(A, parentOfA); // Perform LL rotation
 57 }
 58 else {
LR rotation 59 balanceLR(A, parentOfA); // Perform LR rotation
 60 }
 61 break;
right-heavy 62 case +2:
 63 if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
RR rotation 64 balanceRR(A, parentOfA); // Perform RR rotation
 65 }
 66 else {
RL rotation 67 balanceRL(A, parentOfA); // Perform RL rotation
 68 }
 69 }
 70 }
 71 }
 72
 73 /** Return the balance factor of the node */
get balance factor 74 private int balanceFactor(AVLTreeNode<E> node) {
 75 if (node.right == null) // node has no right subtree
 76 return −node.height;
 77 else if (node.left == null) // node has no left subtree
 78 return +node.height;
 79 else
 80 return ((AVLTreeNode<E>)node.right).height −
 81 ((AVLTreeNode<E>)node.left).height;
 82 }
 83
 84 /** Balance LL (see Figure 26.3) */
LL rotation 85 private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
 86 TreeNode<E> B = A.left; // A is left-heavy and B is left−heavy
 87
 88 if (A == root) {
 89 root = B;
 90 }
 91 else {
 92 if (parentOfA.left == A) {
 93 parentOfA.left = B;
 94 }
 95 else {
 96 parentOfA.right = B;
 97 }
 98 }
 99
 100 A.left = B.right; // Make T2 the left subtree of A
 101 B.right = A; // Make A the left child of B
update height 102 updateHeight((AVLTreeNode<E>)A);
 103 updateHeight((AVLTreeNode<E>)B);
 104 }
 105
 106 /** Balance LR (see Figure 26.5) */
LR rotation 107 private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
 108 TreeNode<E> B = A.left; // A is left−heavy
 109 TreeNode<E> C = B.right; // B is right−heavy
 110
 111 if (A == root) {
 112 root = C;
 113 }
 114 else {
 115 if (parentOfA.left == A) {
 116 parentOfA.left = C;
 117 }
 118 else {
 119 parentOfA.right = C;
 120 }
 121 }
 122
 123 A.left = C.right; // Make T3 the left subtree of A
 124 B.right = C.left; // Make T2 the right subtree of B
 125 C.left = B;
 126 C.right = A;
 127
 128 // Adjust heights
update height 129 updateHeight((AVLTreeNode<E>)A);
 130 updateHeight((AVLTreeNode<E>)B);
 131 updateHeight((AVLTreeNode<E>)C);
 132 }
 133
 134 /** Balance RR (see Figure 26.4) */
RR rotation 135 private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
 136 TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy
 137
 138 if (A == root) {
 139 root = B;
 140 }
 141 else {
 142 if (parentOfA.left == A) {
 143 parentOfA.left = B;
 144 }
 145 else {
 146 parentOfA.right = B;
 147 }
 148 }
 149
 150 A.right = B.left; // Make T2 the right subtree of A
 151 B.left = A;
update height 152 updateHeight((AVLTreeNode<E>)A);
 153 updateHeight((AVLTreeNode<E>)B);
 154 }
 155
 156 /** Balance RL (see Figure 26.6) */
RL rotation 157 private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
 158 TreeNode<E> B = A.right; // A is right-heavy
 159 TreeNode<E> C = B.left; // B is left-heavy
 160
 161 if (A == root) {
 162 root = C;
 163 }
 164 else {
 165 if (parentOfA.left == A) {
 166 parentOfA.left = C;
 167 }
 168 else {
 169 parentOfA.right = C;
 170 }
 171 }
 172
 173 A.right = C.left; // Make T2 the right subtree of A
 174 B.left = C.right; // Make T3 the left subtree of B
 175 C.left = A;
 176 C.right = B;
 177
 178 // Adjust heights
update height 179 updateHeight((AVLTreeNode<E>)A);
 180 updateHeight((AVLTreeNode<E>)B);
 181 updateHeight((AVLTreeNode<E>)C);
 182 }
 183
 184 @Override /** Delete an element from the AVL tree.
 185 * Return true if the element is deleted successfully
 186 * Return false if the element is not in the tree */
override delete 187 public boolean delete(E element) {
 188 if (root == null)
 189 return false; // Element is not in the tree
 190
 191 // Locate the node to be deleted and also locate its parent node
 192 TreeNode<E> parent = null;
 193 TreeNode<E> current = root;
 194 while (current != null) {
 195 if (element.compareTo(current.element) < 0) {
 196 parent = current;
 197 current = current.left;
 198 }
 199 else if (element.compareTo(current.element) > 0) {
 200 parent = current;
 201 current = current.right;
 202 }
 203 else
 204 break; // Element is in the tree pointed by current
 205 }
 206
 207 if (current == null)
 208 return false; // Element is not in the tree
 209
 210 // Case 1: current has no left children (see Figure 25.10)
 211 if (current.left == null) {
 212 // Connect the parent with the right child of the current node
 213 if (parent == null) {
 214 root = current.right;
 215 }
 216 else {
 217 if (element.compareTo(parent.element) < 0)
 218 parent.left = current.right;
 219 else
 220 parent.right = current.right;
 221
 222 // Balance the tree if necessary
balance nodes 223 balancePath(parent.element);
 224 }
 225 }
 226 else {
 227 // Case 2: The current node has a left child
 228 // Locate the rightmost node in the left subtree of
 229 // the current node and also its parent
 230 TreeNode<E> parentOfRightMost = current;
 231 TreeNode<E> rightMost = current.left;
 232
 233 while (rightMost.right != null) {
 234 parentOfRightMost = rightMost;
 235 rightMost = rightMost.right; // Keep going to the right
 236 }
 237
 238 // Replace the element in current by the element in rightMost
 239 current.element = rightMost.element;
 240
 241 // Eliminate rightmost node
 242 if (parentOfRightMost.right == rightMost)
 243 parentOfRightMost.right = rightMost.left;
 244 else
 245 // Special case: parentOfRightMost is current
 246 parentOfRightMost.left = rightMost.left;
 247
 248 // Balance the tree if necessary
balance nodes 249 balancePath(parentOfRightMost.element);
 250 }
 251
 252 size—–;
 253 return true; // Element inserted
 254 }
 255
 256 /** AVLTreeNode is TreeNode plus height */
inner AVLTreeNode class 257 protected static class AVLTreeNode<E> extends BST.TreeNode<E> {
 258 protected int height = 0; // New data field
node height 259
 260 public AVLTreeNode(E e) {
 261 super(e);
 262 }
 263 }
 264 }

The AVLTree class extends BST. Like the BST class, the AVLTree class has a no-arg constructor that constructs an empty AVLTree (lines 3 and 4) and a constructor that creates an initial AVLTree from an array of elements (lines 7–9).

constructors

The createNewNode() method defined in the BST class creates a TreeNode. This method is overridden to return an AVLTreeNode (lines 12–14).

The insert method in AVLTree is overridden in lines 17–26. The method first invokes the insert method in BST, then invokes balancePath(e) (line 22) to ensure that the tree is balanced.

insert

The balancePath method first gets the nodes on the path from the node that contains ­element e to the root (line 46). For each node in the path, update its height (line 49), check its balance factor (line 53), and perform appropriate rotations if necessary (lines 53–69).

balancePath

Four methods for performing rotations are defined in lines 85–182. Each method is invoked with two TreeNode arguments—A and parentOfA—to perform an appropriate rotation at node A. How each rotation is performed is illustrated in Figures 26.3–26.6. After the rotation, the heights of nodes A, B, and C are updated (lines 102, 129, 152, and 179).

rotations

The delete method in AVLTree is overridden in lines 187–254. The method is the same as the one implemented in the BST class, except that you have to rebalance the nodes after deletion in two cases (lines 223, 249).

delete

	26.7.1 Why is the createNewNode method defined protected? When is it invoked?

	26.7.2 When is the updateHeight method invoked? When is the balanceFactor method invoked? When is the balancePath method invoked? Will the program work if you replace the break in line 61 in the AVLTree class with a return and add a return at line 69?

	26.7.3 What are data fields in the AVLTree class?

	26.7.4 In the insert and delete methods, once you have performed a rotation to ­balance a node in the tree, is it possible there are still unbalanced nodes?

26.8 Testing the AVLTree Class

	This section gives an example of using the AVLTree class.

Listing 26.4 gives a test program. The program creates an AVLTree initialized with an array of the integers 25, 20, and 5 (lines 4 and 5), inserts elements in lines 9–18, and deletes elements in lines 22–28. Since AVLTree is a subclass of BST and the elements in a BST are iterable, the program uses a foreach loop to traverse all the elements in lines 33–35.

Listing 26.4 TestAVLTree.java

 1 public class TestAVLTree {
 2 public static void main(String[] args) {
 3 // Create an AVL tree
create an AVLTree 4 AVLTree<Integer> tree = new AVLTree<Integer>(new Integer[]{25,
 5 20, 5});
 6 System.out.print("After inserting 25, 20, 5:");
 7 printTree(tree);
 8
insert 34 9 tree.insert(34);
insert 50 10 tree.insert(50);
 11 System.out.print("\nAfter inserting 34, 50:");
 12 printTree(tree);
 13
insert 30 14 tree.insert(30);
 15 System.out.print("\nAfter inserting 30");
 16 printTree(tree);
 17
insert 10 18 tree.insert(10);
 19 System.out.print("\nAfter inserting 10");
 20 printTree(tree);
 21
delete 34 22 tree.delete(34);
delete 30 23 tree.delete(30);
delete 50 24 tree.delete(50);
 25 System.out.print("\nAfter removing 34, 30, 50:");
 26 printTree(tree);
 27
delete 5 28 tree.delete(5);
 29 System.out.print("\nAfter removing 5:");
 30 printTree(tree);
 31
 32 System.out.print("\nTraverse the elements in the tree: ");
foreach loop 33 for (int e: tree) {
 34 System.out.print(e + " ");
 35 }
 36 }
 37
 38 public static void printTree(BST tree) {
 39 // Traverse tree
 40 System.out.print("\nInorder (sorted): ");
 41 tree.inorder();
 42 System.out.print("\nPostorder: ");
 43 tree.postorder();
 44 System.out.print("\nPreorder: ");
 45 tree.preorder();
 46 System.out.print("\nThe number of nodes is " + tree.getSize());
 47 System.out.println();
 48 }
 49 }

After inserting 25, 20, 5:
Inorder (sorted): 5 20 25
Postorder: 5 25 20
Preorder: 20 5 25
The number of nodes is 3

After inserting 34, 50:
Inorder (sorted): 5 20 25 34 50
Postorder: 5 25 50 34 20
Preorder: 20 5 34 25 50
The number of nodes is 5

After inserting 30
Inorder (sorted): 5 20 25 30 34 50
Postorder: 5 20 30 50 34 25
Preorder: 25 20 5 34 30 50
The number of nodes is 6

After inserting 10
Inorder (sorted): 5 10 20 25 30 34 50
Postorder: 5 20 10 30 50 34 25
Preorder: 25 10 5 20 34 30 50
The number of nodes is 7

After removing 34, 30, 50:
Inorder (sorted): 5 10 20 25
Postorder: 5 20 25 10
Preorder: 10 5 25 20
The number of nodes is 4

After removing 5:
Inorder (sorted): 10 20 25
Postorder: 10 25 20
Preorder: 20 10 25
The number of nodes is 3
Traverse the elements in the tree: 10 20 25

[image: Parts ay to j show the construction of an AY V L tree.]
Figure 26.10 

The tree evolves as new elements are inserted.

Description

Figure 26.10 shows how the tree evolves as elements are added to the tree. After 25 and 20 are added, the tree is as shown in Figure 26.10a. 5 is inserted as a left child of 20, as shown in Figure 26.10b. The tree is not balanced. It is left-heavy at node 25. Perform an LL rotation to result in an AVL tree as shown in Figure 26.10c.

After inserting 34, the tree is as shown in Figure 26.10d. After inserting 50, the tree is as shown in Figure 26.10e. The tree is not balanced. It is right-heavy at node 25. Perform an RR rotation to result in an AVL tree as shown in Figure 26.10f.

After inserting 30, the tree is as shown in Figure 26.10g. The tree is not balanced. Perform an RL rotation to result in an AVL tree as shown in Figure 26.10h.

After inserting 10, the tree is as shown in Figure 26.10i. The tree is not balanced. Perform an LR rotation to result in an AVL tree as shown in Figure 26.10j.

Figure 26.11a shows how the tree evolves as elements are deleted. After deleting 34, 30, and 50, the tree is as shown in Figure 26.11b. The tree is not balanced. Perform an LL rotation to result in an AVL tree as shown in Figure 26.11c.

[image: Parts ay to e show the construction of an Ay V L tree.]
Figure 26.11 

The tree evolves as elements are deleted from the tree.

Description

After deleting 5, the tree is as shown in Figure 26.11d. The tree is not balanced. Perform an RL rotation to result in an AVL tree as shown in Figure 26.11e.

	26.8.1 Show the change of an AVL tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 into the tree, in this order.

	26.8.2 For the tree built in the preceding question, show its change after 1, 2, 3, 4, 10, 9, 7, 5, 8, 6 are deleted from the tree in this order.

	26.8.3 Can you traverse the elements in an AVL tree using a foreach loop?

26.9 AVL Tree Time Complexity Analysis

	Since the height of an AVL tree is O(log n), the time complexity of the search, insert, and delete methods in AVLTree is O(log n).

The time complexity of the search, insert, and delete methods in AVLTree depends on the height of the tree. We can prove that the height of the tree is O(log n).

tree height

Let G(h) denote the minimum number of nodes in an AVL tree with height h. Obviously, G(1) is 1 and G(2) is 2. The minimum number of nodes in an AVL tree with height h≥3[&h|geq|3&] must have two minimum subtrees: one with height h−1[&h|-|1&] and the other with height h−2.[&h|-|2.&] Thus,

G(h)=G(h−1)+G(h−2)+1[&G(h)|=|G(h|-|1)|+|G(h|-|2)|+|1&]

Recall that a Fibonacci number at index i can be described using the recurrence relation F(i)=F(i−1)+F(i−2).[&F(i)|=|F(i|-|1)|+|F(i|-|2).&] Therefore, the function G(h) is essentially the same as F(i). It can be proven that

h<1.4405 log(n+2)−1.3277[&h|less|1.4405 ~rom~log~normal~(n|+|2)|-|1.3277&]

where n is the number of nodes in the tree. Hence, the height of an AVL tree is O(log n).

The search, insert, and delete methods involve only the nodes along a path in the tree. The updateHeight and balanceFactor methods are executed in a constant time for each node in the path. The balancePath method is executed in a constant time for a node in the path. Thus, the time complexity for the search, insert, and delete methods is O(log n).

	26.9.1 What is the maximum/minimum height for an AVL tree of 3 nodes, 5 nodes, and 7 nodes?

	26.9.2 If an AVL tree has a height of 3, what maximum number of nodes can the tree have? What minimum number of nodes can the tree have?

	26.9.3 If an AVL tree has a height of 4, what maximum number of nodes can the tree have? What minimum number of nodes can the tree have?

Key Terms

	AVL tree 990

	balance factor 990

	left-heavy 990

	LL rotation 990

	LR rotation 991

	perfectly balanced tree 990

	right-heavy 990

	RL rotation 991

	rotation 990

	RR rotation 990

	well-balanced tree 990

Chapter Summary

	An AVL tree is a well-balanced binary tree. In an AVL tree, the difference between the heights of two subtrees for every node is 0 or 1.

	The process for inserting or deleting an element in an AVL tree is the same as in a binary search tree. The difference is that you may have to rebalance the tree after an insertion or deletion operation.

	Imbalances in the tree caused by insertions and deletions are rebalanced through subtree rotations at the node of the imbalance.

	The process of rebalancing a node is called a rotation. There are four possible rotations: LL rotation, LR rotation, RR rotation, and RL rotation.

	The height of an AVL tree is O(log n). Therefore, the time complexities for the search, insert, and delete methods are O(log n).

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	*26.1(Display AVL tree graphically) Write a program that displays an AVL tree along with its balance factor for each node.

	26.2 (Compare performance) Write a test program that randomly generates 500,000 numbers and inserts them into a BST, reshuffles the 500,000 numbers and performs a search, and reshuffles the numbers again before deleting them from the tree. Write another test program that does the same thing for an AVLTree. Compare the execution times of these two programs.

	***26.3 (AVL tree animation) Write a program that animates the AVL tree insert, delete, and search methods, as shown in Figure 26.2 .

	**26.4 (Parent reference for BST) Suppose the TreeNode class defined in BST contains a reference to the node’s parent, as shown in Programming Exercise 25.15 . Implement the AVLTree class to support this change. Write a test program that adds numbers 1, 2, . . . , 100 to the tree and displays the paths for all leaf nodes.

	**26.5 (The kth smallest element) You can find the kth smallest element in a BST in O(n) time from an inorder iterator. For an AVL tree, you can find it in O(log n) time. To achieve this, add a new data field named size in AVLTreeNode to store the number of nodes in the subtree rooted at this node. Note the size of a node v is one more than the sum of the sizes of its two children. Figure 26.12 shows an AVL tree and the size value for each node in the tree.

[image: An AY V L tree. Node 25 with size 6 branches to node 20 with size 20 and node 34 with size 3. 20 branches to node 5 with size 1. 34 branches to node 30 with size 1 and to node 50 with size 1.]
Figure 26.12 

The size data field in AVLTreeNode stores the number of nodes in the ­subtree rooted at the node:

In the AVLTree class, add the following method to return the kth smallest ­element in the tree:

public E find(int k)

The method returns null if k < 1 or k > the size of the tree. This method can be implemented using the recursive method find(k, root), which returns the kth smallest element in the tree with the specified root. Let A and B be the left and right children of the root, respectively. Assuming the tree is not empty and k≤root.size,[&k|leq|root.size,&] find(k, root) can be recursively defined as follows:

find(k, root)= [root.element, if A is null and k is 1;B.element, if A is null and k is 2;find(k, A), if k <= A.size;root.element, if k=A.size+1;find(k−A.size−1, B), if k>A.size+1;
[&find(k, root)|=||5msbo|~MAT~[1%5%L%120%C%A]*MAT*{root.element, if A is null and k is 1;}{B.element, if A is null and k is 2;}{find(k, A), if k |lessns||eq| A.size;}{root.element, if k|=|A.size|+|1;}{find(k|-|A.size|-|1, B), if k|gtr|A.size|+|1;}&]

Modify the insert and delete methods in AVLTree to set the correct value for the size property in each node. The insert and delete methods will still be in O(log n) time. The find(k) method can be implemented in O(log n) time. Therefore, you can find the kth smallest element in an AVL tree in O(log n) time.

Test your program using the code at

liveexample.pearsoncmg.com/test/Exercise26_05Test.txt.

	**26.6 (Test AVLTree) Design and write a complete test program to test if the AVLTree class in Listing 26.3 meets all requirements.

CHAPTER 27 Hashing

Objectives

	To understand what hashing is and for what hashing is used (§27.2).

	To obtain the hash code for an object and design the hash function to map a key to an index (§27.3).

	To handle collisions using open addressing (§27.4).

	To know the differences among linear probing, quadratic probing, and double hashing (§27.4).

	To handle collisions using separate chaining (§27.5).

	To understand the load factor and the need for rehashing (§27.6).

	To implement MyHashMap using hashing (§27.7).

	To implement MyHashSet using hashing (§27.8).

27.1 Introduction

	Hashing is superefficient. It takes O(1) time to search, insert, and delete an element using hashing.

The preceding chapter introduced binary search trees. An element can be found in O(log n) time in a well-balanced search tree. Is there a more efficient way to search for an element in a container? This chapter introduces a technique called hashing. You can use hashing to implement a map or a set to search, insert, and delete an element in O(1) time.

why hashing?

27.2 What Is Hashing?

	Hashing uses a hashing function to map a key to an index.

Before introducing hashing, let us review map, which is a data structure that is implemented using hashing. Recall that a map (introduced in Section 21.5) is a container object that stores entries. Each entry contains two parts: a key and a value. The key, also called a search key, is used to search for the corresponding value. For example, a dictionary can be stored in a map, in which the words are the keys and the definitions of the words are the values.

map

key

value

 Note

A map is also called a dictionary, a hash table, or an associative array.

The Java Collections Framework defines the java.util.Map interface for modeling maps. Three concrete implementations are java.util.HashMap, java.util.LinkedHashMap, and java.util.TreeMap. java.util.HashMap is implemented using hashing, java.util.LinkedHashMap using LinkedList, and java.util.TreeMap using red–black trees. (Bonus Chapter 41 will introduce red–black trees.) You will learn the concept of hashing and use it to implement a hash map in this chapter.

dictionary

hash table

associative array

If you know the index of an element in the array, you can retrieve the element using the index in O(1) time. So does that mean we can store the values in an array and use the key as the index to find the value? The answer is yes—if you can map a key to an index. The array that stores the values is called a hash table. The function that maps a key to an index in the hash table is called a hash function. As shown in Figure 27.1, a hash function obtains an index from a key and uses the index to retrieve the value for the key. Hashing is a technique that retrieves the value using the index obtained from the key without performing a search.

[image: The hash function consists of entries identified by hashes or keys from i = 0 to N minus 1. An entry consists of a key followed by a value.]
Figure 27.1 

A hash function maps a key to an index in the hash table.

hash table

hash function

hashing

perfect hash function

How do you design a hash function that produces an index from a key? Ideally, we would like to design a function that maps each search key to a different index in the hash table. Such a function is called a perfect hash function. However, it is difficult to find a perfect hash function. When two or more keys are mapped to the same hash value, we say a collision has occurred. Although there are ways to deal with collisions, which will be are discussed later in this chapter, it is better to avoid collisions in the first place. Thus, you should design a fast and easy-to-compute hash function that minimizes collisions.

collision

	27.2.1 What is a hash function? What is a perfect hash function? What is a collision?

27.3 Hash Functions and Hash Codes

	A typical hash function first converts a search key to an integer value called a hash code, then compresses the hash code into an index to the hash table.

Java’s root class Object has the hashCode method, which returns an integer hash code. By default, the method returns the memory address for the object. The general contract for the hashCode method is as follows:

hash code

hashCode()

	You should override the hashCode method whenever the equals method is overridden to ensure two equal objects return the same hash code.

	During the execution of a program, invoking the hashCode method multiple times returns the same integer, provided that the object’s data are not changed.

	Two unequal objects may have the same hash code, but you should implement the hashCode method to avoid too many such cases.

27.3.1 Hash Codes for Primitive Types

For search keys of the type byte, short, int, and char, simply cast them to int. Therefore, two different search keys of any one of these types will have different hash codes.

byte, short, int, char

For a search key of the type float, use Float.floatToIntBits(key) as the hash code. Note floatToIntBits(float f) returns an int value whose bit representation is the same as the bit representation for the floating number f. Thus, two different search keys of the float type will have different hash codes.

float

For a search key of the type long, simply casting it to int would not be a good choice, because all keys that differ in only the first 32 bits will have the same hash code. To take the first 32 bits into consideration, divide the 64 bits into two halves and perform the exclusive-or operation to combine the two halves. This process is called folding. The hash code for a long key is

long

folding

int hashCode = (int)(key ^ (key >> 32));

Note >> is the right-shift operator that shifts the bits 32 positions to the right. For example, 1010110 >> 2 yields 0010101. The ^ is the bitwise exclusive-or operator. It operates on two corresponding bits of the binary operands. For example, 1010110 ^ 0110111 yields 1100001. For more on bitwise operations, see Appendix G, Bitwise Operations.

For a search key of the type double, first convert it to a long value using the Double.doubleToLongBits method, then perform a folding as follows:

double

folding

long bits = Double.doubleToLongBits(key);
int hashCode = (int)(bits ^ (bits >> 32));

27.3.2 Hash Codes for Strings

Search keys are often strings, so it is important to design a good hash function for strings. An intuitive approach is to sum the Unicode of all characters as the hash code for the string. This approach may work if two search keys in an application don’t contain the same letters, but it will produce a lot of collisions if the search keys contain the same letters, such as tod and dot.

A better approach is to generate a hash code that takes the position of characters into consideration. Specifically, let the hash code be

s0 ∗ b(n−1)+s1 ∗ b(n−2)+⋯+sn−1[&s_{0} |ast| b^{(n|-|1)}|+|s_{1} |ast| b^{(n|-|2)}|+||cdots||+|s_{n|-|1}&]

where si[&s_{i}&] is s.charAt(i). This expression is a polynomial for some positive b, so this is called a polynomial hash code. Using Horner’s rule for polynomial evaluation (see Section 6.7), the hash code can be calculated efficiently as follows:

polynomial hash code

(…((s0 ∗ b+s1) ∗ b+s2) ∗ b+⋯+sn−2) ∗ b+sn−1[&(|cdots|((s_{0} |ast| b|+|s_{1}) |ast| b|+|s_{2}) |ast| b|+||cdots||+|s_{n|-|2}) |ast| b|+|s_{n|-|1}&]

This computation can cause an overflow for long strings, but arithmetic overflow is ignored in Java. You should choose an appropriate value b to minimize collisions. Experiments show that good choices for b are 31, 33, 37, 39, and 41. In the String class, the hashCode is overridden using the polynomial hash code with b being 31.

27.3.3 Compressing Hash Codes

The hash code for a key can be a large integer that is out of the range for the hash-table index, so you need to scale it down to fit in the index’s range. Assume the index for a hash table is between 0 and N-1. The most common way to scale an integer to between 0 and N−1 is to use

index = hashCode % N;

Ideally, you should choose a prime number for N to ensure the indices are spread evenly. However, it is time consuming to find a large prime number. In the Java API implementation for java.util.HashMap, N is set to an integer power of 2. There is a good reason for this choice. When N is an integer power of 2, you can use the & operator to compress a hash code to an index on the hash table as follows:

index = hashCode & (N − 1);

index will be between 0 and N − 1. The ampersand, &, is a bitwise AND operator (see Appendix G, Bitwise Operations). The AND of two corresponding bits yields a 1 if both bits are 1. For example, assume N = 4 and hashCode = 11. Thus, 11 & (4 − 1) = 1011 & 0011 = 0011.

To ensure the hashing is evenly distributed, a supplemental hash function is also used along with the primary hash function in the implementation of java.util.HashMap. This function is defined as:

private static int supplementalHash(int h) {
 h ^= (h >>> 20) ^ (h >>> 12);
 return h ^ (h >>> 7) ^ (h >>> 4);
}

>>> is unsigned right-shift operations (also introduced in Appendix G). The bitwise operations are much faster than the multiplication, division, and remainder operations. You should replace these operations with the bitwise operations whenever possible.

The complete hash function is defined as:

h(hashCode) = supplementalHash(hashCode) & (N – 1)

The supplemental hash function helps avoid collisions for two numbers with the same lower bits. For example, both 11100101 & 00000111 and 11001101 & 00000111 yield 00000111. But supplementalHash(11100101) & 00000111 and supplementalHash(11001101) & 00000111 will be different. Using a supplemental function reduces this type of collision.

 Note

In Java, an int is a 32-bit signed integer. The hashCode() method returns an int and it may be negative. If a hash code is negative, hashCode % N would be negative. But hashCode & (N – 1) will be non-negative because the maximum hash-table size in Java is limited to 230, which is positive in a 32-bit int.anyInt & aNonNegativeInt will always be non-negative.

	27.3.1 What is a hash code? What is the hash code for Byte, Short, Integer, and Character?

	27.3.2 How is the hash code for a Float object computed?

	27.3.3 How is the hash code for a Long object computed?

	27.3.4 How is the hash code for a Double object computed?

	27.3.5 How is the hash code for a String object computed?

	27.3.6 How is a hash code compressed to an integer representing the index in a hash table?

	27.3.7 If N is an integer power of the power of 2, is N / 2 same as N >> 1?

	27.3.8 If N is an integer power of the power of 2, is m % N same as m & (N – 1) for a ­positive integer m?

	27.3.9 What is new Integer("–98").hashCode() and what is "ABCDEFGHIJK." hashCode()?

27.4 Handling Collisions Using Open Addressing

	A collision occurs when two keys are mapped to the same index in a hash table. Generally, there are two ways for handling collisions: open addressing and separate chaining.

Open addressing is the process of finding an open location in the hash table in the event of a collision. Open addressing has several variations: linear probing, quadratic probing, and ­double hashing.

open addressing

27.4.1 Linear Probing

When a collision occurs during the insertion of an entry to a hash table, linear probing finds the next available location sequentially. For example, if a collision occurs at hashTable[k % N], check whether hashTable[(k+1) % N] is available. If not, check hashTable[(k+2) % N] and so on, until an available cell is found, as shown in Figure 27.2.

[image: A hash function.]
Figure 27.2 

Linear probing finds the next available location sequentially.

Description

add entry

linear probing

 Note

When probing reaches the end of the table, it goes back to the beginning of the table. Thus, the hash table is treated as if it were circular.

circular hash table

To search for an entry in the hash table, obtain the index, say k, from the hash function for the key. Check whether hashTable[k % N] contains the entry. If not, check whether hashTable[(k+1) % N] contains the entry, and so on, until it is found, or an empty cell is reached.

search entry

To remove an entry from the hash table, search the entry that matches the key. If the entry is found, place a special marker to denote that the entry is available. Each cell in the hash table has three possible states: occupied, marked, or empty. Note a marked cell is also available for insertion.

remove entry

Linear probing tends to cause groups of consecutive cells in the hash table to be occupied. Each group is called a cluster. Each cluster is actually a probe sequence that you must search when retrieving, adding, or removing an entry. As clusters grow in size, they may merge into even larger clusters, further slowing down the search time. This is a big disadvantage of linear probing.

cluster

 Pedagogical Note

For an interactive GUI demo to see how linear probing works, go to http://liveexample.pearsoncmg.com/dsanimation/LinearProbingeBook.html, as shown in Figure 27.3.

[image: The hashing linear probing animation recreates the hash function from Figure 27.2.]
Figure 27.3 

The animation tool shows how linear probing works.

linear probing animation on Companion Website

27.4.2 Quadratic Probing

Quadratic probing can avoid the clustering problem that can occur in linear probing. Linear probing looks at the consecutive cells beginning at index k. Quadratic probing, on the other hand, looks at the cells at indices (k+j2) %N,[&(k|+|j^{2}) |perc| N,&] for j≥0,[&j|geq|0,&] that is, k % N,[&k |perc| N,&] (k+1) % N,[&(k|+|1) |perc| N,&] (k+4) % n,[&(k|+|4) |perc| n,&] (k+9) % N,[&(k|+|9) |perc| N,&] and so on, as shown in Figure 27.4.

[image: In the hash function from Figure 27.2, the system attempts to insert the new element with key 26 into i = 4. It then conducts a quadratic probe moving two time to i = 5 and then i = 8, where it finds an empty cell.]
Figure 27.4 

Quadratic probing increases the next index in the sequence by j2 for j=1, 2, 3, ….[&j|=|1, 2, 3, |elipns|.&]

quadratic probing

Quadratic probing works in the same way as linear probing except for a change in the search sequence. Quadratic probing avoids linear probing’s clustering problem, but it has its own clustering problem, called secondary clustering; that is, the entries that collide with an occupied entry use the same probe sequence.

secondary clustering

Linear probing guarantees that an available cell can be found for insertion as long as the table is not full. However, there is no such guarantee for quadratic probing.

 Pedagogical Note

For an interactive GUI demo to see how quadratic probing works, go to http://liveexample.pearsoncmg.com/dsanimation/QuadraticProbingeBook.html, as shown in Figure 27.5.

[image: The hashing quadratic probe animation shows the hash function from Figure 27.2, with the following conditions: current table size = 11, number of keys = 5, current load = 0.45, load factor threshold = 0.75.]
Figure 27.5 

The animation tool shows how quadratic probing works.

quadratic probing animation on Companion Website

27.4.3 Double Hashing

Another open addressing scheme that avoids the clustering problem is known as double ­hashing. Starting from the initial index k, both linear probing and quadratic probing add an increment to k to define a search sequence. The increment is 1 for linear probing and j2 for quadratic probing. These increments are independent of the keys. Double hashing uses a ­secondary hash function h′(key)[&h|prime|(key)&] on the keys to determine the increments to avoid the clustering problem. Specifically, double hashing looks at the cells at indices (k+j*h′(key)) % N,[&(k|+|j |ast| h|prime|(key)) |perc| N,&] for j≥0,[&j|geq|0,&] that is, k % N[&k |perc| N&], (k+h′(key)) % N,[&(k|+|h|prime|(key)) |perc| N,&] (k+2*h′(key)) % N,[&(k|+|2 |ast| h|prime|(key)) |perc| N,&] (k+3*h′(key)) % N,[&(k|+|3 |ast| h|prime|(key)) |perc| N,&] and so on.

double hashing

For example, let the primary hash function h and secondary hash function h' on a hash table of size 11 be defined as follows:

h(key) = key % 11;
h'(key) = 7 – key % 7;

For a search key of 12, we have

h(12) = 12 % 11 = 1;
h'(12) = 7 – 12 % 7 = 2;

Suppose the elements with the keys 45, 58, 4, 28, and 21 are already placed in the hash table as shown in Figure 27.6. We now insert the element with key 12. The probe sequence for key 12 starts at index 1. Since the cell at index 1 is already occupied, search the next cell at index 3 (1 + 1 * 2). Since the cell at index 3 is already occupied, search the next cell at index 5 (1 + 2 * 2). Since the cell at index 5 is empty, the element for key 12 is now inserted at this cell.

[image: A secondary hash function.]
Figure 27.6 

The secondary hash function in a double hashing determines the increment of the next index in the probe sequence.

Description

The indices of the probe sequence are as follows: 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10. This sequence reaches the entire table. You should design your functions to produce a probe sequence that reaches the entire table. Note the second function should never have a zero value, since zero is not an increment.

	27.4.1 What is open addressing? What is linear probing? What is quadratic probing? What is double hashing?

	27.4.2 Describe the clustering problem for linear probing.

	27.4.3 What is secondary clustering?

	27.4.4 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39, 45, and 40, using linear probing.

	27.4.5 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39, 45, and 40, using quadratic probing.

	27.4.6 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39, 45, and 40, using double hashing with the following functions:

h(k) = k % 11;
h'(k) = 7 – k % 7;

27.5 Handling Collisions Using Separate Chaining

	The separate chaining scheme places all entries with the same hash index in the same location, rather than finding new locations. Each location in the separate chaining scheme uses a bucket to hold multiple entries.

separate chaining

implementing bucket

You can implement a bucket using an array, ArrayList, or LinkedList. We will use LinkedList for demonstration. You can view each cell in the hash table as the reference to the head of a linked list, and elements in the linked list are chained starting from the head, as shown in Figure 27.7.

[image: The hash function contains the following entries, listed by i value and key: 0, 44; 4, 4; 5, 16; 6, 28; 10, 21. The new element with key 26 is to be inserted at i = 4. So, key 4 chains to k 26.]
Figure 27.7 
Separate chaining scheme chains the entries with the same hash index in a bucket.

	27.5.1 Show the hash table of size 11 after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using separate chaining.

27.6 Load Factor and Rehashing

	The load factor measures how full a hash table is. If the load factor is exceeded, increase the hash-table size and reload the entries into a new larger hash table. This is called rehashing.

rehashing

Load factor λ[&|lam|&] (lambda) measures how full a hash table is. It is the ratio of the number of elements to the size of the hash table, that is, λ=nN,[&|lam||=|*frac*{n}{N},&] where n denotes the number of elements and N the number of locations in the hash table.

load factor

Note λ[&|lam|&] is zero if the hash table is empty. For the open addressing scheme, λ[&|lam|&] is between 0 and 1; λ[&|lam|&] is 1 if the hash table is full. For the separate chaining scheme, λ[&|lam|&] can be any value. As λ[&|lam|&] increases, the probability of a collision also increases. Studies show you should maintain the load factor under 0.5 for the open addressing scheme, and under 0.9 for the separate chaining scheme.

Keeping the load factor under a certain threshold is important for the performance of hashing. In the implementation of the java.util.HashMap class in the Java API, the threshold 0.75 is used. Whenever the load factor exceeds the threshold, you need to increase the hash-table size and rehash all the entries in the map into a new larger hash table. Notice you need to change the hash functions, since the hash-table size has been changed. To reduce the likelihood of rehashing, since it is costly, you should at least double the hash-table size. Even with periodic rehashing, hashing is an efficient implementation for map.

threshold

rehash

 Pedagogical Note

For an interactive GUI demo to see how separate chaining works, go to http://liveexample.pearsoncmg.com/dsanimation/SeparateChainingeBook.html, as shown in Figure 27.8.

[image: The hashing separate chaining function shows a hash function for the following conditions: current table size = 11, number of keys = 3, current load = 0.27, load factor threshold = 0.5. The entries are as follows: 1, 1; 9, 31; 10, 21.]
Figure 27.8 

The animation tool shows how separate chaining works.

separate chaining animation on Companion Website

	27.6.1 What is load factor? Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using linear probing.

	27.6.2 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using quadratic probing.

	 27.6.3 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash table after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using separate chaining.

27.7 Implementing a Map Using Hashing

	A map can be implemented using hashing.

Now you understand the concept of hashing. You know how to design a good hash function to map a key to an index in a hash table, how to measure performance using the load factor, and how to increase the table size and rehash to maintain the performance. This section demonstrates how to implement a map using separate chaining.

We design our custom Map interface to mirror java.util.Map and name the interface MyMap and a concrete class MyHashMap, as shown in Figure 27.9.

[image: An annotated U M L diagram, with 3 parts.]
Figure 27.9 

MyHashMap implements the MyMap interface.

Description

How do you implement MyHashMap? If you use an ArrayList and store a new entry at the end of the list, the search time will be O(n). If you implement MyHashMap using a binary tree, the search time will be O(log n) if the tree is well balanced. Nevertheless, you can implement MyHashMap using hashing to obtain an O(1) time search algorithm. Listing 27.1 shows the MyMap interface, and Listing 27.2 implements MyHashMap using separate chaining.

Listing 27.1 MyMap.java

 interface MyMap 1 public interface MyMap<K, V> {
 2 /** Remove all of the entries from this map */
clear 3 public void clear();
 4
 5 /** Return true if the specified key is in the map */
containsKey 6 public boolean containsKey(K key);
 7
 8 /** Return true if this map contains the specified value */
containsValue 9 public boolean containsValue(V value);
 10
 11 /** Return a set of entries in the map */
entrySet 12 public java.util.Set<Entry<K, V>> entrySet();
 13
 14 /** Return the value that matches the specified key */
get 15 public V get(K key);
 16
 17 /** Return true if this map doesn't contain any entries */
isEmpty 18 public boolean isEmpty();
 19
 20 /** Return a set consisting of the keys in this map */
keySet 21 public java.util.Set<K> keySet();
 22
 23 /** Add an entry (key, value) into the map */
put 24 public V put(K key, V value);
 25
 26 /** Remove an entry for the specified key */
remove 27 public void remove(K key);
 28
 29 /** Return the number of mappings in this map */
size 30 public int size();
 31
 32 /** Return a set consisting of the values in this map */
values 33 public java.util.Set<V> values();
 34
 35 /** Define an inner class for Entry */
Entry inner class 36 public static class Entry<K, V> {
 37 K key;
 38 V value;
 39
 40 public Entry(K key, V value) {
 41 this.key = key;
 42 this.value = value;
 43 }
 44
 45 public K getKey() {
 46 return key;
 47 }
 48
 49 public V getValue() {
 50 return value;
 51 }
 52
 53 @Override
 54 public String toString() {
 55 return "[" + key + ", " + value + "]";
 56 }
 57 }
 58 }

Listing 27.2 MyHashMap.java

 1 import java.util.LinkedList;
 2
 class MyHashMap 3 public class MyHashMap<K, V> implementsMyMap<K, V> {
 4 // Define the default hash-table size. Must be a power of 2
default initial capacity 5 private static int DEFAULT_INITIAL_CAPACITY = 4;
 6
 7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
maximum capacity 8 private static int MAXIMUM_CAPACITY = 1 << 30;
 9
 10 // Current hash-table capacity. Capacity is a power of 2
current capacity 11 private int capacity;
 12
 13 // Define default load factor
default load factor 14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
 15
 16 // Specify a load factor used in the hash table
load-factor threshold 17 private float loadFactorThreshold;
 18
 19 // The number of entries in the map
size 20 private int size = 0;
 21
 22 // Hash table is an array with each cell being a linked list
hash table 23 LinkedList<MyMap.Entry<K,V>>[] table;
 24
 25 /** Construct a map with the default capacity and load factor */
no-arg constructor 26 public MyHashMap() {
 27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
 28 }
 29
 30 /** Construct a map with the specified initial capacity and
 31 * default load factor */
constructor 32 public MyHashMap(int initialCapacity) {
 33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
 34 }
 35
 36 /** Construct a map with the specified initial capacity
 37 * and load factor */
constructor 38 public MyHashMap(int initialCapacity, float loadFactorThreshold) {
 39 if (initialCapacity > MAXIMUM_CAPACITY)
 40 this.capacity = MAXIMUM_CAPACITY;
 41 else
 42 this.capacity = trimToPowerOf2(initialCapacity);
 43
 44 this.loadFactorThreshold = loadFactorThreshold;
 45 table = new LinkedList[capacity];
 46 }
 47
 48 @Override /** Remove all of the entries from this map */
clear 49 public void clear() {
 50 size = 0;
 51 removeEntries();
 52 }
 53
 54 @Override /** Return true if the specified key is in the map */
containsKey 55 public boolean containsKey(K key) {
 56 if (get(key) != null)
 57 return true;
 58 else
 59 return false;
 60 }
 61
 62 @Override /** Return true if this map contains the value */
containsValue 63 public boolean containsValue(V value) {
 64 for (int i = 0; i < capacity; i++) {
 65 if (table[i] != null) {
 66 LinkedList<Entry<K, V>> bucket = table[i];
 67 for (Entry<K, V> entry: bucket)
 68 if (entry.getValue().equals(value))
 69 return true;
 70 }
 71 }
 72
 73 return false;
 74 }
 75
 76 @Override /** Return a set of entries in the map */
entrySet 77 public java.util.Set<MyMap.Entry<K,V>> entrySet() {
 78 java.util.Set<MyMap.Entry<K, V>> set =
 79 new java.util.HashSet<>();
 80
 81 for (int i = 0; i < capacity; i++) {
 82 if (table[i] != null) {
 83 LinkedList<Entry<K, V>> bucket = table[i];
 84 for (Entry<K, V> entry: bucket)
 85 set.add(entry);
 86 }
 87 }
 88
 89 return set;
 90 }
 91
 92 @Override /** Return the value that matches the specified key */
get 93 public V get(K key) {
 94 int bucketIndex = hash(key.hashCode());
 95 if (table[bucketIndex] != null) {
 96 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
 97 for (Entry<K, V> entry: bucket)
 98 if (entry.getKey().equals(key))
 99 return entry.getValue();
 100 }
 101
 102 return null;
 103 }
 104
 105 @Override /** Return true if this map contains no entries */
isEmpty 106 public boolean isEmpty() {
 107 return size == 0;
 108 }
 109
 110 @Override /** Return a set consisting of the keys in this map */
keySet 111 public java.util.Set<K> keySet() {
 112 java.util.Set<K> set = new java.util.HashSet<>();
 113
 114 for (int i = 0; i < capacity; i++) {
 115 if (table[i] != null) {
 116 LinkedList<Entry<K, V>> bucket = table[i];
 117 for (Entry<K, V> entry: bucket)
 118 set.add(entry.getKey());
 119 }
 120 }
 121
 122 return set;
 123 }
 124
 125 @Override /** Add an entry (key, value) into the map */
put 126 public V put(K key, V value) {
 127 if (get(key) != null) { // The key is already in the map
 128 int bucketIndex = hash(key.hashCode());
 129 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
 130 for (Entry<K, V> entry: bucket)
 131 if (entry.getKey().equals(key)) {
 132 V oldValue = entry.getValue();
 133 // Replace old value with new value
 134 entry.value = value;
 135 // Return the old value for the key
 136 return oldValue;
 137 }
 138 }
 139
 140 // Check load factor
 141 if (size >= capacity * loadFactorThreshold) {
 142 if (capacity == MAXIMUM_CAPACITY)
 143 throw new RuntimeException("Exceeding maximum capacity");
 144
 145 rehash();
 146 }
 147
 148 int bucketIndex = hash(key.hashCode());
 149
 150 // Create a linked list for the bucket if not already created
		 151 if (table[bucketIndex] == null) {
 152 table[bucketIndex] = new LinkedList<Entry<K, V>>();
 153 }
 154
 155 // Add a new entry (key, value) to hashTable[index]
 156 table[bucketIndex].add(new MyMap.Entry<K, V>(key, value));
 157
 158 size++; // Increase size
 159
 160 return value;
 161 }
 162
 163 @Override /** Remove the entries for the specified key */
remove 164 public void remove(K key) {
 165 int bucketIndex = hash(key.hashCode());
 166
 167 // Remove the first entry that matches the key from a bucket
 168 if (table[bucketIndex] != null) {
 169 LinkedList<Entry<K, V>> bucket = table[bucketIndex];
 170 for (Entry<K, V> entry: bucket)
 171 if (entry.getKey().equals(key)) {
 172 bucket.remove(entry);
 173 size—–; // Decrease size
 174 break; // Remove just one entry that matches the key
 175 }
 176 }
 177 }
 178
 179 @Override /** Return the number of entries in this map */
size 180 public int size() {
 181 return size;
 182 }
 183
 184 @Override /** Return a set consisting of the values in this map */
values 185 public java.util.Set<V> values() {
 186 java.util.Set<V> set = new java.util.HashSet<>();
 187
 188 for (int i = 0; i < capacity; i++) {
 189 if (table[i] != null) {
 190 LinkedList<Entry<K, V>> bucket = table[i];
 191 for (Entry<K, V> entry: bucket)
 192 set.add(entry.getValue());
 193 }
 194 }
 195
 196 return set;
 197 }
 198
 199 /** Hash function */
hash 200 private int hash(int hashCode) {
 201 return supplementalHash(hashCode) & (capacity − 1);
 202 }
 203
 204 /** Ensure the hashing is evenly distributed */
supplementalHash 205 private static int supplementalHash(int h) {
 206 h ^= (h >>> 20) ^ (h >>> 12);
 207 return h ^ (h >>> 7) ^ (h >>> 4);
 208 }
 209
 210 /** Return a power of 2 for initialCapacity */
trimToPowerOf2 211 private int trimToPowerOf2(int initialCapacity) {
 212 int capacity = 1;
 213 while (capacity < initialCapacity) {
 214 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
 215 }
 216
 217 return capacity;
 218 }
 219
 220 /** Remove all entries from each bucket */
removeEntries 221 private void removeEntries() {
 222 for (int i = 0; i < capacity; i++) {
 223 if (table[i] != null) {
 224 table[i].clear();
 225 }
 226 }
 227 }
 228
 229 /** Rehash the map */
rehash 230 private void rehash() {
 231 java.util.Set<Entry<K, V>> set = entrySet(); // Get entries
 232 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
 233 table = new LinkedList[capacity]; // Create a new hash table
 234 size = 0; // Reset size to 0
 235
 236 for (Entry<K, V> entry: set) {
 237 put(entry.getKey(), entry.getValue()); // Store to new table
 238 }
 239 }
 240
 241 @Override /** Return a string representation for this map */
toString 242 public String toString() {
 243 StringBuilder builder = new StringBuilder("[");
 244
 245 for (int i = 0; i < capacity; i++) {
 246 if (table[i] != null && table[i].size() > 0)
 247 for (Entry<K, V> entry: table[i])
 248 builder.append(entry);
 249 }
 250
 251 builder.append("]");
 252 return builder.toString();
 253 }
 254 }

hash-table parameters

The MyHashMap class implements the MyMap interface using separate chaining. The parameters that determine the hash-table size and load factors are defined in the class. The default initial capacity is 4 (line 5) and the maximum capacity is 230[&2^{30}&] (line 8). The current hash-table capacity is designed as a value of the power of 2 (line 11). The default load-factor threshold is 0.75f (line 14). You can specify a custom load-factor threshold when constructing a map. The custom load-factor threshold is stored in loadFactorThreshold (line 17). The data field size denotes the number of entries in the map (line 20). The hash table is an array. Each cell in the array is a linked list (line 23).

three constructors

Three constructors are provided to construct a map. You can construct a default map with the default capacity and load-factor threshold using the no-arg constructor (lines 26–28), a map with the specified capacity and a default load-factor threshold (lines 32–34), and a map with the specified capacity and load-factor threshold (lines 38–46).

clear

The clear method removes all entries from the map (lines 49–52). It invokes ­removeEntries(), which deletes all entries in the buckets (lines 221–227). The ­removeEntries() method takes O(capacity) time to clear all entries in the table.

containsKey

The containsKey(key) method checks whether the specified key is in the map by invoking the get method (lines 55–60). Since the get method takes O(1) time, the containsKey(key) method takes O(1) time.

containsValue

The containsValue(value) method checks whether the value is in the map (lines 63–74). This method takes O(capacity + size)[&O(capacity|+|size)&] time. It is actually O(capacity), since capacity > size[&capacity|gtr|size.&]

entrySet

The entrySet() method returns a set that contains all entries in the map (lines 77–90). This method takes O(capacity) time.

get

The get(key) method returns the value of the first entry with the specified key (lines 93–103). This method takes O(1) time.

isEmpty

The isEmpty() method simply returns true if the map is empty (lines 106–108). This method takes O(1) time.

keySet

The keySet() method returns all keys in the map as a set. The method finds the keys from each bucket and adds them to a set (lines 111–123). This method takes O(capacity) time.

put

The put(key, value) method adds a new entry into the map. The method first tests if the key is already in the map (line 127), if so, it locates the entry and replaces the old value with the new value in the entry for the key (line 134) and the old value is returned (line 136). If the key is new in the map, the new entry is created in the map (line 156). Before inserting the new entry, the method checks whether the size exceeds the load-factor threshold (line 141). If so, the program invokes rehash() (line 145) to increase the capacity and store entries into a new larger hash table.

rehash

The rehash() method first copies all entries in a set (line 231), doubles the capacity (line 232), creates a new hash table (line 233), and resets the size to 0 (line 234). The method then copies the entries into the new hash table (lines 236–238). The rehash method takes O(capacity) time. If no rehash is performed, the put method takes O(1) time to add a new entry.

remove

The remove(key) method removes the entry with the specified key in the map (lines 164–177). This method takes O(1) time.

size

The size() method simply returns the size of the map (lines 180–182). This method takes O(1) time.

values

The values() method returns all values in the map. The method examines each entry from all buckets and adds it to a set (lines 185–197). This method takes O(capacity) time.

hash

The hash() method invokes the supplementalHash to ensure the hashing is evenly distributed to produce an index for the hash table (lines 200–208). This method takes O(1) time.

Table 27.1 summarizes the time complexities of the methods in MyHashMap.

Table 27.1 Time Complexities for Methods in MyHashMap

	Methods

	Time

	clear()

	O(capacity)

	containsKey(key: Key)

	O(1)

	containsValue(value: V)

	O(capacity)

	entrySet()

	O(capacity)

	get(key: K)

	O(1)

	isEmpty()

	O(1)

	keySet()

	O(capacity)

	put(key: K, value: V)

	O(1)

	remove(key: K)

	O(1)

	size()

	O(1)

	values()

	O(capacity)

	rehash()

	O(capacity)

Since rehashing does not happen very often, the time complexity for the put method is O(1). Note the complexities of the clear, entrySet, keySet, values, and rehash methods depend on capacity, so to avoid poor performance for these methods, you should choose an initial capacity carefully.

Listing 27.3 gives a test program that uses MyHashMap.

Listing 27.3 TestMyHashMap.java

 1 public class TestMyHashMap {
 2 public static void main(String[] args) {
 3 // Create a map
create a map 4 MyMap<String, Integer> map = new MyHashMap<>();
put entries 5 map.put("Smith", 30);
 6 map.put("Anderson", 31);
 7 map.put("Lewis", 29);
 8 map.put("Cook", 29);
 9 map.put("Smith", 65);
 10
display entries 11 System.out.println("Entries in map: " + map);
 12
get value 13 System.out.println("The age for Lewis is " +
 14 map.get("Lewis"));
 15
 16 System.out.println("Is Smith in the map? " +
is key in map? 17 map.containsKey("Smith"));
 18 System.out.println("Is age 33 in the map? " +
is value in map? 19 map.containsValue(33));
 20
remove entry 21 map.remove("Smith");
 22 System.out.println("Entries in map: " + map);
 23
 24 map.clear();
 25 System.out.println("Entries in map: " + map);
 26 }
 27 }

Entries in map: [[Anderson, 31][Smith, 65][Lewis, 29][Cook, 29]]
The age for Lewis is 29
Is Smith in the map? true
Is age 33 in the map? false
Entries in map: [[Anderson, 31][Lewis, 29][Cook, 29]]
Entries in map: []

The program creates a map using MyHashMap (line 4) and adds five entries into the map (lines 5–9). Line 5 adds key Smith with value 30 and line 9 adds Smith with value 65. The latter value replaces the former value. The map actually has only four entries. The program displays the entries in the map (line 11), gets a value for a key (line 14), checks whether the map contains the key (line 17) and a value (line 19), removes an entry with the key Smith (line 21), and redisplays the entries in the map (line 22). Finally, the program clears the map (line 24) and displays an empty map (line 25).

	27.7.1 What is 1 << 30 in line 8 in Listing 27.2 ? What are the integers resulted from 1 << 1, 1 << 2, and 1 << 3?

	27.7.2 What are the integers resulted from 32 >> 1, 32 >> 2, 32 >> 3, and 32 >> 4?

	27.7.3 In Listing 27.2 , will the program work if LinkedList is replaced by ­ArrayList? In Listing 27.2 , how do you replace the code in lines 56–59 using one line of code?

	27.7.4 Describe how the put(key, value) method is implemented in the MyHashMap class.

	27.7.5 In Listing 27.2 , the supplementalHash method is declared static. Can the hash method be declared static?

	27.7.6 Show the output of the following code:

MyMap<String, String> map = new MyHashMap<>();
map.put("Texas", "Dallas");
map.put("Oklahoma", "Norman");
map.put("Texas", "Austin");
map.put("Oklahoma", "Tulsa");
System.out.println(map.get("Texas"));
System.out.println(map.size());

	27.7.7 If x is a negative int value, will x & (N – 1) be negative?

27.8 Implementing Set Using Hashing

	A hash set can be implemented using a hash map.

hash set

hash map

set

A set (introduced in Chapter 21) is a data structure that stores distinct values. The Java Collections Framework defines the java.util.Set interface for modeling sets. Three concrete implementations are java.util.HashSet, java.util.LinkedHashSet, and java.util.TreeSet. java.util.HashSet is implemented using hashing, java.util.­LinkedHashSet using LinkedList, and java.util.TreeSet using binary search trees.

You can implement MyHashSet using the same approach as for implementing MyHashMap. The only difference is that key/value pairs are stored in the map, while elements are stored in the set.

Since all the methods in HashSet are inherited from Collection, we design our custom HashSet by implementing the Collection interface, as shown in Figure 27.10.

[image: An annotated U M L diagram, with 2 parts.]
Figure 27.10 

MyHashSet implements the Collection interface.

Description

MyHashSet

Listing 27.4 implements MyHashSet using separate chaining.

Listing 27.4 MyHashSet.java

 1 import java.util.*;
 2
class MyHashSet 3 public class MyHashSet<E> implements Collection<E> {
 4 // Define the default hash-table size. Must be a power of 2
default initial capacity 5 private static int DEFAULT_INITIAL_CAPACITY = 4;
 6
 7 // Define the maximum hash-table size. 1 << 30 is same as 2^30
maximum capacity 8 private static int MAXIMUM_CAPACITY = 1 << 30;
 9
 10 // Current hash-table capacity. Capacity is a power of 2
current capacity 11 private int capacity;
 12
 13 // Define default load factor
default max load factor 14 private static float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
 15
 16 // Specify a load-factor threshold used in the hash table
load-factor threshold 17 private float loadFactorThreshold;
 18
 19 // The number of elements in the set
size 20 private int size = 0;
 21
 22 // Hash table is an array with each cell being a linked list
hash table 23 private LinkedList<E>[] table;
 24
 25 /** Construct a set with the default capacity and load factor */
no-arg constructor 26 public MyHashSet() {
 27 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_MAX_LOAD_FACTOR);
 28 }
 29
 30 /** Construct a set with the specified initial capacity and
 31 * default load factor */
constructor 32 public MyHashSet(int initialCapacity) {
 33 this(initialCapacity, DEFAULT_MAX_LOAD_FACTOR);
 34 }
 35
 36 /** Construct a set with the specified initial capacity
 37 * and load factor */
constructor 38 public MyHashSet(int initialCapacity, float loadFactorThreshold) {
 39 if (initialCapacity > MAXIMUM_CAPACITY)
 40 this.capacity = MAXIMUM_CAPACITY;
 41 else
 42 this.capacity = trimToPowerOf2(initialCapacity);
 43
 44 this.loadFactorThreshold = loadFactorThreshold;
 45 table = new LinkedList[capacity];
 46 }
 47
 48 @Override /** Remove all elements from this set */
clear 49 public void clear() {
 50 size = 0;
 51 removeElements();
 52 }
 53
 54 @Override /** Return true if the element is in the set */
contains 55 public boolean contains(E e) {
 56 int bucketIndex = hash(e.hashCode());
 57 if (table[bucketIndex] != null) {
 58 LinkedList<E> bucket = table[bucketIndex];
 59 return bucket.contains(e);
 60 }
 61
 62 return false;
 63 }
 64
 65 @Override /** Add an element to the set */
add 66 public boolean add(E e) {
 67 if (contains(e)) // Duplicate element not stored
 68 return false;
 69
 70 if (size + 1 > capacity * loadFactorThreshold) {
 71 if (capacity == MAXIMUM_CAPACITY)
 72 throw new RuntimeException("Exceeding maximum capacity");
 73
 74 rehash();
 75 }
 76
 77 int bucketIndex = hash(e.hashCode());
 78
 79 // Create a linked list for the bucket if not already created
 80 if (table[bucketIndex] == null) {
 81 table[bucketIndex] = new LinkedList<E>();
 82 }
 83
 84 // Add e to hashTable[index]
 85 table[bucketIndex].add(e);
 86
 87 size++; // Increase size
 88
 89 return true;
 90 }
 91
 92 @Override /** Remove the element from the set */
remove 93 public boolean remove(E e) {
 94 if (!contains(e))
 95 return false;
 96
 97 int bucketIndex = hash(e.hashCode());
 98
 99 // Create a linked list for the bucket if not already created
 100 if (table[bucketIndex] != null) {
 101 LinkedList<E> bucket = table[bucketIndex];
 102 bucket.removed(e);
 103 }
 104
 105 size——; // Decrease size
 106
 107 return true;
 108 }
 109
 110 @Override /** Return true if the set contain no elements */
isEmpty 111 public boolean isEmpty() {
 112 return size == 0;
 113 }
 114
 115 @Override /** Return the number of elements in the set */
size 116 public int size() {
 117 return size;
 118 }
 119
 120 @Override /** Return an iterator for the elements in this set */
iterator 121 public java.util.Iterator<E> iterator() {
 122 return new MyHashSetIterator(this);
 123 }
 124
 125 /** Inner class for iterator */
inner class 126 private class MyHashSetIterator implements java.util.Iterator<E> {
 127 // Store the elements in a list
 128 private java.util.ArrayList<E> list;
 129 private int current = 0; // Point to the current element in list
 130 private MyHashSet<E> set;
 131
 132 /** Create a list from the set */
 133 public MyHashSetIterator(MyHashSet<E> set) {
 134 this.set = set;
 135 list = setToList();
 136 }
 137
 138 @Override /** Next element for traversing? */ 139 public boolean hasNext() {
 140 return current < list.size();
 141 }
 142
 143 @Override /** Get current element and move cursor to the next */
 144 public E next() {
 145 return list.get(current++);
 146 }
 147
 148 /** Remove the current element returned by the last next() */
 149 public void remove() {
 150 // Left as an exercise
 151 // You need to remove the element from the set
 152 // You also need to remove it from the list
 153 }
 154 }
 155
 156 /** Hash function */
hash 157 private int hash(int hashCode) {
 158 return supplementalHash(hashCode) & (capacity − 1);
 159 }
 160
 161 /** Ensure the hashing is evenly distributed */
supplementalHash 162 private static int supplementalHash(int h) {
 163 h ^= (h >>> 20) ^ (h >>> 12);
 164 return h ^ (h >>> 7) ^ (h >>> 4);
 165 }
 166
 167 /** Return a power of 2 for initialCapacity */
 168 private int trimToPowerOf2(int initialCapacity) {
trimToPowerOf2 169 int capacity = 1;
 170 while (capacity < initialCapacity) {
 171 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
 172 }
 173
 174 return capacity;
 175 }
 176
 177 /** Remove all e from each bucket */
 178 private void removeElements() {
 179 for (int i = 0; i < capacity; i++) {
 180 if (table[i] != null) {
 181 table[i].clear();
 182 }
 183 }
 184 }
 185
 186 /** Rehash the set */
rehash 187 private void rehash() {
 188 java.util.ArrayList<E> list = setToList(); // Copy to a list
 189 capacity <<= 1; // Same as capacity *= 2. <= is more efficient
 190 table = new LinkedList[capacity]; // Create a new hash table
 191 size = 0;
 192
 193 for (E element: list) {
 194 add(element); // Add from the old table to the new table
 195 }
 196 }
 197
 198 /** Copy elements in the hash set to an array list */
setToList 199 private java.util.ArrayList<E> setToList() {
 200 java.util.ArrayList<E> list = new java.util.ArrayList<>();
 201
 202 for (int i = 0; i < capacity; i++) {
 203 if (table[i] != null) {
 204 for (E e: table[i]) {
 205 list.add(e);
 206 }
 207 }
 208 }
 209
 210 return list;
 211 }
 212
 213 @Override /** Return a string representation for this set */
toString 214 public String toString() {
 215 java.util.ArrayList<E> list = setToList();
 216 StringBuilder builder = new StringBuilder("[");
 217
 218 // Add the elements except the last one to the string builder
 219 for (int i = 0; i < list.size() − 1; i++) {
 220 builder.append(list.get(i) + ", ");
 221 }
 222
 223 // Add the last element in the list to the string builder
 224 if (list.size() == 0)
 225 builder.append("]");
 226 else
 227 builder.append(list.get(list.size() − 1) + "]");
 228
 229 return builder.toString();
 230 }
 231
 232 @Override
override addAll 233 public boolean addAll(Collection<? extends E> arg0) {
 234 // Left as an exercise
 235 return false;
 236 }
 237
 238 @Override
override containsAll 239 public boolean containsAll(Collection<?> arg0) {
 240 // Left as an exercise
 241 return false;
 242 }
 243
 244 @Override
override removeAll 245 public boolean removeAll(Collection<?> arg0) {
 246 // Left as an exercise
 247 return false;
 248 }
 249
 250 @Override
override retainAll 251 public boolean retainAll(Collection<?> arg0) {
 252 // Left as an exercise
 253 return false;
 254 }
 255
 256 @Override
override toArray() 257 public Object[] toArray() {
 258 // Left as an exercise
 259 return null;
 260 }
 261
 262 @Override
override toArray(T[]) 263 public <T> T[] toArray(T[] arg0) {
 264 // Left as an exercise
 265 return null;
 266 }
 267 }

The MyHashSet class implements the MySet interface using separate chaining. Implementing MyHashSet is very similar to implementing MyHashMap except for the following differences:

MyHashSet vs. MyHashMap

	The elements are stored in the hash table for MyHashSet, but the entries (key/value pairs) are stored in the hash table for MyHashMap.

	MyHashSet implements Collection. Since Collection implements Iterable, the elements in MyHashSet are iterable.

Three constructors are provided to construct a set. You can construct a default set with the default capacity and load factor using the no-arg constructor (lines 26–28), a set with the specified capacity and a default load factor (lines 32–34), and a set with the specified capacity and load factor (lines 38–46).

three constructors

clear

The clear method removes all elements from the set (lines 49–52). It invokes ­removeElements(), which clears all table cells (line 181). Each table cell is a linked list that stores the elements with the same hash table index. The removeElements() method takes O(capacity) time.

contains

The contains(element) method checks whether the specified element is in the set by examining whether the designated bucket contains the element (line 59). This method takes O(1) time because the bucket size is considered very small.

add

The add(element) method adds a new element into the set. The method first checks if the element is already in the set (line 67). If so, the method returns false. The method then checks whether the size exceeds the load-factor threshold (line 70). If so, the program invokes rehash() (line 74) to increase the capacity and store elements into a new larger hash table.

rehash

The rehash() method first copies all elements to a list (line 188), doubles the capacity (line 189), creates a new hash table (line 190), and resets the size to 0 (line 191). The method then copies the elements into the new larger hash table (lines 193–195). The rehash method takes O(capacity) time. If no rehash is performed, the add method takes O(1) time to add a new element.

The remove(element) method removes the specified element in the set (lines 93–108). This method takes O(1) time.

remove

The size() method simply returns the number of elements in the set (lines 116–118). This method takes O(1) time.

size

The iterator() method returns an instance of java.util.Iterator. The ­MyHash SetIterator class implements java.util.Iterator to create a forward iterator. When a MyHashSetIterator is constructed, it copies all the elements in the set to a list (line 135). The variable current points to the element in the list. Initially, current is 0 (line 129), which points to the first element in the list. MyHashSetIterator implements the methods hasNext(), next(), and remove() in java.util.Iterator. Invoking hasNext() returns true if current < list.size(). Invoking next() returns the current element and moves current to point to the next element (line 145). Invoking remove() removes the element called by the last next().

iterator

The hash() method invokes the supplementalHash to ensure the hashing is evenly distributed to produce an index for the hash table (lines 157–159). This method takes O(1) time.

hash

The methods containsAll, addAll, removeAll, retainAll, toArray(), and toArray(T[]) defined in the Collection interface are overridden in MyHashSet. Their implementations are left as exercises in Programming Exercise 2711.

Table 27.2 summarizes the time complexity of the methods in MyHashSet.

Table 27.2 Time Complexities for Methods in MyHashSet

	Methods

	Time

	clear()

	O(capacity)

	contains(e: E)

	O(1)

	add(e: E)

	O(1)

	remove(e: E)

	O(1)

	isEmpty()

	O(1)

	size()

	O(1)

	iterator()

	O(capacity)

	rehash()

	O(capacity)

Listing 27.5 gives a test program that uses MyHashSet.

Listing 27.5 TestMyHashSet.java

 1 public class TestMyHashSet {
 2 public static void main(String[] args) {
 3 // Create a MyHashSet
create a set 4 java.util.Collection<String> set = new MyHashSet<>();
add elements 5 set.add("Smith");
 6 set.add("Anderson");
 7 set.add("Lewis");
 8 set.add("Cook");
 9 set.add("Smith");
 10
display elements 11 System.out.println("Elements in set: " + set);
set size 12 System.out.println("Number of elements in set: " + set.size());
 13 System.out.println("Is Smith in set? " + set.contains("Smith"));
 14
remove element 15 set.remove("Smith");
 16 System.out.print("Names in set in uppercase are ");
foreach loop 17 for (String s: set)
 18 System.out.print(s.toUpperCase() + " ");
 19
clear set 20 set.clear();
 21 System.out.println("\nElements in set: " + set);
 22 }
 23 }

Elements in set: [Cook, Anderson, Smith, Lewis]
Number of elements in set: 4
Is Smith in set? true
Names in set in uppercase are COOK ANDERSON LEWIS
Elements in set: []

The program creates a set using MyHashSet (line 4) and adds five elements to the set (lines 5–9). Line 5 adds Smith and line 9 adds Smith again. Since only nonduplicate elements are stored in the set, Smith appears in the set only once. The set actually has four elements. The program displays the elements (line 11), gets its size (line 12), checks whether the set contains a specified element (line 13), and removes an element (line 15). Since the elements in a set are iterable, a foreach loop is used to traverse all elements in the set (lines 17–18). Finally, the program clears the set (line 20) and displays an empty set (line 21).

	27.8.1 Why can you use a foreach loop to traverse the elements in a set?

	27.8.2 Describe how the add(e) method is implemented in the MyHashSet class.

	27.8.3 Can lines 100–103 in Listing 27.4 be removed?

	27.8.4 Implement the remove() method in lines 150–152?

Key Terms

	associative array 1010

	cluster 1014

	dictionary 1010

	double hashing 1015

	hash code 1011

	hash function 1010

	hash map 1028

	hash set 1028

	hash table 1029

	linear probing 1013

	load factor 1017

	open addressing 1013

	perfect hash function 1010

	polynomial hash code 1012

	quadratic probing 1014

	rehashing 1017

	separate chaining 1017

Chapter Summary

	 A map is a data structure that stores entries. Each entry contains two parts: a key and a value. The key is also called a search key, which is used to search for the corresponding value. You can implement a map to obtain O(1) time complexity on searching, retrieval, insertion, and deletion using the hashing technique.

	 A set is a data structure that stores elements. You can use the hashing technique to implement a set to achieve O(1) time complexity on searching, insertion, and deletion for a set.

	 Hashing is a technique that retrieves the value using the index obtained from a key without performing a search. A typical hash function first converts a search key to an integer value called a hash code, then compresses the hash code into an index to the hash table.

	 A collision occurs when two keys are mapped to the same index in a hash table. Generally, there are two ways for handling collisions: open addressing and separate chaining.

	 Open addressing is the process of finding an open location in the hash table in the event of collision. Open addressing has several variations: linear probing, quadratic probing, and double hashing.

	 The separate chaining scheme places all entries with the same hash index into the same location, rather than finding new locations. Each location in the separate chaining scheme is called a bucket. A bucket is a container that holds multiple entries.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	**27.1 (Implement MyMap using open addressing with linear probing) Create a new concrete class that implements MyMap using open addressing with linear probing. For simplicity, use f(key) = key % size as the hash function, where size is the hash-table size. Initially, the hash-table size is 4. The table size is doubled whenever the load factor exceeds the threshold (0.5).

	**27.2 (Implement MyMap using open addressing with quadratic probing) Create a new concrete class that implements MyMap using open addressing with quadratic probing. For simplicity, use f(key) = key % size as the hash function, where size is the hash-table size. Initially, the hash-table size is 4. The table size is doubled whenever the load factor exceeds the threshold (0.5).

 	**27.3 (Implement MyMap using open addressing with double hashing) Create a new concrete class that implements MyMap using open addressing with double hashing. For simplicity, use f(key) = key % size as the hash function, where size is the hash-table size. Initially, the hash-table size is 4. The table size is doubled whenever the load factor exceeds the threshold (0.5).

 	**27.4 (Modify MyHashMap with duplicate keys) Modify MyHashMap to allow duplicate keys for entries. You need to modify the implementation for the put(key, value) method. Also add a new method named getAll(key) that returns a set of values that match the key in the map.

 	**27.5 (Implement MyHashSet using MyHashMap) Implement MyHashSet using MyHashMap. Note you can create entries with (key, key), rather than (key, value).

 	**27.6 (Animate linear probing) Write a program that animates linear probing, as shown in Figure 27.3 . You can change the initial size of the hash table in the program. Assume the load-factor threshold is 0.75.

	 **27.7 (Animate separate chaining) Write a program that animates MyHashMap, as shown in Figure 27.8 . You can change the initial size of the table. Assume the load-factor threshold is 0.75.

	 **27.8 (Animate quadratic probing) Write a program that animates quadratic probing, as shown in Figure 27.5 . You can change the initial size of the hash table in program. Assume the load-factor threshold is 0.75.

 	**27.9 (Implement hashCode for string) Write a method that returns a hash code for string using the approach described in Section 27.3.2 with b value 31. The function header is as follows:

public static int hashCodeForString(String s)

	 **27.10 (Compare MyHashSet and MyArrayList) MyArrayList is defined in ­Listing 24.2 . Write a program that generates 1000000 random double values between 0 and 999999 and stores them in a MyArrayList and in a MyHashSet. Generate a list of 1000000 random double values between 0 and 1999999. For each number in the list, test if it is in the array list and in the hash set. Run your program to display the total test time for the array list and for the hash set.

 	**27.11 (Implement set operations in MyHashSet) The implementations of the methods addAll, removeAll, retainAll, toArray(), and toArray(T[]) are omitted in the MyHashSet class. Implement these methods. Also add a new constructor MyHashSet(E[] list) in the MyHashSet class. Test your new MyHashSet class using the code at liveexample.pearsoncmg.com/test/Exercise27_11Test.txt.

 	**27.12 (setToList) Write the following method that returns an ArrayList from a set:

public static <E> ArrayList<E> setToList(Set<E> s)

 	*27.13 (The Date class) Design a class named Date that meets the following requirements:

	Three data fields year, month, and day for representing a date

	A constructor that constructs a date with the specified year, month, and day

	Override the equals method

	Override the hashCode method. (For reference, see the implementation of the Date class in the Java API)

	 *27.14 (The Point class) Design a class named Point that meets the following requirements:

	Two data fields x and y for representing a point with getter methods

	A no-arg constructor that constructs a point for (0, 0)

	A constructor that constructs a point with the specified x and y values

	Override the equals method. Point p1 is said to be equal to point p2 if p1.x == p2.x[&~arial~p1.x |eq||eq| p2.x~norm~&] and p1.y == p2.y.[&~arial~p1.y |eq||eq| p2.y.&]

	Override the hashCode method. (For reference, see the implementation of the Point2D class in the Java API.)

	*27.15 (Modify Listing 27.4 MyHashSet.java) The book uses LinkedList for buckets. Replace LinkedList with AVLTree. Assume E is Comparable. Redefine MyHashSet as follows:

public class MyHashSet<E extends Comparable<E>> implements Collection {
…
}

Test your program using the main method in Listing 27.5 .

CHAPTER 28 Graphs and Applications

Objectives

	To model real-world problems using graphs and explain the Seven Bridges of Königsberg problem (§28.1).

	To describe the graph terminologies: vertices, edges, simple graphs, weighted/unweighted graphs, and directed/undirected graphs (§28.2).

	To represent vertices and edges using lists, edge arrays, edge objects, adjacency matrices, and adjacency lists (§28.3).

	To model graphs using the Graph interface and the ­UnweightedGraph class (§28.4).

	To display graphs visually (§28.5).

	To represent the traversal of a graph using the UnweightedGraph.SearchTree class (§28.6).

	To design and implement depth-first search (§28.7).

	To solve the connected-circle problem using depth-first search (§28.8).

	To design and implement breadth-first search (§28.9).

	To solve the nine tails problem using breadth-first search (§28.10).

28.1 Introduction

	Many real-world problems can be solved using graph algorithms.

Graphs are useful in modeling and solving real-world problems. For example, the problem to find the least number of flights between two cities can be modeled using a graph, where the vertices represent cities and the edges represent the flights between two adjacent cities, as shown in Figure 28.1. The problem of finding the minimal number of connecting flights between two cities is reduced to finding the shortest path between two vertices in a graph. At United Parcel Service, each driver makes an average 120 stops per day. There are many possible ways for ordering these stops. UPS spent hundreds of millions of dollars for 10 years to develop a system called Orion, which stands for On-Road Integrated Optimization and Navigation. The system uses graph algorithms to plan the most cost-efficient routes for each driver. This chapter studies the algorithms for unweighted graphs, and the next chapter studies those for weighted graphs.

problem

[image: A graph of flight paths. Cities are represented by numbered dots, and flight paths are represented by line segments between dots.]

Figure 28.1 

A graph can be used to model the flights between the cities.

graph theory

Seven Bridges of Königsberg

The study of graph problems is known as graph theory. Graph theory was founded by Leonhard Euler in 1736, when he introduced graph terminology to solve the famous Seven Bridges of Königsberg problem. The city of Königsberg, Prussia (now Kaliningrad, Russia), was divided by the Pregel River. There were two islands on the river. The city and islands were connected by seven bridges, as shown in Figure 28.2a. The question is, can one take a walk, cross each bridge exactly once, and return to the starting point? Euler proved that it is not possible.

[image: A map and graph for the seven bridges problem.]

Figure 28.2 

Seven bridges connected islands and land.

Description

To establish a proof, Euler first abstracted the Königsberg city map by eliminating all streets, producing the sketch shown in Figure 28.2a. Next, he replaced each land mass with a dot, called a vertex or a node, and each bridge with a line, called an edge, as shown in ­Figure 28.2b. This structure with vertices and edges is called a graph.

Looking at the graph, we ask whether there is a path starting from any vertex, traversing all edges exactly once, and returning to the starting vertex. Euler proved that for such a path to exist, each vertex must have an even number of edges. Therefore, the Seven Bridges of Königsberg problem has no solution.

Graphs have many applications in various areas, such as in computer science, mathematics, biology, engineering, economics, genetics, and social sciences. This chapter presents the algorithms for depth-first search and breadth-first search, and their applications. The next chapter presents the algorithms for finding a minimum spanning tree and shortest paths in weighted graphs, and their applications.

28.2 Basic Graph Terminologies

	A graph consists of vertices, and edges that connect the vertices.

This chapter does not assume that you have any prior knowledge of graph theory or discrete mathematics. We use plain and simple terms to define graphs.

What is a graph? A graph is a mathematical structure that represents relationships among entities in the real world. For example, the graph in Figure 28.1 represents the flights among cities, and the graph in Figure 28.2b represents the bridges among land masses.

what is a graph?

A graph consists of a nonempty set of vertices (also known as nodes or points), and a set of edges that connect the vertices. For convenience, we define a graph as G=(V, E), where V represents a set of vertices and E represents a set of edges. For example, V and E for the graph in Figure 28.1 are as follows:

define a graph

V = {"Seattle", "San Francisco", "Los Angeles",
 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 "Atlanta", "Miami", "Dallas", "Houston"};

E = {{"Seattle", "San Francisco"},{"Seattle", "Chicago"},
 {"Seattle", "Denver"}, {"San Francisco", "Denver"},
 …
 };

directed vs. undirected graphs

A graph may be directed or undirected. In a directed graph, each edge has a direction, which indicates you can move from one vertex to the other through the edge. You can model parent/child relationships using a directed graph, where an edge from vertex A to B indicates that A is a parent of B. Figure 28.3a shows a directed graph.

[image: Three different graphs.]

Figure 28.3 

Graphs may appear in many forms.

Description

In an undirected graph, you can move in both directions between vertices. The graph in Figure 28.1 is undirected.

Edges may be weighted or unweighted. For example, you can assign a weight for each edge in the graph in Figure 28.1 to indicate the flight time between the two cities.

weighted vs. unweighted graphs

Two vertices in a graph are said to be adjacent if they are connected by the same edge. Similarly, two edges are said to be adjacent if they are connected to the same vertex. An edge in a graph that joins two vertices is said to be incident to both vertices. The degree of a vertex is the number of edges incident to it.

adjacent vertices

incident edges

degree

Two vertices are called neighbors if they are adjacent. Similarly, two edges are called neighbors if they are adjacent.

neighbor

A loop is an edge that links a vertex to itself. If two vertices are connected by two or more edges, these edges are called parallel edges. A simple graph is one that doesn’t have any loops or parallel edges. In a complete graph, every two pairs of vertices are connected, as shown in Figure 28.3b.

loop

parallel edge

simple graph

complete graph

A graph is connected if there exists a path between any two vertices in the graph. A ­subgraph of a graph G is a graph whose vertex set is a subset of that of G and whose edge set is a subset of that of G. For example, the graph in Figure 28.3c is a subgraph of the graph in Figure 28.3b.

connected graph

subgraph

Assume the graph is connected and undirected. A cycle is a closed path that starts from a vertex and ends at the same vertex. A connected graph is a tree if it does not have cycles. A spanning tree of a graph G is a connected subgraph of G, and the subgraph is a tree that contains all vertices in G.

cycle

tree

spanning tree

 Pedagogical Note

Before we introduce graph algorithms and applications, it is helpful to get acquainted with graphs using the interactive tool at liveexample.pearsoncmg.com/dsanimation/GraphLearningTooleBook.html, as shown in Figure 28.4. The tool allows you to add/remove/move vertices and draw edges using mouse gestures. You can also find depth-first search (DFS) trees and breadth-first search (BFS) trees, and the shortest path between two vertices.

graph learning tool on ­Companion Website

[image: The graph algorithm animation shows a graph with numbered vertices, and options to display different path types.]

Figure 28.4 

You can use the tool to create a graph with mouse gestures and show DFS/BFS trees and shortest paths.

	28.2.1 What is the famous Seven Bridges of Königsberg problem?

	28.2.2 What is a graph? Explain the following terms: undirected graph, directed graph, weighted graph, degree of a vertex, parallel edge, simple graph, complete graph, connected graph, cycle, subgraph, tree, and spanning tree.

	28.2.3 How many edges are in a complete graph with 5 vertices? How many edges are in a tree of 5 vertices?

	28.2.4 How many edges are in a complete graph with n vertices? How many edges are in a tree of n vertices?

28.3 Representing Graphs

	Representing a graph is to store its vertices and edges in a program. The data ­structure for storing a graph is arrays or lists.

To write a program that processes and manipulates graphs, you have to store or represent data for the graphs in the computer.

28.3.1 Representing Vertices

The vertices can be stored in an array or a list. For example, you can store all the city names in the graph in Figure 28.1 using the following array:

String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 "Atlanta", "Miami", "Dallas", "Houston"};

 Note

The vertices can be objects of any type. For example, you can consider cities as objects that contain the information such as its name, population, and mayor. Thus, you may define vertices as follows:

vertex type

City city0 = new City("Seattle", 608660, "Mike McGinn");
…
City city11 = new City("Houston", 2099451, "Annise Parker");
City[] vertices = {city0, city1, . . . , city11};

public class City {
 private String cityName;
 private int population;
 private String mayor;

 public City(String cityName, int population, String mayor) {
 this.cityName = cityName;
 this.population = population;
 this.mayor = mayor;
 }

 public String getCityName() {
 return cityName;
 }

 public int getPopulation() {
 return population;
 }

 public String getMayor() {
 return mayor;
 }

 public void setMayor(String mayor) {
 this.mayor = mayor;
 }

 public void setPopulation(int population) {
 this.population = population;
 }
}

The vertices can be conveniently labeled using natural numbers 0, 1, 2, …, n−1, for a graph of n vertices. Thus, vertices[0] represents "Seattle", vertices[1] represents "San Francisco", and so on, as shown in Figure 28.5.

[image: An array, containing city names.]

Figure 28.5 

An array stores the vertex names.

Description

 Note

You can reference a vertex by its name or its index, whichever is more convenient. ­Obviously, it is easy to access a vertex via its index in a program.

reference vertex

28.3.2 Representing Edges: Edge Array

The edges can be represented using a two-dimensional array. For example, you can store all the edges in the graph in Figure 28.1 using the following array:

int[][] edges = {
 {0, 1}, {0, 3}, {0, 5},
 {1, 0}, {1, 2}, {1, 3},
 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 {6, 5}, {6, 7},
 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 {9, 8}, {9, 11},
 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 {11, 8}, {11, 9}, {11, 10}
};

This representation is known as the edge array. The vertices and edges in Figure 28.3a can be represented as follows:

edge array

String[] vertices = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};
int[][] edges = {{0, 2}, {1, 2}, {2, 4}, {3, 4}};

28.3.3 Representing Edges: Edge Objects

Another way to represent the edges is to define edges as objects and store the edges in a java.util.ArrayList. The Edge class can be defined as in Listing 28.1.

Listing 28.1 Edge.java

public class Edge {
 int u;
 int v;

 public Edge(int u, int v) {
 this.u = u;
 this.v = v;
 }

 public boolean equals(Object o) {
 return u == ((Edge)o).u && v == ((Edge)o).v;
 }
}

For example, you can store all the edges in the graph in Figure 28.1 using the following list:

java.util.ArrayList<Edge> list = new java.util.ArrayList<>();
list.add(new Edge(0, 1));
list.add(new Edge(0, 3));
list.add(new Edge(0, 5));
…

Storing Edge objects in an ArrayList is useful if you don’t know the edges in advance.

While representing edges using an edge array or Edge objects may be intuitive for input, it’s not efficient for internal processing. The next two sections introduce the representation of graphs using adjacency matrices and adjacency lists. These two data structures are efficient for processing graphs.

28.3.4 Representing Edges: Adjacency Matrices

Assume the graph has n vertices. You can use a two-dimensional n×n matrix, say adjacencyMatrix, to represent the edges. Each element in the array is 0 or 1. adjacencyMatrix[i][j] is 1 if there is an edge from vertex i to vertex j; otherwise, adjacencyMatrix[i][j] is 0. If the graph is undirected, the matrix is symmetric, because adjacencyMatrix[i][j] is the same as adjacencyMatrix[j][i]. For example, the edges in the graph in Figure 28.1 can be represented using an adjacency matrix as follows:

adjacency matrix

int[][] adjacencyMatrix = {
 {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle
 {1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco
 {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles
 {1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // Denver
 {0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}, // Kansas City
 {1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}, // Chicago
 {0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, // Boston
 {0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0}, // New York
 {0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1}, // Atlanta
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}, // Miami
 {0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1}, // Dallas
 {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0} // Houston
};

 Note

Since the matrix is symmetric for an undirected graph, to save storage you can use a ragged array.

ragged array

The adjacency matrix for the directed graph in Figure 28.3a can be represented as follows:

int[][] a = {{0, 0, 1, 0, 0}, // Peter
 {0, 0, 1, 0, 0}, // Jane
 {0, 0, 0, 0, 1}, // Mark
 {0, 0, 0, 0, 1}, // Cindy
 {0, 0, 0, 0, 0} // Wendy
 };

28.3.5 Representing Edges: Adjacency Lists

You can represent edges using adjacency vertex lists or adjacency edge lists. An adjacency vertex list for a vertex i contains the vertices that are adjacent to i and an adjacency edge list for a vertex i contains the edges that are adjacent to i. You may define an array of lists. The array has n entries, and each entry is a list. The adjacency vertex list for vertex i contains all the vertices j such that there is an edge from vertex i to vertex j. For example, to represent the edges in the graph in Figure 28.1, you can create an array of lists as follows:

adjacency vertex lists

adjacency edge lists

java.util.List<Integer>[] neighbors = new java.util.List[12];

neighbors[0] contains all vertices adjacent to vertex 0 (i.e., Seattle), neighbors[1] ­contains all vertices adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 28.6.

[image: A graph represented by vertex lists.]

Figure 28.6 

Edges in the graph in Figure 28.1 are represented using adjacency vertex lists.

Description

To represent the adjacency edge lists for the graph in Figure 28.1, you can create an array of lists as follows:

java.util.List<Edge>[] neighbors = new java.util.List[12];

neighbors[0] contains all edges adjacent to vertex 0 (i.e., Seattle), neighbors[1] ­contains all edges adjacent to vertex 1 (i.e., San Francisco), and so on, as shown in Figure 28.7.

[image: The figure uses edge lists to represent the graph from Figure 28.6. The edges for each city are generated by combining the neighbors value in each row with each vertex value.]

Figure 28.7 

Edges in the graph in Figure 28.1 are represented using adjacency edge lists.

 Note

You can represent a graph using an adjacency matrix or adjacency lists. Which one is better? If the graph is dense (i.e., there are a lot of edges), using an adjacency matrix is preferred. If the graph is very sparse (i.e., very few edges), using adjacency lists is better, because using an adjacency matrix would waste a lot of space.

adjacency matrices vs. ­adjacency lists

Both adjacency matrices and adjacency lists can be used in a program to make algorithms more efficient. For example, it takes O(1) constant time to check whether two vertices are connected using an adjacency matrix, and it takes linear time O(m) to print all edges in a graph using adjacency lists, where m is the number of edges.

 Note

Adjacency vertex list is simpler for representing unweighted graphs. However, adjacency edge lists are more flexible for a wide range of graph applications. It is easy to add ­additional constraints on edges using adjacency edge lists. For this reason, this book will use adjacency edge lists to represent graphs.

adjacency vertex lists vs. ­adjacency edge lists

You can use arrays, array lists, or linked lists to store adjacency lists. We will use lists instead of arrays, because the lists are easily expandable to enable you to add new vertices. Further we will use array lists instead of linked lists, because our algorithms only require searching for adjacent vertices in the list. Using array lists is more efficient for our algorithms. Using array lists, the adjacency edge list in Figure 28.6 can be built as follows:

using ArrayList

List<ArrayList<Edge>> neighbors = new ArrayList<>();
neighbors.add(new ArrayList<Edge>());
neighbors.get(0).add(new Edge(0, 1));
neighbors.get(0).add(new Edge(0, 3));
neighbors.get(0).add(new Edge(0, 5));
neighbors.add(new ArrayList<Edge>());
neighbors.get(1).add(new Edge(1, 0));
neighbors.get(1).add(new Edge(1, 2));
neighbors.get(1).add(new Edge(1, 3));
…
…
neighbors.get(11).add(new Edge(11, 8));
neighbors.get(11).add(new Edge(11, 9));
neighbors.get(11).add(new Edge(11, 10));

	28.3.1 How do you represent vertices in a graph? How do you represent edges using an edge array? How do you represent an edge using an edge object? How do you represent edges using an adjacency matrix? How do you represent edges using adjacency lists?

	28.3.2 Represent the following graph using an edge array, a list of edge objects, an ­adjacency matrix, an adjacency vertex list, and an adjacency edge list, respectively.

[image: A graph with the following edges: 0 1, 0 2, 0 3, 0 4, 0 5; 1 2, 1 3, 1 4; 2 3, 2 4; 3 4, 3 5.]

28.4 Modeling Graphs

	The Graph interface defines the common operations for a graph.

The Java Collections Framework serves as a good example for designing complex data ­structures. The common features of data structures are defined in the interfaces (e.g., ­Collection, Set, List, Queue), as shown in Figure 20.1. This design pattern is useful for modeling graphs. We will define an interface named Graph that contains all the common operations of graphs. Many concrete graphs can be added to the design. For example, we will define such graphs named UnweightedGraph and WeightedGraph. The relationships of these interfaces and classes are illustrated in Figure 28.8.

[image: A solid line and hollow triangle extend from, Weighted Graph, to, Unweighted Graph, from which a dashed line and a hollow triangle extend to, begin italics, Graph, end italics.]

Figure 28.8 

Common operations of graphs are defined in the interface and concrete classes define concrete graphs.

What are the common operations for a graph? In general, you need to get the number of vertices in a graph, get all vertices in a graph, get the vertex object with a specified index, get the index of the vertex with a specified name, get the neighbors for a vertex, get the degree for a vertex, clear the graph, add a new vertex, add a new edge, perform a depth-first search, and perform a breadth-first search. Depth-first search and breadth-first search will be introduced in the next section. Figure 28.9 illustrates these methods in the UML diagram.

[image: An annotated U M L diagram, with 2 parts.]

Figure 28.9 

The Graph interface defines the common operations for all types of graphs.

Description

UnweightedGraph does not introduce any new methods. A list of vertices and an edge adjacency list are defined in the class. With these data fields, it is sufficient to implement all the methods defined in the Graph interface. For convenience, we assume the graph is a simple graph, that is, a vertex has no edge to itself and there are no parallel edges from vertex u to v.

 Note

You can create a graph with any type of vertices. Each vertex is associated with an index, which is the same as the index of the vertex in the vertices list. If you create a graph without specifying the vertices, the vertices are the same as their indices.

vertices and their indices

Assume the Graph interface and the UnweightedGraph class are available. Listing 28.2 gives a test program that creates the graph in Figure 28.1 and another graph for the one in Figure 28.3a.

Listing 28.2 TestGraph.java

 1 public class TestGraph {
 2 public static void main(String[] args) {
vertices 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
 7 // Edge array for graph in Figure 28.1
edges 8 int[][] edges = {
 9 {0, 1}, {0, 3}, {0, 5},
 10 {1, 0}, {1, 2}, {1, 3},
 11 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 12 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 13 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 14 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 15 {6, 5}, {6, 7},
 16 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 17 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 18 {9, 8}, {9, 11},
 19 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 20 {11, 8}, {11, 9}, {11, 10}
 21 };
 22
create a graph 23 Graph<String> graph1 = new UnweightedGraph<>(vertices, edges);
 24 System.out.println("The number of vertices in graph1: "
number of vertices 25 + graph1.getSize());
 26 System.out.println("The vertex with index 1 is "
get vertex 27 + graph1.getVertex(1));
 28 System.out.println("The index for Miami is " +
get index 29 graph1.getIndex("Miami"));
 30 System.out.println("The edges for graph1:");
print edges 31 graph1.printEdges();
 32
 33 // List of Edge objects for graph in Figure 28.3a
 34 String[] names = {"Peter", "Jane", "Mark", "Cindy", "Wendy"};
 35 java.util.ArrayList<Edge> edgeList
 36 = new java.util.ArrayList<>();
list of Edge objects 37 edgeList.add(new Edge(0, 2));
 38 edgeList.add(new Edge(1, 2));
 39 edgeList.add(new Edge(2, 4));
 40 edgeList.add(new Edge(3, 4));
 41 // Create a graph with 5 vertices
create a graph 42 Graph<String> graph2 = new UnweightedGraph<>
 43 (java.util.Arrays.asList(names), edgeList);
 44 System.out.println("\nThe number of vertices in graph2: "
 45 + graph2.getSize());
 46 System.out.println("The edges for graph2:");
print edges 47 graph2.printEdges();
 48 }
 49 }

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Seattle (0): (0, 1) (0, 3) (0, 5)
San Francisco (1): (1, 0) (1, 2) (1, 3)
Los Angeles (2): (2, 1) (2, 3) (2, 4) (2, 10)
Denver (3): (3, 0) (3, 1) (3, 2) (3, 4) (3, 5)
Kansas City (4): (4, 2) (4, 3) (4, 5) (4, 7) (4, 8) (4, 10)
Chicago (5): (5, 0) (5, 3) (5, 4) (5, 6) (5, 7)
Boston (6): (6, 5) (6, 7)
New York (7): (7, 4) (7, 5) (7, 6) (7, 8)
Atlanta (8): (8, 4) (8, 7) (8, 9) (8, 10) (8, 11)
Miami (9): (9, 8) (9, 11)
Dallas (10): (10, 2) (10, 4) (10, 8) (10, 11)
Houston (11): (11, 8) (11, 9) (11, 10)

The number of vertices in graph2: 5
The edges for graph2:
Peter (0): (0, 2)
Jane (1): (1, 2)
Mark (2): (2, 4)
Cindy (3): (3, 4)
Wendy (4):

The program creates graph1 for the graph in Figure 28.1 in lines 3–23. The vertices for graph1 are defined in lines 3–5. The edges for graph1 are defined in 8–21. The edges are represented using a two-dimensional array. For each row i in the array, edges[i][0] and edges[i][1] indicate there is an edge from vertex edges[i][0] to ­vertex edges[i][1]. For example, the first row, {0, 1}, represents the edge from vertex 0 (edges[0][0]) to vertex 1 (edges[0][1]). The row {0, 5} represents the edge from ­vertex 0 (edges[2][0]) to vertex 5 (edges[2][1]). The graph is created in line 23. Line 31 invokes the printEdges() method on graph1 to display all edges in graph1.

The program creates graph2 for the graph in Figure 28.3a in lines 34–43. The edges for graph2 are defined in lines 37–40. graph2 is created using a list of Edge objects in line 43. Line 47 invokes the printEdges() method on graph2 to display all edges in graph2.

Note both graph1 and graph2 contain the vertices of strings. The vertices are associated with indices 0, 1, . . . , n−1. The index is the location of the vertex in vertices. For example, the index of vertex Miami is 9.

Now, we turn our attention to implementing the interface and classes. Listings 28.3 and 28.4 give the Graph interface and the UnweightedGraph class, respectively.

Listing 28.3 Graph.java

		 1 public interface Graph<V> {
		 2 /** Return the number of vertices in the graph */
getSize		 3 public int getSize();
		 4
		 5 /** Return the vertices in the graph */
getVertices	 6 public java.util.List<V> getVertices();
		 7
		 8 /** Return the object for the specified vertex index */
		 9 public V getVertex(int index);
getVertex	10
		11 /** Return the index for the specified vertex object */
getIndex	12 public int getIndex(V v);
		13
		14 /** Return the neighbors of vertex with the specified index */
getNeighbors	15 public java.util.List<Integer> getNeighbors(int index);
		16
		17 /** Return the degree for a specified vertex */
getDegree	18 public int getDegree(int v);
		19
		20 /** Print the edges */
printEdges	21 public void printEdges();
		22
		23 /** Clear the graph */
clear		24 public void clear();
		25
		26 /** Add a vertex to the graph */
addVertex	27 public boolean addVertex(V vertex);
		28
		29 /** Add an edge to the graph */
addEdge		30 public boolean addEdge(int u, int v);
		31
		32 /** Add an edge to the graph */
		33 public boolean addEdge(Edge e); addEdge
		34
		35 /** Remove a vertex v from the graph, return true if successful */
remove vertex	36 public boolean remove(V v);
		37
		38 /** Remove an edge (u, v) from the graph, return true if successful */
remove edge	39 public boolean remove(int u, int v);
		40
		41 /** Obtain a depth-first search tree */
dfs		42 public UnweightedGraph<V>.SearchTree dfs(int v);
		43
		44 /** Obtain a breadth-first search tree */
bfs		45 public UnweightedGraph<V>.SearchTree bfs(int v);
		46 }

Listing 28.4 UnweightedGraph.java

 1 import java.util.*;
 2
 3 public class UnweightedGraph<V> implements Graph<V> {
 4 protected List<V> vertices = new ArrayList<>(); // Store vertices
 5 protected List<List<Edge>> neighbors
 6 = new ArrayList<>(); // Adjacency Edge lists
 7
 8 /** Construct an empty graph */
no-arg constructor 9 protected UnweightedGraph() {
 10 }
 11
 12 /** Construct a graph from vertices and edges stored in arrays */
constructor 13 protected UnweightedGraph(V[] vertices, int[][] edges) {
 14 for (int i = 0; i < vertices.length; i++)
 15 addVertex(vertices[i]);
 16
 17 createAdjacencyLists(edges, vertices.length);
 18 }
 19
 20 /** Construct a graph from vertices and edges stored in List */
constructor 21 protected UnweightedGraph(List<V> vertices, List<Edge> edges) {
 22 for (int i = 0; i < vertices.size(); i++)
 23 addVertex(vertices.get(i));
 24
 25 createAdjacencyLists(edges, vertices.size());
 26 }
 27
 28 /** Construct a graph for integer vertices 0, 1, 2 and edge list */
constructor 29 protected UnweightedGraph(List<Edge> edges, int numberOfVertices) {
 30 for (int i = 0; i < numberOfVertices; i++)
 31 addVertex((V)(new Integer(i))); // vertices is {0, 1, . . . }
 32
 33 createAdjacencyLists(edges, numberOfVertices);
 34 }
 35
 36 /** Construct a graph from integer vertices 0, 1, and edge array */
constructor 37 protected UnweightedGraph(int[][] edges, int numberOfVertices) {
 38 for (int i = 0; i < numberOfVertices; i++)
 39 addVertex((V)(new Integer(i))); // vertices is {0, 1, . . . }
 40
 41 createAdjacencyLists(edges, numberOfVertices);
 42 }
 43
 44 /** Create adjacency lists for each vertex */
 45 private void createAdjacencyLists(
 46 int[][] edges, int numberOfVertices) {
 47 for (int i = 0; i < edges.length; i++) {
 48 addEdge(edges[i][0], edges[i][1]);
 49 }
 50 }
 51
 52 /** Create adjacency lists for each vertex */
 53 private void createAdjacencyLists(
 54 List<Edge> edges, int numberOfVertices) {
 55 for (Edge edge: edges) {
 56 addEdge(edge.u, edge.v);
 57 }
 58 }
 59
 60 @Override /** Return the number of vertices in the graph */
getSize 61 public int getSize() {
 62 return vertices.size();
 63 }
 64
 65 @Override /** Return the vertices in the graph */
 66 public List<V> getVertices() {
getVertices 67 return vertices;
 68 }
 69
 70 @Override /** Return the object for the specified vertex */
getVertex 71 public V getVertex(int index) {
 72 return vertices.get(index);
 73 }
 74
 75 @Override /** Return the index for the specified vertex object */
getIndex 76 public int getIndex(V v) {
 77 return vertices.indexOf(v);
 78 }
 79
 80 @Override /** Return the neighbors of the specified vertex */
getNeighbors 81 public List<Integer> getNeighbors(int index) {
 82 List<Integer> result = new ArrayList<>();
 83 for (Edge e: neighbors.get(index))
 84 result.add(e.v);
 85
 86 return result;
 87 }
 88
 89 @Override /** Return the degree for a specified vertex */
getDegree 90 public int getDegree(int v) {
 91 return neighbors.get(v).size();
 92 }
 93
 94 @Override /** Print the edges */
printEdges 95 public void printEdges() {
 96 for (int u = 0; u < neighbors.size(); u++) {
 97 System.out.print(getVertex(u) + " (" + u + "): ");
 98 for (Edge e: neighbors.get(u)) {
 99 System.out.print("(" + getVertex(e.u) + ", " +
 100 getVertex(e.v) + ") ");
 101 }
 102 System.out.println();
 103 }
 104 }
 105
 106 @Override /** Clear the graph */
clear 107 public void clear() {
 108 vertices.clear();
 109 neighbors.clear();
 110 }
 111
 112 @Override /** Add a vertex to the graph */
addVertex 113 public boolean addVertex(V vertex) {
 114 if (!vertices.contains(vertex)) {
 115 vertices.add(vertex);
 116 neighbors.add(new ArrayList<Edge>());
 117 return true;
 118 }
 119 else {
 120 return false;
 121 }
 122 }
 123
 124 @Override /** Add an edge to the graph */
addEdge 125 public boolean addEdge(Edge e) {
 126 if (e.u < 0 || e.u > getSize() − 1)
 127 throw new IllegalArgumentException("No such index: " + e.u);
 128
 129 if (e.v < 0 || e.v > getSize() − 1)
 130 throw new IllegalArgumentException("No such index: " + e.v);
 131
 132 if (!neighbors.get(e.u).contains(e)) {
 133 neighbors.get(e.u).add(e);
 134 return true;
 135 }
 136 else {
 137 return false;
 138 }
 139 }
 140
 141 @Override /** Add an edge to the graph */
addEdge overloaded 142 public boolean addEdge(int u, int v) {
 143 return addEdge(new Edge(u, v));
 144 }
 145
 146 @Override /** Obtain a DFS tree starting from vertex v */
 147 /** To be discussed in Section 28.7 */
dfs method 148 public SearchTree dfs(int v) {
 149 List<Integer> searchOrder = new ArrayList<>();
 150 int[] parent = new int[vertices.size()];
 151 for (int i = 0; i < parent.length; i++)
 152 parent[i] = −1; // Initialize parent[i] to −1
 153
 154 // Mark visited vertices
 155 boolean[] isVisited = new boolean[vertices.size()];
 156
 157 // Recursively search
 158 dfs(v, parent, searchOrder, isVisited);
 159
 160 // Return a search tree
 161 return new SearchTree(v, parent, searchOrder);
 162 }
 163
 164 /** Recursive method for DFS search */
 165 private void dfs(int v, int[] parent, List<Integer> searchOrder,
 166 boolean[] isVisited) {
 167 // Store the visited vertex
 168 searchOrder.add(v);
 169 isVisited[v] = true; // Vertex v visited
 170
 171 for (Edge e : neighbors.get(v)) {// e.u is v
 172 if (!isVisited[e.v]) {// e.v is w in Listing 28.8
 173 parent[e.v] = v; // The parent of vertex w is v
 174 dfs(e.v, parent, searchOrder, isVisited); // Recursive search
 175 }
 176 }
 177 }
 178
 179 @Override /** Starting bfs search from vertex v */
 180 /** To be discussed in Section 28.9 */
bfs method 181 public SearchTree bfs(int v) {
 182 List<Integer> searchOrder = new ArrayList<>();
 183 int[] parent = new int[vertices.size()];
 184 for (int i = 0; i < parent.length; i++)
 185 parent[i] = -1; // Initialize parent[i] to -1
 186
 187 java.util.LinkedList<Integer> queue =
 188 new java.util.LinkedList<>(); // list used as a queue
 189 boolean[] isVisited = new boolean[vertices.size()];
 190 queue.offer(v); // Enqueue v
 191 isVisited[v] = true; // Mark it visited
 192
 193 while (!queue.isEmpty()) {
 194 int u = queue.poll(); // Dequeue to u
 195 searchOrder.add(u); // u searched
 196 for (Edge e: neighbors.get(u)) {// Note that e.u is u
 197 if (!isVisited[e.v]) {// e.v is w in Listing 28.11
 198 queue.offer(e.v); // Enqueue w
 199 parent[e.v] = u; // The parent of w is u
 200 isVisited[e.v] = true; // Mark it visited
 201 }
 202 }
 203 }
 204
 205 return new SearchTree(v, parent, searchOrder);
 206 }
 207
 208 /** Tree inner class inside the UnweightedGraph class */
 209 /** To be discussed in Section 28.6 */
SearchTree inner class 210 public class SearchTree {
 211 private int root; // The root of the tree
 212 private int[] parent; // Store the parent of each vertex
 213 private List<Integer> searchOrder; // Store the search order
 214
 215 /** Construct a tree with root, parent, and searchOrder */
 216 public SearchTree(int root, int[] parent,
 217 List<Integer> searchOrder) {
 218 this.root = root;
 219 this.parent = parent;
 220 this.searchOrder = searchOrder;
 221 }
 222
 223 /** Return the root of the tree */
 224 public int getRoot() {
 225 return root;
 226 }
 227
 228 /** Return the parent of vertex v */
 229 public int getParent(int v) {
 230 return parent[v];
 231 }
 232
 233 /** Return an array representing search order */
 234 public List<Integer> getSearchOrder() {
 235 return searchOrder;
 236 }
 237
 238 /** Return number of vertices found */
 239 public int getNumberOfVerticesFound() {
 240 return searchOrder.size();
 241 }
 242
 243 /** Return the path of vertices from a vertex to the root */
 244 public List<V> getPath(int index) {
 245 ArrayList<V> path = new ArrayList<>();
 246
 247 do {
 248 path.add(vertices.get(index));
 249 index = parent[index];
 250 }
 251 while (index != −1);
 252
 253 return path;
 254 }
 255
 256 /** Print a path from the root to vertex v */
 257 public void printPath(int index) {
 258 List<V> path = getPath(index);
 259 System.out.print("A path from " + vertices.get(root) + " to " +
 260 vertices.get(index) + ": ");
 261 for (int i = path.size() − 1; i >= 0; i−−)
 262 System.out.print(path.get(i) + " ");
 263 }
 264
 265 /** Print the whole tree */
 266 public void printTree() {
 267 System.out.println("Root is: " + vertices.get(root));
 268 System.out.print("Edges: ");
 269 for (int i = 0; i < parent.length; i++) {
 270 if (parent[i] != −1) {
 271 // Display an edge
 272 System.out.print("(" + vertices.get(parent[i]) + ", " +
 273 vertices.get(i) + ") ");
 274 }
 275 }
 276 System.out.println();
 277 }
 278 }
 279
 280 @Override /** Remove vertex v and return true if successful */
 281 public boolean remove(V v) {
 282 return true; // Implementation left as an exercise
 283 }
 284
 285 @Override /** Remove edge (u, v) and return true if successful */
 286 public boolean remove(int u, int v) {
 287 return true; // Implementation left as an exercise
 289 }
 290 }

The code in the Graph interface in Listing 28.3 is straightforward. Let us digest the code in the UnweightedGraph class in Listing 28.4.

The UnweightedGraph class defines the data field vertices (line 4) to store vertices and neighbors (line 5) to store edges in adjacency edges lists. neighbors.get(i) stores all edges adjacent to vertex i. Four overloaded constructors are defined in lines 9–42 to create a default graph, or a graph from arrays or lists of edges and vertices. The createAdjacencyLists(int[][] edges, int numberOfVertices) method creates adjacency lists from edges in an array (lines 45–50). The createAdjacencyLists (List<Edge> edges, int ­numberOfVertices) method creates adjacency lists from edges in a list (lines 53–58).

The getNeighbors(u) method (lines 81–87) returns a list of vertices adjacent to vertex u. The clear() method (lines 106–110) removes all vertices and edges from the graph. The addVertex(u) method (lines 112–122) adds a new vertex to vertices and returns true. It returns false if the vertex is already in the graph (line 120).

The addEdge(e) method (lines 124–139) adds a new edge to the adjacency edge list and returns true. It returns false if the edge is already in the graph. This method may throw ­IllegalArgumentExcepiton if the edge is invalid (lines 126–130).

The addEdge(u, v) method (lines 141–144) adds an edge (u, v) to the graph. If a graph is undirected, you should invoke addEdge(u, v) and addEdge(v, u) to add an edge between u and v.

The printEdges() method (lines 95–104) displays all vertices and edges adjacent to each vertex.

The code in lines 148–278 gives the methods for finding a depth-first search tree and a breadth-first search tree, which will be introduced in Sections 28.7 and 28.9, respectively.

	28.4.1 Describe the methods in Graph and UnweightedGraph.

	28.4.2 For the code in Listing 28.2 , TestGraph.java, what is graph1.getIndex("Seattle")? What is graph1.getDegree(5)? What is graph1.getVertex(4)?

	28.4.3 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 Graph<Character> graph = new UnweightedGraph<>();
 graph.addVertex('U');
 graph.addVertex('V');
 int indexForU = graph.getIndex('U');
 int indexForV = graph.getIndex('V');
 System.out.println("indexForU is " + indexForU);
 System.out.println("indexForV is " + indexForV);
 graph.addEdge(indexForU, indexForV);
 System.out.println("Degree of U is " +
 graph.getDegree(indexForU));
 System.out.println("Degree of V is " +
 graph.getDegree(indexForV));
 }
}

	28.4.4 What will getIndex(v) return if v is not in the graph? What happens to getVertex(index) if index is not in the graph? What happens to addVertex(v) if v is already in the graph? What happens to addEdge(u, v) if u or v is not in the graph?

28.5 Graph Visualization

	To display a graph visually, each vertex must be assigned a location.

The preceding section introduced the Graph interface and the UnweightedGraph class. This section discusses how to display graphs graphically. In order to display a graph, you need to know where each vertex is displayed and the name of each vertex. To ensure a graph can be displayed, we define an interface named Displayable that has the methods for obtaining the x- and y-coordinates and their names, and make vertices instances of Displayable, in Listing 28.5.

Listing 28.5 Displayable.java

 1 public interface Displayable {
Displayable interface 2 public double getX(); // Get x-coordinate of the vertex
 3 public double getY(); // Get y-coordinate of the vertex
 4 public String getName(); // Get display name of the vertex
 5 }

A graph with Displayable vertices can now be displayed on a pane named GraphView, as shown in Listing 28.6.

Listing 28.6 GraphView.java

 1 import javafx.scene.Group;
 2 import javafx.scene.layout.BorderPane;
 3 import javafx.scene.shape.Circle;
 4 import javafx.scene.shape.Line;
 5 import javafx.scene.text.Text;
 6
extends BorderPane 7 public class GraphView extends BorderPane {
Displayable vertices 8 private Graph<? extends Displayable> graph;
 9 private Group group = new Group();
 10
 11 public GraphView(Graph<? extends Displayable> graph) {
 12 this.graph = graph;
 13 this.setCenter(group); // Center the group
 14 repaintGraph();
 15 }
 16
 17 private void repaintGraph() {
 18 group.getChildren().clear(); // Clear group for a new display
 19
 20 // Draw vertices and text for vertices
 21 java.util.List<? extends Displayable> vertices
 22 = graph.getVertices();
 23 for (int i = 0; i < graph.getSize(); i++) {
 24 double x = vertices.get(i).getX();
 25 double y = vertices.get(i).getY();
 26 String name = vertices.get(i).getName();
 27
display a vertex 28 group.getChildren().add(new Circle(x, y, 16));
display a text 29 group.getChildren().add(new Text(x − 8, y − 18,name));
 30 }
 31
 32 // Draw edges for pairs of vertices
 33 for (int i = 0; i < graph.getSize(); i++) {
 34 java.util.List<Integer> neighbors = graph.getNeighbors(i);
 35 double x1 = graph.getVertex(i).getX();
 36 double y1 = graph.getVertex(i).getY();
 37 for (int v: neighbors) {
 38 double x2 = graph.getVertex(v).getX();
 39 double y2 = graph.getVertex(v).getY();
 40
 41 // Draw an edge for (i, v)
draw an edge 42 group.getChildren().add(new Line(x1, y1, x2, y2));
 43 }
 44 }
 45 }
 46 }

To display a graph on a pane, simply create an instance of GraphView by passing the graph as an argument in the constructor (line 11). The class for the graph’s vertex must implement the Displayable interface in order to display the vertices (lines 21–44). For each vertex index i, invoking graph.getNeighbors(i) returns its adjacency list (line 34). From this list, you can find all vertices that are adjacent to i and draw a line to connect i with its adjacent vertex (lines 35–42).

Listing 28.7 gives an example of displaying the graph in Figure 28.1, as shown in Figure 28.10.

Listing 28.7 DisplayUSMap.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.stage.Stage;
 4
 5 public class DisplayUSMap extends Application {
 6 @Override // Override the start method in the Application class
 7 public void start(Stage primaryStage) {
 8 City[] vertices = {new City("Seattle", 75, 50),
 9 new City("San Francisco", 50, 210),
 10 new City("Los Angeles", 75, 275), new City("Denver", 275, 175),
 11 new City("Kansas City", 400, 245),
 12 new City("Chicago", 450, 100), new City("Boston", 700, 80),
 13 new City("New York", 675, 120), new City("Atlanta", 575, 295),
 14 new City("Miami", 600, 400), new City("Dallas", 408, 325),
 15 new City("Houston", 450, 360) };
 16
 17 // Edge array for graph in Figure 28.1
 18 int[][] edges = {
 19 {0, 1}, {0, 3}, {0, 5}, {1, 0}, {1, 2}, {1, 3},
 20 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 21 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 22 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 23 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 24 {6, 5}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 8},
 25 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 26 {9, 8}, {9, 11}, {10, 2}, {10, 4}, {10, 8}, {10, 11},
 27 {11, 8}, {11, 9}, {11, 10}
 28 };
 29
create a graph 30 Graph<City> graph = new UnweightedGraph<>(vertices, edges);
 31
 32 // Create a scene and place it in the stage
create a GraphView 33 Scene scene = new Scene(new GraphView(graph), 750, 450);
 34 primaryStage.setTitle("DisplayUSMap"); // Set the stage title
 35 primaryStage.setScene(scene); // Place the scene in the stage
 36 primaryStage.show(); // Display the stage
 37 }
 38
City class 39 static class City implements Displayable {
 40 private double x, y;
 41 private String name;
 42
 43 City(String name, double x, double y) {
 44 this.name = name;
 45 this.x = x;
 46 this.y = y;
 47 }
 48
 49 @Override
 50 public double getX() {
 51 return x;
 52 }
 53
 54 @Override
 55 public double getY() {
 56 return y;
 57 }
 58
 59 @Override
 60 public String getName() {
 61 return name;
 62 }
 63 }
 64 }

[image: The Display U S Map animation shows a graph representing the flight paths connecting cities, as defined in Figure 28.1.]

Figure 28.10 

The graph is displayed in the pane.

The class City is defined to model the vertices with their coordinates and names (lines 39–63). The program creates a graph with the vertices of the City type (line 30). Since City implements Displayable, a GraphView object created for the graph displays the graph in the pane (line 33).

As an exercise to get acquainted with the graph classes and interfaces, add a city (e.g., Savannah) with appropriate edges into the graph.

	28.5.1 Will Listing 28.7 , DisplayUSMap.java work, if the code in lines 38–42 in Listing 28.6 , GraphView.java is replaced by the following code?

if (i < v) {
 double x2 = graph.getVertex(v).getX();
 double y2 = graph.getVertex(v).getY();

 // Draw an edge for (i, v)
 getChildren().add(new Line(x1, y1, x2, y2));
}

	28.5.2 For the graph1 object created in Listing 28.1 , TestGraph.java, can you create a GraphView object as follows?

GraphView view = new GraphView(graph1);

28.6 Graph Traversals

	Depth-first and breadth-first are two common ways to traverse a graph.

Graph traversal is the process of visiting each vertex in the graph exactly once. There are two popular ways to traverse a graph: depth-first traversal (or depth-first search) and ­breadth-first traversal (or breadth-first search). Both traversals result in a spanning tree, which can be modeled using a class, as shown in Figure 28.11. Note SearchTree is an inner class defined in the UnweightedGraph class. UnweightedGraph<V>.SearchTree is different from the Tree interface defined in Section 25.2.5. UnweightedGraph<V>.SearchTree is a specialized class designed for describing the parent–child relationship of the nodes, whereas the Tree interface defines common operations such as searching, inserting, and deleting in a tree. Since there is no need to perform these operations for a spanning tree, UnweightedGraph<V>.SearchTree is not defined as a subtype of Tree.

depth-first search

breadth-first search

[image: A U M L diagram.]

Figure 28.11 

The SearchTree class describes the nodes with parent–child relationships.

Description

The SearchTree class is defined as an inner class in the UnweightedGraph class in lines 210–278 in Listing 28.4. The constructor creates a tree with the root, edges, and a search order.

The SearchTree class defines seven methods. The getRoot() method returns the root of the tree. You can get the order of the vertices searched by invoking the getSearchOrder() method. You can invoke getParent(v) to find the parent of vertex v in the search. Invoking getNumberOfVerticesFound() returns the number of vertices searched. The method getPath(index) returns a list of vertices from the specified vertex index to the root. Invoking printPath(v) displays a path from the root to v. You can display all edges in the tree using the printTree() method.

Sections 28.7 and 28.9 will introduce depth-first search and breadth-first search, respectively. Both searches will result in an instance of the SearchTree class.

	28.6.1 Does UnweightedGraph<V>.SearchTree implement the Tree interface defined in Listing 25.3 , Tree.java?

	28.6.2 What method do you use to find the parent of a vertex in the tree?

28.7 Depth-First Search (DFS)

	The depth-first search of a graph starts from a vertex in the graph and visits all vertices in the graph as far as possible before backtracking.

The depth-first search of a graph is like the depth-first search of a tree discussed in Section 25.2.4, Tree Traversal. In the case of a tree, the search starts from the root. In a graph, the search can start from any vertex.

A depth-first search of a tree first visits the root, then recursively visits the subtrees of the root. Similarly, the depth-first search of a graph first visits a vertex, then it recursively visits all the vertices adjacent to that vertex. The difference is that the graph may contain cycles, which could lead to an infinite recursion. To avoid this problem, you need to track the vertices that have already been visited.

The search is called depth-first because it searches “deeper” in the graph as much as possible. The search starts from some vertex v. After visiting v, it visits an unvisited neighbor of v. If v has no unvisited neighbor, the search backtracks to the vertex from which it reached v. We assume that the graph is connected and the search starting from any vertex can reach all the vertices. If this is not the case, see Programming Exercise 28.4 for finding connected components in a graph.

28.7.1 Depth-First Search Algorithm

The algorithm for the depth-first search is described in Listing 28.8.

Listing 28.8 Depth-First Search Algorithm

Input: G = (V, E) and a starting vertex v
Output: a DFS tree rooted at v

 1 SearchTree dfs(vertex v) {
 visit v 2 visit v;
 3 for each neighbor w of v
 check a neighbor 4 if (w has not been visited) {
 set a parent in the tree 5 set v as the parent for w in the tree;
 recursive search 6 dfs(w);
 7 }
 8 }

You can use an array named isVisited to denote whether a vertex has been ­visited. Initially, isVisited[i] is false for each vertex i. Once a vertex, say v, is visited, isVisited[v] is set to true.

Consider the graph in Figure 28.12a. Suppose we start the depth-first search from vertex 0. First visit 0, then any of its neighbors, say 1. Now 1 is visited, as shown in Figure 28.12b. Vertex 1 has three neighbors—0, 2, and 4. Since 0 has already been visited, you will visit either 2 or 4. Let us pick 2. Now 2 is visited, as shown in Figure 28.12c. Vertex 2 has three neighbors: 0, 1, and 3. Since 0 and 1 have already been visited, pick 3. 3 is now visited, as shown in Figure 28.12d. At this point, the vertices have been visited in this order:

0, 1, 2, 3

Since all the neighbors of 3 have been visited, backtrack to 2. Since all the vertices of 2 have been visited, backtrack to 1. 4 is adjacent to 1, but 4 has not been visited. Therefore, visit 4, as shown in Figure 28.12e. Since all the neighbors of 4 have been visited, backtrack to 1. Since all the neighbors of 1 have been visited, backtrack to 0. Since all the neighbors of 0 have been visited, the search ends.

Since each edge and each vertex is visited only once, the time complexity of the dfs method is O(|E| + |V|), where |E| denotes the number of edges and |V| the number of vertices.

DFS time complexity

[image: Five graphs.]

Figure 28.12 

Depth-first search visits a node and its neighbors recursively.

Description

28.7.2 Implementation of Depth-First Search

The algorithm for DFS in Listing 28.8 uses recursion. It is natural to use recursion to implement it. Alternatively, you can use a stack (see Programming Exercise 28.3).

The dfs(int v) method is implemented in lines 148–177 in Listing 28.4. It returns an instance of the SearchTree class with vertex v as the root. The method stores the vertices searched in the list searchOrder (line 149), the parent of each vertex in the array parent (line 150), and uses the isVisited array to indicate whether a vertex has been visited (line 155). It invokes the helper method dfs(v, parent, searchOrder, isVisited) to perform a depth-first search (line 158).

In the recursive helper method, the search starts from vertex v. v is added to searchOrder in line 168 and is marked as visited (line 169). For each unvisited neighbor of v, the method is recursively invoked to perform a depth-first search. When a vertex e.v is visited, the parent of e.v is stored in parent[e.v] (line 173). The method returns when all vertices are visited for a connected graph, or in a connected component.

Listing 28.9 gives a test program that displays a DFS for the graph in Figure 28.1 starting from Chicago. The graphical illustration of the DFS starting from Chicago is shown in Figure 28.13.

U.S. Map Search

Listing 28.9 TestDFS.java

 1 public class TestDFS {
 2 public static void main(String[] args) {
vertices 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
edges 7 int[][] edges = {
 8 {0, 1}, {0, 3}, {0, 5},
 9 {1, 0}, {1, 2}, {1, 3},
 10 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 11 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 12 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 13 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 14 {6, 5}, {6, 7},
 15 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 16 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 17 {9, 8}, {9, 11},
 18 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 19 {11, 8}, {11, 9}, {11, 10}
 20 };
 21
create a graph 22 Graph<String> graph = new UnweightedGraph<>(vertices, edges);
 23 UnweightedGraph<String>.SearchTree dfs =
get DFS 24 graph.dfs(graph.getIndex("Chicago"));
 25
get search order 26 java.util.List<Integer> searchOrders = dfs.getSearchOrder();
 27 System.out.println(dfs.getNumberOfVerticesFound() +
 28 " vertices are searched in this DFS order:");
 29 for (int i = 0; i < searchOrders.size(); i++)
 30 System.out.print(graph.getVertex(searchOrders.get(i)) + " ");
 31 System.out.println();
 32
 33 for (int i = 0; i < searchOrders.size(); i++)
 34 if (dfs.getParent(i) != -1)
 35 System.out.println("parent of " + graph.getVertex(i) +
 36 " is " + graph.getVertex(dfs.getParent(i)));
 37 }
 38 }

12 vertices are searched in this DFS order:
 Chicago Seattle San Francisco Los Angeles Denver
 Kansas City New York Boston Atlanta Miami Houston Dallas
parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is San Francisco
parent of Denver is Los Angeles
parent of Kansas City is Denver
parent of Boston is New York
parent of New York is Kansas City
parent of Atlanta is New York
parent of Miami is Atlanta
parent of Dallas is Houston
parent of Houston is Miami

[image: The graph shows the following path: Chicago 5, Seattle 0, San Francisco 1, Los Angeles 2, Denver 3, Kansas City 4, New York 7, Atlanta 8, Miami 9, Houston 11, Dallas 10.]

Figure 28.13 

A DFS search starts from Chicago.

Source: © Mozilla Firefox.

28.7.3 Applications of the DFS

The depth-first search can be used to solve many problems, such as the following:

	Detecting whether a graph is connected. Search the graph starting from any vertex. If the number of vertices searched is the same as the number of vertices in the graph, the graph is connected. Otherwise, the graph is not connected. (See Programming Exercise 28.1.)

	Detecting whether there is a path between two vertices (see Programming Exercise 28.5).

	Finding a path between two vertices (see Programming Exercise 28.5).

	Finding all connected components. A connected component is a maximal connected subgraph in which every pair of vertices are connected by a path (see Programming Exercise 28.4).

	Detecting whether there is a cycle in the graph (see Programming Exercise 28.6).

	Finding a cycle in the graph (see Programming Exercise 28.7).

	Finding a Hamiltonian path/cycle. A Hamiltonian path in a graph is a path that visits each vertex in the graph exactly once. A Hamiltonian cycle visits each vertex in the graph exactly once and returns to the starting vertex (see Programming Exercise 28.17).

The first six problems can be easily solved using the dfs method in Listing 28.4. To find a Hamiltonian path/cycle, you have to explore all possible DFSs to find the one that leads to the longest path. The Hamiltonian path/cycle has many applications, including for solving the well-known Knight’s Tour problem, which is presented in Supplement VI.E on the Companion Website.

	28.7.1 What is depth-first search?

	28.7.2 Draw a DFS tree for the graph in Figure 28.3b starting from node A.

	28.7.3 Draw a DFS tree for the graph in Figure 28.1 starting from vertex Atlanta.

	28.7.4 What is the return type from invoking dfs(v)?

	28.7.5 The depth-first search algorithm described in Listing 28.8 uses recursion. Alternatively, you can use a stack to implement it, as shown below. Point out the error in this algorithm and give a correct algorithm.

// Wrong version
SearchTree dfs(vertex v) {
 push v into the stack;
 mark v visited;

 while (the stack is not empty) {
 pop a vertex, say u, from the stack
 visit u;
 for each neighbor w of u
 if (w has not been visited)
 push w into the stack;
 }
}

28.8 Case Study: The Connected Circles Problem

	The connected circles problem is to determine whether all circles in a two-­dimensional plane are connected. This problem can be solved using a depth-first traversal.

The DFS algorithm has many applications. This section applies the DFS algorithm to solve the connected circles problem.

In the connected circles problem, you determine whether all the circles in a two-dimensional plane are connected. If all the circles are connected, they are painted as filled circles, as shown in Figure 28.14a. Otherwise, they are not filled, as shown in Figure 28.14b.

[image: Two connected circles animations. Part ay: circles are connected, or overlapping. Part b: circles are not connected. One circle does not overlap any other circle.]

Figure 28.14 

You can apply DFS to determine whether the circles are connected.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

We will write a program that lets the user create a circle by clicking a mouse in a blank area that is not currently covered by a circle. As the circles are added, the circles are repainted filled if they are connected or unfilled otherwise.

We will create a graph to model the problem. Each circle is a vertex in the graph. Two circles are connected if they overlap. We apply the DFS in the graph, and if all vertices are found in the depth-first search, the graph is connected.

The program is given in Listing 28.10.

Listing 28.10 ConnectedCircles.java

				 1 import javafx.application.Application;
				 2 import javafx.geometry.Point2D;
				 3 import javafx.scene.Node;
				 4 import javafx.scene.Scene;
				 5 import javafx.scene.layout.Pane;
				 6 import javafx.scene.paint.Color;
				 7 import javafx.scene.shape.Circle;
				 8 import javafx.stage.Stage;
				 9
				10 public class ConnectedCircles extends Application {
				11 @Override // Override the start method in the Application class
				12 public void start(Stage primaryStage) {
				13 // Create a scene and place it in the stage
create a circle pane		14 Scene scene = new Scene(new CirclePane(), 450, 350);
				15 primaryStage.setTitle("ConnectedCircles"); // Set the stage title
				16 primaryStage.setScene(scene); // Place the scene in the stage
				17 primaryStage.show(); // Display the stage
				18 }
				19
				20 /** Pane for displaying circles */
pane for showing circles	21 class CirclePane extends Pane {
				22 public CirclePane() {
handle mouse clicked		23 this.setOnMouseClicked(e -> {
is it inside another circle?	24 if (!isInsideACircle(new Point2D(e.getX(), e.getY()))) {
				25 // Add a new circle
add a new circle		26 getChildren().add(new Circle(e.getX(), e.getY(), 20));
color if all connected		27 colorIfConnected();
				28 }
				29 });
				30 }
				31
				32 /** Returns true if the point is inside an existing circle */
				33 private boolean isInsideACircle(Point2D p) {
				34 for (Node circle: this.getChildren())
contains the point?		35 if (circle.contains(p))
				36 return true;
				37
				38 return false;
				39 }
				40
				41 /** Color all circles if they are connected */
				42 private void colorIfConnected() {
				43 if (getChildren().size() == 0)
				44 return; // No circles in the pane
				45
				46 // Build the edges
create edges			47 java.util.List<Edge> edges
				48 = new java.util.ArrayList<>();
				49 for (int i = 0; i < getChildren().size(); i++)
				50 for (int j = i + 1; j < getChildren().size(); j++)
				51 if (overlaps((Circle)(getChildren().get(i)),
				52 (Circle)(getChildren().get(j)))) {
				53 edges.add(new Edge(i, j));
				54 edges.add(new Edge(j, i));
				55 }
				56
				57 // Create a graph with circles as vertices
create a graph			58 Graph<Node> graph = new UnweightedGraph<>
				59 ((java.util.List<Node>)getChildren(), edges);
get a search tree		60 UnweightedGraph<Node>.SearchTree tree = graph.dfs(0);
connected?			61 boolean isAllCirclesConnected = getChildren().size() == tree
				62 .getNumberOfVerticesFound();
				63
				64 for (Node circle: getChildren()) {
connected			65 if (isAllCirclesConnected) { // All circles are connected
				66 ((Circle)circle).setFill(Color.RED);
				67 }
not connected			68 else {
				69 ((Circle)circle).setStroke(Color.BLACK);
				70 ((Circle)circle).setFill(Color.WHITE);
				71 }
				72 }
				73 }
				74 }
				75
two circles overlap?		76 public static boolean overlaps(Circle circle1, Circle circle2) {
				77 return new Point2D(circle1.getCenterX(), circle1.getCenterY()).
				78 distance(circle2.getCenterX(), circle2.getCenterY())
				79 <= circle1.getRadius() + circle2.getRadius();
				80 }
				81 }

The JavaFX Circle class contains the data fields x, y, and radius, which specify the circle’s center location and radius. It also defines the contains method for testing whether a point is inside the circle. The overlaps method (lines 76–80) checks whether two circles overlap.

When the user clicks the mouse outside of any existing circle, a new circle is created centered at the mouse point and the circle is added to the list circles (line 26).

To detect whether the circles are connected, the program constructs a graph (lines 46–59). The circles are the vertices of the graph. The edges are constructed in lines 47–55. Two circle vertices are connected if they overlap (line 51). The DFS of the graph results in a tree (line 60). The tree’s getNumberOfVerticesFound() returns the number of vertices searched. If it is equal to the number of circles, all circles are connected (lines 61–62).

	28.8.1 How is a graph created for the connected circles problem?

	28.8.2 When you click the mouse inside a circle, does the program create a new circle?

	28.8.3 How does the program know if all circles are connected?

28.9 Breadth-First Search (BFS)

	The breadth-first search of a graph visits the vertices level by level. The first level consists of the starting vertex. Each next level consists of the vertices adjacent to the vertices in the preceding level.

The breadth-first traversal of a graph is like the breadth-first traversal of a tree discussed in Section 25.2.4, Tree Traversal. With breadth-first traversal of a tree, the nodes are visited level by level. First the root is visited, then all the children of the root, then the grandchildren of the root, and so on. Similarly, the breadth-first search of a graph first visits a vertex, then all its adjacent vertices, then all the vertices adjacent to those vertices, and so on. To ensure each vertex is visited only once, it skips a vertex if it has already been visited.

28.9.1 Breadth-First Search Algorithm

The algorithm for the breadth-first search starting from vertex v in a graph is described in Listing 28.11.

Listing 28.11 Breadth-First Search Algorithm

 Input: G = (V, E) and a starting vertex v
 Output: a BFS tree rooted at v

			1 SearchTree bfs(vertex v) {
create a queue		2 create an empty queue for storing vertices to be visited;
enqueue v		3 add v into the queue;
			4 mark v visited;
			5
			6 while (the queue is not empty) {
dequeue into u		7 dequeue a vertex, say u, from the queue;
u traversed		8 add u into a list of traversed vertices;
check a neighbor w	9 for each neighbor w of u
is w visited?	 10 if w has not been visited {
enqueue w	 11 add w into the queue;
		 12 set u as the parent for w in the tree;
		 13 mark w visited;
		 14 }
		 15 }
		 16 }

Consider the graph in Figure 28.15a. Suppose you start the breadth-first search from vertex 0. First visit 0, then visit all its neighbors, 1, 2, and 3, as shown in Figure 28.15b. Vertex 1 has three neighbors: 0, 2, and 4. Since 0 and 2 have already been visited, you will now visit just 4, as shown in Figure 28.15c. Vertex 2 has three neighbors, 0, 1, and 3, which have all been visited. Vertex 3 has three neighbors, 0, 2, and 4, which have all been visited. Vertex 4 has two neighbors, 1 and 3, which have all been visited. Hence, the search ends.

Since each edge and each vertex is visited only once, the time complexity of the bfs method is O(|E| + |V|), where |E| denotes the number of edges and |V| the number of vertices.

BFS time complexity

28.9.2 Implementation of Breadth-First Search

The bfs(int v) method is defined in the Graph interface and implemented in the ­UnweightedGraph class in Listing 28.4 (lines 181–206). It returns an instance of the SearchTree class with vertex v as the root. The method stores the vertices searched in the list searchOrder (line 182), the parent of each vertex in the array parent (line 183), uses a linked list for a queue (lines 187–188), and uses the isVisited array to indicate whether a vertex has been visited (line 191). The search starts from vertex v. v is added to the queue in line 190 and is marked as visited (line 191). The method now examines each vertex u in the queue (line 193) and adds it to searchOrder (line 195). The method adds each unvisited neighbor e.v of u to the queue (line 198), sets its parent to u (line 199), and marks it as visited (line 200).

[image: Three graphs.]

Figure 28.15 

Breadth-first search visits a node, then its neighbors, then its neighbors’s neighbors, and so on.

Description

Listing 28.12 gives a test program that displays a BFS for the graph in Figure 28.1 starting from Chicago. The graphical illustration of the BFS starting from Chicago is shown in Figure 28.16.

Listing 28.12 TestBFS.java

 1 public class TestBFS {
 2 public static void main(String[] args) {
vertices 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
edges 7 int[][] edges = {
 8 {0, 1}, {0, 3}, {0, 5},
 9 {1, 0}, {1, 2}, {1, 3},
 10 {2, 1}, {2, 3}, {2, 4}, {2, 10},
 11 {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5},
 12 {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10},
 13 {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
 14 {6, 5}, {6, 7},
 15 {7, 4}, {7, 5}, {7, 6}, {7, 8},
 16 {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11},
 17 {9, 8}, {9, 11},
 18 {10, 2}, {10, 4}, {10, 8}, {10, 11},
 19 {11, 8}, {11, 9}, {11, 10}
 20 };
 21
create a graph 22 Graph<String> graph = new UnweightedGraph<>(vertices, edges);
create a BFS tree 23 UnweightedGraph<String>.SearchTree bfs =
 24 graph.bfs(graph.getIndex("Chicago"));
 25
get search order 26 java.util.List<Integer> searchOrders = bfs.getSearchOrder();
 27 System.out.println(bfs.getNumberOfVerticesFound() +
 28 " vertices are searched in this order:");
 29 for (int i = 0; i < searchOrders.size(); i++)
 30 System.out.println(graph.getVertex(searchOrders.get(i)));
 31
 32 for (int i = 0; i < searchOrders.size(); i++)
 33 if (bfs.getParent(i) != -1)
 34 System.out.println("parent of " + graph.getVertex(i) +
 35 " is " + graph.getVertex(bfs.getParent(i)));
 36 }
 37 }

12 vertices are searched in this order:
 Chicago Seattle Denver Kansas City Boston New York
 San Francisco Los Angeles Atlanta Dallas Miami Houston
parent of Seattle is Chicago
parent of San Francisco is Seattle
parent of Los Angeles is Denver
parent of Denver is Chicago
parent of Kansas City is Chicago
parent of Boston is Chicago
parent of New York is Chicago
parent of Atlanta is Kansas City
parent of Miami is Atlanta
parent of Dallas is Kansas City
parent of Houston is Atlanta

[image: A graph.]

Figure 28.16 

BFS search starts from Chicago.

Source: © Mozilla Firefox.

Description

28.9.3 Applications of the BFS

Many of the problems solved by the DFS can also be solved using the BFS. Specifically, the BFS can be used to solve the following problems:

	Detecting whether a graph is connected. A graph is connected if there is a path between any two vertices in the graph.

	Detecting whether there is a path between two vertices.

	Finding the shortest path between two vertices. You can prove that the path between the root and any node in the BFS tree is the shortest path between the root and the node. (See CheckPoint Question 28.9.5.)

	Finding all connected components. A connected component is a maximal connected subgraph in which every pair of vertices are connected by a path.

	Detecting whether there is a cycle in the graph (see Programming Exercise 28.6).

	Finding a cycle in the graph (see Programming Exercise 28.7).

	Testing whether a graph is bipartite. (A graph is bipartite if the vertices of the graph can be divided into two disjoint sets such that no edges exist between vertices in the same set.) (See Programming Exercise 28.8.)

	28.9.1 What is the return type from invoking bfs(v)?

	28.9.2 What is breadth-first search?

	28.9.3 Draw a BFS tree for the graph in Figure 28.3b starting from node A.

	28.9.4 Draw a BFS tree for the graph in Figure 28.1 starting from vertex Atlanta.

	28.9.5 Prove the path between the root and any node in the BFS tree is the shortest path between the root and the node.

28.10 Case Study: The Nine Tails Problem

	The nine tails problem can be reduced to the shortest path problem.

The nine tails problem is as follows. Nine coins are placed in a 3×3 matrix, with some face up and some face down. A legal move is to take any coin that is face up and reverse it, together with the coins adjacent to it (this does not include coins that are diagonally adjacent). Your task is to find the minimum number of moves that lead to all coins being face down. For example, start with the nine coins as shown in Figure 28.17a. After you flip the second coin in the last row, the nine coins are now as shown in Figure 28.17b. After you flip the second coin in the first row, the nine coins are all face down, as shown in Figure 28.17c. See liveexample.pearsoncmg.com/dsanimation/NineCoin.html for an interactive demo.

[image: Three 3-by-3 arrays for head H and tail T results.]

Figure 28.17 

The problem is solved when all coins are face down.

Description

We will write a program that prompts the user to enter an initial state of the nine coins a
nd displays the solution, as shown in the following sample run:

Enter the initial nine coins Hs and Ts: HHHTTTHHH
The steps to flip the coins are
HHH
TTT
HHH

HHH
THT
TTT

TTT
TTT
TTT

Each state of the nine coins represents a node in the graph. For example, the three states in Figure 28.17 correspond to three nodes in the graph. For convenience, we use a 3×3 matrix to represent all nodes and use 0 for heads and 1 for tails. Since there are nine cells and each cell is either 0 or 1, there are a total of 29 (512) nodes, labeled 0, 1, . . . , and 511, as shown in Figure 28.18.

[image: A series of 3-by-3 arrays with binary values.]

Figure 28.18 

There are total of 512 nodes labeled in this order: 0, 1, 2, . . . , 511.

Description

We assign an edge from node v to u if there is a legal move from u to v. Figure 28.19 shows a partial graph. Note there is an edge from 511 to 47, since you can flip a cell in node 47 to become node 511.

The last node in Figure 28.18 represents the state of nine face-down coins. For convenience, we call this last node the target node. Thus, the target node is labeled 511. Suppose the initial state of the nine tails problem corresponds to the node s. The problem is reduced to finding the shortest path from node s to the target node, which is equivalent to finding the path from node s to the target node in a BFS tree rooted at the target node.

Now the task is to build a directed graph that consists of 512 nodes labeled 0, 1, 2, . . . , 511, and edges among the nodes. Once the graph is created, obtain a BFS tree rooted at node 511. From the BFS tree, you can find the shortest path from the root to any vertex. We will create a class named NineTailModel, which contains the method to get the shortest path from the target node to any other node. The class UML diagram is shown in Figure 28.19.

Visually, a node is represented in a 3×3 matrix with the letters H and T. In our program, we use a single-dimensional array of nine characters to represent a node. For example, the node for vertex 1 in Figure 28.18 is represented as {'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'T'} in the array.

The getEdges() method returns a list of Edge objects.

The getNode(index) method returns the node for the specified index. For example, ­getNode(0) returns the node that contains nine Hs. getNode(511) returns the node that contains nine Ts. The getIndex(node) method returns the index of the node.

[image: 3-by-3 binary arrays show 5 1 1 split into 4 0 8, 4 8 8, 2 4 0, 3 0, 4 7, and 5 1, which then merge to 5 6.]

Figure 28.19 

The NineTailModel class models the nine tails problem using a graph.

[image: A U M L diagram for the nine tail model.]

Figure 28.20 

If node u becomes node v after cells are flipped, assign an edge from v to u.

Description

Note the data field tree is defined as protected so it can be accessed from the ­WeightedNineTail subclass in the next chapter.

The getFlippedNode(char[] node, int position) method flips the node at the specified position and its adjacent positions. This method returns the index of the new node. The position is a value from 0 to 8, which points to a coin in the node, as shown in the following figure.

[image: Three arrays.]

Description

For example, for node 56 in Figure 28.20, flip it at position 0, and you will get node 51. If you flip node 56 at position 1, you will get node 47.

The flipACell(char[] node, int row, int column) method flips a node at the specified row and column. For example, if you flip node 56 at row 0 and column 0, the new node is 408. If you flip node 56 at row 2 and column 0, the new node is 30.

Listing 28.13 shows the source code for NineTailModel.java.

Listing 28.13 NineTailModel.java

 1 import java.util.*;
 2
 3 public class NineTailModel {
 4 public final static int NUMBER_OF_NODES = 512;
create edges 5 protected UnweightedGraph<Integer>.SearchTree tree;
 6
 7 /** Construct a model */
 8 public NineTailModel() {
 9 // Create edges
create graph 10 List<Edge> edges = getEdges();
 11
 12 // Create a graph
create graph 13 UnweightedGraph<Integer> graph = new UnweightedGraph<>(
 14 edges, NUMBER_OF_NODES);
 15
 16 // Obtain a BSF tree rooted at the target node
create tree 17 tree = graph.bfs(511);
 18 }
 19
 20 /** Create all edges for the graph */
get edges 21 private List<Edge> getEdges() {
 22 List<Edge> edges =
 23 new ArrayList<>(); // Store edges
 24
 25 for (int u = 0; u < NUMBER_OF_NODES; u++) {
 26 for (int k = 0; k < 9; k++) {
 27 char[] node = getNode(u); // Get the node for vertex u
 28 if (node[k] == 'H') {
 29 int v = getFlippedNode(node, k);
 30 // Add edge (v, u) for a legal move from node u to node v
add an edge 31 edges.add(new Edge(v, u));
 32 }
 33 }
 34 }
 35
 36 return edges;
 37 }
 38
 39 public static int getFlippedNode(char[] node, int position) {
 flip cells 40 int row = position / 3;
 41 int column = position % 3;
 42
 43 flipACell(node, row, column);
 44 flipACell(node, row − 1, column);
 45 flipACell(node, row + 1, column);
 46 flipACell(node, row, column − 1);
 47 flipACell(node, row, column + 1);
 48
 49 return getIndex(node);
 50 }
 51
 flip a cell 52 public static void flipACell(char[] node, int row, int column) {
 53 if (row >= 0 && row <= 2 && column >= 0 && column <= 2) {
 54 // Within the boundary
 55 if (node[row * 3 + column] == 'H')
 56 node[row * 3 + column] = 'T'; // Flip from H to T
 57 else
 58 node[row * 3 + column] = 'H'; // Flip from T to H
 59 }
 60 }
 61
 get index for a node 62 public static int getIndex(char[] node) {
 63 int result = 0;
 64
 65 for (int i = 0; i < 9; i++)
 66 if (node[i] == 'T')
 67 result = result * 2 + 1;
 68 else
 69 result = result * 2 + 0;
 70
 71 return result;
 72 }
 73
get node for an index 74 public static char[] getNode(int index) {
 75 char[] result = new char[9];
 76
 77 for (int i = 0; i < 9; i++) {
 78 int digit = index % 2;
 79 if (digit == 0)
 80 result[8 - i] = 'H';
 81 else
 82 result[8 - i] = 'T';
 83 index = index / 2;
 84 }
 85
 86 return result;
 87 }
 88
shortest path 89 public List<Integer> getShortestPath(int nodeIndex) {
 90 return tree.getPath(nodeIndex);
 91 }
 92
display a node 93 public static void printNode(char[] node) {
 94 for (int i = 0; i < 9; i++)
 95 if (i % 3 != 2)
 96 System.out.print(node[i]);
 97 else
 98 System.out.println(node[i]);
 99
 100 System.out.println();
 101 }
 102 }

[image: The row and column values are flipped to form a cross-shaped arrangement of 5 cells.]

[image: Two diagrams show head and tail results.]

Description

[image: Example. Node = T H H H H H H T T. Output, 3-by-3 array: row 1, T H H; row 2, H H H; row 3, H T T.]

The constructor (lines 8–18) creates a graph with 512 nodes, and each edge corresponds to the move from one node to the other (line 10). From the graph, a BFS tree rooted at the target node 511 is obtained (line 17).

To create edges, the getEdges method (lines 21–37) checks each node u to see if it can be flipped to another node v. If so, add (v, u) to the Edge list (line 31). The getFlippedNode(node, position) method finds a flipped node by flipping an H cell and its neighbors in a node (lines 43–47). The flipACell(node, row, column) method actually flips an H cell and its neighbors in a node (lines 52–60).

The getIndex(node) method is implemented in the same way as converting a binary number to a decimal number (lines 62–72). The getNode(index) method returns a node consisting of the letters H and T (lines 74–87).

The getShortestpath(nodeIndex) method invokes the getPath(nodeIndex) method to get the vertices in a shortest path from the specified node to the target node (lines 89–91).

The printNode(node) method displays a node on the console (lines 93–101).

Listing 28.14 gives a program that prompts the user to enter an initial node and displays the steps to reach the target node.

Listing 28.14 NineTail.java

 1 import java.util.Scanner;
 2
 3 public class NineTail {
 4 public static void main(String[] args) {
 5 // Prompt the user to enter nine coins' Hs and Ts
 6 System.out.print("Enter the initial nine coins Hs and Ts: ");
 7 Scanner input = new Scanner(System.in);
 8 String s = input.nextLine();
initial node 9 char[] initialNode = s.toCharArray();
 10
create model 11 NineTailModel model = new NineTailModel();
 12 java.util.List<Integer> path =
get shortest path 13 model.getShortestPath(NineTailModel.getIndex(initialNode));
 14
 15 System.out.println("The steps to flip the coins are ");
 16 for (int i = 0; i < path.size(); i++)
 17 NineTailModel.printNode(
 18 NineTailModel.getNode(path.get(i).intValue()));
 19 }
 20 }

The program prompts the user to enter an initial node with nine letters with a combination of Hs and Ts as a string in line 8, obtains an array of characters from the string (line 9), creates a graph model to get a BFS tree (line 11), obtains the shortest path from the initial node to the target node (lines 12–13), and displays the nodes in the path (lines 16–18).

	28.10.1 How are the nodes created for the graph in NineTailModel?

	28.10.2 How are the edges created for the graph in NineTailModel?

	28.10.3 What is returned after invoking getIndex("HTHTTTHHH".­toCharArray()) in Listing 28.13 ? What is returned after invoking getNode(46) in Listing 28.13 ?

	28.10.4 If lines 26 and 27 are swapped in Listing 28.13 , NineTailModel.java, will the program work? Why not?

Key Terms

	adjacency list 1047

	adjacency matrix 1047

	adjacent vertices 1042

	breadth-first search 1061

	complete graph 1042

	cycle 1042

	degree 1042

	depth-first search 1061

	directed graph 1041

	graph 1040

	incident edges 1042

	parallel edge 1042

	Seven Bridges of Königsberg 1040

	simple graph 1042

	spanning tree 1042

	tree 1042

	undirected graph 1041

	unweighted graph 1042

	weighted graph 1042

Chapter Summary

	A graph is a useful mathematical structure that represents relationships among entities in the real world. You learned how to model graphs using classes and interfaces, how to represent vertices and edges using arrays and linked lists, and how to implement operations for graphs.

	Graph traversal is the process of visiting each vertex in the graph exactly once. You learned two popular ways for traversing a graph: the depth-first search (DFS) and breadth-first search (BFS).

	DFS and BFS can be used to solve many problems such as detecting whether a graph is connected, detecting whether there is a cycle in the graph, and finding the shortest path between two vertices.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

Sections 28.6–28.10

	*28.1 (Test whether a graph is connected) Write a program that reads a graph from a file and determines whether the graph is connected. The first line in the file contains a number that indicates the number of vertices (n). The vertices are labeled as 0, 1, …, n−1. Each subsequent line, with the format u v1 v2 …, describes edges (u, v1), (u, v2), and so on. Figure 28.21 gives the examples of two files for their corresponding graphs.

[image: Part ay shows a graph and two file listings.]

Figure 28.21 

The vertices and edges of a graph can be stored in a file.

Description

Your program should prompt the user to enter a URL for the file, then it should read data from the file, create an instance g of UnweightedGraph, invoke g.printEdges() to display all edges, and invoke dfs() to obtain an instance tree of UnweightedGraph<V>.SearchTree. If ­­tree.­getNumberOfVerticesFound() is the same as the number of vertices in the graph, the graph is connected. Here is a sample run of the program:

Enter a URL: https://liveexample.pearsoncmg.com/test/GraphSample1.txt
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The graph is connected

(Hint: Use new UnweightedGraph(list, numberOfVertices) to create a graph, where list contains a list of Edge objects. Use new Edge(u, v) to create an edge. Read the first line to get the number of vertices. Read each subsequent line into a string s and use s.split("[\;\s+]") to extract the vertices from the string and create edges from the vertices.)

	*28.2 (Create a file for a graph) Modify Listing 28.2 , TestGraph.java to create a file representing graph1. The file format is described in Programming Exercise 28.1 . Create the file from the array defined in lines 8–21 in Listing 28.2 . The number of vertices for the graph is 12, which will be stored in the first line of the file. The contents of the file should be as follows:

	12

	0 1 3 5

	1 0 2 3

	2 1 3 4 10

	3 0 1 2 4 5

	4 2 3 5 7 8 10

	5 0 3 4 6 7

	6 5 7

	7 4 5 6 8

	8 4 7 9 10 11

	9 8 11

	10 2 4 8 11

	11 8 9 10

	*28.3 (Implement DFS using a stack) The depth-first search algorithm described in Listing 28.8 , Depth-First Search Algorithm uses recursion. Design a new algorithm without using recursion. Describe it using pseudocode. Implement it by defining a new class named UnweightedGraphWithNonrecursiveDFS that extends UnweightedGraph and overriding the dfs method. Write a test ­program same as Listing 28.9 , TestPFS.java except that UnweightedGraph is replaced by UnweightedGraphWithNonrecursiveDFS.

	*28.4 (Find connected components) Create a new class named MyGraph as a subclass of UnweightedGraph that contains a method for finding all connected components in a graph with the following header:

public List<List<Integer>> getConnectedComponents();

The method returns a List<List<Integer>>. Each element in the list is another list that contains all the vertices in a connected component. For example, for the graph in Figure 28.21b , getConnectedComponents() returns [[0, 1, 2, 3], [4, 5]].

	*28.5 (Find paths) Define a new class named UnweightedGraphWithGetPath that extends UnweightedGraph with a new method for finding a path between two vertices with the following header:

public List<Integer> getPath(int u, int v);

The method returns a List<Integer> that contains all the vertices in a path from u to v in this order. Using the BFS approach, you can obtain the shortest path from u to v. If there isn’t a path from u to v, the method returns null. Write a test program that creates a graph for Figure 28.1 . The program prompts the user to enter two cities and displays their paths. Here is a sample run:

Enter a starting city: Seattle
 Enter an ending city: Miami
The path is Seattle Denver Kansas City Atlanta Miami

	*28.6 (Detect cycles) Define a new class named UnweightedGraphDetectCycle that extends UnweightedGraph with a new method for determining whether there is a cycle in the graph with the following header:

public boolean isCyclic();

Describe the algorithm in pseudocode and implement it. Note the graph may be a directed graph.

	*28.7 (Find a cycle) Define a new class named UnweightedGraphFindCycle that extends UnweightedGraph with a new method for finding a cycle starting at vertex u with the following header:

public List<Integer> getACycle(int u);

The method returns a List that contains all the vertices in a cycle starting from u. If the graph doesn’t have any cycles, the method returns null. Describe the algorithm in pseudocode and implement it.

	**28.8 (Test bipartite) Recall that a graph is bipartite if its vertices can be divided into two disjoint sets such that no edges exist between vertices in the same set. Define a new class named UnweightedGraphTestBipartite with the following method to detect whether the graph is bipartite:

public boolean isBipartite();

	**28.9 (Get bipartite sets) Add a new method in UnweightedGraph with the following header to return two bipartite sets if the graph is bipartite:

public List<List<Integer>> getBipartite();

The method returns a List that contains two sublists, each of which contains a set of vertices. If the graph is not bipartite, the method returns null.

	*28.10 (Find the shortest path) Write a program that reads a connected graph from a file. The graph is stored in a file using the same format specified in Programming Exercise 28.1 . Your program should prompt the user to enter the name of the file, then two vertices, and should display the shortest path between the two vertices. For example, for the graph in Figure 28.21a , the shortest path between 0 and 5 may be displayed as 0 1 3 5.

Here is a sample run of the program:

Enter a file name: c:\exercise\GraphSample1.txt
Enter two vertices (integer indexes): 0 5
The number of vertices is 6
Vertex 0: (0, 1) (0, 2)
Vertex 1: (1, 0) (1, 3)
Vertex 2: (2, 0) (2, 3) (2, 4)
Vertex 3: (3, 1) (3, 2) (3, 4) (3, 5)
Vertex 4: (4, 2) (4, 3) (4, 5)
Vertex 5: (5, 3) (5, 4)
The path is 0 1 3 5

	**28.11 (Revise Listing 28.14 , NineTail.java) The program in Listing 28.14 lets the user enter an input for the nine tails problem from the console and displays the result on the console. Write a program that lets the user set an initial state of the nine coins (see Figure 28.22a) and click the Solve button to display the solution, as shown in Figure 28.22b . Initially, the user can click the mouse button to flip a coin. Set a red color on the flipped cells.

[image: Part ay: The nine tail animation contain the following 3-by-3 array: row 1, H H H; row 2, T T T; row 3, H T H. Part b: The results of solving the array in part ay.]

Figure 28.22 

The program solves the nine tails problem.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**28.12 (Variation of the nine tails problem) In the nine tails problem, when you flip a coin, the horizontal and vertical neighboring cells are also flipped. Rewrite the program, assuming all neighboring cells including the diagonal neighbors are also flipped.

	**28.13 (4×4 16 tails problem) Listing 28.14 , NineTail.java, presents a solution for the nine tails problem. Revise this program for the 4×4 16 tails problem. Note it is possible that a solution may not exist for a starting pattern. If so, report that no solution exists.

	**28.14 (4×4 16 tails analysis) The nine tails problem in the text uses a 3×3 matrix. Assume you have 16 coins placed in a 4×4 matrix. Write a program to find out the number of the starting patterns that don’t have a solution.

	*28.15 (4×4 16 tails GUI) Rewrite Programming Exercise 28.14 to enable the user to set an initial pattern of the 4×4 16 tails problem (see Figure 28.23a). The user can click the Solve button to display the solution, as shown in Figure 28.23b . Initially, the user can click the mouse button to flip a coin. If a solution does not exist, display a message dialog to report it.

[image: Part ay: The sixteen tail problem contains the following array: row 1, T T H H; row 2, T T T H; row 3, H T T T; row 4, H H T T. Part b: The animation shows the results of solving the array in part ay.]

Figure 28.23 

The problem solves the 16 tails problem.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	**28.16 (Induced subgraph) Given an undirected graph G=(V, E) and an integer k, find an induced subgraph H of G of maximum size such that all vertices of H have a degree >= k, or conclude that no such induced subgraph exists. Implement the method with the following header:

public static <V> Graph<V> maxInducedSubgraph(Graph<V> g, int k)

The method returns an empty graph if such a subgraph does not exist.

(Hint: An intuitive approach is to remove vertices whose degree is less than k. As vertices are removed with their adjacent edges, the degrees of other vertices may be reduced. Continue the process until no vertices can be removed, or all the vertices are removed.)

	***28.17 (Hamiltonian cycle) The Hamiltonian path algorithm is implemented in Supplement VI.E. Add the following getHamiltonianCycle method in the Graph interface and implement it in the UnweightedGraph class:

/** Return a Hamiltonian cycle
  * Return null if the graph doesn't contain a Hamiltonian cycle */
public List<Integer> getHamiltonianCycle()

	***28.18 (Knight’s Tour cycle) Rewrite KnightTourApp.java in the case study in Supplement VI.E to find a knight’s tour that visits each square in a chessboard and returns to the starting square. Reduce the Knight’s Tour cycle problem to the problem of finding a Hamiltonian cycle.

	**28.19 (Display a DFS/BFS tree in a graph) Modify GraphView in Listing 28.6 to add a new data field tree with a setter method. The edges in the tree are displayed in red. Write a program that displays the graph in Figure 28.1 and the DFS/BFS tree starting from a specified city, as shown in Figures 28.13 and 28.16. If a city not in the map is entered, the program displays an error message in the label.

	*28.20 (Display a graph) Write a program that reads a graph from a file and displays it. The first line in the file contains a number that indicates the number of vertices (n). The vertices are labeled 0, 1, . . . , n−1. Each subsequent line, with the format u x y v1 v2 …, describes the position of u at (x, y) and edges (u, v1), (u, v2), and so on. Figure 28.24a gives an example of the file for their corresponding graph. Your program prompts the user to enter the name of the file, reads data from the file, and displays the graph on a pane using GraphView, as shown in Figure 28.24b .

[image: A file listing and graph.]

Figure 28.24 

The program reads the information about the graph and displays it visually.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

	**28.21 (Display sets of connected circles) Modify Listing 28.10 , ConnectedCircles.java to display sets of connected circles in different colors. That is, if two ­circles are connected, they are displayed using the same color; otherwise, they are not in same color, as shown in Figure 28.25 . (Hint: See Programming ­Exercise 28.4 .)

[image: Three animations show connected circles and squares with different coloring.]

Figure 28.25 

(a) Connected circles are displayed in the same color. (b) Rectangles are not filled with a color if they are not connected. (c) Rectangles are filled with a color if they are connected.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	*28.22 (Move a circle) Modify Listing 28.10 , ConnectedCircles.java, to enable the user to drag and move a circle.

	**28.23 (Connected rectangles) Listing 28.10 , ConnectedCircles.java, allows the user to create circles and determine whether they are connected. Rewrite the program for rectangles. The program lets the user create a rectangle by clicking a mouse in a blank area that is not currently covered by a rectangle. As the rectangles are added, the rectangles are repainted as filled if they are connected or are unfilled otherwise, as shown in Figure 28.25b–c .

	*28.24 (Remove a circle) Modify Listing 28.10 , ConnectedCircles.java, to enable the user to remove a circle when the mouse is clicked inside the circle.

	*28.25 (Implement remove(V v)) Modify Listing 28.4 , UnweightedGraph.java, to override the remove(V v) method defined in the Graph interface.

	*28.26 (Implement remove(int u, int v)) Modify Listing 28.4 , UnweightedGraph.java, to override the remove(int u, int v) method defined in the Graph interface.

CHAPTER 29 Weighted Graphs and Applications

Objectives

	To represent weighted edges using adjacency matrices and adjacency lists (§29.2).

	To model weighted graphs using the WeightedGraph class that extends the UnweightedGraph class (§29.3).

	To design and implement the algorithm for finding a minimum ­spanning tree (§29.4).

	To define the MST class that extends the SearchTree class (§29.4).

	To design and implement the algorithm for finding single-source ­shortest paths (§29.5).

	To define the ShortestPathTree class that extends the SearchTree class (§29.5).

	To solve the weighted nine tails problem using the shortest-path ­algorithm (§29.6).

29.1 Introduction

	A graph is a weighted graph if each edge is assigned a weight. Weighted graphs have many practical applications.

Figure 28.1 assumes the graph represents the number of flights among cities. You can apply the Breadth-First Search (BFS) to find the fewest number of flights between two cities. Assume the edges represent the driving distances among the cities as shown in Figure 29.1. How do you find the minimal total distances for connecting all cities? How do you find the shortest path between two cities? This chapter will address these questions. The former is known as the minimum spanning tree (MST) problem, and the latter as the shortest path problem.

problem

[image: The graph for the distances between cities. The edges are marked with the distances.]
Figure 29.1 

The graph models the distances among the cities.

The preceding chapter introduced the concept of graphs. You learned how to represent edges using edge arrays, edge lists, adjacency matrices, and adjacency lists, and how to model a graph using the Graph interface and the UnweightedGraph class. The preceding chapter also introduced two important techniques for traversing graphs: depth-first search and breadth-first search, and applied traversal to solve practical problems. This chapter will introduce weighted graphs. You will learn the algorithm for finding a minimum spanning tree in Section 29.4, and the algorithm for finding shortest paths in Section 29.5.

 Pedagogical Note

Before we introduce the algorithms and applications for weighted graphs, it is ­helpful to get acquainted with weighted graphs using the GUI interactive tool at liveexample.pearsoncmg.com/dsanimation/WeightedGraphLearningTooleBook.html, as shown in Figure 29.2. The tool allows you to enter vertices, specify edges and their weights, view the graph, and find an MST and all shortest paths from a single source.

weighted graph learning tool on Companion Website

[image: The graph algorithm animation can be used to create a graph with numbered vertices and weights on the edges.]
Figure 29.2 

You can use the tool to create a weighted graph with mouse gestures and show the MST and shortest paths.

Source: © Mozilla Firefox.

29.2 Representing Weighted Graphs

	Weighted edges can be stored in adjacency lists.

There are two types of weighted graphs: vertex weighted and edge weighted. In a ­vertex-weighted graph, each vertex is assigned a weight. In an edge-weighted graph, each edge is assigned a weight. Of the two types, edge-weighted graphs have more applications. This chapter considers edge-weighted graphs.

vertex-weighted graph

edge-weighted graph

Weighted graphs can be represented in the same way as unweighted graphs, except that you have to represent the weights on the edges. As with unweighted graphs, the vertices in weighted graphs can be stored in an array. This section introduces three representations for the edges in weighted graphs.

29.2.1 Representing Weighted Edges: Edge Array

Weighted edges can be represented using a two-dimensional array. For example, you can store all the edges in the graph in Figure 29.3a using the array in Figure 29.3b.

[image: A graph and edge list.]
Figure 29.3 

Each edge is assigned a weight in an edge-weighted graph.

Description

 Note

Weights can be of any type: Integer, Double, BigDecimal, and so on. You can use a two-dimensional array of the Object type to represent weighted edges as follows:

Object[][] edges = {
 {new Integer(0), new Integer(1), new SomeTypeForWeight(2)},
 {new Integer(0), new Integer(3), new SomeTypeForWeight(8)},
 …
};

29.2.2 Weighted Adjacency Matrices

Assume the graph has n vertices. You can use a two-dimensional n×n[&n|multi|n&] matrix, say weights, to represent the weights on edges. weights[i][j] represents the weight on edge (i, j). If vertices i and j are not connected, weights[i][j] is null. For example, the weights in the graph in Figure 29.3a can be represented using an adjacency matrix as follows:

Integer[][] adjacencyMatrix = {
 {null, 2, null, 8, null},
 {2, null, 7, 3, null},
 {null, 7, null, 4, 5},
 {8, 3, 4, null, 6},
 {null, null, 5, 6, null}
};

	

	0

	1

	2

	3

	4

	0

	null

	2

	null

	8

	null

	1

	2

	null

	7

	3

	null

	2

	null

	7

	null

	4

	5

	3

	8

	3

	4

	null

	6

	4

	null

	null

	5

	6

	null

29.2.3 Adjacency Lists

Another way to represent the edges is to define edges as objects. The Edge class was defined to represent an unweighted edge in Listing 28.3. For weighted edges, we define the ­WeightedEdge class as shown in Listing 29.1.

Listing 29.1 WeightedEdge.java

 1 public class WeightedEdge extends Edge
 2 implements Comparable<WeightedEdge> {
edge weight 3 public double weight; // The weight on edge (u, v)
 4
 5 /** Create a weighted edge on (u, v) */
constructor 6 public WeightedEdge(int u, int v, double weight) {
 7 super(u, v);
 8 this.weight = weight;
 9 }
 10
 11 @Override /** Compare two edges on weights */
compare edges 12 public int compareTo(WeightedEdge edge) {
 13 if (weight > edge.weight)
 14 return 1;
 15 else if (weight == edge.weight)
 16 return 0;
 17 else
 18 return −1;
 19 }
 20 }

An Edge object represents an edge from vertex u to v. WeightedEdge extends Edge with a new property weight. To create a WeightedEdge object, use new WeightedEdge(i, j, w), where w is the weight on edge (i, j). Often you need to compare the weights of the edges. For this reason, the WeightedEdge class implements the Comparable interface.

For unweighted graphs, we use adjacency lists to represent edges. For weighted graphs, we still use adjacency lists, the adjacency lists for the vertices in the graph in Figure 29.3a can be represented as follows:

java.util.List<WeightedEdge>[] list = new java.util.List[5];

[image: A diagram shows weighted edges for lists 0 to 4. List 0: 0 1 2, 0 3 8. List 1: 1 0 2, 1 3 3, 1 2 7. List 2: 2 3 4, 2 4 5, 2 1 7. List 3: 3 1 3, 3 2 4, 3 4 6, 3 0 8. List 4: 4 2 5, 4 3 6.]
list[i] stores all edges adjacent to vertex i.

For flexibility, we will use an array list rather than a fixed-sized array to represent list as follows:

List<List<WeightedEdge>> list = new java.util.ArrayList<>();

	29.2.1 For the code WeightedEdge edge = new WeightedEdge(1, 2, 3.5), what is edge.u, edge.v, and edge.weight?

	29.2.2 What is the output of the following code?

 List<WeightedEdge> list = new ArrayList<>();
 list.add(new WeightedEdge(1, 2, 3.5));
 list.add(new WeightedEdge(2, 3, 4.5));
 WeightedEdge e = java.util.Collections.max(list);
 System.out.println(e.u);
 System.out.println(e.v);
 System.out.println(e.weight);

29.3 The WeightedGraph Class

	The WeightedGraph class extends UnweightedGraph.

The preceding chapter designed the Graph interface and the UnweightedGraph class for modeling graphs. We now design WeightedGraph as a subclass of UnweightedGraph, as shown in Figure 29.4.

[image: A U M L diagram.]
Figure 29.4 

WeightedGraph extends UnweightedGraph.

Description

WeightedGraph simply extends UnweightedGraph with five constructors for ­creating concrete WeightedGraph instances. WeightedGraph inherits all methods from ­UnweightedGraph, overrides the clear and addVertex methods, implements a new ­addEdge method for adding a weighted edge, and also introduces new methods for obtaining minimum spanning trees and for finding all single-source shortest paths. Minimum spanning trees and shortest paths will be introduced in Sections 29.4 and 29.5, respectively.

Listing 29.2 implements WeightedGraph. Edge adjacency lists (lines 38–63) are used internally to store adjacent edges for a vertex. When a WeightedGraph is constructed, its edge adjacency lists are created (lines 47 and 57). The methods getMinimumSpanningTree() (lines 99–138) and getShortestPath() (lines 156–197) will be introduced in upcoming sections.

Listing 29.2 WeightedGraph.java

 1 import java.util.*;
 2
 3 public class WeightedGraph<V>extends UnweightedGraph<V> {
 4 /** Construct an empty */
no-arg constructor 5 public WeightedGraph() {
 6 }
 7
 8 /** Construct a WeightedGraph from vertices and edged in arrays */
constructor 9 public WeightedGraph(V[] vertices, int[][] edges) {
 10 createWeightedGraph(java.util.Arrays.asList(vertices), edges);
 11 }
 12
 13 /** Construct a WeightedGraph from vertices and edges in list */
constructor 14 public WeightedGraph(int[][] edges, int numberOfVertices) {
 15 List<V> vertices = new ArrayList<>();
 16 for (int i = 0; i < numberOfVertices; i++)
 17 vertices.add((V)(new Integer(i)));
 18
 19 createWeightedGraph(vertices, edges);
 20 }
 21
 22 /** Construct a WeightedGraph for vertices 0, 1, 2 and edge list */
constructor 23 public WeightedGraph(List<V> vertices, List<WeightedEdge> edges) {
 24 createWeightedGraph(vertices, edges);
 25 }
 26
 27 /** Construct a WeightedGraph from vertices 0, 1, and edge array */
constructor 28 public WeightedGraph(List<WeightedEdge> edges,
 29 int numberOfVertices) {
 30 List<V> vertices = new ArrayList<>();
 31 for (int i = 0; i < numberOfVertices; i++)
 32 vertices.add((V)(new Integer(i)));
 33
 34 createWeightedGraph(vertices, edges);
 35 }
 36
 37 /** Create adjacency lists from edge arrays */
 38 private void createWeightedGraph(List<V> vertices, int[][] edges) {
 39 this.vertices = vertices;
 40
 41 for (int i = 0; i < vertices.size(); i++) {
create list for vertices 42 neighbors.add(new ArrayList<Edge>()); // Create a list for vertices
 43 }
 44
 45 for (int i = 0; i < edges.length; i++) {
 46 neighbors.get(edges[i][0]).add(
create a weighted edge 47 new WeightedEdge(edges[i][0], edges[i][1], edges[i][2]));
 48 }
 49 }
 50
 51 /** Create adjacency lists from edge lists */
 52 private void createWeightedGraph(
 53 List<V> vertices, List<WeightedEdge> edges) {
 54 this.vertices = vertices;
 55
 56 for (int i = 0; i < vertices.size(); i++) {
create list for vertices 57 neighbors.add(new ArrayList<Edge>()); // Create a list for vertices
 58 }
 59
 60 for (WeightedEdge edge: edges) {
 61 neighbors.get(edge.u).add(edge); // Add an edge into the list
 62 }
 63 }
 64
 65 /** Return the weight on the edge (u, v) */
get edge weight 66 public double getWeight(int u, int v) throws Exception {
 67 for (Edge edge : neighbors.get(u)) {
 68 if (edge.v == v) {
 69 return ((WeightedEdge)edge).weight;
 70 }
 71 }
 72
 73 throw new Exception("Edge does not exit");
 74 }
 75
 76 /** Display edges with weights */
print edges 77 public void printWeightedEdges() {
 78 for (int i = 0; i < getSize(); i++) {
 79 System.out.print(getVertex(i) + " (" + i + "): ");
 80 for (Edge edge : neighbors.get(i)) {
 81 System.out.print("(" + edge.u +
			 82 ", " + edge.v + ", " + ((WeightedEdge)edge).weight + ") ");
 83 }
 84 System.out.println();
 85 }
 86 }
 87
 88 /** Add edges to the weighted graph */
add edge 89 public boolean addEdge(int u, int v, double weight) {
 90 return addEdge(new WeightedEdge(u, v, weight));
 91 }
 92
 93 /** Get a minimum spanning tree rooted at vertex 0 */
get an MST 94 public MST getMinimumSpanningTree() {
start from vertex 0 95 return getMinimumSpanningTree(0);
 96 }
 97
 98 /** Get a minimum spanning tree rooted at a specified vertex */
MST from a starting vertex 99 public MST getMinimumSpanningTree(int startingVertex) {
 100 // cost[v] stores the cost by adding v to the tree
 101 double[] cost = new double[getSize()];
 102 for (int i = 0; i < cost.length; i++) {
initialize cost 103 cost[i] = Double.POSITIVE_INFINITY; // Initial cost
 104 }
 105 cost[startingVertex] = 0; // Cost of source is 0
 106
initialize parent 107 int[] parent = new int[getSize()]; // Parent of a vertex
 108 parent[startingVertex] = −1; // startingVertex is the root
 109 double totalWeight = 0; // Total weight of the tree thus far
 110
minimum spanning tree 111 List<Integer> T = new ArrayList<>();
 112
 113 // Expand T
expand MST 114 while (T.size() < getSize()) {
update total cost 115 // Find smallest cost u in V − T
 116 int u = −1; // Vertex to be determined
 117 double currentMinCost = Double.POSITIVE_INFINITY;
 118 for (int i = 0; i < getSize(); i++) {
 119 if (!T.contains(i) && cost[i] < currentMinCost) {
 120 currentMinCost = cost[i];
vertex with smallest cost 121 u = i;
 122 }
 123 }
 124
add to tree 125 if (u == −1) break; else T.add(u); // Add a new vertex to T
 126 totalWeight += cost[u]; // Add cost[u] to the tree
 127
 128 // Adjust cost[v] for v that is adjacent to u and v in V − T
adjust cost 129 for (Edge e: neighbors.get(u)) {
 130 if (!T.contains(e.v) && cost[e.v] > ((WeightedEdge)e).weight) {
 131 cost[e.v] = ((WeightedEdge)e).weight;
 132 parent[e.v] = u;
 133 }
 134 }
 135 } // End of while
 136
create an MST 137 return new MST(startingVertex, parent, T, totalWeight);
 138 }
 139
 140 /** MST is an inner class in WeightedGraph */
MST inner class 141 public class MST extends SearchTree {
total weight in tree 142 private double totalWeight; // Total weight of all edges in the tree
 143
 144 public MST(int root, int[] parent, List<Integer> searchOrder,
 145 double totalWeight) {
 146 super(root, parent, searchOrder);
 147 this.totalWeight = totalWeight;
 148 }
 149
 150 public double getTotalWeight() {
 151 return totalWeight;
 152 }
 153 }
 154
 155 /** Find single-source shortest paths */
getShortestPath 156 public ShortestPathTree getShortestPath(int sourceVertex) {
 157 // cost[v] stores the cost of the path from v to the source
initialize cost 158 double[] cost = new double[getSize()];
 159 for (int i = 0; i < cost.length; i++) {
 160 cost[i] = Double.POSITIVE_INFINITY; // Initial cost set to infinity
 161 }
 162 cost[sourceVertex] = 0; // Cost of source is 0
 163
 164 // parent[v] stores the previous vertex of v in the path
 165 int[] parent = new int[getSize()];
 166 parent[sourceVertex] = −1; // The parent of source is set to −1
 167
 168 // T stores the vertices whose path found so far
shortest-path tree 169 List<Integer> T = new ArrayList<>();
 170
 171 // Expand T
expand tree 172 while (T.size() < getSize()) {
 173 // Find smallest cost u in V − T
 174 int u = −1; // Vertex to be determined
 175 double currentMinCost = Double.POSITIVE_INFINITY;
 176 for (int i = 0; i < getSize(); i++) {
 177 if (!T.contains(i) && cost[i] < currentMinCost) {
 178 currentMinCost = cost[i];
vertex with smallest cost 179 u = i;
 180 }
 181 }
 182
add to T 183 if (u == −1) break; else T.add(u); // Add a new vertex to T
 184
 185 // Adjust cost[v] for v that is adjacent to u and v in V − T
 186 for (Edge e: neighbors.get(u)) {
 187 if (!T.contains(e.v)
 188 && cost[e.v] > cost[u] + ((WeightedEdge)e).weight) {
adjust cost 189 cost[e.v] = cost[u] + ((WeightedEdge)e).weight;
adjust parent 190 parent[e.v] = u;
 191 }
 192 }
 193 } // End of while
 194
 195 // Create a ShortestPathTree
create a tree 196 return new ShortestPathTree(sourceVertex, parent, T, cost);
 197 }
 198
 199 /** ShortestPathTree is an inner class in WeightedGraph */
shortest-path tree 200 public class ShortestPathTree extends SearchTree {
cost 201 private double[] cost; // cost[v] is the cost from v to source
 202
 203 /** Construct a path */
constructor 204 public ShortestPathTree(int source, int[] parent,
 205 List<Integer> searchOrder, double[] cost) {
 206 super(source, parent, searchOrder);
 207 this.cost = cost;
 208 }
 209
 210 /** Return the cost for a path from the root to vertex v */
get cost 211 public double getCost(int v) {
 212 return cost[v];
 213 }
 214
 215 /** Print paths from all vertices to the source */
print all paths 216 public void printAllPaths() {
 217 System.out.println("All shortest paths from " +
 218 vertices.get(getRoot()) + " are:");
 219 for (int i = 0; i < cost.length; i++) {
 220 printPath(i); // Print a path from i to the source
 221 System.out.println("(cost: " + cost[i] + ")"); // Path cost
 222 }
 223 }
 224 }
 225 }

The WeightedGraph class extends the UnweightedGraph class (line 3). The properties ­vertices and neighbors in UnweightedGraph are inherited in WeightedGraph. ­neighbors is a list. Each element is the list is another list that contains edges. For unweighted graph, each edge is an instance of Edge. For a weighted graph, each edge is an instance of WeightedEdge. WeightedEdge is a subtype of Edge. So you can add a weighted edge into neighbors.get(i) for a weighted graph (line 47).

The addEdge(u, v, weight) method (lines 88–91) adds an edge (u, v, weight) to the graph. If a graph is undirected, you should invoke addEdge(u, v, weight) and addEdge(v, u, weight) to add an edge between u and v.

Listing 29.3 gives a test program that creates a graph for the one in Figure 29.1, and another graph for the one in Figure 29.3a.

Listing 29.3 TestWeightedGraph.java

 1 public class TestWeightedGraph {
 2 public static void main(String[] args) {
vertices 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
edges 7 int[][] edges = {
 8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
 12 {3, 5, 1003},
 13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
 14 {4, 8, 864}, {4, 10, 496},
 15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
 16 {5, 6, 983}, {5, 7, 787},
 17 {6, 5, 983}, {6, 7, 214},
 18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
	 20 {8, 10, 781}, {8, 11, 810},
 21 {9, 8, 661}, {9, 11, 1187},
 22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 24 };
 25
 26 WeightedGraph<String> graph1 =
create graph 27 new WeightedGraph<>(vertices, edges);
 28 System.out.println("The number of vertices in graph1: "
 29 + graph1.getSize());
 30 System.out.println("The vertex with index 1 is "
 31 + graph1.getVertex(1));
 32 System.out.println("The index for Miami is " +
 33 graph1.getIndex("Miami"));
 34 System.out.println("The edges for graph1:");
print edges 35 graph1.printWeightedEdges();
 36
edges 37 edges = new int[][] {
 38 {0, 1, 2}, {0, 3, 8},
 39 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 40 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 41 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 42 {4, 2, 5}, {4, 3, 6}
 43 };
create graph 44 WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
 45 System.out.println("\nThe edges for graph2:");
print edges 46 graph2.printWeightedEdges();
 47 }
 48 }

The number of vertices in graph1: 12
The vertex with index 1 is San Francisco
The index for Miami is 9
The edges for graph1:
Vertex 0: (0, 1, 807) (0, 3, 1331) (0, 5, 2097)
Vertex 1: (1, 2, 381) (1, 0, 807) (1, 3, 1267)
Vertex 2: (2, 1, 381) (2, 3, 1015) (2, 4, 1663) (2, 10, 1435)
Vertex 3: (3, 4, 599) (3, 5, 1003) (3, 1, 1267)
 (3, 0, 1331) (3, 2, 1015)
Vertex 4: (4, 10, 496) (4, 8, 864) (4, 5, 533) (4, 2, 1663)
 (4, 7, 1260) (4, 3, 599)
Vertex 5: (5, 4, 533) (5, 7, 787) (5, 3, 1003)
 (5, 0, 2097) (5, 6, 983)
Vertex 6: (6, 7, 214) (6, 5, 983)
Vertex 7: (7, 6, 214) (7, 8, 888) (7, 5, 787) (7, 4, 1260)
Vertex 8: (8, 9, 661) (8, 10, 781) (8, 4, 864)
 (8, 7, 888) (8, 11, 810)
Vertex 9: (9, 8, 661) (9, 11, 1187)
Vertex 10: (10, 11, 239) (10, 4, 496) (10, 8, 781) (10, 2, 1435)
Vertex 11: (11, 10, 239) (11, 9, 1187) (11, 8, 810)

The edges for graph2:
Vertex 0: (0, 1, 2) (0, 3, 8)
Vertex 1: (1, 0, 2) (1, 2, 7) (1, 3, 3)
Vertex 2: (2, 3, 4) (2, 1, 7) (2, 4, 5)
Vertex 3: (3, 1, 3) (3, 4, 6) (3, 2, 4) (3, 0, 8)
Vertex 4: (4, 2, 5) (4, 3, 6)

The program creates graph1 for the graph in Figure 29.1 in lines 3–27. The vertices for graph1 are defined in lines 3–5. The edges for graph1 are defined in lines 7–24. The edges are represented using a two-dimensional array. For each row i in the array, edges[i][0] and edges[i][1] indicate there is an edge from vertex edges[i][0] to vertex edges[i][1] and the weight for the edge is edges[i][2]. For example, {0, 1, 807} (line 8) represents the edge from vertex 0 (edges[0][0]) to vertex 1 (edges[0][1]) with weight 807 (edges[0][2]). {0, 5, 2097} (line 8) represents the edge from vertex 0 (edges[2][0]) to vertex 5 (edges[2][1]) with weight 2097 (edges[2][2]). Line 35 invokes the printWeightedEdges() method on graph1 to display all edges in graph1.

The program creates the edges for graph2 for the graph in Figure 29.3a in lines 37–44. Line 46 invokes the printWeightedEdges() method on graph2 to display all edges in graph2.

	29.3.1 If a priority queue is used to store weighted edges, what is the output of the ­following code?

PriorityQueue<WeightedEdge> q = new PriorityQueue<>();
q.offer(new WeightedEdge(1, 2, 3.5));
q.offer(new WeightedEdge(1, 6, 6.5));
q.offer(new WeightedEdge(1, 7, 1.5));
System.out.println(q.poll().weight);
System.out.println(q.poll().weight);
System.out.println(q.poll().weight);

	29.3.2 If a priority queue is used to store weighted edges, what is wrong in the following code? Fix it and show the output.

List<PriorityQueue<WeightedEdge>> queues = new ArrayList<>();
queues.get(0).offer(new WeightedEdge(0, 2, 3.5));
queues.get(0).offer(new WeightedEdge(0, 6, 6.5));
queues.get(0).offer(new WeightedEdge(0, 7, 1.5));
queues.get(1).offer(new WeightedEdge(1, 0, 3.5));
queues.get(1).offer(new WeightedEdge(1, 5, 8.5));
queues.get(1).offer(new WeightedEdge(1, 8, 19.5));
System.out.println(queues.get(0).peek()
 .compareTo(queues.get(1).peek()));

	29.3.3 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 WeightedGraph<Character> graph = new WeightedGraph<>();
 graph.addVertex('U');
 graph.addVertex('V');
 int indexForU = graph.getIndex('U');
 int indexForV = graph.getIndex('V');
 System.out.println("indexForU is " + indexForU);
 System.out.println("indexForV is " + indexForV);
 graph.addEdge(indexForU, indexForV, 2.5);
 System.out.println("Degree of U is " +
 graph.getDegree(indexForU));
 System.out.println("Degree of V is " +
 graph.getDegree(indexForV));
 System.out.println("Weight of UV is " +
 graph.getWeight(indexForU, indexOfV));
 }
}

29.4 Minimum Spanning Trees

	A minimum spanning tree of a graph is a spanning tree with the minimum total weights.

A graph may have many spanning trees. Suppose the edges are weighted. A minimum spanning tree has the minimum total weights. For example, the trees in Figures 29.5b, 29.5c, 29.5d are spanning trees for the graph in Figure 29.5a. The trees in Figures 29.5c and 29.5d are minimum spanning trees.

[image: Four weighted graphs.]
Figure 29.5 

The trees in (c) and (d) are minimum spanning trees of the graph in (a).

Description

minimum spanning tree

The problem of finding a minimum spanning tree has many applications. Consider a company with branches in many cities. The company wants to lease telephone lines to connect all the branches together. The phone company charges different rates to connect different pairs of cities. There are many ways to connect all branches together. The cheapest way is to find a spanning tree with the minimum total rates.

29.4.1 Minimum Spanning Tree Algorithms

How do you find a minimum spanning tree? There are several well-known algorithms for doing so. This section introduces Prim’s algorithm. Prim’s algorithm starts with a spanning tree T that contains an arbitrary vertex. The algorithm expands the tree by repeatedly adding a vertex with the lowest-cost edge incident to a vertex already in the tree. Prim’s algorithm is a greedy algorithm, and it is described in Listing 29.4.

Prim’s algorithm

Listing 29.4 Prim's Minimum Spanning Tree Algorithm

 Input: A connected undirected weighted G = (V, E) with nonnegative weights
 Output: MST (a minimum spanning tree)
 1 MST minimumSpanningTree() {
 2 Let T be a set for the vertices in the spanning tree;
add initial vertex 3 Initially, add the starting vertex, s, to T;
 4
more vertices? 5 while (size of T < n) {
find a vertex 6 Find x in T and y in V – T with the smallest weight
 7 on the edge (x, y), as shown in Figure 29.6;
add to tree 8 Add y to T and set parent[y] = x;
 9 }
 10 }

[image: The vertices in the spanning tree include X and T. X connect to V minus T and Y outside the spanning tree. T connects to Y and another point outside the spanning tree.]
Figure 29.6 

Find a vertex x in T that connects a vertex y in V – T with the smallest weight.

The algorithm starts by adding the starting vertex into T. It then continuously adds a vertex (say y) from V – T into T. y is the vertex that is adjacent to a vertex in T with the smallest weight on the edge. For example, there are five edges connecting vertices in T and V – T as shown in Figure 29.6, and (x, y) is the one with the smallest weight. Consider the graph in Figure 29.7. The algorithm adds the vertices to T in this order:

[image: Six paths for T on a common graph.]
Figure 29.7 

The adjacent vertices with the smallest weight are added successively to T.

Description

example

	Add vertex 0 to T.

	Add vertex 5 to T, since WeightedEdge(5, 0, 5) has the smallest weight among all edges incident to a vertex in T, as shown in Figure 29.7a. The arrow line from 0 to 5 indicates that 0 is the parent of 5.

	Add vertex 1 to T, since WeightedEdge(1, 0, 6) has the smallest weight among all edges incident to a vertex in T, as shown in Figure 29.7b.

	Add vertex 6 to T, since WeightedEdge(6, 1, 7) has the smallest weight among all edges incident to a vertex in T, as shown in Figure 29.7c.

	Add vertex 2 to T, since WeightedEdge(2, 6, 5) has the smallest weight among all edges incident to a vertex in T, as shown in Figure 29.7d.

	Add vertex 4 to T, since WeightedEdge(4, 6, 7) has the smallest weight among all edges incident to a vertex in T, as shown in Figure 29.7e.

	Add vertex 3 to T, since WeightedEdge(3, 2, 8) has the smallest weight among all edges incident to a vertex in T, as shown in Figure 29.7f.

 Note

A minimum spanning tree is not unique. For example, both (c) and (d) in Figure 29.5 are minimum spanning trees for the graph in Figure 29.5a. However, if the weights are distinct, the graph has a unique minimum spanning tree.

unique tree?

 Note

Assume the graph is connected and undirected. If a graph is not connected or directed, the algorithm will not work. You can modify the algorithm to find a spanning forest for any undirected graph. A spanning forest is a graph in which each connected component is a tree.

connected and undirected

29.4.2 Refining Prim’s MST Algorithm

To make it easy to identify the next vertex to add into the tree, we use cost[v] to store the cost of adding a vertex v to the spanning tree T. Initially, cost[s] is 0 for a starting vertex and assign infinity to cost[v] for all other vertices. The algorithm repeatedly finds a vertex u in V–T with the smallest cost[u] and moves u to T. The refined version of the alogrithm is given in Listing 29.5.

Listing 29.5 Refined Version of Prim's Algorithm

Input: A connected undirected weighted G = (V, E) with nonnegative weights
Output: a minimum spanning tree with the starting vertex s as the root
 1 MST getMinimumSpanngingTree(s) {
 2 Let T be a set that contains the vertices in the spanning tree;
 3 Initially T is empty;
 4 Set cost[s] = 0 and cost[v] = infinity for all other vertices in V;
 5
 6 while (size of T < n) {
find next vertex 7 Find u not in T with the smallest cost[u];
add a vertex to T 8 Add u to T;
 9 for (each v not in T and (u, v) in E)
 10 if (cost[v] > w(u, v)) { // Adjust cost[v]
adjust cost[v] 11 cost[v] = w(u, v); parent[v] = u;
 12 }
 13 }
 14 }

For an interactive demo on how the refined Prim’s algorithm works, see liveexample.pearsoncmg.com/dsanimation/RefinedPrim.html.

29.4.3 Implementation of the MST Algorithm

The getMinimumSpanningTree(int v) method is defined in the WeightedGraph class, as shown in Figure 29.4. It returns an instance of the MST class. The MST class is defined as an inner class in the WeightedGraph class, which extends the SearchTree class, as shown in Figure 29.8. The SearchTree class was shown in Figure 28.11. The MST class was ­implemented in lines 141–153 in Listing 29.2.

[image: A U M L diagram.]
Figure 29.8 

The MST class extends the SearchTree class.

Description

getMinimumSpanningTree()

The refined version of the Prim’s algorithm greatly simplifies the implementation. The getMinimumSpanningTree method was implemented using the refined version of the Prim’s algorithm in lines 99–138 in Listing 29.2. The getMinimumSpanningTree(int ­startingVertex) method sets cost[startingVertex] to 0 (line 105) and cost[v] to infinity for all other vertices (lines 102–104). The parent of startingVertex is set to −1 (line 108). T is a list that stores the vertices added into the spanning tree (line 111). We use a list for T rather than a set in order to record the order of the vertices added to T.

Initially, T is empty. To expand T, the method performs the following operations:

	Find the vertex u with the smallest cost[u] (lines 118–123).

	If u is found, add it to T (line 125). Note if u is not found (u == −1), the graph is not connected. The break statement exits the while loop in this case.

	After adding u in T, update cost[v] and parent[v] for each v adjacent to u in V−T if cost[v] > w(u, v) (lines 129–134).

After a new vertex is added to T, totalWeight is updated (line 126). Once all vertices are added to T, an instance of MST is created (line 137). Note the method will not work if the graph is not connected. However, you can modify it to obtain a partial MST.

The MST class extends the SearchTree class (line 141). To create an instance of MST, pass root, parent, T, and totalWeight (lines 144–145). The data fields root, parent, and searchOrder are defined in the SearchTree class, which is an inner class defined in UnweightedGraph.

Note testing whether a vertex i is in T by invoking T.contains(i) takes O(n) time, since T is a list. Therefore, the overall time complexity for this implementation is O(n3).[&~it~O~normal~(~it~n^{~normal~3}).~norm~&] Interested readers may see Programming Exercise29.20 for improving the implementation and reduce the complexity to O(n2).[&~it~O~normal~(~it~n^{~normal~2}).~norm~&]

time complexity

Listing 29.6 gives a test program that displays minimum spanning trees for the graph in Figure 29.1 and the graph in Figure 29.3a, respectively.

Listing 29.6 TestMinimumSpanningTree.java

 1 public class TestMinimumSpanningTree {
 2 public static void main(String[] args) {
create vertices 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
create edges 7 int[][] edges = {
 8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
 12 {3, 5, 1003},
 13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
 14 {4, 8, 864}, {4, 10, 496},
 15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
 16 {5, 6, 983}, {5, 7, 787},
 17 {6, 5, 983}, {6, 7, 214},
 18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
 20 {8, 10, 781}, {8, 11, 810},
 21 {9, 8, 661}, {9, 11, 1187},
 22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 24 };
 25
create graph1 26 WeightedGraph<String> graph1 =
 27 new WeightedGraph<>(vertices, edges);
MST for graph1 28 WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();
 29 System.out.println("tree1: Total weight is " + total weight
 30 tree1.getTotalWeight());
print tree 31 tree1.printTree();
 32
create edges 33 edges = new int[][] {
 34 {0, 1, 2}, {0, 3, 8},
 35 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 36 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 37 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 38 {4, 2, 5}, {4, 3, 6}
 39 };
 40
create graph2 41 WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
 42 WeightedGraph<Integer>.MST tree2 =
MST for graph2 43 graph2.getMinimumSpanningTree(1);
 44 System.out.println("\ntree2: Total weight is " +
total weight 45 tree2.getTotalWeight());
print tree 46 tree2.printTree();
 47
display search order 48 System.out.println("\nShow the search order for tree1:");
 49 for (int i: tree1.getSearchOrder())
 50 System.out.print(graph1.getVertex(i) + " ");
 51 }
 52 }

Total weight is 6513.0
Root is: Seattle
Edges: (Seattle, San Francisco) (San Francisco, Los Angeles)
 (Los Angeles, Denver) (Denver, Kansas City) (Kansas City, Chicago)
 (New York, Boston) (Chicago, New York) (Dallas, Atlanta)
 (Atlanta, Miami) (Kansas City, Dallas) (Dallas, Houston)

Total weight is 14.0
Root is: 1
Edges: (1, 0) (3, 2) (1, 3) (2, 4)

Show the search order for tree1:
Seattle San Francisco Los Angeles Denver Kansas City Dallas

Houston Chicago Atlanta Miami New York Boston

The program creates a weighted graph for Figure 29.1 in line 27. It then invokes ­getMinimumSpanningTree() (line 28) to return an MST that represents a minimum spanning tree for the graph. Invoking printTree() (line 31) on the MST object displays the edges in the tree. Note that MST is a subclass of Tree. The printTree() method is defined in the SearchTree class.

graphical illustration

The graphical illustration of the minimum spanning tree is shown in Figure 29.9. The ­vertices are added to the tree in this order: Seattle, San Francisco, Los Angeles, Denver, Kansas City, Dallas, Houston, Chicago, Atlanta, Miami, New York, and Boston.

[image: A graph shows the following path between cities.]
Figure 29.9 

The edges in a minimum spanning tree for the cities are highlighted.

Description

	29.4.1 Find a minimum spanning tree for the following graph:

[image: A graph. The edges with their weights are as follows: 0 1, 5; 0 5, 5; 1 2, 10; 1 5, 2; 1 6, 7; 2 3, 8; 2 4, 10; 2 6, 7; 3 4, 8; 4 5, 2; 4 6, 7; 5 6, 7.]

	29.4.2 Is a minimum spanning tree unique if all edges have different weights?

	29.4.3 If you use an adjacency matrix to represent weighted edges, what will be the time complexity for Prim’s algorithm?

	29.4.4 What happens to the getMinimumSpanningTree() method in WeightedGraph if the graph is not connected? Verify your answer by writing a test program that creates an unconnected graph and invokes the getMinimumSpanningTree() method. How do you fix the problem by obtaining a partial MST?

	29.4.5 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 WeightedGraph<Character> graph = new WeightedGraph<>();
 graph.addVertex('U');
 graph.addVertex('V');
 graph.addVertex('X');
 int indexForU = graph.getIndex('U');
 int indexForV = graph.getIndex('V');
 int indexForX = graph.getIndex('X');
 System.out.println("indexForU is " + indexForU);
 System.out.println("indexForV is " + indexForV);
 System.out.println("indexForX is " + indexForV);
 graph.addEdge(indexForU, indexForV, 3.5);
 graph.addEdge(indexForV, indexForU, 3.5);
 graph.addEdge(indexForU, indexForX, 2.1);
 graph.addEdge(indexForX, indexForU, 2.1);
 graph.addEdge(indexForV, indexForX, 3.1);
 graph.addEdge(indexForX, indexForV, 3.1);
 WeightedGraph<Character>.MST mst
 = graph.getMinimumSpanningTree();
 graph.printWeightedEdges();
 System.out.println(mst.getTotalWeight());
 mst.printTree();
 }
}

29.5 Finding Shortest Paths

	The shortest path between two vertices is a path with the minimum total weights.

Given a graph with nonnegative weights on the edges, a well-known algorithm for finding a shortest path between two vertices was discovered by Edsger Dijkstra, a Dutch computer scientist. In order to find a shortest path from vertex s to vertex v, Dijkstra’s algorithm finds the shortest path from s to all vertices. So Dijkstra’s algorithm is known as a single-source shortest-path algorithm. The algorithm uses cost[v] to store the cost of a shortest path from vertex v to the source vertex s. cost[s] is 0. Initially assign infinity to cost[v] for all other vertices. The algorithm repeatedly finds a vertex u in V–T with the smallest cost[u] and moves u to T.

Dijkstra’s algorithm

single-source shortest path

shortest path

The algorithm is described in Listing 29.7.

Listing 29.7 Dijkstra's Single-Source Shortest-Path Algorithm

Input: a graph G = (V, E) with nonnegative weights
Output: a shortest-path tree with the source vertex s as the root

 1 ShortestPathTree getShortestPath(s) {
 2 Let T be a set that contains the vertices whose
 3 paths to s are known; Initially T is empty;
 4 Set cost[s] = 0; and cost[v] = infinity for all other vertices in V;
 5
 6 while (size of T < n) {
find next vertex 7 Find u not in T with the smallest cost[u];
add a vertex to T 8 Add u to T;
 9 for (each v not in T and (u, v) in E)
 10 if (cost[v] > cost[u] + w(u, v)) {
adjust cost[v] 11 cost[v] = cost[u] + w(u, v); parent[v] = u;
 12 }
 13 }
 14 }

This algorithm is very similar to Prim’s for finding a minimum spanning tree. Both algorithms divide the vertices into two sets: T and V − T. In the case of Prim’s algorithm, set T contains the vertices that are already added to the tree. In the case of Dijkstra’s, set T contains the vertices whose shortest paths to the source have been found. Both algorithms repeatedly find a vertex from V − T and add it to T. In the case of Prim’s algorithm, the vertex is adjacent to some vertex in the set with the minimum weight on the edge. In Dijkstra’s algorithm, the vertex is adjacent to some vertex in the set with the minimum total cost to the source.

The algorithm starts by setting cost[s] to 0 (line 4), sets cost[v] to infinity for all other vertices. It then continuously adds a vertex (say u) from V–T into T with smallest cost[u] (lines 7–8), as shown in Figure 29.10a. After adding u to T, the algorithm updates cost[v] and parent[v] for each v not in T if (u, v) is in T and cost[v] > cost[u] + w(u, v) (lines 10–12).

[image: Two diagrams.]
Figure 29.10 

(a) Find a vertex u in V–T with the smallest cost[u]. (b) Update cost[v] for v in V–T and v is ­adjacent to u.

Description

Let us illustrate Dijkstra’s algorithm using the graph in Figure 29.11a. Suppose the source vertex is 1. Therefore, cost[1] = 0 and the costs for all other vertices are initially ∞,[&|infns|,&] as shown in Figure 29.11b. We use the parent[i] to denote the parent of i in the path. For convenience, set the parent of the source node to −1.

[image: A graph and two arrays.]
Figure 29.11 

The algorithm will find all shortest paths from source vertex 1.

Description

Initially set T is empty. The algorithm selects the vertex with the smallest cost. In this case, the vertex is 1. The algorithm adds 1 to T, as shown in Figure 29.12a. Afterward, it adjusts the cost for each vertex adjacent to 1. The cost for vertices 2, 0, 6, and 3 and their parents are now updated, as shown in Figure 29.12b.

[image: Part ay: T includes node 1 from the graph in Figure 29.11. Cost array, from positions 0 to 6: 8 0 5 10 infinity infinity 9. parent array, from positions 0 to 6: 1 negative 1 1 1 blank blank 1.]
Figure 29.12 

Now vertex 1 is in set T.

Vertices 2, 0, 6, and 3 are adjacent to the source vertex, and vertex 2 is the one in V−T with the smallest cost, so add 2 to T, as shown in Figure 29.13 and update the cost and parent for vertices in V−T and adjacent to 2. cost[0] is now updated to 6 and its parent is set to 2. The arrow line from 1 to 2 indicates 1 is the parent of 2 after 2 is added into T.

[image: Part ay: T is edge 1 2. Cost array: 6 0 5 10 infinity infinity 9. Part b: Parent array: 2 negative 1 1 1 blank blank 1.]
Figure 29.13 

Now vertices 1 and 2 are in set T.

Now T contains {1, 2}. Vertex 0 is the one in V−T with the smallest cost, so add 0 to T, as shown in Figure 29.14 and update the cost and parent for vertices in V−T and adjacent to 0 if applicable. cost[5] is now updated to 10 and its parent is set to 0 and cost[6] is now updated to 8 and its parent is set to 0.

[image: Part ay: T is edges 1 2 and 2 0. Part b: Cost array: 6 0 5 10 infinity 10 8. Parent array: 2 negative 1 1 1 blank 0 0.]
Figure 29.14 

Now vertices {1, 2, 0} are in set T.

Now T contains {1, 2, 0}. Vertex 6 is the one in V−T with the smallest cost, so add 6 to T, as shown in Figure 29.15 and update the cost and parent for vertices in V−T and adjacent to 6 if applicable.

[image: Part ay: T is edges 1 2, 2 0, and 0 6. part b: Cost array: 6 0 5 10 infinity 10 8. Parent array: 2 negative 1 1 1 blank 0 0.]
Figure 29.15 

Now vertices {1, 2, 0, 6} are in set T.

Now T contains {1, 2, 0, 6}. Vertex 3 or 5 is the one in V−T with the smallest cost. You may add either 3 or 5 into T. Let us add 3 to T, as shown in Figure 29.16 and update the cost and parent for vertices in V−T and adjacent to 3 if applicable. cost[4] is now updated to 18 and its parent is set to 3.

[image: Part ay: T is edges 1 2, 2 0, 0 6, 1 3. Part b: Cost array: 6 0 5 10 18 10 8. Parent array: 2 negative 1 1 1 3 0 0.]
Figure 29.16 

Now vertices {1, 2, 0, 6, 3} are in set T.

Now T contains {1, 2, 0, 6, 3}. Vertex 5 is the one in V−T with the smallest cost, so add 5 to T, as shown in Figure 29.17 and update the cost and parent for vertices in V−T and adjacent to 5 if applicable. cost[4] is now updated to 15, and its parent is set to 5.

[image: Part ay: T is edges 1 2, 2 0, 0 5, 0 6, 1 3. Part b: Cost array: 6 0 5 10 15 10 8. Parent array: 2 negative1 1 1 5 0 0.]
Figure 29.17 

Now vertices {1, 2, 0, 6, 3, 5} are in set T.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Now T contains {1, 2, 0, 6, 3, 5}. Vertex 4 is the one in V−T with the smallest cost, so add 4 to T, as shown in Figure 29.18.

[image: Part ay: T is edges 1 2, 2 0, 0 6, 1 3, 5 0, 5 4. Part b: Cost array: 6 0 5 10 15 10 8. Parent array: 2 negative 1 1 1 5 0 0.]
Figure 29.18 

Now vertices {1, 2, 6, 0, 3, 5, 4} are in set T.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

As you can see, the algorithm essentially finds all shortest paths from a source vertex, which produces a tree rooted at the source vertex. We call this tree a single-source all-shortest-path tree (or simply a shortest-path tree). To model this tree, define a class named ­ShortestPathTree that extends the SearchTree class, as shown in Figure 29.19. ShortestPathTree is defined as an inner class in WeightedGraph in lines 200–224 in Listing 29.2.

[image: A U M L diagram.]
Figure 29.19 

WeightedGraph<V>.ShortestPathTree extends UnweightedGraph<V>.SearchTree.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Description

shortest-path tree

The getShortestPath(int sourceVertex) method was implemented in lines 156–197 in Listing 29.2. The method sets cost[sourceVertex] to 0 (line 162) and cost[v] to infinity for all other vertices (lines 159–161). The parent of sourceVertex is set to −1 (line 166). T is a list that stores the vertices added into the shortest-path tree (line 169). We use a list for T rather than a set in order to record the order of the vertices added to T.

Initially, T is empty. To expand T, the method performs the following operations:

	Find the vertex u with the smallest cost[u] (lines 175–181).

	If u is found, add it to T (line 183). Note that if u is not found (u == −1), the graph is not connected. The break statement exits the while loop in this case.

	After adding u in T, update cost[v] and parent[v] for each v adjacent to u in V−T if cost[v] > cost[u] + w(u, v) (lines 186–192).

Once all vertices from s are added to T, an instance of ShortestPathTree is created (line 196).

ShortestPathTree class

The ShortestPathTree class extends the SearchTree class (line 200). To create an instance of ShortestPathTree, pass sourceVertex, parent, T, and cost (lines 204–205). sourceVertex becomes the root in the tree. The data fields root, parent, and ­searchOrder are defined in the SearchTree class, which is an inner class defined in UnweightedGraph.

Note testing whether a vertex i is in T by invoking T.conatins(i) takes O(n) time, since T is a list. Therefore, the overall time complexity for this implementation is O(n3).[&O(n^{3}).&] Interested readers may see Programming Exercise 29.20 for improving the implementation and reducing the complexity to O(n2).[&O(n^{2}).&]

Dijkstra’s algorithm time complexity

greedy and dynamic programming

Dijkstra’s algorithm is a combination of a greedy algorithm and dynamic programming. It is a greedy algorithm in the sense that it always adds a new vertex that has the shortest distance to the source. It stores the shortest distance of each known vertex to the source, and uses it later to avoid redundant computing, so Dijkstra’s algorithm also uses dynamic programming.

Listing 29.8 gives a test program that displays the shortest paths from Chicago to all other cities in Figure 29.1, and the shortest paths from vertex 3 to all vertices for the graph in ­Figure 29.3a, respectively.

Listing 29.8 TestShortestPath.java

 1 public class TestShortestPath {
 2 public static void main(String[] args) {
vertices 3 String[] vertices = {"Seattle", "San Francisco", "Los Angeles",
 4 "Denver", "Kansas City", "Chicago", "Boston", "New York",
 5 "Atlanta", "Miami", "Dallas", "Houston"};
 6
edges 7 int[][] edges = {
 8 {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097},
 9 {1, 0, 807}, {1, 2, 381}, {1, 3, 1267},
 10 {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435},
 11 {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599},
 12 {3, 5, 1003},
 13 {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260},
 14 {4, 8, 864}, {4, 10, 496},
 15 {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533},
 16 {5, 6, 983}, {5, 7, 787},
 17 {6, 5, 983}, {6, 7, 214},
 18 {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888},
 19 {8, 4, 864}, {8, 7, 888}, {8, 9, 661},
 20 {8, 10, 781}, {8, 11, 810},
 21 {9, 8, 661}, {9, 11, 1187},
 22 {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239},
 23 {11, 8, 810}, {11, 9, 1187}, {11, 10, 239}
 24 };
 25
 26 WeightedGraph<String> graph1 =
create graph1 27 new WeightedGraph<>(vertices, edges);
 28 WeightedGraph<String>.ShortestPathTree tree1 =
shortest path 29 graph1.getShortestPath(graph1.getIndex("Chicago"));
 30 tree1.printAllPaths();
 31
 32 // Display shortest paths from Houston to Chicago
 33 System.out.print("Shortest path from Houston to Chicago: ");
 34 java.util.List<String> path
 35 = tree1.getPath(graph1.getIndex("Houston"));
 36 for (String s: path) {
 37 System.out.print(s + " ");
 38 }
create edges 39
 40 edges = new int[][] {
 41 {0, 1, 2}, {0, 3, 8},
 42 {1, 0, 2}, {1, 2, 7}, {1, 3, 3},
 43 {2, 1, 7}, {2, 3, 4}, {2, 4, 5},
 44 {3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
 45 {4, 2, 5}, {4, 3, 6}
 46 };
create graph2 47 WeightedGraph<Integer> graph2 = new WeightedGraph<>(edges, 5);
 48 WeightedGraph<Integer>.ShortestPathTree tree2 =
 49 graph2.getShortestPath(3);
 50 System.out.println("\n");
print paths 51 tree2.printAllPaths();
 52 }
 53 }

All shortest paths from Chicago are:
A path from Chicago to Seattle: Chicago Seattle (cost: 2097.0)
A path from Chicago to San Francisco: Chicago Denver San Francisco (cost: 2270.0)
A path from Chicago to Los Angeles: Chicago Denver Los Angeles (cost: 2018.0)
A path from Chicago to Denver: Chicago Denver (cost: 1003.0)
A path from Chicago to Kansas City: Chicago Kansas City (cost: 533.0)
A path from Chicago to Chicago: Chicago (cost: 0.0)
A path from Chicago to Boston: Chicago Boston (cost: 983.0)
A path from Chicago to New York: Chicago New York (cost: 787.0)
A path from Chicago to Atlanta: Chicago Kansas City Atlanta (cost: 1397.0)
A path from Chicago to Miami: Chicago Kansas City Atlanta Miami (cost: 2058.0)
A path from Chicago to Dallas: Chicago Kansas City Dallas (cost: 1029.0)
A path from Chicago to Houston: Chicago Kansas City Dallas Houston (cost: 1268.0)
Shortest path from Houston to Chicago: Houston Dallas Kansas City Chicago

All shortest paths from 3 are:
A path from 3 to 0: 3 1 0 (cost: 5.0)
A path from 3 to 1: 3 1 (cost: 3.0)
A path from 3 to 2: 3 2 (cost: 4.0)
A path from 3 to 3: 3 (cost: 0.0)
A path from 3 to 4: 3 4 (cost: 6.0)

The program creates a weighted graph for Figure 29.1 in line 27. It then invokes the getShortestPath(graph1.getIndex("Chicago")) method to return a Path object that contains all shortest paths from Chicago. Invoking printAllPaths() on the ­ShortestPathTree object displays all the paths (line 30).

The graphical illustration of all shortest paths from Chicago is shown in Figure 29.20. The shortest paths from Chicago to the cities are found in this order: Kansas City, New York, Boston, Denver, Dallas, Houston, Atlanta, Los Angeles, Miami, Seattle, and San Francisco.

[image: A graph for the shortest paths between cities.]
Figure 29.20 

The shortest paths from Chicago to all other cities are highlighted.

Description

	29.5.1 Trace Dijkstra’s algorithm for finding shortest paths from Boston to all other cities in Figure 29.1 .

	29.5.2 Is a shortest path between two vertices unique if all edges have different weights?

	29.5.3 If you use an adjacency matrix to represent weighted edges, what would be the time complexity for Dijkstra’s algorithm?

	29.5.4 What happens to the getShortestPath() method in WeightedGraph if the source vertex cannot reach all vertices in the graph? Verify your answer by ­writing a test program that creates an unconnected graph and invoke the ­getShortestPath() method. How do you fix the problem by obtaining a partial shortest-path tree?

	29.5.5 If there is no path from vertex v to the source vertex, what will be cost[v]?

	29.5.6 Assume the graph is connected; will the getShortestPath method find the shortest paths correctly if lines 159–161 in WeightedGraph are deleted?

	29.5.7 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 WeightedGraph<Character> graph = new WeightedGraph<>();
 graph.addVertex('U');
 graph.addVertex('V');
 graph.addVertex('X');
 int indexForU = graph.getIndex('U');
 int indexForV = graph.getIndex('V');
 int indexForX = graph.getIndex('X');
 System.out.println("indexForU is " + indexForU);
 System.out.println("indexForV is " + indexForV);
 System.out.println("indexForX is " + indexForV);
 graph.addEdge(indexForU, indexForV, 3.5);
 graph.addEdge(indexForV, indexForU, 3.5);
 graph.addEdge(indexForU, indexForX, 2.1);
 graph.addEdge(indexForX, indexForU, 2.1);
 graph.addEdge(indexForV, indexForX, 3.1);
 graph.addEdge(indexForX, indexForV, 3.1);
 WeightedGraph<Character>.ShortestPathTree tree =
 graph.getShortestPath(1);
 graph.printWeightedEdges();
 tree.printTree();
 }
}

29.6 Case Study: The Weighted Nine Tails Problem

	The weighted nine tails problem can be reduced to the weighted shortest path problem.

Section28.10 presented the nine tails problem and solved it using the BFS algorithm. This section presents a variation of the nine tails problem and solves it using the shortest-path algorithm.

The nine tails problem is to find the minimum number of the moves that lead to all coins facing down. Each move flips a head coin and its neighbors. The weighted nine tails problem assigns the number of flips as a weight on each move. For example, you can move from the coins in Figure 29.21a to those in Figure 29.21b by flipping the first coin in the first row and its two neighbors. Thus, the weight for this move is 3. You can move from the coins in ­Figure 29.21c to Figure 29.21d by flipping the five coins. So the weight for this move is 5.

[image: Four 3-by-3 arrays.]
Figure 29.21 

The weight for each move is the number of flips for the move.

Description
The weighted nine tails problem can be reduced to finding a shortest path from a starting node to the target node in an edge-weighted graph. The graph has 512 nodes. Create an edge from node v to u if there is a move from node u to node v. Assign the number of flips to be the weight of the edge.

Recall in Section 28.10, we defined a class NineTailModel for modeling the nine tails problem. We now define a new class named WeightedNineTailModel that extends ­NineTailModel, as shown in Figure 29.22.

The NineTailModel class creates a Graph and obtains a Tree rooted at the target node 511. WeightedNineTailModel is the same as NineTailModel except that it creates a WeightedGraph and obtains a ShortestPathTree rooted at the target node 511. The method getEdges() finds all edges in the graph. The getNumberOfFlips(int u, int v) method returns the number of flips from node u to node v. The getNumberOfFlips(int u) method returns the number of flips from node u to the target node.

Listing 29.9 implements the WeightedNineTailModel.

[image: A U M L diagram the weighted nine tail model class extends the nine tail model, as described in Listing 29.9.]
Figure 29.22 

The WeightedNineTailModel class extends NineTailModel.

Listing 29.9 WeightedNineTailModel.java

 1 import java.util.*;
 2
extends NineTailModel 3 public class WeightedNineTailModel extends NineTailModel {
 4 /** Construct a model */
constructor 5 public WeightedNineTailModel() {
 6 // Create edges
get edges 7 List<WeightedEdge> edges = getEdges();
 8
 9 // Create a graph
create a graph 10 WeightedGraph<Integer> graph = new WeightedGraph<Integer>(
 11 edges, NUMBER_OF_NODES);
 12
 13 // Obtain a shortest-path tree rooted at the target node
get a tree 14 tree = graph.getShortestPath(511);
 15 }
 16
 17 /** Create all edges for the graph */
get weighted edges 18 private List<WeightedEdge> getEdges() {
 19 // Store edges
 20 List<WeightedEdge> edges = new ArrayList<>();
 21
 22 for (int u = 0; u < NUMBER_OF_NODES; u++) {
 23 for (int k = 0; k < 9; k++) {
 24 char[] node = getNode(u); // Get the node for vertex u
 25 if (node[k] == 'H') {
get adjacent node 26 int v = getFlippedNode(node, k);
weight 27 int numberOfFlips = getNumberOfFlips(u, v);
 28
 29 // Add edge (v, u) for a legal move from node u to node v
add an edge 30 edges.add(new WeightedEdge(v, u, numberOfFlips));
 31 }
 32 }
 33 }
 34
 35 return edges;
 36 }
 37
number of flips 38 private static int getNumberOfFlips(int u, int v) {
 39 char[] node1 = getNode(u);
 40 char[] node2 = getNode(v);
 41
 42 int count = 0; // Count the number of different cells
 43 for (int i = 0; i < node1.length; i++)
 44 if (node1[i] != node2[i]) count++;
 45
 46 return count;
 47 }
 48
total number of flips 49 public int getNumberOfFlips(int u) {
 50 return (int)((WeightedGraph<Integer>.ShortestPathTree)tree)
 51 .getCost(u);
 52 }
 53 }

WeightedNineTailModel extends NineTailModel to build a WeightedGraph to model the weighted nine tails problem (lines 10–11). For each node u, the getEdges() method finds a flipped node v and assigns the number of flips as the weight for edge (v, u) (line 30). The getNumberOfFlips(int u, int v) method returns the number of flips from node u to node v (lines 38–47). The number of flips is the number of the different cells between the two nodes (line 44).

The WeightedNineTailModel obtains a ShortestPathTree rooted at the target node 511 (line 14). Note tree is a protected data field defined in NineTailModel and ­ShortestPathTree is a subclass of Tree. The methods defined in NineTailModel use the tree property.

The getNumberOfFlips(int u) method (lines 49–52) returns the number of flips from node u to the target node, which is the cost of the path from node u to the target node. This cost can be obtained by invoking the getCost(u) method defined in the ShortestPathTree class (line 51).

Listing 29.10 gives a program that prompts the user to enter an initial node and displays the minimum number of flips to reach the target node.

Listing 29.10 WeightedNineTail.java

 1 import java.util.Scanner;
 2
 3 public class WeightedNineTail {
 4 public static void main(String[] args) {
 5 // Prompt the user to enter the nine coins' Hs and Ts
 6 System.out.print("Enter an initial nine coins' Hs and Ts: ");
 7 Scanner input = new Scanner(System.in);
 8 String s = input.nextLine();
initial node 9 char[] initialNode = s.toCharArray();
 10
create model 11 WeightedNineTailModel model = new WeightedNineTailModel();
 12 java.util.List<Integer> path =
get shortest path 13 model.getShortestPath(NineTailModel.getIndex(initialNode));
 14
 15 System.out.println("The steps to flip the coins are ");
 16 for (int i = 0; i < path.size(); i++)
print node 17 NineTailModel.printNode(NineTailModel.getNode(path.get(i)));
 18
 19 System.out.println("The number of flips is " +
number of flips 20 model.getNumberOfFlips(NineTailModel.getIndex(initialNode)));
 21 }
 22 }

Enter an initial nine coins Hs and Ts: HHHTTTHHH

The steps to flip the coins are
HHH
TTT
HHH

HHH
THT
TTT

TTT
TTT
TTT

The number of flips is 8

The program prompts the user to enter an initial node with nine letters with a combination of Hs and Ts as a string in line 8, obtains an array of characters from the string (line 9), creates a model (line 11), obtains the shortest path from the initial node to the target node (lines 12–13), displays the nodes in the path (lines 16–17), and invokes getNumberOfFlips to get the ­number of flips needed to reach the target node (line 20).

	29.6.1 Why is the tree data field in NineTailModel in Listing 28.13 defined protected?

	29.6.2 How are the nodes created for the graph in WeightedNineTailModel?

	29.6.3 How are the edges created for the graph in WeightedNineTailModel?

Key Terms

	Dijkstra’s algorithm 1103

	edge-weighted graph 1087

	minimum spanning tree 1097

	Prim’s algorithm 1097

	shortest path 1104

	single-source shortest path 1104

	vertex-weighted graph 1087

Chapter Summary

	You can use adjacency matrices or lists to store weighted edges in graphs.

	A spanning tree of a graph is a subgraph that is a tree and connects all vertices in the graph.

	Prim’s algorithm for finding a minimum spanning tree works as follows: the algorithm starts with a spanning tree T that contains an arbitrary vertex. The algorithm expands the tree by adding a vertex with the minimum-weight edge incident to a vertex already in the tree.

	Dijkstra’s algorithm starts the search from the source vertex and keeps finding vertices that have the shortest path to the source until all vertices are found.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

	*29.1 (Kruskal’s algorithm) The text introduced Prim’s algorithm for finding a minimum spanning tree. Kruskal’s algorithm is another well-known algorithm for finding a minimum spanning tree. The algorithm repeatedly finds a minimum-weight edge and adds it to the tree if it does not cause a cycle. The process ends when all vertices are in the tree. Design and implement an algorithm for finding an MST using Kruskal’s algorithm.

	*29.2 (Implement Prim’s algorithm using an adjacency matrix) The text implements Prim’s algorithm using lists for adjacent edges. Implement the algorithm using an adjacency matrix for weighted graphs.

	*29.3 (Implement Dijkstra’s algorithm using an adjacency matrix) The text ­implements Dijkstra’s algorithm using lists for adjacent edges. Implement the algorithm using an adjacency matrix for weighted graphs.

	*29.4 (Modify weight in the nine tails problem) In the text, we assign the number of the flips as the weight for each move. Assuming the weight is three times of the number of flips, revise the program.

	*29.5 (Prove or disprove) The conjecture is that both NineTailModel and ­WeightedNineTailModel result in the same shortest path. Write a program to prove or disprove it. (Hint: Let tree1 and tree2 denote the trees rooted at node 511 obtained from NineTailModel and WeightedNineTailModel, respectively. If the depth of a node u is the same in tree1 and in tree2, the length of the path from u to the target is the same.)

	**29.6 (Weighted 4×4 16 tails model)[&(Weighted ~it~4|multi|4 16~normal~ tails model)&] The weighted nine tails problem in the text uses a 3×3 matrix.[&3|multi|3 ~rom~matrix~normal~.&] Assume that you have 16 coins placed in a 4×4 matrix.[&4|multi|4 ~rom~matrix~normal~.&] Create a new model class named ­WeightedTailModel16. Create an instance of the model and save the object into a file named ­WeightedTailModel16.dat.

	**29.7 (Weighted 4×4 16 tails)[&(Weighted ~it~4|multi|4 16~normal~ tails)&] Revise Listing 29.9 , WeightedNineTail.java, for the weighted 4×4 16 tails problem.[&4|multi|4 16 ~rom~tails problem.~normal~&] Your program should read the model object created from the preceding exercise.

	**29.8 (Traveling salesperson problem) The traveling salesperson problem (TSP) is to find the shortest round-trip route that visits each city exactly once and then returns to the starting city. The problem is similar to finding a shortest ­Hamiltonian cycle in Programming Exercise 28.17 . Add the following method in the WeightedGraph class:

// Return a shortest cycle
// Return null if no such cycle exists
public List<Integer> getShortestHamiltonianCycle()

	*29.9 (Find a minimum spanning tree) Write a program that reads a connected graph from a file and displays its minimum spanning tree. The first line in the file contains a number that indicates the number of vertices (n). The vertices are labeled as 0, 1, . . . , n−1. Each subsequent line describes the edges in the form of u1, v1, w1 | u2, v2, w2 | Each triplet in this form describes an edge and its weight. Figure 29.23 shows an example of the file for the corresponding graph. Note we assume the graph is undirected. If the graph has an edge (u, v), it also has an edge (v, u). Only one edge is represented in the file. When you construct a graph, both edges need to be added.

[image: A graph and file listing.]
Figure 29.23 

The vertices and edges of a weighted graph can be stored in a file.

Description

Your program should prompt the user to enter a URL for the file, read data from the file, create an instance g of WeightedGraph, invoke g.­printWeightedEdges() to display all edges, invoke ­getMinimumSpanningTree() to obtain an instance tree of ­WeightedGraph.MST, invoke tree.getTotalWeight() to display the weight of the minimum spanning tree, and invoke tree.­printTree() to display the tree. Here is a sample run of the program:

Enter a URL: https://liveexample.pearsoncmg.com/test/WeightedGraphSample.txt

The number of vertices is 6
Vertex 0: (0, 2, 3) (0, 1, 100)
Vertex 1: (1, 3, 20) (1, 0, 100)
Vertex 2: (2, 4, 2) (2, 3, 40) (2, 0, 3)
Vertex 3: (3, 4, 5) (3, 5, 5) (3, 1, 20) (3, 2, 40)
Vertex 4: (4, 2, 2) (4, 3, 5) (4, 5, 9)
Vertex 5: (5, 3, 5) (5, 4, 9)
Total weight in MST is 35
Root is: 0
Edges: (3, 1) (0, 2) (4, 3) (2, 4) (3, 5)

(Hint: Use new WeightedGraph(list, numberOfVertices) to create a graph, where list contains a list of WeightedEdge objects. Use new WeightedEdge(u, v, w) to create an edge. Read the first line to get the ­number of vertices. Read each subsequent line into a string s and use s.split("[\\|]") to extract the triplets. For each triplet, use triplet .split("[,]") to extract vertices and weight.)

	*29.10 (Create a file for a graph) Modify Listing 29.3 , TestWeightedGraph.java, to create a file for representing graph1. The file format is described in Programming Exercise 29.9 . Create the file from the array defined in lines 7–24 in ­Listing 29.3 . The number of vertices for the graph is 12, which will be stored in the first line of the file. An edge (u, v) is stored if u < v. The contents of the file should be as follows:

12
0, 1, 807 | 0, 3, 1331 | 0, 5, 2097
1, 2, 381 | 1, 3, 1267
2, 3, 1015 | 2, 4, 1663 | 2, 10, 1435
3, 4, 599 | 3, 5, 1003
4, 5, 533 | 4, 7, 1260 | 4, 8, 864 | 4, 10, 496
5, 6, 983 | 5, 7, 787
6, 7, 214
7, 8, 888
8, 9, 661 | 8, 10, 781 | 8, 11, 810
9, 11, 1187
10, 11, 239

	*29.11 (Find shortest paths) Write a program that reads a connected graph from a file. The graph is stored in a file using the same format specified in Programming Exercise 29.9 . Your program should prompt the user to enter a URL for the file, then two vertices, and should display a shortest path between the two vertices. For example, for the graph in Figure 29.23 , a shortest path between 0 and 1 can be displayed as 0 2 4 3 1.

Here is a sample run of the program:

Enter a URL: https://liveexample.pearsoncmg.com/test/WeightedGraphSample2.txt

Enter two vertices (integer indexes): 0 1

The number of vertices is 6
Vertex 0: (0, 2, 3) (0, 1, 100)
Vertex 1: (1, 3, 20) (1, 0, 100)
Vertex 2: (2, 4, 2) (2, 3, 40) (2, 0, 3)
Vertex 3: (3, 4, 5) (3, 5, 5) (3, 1, 20) (3, 2, 40)
Vertex 4: (4, 2, 2) (4, 3, 5) (4, 5, 9)
Vertex 5: (5, 3, 5) (5, 4, 9)
A path from 0 to 1: 0 2 4 3 1

	*29.12 (Display weighted graphs) Revise GraphView in Listing 28.6 to display a weighted graph. Write a program that displays the graph in Figure 29.1 as shown in Figure 29.24 . (Instructors may ask students to expand this program by adding new cities with appropriate edges into the graph).

[image: The animation displays the graph of distances between cities demonstrated in Figure 29.1.]
Figure 29.24 

Programming Exercise 29.12 displays a weighted graph.

	*29.13 (Display shortest paths) Revise GraphView in Listing 28.6 to display a weighted graph and a shortest path between the two specified cities, as shown in Figure 29.25 . You need to add a data field path in GraphView. If a path is not null, the edges in the path are displayed in red. If a city not in the map is entered, the program displays a text to alert the user.

[image: The animation shows the graph of distances between cities, with the shortest paths indicated.]
Figure 29.25 

Programming Exercise 29.13 displays a shortest path.

	*29.14 (Display a minimum spanning tree) Revise GraphView in Listing 28.6 to display a weighted graph and a minimum spanning tree for the graph in ­Figure 29.1 , as shown in Figure 29.26 . The edges in the MST are shown in red.

[image: The animation shows the graph of distances between cities with a minimum spanning tree indicated.]
Figure 29.26 

Programming Exercise 29.14 displays an MST.

	***29.15 (Dynamic graphs) Write a program that lets the users create a weighted graph dynamically. The user can create a vertex by entering its name and location, as shown in Figure 29.27 . The user can also create an edge to connect two ­vertices. To simplify the program, assume vertex names are the same as vertex indices. You have to add the vertex indices 0, 1, . . . , and n, in this order. The user can specify two vertices and let the program display their shortest path in red.

[image: An animation shows a graph with the following edges listed with weights: 0 1, 55.0; 1 2, 55.0; 0 5, 87.0; 0 4, 69.0; 0 3, 57.0.]
Figure 29.27 

The program can add vertices and edges and display a shortest path between two specified vertices.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	***29.16 (Display a dynamic MST) Write a program that lets the user create a weighted graph dynamically. The user can create a vertex by entering its name and location, as shown in Figure 29.28 . The user can also create an edge to connect two vertices. To simplify the program, assume vertex names are the same as those of vertex indices. You have to add the vertex indices 0, 1, . . . , and n, in this order. The edges in the MST are displayed in red. As new edges are added, the MST is redisplayed.

[image: An animation shows a graph with the following edges listed with weights: 0 1, 67.0; 0 2, 67.0; 1 2, 12.0.]
Figure 29.28 

The program can add vertices and edges and display MST dynamically.

Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

	***29.17 (Weighted graph visualization tool) Develop a GUI program as shown in ­Figure 29.2 , with the following requirements: (1) The radius of each vertex is 20 pixels. (2) The user clicks the left mouse button to place a vertex centered at the mouse point, provided the mouse point is not inside or too close to an existing vertex. (3) The user clicks the right mouse button inside an existing vertex to remove the vertex. (4) The user presses a mouse button inside a vertex and drags to another vertex then releases the button to create an edge, and the distance between the two vertices is also displayed. (5) The user drags a vertex while pressing the CTRL key to move a vertex. (6) The vertices are numbers starting from 0. When a vertex is removed, the vertices are renumbered. (7) You can click the Show MST or Show All SP From the Source button to display an MST or SP tree from a starting vertex. (8) You can click the Show Shortest Path button to display the shortest path between the two specified vertices.

	***29.18 (Alternative version of Dijkstra algorithm) An alternative version of the ­Dijkstra algorithm can be described as follows:

Input: a weighted graph G = (V, E) with nonnegative weights
Output: A shortest-path tree from a source vertex s
 1 ShortestPathTree getShortestPath(s) {
 2 Let T be a set that contains the vertices whose
 3 paths to s are known;
add initial vertex 4 Initially T contains source vertex s with cost[s] = 0;
 5 for (each u in V – T)
 6 cost[u] = infinity;
 7
more vertex 8 while (size of T < n) {
find next vertex 9 Find v in V – T with the smallest cost[u] + w(u, v) value
 10 among all u in T;
add initial vertex 11 Add v to T and set cost[v] = cost[u] + w(u, v);
 12 parent[v] = u;
 13 }
 14 }

The algorithm uses cost[v] to store the cost of a shortest path from vertex v to the source vertex s. cost[s] is 0. Initially assign infinity to cost[v] to indicate that no path is found from v to s. Let V denote all vertices in the graph and T denote the set of the vertices whose costs are known. Initially, the source vertex s is in T. The algorithm repeatedly finds a vertex u in T and a vertex v in V–T such that cost[u] + w(u, v) is the smallest, and moves v to T. The shortest-path algorithm given in the text continuously updates the cost and parent for a vertex in V–T. This algorithm initializes the cost to infinity for each vertex and then changes the cost for a vertex only once when the vertex is added into T. Implement this algorithm and use Listing 29.7 , TestShortestPath.java, to test your new algorithm.

	***29.19 (Find u with smallest cost[u] efficiently) The getShortestPath method finds a u with the smallest cost[u] using a linear search, which takes O(| V |).[&O(|pipeo|V|pipeo|).&] The search time can be reduced to O(log| V |)[&O(~rom~log|pipeo|~normal~V|pipeo|)&] using an AVL tree. Modify the method using an AVL tree to store the vertices in V–T. Use Listing 29.7 , TestShortestPath.java, to test your new implementation.

	***29.20 (Test if a vertex u is in T efficiently) Since T is implemented using a list in the getMinimumSpanningTree and getShortestPath methods in Listing 29.2 WeightedGraph.java, testing whether a vertex u is in T by invoking T.contains(u) takes O(n) time. Modify these two methods by introducing an array named isInT. Set isInT[u] to true when a vertex u is added to T. Testing whether a vertex u is in T can now be done in O(1) time. Write a test program using the following code, where graph1 is created from Figure 29.1 :

WeightedGraph<String> graph1 = new WeightedGraph<>(edges, vertices);
WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();
System.out.println("Total weight is " + tree1.getTotalWeight());
tree1.printTree();
WeightedGraph<String>.ShortestPathTree tree2 =
 graph1.getShortestPath(graph1.getIndex("Chicago"));
tree2.printAllPaths();

CHAPTER 30 Aggregate Operations for Collection Streams

Objectives

	To use aggregate operations on collection streams to simplify coding and improve performance (§30.1).

	To create a stream pipeline, apply lazy intermediate methods (skip, limit, filter, distinct, sorted, map, and mapToInt), and ­terminal methods (count, sum, average, max, min, forEach, ­findFirst, firstAny, anyMatch, allMatch, noneMatch, and toArray) on a stream (§30.2).

	To process primitive data values using the IntStream, LongStream, and DoubleStream (§30.3).

	To create parallel streams for fast execution (§30.4).

	To reduce the elements in a stream into a single result using the reduce method (§30.5).

	To place the elements in a stream into a mutable collection using the collect method (§30.6).

	To group the elements in a stream and apply aggregate methods for the elements in the groups (§30.7).

	To use a variety of examples to demonstrate how to simplify coding using streams (§30.8).

30.1 Introduction

	Using aggregate operations on collection streams can greatly simplify coding and improve performance.

Often, you need to process data in an array or a collection. Suppose, for instance, that you need to count the number of elements in a set that is greater than 60. You may write the code using a foreach loop as follows:

 Double[] numbers = {2.4, 55.6, 90.12, 26.6};
 Set<Double> set = new HashSet<>(Arrays.asList(numbers));
 int count = 0;
 for (double e: set)
 if (e > 60)
 count++;
 System.out.println("Count is " + count);

The code is fine. However, Java provides a better and simpler way for accomplishing the task. Using the aggregate operations, you can rewrite the code as follows:

 System.out.println("Count is "
 + set.stream().filter(e −> e > 60).count());

Invoking the stream() method on a set returns a Stream for the elements from a set. The filter method specifies a condition for selecting the elements whose value is greater than 60. The count() method returns the number of elements in the stream that satisfy the condition.

A collection stream or simply stream is a sequence of elements. The operations on a stream is called aggregate operations (also known as stream operations) because they apply to all the data in the stream. The filter and count are the examples of aggregate operations. The code written using a foreach loop describes the process how to obtain the count, i.e., for each element, if it is greater than 60, increase the count. The code written using the aggregate operations tells the program to return the count for the elements greater than 60, but it does not specify how the count is obtained. Clearly, using the aggregate operations leaves the detailed implementation to the computer, therefore, makes the code concise and simpler. Moreover, the aggregate operations on a stream can be executed in parallel to take advantage of multiple processors. So, the code written using aggregate operations usually run faster than the ones using a foreach loop.

stream

aggregate operations

why using aggregate operations?

Java provides many aggregate operations and many different ways of using aggregate operations. This chapter gives a comprehensive coverage on aggregate operations and streams.

	30.1.1 What are the benefits of using aggregate operations on collection streams for ­processing data?

30.2 Stream Pipelines

	A stream pipeline consists of a stream created from a data source, zero or more intermediate methods, and a final terminal method.

An array or a collection is an object for storing data. A stream is a transient object for processing data. After data is processed, the stream is destroyed. Java 8 introduced a new default stream() method in the Collection interface to return a Stream object. The Stream interface extends the BaseStream interface and contains the aggregate methods and the utility methods as shown in Figure 30.1.

[image: A U M L diagram for two interfaces with explanations]
Figure 30.1 

The Stream class defines the aggregate operations for the elements in a stream.

Description

The methods in the Stream interface are divided into three groups: intermediate methods, terminal methods, and static methods. An intermediate method transforms the stream into another stream. A terminal method returns a result or performs actions. After a terminal method is executed, the stream is closed automatically. A static method creates a stream.

intermediate method

terminal method

static method

The methods are invoked using a stream pipeline. A stream pipeline consists of a source (e.g., a list, a set, or an array), a method that creates a stream, zero or more intermediate methods, and a final terminal method. The following is a stream pipeline example:

stream pipeline

[image: A diagram shows the parts of the code for a stream pipeline example.]

Description

Here, set is the source of the data, invoking stream() creates a stream for the data from the source, invoking limit(50) returns the first 50 elements from the stream, invoking distinct() obtains a stream of distinct elements from the stream of the 50 elements, and invoking count() returns the number of elements in the final stream.

Streams are lazy, which means that the computation is performed only when the terminal operation is initiated. This allows the JVM to optimize computation.

lazy evaluation

Most of the arguments for stream methods are instances of functional interfaces. So the arguments can be created using lambda expressions or method references. Listing 30.1 gives an example that demonstrates creating a stream and applying methods on the streams.

Listing 30.1 StreamDemo.java

 1 import java.util.stream.Stream;
 2
 3 public class StreamDemo {
 4 public static void main(String[] args) {
 5 String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
create an array 6 "George", "Alan", "Stacy", "Michelle", "john"};
 7
 8 // Display the first four names sorted
Stream.of 9 Stream.of(names).limit(4).sorted()
forEach 10 .forEach(e −> System.out.print(e + " "));
 11
 12 // Skip four names and dispaly the rest sorted ignore case
 13 System.out.println();
skip 14 Stream.of(names).skip(4)
sorted 15 .sorted((e1, e2) −> e1.compareToIgnoreCase(e2))
 16 .forEach(e −> System.out.print(e + " "));
 17
 18 System.out.println();
 19 Stream.of(names).skip(4)
method reference 20 .sorted(String::compareToIgnoreCase)
 21 .forEach(e −> System.out.print(e + " "));
 22
 23 System.out.println("\nLargest string with length > 4: "
 24 + Stream.of(names)
filter 25 .filter(e −> e.length() > 4)
method reference 26 .max(String::compareTo).get());
 27
 28 System.out.println("Smallest string alphabetically: "
min 29 + Stream.of(names).min(String::compareTo).get());
 30
 31 System.out.println("Stacy is in names? "
anyMatch 32 + Stream.of(names).anyMatch(e −> e.equals("Stacy")));
 33
 34 System.out.println("All names start with a capital letter? "
 35 + Stream.of(names)
allMatch 36 .allMatch(e −> Character.isUpperCase(e.charAt(0))));
 37
 38 System.out.println("No name begins with Ko? "
 39 + Stream.of(names).noneMatch(e −> e.startsWith("Ko")));
 40
 41 System.out.println("Number of distinct case-insensitive strings: "
 42 + Stream.of(names).map(e −> e.toUpperCase())
distinct 43 .distinct().count());
 44
 45 System.out.println("First element in this stream in lowercase: "
findFirst 46 + Stream.of(names).map(String::toLowerCase).findFirst().get());
 47
 48 System.out.println("Skip 4 and get any element in this stream:"
findAny 49 + Stream.of(names).skip(4).sorted().findAny().get());
 50
 51 Object[] namesInLowerCase =
toArray 52 Stream.of(names).map(String::toLowerCase).toArray();
display array 53 System.out.println(java.util.Arrays.toString(namesInLowerCase));
 54 }
 55 }

John Kim Peter Susan
Alan George Jen john Michelle Stacy
Alan George Jen john Michelle Stacy
Largest string with length > 4: Susan
Smallest string alphabetically: Alan
Stacy is in names? true
All names start with a capital letter? false
No name begins with Ko? true
Number of distinct case-insensitive strings: 9
First element in this stream in lowercase: john
Skip 4 and get any element in this stream: Alan
[john, peter, susan, kim, jen, george, alan, stacy, michelle, john]

We now introduce the stream methods through this example.

30.2.1 The Stream.of, limit, and forEach Methods

The program creates an array of strings (lines 5­–6). In lines 9–10, invoking the static Stream.of(names) returns a Stream consisting of strings from the names array, invoking limit(4) returns a new Stream consisting the first four elements in the stream, invoking sorted() sorts the stream, and invoking the forEach method displays each element in the stream. The argument passed to the forEach method is a lambda expression. As introduced in Section 15.6, a lambda expression is a concise syntax to replace an anonymous inner class that implements a functional interface. The argument passed to the forEach method is an instance of the functional interface Consumer<? super T> with an abstract function accept(T t). The statement in line 10 using a lambda expression in (a) is equivalent to using an anonymous inner class in (b) as shown below. The lambda expression not only simplifies the code, but also the concept of the method. You can now simply say that for each element in the stream, perform the action as specified in the expression.

forEach method

lambda expression

	forEach(e −> System.out.print(e + " "))

	forEach(
 new java.util.function.Consumer<String>() {
 public void accept(String e) {
 System.out.print(e + " ");
 }
 }
)

	(a) Using a lambda expression

	(b) Using an anonymous inner class

30.2.2 The sorted Method

The sorted method in line 15 sorts the strings in the stream using a Comparator. The ­Comparator is a functional interface. A lambda expression is used to implement the interface and specifies that two strings are compared ignoring cases. This lambda expression in (a) is equivalent to the code using an anonymous inner class in (b). The lambda expression simply invokes a method in this case. So, it can be further simplified using a method reference in line 20 (also see in (c)). The method reference was introduced in Section 20.6.

method reference

	sorted((e1, e2) −>
 e1.compareToIgnoreCase(e2))

	sorted(
 new java.util.Comparator<String>() {
 public int compare(String e1, String e2) {
 return e1.compareToIgnoreCase(e2);
 }
 }
)

	(a) Using a lambda expression

	sorted(String::compareToIgnoreCase)

	(c) Using a method reference

	(b) Using an anonymous inner class

30.2.3 The filter Method

The filter method takes an argument of the Predicate<? super T> type, which is a functional interface with an abstract method test(T t) that returns a Boolean value. The method selects the elements from the stream that satisfies the predicate. Line 25 uses a lambda expression to implement the Predicate interface as shown in (a), which is equivalent to the code using an anonymous inner class as shown in (b).

	filter(e −> e.length() > 4)

	filter(
 new java.util.function.Predicate<String>() {
 public boolean test(String e) {
 return e.length() > 4;
 }
 }
)

	(a) Using a lambda expression

	(b) Using an anonymous inner class

30.2.4 The max and min Methods

The max and min methods take an argument of the Comparator<? Super T> type. This argument specifies how the elements are compared in order to obtain the maximum and minimum elements. The program uses the method reference String::compareTo to simplify the code for creating a Comparator (lines 26 and 29). The max and min methods return an Optional<T> that describes the element. You need to invoke the get() method from the Optional class to return the element.

Optional <T>

get method

30.2.5 The anyMatch, allMatch, and noneMatch Methods

The anyMatch, allMatch, and noneMatch methods take an argument of the Predicate<? super T> type to test if the stream contains an element, all elements, or no element that satisfies the predicate. The program tests whether the name Stacy is in the stream (line 32), whether all the names in the stream start with a capital letter (line 36), and whether any names starts with string Ko (line 39).

30.2.6 The map, distinct, and count Methods

The map method returns a new stream by mapping each element in the stream into a new element. So, the map method in line 42 returns a new stream with all uppercase strings. The distinct() method obtains a new stream with all distinct elements. The count() method counts the number of the elements in the stream. So, the stream pipeline in line 43 counts the number of distinct strings in the array names.

The map method takes an argument of the Function<? super T, ? super R> type to return an instance of the Stream<R>. The Function is a functional interface with an abstract method apply(T t) that maps t into a value of the type R. Line 42 uses a lambda expression to implement the Function interface as shown in (a), which is equivalent to the code using an anonymous inner class as shown in (b). You can further simplify it using a method reference as shown in (c).

	map(e −> e.toUpperCase())

	map(
 new java.util.function.Function<String, String>() {
 public String apply(String e) {
 return e.toUpperCase();
 }
 }
)

	(a) Using a lambda expression

	map(String::toUpperCase)

	(c) Using a method reference

	(b) Using an anonymous inner class

30.2.7 The findFirst, findAny, and toArray Methods

The findFirst() method (line 46) returns the first element in the stream wrapped in an instance of Optional<T>. The actual element value is then returned by invoking the get() method in the Optional<T> class. The findAny() method (line 49) returns any element in the stream. Which element is selected depends on the internal state of the stream. The findAny() method is more efficient than the findFirst() method.

The toArray() method (line 52) returns an array of objects from the stream.

 Note

The BaseStream interface defines the close() method, which can be invoked to close a stream. You don’t need to use it because the stream is automatically closed after the terminal method is executed.

close method

	30.2.1 Show the output of the following code:

Character[] chars = {'D', 'B', 'A', 'C'};
System.out.println(Stream.of(chars).sorted().findFirst().get());
System.out.println(Stream.of(chars).sorted(
 java.util.Comparator.reverseOrder()).findFirst().get());
System.out.println(Stream.of(chars)
 .limit(2).sorted().findFirst().get());
System.out.println(Stream.of(chars).distinct()
 .skip(2).filter(e −> e > 'A').findFirst().get());
System.out.println(Stream.of(chars)
 .max(Character::compareTo).get());
System.out.println(Stream.of(chars)
 .max(java.util.Comparator.reverseOrder()).get());
System.out.println(Stream.of(chars)
 .filter(e −> e > 'A').findFirst().get());
System.out.println(Stream.of(chars)
 .allMatch(e −> e >= 'A'));
System.out.println(Stream.of(chars)
 .anyMatch(e −> e > 'F'));
System.out.println(Stream.of(chars)
 .noneMatch(e −> e > 'F'));
Stream.of(chars).map(e −> e + "").map(e −> e.toLowerCase())
 .forEach(System.out::println);
Object[] temp = Stream.of(chars).map(e −> e + "Y")
 .map(e −> e.toLowerCase()).sorted().toArray();
System.out.println(java.util.Arrays.toString(temp));

	30.2.2What is wrong in the following code?

Character[] chars = {'D', 'B', 'A', 'C'};
Stream<Character> stream = Stream.of(chars).sorted();
System.out.println(stream.findFirst());
System.out.println(stream.skip(2).findFirst());

	30.2.3 Rewrite (a) using a method reference and an anonymous inner class and (b) using lambda expression and an anonymous inner class:

(a) sorted((s1, s2) −> s1.compareToIgnoreCase(s2))
(b) forEach(System.out::println)

	30.2.4 Given a map of the type Map<String, Double>, write an expression that returns the sum of all the values in map. For example, if the map contains {"john", 1.5} and {"Peter", 1.1}, the sum is 2.6.

30.3 IntStream, LongStream, and DoubleStream

	IntStream, LongStream, and DoubleStream are special type of streams for ­processing a sequence of primitive int, long, and double values.

Stream represents a sequence of objects. In addition to Stream, Java provides IntStream, LongStream, and DoubleStream for representing a sequence of int, long, and double values. These streams are also subinterfaces of BaseStream. You can use these streams in the same way like a Stream. Additionally, you can use the sum(), average(), and summary Statistics()methods for returning the sum, average, various statistics of the elements in the stream. You can use the mapToInt method to convert a Stream to an IntStream and use the map method to convert any stream including an IntStream to a Stream.

IntStream

LongStream

DoubleStream

Listing 30.2 gives an example of using the IntStream.

Listing 30.2 IntStreamDemo.java

 1 import java.util.IntSummaryStatistics;
 2 import java.util.stream.IntStream;
 3 import java.util.stream.Stream;
 4
 5 public class IntStreamDemo {
create an int array 6 public static void main(String[] args) {
 7 int[] values = {3, 4, 1, 5, 20, 1, 3, 3, 4, 6};
 8
 9 System.out.println("The average of distinct even numbers > 3: " +
IntStream.of 10 IntStream.of(values).distinct()
average 11 .filter(e −> e > 3 && e % 2 == 0).average().getAsDouble());
 12
 13 System.out.println("The sum of the first 4 numbers is " +
sum 14 IntStream.of(values).limit(4).sum());
 15
 16 IntSummaryStatistics stats =
summaryStatistics 17 IntStream.of(values).summaryStatistics();
 18
 19 System.out.printf("The summary of the stream is\n%−10s%10d\n" +
 20 "%−10s%10d\n%−10s%10d\n%−10s%10d\n%−10s%10.2f\n",
 21 " Count:", stats.getCount(), " Max:", stats.getMax(),
 22 " Min:", stats.getMin(), " Sum:", stats.getSum(),
 23 " Average:", stats.getAverage());
 24
 25 String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
 26 "George", "Alan", "Stacy", "Michelle", "john"};
 27
 28 System.out.println("Total character count for all names is "
mapToInt 29 + Stream.of(names).mapToInt(e −> e.length()).sum());
 30
 31 System.out.println("The number of digits in array values is " +
map 32 Stream.of(values).map(e −> e + "")
mapToInt 33 .mapToInt(e −> e.length()).sum());
 34 }
 35 }

The average of distinct even numbers > 3: 10.0
The sum of the first 4 numbers is 13
The summary of the stream is

 Count: 10
 Max: 20
 Min: 1
 Sum: 50
 Average: 5.00

Total character count for all names is 47
The number of digits in array values is 11

The program creates an array of int values (line 7). The stream pipeline in line 10 applies the intermediate methods distinct and filter with a terminal method average. The ­average() method returns the average value in the stream as an OptionalDouble object (line 11). The actual average value is obtained by invoking the getAsDouble() method.

The stream pipeline in line 14 applies the intermediate method limit with a terminal method sum. The sum() method returns the sum of all values in the stream.

OptionalDouble class

average method

sum method

If you need to obtain multiple summary values from the stream, using the ­summaryStatistics() method is more efficient. This method (line 17) returns an instance of IntSummaryStatistics that contains summary values for count, min, max, sum, and average (lines 19–23). Note sum(), average(), and summaryStatistics() methods are only applicable to the IntStream, LongStream, and DoubleStream.

summaryStatistics method

The mapToInt method returns an IntStream by mapping each element in the stream into an int value. The mapToInt method in the stream pipeline in line 29 maps each string into an int value that is the length of a string, and the sum method obtains the sum of all the int values in the IntStream. The stream pipeline in line 29 obtains the total count for all characters in the stream.

The mapToInt method takes an argument of the ToIntFunction<? super T> type to return an instance of the IntStream. The ToIntFunction is a functional interface with an abstract method applyAsInt(T t) that maps t into a value of the type int. Line 33 uses a lambda expression to implement the ToIntFunction interface as shown in (a), which is equivalent to the code using an anonymous inner class as shown in (b). You can also further simplify it using a method reference as shown in (c).

mapToInt method

	mapToInt(e −> e.length())

	mapToInt(
 new java.util.function.ToIntFunction<String>() {
 public int applyAsInt(String e) {
 return e.length();
 }
 }
)

	(a) Using a lambda expression

	mapToInt(String::length)

	(c) Using a method reference

	(b) Using an anonymous inner class

The map method in line 32 returns a new stream of strings. Each string is converted from an integer in array values. The mapToInt method in line 33 returns a new stream of integers. Each integer represents the length of a string. The sum() method returns the sum of all int values in the final stream. So the stream pipeline in lines 32–33 obtains the total number of digits in the array values.

	30.3.1 Show the output of the following code:

int[] numbers = {1, 4, 2, 3, 1};
System.out.println(IntStream.of(numbers)
 .sorted().findFirst().getAsInt());
System.out.println(IntStream.of(numbers)
 .limit(2).sorted().findFirst().getAsInt());
System.out.println(IntStream.of(numbers).distinct()
 .skip(1).filter(e −> e > 2).sum());
System.out.println(IntStream.of(numbers).distinct()
 .skip(1).filter(e −> e > 2).average().getAsDouble());
System.out.println(IntStream.of(numbers).max().getAsInt());
System.out.println(IntStream.of(numbers).max().getAsInt());
System.out.println(IntStream.of(numbers)
 .filter(e −> e > 1).findFirst().getAsInt());
System.out.println(IntStream.of(numbers)
 .allMatch(e −> e >= 1));
System.out.println(IntStream.of(numbers)
 .anyMatch(e −> e > 4));
System.out.println(IntStream.of(numbers).noneMatch(e −> e > 4));
IntStream.of(numbers).mapToObj(e −> (char)(e + 50))
 .forEach(System.out::println);

Object[] temp = IntStream.of(numbers)
 .mapToObj(e −> (char)(e + 'A')).toArray();
System.out.println(java.util.Arrays.toString(temp));

	30.3.2 What is wrong in the following code?

int[] numbers = {1, 4, 2, 3, 1};
DoubleSummaryStatistics stats =
 DoubleStream.of(numbers).summaryStatistics();
System.out.printf("The summary of the stream is\n%−10s%10d\n" +
 "%−10s%10.2f\n%−10s%10.2f\n%−10s%10.2f\n%−10s%10.2f\n",
 " Count:", stats.getCount(), " Max:", stats.getMax(),
 " Min:", stats.getMin(), " Sum:", stats.getSum(),
 " Average:", stats.getAverage());

	30.3.3 Rewrite the following code that maps an int to a Character using an anonymous inner class:

mapToObj(e −> (char)(e + 50))

	30.3.4 Show the output of the following code:

int[][] m = {{1, 2}, {3, 4}, {5, 6}};
System.out.println(Stream.of(m)
 .mapToInt(e −> IntStream.of(e).sum()).sum());

	30.3.5 Given an array names in Listing 30.1 , write the code to display the total number of characters in names.

30.4 Parallel Streams

	Streams can be executed in parallel mode to improve performance.

The widespread use of multicore systems has created a revolution in software. In order to benefit from multiple processors, software needs to run in parallel. All stream operations can execute in parallel to utilize the multicore processors. The stream() method in the ­Collection interface returns a sequential stream. To execute operations in parallel, use the parallelStream() method in the Collection interface to obtain a parallel stream. Any stream can be turned to into a parallel stream by invoking the parallel() method defined in tbe BaseStream interface. Likewise, you can turn a parallel stream into a sequential stream by invoking the sequential() method.

Intermediate methods can be further divided into stateless and stateful methods. A stateless method such as filter and map can be executed independently from other elements in the stream. A stateful method such as distinct and sorted must be executed to take the entire stream into consideration. For example, to produce a result, the distinct method must consider all elements in the stream. Stateless methods are inherently parallelizable and can be executed in one pass in parallel. Stateful methods have to be executed in multiple passes in parallel.

stateless methods

stateful methods

Listing 30.3 gives an example to demonstrate the benefits of using parallel streams.

Listing 30.3 ParallelStreamDemo.java

			 1 import java.util.Arrays;
			 2 import java.util.Random;
			 3 import java.util.stream.IntStream;
			 4
			 5 public class ParallelStreamDemo {
			 6 public static void main(String[] args) {
			 7 Random random = new Random();
create an array		 8 int[] list = random.ints(200_000_000).toArray();
			 9
			10 System.out.println("Number of processors: " +
available processors	11 Runtime.getRuntime().availableProcessors());
			12
			13 long startTime = System.currentTimeMillis();
sequential stream	14 int[] list1 = IntStream.of(list).filter(e −> e > 0).sorted()
			15 .limit(5).toArray();
			16 System.out.println(Arrays.toString(list1));
			17 long endTime = System.currentTimeMillis();
			18 System.out.println("Sequential execution time is " +
			19 (endTime − startTime) + " milliseconds");
			20
			21 startTime = System.currentTimeMillis();
parallel stream		22 int[] list2 = IntStream.of(list).parallel().filter(e −> e > 0)
			23 .sorted().limit(5).toArray();
			24 System.out.println(Arrays.toString(list2));
			25 endTime = System.currentTimeMillis();
			26 System.out.println("Parallel execution time is " +
			27 (endTime − startTime) + " milliseconds");
			28 }
			29 }

Number of processors: 8
[4, 9, 38, 42, 52]
Sequential execution time is 12362 milliseconds
[4, 9, 38, 42, 52]
Parallel execution time is 3448 milliseconds

The Random class introduced in Section 9.6.2 can be used to generate random numbers. You can use its ints(n) method to generate an IntStream consisting of n number of random int values (line 8). You can also use ints(n, r1, r2) to generate an IntStream with n element in the range from r1 (inclusive) to r2 (exclusive), use doubles(n) and doubles(n, r1, r2)to generate a DoubleStream of random floating-point numbers. Invoking the ­toArray() method on an IntStream (line 8) returns an array of int values from the stream. Recall that you can use underscores in an integer 200_000_000 to improve readability (see Section 2.10.1).

Invoking Runtime.getRuntim() returns a Runtime object (line 11). Invoking Runtime object’s availableProcessors() returns the number of available processors for the JVM. In this case, the system has 8 processors.

An IntStream is created using IntStream.of(list) (line 14). The intermediate filter(e −> e > 0) method selects positive integers from the stream. The intermediate sorted() method sorts the filtered stream. The intermediate limit(5) method selects the first five integers in the sorted stream (line 15). Finally, the terminal method toArray() returns an array from the 5 integers in the stream. This is a sequential stream. To turn it into a parallel stream, simply invoke the parallel() method (line 22), which sets the stream for parallel execution. As you see from the sample run, the parallel execution is much faster than the sequential execution.

Several interesting questions arise.

lazy intermediate methods

	The intermediate methods are lazy and are executed when the terminal method is ­initiated. This can be confirmed in the following code:

1 long startTime = System.currentTimeMillis();
2 IntStream stream = IntStream.of(list).filter(e −> e > 0).sorted()
3 .limit(5);
4 System.out.println("The time for the preceding method is " +
5 (System.currentTimeMillis() − startTime) + " milliseconds");
6 int[] list1 = stream.toArray();
7 System.out.println("The execution time is " +
8 (System.currentTimeMillis() − startTime) + " milliseconds");

When you run the code, you will see that almost no time is spent on lines 2–3 because the intermediate methods are not executed yet. When the terminal method toArray() is invoked, all the methods for the stream pipeline are executed. So, the actual execution time for the stream pipeline is in line 6.

order of methods

	Does the order of the intermediate methods in a stream pipeline matter? Yes, it matters. For example, if the methods limit(5) and sorted() are swapped, the result will be different. It also matters to the performance even though the result is the same. For example, if the sorted() method is placed before filter(e −> e > 0), the result will be the same, but it would take more time to execute the stream because sorting a large number of elements takes more time to complete. Applying filter before sorted would eliminate roughly half of the elements for sorting.

parallel vs. sequential streams

	Is a parallel stream always faster? Not necessarily. Parallel execution requires synchronization, which carries some overhead. If you replace IntStream.of(list) in lines 14 and 22 by random.ints(200_000_000), the parallel stream in lines 22–23 will takes longer time to execute than the sequential stream in lines 14–15. The reason is that the algorithm for generating a sequence of pseudo-random numbers is highly sequential. The overhead of a parallel stream is far greater than the time saving on parallel processing. So, you should test both sequential and parallel streams before choosing parallel streams for deployment.

order of parallel execution

	When executing a stream method in parallel, the elements in the stream may be processed in any order. So, the following code may display the numbers in the stream in a random order:

IntStream.of(1, 2, 3, 4, 5).parallel()
 .forEach(e −> System.out.print(e + " "));

However, if it is executed sequentially, the numbers will be displayed as 1 2 3 4 5.

	30.4.1 What is a stateless method? What is a stateful method?

	30.4.2 How do you create a parallel stream?

	30.4.3 Suppose names is a set of strings, which of the following two streams is better?

Object[] s = set.parallelStream().filter(e −> e.length() > 3)
 .sorted().toArray();

Object[] s = set.parallelStream().sorted()
 .filter(e −> e.length() > 3).toArray();

	30.4.4 What will be the output of the following code?

int[] values = {3, 4, 1, 5, 20, 1, 3, 3, 4, 6};
System.out.print("The values are ");
 IntStream.of(values)
 .forEach(e −> System.out.print(e + " "));

	30.4.5 What will be the output of the following code?

int[] values = {3, 4, 1, 5, 20, 1, 3, 3, 4, 6};
System.out.print("The values are ");
 IntStream.of(values).parallel()
 .forEach(e −> System.out.print(e + " "));

	30.4.6 Write a statement to obtain an array of 1000 random double values between 0.0 and 1.0, excluding 1.0.

30.5 Stream Reduction Using the reduce Method

	You can use the reduce method to reduce the elements in a stream into a single value.

Often you need to process all the elements in a collection to produce a summary value such as the sum, the maximum, or the minimum. For example, the following code obtains the sum of all elements in set s:

int total = 0;
for (int e: s) {
 total += e;
}

This is a simple code, but it specifies the exact steps on how to obtain the sum and it is highly sequential. The reduce method on a stream can be used to write the code in a high level for parallel execution.

reduction

A reduction takes the elements from a stream to produce a single value by repeated application of a binary operation such as addition, multiplication, or finding the maximum between two elements. Using reduction, you can write the code for finding the sum of all elements in a set as follows:

int sum = s.parallelStream().reduce(0, (e1, e2) −> e1 + e2);

Here, the reduce method takes two arguments. The first is an identity, i.e., the starting value. The second argument is an object of the functional interface IntBinaryOperator. This interface contains the abstract method applyAsInt(int e1, int e2) that returns an int value from applying a binary operation. The preceding lambda expression in (a) is equivalent to the code using an anonymous inner class in (b).

	reduce(0, e −> (e1, e2) −> e1 + e2)

(a) Using a lambda expression

	reduce(0,
 new java.util.function.IntBinaryOperator() {
 public int applyAsInt(int e1, int e2) {
 return e1 + e2;
 }
 }
)

(b) Using an anonymous inner class

The preceding reduce method is semantically equivalent to an imperative code as follows:

int total = identity (i.e., 0, in this case);
for (int e: s) {
 total = applyAsInt(total, e);
}

The reduce method makes the code concise. Moreover, the code can be parallelizable, because multiple processors can simultaneously invoke the applyAsInt method on two integers repeatedly.

Using the reduce method, you can write the following code to return the maximum element in the set:

int result = s.parallelStream()
 .reduce(Integer.MIN_VALUE, (e1, e2) −> Math.max(e1, e2));

In fact, the sum, max, and min methods are implemented using the reduce method.

Listing 30.4 gives an example of using the reduce method.

Listing 30.4 StreamReductionDemo.java

 1 import java.util.stream.IntStream;
 2 import java.util.stream.Stream;
 3
 4 public class StreamReductionDemo {
 5 public static void main(String[] args) {
create an array 6 int[] values = {3, 4, 1, 5, 20, 1, 3, 3, 4, 6};
 7
 8 System.out.print("The values are ");
forEach 9 IntStream.of(values).forEach(e −> System.out.print(e + " "));
 10
 11 System.out.println("\nThe result of multiplying all values is " +
reduce 12 IntStream.of(values).parallel().reduce(1, (e1, e2) −> e1 * e2));
 13
 14 System.out.print("The values are " +
mapToObj 15 IntStream.of(values).mapToObj(e −> e + "")
reduce 16 .reduce((e1, e2) −> e1 + ", " + e2).get());
 17
 18 String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
 19 "George", "Alan", "Stacy", "Michelle", "john"};
 20 System.out.print("\nThe names are: ");
 21 System.out.println(Stream.of(names)
reduce 22 .reduce((x, y) −> x + ", " + y).get());
 23
 24 System.out.print("Concat names: ");
 25 System.out.println(Stream.of(names)
 26 .reduce((x, y) −> x + y).get());
 27
 28 System.out.print("Total number of characters: ");
 29 System.out.println(Stream.of(names)
 30 .reduce((x, y) −> x + y).get().length());
 31 }
 32 }

The values are 3, 4, 1, 5, 20, 1, 3, 3, 4, 6
The result of multiplying all values is 259200
The values are 3, 4, 1, 5, 20, 1, 3, 3, 4, 6
The names are John, Peter, Susan, Kim, Jen, George, Alan, Stacy, Michelle, john
Concat names: JohnPeterSusanKimJenGeorgeAlanStacyMichellejohn
Total number of characters: 47

The program creates an array of int values (line 6). The stream pipeline creates an IntStream from the int array and invokes the forEach method to display each integer in the stream (line 9).

The program creates a parallel stream pipeline for the int array and applies the reduce method to obtain the product of int values in the stream (line 12).

The mapToObj method returns a stream of string objects from the IntStream (line 15). The reduce method can be called without an identity. In this case, it returns an object of Optional<T>. The reduce method in line 16 reduces the strings in the stream into one composite string that consists of all strings in the stream separated by commas.

The reduce method in line 26 combines all strings in the stream together into one long string. Stream.of(names).reduce((x, y) −> x + y).get() returns a string that concatenates all strings in the stream into one string, and invoking the length() method on the string returns the number of characters in the string (line 30).

Note reduce((x, y) −> x + y) in line 30 can be simplified using a method ­reference as reduce(String::concat).

	30.5.1 Show the output of the following code:

int[] values = {1, 2, 3, 4};
System.out.println(IntStream.of(values)
 .reduce(0, (e1, e2) −> e1 + e2));
System.out.println(IntStream.of(values)
 .reduce(1, (e1, e2) −> e1 * e2));
System.out.println(IntStream.of(values).map(e −> e * e)
 .reduce(0, (e1, e2) −> e1 + e2));
System.out.println(IntStream.of(values).mapToObj(e −> "" + e)
 .reduce((e1, e2) −> e1 + " " + e2).get());
System.out.println(IntStream.of(values).mapToObj(e −> "" + e)
 .reduce((e1, e2) −> e1 + ", " + e2).get());

	30.5.2 Show the output of the following code:

int[][] m = {{1, 2}, {3, 4}, {5, 6}};
System.out.println(Stream.of(m)
 .map(e −> IntStream.of(e).reduce(1, (e1, e2) −> e1 * e2))
 .reduce(1, (e1, e2) −> e1 * e2));

	30.5.3 Show the output of the following code:

int[][] m = {{1, 2}, {3, 4}, {5, 6}, {1, 3}};
Stream.of(m).map(e −> IntStream.of(e))
 .reduce((e1, e2) −> IntStream.concat(e1, e2))
 .get().distinct()
 .forEach(e −> System.out.print(e + " "));

	30.5.4 Show the output of the following code:

int[][] m = {{1, 2}, {3, 4}, {5, 6}, {1, 3}};
System.out.println(
 Stream.of(m).map(e −> IntStream.of(e))
 .reduce((e1, e2) −> IntStream.concat(e1, e2))
 .get().distinct().mapToObj(e −> e + "")
 .reduce((e1, e2) −> e1 + ", " + e2).get());

30.6 Stream Reduction Using the collect Method

	You can use the collect method to reduce the elements in a stream into a mutable container.

In the preceding example, the String’s concat method is used in the reduce method for Stream.of(names).reduce((x, y) −> x + y). This operation causes a new string to be created when concatenating two strings, which is very inefficient. A better approach is to use a StringBuilder and accumulate the result into a StringBuilder. This can be accomplished using the collect method.

The collect method collects the elements in a stream into a mutable container such as a Collection object using the following syntax:

<R> R collect(Supplier<R> supplier,
 BiConsumer<R, ? super T> accumulator,
 BiConsumer<R, R> combiner)

The method takes three functional arguments: 1) a supplier function to construct a new instance of the result container, 2) an accumulator function to incorporate the elements from the stream to the result container, and 3) a combining function to merge the contents of one result container into another.

For example, to combine strings into a StringBuilder, you may write the following code using a collect method like this:

String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
 "George", "Alan", "Stacy", "Michelle", "john"};
StringBuilder sb = Stream.of(names).collect(() −> new StringBuilder(),
 (c, e) −> c.append(e), (c1, c2) −> c1.append(c2));

The lambda expression () −> new StringBuilder() creates a StringBuilder object for storing the result, which can be simplified using the method reference StringBuilder::new. The lambda expression (c, e) −> c.append(e) adds a string e to a StringBuilder c, which can be simplified using a method reference StringBuilder::append. The lambda expression (c1, c2) −> c1.append(c2) merges the contents in c2 into c1, which also can be simplified using a method reference StringBuilder::append. So, you can simplify the preceding statement as follows:

StringBuilder sb = Stream.of(names).collect(StringBuilder::new,
 StringBuilder::append, StringBuilder::append);

The sequential foreach loop implementation for this collect method might be as follows:

StringBuilder sb = new StringBuilder();
for (String s: Stream.of(names)) {
 sb.append(s);
}

Note that the combiner function (c1, c2) −> c1.append(c2) is not used in the sequential implementation. It is used when the stream pipeline is executed in parallel. When executing a collect method in parallel, multiple result StringBuilder are created and then merged using a combiner function. So, the purpose of the combiner function is for parallel processing.

Here is another example that creates an ArrayList from strings in the stream:

ArrayList<String> list = Stream.of(names).collect(ArrayList::new,
 ArrayList::add, ArrayList::addAll);

The supplier function is the ArrayList constructor. The accumulator is the add method that adds an element to the ArrayList. The combiner function merges an ArrayList into another ArrayList. The three arguments—supplier, accumulator, and combiner—are tightly coupled and are defined using standard methods. For simplicity, Java provides another ­collect method that takes an argument of the Collector type, called a collector. The ­Collector interface defines the methods for returning a supplier, an accumulator, and a combiner. You can use a static factory method toList() in the Collectors class to create an instance of the Collector interface. So, the preceding statement can be simplified using a standard collector as follows:

List<String> list = Stream.of(names).collect(Collectors.toList());

Listing 30.5 gives an example of using the collect methods and the Collectors’ ­factory methods.

Listing 30.5 CollectDemo.java

 1 import java.util.ArrayList;
 2 import java.util.List;
 3 import java.util.Map;
 4 import java.util.Set;
 5 import java.util.stream.Collectors;
 6 import java.util.stream.Stream;
 7
 8 public class CollectDemo {
 9 public static void main(String[] args) {
create an array 10 String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
 11 "George", "Alan", "Stacy", "Michelle", "john"};
 12 System.out.println("The number of characters for all names: " +
collect into StringBuilder 13 Stream.of(names).collect(StringBuilder::new,
 14 StringBuilder::append, StringBuilder::append).length());
			 15
collect into ArrayList 16 List<String> list = Stream.of(names).collect(ArrayList::new,
 17 ArrayList::add, ArrayList::addAll);
 18 System.out.println(list);
 19
Collectors.toList() 20 list = Stream.of(names).collect(Collectors.toList());
 21 System.out.println(list);
 22
 23 Set<String> set = Stream.of(names).map(e −> e.toUpperCase()).
Collectors.toSet() 24 collect(Collectors.toSet());
 25 System.out.println(set);
 26
 27 Map<String, Integer> map = Stream.of(names).collect(
Collectors.toMap() 28 Collectors.toMap(e −> e, e −> e.length()));
 29 System.out.println(map);
 30
 31 System.out.println("The total number of characters is " +
 32 Stream.of(names).
sum of integers 33 collect(Collectors.summingInt(e −> e.length())));
summary information 34
 35 java.util.IntSummaryStatistics stats = Stream.of(names).
 36 collect(Collectors.summarizingInt(e −> e.length()));
 37 System.out.println("Max is " + stats.getMax());
 38 System.out.println("Min is " + stats.getMin());
 39 System.out.println("Average is " + stats.getAverage());
 40 }
 41 }

The number of characters for all names: 47
[John, Peter, Susan, Kim, Jen, George, Alan, Stacy, Michelle, john]
[John, Peter, Susan, Kim, Jen, George, Alan, Stacy, Michelle, john]
[JEN, GEORGE, ALAN, SUSAN, JOHN, PETER, MICHELLE, KIM, STACY]
{Michelle=8, Stacy=5, Jen=3, George=6, Susan=5, Alan=4, John=4, john=4, Peter=5, Kim=3}
The total number of characters is 47
Max is 8
Min is 3
Average is 4.7

The program creates an array of strings, names (lines 10–11). The collect method (line 13) specifies a supplier (StringBuilder::new) for creating a StringBuilder, an accumulator (StringBuilder::append) for adding a string to the StringBuilder, and a combiner (StringBuilder::append) for combining two StringBuilders (lines 13–14). The stream pipeline obtains a StringBuilder that contains all strings in the stream. The length() method returns the length of the characters in the StringBuilder.

The collect method (line 16) specifies a supplier (ArrayList::new) for creating an ArrayList, an accumulator (ArrayList::add) for adding a string to the ArrayList, and a combiner (ArrayList:addAll) for combining two ArrayLists (lines 16–17). The stream pipeline obtains an ArrayList that contains all strings in the stream. This statement is simplified using a standard collector Collectors.toList() for a list (line 20).

The program creates a string stream, maps each string to uppercase (line 23), and creates a set using the collect method with a standard collector Collectors.toSet() for a set (lines 24). There are two uppercase strings JOHN in the stream. Since a set contains no duplicate elements, only one JOHN is stored in the set.

The program creates a string stream and creates a map using the collect method with a standard collector for a map (lines 28). The key of the map is the string and the value is the length of the string. Note key must be unique. If two strings are identical in the stream, a runtime exception would occur.

The Collectors class also contains the method for returning collectors that produce summary information. For example, Collectors.summingInt produces the sum of integer values in the stream (line 33), and Collectors.summarizingInt produces an ­IntSummaryStatistics for the integer values in the stream (lines 35–36).

	30.6.1 Show the output of the following code:

int[] values = {1, 2, 3, 4, 1};
List<Integer> list = IntStream.of(values).mapToObj(e −> e)
 .collect(Collectors.toList());
System.out.println(list);

Set<Integer> set = IntStream.of(values).mapToObj(e −> e)
 .collect(Collectors.toSet());
System.out.println(set);

Map<Integer, Integer> map = IntStream.of(values).distinct()
 .mapToObj(e −> e)
 .collect(Collectors.toMap(e −> e, e −> e.hashCode()));
System.out.println(map);

System.out.println(
 IntStream.of(values).mapToObj(e −> e)
 .collect(Collectors.summingInt(e −> e)));

System.out.println(
 IntStream.of(values).mapToObj(e −> e)
 .collect(Collectors.averagingDouble(e −> e)));

30.7 Grouping Elements Using the groupingby Collector

	You can use the groupingBy collector along with the collect method to collect the elements by groups.

The elements in a stream can be divided into groups using the groupingBy collector and then applying aggregate collectors on each group. For example, you can group all the strings by their first letter and obtain the count of the elements in the group as follows:

String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
 "George", "Alan", "Stacy", "Steve", "john"};
Map<Character, Long> map = Stream.of(names).collect(
 Collectors.groupingBy(e −> e.charAt(0), Collectors.counting()));

The first argument in the groupingBy method specifies the criteria for grouping, known as a classifier. The second argument specifies how the elements in a group are processed, known as a group processor. A processor is commonly a summary collector such as counting(). Using the groupingBy collector, the collect method returns a map with the classifier as the key. You may also specify a supplier in the groupingBy method such as the following:

group classifier

group processor

Map<Character, Long> map = Stream.of(names).collect(
Collectors.groupingBy(e −> e.charAt(0),
 TreeMap::new, Collectors.counting()));

In this case, a tree map is used to store the map entries.

Listing 30.6 gives an example of using the groupingBy method.

Listing 30.6 CollectGroupDemo.java

 1 import java.util.Map;
 2 import java.util.TreeMap;
 3 import java.util.stream.Collectors;
 4 import java.util.stream.IntStream;
 5 import java.util.stream.Stream;
 6
 7 public class CollectGroupDemo {
 8 public static void main(String[] args) {
create an array 9 String[] names = {"John", "Peter", "Susan", "Kim", "Jen",
 10 "George", "Alan", "Stacy", "Steve", "john"};
 11
 12 Map<String, Long> map1 = Stream.of(names).
 13 map(e −> e.toUpperCase()).collect(
groupingBy 14 Collectors.groupingBy(e −> e, Collectors.counting()));
 15 System.out.println(map1);
 16
 17 Map<Character, Long> map2 = Stream.of(names).collect(
groupingBy 18 Collectors.groupingBy(e −> e.charAt(0), TreeMap::new,
 19 Collectors.counting()));
 20 System.out.println(map2);
 21
 22 int[] values = {2, 3, 4, 1, 2, 3, 2, 3, 4, 5, 1, 421};
 23 IntStream.of(values).mapToObj(e −> e).collect(
groupingBy 24 Collectors.groupingBy(e −> e, TreeMap::new,
 25 Collectors.counting())).
 26 forEach((k, v) −> System.out.println(k + " occurs " + v +
 27 (v > 1 ? " times " : " time ")));
 28
 29 MyStudent[] students = {new MyStudent("John", "Lu", "CS", 32, 78),
 30 new MyStudent("Susan", "Yao", "Math", 31, 85.4),
 31 new MyStudent("Kim", "Johnson", "CS", 30, 78.1)};
 32
 33 System.out.printf("%10s%10s\n", "Department", "Average");
 34 Stream.of(students).collect(Collectors.
groupingby 35 groupingBy(MyStudent::getMajor, TreeMap::new,
 36 Collectors.averagingDouble(MyStudent::getScore))).
 37 forEach((k, v) −> System.out.printf("%10s%10.2f\n", k, v));
 38 }
 39 }
 40
Student class 41 class MyStudent {
 42 private String firstName;
 43 private String lastName;
 44 private String major;
 45 private int age;
 46 private double score;
 47
 48 public MyStudent(String firstName, String lastName, String major,
 49 int age, double score) {
 50 this.firstName = firstName;
 51 this.lastName = lastName;
 52 this.major = major;
 53 this.age = age;
 54 this.score = score;
 55 }
 56
 57 public String getFirstName() {
 58 return firstName;
 59 }
 60
 61 public String getLastName() {
 62 return lastName;
 63 }
 64
 65 public String getMajor() {
 66 return major;
 67 }
 68
 69 public int getAge() {
 70 return age;
 71 }
 72
 73 public double getScore() {
 74 return score;
 75 }
 76 }

{JEN=1, ALAN=1, GEORGE=1, SUSAN=1, JOHN=2, STEVE=1, PETER=1, STACY=1, KIM=1}
{A=1, G=1, J=2, K=1, P=1, S=3, j=1}
1 occurs 2 times
2 occurs 3 times
3 occurs 3 times
4 occurs 2 times
5 occurs 1 time
421 occurs 1 time
Department Average
 CS 78.05
 Math 85.40

The program creates a string stream, maps its elements to uppercase (lines 12–13), and collects the elements into a map with the string as the key and the occurrence of the string as the value (line 14). Note the counting() collector uses a value of the Long type. So, the Map is declared Map<String, Long>.

The program creates a string stream and collects the elements into a map with the first character in the string as the key and the occurrence of the first character as the value (lines 17–18). The key and value entries are stored in a TreeMap.

The program creates an int array (line 22). A stream is created from this array and the elements are mapped to Integer objects using the mapToObj method (line 23). The collect method returns a map with the Integer value as the key and the occurrence of the integer as the value (lines 24–25). The forEach method displays the key and value entries. Note the ­collect method is a terminal method. It returns an instance of TreeMap in this case. TreeMap has the forEach method for performing an action on each element in the collection.

The program creates an array of Student objects (lines 29–31). The Student class is defined with properties firstName, lastName, major, age, and score in lines 41–76. The program creates a stream for the array and the collect method groups the students by their major and returns a map with the major as the key and the average scores for the group as the value (lines 34-36). The method reference MyStudent::getMajor is used to specify the group by classifier. The method reference TreeMap::new specifies a supplier for the result map. The method reference MyStudent:getScore specifies the value for averaging.

	30.7.1 Show the output of the following code:

int[] values = {1, 2, 2, 3, 4, 2, 1};
IntStream.of(values).mapToObj(e −> e).collect(
 Collectors.groupingBy(e −> e, TreeMap::new,
 Collectors.counting())).
 forEach((k, v) −> System.out.println(k + " occurs " + v
 + (v > 1 ? " times " : " time ")));

IntStream.of(values).mapToObj(e −> e).collect(
 Collectors.groupingBy(e −> e, TreeMap::new,
 Collectors.summingInt(e −> e))).
 forEach((k, v) −> System.out.println(k + ": " + v));

MyStudent[] students = {
 new MyStudent("John", "Johnson", "CS", 23, 89.2),
 new MyStudent("Susan", "Johnson", "Math", 21, 89.1),
 new MyStudent("John", "Peterson", "CS", 21, 92.3),
 new MyStudent("Kim", "Yao", "Math", 22, 87.3),
 new MyStudent("Jeff", "Johnson", "CS", 23, 78.5)};

Stream.of(students)
 .sorted(Comparator.comparing(MyStudent::getLastName)
 .thenComparing(MyStudent::getFirstName))
 .forEach(e −> System.out.println(e.getLastName() + ", " +
 e.getFirstName()));

Stream.of(students).collect(Collectors.
 groupingBy(MyStudent::getAge, TreeMap::new,
 Collectors.averagingDouble(MyStudent::getScore))).
 forEach((k, v) −> System.out.printf("%10s%10.2f\n", k, v));

30.8 Case Studies

	Many programs for processing arrays and collections can now be simplified and run faster using aggregate methods on streams.

You can write programs without using streams. However, using streams enables you to write shorter and simpler programs that can be executed faster in parallel by utilizing multiple processors. Many of the programs that involve arrays and collections in the early chapters can be simplified using streams. This section presents several case studies.

30.8.1 Case Study: Analyzing Numbers

Section7.3 gives a program that prompts the user to enter values, obtains their average, and displays the number of values greater than the average. The program can be simplified using a DoubleStream as shown in Listing 30.7.

Listing 30.7 AnalyzeNumbersUsingStream.java

 1 import java.util.stream.*;
 2
 3 public class AnalyzeNumbersUsingStream {
 4 public static void main(String[] args) {
 5 java.util.Scanner input = new java.util.Scanner(System.in);
 6 System.out.print("Enter the number of items: ");
 7 int n = input.nextInt();
create array 8 double[] numbers = new double[n];
 9 double sum = 0;
 10
 11 System.out.print("Enter the numbers: ");
 12 for (int i = 0; i < n; i++) {
store number in array 13 numbers[i] = input.nextDouble();
 14 }
 15
get average 16 double average = DoubleStream.of(numbers).average().getAsDouble();
 17 System.out.println("Average is " + average);
 18 System.out.println("Number of elements above the average is "
above average? 19 + DoubleStream.of(numbers).filter(e −> e > average).count());
 20 }
 21 }

Enter the number of items: 10
Enter the numbers: 3.4 5 6 1 6.5 7.8 3.5 8.5 6.3 9.5
Average is 5.75
Number of elements above the average is 6

The program obtains the input from the user and stores the values in an array (lines 8–14), and obtains the average of the values using a stream (line 16), and finds the number of values greater than the average using a filtered stream (line 19).

30.8.2 Case Study: Counting the Occurrences of Each Letter

Listing 7.4, CountLettersInArrays.java gives a program that randomly generates 100 lowercase letters and counts the occurrences of each letter.

The program can be simplified using a Stream as shown in Listing 30.8.

Listing 30.8 CountLettersUsingStream.java

 1 import java.util.Random;
 2 import java.util.TreeMap;
 3 import java.util.stream.Collectors;
 4 import java.util.stream.Stream;
 5
 6 public class CountLettersUsingStream {
 7 private static int count = 0;
 8
 9 public static void main(String[] args) {
 10 Random random = new Random();
create array 11 Object[] chars = random.ints(100, (int)'a', (int)'z' + 1).
 12 mapToObj(e −> (char)e).toArray();
 13
 14 System.out.println("The lowercase letters are:");
display array 15 Stream.of(chars).forEach(e −> {
 16 System.out.print(e + (++count % 20 == 0 ? "\n" : " "));
 17 });
 18
 19 count = 0; // Reset the count for columns
 20 System.out.println("\nThe occurrences of each letter are:");
count occurrence 21 Stream.of(chars).collect(Collectors.groupingBy(e −> e,
 22 TreeMap::new, Collectors.counting())).forEach((k, v) −> {
 23 System.out.print(v + " " + k
 24 + (++count % 10 == 0 ? "\n" : " "));
 25 });
 26 }
 27 }

The lowercase letters are:
e y l s r i b k j v j h a b z n w b t v
s c c k r d w a m p w v u n q a m p l o
a z g d e g f i n d x m z o u l o z j v
h w i w n t g x w c d o t x h y v z y z
q e a m f w p g u q t r e n n w f c r f

The occurrences of each letter are:
5 a 3 b 4 c 4 d 4 e 4 f 4 g 3 h 3 i 3 j
2 k 3 l 4 m 6 n 4 o 3 p 3 q 4 r 2 s 4 t
3 u 5 v 8 w 3 x 3 y 6 z

The program generates a stream of 100 random integers. These integers are in the range between (char)'a' and (char)'z' (line 11). They are ASCII code for the lowercase letters. The mapToObj method maps the integers to their corresponding lowercase letters (line 12). The toArray() method returns an array consisting of these lowercase letters.

The program creates a stream of lowercase letters (line 15) and uses the forEach method to display each letter (line 16). The letters are displayed 20 per line. The static variable count is used to count the letters printed.

The program resets the count to 0 (line 19), creates a stream of lowercase letters (line 21), returns a map with lowercase letters as the key and the occurrences of each letter as the value (lines 21–22), and invokes the forEach method to display each key and value 10 per line (lines 23–24).

The code has 66 lines in Listing 7.4. The new code has only 27 lines, which greatly ­simplified coding. Furthermore, using streams is more efficient.

30.8.3 Case Study: Counting the Occurrences of Each Letter in a String

The preceding example randomly generates lowercase letters and counts the occurrence of each letter. This example counts the occurrence of each letter in a string. The program given in Listing 30.9 prompts the user to enter the string, converts all letters to uppercase, and displays the count of each letter in the string.

Listing 30.9 CountOccurrenceOfLettersInAString.java

 1 import java.util.*;
 2 import java.util.stream.Stream;
 3 import java.util.stream.Collectors;
 4
 5 public class CountOccurrenceOfLettersInAString {
 6 private static int count = 0;
 7
 8 public static void main(String[] args) {
 9 Scanner input = new Scanner(System.in);
 10 System.out.print("Enter a string: ");
read a string 11 String s = input.nextLine();
 12
 13 count = 0; // Reset the count for columns
convert char[] to 14 System.out.println("The occurrences of each letter are:");
 Character[] 15 Stream.of(toCharacterArray(s.toCharArray()))
select letters 16 .filter(ch −> Character.isLetter(ch))
map to uppercase 17 .map(ch −> Character.toUpperCase(ch))
collect and count 18 .collect(Collectors.groupingBy(e −> e,
 19 TreeMap::new, Collectors.counting()))
display value and key 20 .forEach((k, v) −> { System.out.print(v + " " + k
 21 + (++count % 10 == 0 ? "\n" : " "));
 22 });
 23 }
 24
 25 public static Character[] toCharacterArray(char[] list) {
 26 Character[] result = new Character[list.length];
 27 for (int i = 0; i < result.length; i++) {
 28 result[i] = list[i];
 29 }
 30 return result;
 31 }
 32 }

Enter a string: Welcome to JavaAA
The occurrences of each letter are:
4 A 1 C 2 E 1 J 1 L 1 M 2 O 1 T 1 V 1 W

The program reads a string s and obtains an array of char from the string by invoking s.toCharArray(). To create a stream of characters, you need to convert char[] into ­Character[]. So, the program defines the toCharacterArray method (lines 25–31) for obtaining a Character[] from char[].

char[] to Character[]

The program creates a stream of Character object (line 15), eliminates nonletters from the stream using the filter method (line 16), coverts all letters to uppercase using the map method (line 17), and obtains a TreeMap using the collect method (lines 18–19). In the TreeMap, the key is the letter and the value is the count for the letter. The forEach method (lines 20–21) in TreeMap is used to display the value and key.

30.8.3 Case Study: Processing All Elements in a Two-Dimensional Array

You can create a stream from a one-dimensional array. Can you create a stream for processing two-dimensional arrays? Listing 30.10 gives an example of processing two-dimensional arrays using streams.

Listing 30.10 TwoDimensionalArrayStream.java

				 1 import java.util.IntSummaryStatistics;
				 2 import java.util.stream.IntStream;
				 3 import java.util.stream.Stream;
				 4
				 5 public class TwoDimensionalArrayStream {
				 6 private static int i = 0;
				 7 public static void main(String[] args) {
create an array		 	 8 int[][] m = {{1, 2}, {3, 4}, {4, 5}, {1, 3}};
				 9
				10 int[] list = Stream.of(m).map(e −> IntStream.of(e)).
reduce to onedimensional	11 reduce((e1, e2) −> IntStream.concat(e1, e2)).get().toArray();
				12
				13 IntSummaryStatistics stats =
obtain statistical information	14 IntStream.of(list).summaryStatistics();
				15 System.out.println("Max: " + stats.getMax());
				16 System.out.println("Min: " + stats.getMin());
				17 System.out.println("Sum: " + stats.getSum());
				18 System.out.println("Average: " + stats.getAverage());
				19
				20 System.out.println("Sum of row ");
sum of each row			21 Stream.of(m).mapToInt(e −> IntStream.of(e).sum())
				22 .forEach(e −>
				23 System.out.println("Sum of row " + i++ + ": " + e));
				24 }
				25 }

Max: 5
Min: 1
Sum: 23
Average: 2.875
Sum of row
Sum of row 0: 3
Sum of row 1: 7
Sum of row 2: 9
Sum of row 3: 4

The program creates a two-dimensional array m in line 8. Invoking Stream.of(m) ­creates a stream consisting of rows as elements (line 10). The map method maps each row to an IntStream. The reduce method concatenates these streams into one large stream (line 11). This large stream now contains all the elements in m. Invoking toArray() from the stream returns an array consisting of all the integers in the stream (line 11).

The program obtains a statistical summary for an IntStream created from the array (lines 13–14) and displays the maximum, minimum, sum, and average of the integers in the stream (lines 15–18).

Finally, the program creates a stream from m that consists of rows in m (line 21). Each row is mapped to an int value using the mapToInt method (line 21). The int value is the sum of the elements in the row. The forEach method displays the sum for each row (lines 22–23).

30.8.4 Case Study: Finding the Directory Size

Listing 18.7 gives a recursive program that finds the size of a directory. The size of a directory is the sum of the sizes of all the files in the directory. The program can be implemented using streams as shown in Listing 30.11.

Listing 30.11 DirectorySizeStream.java

 1 import java.io.File;
 2 import java.nio.file.Files;
 3 import java.util.Scanner;
 4
 5 public class DirectorySizeStream {
 6 public static void main(String[] args) throws Exception {
 7 // Prompt the user to enter a directory or a file
 8 System.out.print("Enter a directory or a file: ");
 9 Scanner input = new Scanner(System.in);
 10 String directory = input.nextLine();
 11
 12 // Display the size
invoke method 13 System.out.println(getSize(new File(directory)) + " bytes");
 14 }
 15
getSize method 16 public static long getSize(File file) {
is file? 17 if (file.isFile()) {
return file length 18 return file.length();
 19 }
 20 else {
 21 try {
get subpaths 22 return Files.list(file.toPath()).parallel().
recursive call 23 mapToLong(e −> getSize(e.toFile())).sum();
 24 } catch (Exception ex) {
 25 return 0;
 26 }
 27 }
 28 }
 29 }

Enter a directory or a file: c:\book
48619631 bytes

Enter a directory or a file: c:\book\Welcome.java
172 bytes

Enter a directory or a file: c:\book\NonExistentFile
0 bytes

The program prompts the user to enter a file or a directory name (lines 8–10) and invokes the getSize(File file) method to return the size of the file or a directory (line 13). The File object can be a directory or a file. If it is a file, the getSize method returns the size of the file (lines 17–19). If it is a directory, invoking Files.list(file.toPath()) returns a stream consisting of the Path objects. Each Path object represents a subpath in the directory (line 22). Since JDK 1.8, new methods are added in some existing classes to return streams. The Files class now has the static list(Path) method that returns a stream of subpaths in the path. For each subpath e, the mapToLong method maps e into the size of e by invoking getSize(e). Finally, the terminal sum() method returns the size of the whole directory.

Both getSize methods in Listing 18.7 and Listing 30.9 are recursive. The getSize method in Listing 30.9 can be executed in a parallel stream. So, Listing 30.9 has better performance.

30.8.5 Case Study: Counting Keywords

Listing 21.7 gives a program to count the keywords in a Java source file. The program reads the words from a text file and tests if the word is a keyword. You can rewrite the code using streams as shown in Listing 30.12.

Listing 30.12 CountKeywordStream.java

 1 import java.util.*;
 2 import java.io.*;
 3 import java.nio.file.Files;
 4 import java.util.stream.Stream;
 5
 6 public class CountKeywordStream {
 7 public static void main(String[] args) throws Exception {
 8 Scanner input = new Scanner(System.in);
 9 System.out.print("Enter a Java source file: ");
enter a filename 10 String filename = input.nextLine();
 11
 12 File file = new File(filename);
file exists? 13 if (file.exists()) {
 14 System.out.println("The number of keywords in " + filename
count keywords 15 + " is " + countKeywords(file));
 16 }
 17 else {
 18 System.out.println("File " + filename + " does not exist");
 19 }
 20 }
 21
 22 public static long countKeywords(File file) throws Exception {
 23 // Array of all Java keywords + true, false and null
keywords 24 String[] keywordString = {"abstract", "assert", "boolean",
 25 "break", "byte", "case", "catch", "char", "class", "const",
 26 "continue", "default", "do", "double", "else", "enum",
 27 "extends", "for", "final", "finally", "float", "goto",
 28 "if", "implements", "import", "instanceof", "int",
 29 "interface", "long", "native", "new", "package", "private",
 30 "protected", "public", "return", "short", "static",
 31 "strictfp", "super", "switch", "synchronized", "this",
 32 "throw", "throws", "transient", "try", "void", "volatile",
 33 "while", "true", "false", "null"};
 34
keyword set 35 Set<String> keywordSet =
 36 new HashSet<>(Arrays.asList(keywordString));
 37
 38 return Files.lines(file.toPath()).parallel().mapToLong(line −>
 39 Stream.of(line.split("[\\s++]")).
count keyword 40 filter(word −> keywordSet.contains(word)).count()).sum();
 41 }
 42 }

Enter a Java source file: c:\Welcome.java
The number of keywords in c:\Welcome.java is 5

Enter a Java source file: c:\TTT.java
File c:\TTT.java does not exist

The program prompts the user to enter a filename (lines 9–10). If the file exists, it invokes conutKeywords(file) to return the number of keywords in the file (line 15). The keywords are stored in a set keywordSet (lines 35–36). Invoking Files.lines(file.toPath()) returns a streams of lines form the file (line 38). Each line in the stream is mapped to a long value that counts the number of the keywords in the line. The line is split into an array of words using line.split("[\\s++]") and this array is used to create a stream (line 39). The filter method is applied to select the keyword from the stream. Invoking count() returns the number of the keywords in a line. The sum() method returns the total number of keywords in all lines (line 40).

The real benefit of using parallel streams in this example is for improving performance (line 38).

30.8.6 Case Study: Occurrences of Words

Listing 21.9 gives a program that counts the occurrences of words in a text. You can rewrite the code using streams as shown in Listing 30.13.

Listing 30.13 CountOccurrenceOfWordsStream.java

			 1 import java.util.*;
			 2 import java.util.stream.Collectors;
			 3 import java.util.stream.Stream;
			 4
			 5 public class CountOccurrenceOfWordsStream {
			 6 public static void main(String[] args) {
			 7 // Set text in a string
text			 8 String text = "Good morning. Have a good class. "
			 9 + "Have a good visit. Have fun!";
			10
split into words	11 Stream.of(text.split("[\\s+\\p{P}]")).parallel()
filter empty words	12 .filter(e −> e.length() > 0).collect(
group by words		13 Collectors.groupingBy(String::toLowerCase, TreeMap::new,
			14 Collectors.counting()))
display counts		15 .forEach((k, v) −> System.out.println(k + " " + v));
			16 }
			17 }

a 2
class 1
fun 1
good 3
have 3
morning 1
visit 1

The text is split into words using a whitespace \s or punctuation \p{P} as a delimiter (line 11) and a stream is created for the words. The filter method is used to select nonempty words (line 12). The collect method groups the words by converting each into lowercase and returns a TreeMap with the lowercase words as the key and their count as the value (lines 13–14). The forEach method displays the key and its value (line 15).

The code in Listing 30.11 is about half in size as the code in Listing 21.9. The new program greatly simplifies coding and improves performance.

	30.8.1 Can the following code be used to replace line 19 in Listing 30.7 ?

DoubleStream.of(numbers).filter(e −> e >
 DoubleStream.of(numbers).average()).count());

	30.8.2 Can the following code be used to replace lines 15–16 in Listing 30.8 ?

Stream.of(chars).forEach(e −> {
 int count = 0;
 System.out.print(e + (++count % 20 == 0 ? "\n" : " ")); });

	30.8.3 Show the output of the following code?

String s = "ABC";
Stream.of(s.toCharArray()).forEach(ch −>
 System.out.println(ch));

	30.8.4 Show the output of the following code (The toCharacterArray method is ­presented in Listing 30.9 .)

String s = "ABC";
Stream.of(toCharacterArray(s.toCharArray())).forEach(ch −>
 System.out.println(ch));

	30.8.5 Write the code to obtain a one-dimensional array list of strings from a two-dimensional array matrix of strings.

Chapter Summary

	Java 8 introduces aggregate methods on collection streams to simplify coding and improve performance.

	A stream pipeline creates a stream from a data source, consists of zero or more ­intermediate methods (skip, limit, filter, distinct, sorted, map, and ­mapToInt), and a final terminal method (count, sum, average, max,min, forEach, findFirst, firstAny, anyMatch, allMatch, noneMatch, and toArray).

	The execution of a stream is lazy, which means that the methods in the stream are not executed until the final terminal method is initiated.

	The streams are transient objects. They are destroyed once the terminal method is executed.

	The Stream<T> class defines the streams for a sequence of objects of the T type. IntStream, LongStream, and DoubleStream are the streams for a sequence of ­primitive int, long, and double values.

	An important benefit of using streams is for performance. Streams can be executed in parallel mode to take advantages of multi-core architecture. You can switch a stream into a parallel or sequential mode by invoking the parallel() or sequential() method.

	You can use the reduce method to reduce a stream into a single value and use the ­collect method to place the elements in the stream into a collection.

	You can use the groupingBy collector to group the elements in the stream and apply aggregate methods for the elements in the group.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	30.1 (Assign grades) Rewrite Programming Exercise 7.1 using streams.

	30.2 (Count occurrence of numbers) Rewrite Programming Exercise 7.3 using streams.

	30.3 (Analyze scores) Rewrite Programming Exercise 7.4 using streams.

	30.4 (Print distinct numbers) Rewrite Programming Exercise 7.5 using streams. Display the numbers in increasing order.

	30.5 (Count single digits) Rewrite Programming Exercise 7.7 using streams.

	30.6 (Average an array) Rewrite Programming Exercise 7.8 using streams.

	30.7 (Find the smallest element) Rewrite Programming Exercise 7.9 using streams.

	30.8 (Eliminate duplicates) Rewrite Programming Exercise 7.15 using streams and sort the elements in the new array in increasing order.

	30.9 (Sort students) Rewrite Programming Exercise 7.17 using streams. Define a class named Student with data fields name and score and their getter methods. Store each student in a Student object.

	30.10 (Convert binary to decimal) Write a program that prompts the user to enter a binary number in string and displays its decimal value. Use Stream’s reduce method to convert a binary number to decimal.

	30.11 (Convert hex to decimal) Write a program that prompts the user to enter a hex number in string and displays its decimal value. Use Stream’s reduce method to convert a hex number to decimal.

	30.12 (Sum the digits in an integer) Rewrite Programming Exercise 6.2 using streams.

	30.13 (Count the letters in a string) Rewrite Programming Exercise 6.20 using streams.

	30.14 (Occurrences of a specified character) Rewrite Programming Exercise 6.23 using streams.

	30.15 (Display words in ascending alphabetical order) Rewrite Programming Exercise 20.1 using streams.

	30.16 (Distinct scores) Use streams to write a program that displays the distinct scores in the scores array in Section 8.8 . Display the scores in increasing order, separated by exactly one space, five numbers per line.

	30.17 (Count consonants and vowels) Rewrite Programming Exercise 21.4 using streams.

	30.18 (Count the occurrences of words in a text file) Rewrite Programming Exercise 21.8 using streams.

	30.19 (Summary information) Suppose the file test.txt contains floating-point numbers separated by spaces. Write a program to obtain the sum, average, maximum, and minimum of the numbers.

CHAPTER 31 Advanced JavaFX and FXML

Objectives

	To specify styles for UI nodes using JavaFX CSS (§31.2).

	To create quadratic curve, cubic curve, and path using the QuadCurve, CubicCurve, and Path classes (§31.3).

	To translate, rotate, and scale to perform coordinate transformations for nodes (§31.4).

	To define a shape’s border using various types of strokes (§31.5).

	To create menus using the Menu, MenuItem, CheckMenuItem, and RadioMemuItem classes (§31.6).

	To create context menus using the ContextMenu class (§31.7).

	To use SplitPane to create adjustable horizontal and vertical panes (§31.8).

	To create tab panes using the TabPane control (§31.9).

	To create and display tables using the TableView and TableColumn classes (§31.10).

	To create JavaFX user interfaces using FMXL and the visual Scene Builder (§31.11).

31.1 Introduction

[image:]

	JavaFX can be used to develop comprehensive rich Internet applications.

Chapters 14–16 introduced basics of JavaFX, event-driven programming, animations, and simple UI controls. This chapter introduces some advanced features for developing comprehensive GUI applications.

31.2 JavaFX CSS

[image:]

	JavaFX cascading style sheets can be used to specify styles for UI nodes.

JavaFX cascading style sheets are based on CSS with some extensions. CSS defines the style for webpages. It separates the contents of webpages from its style. JavaFX CSS can be used to define the style for the UI and separates the contents of the UI from the style. You can define the look and feel of the UI in a JavaFX CSS file and use the style sheet to set the color, font, margin, and border of the UI components. A JavaFX CSS file makes it easy to modify the style without modifying the Java source code.

A JavaFX style property is defined with a prefix –fx- to distinquish it from a property in CSS. All the available JavaFX properties are defined in http://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html. Listing 31.1 gives an example of a style sheet.

Listing 31.1 mystyle.css

 .plaincircle {
 -fx-fill: white;
 -fx-stroke: black;
 }
 .circleborder {
 -fx-stroke-width: 5;
 -fx-stroke-dash-array: 12 2 4 2;
 }
 .border {
 -fx-border-color: black;
 -fx-border-width: 5;
 }
 #redcircle {
 -fx-fill: red;
 -fx-stroke: red;
 }
 #greencircle {
 -fx-fill: green;
 -fx-stroke: green;
 }

A style sheet uses the style class or style id to define styles. Multiple style classes can be applied to a single node, and a style id to a unique node. The syntax .styleclass defines a style class. Here, the style classes are named plaincircle, circleborder, and ­circleborder. The syntax #styleid defines a style id. Here, the style ids are named redcircle and greencircle.

Each node in JavaFX has a styleClass variable of the List<String> type, which can be obtained from invoking getStyleClass(). You can add multiple style classes to a node and only one id to a node. Each node in JavaFX has an id variable of the String type, which can be set using the setID(String id) method. You can set only one id to a node.

The Scene and Parent classes have the stylesheets property, which can be obtained from invoking the getStylesheets() method. This property is of the ObservableList<String> type. You can add multiple style sheets into this property. You can load a style sheet into a Scene or a Parent. Note that Parent is the superclass for containers and UI control.

Listing 31.2 gives an example that uses the style sheet defined in Listing 31.1.

Listing 31.2 StyleSheetDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.HBox;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class StyleSheetDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 HBox hBox = new HBox(5);
12 Scene scene = new Scene(hBox, 300, 250);
13 scene.getStylesheets().add("mystyle.css"); // Load the stylesheet
14
15 Pane pane1 = new Pane();
16 Circle circle1 = new Circle(50, 50, 30);
17 Circle circle2 = new Circle(150, 50, 30);
18 Circle circle3 = new Circle(100, 100, 30);
19 pane1.getChildren().addAll(circle1, circle2, circle3);
20 pane1.getStyleClass().add("border");
21
22 circle1.getStyleClass().add("plaincircle"); // Add a style class
23 circle2.getStyleClass().add("plaincircle"); // Add a style class
24 circle3.setId("redcircle"); // Add a style id
25
26 Pane pane2 = new Pane();
27 Circle circle4 = new Circle(100, 100, 30);
28 circle4.getStyleClass().addAll("circleborder", "plainCircle");
29 circle4.setId("greencircle"); // Add a style class
30 pane2.getChildren().add(circle4);
31 pane2.getStyleClass().add("border");
32
33 hBox.getChildren().addAll(pane1, pane2);
34
35 primaryStage.setTitle("StyleSheetDemo"); // Set the window title
36 primaryStage.setScene(scene); // Place the scene in the window
37 primaryStage.show(); // Display the window
38 }
39 }

The program loads the style sheet from the file mystyle.css by adding it to the stylesheets property (line 13). The file should be placed in the same directory with the source code for it to run correctly. After the style sheet is loaded, the program sets the style class ­plaincircle for circle1 and circle2 (lines 22 and 23) and sets the style id redcircle for ­circle3 (line 24). The program sets style classes circleborder and plaincircle and an id ­greencircle for circle4 (lines 28 and 29). The style class border is set for both pane1 and pane2 (lines 20 and 31).

The style sheet is set in the scene (line 13). All the nodes inside the scene can use this style sheet. What would happen if line 13 is deleted and the following line is inserted after line 15?

pane1.getStylesheets().add("mystyle.css");

In this case, only pane1 and the nodes inside pane1 can access the style sheet, but pane2 and circle4 cannot use this style sheet. Therefore, everything in pane1 is displayed the same as before the change, and pane2 and circle4 are displayed without applying the style class and id, as shown in Figure 31.1b.

 [image: ay. The style sheet demo screenshot shows 2 white circles and a grey circle on the left and a grey circle on the right. b. The style sheet demo screenshot shows 2 white circles and a grey circle on the left and a black circle on the right.]Figure 31.1

The style sheet is used to style the nodes in the scene.

Note the style class plaincircle and id greencircle both are applied to ­circle4 (lines 28 and 29). plaincircle sets fill to white and greencircle sets fill to green. The property settings in id take precedence over the ones in classes. Thus, circle4 is ­displayed in green in this program.

[image:]

	31.2.1 How do you load a style sheet to a Scene or a Parent? Can you load multiple style sheets?

	31.2.2 If a style sheet is loaded from a node, can the pane and all its containing nodes access the style sheet?

	31.2.3 Can a node add multiple style classes? Can a node set multiple style ids?

	31.2.4 If the same property is defined in both a style class and a style id and applied to a node, which one has the precedence?

31.3 QuadCurve, CubicCurve, and Path

[image:]

	JavaFX provides the QuadCurve, CubicCurve, and Path classes for creating advanced shapes.

Section 14.11 introduced drawing simple shapes using the Line, Rectangle, Circle, Ellipse, Arc, Polygon, and Polyline classes. This section introduces drawing advanced shapes using the CubicCurve, QuadCurve, and Path classes.

31.3.1  QuadCurve and CubicCurve

JavaFX provides the QuadCurve and CubicCurve classes for modeling quadratic curves and cubic curves. A quadratic curve is mathematically defined as a quadratic polynomial. To create a QuadCurve, use its no-arg constructor or the following constructor:

QuadCurve(double startX, double startY,
 double controlX, double controlY, double endX, double endY)

where (startX, startY) and (endX, endY) specify two endpoints and (controlX, ­controlY) is a control point. The control point is usually not on the curve instead of defining the trend of the curve, as shown in Figure 31.2a. Figure 31.3 shows the UML diagram for the QuadCurve class.

[image: Ay. A quadratic curve using points (start x, start y), (control x, control y), (end x, end y). B. A cubic curve using points (start x, start y), (control x 1, control y 1), (control x 2, control y 2), (end x, end y).]Figure 31.2

(a) A quadratic curve is specified using three points. (b) A cubic curve is ­specified using four points.

[image:]
Figure 31.3

QuadCurve defines a quadratic curve.

Description

A cubic curve is mathematically defined as a cubic polynomial. To create a CubicCurve, use its no-arg constructor or the following constructor:

CubicCurve(double startX, double startY, double controlX1,
 double controlY1, double controlX2, double controlY2,
 double endX, double endY)

where (startX, startY) and (endX, endY) specify two endpoints and (controlX1, ­controlY1) and (controlX2, controlY2) are two control points. The control points are usually not on the curve, instead define the trend of the curve, as shown in Figure 31.2b. ­Figure 31.4 shows the UML diagram for the CubicCurve class.

[image: Ay U M L class diagram for java f x dot scene dot shape cubic curve.]
Figure 31.4

CubicCurve defines a quadratic curve.

Description

Listing 31.3 gives a program that demonstrates how to draw quadratic and cubic curves. ­Figure 31.5a shows a sample run of the program.

 [image: Code for curve demo dot java.]Figure 31.5

You can draw quadratic and cubic curves using QuadCurve and CubicCurve.

Listing 31.3 CurveDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.*;
 8 import javafx.stage.Stage;
 9
10 public class CurveDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 Pane pane = new Pane();
14
15 // Create a QuadCurve
16 QuadCurve quadCurve = new QuadCurve(10, 80, 40, 20, 150, 56);
17 quadCurve.setFill(Color.WHITE);
18 quadCurve.setStroke(Color.BLACK);
19
20 pane.getChildren().addAll(quadCurve, new Circle(40, 20, 6),
21 new Text(40 + 5, 20 - 5, "Control point"));
22
23 // Create a CubicCurve
24 CubicCurve cubicCurve = new CubicCurve
25 (200, 80, 240, 20, 350, 156, 450, 80);
26 cubicCurve.setFill(Color.WHITE);
27 cubicCurve.setStroke(Color.BLACK);
28
29 pane.getChildren().addAll(cubicCurve, new Circle(240, 20, 6),
30 new Text(240 + 5, 20 − 5, "Control point 1"),
31 new Circle(350, 156, 6),
32 new Text(350 + 5, 156 − 5, "Control point 2"));
33
34 Scene scene = new Scene(pane, 300, 250);
35 primaryStage.setTitle("CurveDemo"); // Set the window title
36 primaryStage.setScene(scene); // Place the scene in the window
37 primaryStage.show(); // Display the window
38 }
39 }

The program creates a QuadCurve with the specified start, control, and end points (line 16) and places the QuadCurve to the pane (line 20). To illustrate the control point, the program also displays the control point as a solid circle (line 21).

The program creates a CubicCurve with the specified start, first control, second control, and end points (lines 24 and 25) and places the CubicCurve to the pane (line 29). To illustrate the control points, the program also displays the control points in the pane (lines 29–32).

Note the curves are filled with color. The program sets the color to white and stroke to black in order to display the curves (lines 17 and 18, 26 and 27). If these code lines are removed from the program, the sample run would look like the one in Figure 31.5b.

31.3.2  Path

The Path class models an arbitrary geometric path. A path is constructed by adding path elements into the path. The PathElement is the root class for the path elements MoveTo, HLineTo, VLineTo, LineTo, ArcTo, QuadCurveTo, CubicCurveTo, and ClosePath.

You can create a Path using its no-arg constructor. The process of the path construction can be viewed as drawing with a pen. The path does not have a default initial position. You need to set an initial position by adding a MoveTo(startX, startY) path element to the path. Adding a HLineTo(newX) element draws a horizontal line from the current position to the new ­x-coordinate. Adding a VLineTo(newY) element draws a vertical line from the current position to the new y-coordinate. Adding a LineTo(newX, newY) element draws a line from the ­current position to the new position. Adding an ArcTo(radiusX, ­radiusY, xAxisRotation, newX, newY, largeArcFlag, sweepArcFlag) element draws an arc from the previous position to the new position with the specified radius. Adding a QuadCurveTo(controlX, controlY, newX, newY) element draws a quadratic curve from the previous position to the new position with the specified control point. Adding a CubicCurveTo(controlX1, ­controlY1, controlX2, controlY2, newX, newY) element draws a cubic curve from the previous position to the new position with the specified control points. Adding a ­ClosePath() element closes the path by drawing a line that connects the starting point with the end point of the path.

Listing 31.4 gives an example that creates a path. A sample run of the program is shown in Figure 31.6.

 [image: Code for translation demo dot java.]Figure 31.6

You can draw a path by adding path elements.

Listing 31.4 PathDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.*;
 6 import javafx.stage.Stage;
 7
 8 public class PathDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 Pane pane = new Pane();
12
13 // Create a Path
14 Path path = new Path();
15 path.getElements().add(new MoveTo(50.0, 50.0));
16 path.getElements().add(new HLineTo(150.5));
17 path.getElements().add(new VLineTo(100.5));
18 path.getElements().add(new LineTo(200.5, 150.5));
19
20 ArcTo arcTo = new ArcTo(45, 45, 250, 100.5,
21 false, true);
22 path.getElements().add(arcTo);
23
24 path.getElements().add(new QuadCurveTo(50, 50, 350, 100));
25 path.getElements().add(
26 new CubicCurveTo(250, 100, 350, 250, 450, 10));
27
28 path.getElements().add(new ClosePath());
29
30 pane.getChildren().add(path);
31 path.setFill(null);
32 Scene scene = new Scene(pane, 300, 250);
33 primaryStage.setTitle("PathDemo"); // Set the window title
34 primaryStage.setScene(scene); // Place the scene in the window
35 primaryStage.show(); // Display the window
36 }
37 }

The program creates a Path (line 14), moves its position (line 15), and adds a horizontal line (line 16), a vertical line (line 17), and a line (line 18). The getElements() method returns an ObservableList<PathElement>.

The program creates an ArcTo object (lines 20 and 21). The ArcTo class contains the largeArcFlag and sweepFlag properties. By default, these property values are false. You may set these properties to ture to display a large arc in the opposite direction.

The program adds a quadratic curve (line 24) and a cubic curve (lines 25 and 26) and closes the path (line 28).

By default, the path is not filled. You may change the fill property in the path to specify a color to fill the path.

[image:]

	31.3.1 Create a QuadCurve with starting point (100, 75.5), control point (40, 55.5), and end point (56, 80). Set its fill property to white and stroke to green.

	31.3.2 Create CubicCurve object with starting point (100, 75.5), control point 1 (40, 55.5), control point 2 (78.5, 25.5), and end point (56, 80). Set its fill property to white and stroke to green.

	31.3.3 Does a path have a default initial position? How do you set a position for a path?

	31.3.4 How do you close a path?

	31.3.5 How do you display a filled path?

31.4 Coordinate Transformations

[image:]

	JavaFX supports coordinate transformations using translation, rotation, and scaling.

You have used the rotate method to rotate a node. You can also perform translations and scaling.

31.4.1 Translations

You can use the setTranslateX(double x), setTranslateY(double y), and setTranslateZ(double z) methods in the Node class to translate the coordinates for a node. For example, setTranslateX(5) moves the node 5 pixels to the right and setTranslateY(−10) 10 pixels up from the previous position. Figure 31.7 shows a rectangle displayed before and after applying translation. After invoking rectangle.setTranslateX(−6) and rectangle.setTranslateY(4), the rectangle is moved 6 pixels to the left and 4 pixels down from the previous position. Note the coordinate transformation using translation, rotation, and scaling does not change the contents of the shape being transferred. For example, if a rectangle’s x is 30 and width is 100, after applying transformations to the rectangle, its x is still 30 and width is still 100.

 [image:]Figure 31.7

After applying translation of (−6, 4), the rectangle is moved by the specified distance relative to the previous position.

Listing 31.5 TranslationDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Rectangle;
 6 import javafx.stage.Stage;
 7
 8 public class TranslationDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 Pane pane = new Pane();
12
13 double x = 10;
14 double y = 10;
15 java.util.Random random = new java.util.Random();
16 for (int i = 0; i < 10; i++) {
17 Rectangle rectangle = new Rectangle(10, 10, 50, 60);
18 rectangle.setFill(Color.WHITE);
19 rectangle.setStroke(Color.color(random.nextDouble(),
20 random.nextDouble(), random.nextDouble()));
21 rectangle.setTranslateX(x += 20);
22 rectangle.setTranslateY(y += 5);
23 pane.getChildren().add(rectangle);
24 }
25
26 Scene scene = new Scene(pane, 300, 250);
27 primaryStage.setTitle("TranslationDemo"); // Set the window title
28 primaryStage.setScene(scene); // Place the scene in the window
29 primaryStage.show(); // Display the window
30 }
31 }

The program repeatedly creates 10 rectangles (line 17). For each rectangle, it sets its fill property to white (line 18) and its stroke property to a random color (lines 19 and 20), and translates it to a new location (lines 21 and 22). The variables x and y are used to set the translateX and translateY properties. These two variable values are changed every time it is applied to a rectangle (see Figure 31.8).

 [image:]Figure 31.8

The rectangles are displayed successively in new locations.

31.4.2 Rotations

Rotation was introduced in Chapters 14. This section discusses it in more depth. You can use the rotate(double theta) method in the Node class to rotate a node by theta degrees from its pivot point clockwise, where theta is a double value in degrees. The pivot point is automatically computed based on the bounds of the node. For a circle, ellipse, and a rectangle, the pivot point is the center point of these nodes. For example, rectangle.rotate(45) rotates the rectangle 45 degrees clockwise along the eastern direction from the center, as shown in Figure 31.9.

 [image:]Figure 31.9

After performing rectangle.rotate(45), the rectangle is rotated in 45 degrees from the center.

Listing 31.6 gives a program that demonstrates the effect of rotation of coordinates. ­Figure 31.10 shows a sample run of the program.

 [image:]Figure 31.10

The rotate method rotates a node.

Listing 31.6 RotateDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Rectangle;
 6 import javafx.stage.Stage;
 7
 8 public class RotateDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 Pane pane = new Pane();
12 java.util.Random random = new java.util.Random();
13 // The radius of the circle for anchoring rectangles
14 double radius = 90;
15 double width = 20; // Width of the rectangle
16 double height = 40; // Height of the rectangle
17 for (int i = 0; i < 8; i++) {
18 // Center of a rectangle
19 double x = 150 + radius * Math.cos(i * 2 * Math.PI / 8);
20 double y = 150 + radius * Math.sin(i * 2 * Math.PI / 8);
21 Rectangle rectangle = new Rectangle(
22 x − width / 2, y − height / 2, width, height);
23 rectangle.setFill(Color.WHITE);
24 rectangle.setStroke(Color.color(random.nextDouble(),
25 random.nextDouble(), random.nextDouble()));
26 rectangle.setRotate(i * 360 / 8); // Rotate the rectangle
27 pane.getChildren().add(rectangle);
28 }
29
30 Scene scene = new Scene(pane, 300, 300);
31 primaryStage.setTitle("RotateDemo"); // Set the window title
32 primaryStage.setScene(scene); // Place the scene in the window
33 primaryStage.show(); // Display the window
34 }
35 }

The program creates eight rectangles in a loop (lines 17–28). The center of each rectangle is located on the circle centered as (150, 150) (lines 19 and 20). A rectangle is created by specifying its upper left corner position with width and height (lines 21 and 22). The rectangle is rotated in line 26 and added to the pane in line 27.

31.4.3 Scaling

You can use the setScaleX(double sx), setScaleY(double sy), and setScaleY(double sy) methods in the Node class to specify a scaling factor. The node will appear larger or smaller depending on the scaling factor. Scaling alters the coordinate space of the node such that each unit of distance along the axis is multiplied by the scale factor. As with rotation transformations, scaling transformations are applied to enlarge or shrink the node around the pivot point. For a node of the rectangle shape, the pivot point is the center of the rectangle. For example, if you apply a scaling factor (x = 2, y = 2), the entire rectangle including the stroke will double in size, growing to the left, right, up, and down from the center, as shown in Figure 31.11.

 [image:]Figure 31.11

After applying scaling (x = 2, y = 2), the node is doubled in size.

Listing 31.7 gives a program that demonstrates the effect of using scaling. Figure 31.12 shows a sample run of the program.

 [image:]Figure 31.12

The scale method scales the coordinates in the node.

Listing 31.7 ScaleDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.shape.Line;
 5 import javafx.scene.text.Text;
 6 import javafx.scene.shape.Polyline;
 7 import javafx.stage.Stage;
 8
 9 public class ScaleDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a polyline to draw a sine curve
13 Polyline polyline = new Polyline();
14 for (double angle = −360; angle <= 360; angle++) {
15 polyline.getPoints().addAll(
16 angle, Math.sin(Math.toRadians(angle)));
17 }
18 polyline.setTranslateY(100);
19 polyline.setTranslateX(200);
20 polyline.setScaleX(0.5);
21 polyline.setScaleY(50);
22 polyline.setStrokeWidth(1.0 / 25);
23
24 // Draw x-axis
25 Line line1 = new Line(10, 100, 420, 100);
26 Line line2 = new Line(420, 100, 400, 90);
27 Line line3 = new Line(420, 100, 400, 110);
28
29 // Draw y-axis
30 Line line4 = new Line(200, 10, 200, 200);
31 Line line5 = new Line(200, 10, 190, 30);
32 Line line6 = new Line(200, 10, 210, 30);
33
34 // Draw x, y axis labels
35 Text text1 = new Text(380, 70, "X");
36 Text text2 = new Text(220, 20, "Y");
37
38 // Add nodes to a pane
39 Pane pane = new Pane();
40 pane.getChildren().addAll(polyline, line1, line2, line3, line4,
41 line5, line6, text1, text2);
42
43 Scene scene = new Scene(pane, 450, 200);
44 primaryStage.setTitle("ScaleDemo"); // Set the window title
45 primaryStage.setScene(scene); // Place the scene in the window
46 primaryStage.show(); // Display the window
47 }
48 }

The program creates a polyline (line 13) and adds the points for a sine curve into the polyline (lines 14–17). Since |sin(x)|<=1, the y-coordinates are too small. To see the sine curve, the program scales the y-coordinates up by 50 times (line 21) and shrinks the x-coordinates by half (line 20).

Note scaling also causes the stroke width to change. To compensate it, the stroke width is purposely set to 1.0 / 25 (line 22).

[image:]

	31.4.1 Can you perform a coordinate transformation on any node? Does a coordinate transformation change the contents of a Shape object?

	31.4.2 Does the method setTranslateX(6) move the node’s x-coordinate to 6? Does the method setTranslateX(6) move the node’s x-coordinate 6 pixel right from its current location?

	31.4.3 Does the method rotate(Math.PI / 2) rotate a node 90 degrees? Does the method rotate(90) rotate a node 90 degrees?

	31.4.4 How is the pivot point determined for performing a rotation?

	31.4.5 What method do you use to scale a node two times on its x-axis?

31.5 Strokes

[image:]

	Stroke defines a shape’s border line style.

JavaFX allows you to specify the attributes of a shape’s boundary using the methods in Figure 31.13.

[image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: j ay v ay f x, period, scene, period, shape, period, shape. Line 2: + set stroke, left parenthesis, paint, colon, paint, right parenthesis, colon, void. Note: It sets a paint for the stroke. Line 3: + set stroke width, left parenthesis, width, colon, double, right parenthesis, colon, void. Note: It sets a width for the stroke, default 1. Line 4: + set stroke, type, left parenthesis, type, colon, stroke type, right parenthesis, colon, void. Note: It sets a type for the stroke to indicate whether the stroke is placed inside, centered, or outside of the border, default, centered. Line 5: blank. Line 6: + set stroke line cap, left parenthesis, type, colon, stroke line cap, right parenthesis, colon, void. Note: It specifies the end cap style for the stroke, default, butt. Line 7: + set stroke line join, left parenthesis, type, colon, stroke line join, right parenthesis, colon, void. Note: It specifies how two line segments are joined, default, miter. Line 8: + get stroke dash array, left parenthesis, right parenthesis, colon. Line 9, indented once: observable list, < double >. Note: It returns a list that specifies a dashed pattern for line segments. Line 10: + set stroke dash offset, left parenthesis, distance, colon, double, right parenthesis, colon, void. Note: It specifies the offset to the first segment in the dashed pattern.]
Figure 31.13

The Shape class contains the methods for setting stroke properties.

The setStroke(paint) method sets a paint for the stroke. The width of the stroke can be specified using the setStrokeWidth(width) method.

The setStrokeType(type) method sets a type for the stroke. The type defines whether the stroke is inside, outside, or in the center of the border using the constants ­StrokeType.INSIDE, StrokeType.OUTSIDE, or StrokeType.CENTERED (default), as shown in Figure 31.14.

 [image:]Figure 31.14

(a) No stroke is used. (b) A stroke is placed inside the border. (c) A stroke is placed in the center of the border. (d) A stroke is placed outside of the border.

Note for the centered style, the stroke is applied by extending the boundary of the node by a distance of half of the strokeWidth on either side (inside and outside) of the boundary.

The setStrokeLineCap(capType) method sets an end cap style for the stroke. The styles are defined as StrokeLineCap.BUTT (default), StrokeLineCap.ROUND, and StrokeLineCap.SQUARE, as illustrated in Figure 31.15. The BUTT stroke ends an unclosed path with no added decoration. The ROUND stroke ends an unclosed side of a path with an added half circle whose radius is half of the stroke width. The SQUARE stroke ends an unclosed side of a path with an added square that extends half of the stroke width.

 [image:]Figure 31.15

(a) No decoration for a BUTT line cap. (b) A half circle is added to an unclosed path. (c) A square with half of the stroke width is extended to an unclosed path.

The setStrokeLineJoin method defines the decoration applied where path segments meet. You can specify three types of line join using the constants StrokeLineJoin.MITER (default), StrokeLineJoin.BEVEL, and StrokeLineJoin.ROUND, as shown in Figure 31.16.

 [image:]Figure 31.16

Path segments can be joined in three ways: (a) MITER, (b) BEVEL, and (c) ROUND.

The Shape class has a property named strokeDashArray of the ObservableList<Double> type. This property is used to define a dashed pattern for the stroke. Alternate numbers in the list specify the lengths of the opaque and transparent segments of the dashes. For example, the list [10.0, 20.0, 30.0, 40.0] specifies a pattern as shown in Figure 31.17.

 [image: Top: an opaque segment of length 10, a transparent segment of length 20, an opaque segment of length 30, a transparent segment of length 40, an opaque segment of length 10, a transparent segment of length 20, an opaque segment of length 30, a transparent segment of length 40. Below: an opaque segment of length 10, a transparent segment of length 20, an opaque segment of length 30, a transparent segment of length 40, an opaque segment of length 50, a transparent segment of length 10, an opaque segment of length 20, a transparent segment of length 30, an opaque segment of length 40, a transparent segment of length 50.]Figure 31.17

The numbers in the list specify the opaque and transparent segments of the stroke alternately.

The setStrokeDashOffset(distance) method defines the offset to the first segment in the dash pattern. Figure 31.18 illustrates the offset 5 for the dash list [10.0, 20.0, 30.0, 40.0].

 [image: A transparent segment of length 5, an opaque segment of length 5, a transparent segment of length 20, an opaque segment of length 30, a transparent segment of length 40, an opaque segment of length 10, a transparent segment of length 20, an opaque segment of length 30, a transparent segment of length 40.]Figure 31.18

The dash offset specifies on offset for the first segment.

Listing 31.8 gives a program that demonstrates the methods to set attributes for a stroke. ­Figure 31.19 shows a sample run of the program.

 [image:]Figure 31.19

You can specify the attributes for strokes.

Listing 31.8 StrokeDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Rectangle;
 7 import javafx.scene.shape.*;
 8
 9 public class StrokeDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 Rectangle rectangle1 = new Rectangle(20, 20, 70, 120);
13 rectangle1.setFill(Color.WHITE);
14 rectangle1.setStrokeWidth(15);
15 rectangle1.setStroke(Color.ORANGE);
16
17 Rectangle rectangle2 = new Rectangle(20, 20, 70, 120);
18 rectangle2.setFill(Color.WHITE);
19 rectangle2.setStrokeWidth(15);
20 rectangle2.setStroke(Color.ORANGE);
21 rectangle2.setTranslateX(100);
22 rectangle2.setStrokeLineJoin(StrokeLineJoin.BEVEL);
23
24 Rectangle rectangle3 = new Rectangle(20, 20, 70, 120);
25 rectangle3.setFill(Color.WHITE);
26 rectangle3.setStrokeWidth(15);
27 rectangle3.setStroke(Color.ORANGE);
28 rectangle3.setTranslateX(200);
29 rectangle3.setStrokeLineJoin(StrokeLineJoin.ROUND);
30
31 Line line1 = new Line(320, 20, 420, 20);
32 line1.setStrokeLineCap(StrokeLineCap.BUTT);
33 line1.setStrokeWidth(20);
34
35 Line line2 = new Line(320, 70, 420, 70);
36 line2.setStrokeLineCap(StrokeLineCap.ROUND);
37 line2.setStrokeWidth(20);
38
39 Line line3 = new Line(320, 120, 420, 120);
40 line3.setStrokeLineCap(StrokeLineCap.SQUARE);
41 line3.setStrokeWidth(20);
42
43 Line line4 = new Line(460, 20, 560, 120);
44 line4.getStrokeDashArray().addAll(10.0, 20.0, 30.0, 40.0);
45
46 Pane pane = new Pane();
47 pane.getChildren().addAll(rectangle1, rectangle2, rectangle3,
48 line1, line2, line3, line4);
49
50 Scene scene = new Scene(pane, 610, 180);
51 primaryStage.setTitle("StrokeDemo"); // Set the window title
52 primaryStage.setScene(scene); // Place the scene in the window
53 primaryStage.show(); // Display the window
54 }
55
56 // Launch the program from command-line
57 public static void main(String[] args) {
58 launch(args);
59 }
60 }

The program creates three rectangles (lines 12–29). Rectangle 1 uses default miter join, rectangle 2 uses bevel join (line 22), and rectangle 3 uses round join (line 29).

The program creates three lines with butt, round, and square end cap (lines 31–41).

The program creates a line and sets dash pattern for this line (line 44). Note the ­strokeDashArray property is of the ObservableList<Double> type. You have to add Double values to the list. Adding a number such as 10 would cause an error.

[image:]

	31.5.1 Are the methods for setting a stroke and its attributes defined in the Node or Shape class?

	31.5.2 How do you set a stroke width to 3 pixels?

	31.5.3 What are the stroke types? What is the default stroke type? How do you set a stroke type?

	31.5.4 What are the stroke line join types? What is the default stroke line join type? How do you set a stroke line join type?

	31.5.5 What are the stroke cap types? What is the default stroke cap type? How do you set a stroke cap type?

	31.5.6 How do you specify a dashed pattern for strokes?

31.6 Menus

[image:]

	You can create menus in JavaFX.

Menus make selection easier and are widely used in window applications. JavaFX provides five classes that implement menus: MenuBar, Menu, MenuItem, CheckMenuItem, and RadioButtonMenuItem.

MenuBar is a top-level menu component used to hold the menus. A menu consists of menu items that the user can select (or toggle on or off). A menu item can be an instance of MenuItem, CheckMenuItem, or RadioButtonMenuItem. Menu items can be associated with nodes and keyboard accelerators.

31.6.1 Creating Menus

The sequence of implementing menus in JavaFX is as follows:

	Create a menu bar and add it to a pane. For example, the following code creates a pane and a menu bar, and adds the menu bar to the pane:

MenuBar menuBar = new MenuBar();
Pane pane = new Pane();
pane.getChildren().add(menuBar);

	Create menus and add them under the menu bar. For example, the following creates two menus and adds them to a menu bar, as shown in Figure 31.20a:

 [image:]Figure 31.20

(a) The menus are placed under a menu bar. (b) Clicking a menu on the menu bar reveals the items under the menu. (c) Clicking a menu item reveals the submenu items under the menu item.

Menu menuFile = new Menu("File");
Menu menuHelp = new Menu("Help");
menuBar.getMenus().addAll(menuFile, menuHelp);

	Create menu items and add them to the menus.

menuFile.getItems().addAll(new MenuItem("New"),
 new MenuItem("Open"), new MenuItem("Print"),
 new MenuItem("Exit"));

This code adds the menu items New, Open, Print, and Exit, in this order, to the File menu, as shown in Figure 31.20b.

	3.1. Creating submenu items.

You can also embed menus inside menus so the embedded menus become submenus. Here is an example:

Menu softwareHelpSubMenu = new Menu("Software");
Menu hardwareHelpSubMenu = new Menu("Hardware");
menuHelp.getItems().add(softwareHelpSubMenu);
menuHelp.getItems().add(hardwareHelpSubMenu);
softwareHelpSubMenu.getItems().add(new MenuItem("Unix"));
softwareHelpSubMenu.getItems().add(new MenuItem("Windows"));
softwareHelpSubMenu.getItems().add(new MenuItem("Mac OS"));

This code adds two submenus, softwareHelpSubMenu and hardwareHelpSubMenu, in ­MenuHelp. The menu items Unix, NT, and Win95 are added to softwareHelpSubMenu (see Figure 31.20c).

	3.2. Creating check-box menu items.

You can also add a CheckMenuItem to a Menu. CheckMenuItem is a subclass of MenuItem that adds a Boolean state to the MenuItem and displays a check when its state is true. You can click a menu item to turn it on or off. For example, the following statement adds the check-box menu item Check it (see Figure 31.21a).

 [image:]Figure 31.21

(a) A check box menu item lets you check or uncheck a menu item just like a check box. (b) You can use RadioMenuItem to choose among mutually exclusive menu choices. (c) You can set image icons and keyboard accelerators in menus.

menuHelp.getItems().add(new CheckMenuItem("Check it"));

	3.3. Creating radio menu items.

You can also add radio menu items to a menu, using the RadioMenuItem class. This is often useful when you have a group of mutually exclusive choices in the menu. For example, the following statements add a submenu named Color and a set of radio buttons for choosing a color (see Figure 31.21b):

RadioMenuItem rmiBlue, rmiYellow, rmiRed;
colorHelpSubMenu.getItems().add(rmiBlue =
 new RadioMenuItem("Blue"));
colorHelpSubMenu.getItems().add(rmiYellow =
 new RadioMenuItem("Yellow"));
colorHelpSubMenu.getItems().add(rmiRed =
 new RadioMenuItem("Red"));

ToggleGroup group = new ToggleGroup();
rmiBlue.setToggleGroup(group);
rmiYellow.setToggleGroup(group);
rmiRed.setToggleGroup(group);

	The menu items generate ActionEvent. To handle ActionEvent, implement the setOn­Action method.

	Image Icons and Keyboard Accelerators 

The Menu, CheckMenuItem, and RadioMenuItem are the subclasses of MenuItem. The MenuItem has a graphic property for specifying a node to be displayed in the menu item. Usually, the graphic is an image view. The classes Menu, MenuItem, CheckMenuItem, and RadioMenuItem have another constructor that you can use to specify a graphic. For example, the following code adds an image to the menu, menu item, check menu item, and radio menu item (see Figure 31.21c).

Menu menuFile = new Menu("File",
 new ImageView("image/usIcon.gif"));
MenuItem menuItemOpen = new MenuItem("New",
 new ImageView("image/new.gif"));
CheckMenuItem checkMenuItem = new CheckMenuItem("Check it",
 new ImageView("image/us.gif"));
RadioMenuItem rmiBlue = new RadioMenuItem("Blue",
 new ImageView("image/us.gif"));

	A key accelerator lets you select a menu item directly by pressing the CTRL and the accelerator key. For example, by using the following code, you can attach the accelerator key CTRL+N to the Open menu item:

menuItemOpen.setAccelerator(
 KeyCombination.keyCombination("Ctrl+O"));

31.6.2 Example: Using Menus

This section gives an example that creates a user interface to perform arithmetic. The interface contains labels and text fields for Number 1, Number 2, and Result. The Result text field displays the result of the arithmetic operation between Number 1 and Number 2. Figure 31.22 contains a sample run of the program.

 [image:]Figure 31.22

Arithmetic operations can be performed by clicking buttons or by choosing menu items from the Operation menu.

Here are the major steps in the program (Listing 31.9):

	Create a menu bar and add it into a VBox. Create the menus Operation and Exit, and add them to the menu bar. Add the menu items Add, Subtract, Multiply, and Divide under the Operation menu and add the menu item Close under the Exit menu.

	Create an HBox to hold labels and text fields and place it into the VBox.

	Create an HBox to hold the four buttons labeled Add, Subtract, Multiply, and Divide and place it into the VBox.

	Implement the handlers to process the events from the menu items and the buttons.

Listing 31.9 MenuDemo.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.control.Menu;
 7 import javafx.scene.control.MenuBar;
 8 import javafx.scene.control.MenuItem;
 9 import javafx.scene.control.TextField;
 10 import javafx.scene.input.KeyCombination;
 11 import javafx.scene.layout.HBox;
 12 import javafx.scene.layout.VBox;
 13 import javafx.stage.Stage;
 14
 15 public class MenuDemo extends Application {
 16 private TextField tfNumber1 = new TextField();
 17 private TextField tfNumber2 = new TextField();
 18 private TextField tfResult = new TextField();
 19
 20 @Override // Override the start method in the Application class
 21 public void start(Stage primaryStage) {
 22 MenuBar menuBar = new MenuBar();
 23
 24 Menu menuOperation = new Menu("Operation");
 25 Menu menuExit = new Menu("Exit");
 26 menuBar.getMenus().addAll(menuOperation, menuExit);
 27
 28 MenuItem menuItemAdd = new MenuItem("Add");
 29 MenuItem menuItemSubtract = new MenuItem("Subtract");
 30 MenuItem menuItemMultiply = new MenuItem("Multiply");
 31 MenuItem menuItemDivide = new MenuItem("Divide");
 32 menuOperation.getItems().addAll(menuItemAdd, menuItemSubtract,
 33 menuItemMultiply, menuItemDivide);
 34
 35 MenuItem menuItemClose = new MenuItem("Close");
 36 menuExit.getItems().add(menuItemClose);
 37
 38 menuItemAdd.setAccelerator(
 39 KeyCombination.keyCombination("Ctrl+A"));
 40 menuItemSubtract.setAccelerator(
 41 KeyCombination.keyCombination("Ctrl+S"));
 42 menuItemMultiply.setAccelerator(
 43 KeyCombination.keyCombination("Ctrl+M"));
 44 menuItemDivide.setAccelerator(
 45 KeyCombination.keyCombination("Ctrl+D"));
 46
 47 HBox hBox1 = new HBox(5);
 48 tfNumber1.setPrefColumnCount(2);
 49 tfNumber2.setPrefColumnCount(2);
 50 tfResult.setPrefColumnCount(2);
 51 hBox1.getChildren().addAll(new Label("Number 1:"), tfNumber1,
 52 new Label("Number 2:"), tfNumber2, new Label("Result:"),
 53 tfResult);
 54 hBox1.setAlignment(Pos.CENTER);
 55
 56 HBox hBox2 = new HBox(5);
 57 Button btAdd = new Button("Add");
 58 Button btSubtract = new Button("Subtract");
 59 Button btMultiply = new Button("Multiply");
 60 Button btDivide = new Button("Divide");
 61 hBox2.getChildren().addAll(btAdd, btSubtract, btMultiply, btDivide);
 62 hBox2.setAlignment(Pos.CENTER);
 63
 64 VBox vBox = new VBox(10);
 65 vBox.getChildren().addAll(menuBar, hBox1, hBox2);
 66 Scene scene = new Scene(vBox, 300, 250);
 67 primaryStage.setTitle("MenuDemo"); // Set the window title
 68 primaryStage.setScene(scene); // Place the scene in the window
 69 primaryStage.show(); // Display the window
 70
 71 // Handle menu actions
 72 menuItemAdd.setOnAction(e -> perform('+'));
 73 menuItemSubtract.setOnAction(e -> perform('−'));
 74 menuItemMultiply.setOnAction(e -> perform('*'));
 75 menuItemDivide.setOnAction(e -> perform('/'));
 76 menuItemClose.setOnAction(e -> System.exit(0));
 77
 78 // Handle button actions
 79 btAdd.setOnAction(e -> perform('+'));
 80 btSubtract.setOnAction(e -> perform('−'));
 81 btMultiply.setOnAction(e -> perform('*'));
 82 btDivide.setOnAction(e -> perform('/'));
 83 }
 84
 85 private void perform(char operator) {
 86 double number1 = Double.parseDouble(tfNumber1.getText());
 87 double number2 = Double.parseDouble(tfNumber2.getText());
 88
 89 double result = 0;
 90 switch (operator) {
 91 case '+': result = number1 + number2; break;
 92 case '−': result = number1 − number2; break;
 93 case '*': result = number1 * number2; break;
 94 case '/': result = number1 / number2; break;
 95 }
 96
 97 tfResult.setText(result + "");
 98 }
100 }

The program creates a menu bar (line 22), which holds two menus: menuOperation and menuExit (lines 24–36). The menuOperation contains four menu items for doing arithmetic: Add, Subtract, Multiply, and Divide. The menuExit contains the menu item Close for exiting the program. The menu items in the Operation menu are created with keyboard accelerators (lines 38–45).

The labels and text fields are placed in an HBox (lines 47–54) and four buttons are placed in another HBox (lines 56–62). The menu bar and these two HBoxes are added to a VBox (line 65), which is placed in the scene (line 66).

The user enters two numbers in the number fields. When an operation is chosen from the menu, its result, involving two numbers, is displayed in the Result field. The user can also click the buttons to perform the same operation.

The program sets actions for the menu items and buttons in lines 72–82. The private method perform(char operator) (lines 85–98) retrieves operands from the text fields in Number 1 and Number 2, applies the binary operator on the operands, and sets the result in the Result text field.

[image:]

	31.6.1 How do you create a menu bar, menu, menu item, check menu item, and radio menu item?

	31.6.2 How do you place a menu into a menu bar? How do you place a menu item, check menu item, and radio menu item into a menu?

	31.6.3 Can you place a menu item into another menu item or a check menu or a radio menu item into a menu item?

	31.6.4 How do you associate an image with a menu, menu item, check menu item, and radio menu item?

	31.6.5 How do you associate an accelerator CTRL+O with a menu item, check menu item, and radio menu item?

31.7 Context Menus

[image:]

	You can create context menus in JavaFX.

A context menu, also known as a popup menu, is like a regular menu, but does not have a menu bar and can float anywhere on the screen. Creating a context menu is similar to creating a regular menu. First, you create an instance of ContextMenu, and then you can add MenuItem, CheckMenuItem, and RadioMenuItem to the context menu. For example, the following code creates a ContextMenu, then adds MenuItems into it:

ContextMenu contextMenu = new ContextMenu();
ContextMenu.getItems().add(new MenuItem("New"));
ContextMenu.getItems().add(new MenuItem("Open"));

A regular menu is always added to a menu bar, but a context menu is associated with a parent node and is displayed using the show method in the ContextMenu class. You specify the parent node and the location of the context menu, using the coordinate system of the parent like this:

contextMenu.show(node, x, y);

Customarily, you display a context menu by pointing to a GUI component and clicking a certain mouse button, the so-called popup trigger. Popup triggers are system dependent. In Windows, the context menu is displayed when the right mouse button is released. In Motif, the context menu is displayed when the third mouse button is pressed and held down.

Listing 31.10 gives an example that creates a pane. When the mouse points to the pane, clicking a mouse button displays a context menu, as shown in Figure 31.23.

 [image:]Figure 31.23

A context menu is displayed when the popup trigger is issued on the pane.

Here are the major steps in the program (Listing 31.10):

	Create a context menu using ContextMenu. Create menu items for New, Open, Print, and Exit using MenuItem.

	Add the menu items into the context menu.

	Create a pane and place it in the scene.

	Implement the handler to process the events from the menu items.

	Implement the mousePressed handler to display the context menu.

Listing 31.10 ContextMenuDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.ContextMenu;
 4 import javafx.scene.control.MenuItem;
 5 import javafx.scene.image.ImageView;
 6 import javafx.scene.layout.Pane;
 7 import javafx.stage.Stage;
 8
 9 public class ContextMenuDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 ContextMenu contextMenu = new ContextMenu();
13 MenuItem menuItemNew = new MenuItem("New",
14 new ImageView("image/new.gif"));
15 MenuItem menuItemOpen = new MenuItem("Open",
16 new ImageView("image/open.gif"));
17 MenuItem menuItemPrint = new MenuItem("Print",
18 new ImageView("image/print.gif"));
19 MenuItem menuItemExit = new MenuItem("Exit");
20 contextMenu.getItems().addAll(menuItemNew, menuItemOpen,
21 menuItemPrint, menuItemExit);
22
23 Pane pane = new Pane();
24 Scene scene = new Scene(pane, 300, 250);
25 primaryStage.setTitle("ContextMenuDemo"); // Set the window title
26 primaryStage.setScene(scene); // Place the scene in the window
27 primaryStage.show(); // Display the window
28
29 pane.setOnMousePressed(
30 e -> contextMenu.show(pane, e.getScreenX(), e.getScreenY()));
31
32 menuItemNew.setOnAction(e -> System.out.println("New"));
33 menuItemOpen.setOnAction(e -> System.out.println("Open"));
34 menuItemPrint.setOnAction(e -> System.out.println("Print"));
35 menuItemExit.setOnAction(e -> System.exit(0));
36 }
37 }

The process of creating context menus is similar to the process for creating regular menus. To create a context menu, create a ContextMenu as the basis (line 12) and add MenuItems to it (lines 13–21).

To show a context menu, use the show method by specifying the parent node and the location for the context menu (lines 29 and 30). The show method is invoked when the context menu is triggered by a mouse click on the pane (line 30).

[image:]

	31.7.1 How do you create a context menu? How do you add menu items, check menu items, and radio menu items into a context menu?

	31.7.2 How do you show a context menu?

31.8 SplitPane

[image:]

	The SplitPane class can be used to display multiple panes and allow the user to adjust the size of the panes.

The SplitPane is a control that contains two components with a separate bar known as a divider, as shown in Figure 31.24.

 [image: ay. A split pane demo screenshot shows 2 bars divide a pane horizontally into side 1, side 2, side 3. b. A split pane demo screenshot shows 2 bars divide a pane vertically into side 1, side 2, side 3.]Figure 31.24

SplitPane divides a container into two parts.

The two sides separated by the divider can appear in horizontal or vertical orientation. The divider separating two sides can be dragged to change the amount of space occupied by each side. Figure 31.25 shows the frequently used properties, constructors, and methods in SplitPane.

[image: Program code. In the code, the words in the variable names are merged. Line 1, indented once: j ay v ay f x, period, scene, period, control, period, control. Line 2, indented once: j ay v ay x, period, scene, period, control, period, split pane. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the u m l diagram for brevity. Line 3: minus, orientation, colon, object property, < orientation >. Note: It specifies the orientation of the pane. Line 4: + split pane, left parenthesis, right parenthesis. Note: It constructs a default split pane with horizontal orientation. Line 5: + get items, left parenthesis, right parenthesis, colon, observable, list < node >. Note: It returns a list of items in the pane.]
Figure 31.25

SplitPane provides methods to specify the properties of a split pane and for manipulating the components in a split pane.

Listing 31.11 gives an example that uses radio buttons to let the user select a country and displays the country’s flag and description in separate sides, as shown in Figure 31.26. The description of the currently selected layout manager is displayed in a text area. The radio buttons, buttons, and text area are placed in two split panes.

 [image: Left: A split pane demo screenshot shows u s selected, u k, c ay radio buttons on the left; the u s flag top right; and description for u s below right. Right: A split pane demo screenshot shows u s, u k selected, c ay radio buttons on the left; the u k flag top right; and description for u k below right.]Figure 31.26

You can adjust the component size in the split panes.

Listing 31.11 SplitPaneDemo.java

 1 import javafx.application.Application;
 2 import javafx.geometry.Orientation;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.RadioButton;
 5 import javafx.scene.control.ScrollPane;
 6 import javafx.scene.control.SplitPane;
 7 import javafx.scene.control.TextArea;
 8 import javafx.scene.control.ToggleGroup;
 9 import javafx.scene.image.Image;
10 import javafx.scene.image.ImageView;
11 import javafx.scene.layout.StackPane;
12 import javafx.scene.layout.VBox;
13 import javafx.stage.Stage;
14
15 public class SplitPaneDemo extends Application {
16 private Image usImage = new Image(
17 "http://www.cs.armstrong.edu/liang/common/image/us.gif");
18 private Image ukImage = new Image(
19 "http://www.cs.armstrong.edu/liang/common/image/uk.gif");
20 private Image caImage = new Image(
21 "http://www.cs.armstrong.edu/liang/common/image/ca.gif");
22 private String usDescription = "Description for US ...";
23 private String ukDescription = "Description for UK ...";
24 private String caDescription = "Description for CA ...";
25
26 @Override // Override the start method in the Application class
27 public void start(Stage primaryStage) {
28 VBox vBox = new VBox(10);
29 RadioButton rbUS = new RadioButton("US");
30 RadioButton rbUK = new RadioButton("UK");
31 RadioButton rbCA = new RadioButton("CA");
32 vBox.getChildren().addAll(rbUS, rbUK, rbCA);
33
34 SplitPane content = new SplitPane();
35 content.setOrientation(Orientation.VERTICAL);
36 ImageView imageView = new ImageView(usImage);
37 StackPane imagePane = new StackPane();
38 imagePane.getChildren().add(imageView);
39 TextArea taDescription = new TextArea();
40 taDescription.setText(usDescription);
41 content.getItems().addAll(
42 imagePane, new ScrollPane(taDescription));
43
44 SplitPane sp = new SplitPane();
45 sp.getItems().addAll(vBox, content);
46
47 Scene scene = new Scene(sp, 300, 250);
48 primaryStage.setTitle("SplitPaneDemo"); // Set the window title
49 primaryStage.setScene(scene); // Place the scene in the window
50 primaryStage.show(); // Display the window
51
52 // Group radio buttons
53 ToggleGroup group = new ToggleGroup();
54 rbUS.setToggleGroup(group);
55 rbUK.setToggleGroup(group);
56 rbCA.setToggleGroup(group);
57
58 rbUS.setSelected(true);
59 rbUS.setOnAction(e -> {
60 imageView.setImage(usImage);
61 taDescription.setText(usDescription);
62 });
63
64 rbUK.setOnAction(e -> {
65 imageView.setImage(ukImage);
66 taDescription.setText(ukDescription);
67 });
68
69 rbCA.setOnAction(e -> {
70 imageView.setImage(caImage);
71 taDescription.setText(caDescription);
72 });
73 }
74 }

The program places three radio buttons in a VBox (lines 28–32) and creates a vertical split pane for holding an image view and a text area (lines 34–42). Split panes can be embedded. The program creates a horizontal split pane and places the VBox and the vertical split pane into it (lines 44 and 45).

Adding a split pane to an existing split pane results in three split panes. The program creates two split panes (lines 34, 42) to hold a panel for radio buttons, a panel for buttons, and a scroll pane.

The program groups radio buttons (lines 53–56) and processes the action for radio buttons (lines 59–72).

[image:]

	31.8.1 How do you create a horizontal SplitPane? How do you create a vertical SplitPane?

	31.8.2 How do you add items into a SplitPane? Can you add a SplitPane to another SplitPane?

31.9 TabPane

[image:]

	The TabPane class can be used to display multiple panes with tabs.

TabPane is a useful control that provides a set of mutually exclusive tabs, as shown in Figure 31.27. You can switch between a group of tabs. Only one tab is visible at a time. A Tab can be added to a TabPane. Tabs in a TabPane can be placed in the position top, left, bottom, or right.

 [image: Left: A display figure screenshot shows line x selected, rectangle, circle, ellipse tabs and a line. Right: A display figure screenshot shows line, rectangle, circle x selected, ellipse tabs and a filled circle.]Figure 31.27

TabPane holds a group of tabs.

Each tab represents a single page. Tabs are defined in the Tab class. Tabs can contain any Node such as a pane, a shape, or a control. A tab can contain another pane. Therefore, you can create a multilayered tab pane. Figures 31.28 and 31.29 show the frequently used properties, constructors, and methods in TabPane and Tab.

[image: Program code. In the code, the words in the variable names are merged. Line 1: j ay v ay f x, period, scene, period, control, period, control. Line 2: j ay v ay f x, period, scene, period, control, period, tab pane. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the u m l diagram for brevity. Line 3: minus, side, colon, object property, < side >. Note: The position of the tab in the tab pane. Possible values are as follows: side, period, top, side, period, bottom, side, period, left, and side, period, right, default, side, period, top. Line 4: blank. Line 5: blank. Line 6: + tab pane, left parenthesis, right parenthesis. Note: It creates a default tab pane. Line 7: + get tabs, left parenthesis, right parenthesis, colon, observable list, < tab >. Note: It returns a list of tab s in this tab pane.]
Figure 31.28

TabPane displays and manages the tabs.

[image: Program code. In the code, the words in the variable names are merged. Line 1: j ay v ay, period, lang, period, object. Line 2: j ay v ay f x, period, scene, period, control, period, tab. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the UML diagram for brevity. Line 3: minus, content, colon, object property, < node >. Note: The content associated with the tab. Line 4: minus, context menu, colon. Line 5, indented once: object property, < context menu >. Note: The context menu associated with the tab. Line 6: minus, graphics, colon, object property, < node >. Note: The graphics in the tab. Line 7: minus, i d, colon, string property. Note: The i d for the tab. Line 8: minus, text, colon, string property. Note: The text shown in the tab. Line 9: minus, tool tip, colon, string property. Note: The tooltip associated with the tab. Line 10: + tab, left parenthesis, right parenthesis. Note: It constructs a default tab. Line 11: + tab, left parenthesis, text, colon, string, right parenthesis. Note: It constructs a tab with the specified string.]
Figure 31.29

Tab contains a node.

Listing 31.12 gives an example that uses a tab pane with four tabs to display four types of figures: line, rectangle, rounded rectangle, and oval. You can select a figure to display by clicking the corresponding tab, as shown in Figure 31.27.

Listing 31.12 TabPaneDemo.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Tab;
 4 import javafx.scene.control.TabPane;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.scene.shape.Circle;
 7 import javafx.scene.shape.Ellipse;
 8 import javafx.scene.shape.Line;
 9 import javafx.scene.shape.Rectangle;
10 import javafx.stage.Stage;
11
12 public class TabPaneDemo extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 TabPane tabPane = new TabPane();
16 Tab tab1 = new Tab("Line");
17 StackPane pane1 = new StackPane();
18 pane1.getChildren().add(new Line(10, 10, 80, 80));
19 tab1.setContent(pane1);
20 Tab tab2 = new Tab("Rectangle");
21 tab2.setContent(new Rectangle(10, 10, 200, 200));
22 Tab tab3 = new Tab("Circle");
23 tab3.setContent(new Circle(50, 50, 20));
24 Tab tab4 = new Tab("Ellipse");
25 tab4.setContent(new Ellipse(10, 10, 100, 80));
26 tabPane.getTabs().addAll(tab1, tab2, tab3, tab4);
27
28 Scene scene = new Scene(tabPane, 300, 250);
29 primaryStage.setTitle("DisplayFigure"); // Set the window title
30 primaryStage.setScene(scene); // Place the scene in the window
31 primaryStage.show(); // Display the window
32 }
33 }

The program creates a tab pane (line 15) and four tabs (lines 16, 20, 22, and 24). A stack pane is created to hold a line (line 18) and placed into tab1 (line 19). A rectangle, circle, and oval are created and placed into tab2, tab3, and tab4. Note the line is centered in tab1 because it is placed in a stack pane. The other shapes are directly placed into the tab. They are displayed at the upper left corner of the tab.

By default, the tabs are placed at the top of the tab pane. You can use the setSide method to change its location.

[image:]

	31.9.1 How do you create a tab pane? How do you create a tab? How do you add a tab to a tab pane?

	31.9.2 How do you place the tabs on the left of the tab pane?

	31.9.3 Can a tab have a text as well as an image? Write the code to set an image for tab1 in Listing 31.12 .

31.10 TableView

[image:]

	You can display tables using the TableView class.

TableView is a control that displays data in rows and columns in a two-dimensional grid, as shown in Figure 31.30.

 [image: A table view demo screenshot shows country, capital, population in million, is democratic columns: U S Ay, Washington D C, 280.0, true; Canada, Ottawa, 32.0, true; United Kingdom, London, 60.0, true, Germany, Berlin, 83.0, true; France, Paris, 60.0, true.]Figure 31.30

TableView displays data in a table.

TableView, TableColumn, and TableCell are used to display and manipulate a table. TableView displays a table. TableColumn defines the columns in a table. TableCell represents a cell in the table. Creating a TableView is a multistep process. First, you need to create an instance of TableView and associate data with the TableView. Second, you need to create columns using the TableColumn class and set a column cell value factory to specify how to populate all cells within a single TableColumn.

Listing 31.13 gives a simple example to demonstrate using TableView and TableColumn. A sample run of the program is shown in Figure 31.31.

[image: Program code. In the code, the words in the variable names are merged. Line 1: j ay v ay f x, period, scene, period, control, period, control. Line 2: j ay v ay f x, period, scene, period, control, period, table view < s >. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the u m l diagram for brevity. Line 3: minus, editable, colon, boolean property. Note: It specifies whether this table view is editable. For a cell to be editable, table view, table column, and table cell for the cell should all be true. Line 4: blank. Line 5: blank. Line 6: minus, items, colon. Line 7, indented once: object property, < observable list, < s > >. Note: The data model for the table viee. Line 8: minus, place holder, colon, object property, < node >. Note: This node is shown when table has no contents. Line 9: minus, selection model, colon, object property, <<. Line 10, indented once: table view selection model, < s > >. Note: It specifies single or multiple selections. Line 11: + table view, left parenthesis, right parenthesis. Note: It creates a default table view with no content. Line 12: + table view, left parenthesis, items, colon, observable list, < s >, right parenthesis. Note: It creates a default table view with the specified content.]
Figure 31.31

TableView displays a table.

Listing 31.13 TableViewDemo.java

 1 import javafx.application.Application;
 2 import javafx.beans.property.SimpleBooleanProperty;
 3 import javafx.beans.property.SimpleDoubleProperty;
 4 import javafx.beans.property.SimpleStringProperty;
 5 import javafx.collections.FXCollections;
 6 import javafx.collections.ObservableList;
 7 import javafx.scene.Scene;
 8 import javafx.scene.control.TableColumn;
 9 import javafx.scene.control.TableView;
 10 import javafx.scene.control.cell.PropertyValueFactory;
 11 import javafx.scene.layout.Pane;
 12 import javafx.stage.Stage;
 13
 14 public class TableViewDemo extends Application {
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
 17 TableView<Country> tableView = new TableView<>();
 18 ObservableList<Country> data =
 19 FXCollections.observableArrayList(
 20 new Country("USA", "Washington DC", 280, true),
 21 new Country("Canada", "Ottawa", 32, true),
 22 new Country("United Kingdom", "London", 60, true),
 23 new Country("Germany", "Berlin", 83, true),
 24 new Country("France", "Paris", 60, true));
 25 tableView.setItems(data);
 26
 27 TableColumn countryColumn = new TableColumn("Country");
 28 countryColumn.setMinWidth(100);
 29 countryColumn.setCellValueFactory(
 30 new PropertyValueFactory<Country, String>("country"));
 31
 32 TableColumn capitalColumn = new TableColumn("Capital");
 33 capitalColumn.setMinWidth(100);
 34 capitalColumn.setCellValueFactory(
 35 new PropertyValueFactory<Country, String>("capital"));
 36
 37 TableColumn populationColumn =
 38 new TableColumn("Population (million)");
 39 populationColumn.setMinWidth(200);
 40 populationColumn.setCellValueFactory(
 41 new PropertyValueFactory<Country, Double>("population"));
 42
 43 TableColumn democraticColumn =
 44 new TableColumn("Is Democratic?");
 45 democraticColumn.setMinWidth(200);
 46 democraticColumn.setCellValueFactory(
 47 new PropertyValueFactory<Country, Boolean>("democratic"));
 48
 49 tableView.getColumns().addAll(countryColumn, capitalColumn,
 50 populationColumn, democraticColumn);
 51
 52 Pane pane = new Pane();
 53 pane.getChildren().add(tableView);
 54 Scene scene = new Scene(pane, 300, 250);
 55 primaryStage.setTitle("TableViewDemo"); // Set the window title
 56 primaryStage.setScene(scene); // Place the scene in t he window
 57 primaryStage.show(); // Display the window
 58 }
 59
 60 public static class Country {
 61 private final SimpleStringProperty country;
 62 private final SimpleStringProperty capital;
 63 private final SimpleDoubleProperty population;
 64 private final SimpleBooleanProperty democratic;
 65
 66 private Country(String country, String capital,
 67 double population, boolean democratic) {
 68 this.country = new SimpleStringProperty(country);
 69 this.capital = new SimpleStringProperty(capital);
 70 this.population = new SimpleDoubleProperty(population);
 71 this.democratic = new SimpleBooleanProperty(democratic);
 72 }
 73
 74 public String getCountry() {
 75 return country.get();
 76 }
 77
 78 public void setCountry(String country) {
 79 this.country.set(country);
 80 }
 81
 82 public String getCapital() {
 83 return capital.get();
 84 }
 85
 86 public void setCapital(String capital) {
 87 this.capital.set(capital);
 88 }
 89
 90 public double getPopulation() {
 91 return population.get();
 92 }
 93
 94 public void setPopulation(double population) {
 95 this.population.set(population);
 96 }
 97
 98 public boolean isDemocratic() {
 99 return democratic.get();
100 }
101
102 public void setDemocratic(boolean democratic) {
103 this.democratic.set(democratic);
104 }
105 }
106 }

The program creates a TableView (line 17). The TableView class is a generic class whose concrete type is Country. Therefore, this TableView is for displaying Country. The table data is an ObservableList<Country>. The program creates the list (lines 18–24) and associates the list with the TableView (line 25).

The program creates a TableColumn for each column in the table (lines 27–47). A PropertyValueFactory object is created and set for each column (line 30). This object is used to populate the data in the column. The PropertyValueFactory<S, T> class is a generic class. S is for the class displayed in the TableView and T is the class for the values in the column. The PropertyValueFactory object associates a property in class S with a column.

When you create a table in a JavaFX application, it is a best practice to define the data model in a class. The Country class defines the data for TableView. Each property in the class defines a column in the table. This property should be defined as binding property with the getter and setter methods for the value.

The program adds the columns into the TableView (lines 49 and 50), adds the TableView in a pane (line 53), and places the pane in the scene (line 54). Note line 31 can be simplified using the following code:

new PropertyValueFactory<>("country");

From this example, you see how to display data in a table using the TableView and TableColumn classes. The frequently used properties and methods for the TableView and TableColumn classes are given in Figures 31.32 and 31.33.

[image: A U M L class diagram for java dot lang dot object.]
Figure 31.32

TableColumn defines a column in the TableView.

Description

 [image: A table view demo screenshot shows latitude and longitude subcolumns added in location.]Figure 31.33

You can add subcolumns in a column.

You can create nested columns. For example, the following code creates two subcolumns under Location, as shown in Figures 31.33.

TableColumn locationColumn = new TableColumn("Location");
locationColumn.getColumns().addAll(new TableColumn("latitude"),
 new TableColumn("longitude"));

The TableView data model is an observable list. When data is changed, the change is automatically shown in the table. Listing 31.14 gives an example that lets the user add new rows to the table.

Listing 31.14 AddNewRowDemo.java

 1 import javafx.application.Application;
 2 import javafx.beans.property.SimpleBooleanProperty;
 3 import javafx.beans.property.SimpleDoubleProperty;
 4 import javafx.beans.property.SimpleStringProperty;
 5 import javafx.collections.FXCollections;
 6 import javafx.collections.ObservableList;
 7 import javafx.scene.Scene;
 8 import javafx.scene.control.Button;
 9 import javafx.scene.control.CheckBox;
 10 import javafx.scene.control.Label;
 11 import javafx.scene.control.TableColumn;
 12 import javafx.scene.control.TableView;
 13 import javafx.scene.control.TextField;
 14 import javafx.scene.control.cell.PropertyValueFactory;
 15 import javafx.scene.layout.BorderPane;
 16 import javafx.scene.layout.FlowPane;
 17 import javafx.stage.Stage;
 18
 19 public class AddNewRowDemo extends Application {
 20 @Override // Override the start method in the Application class
 21 public void start(Stage primaryStage) {
 22 TableView<Country> tableView = new TableView<>();
 23 ObservableList<Country> data =
 24 FXCollections.observableArrayList(
 25 new Country("USA", "Washington DC", 280, true),
 26 new Country("Canada", "Ottawa", 32, true),
 27 new Country("United Kingdom", "London", 60, true),
 28 new Country("Germany", "Berlin", 83, true),
 29 new Country("France", "Paris", 60, true));
 30 tableView.setItems(data);
 31
 32 TableColumn countryColumn = new TableColumn("Country");
 33 countryColumn.setMinWidth(100);
 34 countryColumn.setCellValueFactory(
 35 new PropertyValueFactory<Country, String>("country"));
 36
 37 TableColumn capitalColumn = new TableColumn("Capital");
 38 capitalColumn.setMinWidth(100);
 39 capitalColumn.setCellValueFactory(
 40 new PropertyValueFactory<Country, String>("capital"));
 41
 42 TableColumn populationColumn =
 43 new TableColumn("Population (million)");
 44 populationColumn.setMinWidth(100);
 45 populationColumn.setCellValueFactory(
 46 new PropertyValueFactory<Country, Double>("population"));
 47
 48 TableColumn democraticColumn =
 49 new TableColumn("Is Democratic?");
 50 democraticColumn.setMinWidth(100);
 51 democraticColumn.setCellValueFactory(
 52 new PropertyValueFactory<Country, Boolean>("democratic"));
 53
 54 tableView.getColumns().addAll(countryColumn, capitalColumn,
 55 populationColumn, democraticColumn);
 56
 57 FlowPane flowPane = new FlowPane(3, 3);
 58 TextField tfCountry = new TextField();
 59 TextField tfCapital = new TextField();
 60 TextField tfPopulation = new TextField();
 61 CheckBox chkDemocratic = new CheckBox("Is democratic?");
 62 Button btAddRow = new Button("Add new row");
 63 tfCountry.setPrefColumnCount(5);
 64 tfCapital.setPrefColumnCount(5);
 65 tfPopulation.setPrefColumnCount(5);
 66 flowPane.getChildren().addAll(new Label("Country: "),
 67 tfCountry, new Label("Capital"), tfCapital,
 68 new Label("Population"), tfPopulation, chkDemocratic,
 69 btAddRow);
 70
 71 btAddRow.setOnAction(e -> {
 72 data.add(new Country(tfCountry.getText(), tfCapital.getText(),
 73 Double.parseDouble(tfPopulation.getText()),
 74 chkDemocratic.isSelected()));
 75 tfCountry.clear();
 76 tfCapital.clear();
 77 tfPopulation.clear();
 78 });
 79
 80 BorderPane pane = new BorderPane();
 81 pane.setCenter(tableView);
 82 pane.setBottom(flowPane);
 83
 84 Scene scene = new Scene(pane, 500, 250);
 85 primaryStage.setTitle("AddNewRowDemo"); // Set the window title
 86 primaryStage.setScene(scene); // Place the scene in the window
 87 primaryStage.show(); // Display the window
 88 }
 89
 90 public static class Country {
 91 private final SimpleStringProperty country;
 92 private final SimpleStringProperty capital;
 93 private final SimpleDoubleProperty population;
 94 private final SimpleBooleanProperty democratic;
 95
 96 private Country(String country, String capital,
 97 double population, boolean democratic) {
 98 this.country = new SimpleStringProperty(country);
 99 this.capital = new SimpleStringProperty(capital);
100 this.population = new SimpleDoubleProperty(population);
101 this.democratic = new SimpleBooleanProperty(democratic);
102 }
103
104 public String getCountry() {
105 return country.get();
106 }
107
108 public void setCountry(String country) {
109 this.country.set(country);
110 }
111
112 public String getCapital() {
113 return capital.get();
114 }
115
116 public void setCapital(String capital) {
117 this.capital.set(capital);
118 }
119
120 public double getPopulation() {
121 return population.get();
122 }
123
124 public void setPopulation(double population) {
125 this.population.set(population);
126 }
127
128 public boolean isDemocratic() {
129 return democratic.get();
130 }
131
132 public void setDemocratic(boolean democratic) {
133 this.democratic.set(democratic);
134 }
135 }
136 }

The program is the same in Listing 31.13 except that a new code is added to let the user enter a new row (lines 57–82). The user enters the new row from the text fields and a check box and presses the Add New Row button to add a new row to the data. Since data is an observable list, the change in data is automatically updated in the table.

As shown in Figure 31.34a, a new country information is entered in the text fields. After clicking the Add New Row button, the new country is displayed in the table view.

 [image: a. An add new row demo screenshot shows a new country information entered in the text fields: country, Norway; capital, Oslo; population, 4.9; is democratic, true.]Figure 31.34

Change in the table data model is automatically displayed in the table view.

TableView not only displays data, but also allows data to be edited. To enable data editing in the table, write the code as follows:

	Set the TableView’s editable to true.

	Set the column’s cell factory to a text field table cell.

	Implement the column’s setOnEditCommit method to assign the edited value to the data model.

Here is the example of enabling editing for the countryColumn.

tableView.setEditable(true);
countryColumn.setCellFactory(TextFieldTableCell.forTableColumn());
countryColumn.setOnEditCommit(
 new EventHandler<CellEditEvent<Country, String>>() {
 @Override
 public void handle(CellEditEvent<Country, String> t) {
 t.getTableView().getItems().get(
 t.getTablePosition().getRow())
 .setCountry(t.getNewValue());
 }
 }
);

[image:]

	31.10.1 How do you create a table view? How do you create a table column? How do you add a table column to a table view?

	31.10.2 What is the data type for a TableView’s data model? How do you associate a data model with a TableView?

	31.10.3 How do you set a cell value factory for a TableColumn?

	31.10.4 How do you set an image in a table column header?

31.11 Developing JavaFX Programs Using FXML

[image:]

	You can create JavaFX user interfaces using FXML scripts.

There are two ways to develop JavaFX applications. One way is to write everything in Java source code as you have done so far. The other way is to use FXML. FXML is an XML-based script language for describing the user interface. Using FXML enables you to separate user interface from the logic of the Java code. JavaFX Scene Builder is a visual design tool for creating the user interface without manually writing the FXML script. You drag and drop the UI components to the content pane and set properties for the components in the Inspector. The Scene Builder automatically generates the FXML scripts for the user interface. This section demonstrates how to use the Scene Builder to create JavaFX applications.

[image:]NOTE

It is important that you first learn how to write the JavaFX code without using FXML to grasp the fundamentals of JavaFX programming before learning FXML. Once you understand the basics of JavaFX, it is easy to create JavaFX programs using FXML. For this reason, FXML is introduced after you have learned the basics of JavaFX programming.

31.11.1 Installing JavaFX Scene Builder

You can use the JavaFX Scene Builder standalone or with an IDE such as NetBeans or Eclipse. This section demonstrates using the JavaFX Scene Builder with NetBeans. You can download the latest version of Scene Builder from http://gluonhq.com/open-source/scene-builder/.

31.11.2 Creating a JavaFX FXML Project

To use JavaFX FXML, you need to create a JavaFX FXML in NetBeans. Here are the steps of creating a JavaFX FXML project:

	Choose File, New Project to display the New Project dialog box, as shown in Figure 31.35.

 [image:]Figure 31.35 You can choose JavaFX in the Categories and JavaFX FXML Application in the Project to create a FXML project.

	Choose JavaFX in the Categories and JavaFX FXML Application in the Projects. Click Next to display the New JavaFX Application dialog box, as shown in Figure 31.36.

 [image:]Figure 31.36 You can enter project information in the New JavaFX Application dialog.

	Enter Calculator as the project name and click Finish to create the project. You will see the project created as shown in Figure 31.37.

 [image:]Figure 31.37 A FXML project is created.

Three files, Calculator.java, FXMLDocument.fxml, and FXMLDocumentController.java, are created in the project. Their source codes are shown in Listings 31.15, 31.16, and 31.17. From the perspective of the MVC architecture, these three files correspond to model, view, and controller. You can define data model in the Calculator.java class. The .fxml file describes the user interface. The controller file defines the actions for processing the events for the user interface.

Listing 31.15 Calculator.java

 1 package calculator;
 2
 3 import javafx.application.Application;
 4 import javafx.fxml.FXMLLoader;
 5 import javafx.scene.Parent;
 6 import javafx.scene.Scene;
 7 import javafx.stage.Stage;
 8
 9 public class Calculator extends Application {
10 @Override
11 public void start(Stage stage) throws Exception {
12 Parent root =
13 FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));
14 Scene scene = new Scene(root);
15 stage.setScene(scene);
16 stage.show();
17 }
18
19 /**
20 * @param args the command line arguments
21 */
22 public static void main(String[] args) {
23 launch(args);
24 }
25 }

Listing 31.16 FXMLDocument.fxml

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="320"
 xmlns:fx="http://javafx.com/fxml/1"
	 fx:controller="calculator.FXMLDocumentController">
 <children>
 <Button layoutX="126" layoutY="90" text="Click Me!"
 onAction="#handleButtonAction" fx:id="button" />
 <Label layoutX="126" layoutY="120" minHeight="16" minWidth="69"
 fx:id="label" />
 </children>
</AnchorPane>

Listing 31.17 FXMLDocumentController.java

package calculator;
import java.net.URL;
import java.util.ResourceBundle;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;

public class FXMLDocumentController implements Initializable {
 @FXML
 private Label label;

 @FXML
 private void handleButtonAction(ActionEvent event) {
 System.out.println("You clicked me!");
 label.setText("Hello World!");
 }

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 // TODO
 }
}

31.11.3 Creating User Interfaces

We now turn our attention to developing a simple calculator as shown in Figure 31.38. The Calculator program enables the user to enter numbers and perform addition, subtraction, ­multiplication, and division.

 [image: A screenshot shows number 1 box showing 3, number 2 box showing 6, result box showing 0.5, add, subtract, multiply, divide buttons; divide is selected.]Figure 31.38 The application performs arithmetic operations.

When you create a JavaFX FXML project, NetBeans creates a default .fxml file that contains the contents for a simple sample user interface. To view the user interface, double-click the .fxml file to open the Scene Builder, as shown in Figure 31.39. Note NetBeans can automatically detect the Scene Builder after it is installed on your machine.

 [image:]Figure 31.39 Double-click the .fxml file to open the Scene Builder.

To start a new user interface, delete the default user interface in the .fxml file from the content pane, as shown in Figure 31.41. Here are the steps to create a new user interface:

	(Optional) On some systems, the components in the Library pane are not visible by sections. Click the Library icon to open the context menu as shown in Figure 31.40 and choose View as List.

 [image:]Figure 31.40 You can open the Library pane by clicking the Library icon and choose View as List.

 [image:]Figure 31.41 The UI is empty after deleting the default button in the pane.

	Drag a BorderPane into the user interface and drag an HBox to the center of the BorderPane and another HBox to the bottom of the BorderPane. Set the alignment of both HBox to CENTER as shown in Figure 31.42. Set the Spacing property in the Layout section of the Inspector to 5. When you select a component in the visual layout, the properties of the component are displayed in the Inspector pane, where you can set the properties.

 [image:]Figure 31.42 A BorderPane is dropped to the UI and an HBox is placed at the bottom of the BorderPane.

	Drag and drop a Label, a TextField, a Label, a TextField, a Label, and a TextField and change the label’s text to Number 1, Number 2, and Result, as shown in Figure 31.43. Set the Pref Column Count property for each text field to 2 in the Layout section of the Inspector. In the Code section of the Inspector, set the id for the text fields to tfNumber1, tfNumber2, and tfResult, as shown in Figure 31.44. These ids are useful to reference the text fields and obtain their values in the controller.

 [image:]Figure 31.43 The labels and text fields are dropped to the UI.

 [image:]Figure 31.44 Set the appropriate id for the text fields.

	Drag and drop four Buttons to the second HBox and set their text property to Add, Subtract, Multiply, and Divide, as shown in Figure 31.45.

 [image:]Figure 31.45 The buttons are dropped to the HBox.

After you create and make changes to the user interface in the content pane, you need to save the changes by choosing File, Save from the menu bar in the Scene Builder. The .fxml file is updated and synchronized with the changes in the content pane. You can view the contents in the .fxml file from NetBeans, as shown in Figure 31.46.

 [image:]Figure 31.46 You can view the contents of the FXML file.

31.11.4 Handling Events in the Controller

The .fxml file describes the user interface. You write the code to implement the logic in the controller file, as shown in Listing 31.18.

Listing 31.18 FXMLDocumentController.java

 1 package calculator;
 2
 3 import javafx.event.ActionEvent;
 4 import javafx.fxml.FXML;
 5 import javafx.scene.control.TextField;
 6
 7 public class FXMLDocumentController {
 8 @FXML
 9 private TextField tfNumber1, tfNumber2, tfResult;
10
11 @FXML
12 private void addButtonAction(ActionEvent event) {
13 tfResult.setText(getResult('+') + "");
14 }
15
16 @FXML
17 private void subtractButtonAction(ActionEvent event) {
18 tfResult.setText(getResult('−') + "");
19 }
20
21 @FXML
22 private void multiplyButtonAction(ActionEvent event) {
23 tfResult.setText(getResult('*') + "");
24 }
25
26 @FXML
27 private void divideButtonAction(ActionEvent event) {
28 tfResult.setText(getResult('/') + "");
29 }
30
31 private double getResult(char op) {
32 double number1 = Double.parseDouble(tfNumber1.getText());
33 double number2 = Double.parseDouble(tfNumber2.getText());
34 switch (op) {
35 case '+': return number1 + number2;
36 case '−': return number1 − number2;
37 case '*': return number1 * number2;
38 case '/': return number1 / number2;
39 }
40 return Double.NaN;
41 }
42 }

The controller class declares three TextFields, tfNumber1, tfNumber2, and tfResult (line 9). The @FXML annotation denotes that these data fields are linked to the text fields in the user interface. Recall in the user interface, we set the id for the three text fields as tfNumber1, tfNumber2, and tfResult.

The codes for handling the events from the buttons are defined in the methods addButtonAction, subtractButtonAction, multiplyButtonAction, and divideButtonAction (lines 11–29). The @FXML annotation is used to denote that these methods will be tied to the button actions in the view.

Through the @FXML annotation, the data fields and methods in the controller are linked to the components and actions defined in the .fxml file.

31.11.5 Linking View with Controller

You can now link the actions from the components in the view with the processing methods in the controller. Here are the steps to accomplish it:

	Add the following attribute in the <BorderPane> tag for using a controller with the view.

fx:controller="calculator.FXMLDocumentController"

	Double-click the .fxml file in the project to display the visual layout window. In the Inspector for the Add button, choose addButtonAction from a list of action processing methods, as shown in Figure 31.47. The complete code for the .fxml file is shown in Listing 31.19.

 [image:]Figure 31.47 Choosing addButtonAction to generate the code for handling action for the Add button.

Listing 31.19 FXMLDocument.fxml

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<BorderPane maxHeight="200" maxWidth="600" minHeight="200"
 minWidth="600" prefHeight="400.0" prefWidth="600.0"
 xmlns="http://javafx.com/javafx/8"
 xmlns:fx="http://javafx.com/fxml/1"
 fx:controller="calculator.FXMLDocumentController">
 <bottom>
 <HBox alignment="CENTER" prefHeight="100.0" prefWidth="200.0"
 spacing="5.0" BorderPane.alignment="CENTER">
 <children>
 <Button mnemonicParsing="false"
 onAction="#addButtonAction" text="Add" />
 <Button mnemonicParsing="false"
 onAction="#subtractButtonAction" text="Subtract" />
 <Button mnemonicParsing="false"
 onAction="#multiplyButtonAction" text="Multiply" />
 <Button mnemonicParsing="false"
 onAction="#divideButtonAction" text="Divide" />
 </children>
 </HBox>
 </bottom>
 <center>
 <HBox alignment="CENTER" prefHeight="232.0" prefWidth="572.0"
 spacing="5.0" BorderPane.alignment="CENTER">
 <children>
 <Label text="Number 1" />
 <TextField fx:id="tfNumber1" prefColumnCount="2"
 prefHeight="51.0" prefWidth="74.0" />
 <Label text="Number 2" />
 <TextField fx:id="tfNumber2" prefColumnCount="2"
 prefHeight="51.0" prefWidth="70.0" />
 <Label text="Result" />
 <TextField fx:id="tfResult" prefColumnCount="2" />
 </children>
 </HBox>
 </center>
</BorderPane>

31.11.6 Running the Project

The code in the model is automatically generated as shown in Listing 31.15. This is the main program that loads the FXML to create the user interface in a Parent object (lines 12 and 13). The parent object is then added to the scene (line 14). The scene is set to the stage (line 15). The stage is displayed in line 16.

Chapter Summary

	JavaFX provides the cascading style sheets based on CSS. You can use the ­getStylesheets method to load a style sheet and use the setStyle, ­setStyleClass, and setId methods to set JavaFX CSS for nodes.

	JavaFX provides the QuadCurve, CubicCurve, and Path classes for creating advanced shapes.

	JavaFX supports coordinate transformations using translation, rotation, and scaling.

	You can specify the pattern for a stroke, how the lines are joined in a stroke, the width of a stroke, and the type of a stroke.

	You can create menus using the Menu, MenuItem, CheckMenuItem, and ­RadioMenuItem classes.

	You can create context menus using the ContextMenu class.

	The SplitPane can be used to display multiple panes horizontally or vertically and allows the user to adjust the sizes of the panes.

	The TabPane can be used to display multiple panes with tabs for selecting panes.

	You can create and display tables using the TableView and TableColumn classes.

	You can create JavaFX user interfaces using FXML. FXML is XML-based script language for describing the user interface. Using FXML enables you to separate user interface from the logic of Java code.

	JavaFX Scene Builder is a visual tool for creating the user interface without manually writing the FXML scripts.

[image:]Quiz

Answer the quiz for this chapter online at the book Companion Website.

[image:]Programming Exercises

Sections 31.2

	31.1 (Use JavaFX CSS) Create a CSS style sheet that defines a class for white fill and black stroke color and an id for red stroke and green color. Write a program that displays four circles and uses the style class and id. The sample run of the program is shown in Figure 31.48a .

 [image:]Figure 31.48

(a) The border and the color style for the shapes are defined in a style class. (b) Exercise 31.2 ­displays a tic-tac-toe board with images using style sheet for border. (c) Three cards are randomly selected.

	*31.2 (Tic-tac-toe board) Write a program that displays a tic-tac-toe board, as shown in Figure 31.48b . A cell may be X, O, or empty. What to display at each cell is randomly decided. The X and O are images in the files x.gif and o.gif. Use the style sheet for border.

	*31.3 (Display three cards) Write a program that displays three cards randomly selected from a deck of 52, as shown in Figure 31.48c . The card image files are named 1.png, 2.png, . . ., 52.png and stored in the image/card directory. All the three cards are distinct and selected randomly. Hint: You can select random cards by storing the numbers 1–52 to an array, perform a random shuffle using Section 7.2.6 , and use the first three numbers in the array as the file names for the image. Use the style sheet for border.

Sections 31.3

	31.4 (Color and font) Write a program that displays five texts vertically, as shown in Figure 31.49a . Set a random color and opacity for each text and set the font of each text to Times Roman, bold, italic, and 22 pixels.

	*31.5 (Cubic curve) Write a program that creates two shapes: a circle and a path consisting of two cubic curves, as shown in Figure 31.49b .

 [image:]Figure 31.49

(a) Five texts are displayed with a random color and a specified font. (b) A path is displayed inside the circle. (c) Two circles are displayed in an oval.

	*31.6 (Eyes) Write a program that displays two eyes in an oval, as shown in Figure 31.49c .

Sections 31.4

	*31.7 (Translation) Write a program that displays a rectangle with upper-left corner point at (40, 40), width 50, and height 40. Enter the values in the text fields x and y and press the Translate button to translate the rectangle to a new location, as shown in Figure 31.50a .

 [image:]Figure 31.50

(a) Exercise 31.7 translates coordinates. (b) Exercise 31.8 rotates coordinates. (c) Exercise 31.9 scales coordinates.

	*31.8 (Rotation) Write a program that displays an ellipse. The ellipse is centered in the pane with width 60 and height 40. Enter the value in the text field Angle and press the Rotate button to rotate the ellipse, as shown in Figure 31.50b .

	*31.9 (Scale graphics) Write a program that displays an ellipse. The ellipse is centered in the pane with width 60 and height 40. Enter the scaling factors in the text fields and press the Scale button to scale the ellipse, as shown in Figure 31.50c .

	*31.10 (Plot the sine function) Write a program that plots the sine function, as shown in Figure 31.51a .

 [image:]Figure 31.51

(a) Exercise 31.10 displays a sine function. (b) Exercise 31.11 displays the log function.

	*31.11 (Plot the log function) Write a program that plots the log function, as shown in Figure 31.51a .

	*31.12 (Plot the n2 function) Write a program that plots the n2 function, as shown in Figure 31.51b 2a .

	*31.13 (Plot the log, n, nlogn, and n2 functions) Write a program that plots the log, n, nlogn, and n2 functions, as shown in Figure 31.52b .

 [image:]Figure 31.52

(a) Exercise 31.13 displays the n2 function. (b) Exercise 31.13 displays ­several functions.

	*31.14 (Scale and rotate graphics) Write a program that enables the user to scale and rotate the STOP sign, as shown in Figure 31.53 . The user can press the UP/DOWN arrow key to increase/decrease the size and press the RIGHT/LEFT arrow key to rotate left or right.

Sections 31.5

	*31.15 (Sunshine) Write a program that displays a circle filled with a gradient color to animate a sun and display light rays coming out from the sun using dashed lines, as shown in Figure 31.54a .

 [image:]Figure 31.53

The program can rotate and scale the painting.

	*31.16 (Display a cylinder) Write a program that displays a cylinder, as shown in ­Figure31.54b . Use dashed strokes to draw the dashed arc.

Sections 31.6

	*	31.17 (Create an investment value calculator) Write a program that calculates the future value of an investment at a given interest rate for a specified number of years. The formula for the calculation is as follows:

futureValue = investmentAmount × (1 + monthlyInterestRate)years×12

Use text fields for interest rate, investment amount, and years. Display the future amount in a text field when the user clicks the Calculate button or chooses Calculate from the Operation menu (see Figure 31.55). Click the Exit menu to exit the program.

 [image:]Figure 31.54

(a) Exercise 31.15 displays the sunshine. (b) Exercise 31.16 displays a cylinder.

Sections 31.8

	*31.18 (Use popup menus) Modify Listing 31.9 , MenuDemo.java, to create a popup menu that contains the menus Operations and Exit, as shown in Figure 31.56 . The popup is displayed when you click the right mouse button on the panel that contains the labels and the text fields.

 [image:]Figure 31.55

The user enters the investment amount, years, and interest rate to compute future value.

	*31.19 (Use SplitPane) Create a program that displays four shapes in split panes, as shown in Figure 31.57a .

 [image:]Figure 31.56

The popup menu contains the commands to perform arithmetic operations.

Sections 31.9

	*31.20 (Use tab panes) Modify Listing 31.12 , TabPaneDemo.java, to add a pane of radio buttons for specifying the tab placement of the tab pane, as shown in Figure31.57b and c.

	*31.21 (Use tab panes) Write a program using tab panes for performing integer and rational number arithmetic as shown in Figure 31.58 .

 [image:]Figure 31.57

(a) Four shapes are displayed in split panes. (b and c) The radio buttons let you choose the tab placement of the tabbed pane.

Sections 31.10

	*31.22 (Use table view) Revise Listing 31.14 to add a button to delete the selected row from the table, as shown in Figure 31.59 .

 [image:]Figure 31.58

A tab pane is used to select panes that perform integer operations and rational number operations.

 [image:]Figure 31.59

Clicking the Delete Selected Row button removes the selected row from the table.

CHAPTER 32 Multithreading and Parallel Programming

Objectives

	To get an overview of multithreading (§32.2).

	To develop task classes by implementing the Runnable interface (§32.3).

	To create threads to run tasks using the Thread class (§32.3).

	To control threads using the methods in the Thread class (§32.4).

	To control animations using threads and use Platform.runLater to run the code in the application thread (§32.5).

	To execute tasks in a thread pool (§32.6).

	To use synchronized methods or blocks to synchronize threads to avoid race conditions (§32.7).

	To synchronize threads using locks (§32.8).

	To facilitate thread communications using conditions on locks (§§32.9 and 32.10).

	To use blocking queues (ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue) to synchronize access to a queue (§32.11).

	To restrict the number of concurrent accesses to a shared resource using semaphores (§32.12).

	To use the resource-ordering technique to avoid deadlocks (§32.13).

	To describe the life cycle of a thread (§32.14).

	To create synchronized collections using the static methods in the ­Collections class (§32.15).

	To develop parallel programs using the Fork/Join Framework (§32.16).

32.1 Introduction

[image:]

	Multithreading enables multiple tasks in a program to be executed concurrently.

One of the powerful features of Java is its built-in support for multithreading—the concurrent running of multiple tasks within a program. In many programming languages, you have to invoke system-dependent procedures and functions to implement multithreading. This chapter introduces the concepts of threads and how multithreading programs can be developed in Java.

multithreading

32.2 Thread Concepts

[image:]

	A program may consist of many tasks that can run concurrently. A thread is the flow of execution, from beginning to end, of a task.

A thread provides the mechanism for running a task. With Java, you can launch multiple threads from a program concurrently. These threads can be executed simultaneously in multiprocessor systems, as shown in Figure 32.1a.

 Figure 32.1

(a) Multiple threads running on multiple CPUs. (b) Multiple threads share a single CPU.

thread

task

In single-processor systems, as shown in Figure 32.1b, the multiple threads share CPU time, known as time sharing, and the operating system is responsible for scheduling and allocating resources to them. This arrangement is practical because most of the time the CPU is idle. It does nothing, for example, while waiting for the user to enter data.

time sharing

Multithreading can make your program more responsive and interactive as well as enhance performance. For example, a good word processor lets you print or save a file while you are typing. In some cases, multithreaded programs run faster than single-threaded programs even on single-processor systems. Java provides exceptionally good support for creating and running threads, and for locking resources to prevent conflicts.

You can create additional threads to run concurrent tasks in the program. In Java, each task is an instance of the Runnable interface, also called a runnable object. A thread is essentially an object that facilitates the execution of a task.

task

runnable object

thread

	32.2.1	Why is multithreading needed? How can multiple threads run simultaneously in a single-processor system?

	32.2.2	What is a runnable object? What is a thread?

32.3 Creating Tasks and Threads

	A task class must implement the Runnable interface. A task must be run from a thread.

Tasks are objects. To create tasks, you have to first define a class for tasks, which implements the Runnable interface. The Runnable interface is rather simple. All it contains is the ­run() method. You need to implement this method to tell the system how your thread is going to run. A template for developing a task class is shown in Figure 32.2a.

 [image: Ay U M L class diagram for java dot lang dot runnable.]Figure 32.2

Define a task class by implementing the Runnable interface.

Description

Runnable interface

run() method

Once you have defined a TaskClass, you can create a task using its constructor. For example,

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for creating threads and many useful methods for controlling threads. To create a thread for a task, use

Thread class

create a task

Thread thread = new Thread(task);

You can then invoke the start() method to tell the JVM that the thread is ready to run, as follows:

create a thread

thread.start();

The JVM will execute the task by invoking the task’s run() method. Figure 32.2b outlines the major steps for creating a task, a thread, and starting the thread.

start a thread

Listing 32.1 gives a program that creates three tasks and three threads to run them.

	The first task prints the letter a 100 times.

	The second task prints the letter b 100 times.

	The third task prints the integers 1 through 100.

When you run this program, the three threads will share the CPU and take turns printing letters and numbers on the console. Figure 32.3 shows a sample run of the program.

 Figure 32.3

Tasks printA, printB, and print100 are executed simultaneously to ­display the letter a 100 times, the letter b 100 times, and the numbers from 1 to 100.

Listing 32.1 TaskThreadDemo.java

		1 public class TaskThreadDemo {
		2 public static void main(String[] args) {
		3 // Create tasks
create tasks	4 Runnable printA = new PrintChar('a', 100);
		5 Runnable printB = new PrintChar('b', 100);
		6 Runnable print100 = new PrintNum(100);
		7
		8 // Create threads
create threads	9 Thread thread1 = new Thread(printA);
	 10 Thread thread2 = new Thread(printB);
	 11 Thread thread3 = new Thread(print100);
	 12
	 13 // Start threads
start threads 14 thread1.start();
	 15 thread2.start();
	 16 thread3.start();
	 17 }
	 18 }
	 19
	 20 // The task for printing a character a specified number of times
task class 21 class PrintChar implements Runnable {
	 22 private char charToPrint; // The character to print
	 23 private int times; // The number of times to repeat
	 24
	 25 /** Construct a task with a specified character and number of
	 26 * times to print the character
	 27 */
	 28 public PrintChar(char c, int t) {
	 29 charToPrint = c;
	 30 times = t;
	 31 }
	 32
	 33 @Override /** Override the run() method to tell the system
	 34 * what task to perform
	 35 */
run	 36 public void run()	{
	 37 for (int i = 0; i < times; i++) {
	 38 System.out.print(charToPrint);
	 39 }
	 40 }
	 41 }
	 42
	 43 // The task class for printing numbers from 1 to n for a given n
task class 44 class PrintNum implements Runnable {
	 45 private int lastNum;
	 46
	 47 /** Construct a task for printing 1, 2, ..., n */
	 48 public PrintNum(int n) {
	 49 lastNum = n;
	 50 }
	 51
	 52 @Override /** Tell the thread how to run */
run	 53 public void run() {
	 54 for (int i = 1; i <= lastNum; i++) {
	 55 System.out.print(" " + i);
	 56 }
	 57 }
	 58 }

The program creates three tasks (lines 4–6). To run them concurrently, three threads are ­created (lines 9–11). The start() method (lines 14–16) is invoked to start a thread that causes the run() method in the task to be executed. When the run() method completes, the thread terminates.

Because the first two tasks, printA and printB, have similar functionality, they can be defined in one task class PrintChar (lines 21–41). The PrintChar class implements ­Runnable and overrides the run() method (lines 36–40) with the print-character action. This class provides a framework for printing any single character a given number of times. The runnable objects, printA and printB, are instances of the PrintChar class.

The PrintNum class (lines 44–58) implements Runnable and overrides the run() method (lines 53–57) with the print-number action. This class provides a framework for printing numbers from 1 to n, for any integer n. The runnable object print100 is an instance of the class printNum class.

 Note

If you don’t see the effect of these three threads running concurrently, increase the number of characters to be printed. For example, change line 4 to

Runnable printA = new PrintChar('a', 10000);

effect of concurrency

 Important Note

The run()method in a task specifies how to perform the task. This method is automatically invoked by the JVM. You should not invoke it. Invoking run()directly merely executes this method in the same thread; no new thread is started.

run() method

	32.3.1	How do you define a task class? How do you create a thread for a task?

	32.3.2	What would happen if you replace the start() method with the run() method in lines 14–16 in Listing 32.1 ?

	32.3.3	What is wrong in the following two programs? Correct the errors.

	public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() {
 Test task = new Test();
 new Thread(task).start();
 }

 public void run() {
 System.out.println("test");
 }
}

	
	public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() {
 Thread t = new Thread(this);
 t.start();
 t.start();
 }

 public void run() {
 System.out.println("test");
 }
}

	(a)

	
	(b)

32.4 The Thread Class

	The Thread class contains the constructors for creating threads for tasks and the methods for controlling threads.

Figure 32.4 shows the class diagram for the Thread class.

 [image: Ay U M L class diagram for java dot lang dot thread.]Figure 32.4

The Thread class contains the methods for controlling threads.

Description

 Note

Since the Thread class implements Runnable, you could define a class that extends Thread and implements the run method, as shown in Figure 32.5a, then create an object from the class and invoke its start method in a client program to start the thread, as shown in Figure 32.5b.

 [image: Ay U M L class diagram for java dot lang dot thread.]Figure 32.5

Define a thread class by extending the Thread class.

Description

separating task from thread

This approach is, however, not recommended because it mixes the task and the­ ­mechanism of running the task. Separating the task from the thread is a preferred design.

 Note

The Thread class also contains the stop(), suspend(), and resume() methods. As of Java 2, these methods were deprecated (or outdated) because they are known to be inherently unsafe. Instead of using the stop() method, you should assign null to a Thread variable to indicate that it has stopped.

deprecated method

You can use the yield() method to temporarily release time for other threads. For ­example, suppose that you modify the code in the run() method in lines 53–57 for PrintNum in Listing 32.1 as follows:

yield()

public void run() {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 Thread.yield();
 }
}

Every time a number is printed, the thread of the print100 task is yielded to other threads.

The sleep(long millis) method puts the thread to sleep for a specified time in milliseconds to allow other threads to execute. For example, suppose that you modify the code in lines 53–57 in Listing 32.1 as follows:

sleep(long)

public void run() {
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 if (i >= 50) Thread.sleep(1);
 }
 }
 catch (InterruptedException ex) {
 }
}

Every time a number (>= 50) is printed, the thread of the print100 task is put to sleep for 1 millisecond.

The sleep method may throw an InterruptedException, which is a checked exception. Such an exception may occur when a sleeping thread’s interrupt() method is called. The interrupt() method is very rarely invoked on a thread, so an Interrupted­Exception is unlikely to occur. But since Java forces you to catch checked exceptions, you have to put it in a try-catch block. If a sleep method is invoked in a loop, you should wrap the loop in a try-catch block, as shown in (a) below. If the loop is outside the try-catch block, as shown in (b), the thread may continue to execute even though it is being interrupted.

InterruptedException

	public void run() {
 try {
 while (...) {
 ...
 Thread.sleep(1000);
 }
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

	
	public void run() {
 while (...) {
 try {
 ...
 Thread.sleep(sleepTime);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
}

	(a) Correct

	
	(b) Incorrect

You can use the join() method to force one thread to wait for another thread to finish. For example, suppose that you modify the code in lines 53–57 in Listing 32.1 as follows:

join()

A new thread4 is created and it prints character c 40 times. The numbers from 50 to 100 are printed after thread thread4 is finished.

Java assigns every thread a priority. By default, a thread inherits the priority of the thread that spawned it. You can increase or decrease the priority of any thread by using the ­setPriority method and you can get the thread’s priority by using the getPriority method. Priorities are numbers ranging from 1 to 10. The Thread class has the int constants MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY, representing 1, 5, and 10, respectively. The priority of the main thread is Thread.NORM_PRIORITY.

setPriority(int)

The JVM always picks the currently runnable thread with the highest priority. A lower ­priority thread can run only when no higher priority threads are running. If all runnable threads have equal priorities, each is assigned an equal portion of the CPU time in a circular queue. This is called round-robin scheduling. For example, suppose that you insert the following code in line 16 in Listing 32.1:

round-robin scheduling

thread3.setPriority(Thread.MAX_PRIORITY);

The thread for the print100 task will be finished first.

 Tip

The priority numbers may be changed in a future version of Java. To minimize the impact of any changes, use the constants in the Thread class to specify thread priorities.

 Tip

A thread may never get a chance to run if there is always a higher priority thread running or a same-priority thread that never yields. This situation is known as contention or starvation. To avoid contention, the thread with higher priority must periodically invoke the sleep or yield method to give a thread with a lower or the same priority a chance to run.

contention or starvation

	32.4.1	Which of the following methods are instance methods in java.lang.Thread? Which method may throw an InterruptedException? Which of them are ­deprecated in Java?

run, start, stop, suspend, resume, sleep, interrupt, yield, join

	32.4.2	If a loop contains a method that throws an InterruptedException, why should the loop be placed inside a try-catch block?

	32.4.3	How do you set a priority for a thread? What is the default priority?

32.5 Animation Using Threads and the Platform.runLater Method

	You can use a thread to control an animation and run the code in JavaFX GUI thread using the Platform.runLater method.

The use of a Timeline object to control animations was introduced in Section 15.11, Animation. Alternatively, you can also use a thread to control animation. Listing 32.2 gives an example that displays flashing text on a label, as shown in Figure 32.6.

 Figure 32.6

The text “Welcome” blinks.

Listing 32.2 FlashText.java

			 1 import javafx.application.Application;
			 2 import javafx.application.Platform;
			 3 import javafx.scene.Scene;
			 4 import javafx.scene.control.Label;
			 5 import javafx.scene.layout.StackPane;
			 6 import javafx.stage.Stage;
			 7
			 8 public class FlashText extends Application {
			 9 private String text = "";
			10
			11 @Override // Override the start method in the Application class
			12 public void start(Stage primaryStage) {
			13 StackPane pane = new StackPane();
create a label		14 Label lblText = new Label("Programming is fun");
label in a pane		15 pane.getChildren().add(lblText);
			16
create a thread		17 new Thread(new Runnable() {
			18 @Override
run thread		19 public void run() {
			20 try {
			21 while (true) {
change text		22 if (lblText.getText().trim().length() == 0)
			23 text = "Welcome";
			24 else
			25 text = "";
			26
Platform.runLater	27 Platform.runLater(new Runnable() { // Run from JavaFX GUI
		 28 @Override
			29 public void run() {
update GUI		30 lblText.setText(text);
			31 }
			32 });
			33
sleep			34 Thread.sleep(200);
			35 }
			36 }
			37 catch (InterruptedException ex) {
			38 }
			39 }
			40 }).start();
			41
			42 // Create a scene and place it in the stage
			43 Scene scene = new Scene(pane, 200, 50);
			44 primaryStage.setTitle("FlashText"); // Set the stage title
			45 primaryStage.setScene(scene); // Place the scene in the stage
			46 primaryStage.show(); // Display the stage
			47 }
			48 }

The program creates a Runnable object in an anonymous inner class (lines 17–40). This object is started in line 40 and runs continuously to change the text in the label. It sets a text in the label if the label is blank (line 23) and sets its text blank (line 25) if the label has a text. The text is set and unset to simulate a flashing effect.

JavaFX GUI is run from the JavaFX application thread. The flashing control is run from a separate thread. The code in a nonapplication thread cannot update GUI in the application thread. To update the text in the label, a new Runnable object is created in lines 27–32. Invoking Platform.runLater(Runnable r) tells the system to run this Runnable object in the application thread.

JavaFX application thread

Platform.runLater

The anonymous inner classes in this program can be simplifed using lambda expressions as follows:

new Thread(() -> { // lambda expression
 try {
 while (true) {
 if (lblText.getText().trim().length() == 0)
 text = "Welcome";
 else
 text = "";
 Platform.runLater(() -> lblText.setText(text)); // lambda exp
 Thread.sleep(200);
 }
 }
 catch (InterruptedException ex) {
 }
}).start();

	32.5.1	What causes the text to flash?

	32.5.2	Is an instance of FlashText a runnable object?

	32.5.3	What is the purpose of using Platform.runLater?

	32.5.4	Can you replace the code in lines 27–32 using the following code?

Platform.runLater(e -> lblText.setText(text));

	32.5.5	What happens if line 34 (Thread.sleep(200)) is not used?

	32.5.6	There is an issue in Listing 16.9 , ListViewDemo. If you press the CTRL key and select Canada, Demark, and China in this order, you will get an ArrayIndexOutBoundsException. What is the reason for this error and how do you fix it? (Thanks to Henri Heimonen of Finland for contributing this question).

32.6 Thread Pools

	A thread pool can be used to execute tasks efficiently.

In Section 32.3, Creating Tasks and Threads, you learned how to define a task class by implementing java.lang.Runnable, and how to create a thread to run a task like this:

Runnable task = new TaskClass(...);
new Thread(task).start();

This approach is convenient for a single task execution, but it is not efficient for a large number of tasks because you have to create a thread for each task. Starting a new thread for each task could limit throughput and cause poor performance. Using a thread pool is an ideal way to manage the number of tasks executing concurrently. Java provides the ­Executor interface for executing tasks in a thread pool and the ExecutorService interface for managing and controlling tasks. ExecutorService is a subinterface of Executor, as shown in Figure 32.7.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: open quotes, interface, close quotes. Line 2, indented once: java, period, u t i l, period, concurrent, period, executor. Line 3: + execute, left parenthesis, runnable object, right parenthesis, colon, void. Note: It executes the runnable task. Line 4: open quotes, interface, close quotes. Line 5: java, period, u t i l, period, concurrent, period, executor service. Line 6: + shut down, left parenthesis, right parenthesis, colon, void. Note: It shuts down the executor, but allows the tasks in the executor to complete. Once shut down, it cannot accept new tasks. Line 7: blank. Line 8: + shut down now, left parenthesis, right parenthesis, colon, list < runnable >. Note: It shuts down the executor immediately even though there are unfinished threads in the pool. It returns a list of unfinished tasks. Line 9: blank. Line 10: + is shut down, left parenthesis, right parenthesis, colon, boolean. Note: It returns true if the executor has been shut down. Line 11: + is terminated, left parenthesis, right parenthesis, colon, boolean. Note: It returns true if all tasks in the pool are terminated.]Figure 32.7

The Executor interface executes threads and the ExecutorService subinterface manages threads.

To create an Executor object, use the static methods in the Executors class, as shown in Figure 32.8. The newFixedThreadPool(int) method creates a fixed number of threads in a pool. If a thread completes executing a task, it can be reused to execute another task. If a thread terminates due to a failure prior to shutdown, a new thread will be created to replace it if all the threads in the pool are not idle and there are tasks waiting for execution. The ­newCachedThreadPool() method creates a new thread if all the threads in the pool are not idle and there are tasks waiting for execution. A thread in a cached pool will be terminated if it has not been used for 60 seconds. A cached pool is efficient for many short tasks.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: java, period, u t i l, period, concurrent, period, executors. Line 2: + new fixed thread pool, left parenthesis, number of threads, colon. Line 3, indented once: i n t, right parenthesis, colon, executor service. Note: It creates a thread pool with a fixed number of threads executing concurrently. A thread may be reused to execute another task after its current task is finished. Line 4: + new cached thread pool, left parenthesis, right parenthesis, colon. Line 5, indented once: executor service. Note: It creates a thread pool that creates new threads as needed, but will reuse previously constructed threads when they are available.]Figure 32.8

The Executors class provides static methods for creating Executor objects.

Listing 32.3 shows how to rewrite Listing 32.1 using a thread pool.

Listing 32.3 ExecutorDemo.java

		 1 import java.util.concurrent.*;
			2
			3 public class ExecutorDemo {
			4 public static void main(String[] args) {
			5 // Create a fixed thread pool with maximum three threads
 create executor	6 ExecutorService executor = Executors.newFixedThreadPool(3);
			7
			8 // Submit runnable tasks to the executor
 submit task		9 executor.execute(new PrintChar('a', 100));
		 10 executor.execute(new PrintChar('b', 100));
		 11 executor.execute(new PrintNum(100));
		 12
		 13 // Shut down the executor
shut down executor 14 executor.shutdown();
		 15 }
		 16 }

Line 6 creates a thread pool executor with a total of three threads maximum. Classes PrintChar and PrintNum are defined in Listing 32.1. Line 9 creates a task, new PrintChar('a', 100), and adds it to the pool. Similarly, another two runnable tasks are created and added to the same pool in lines 10 and 11. The executor creates three threads to execute three tasks concurrently.

Suppose you replace line 6 with

ExecutorService executor = Executors.newFixedThreadPool(1);

What will happen? The three runnable tasks will be executed sequentially because there is only one thread in the pool.

Suppose you replace line 6 with

ExecutorService executor = Executors.newCachedThreadPool();

What will happen? New threads will be created for each waiting task, so all the tasks will be executed concurrently.

The shutdown() method in line 14 tells the executor to shut down. No new tasks can be accepted, but any existing tasks will continue to finish.

 Tip

If you need to create a thread for just one task, use the Thread class. If you need to create threads for multiple tasks, it is better to use a thread pool.

	32.6.1	What are the benefits of using a thread pool?

	32.6.2	How do you create a thread pool with three fixed threads? How do you submit a task to a thread pool? How do you know that all the tasks are finished?

32.7 Thread Synchronization

	Thread synchronization is to coordinate the execution of the dependent threads.

A shared resource may become corrupted if it is accessed simultaneously by multiple threads. The following example demonstrates the problem.

Suppose that you create and launch 100 threads, each of which adds a penny to an account. Define a class named Account to model the account, a class named AddAPennyTask to add a penny to the account, and a main class that creates and launches threads. The relationships of these classes are shown in Figure 32.9. The program is given in Listing 32.4.

 Figure 32.9

AccountWithoutSync contains an instance of Account and 100 threads of AddAPennyTask.

Listing 32.4 AccountWithoutSync.java

		 1 import java.util.concurrent.*;
				 2
				 3 public class AccountWithoutSync {
				 4 private static Account account = new Account();
				 5
				 6 public static void main(String[] args) {
 create executor		 7 ExecutorService executor = Executors.newCachedThreadPool();
				 8
				 9 // Create and launch 100 threads
				 10 for (int i = 0; i < 100; i++) {
submit task			 11 executor.execute(new AddAPennyTask());
				 12 }
				 13
shut down executor 14 executor.shutdown();
				 15
				 16 // Wait until all tasks are finished
wait for all tasks to terminate 17 while (!executor.isTerminated()) {
				 18 }
				 19
				 20 System.out.println("What is balance? " + account.getBalance());
				 21 }
				 22
				 23 // A thread for adding a penny to the account
				 24 private static class AddAPennyTask implements Runnable {
				 25 public void run() {
				 26 account.deposit(1);
				 27 }
				 28 }
				 29
				 30 // An inner class for account
				 31 private static class Account {
				 32 private int balance = 0;
				 33
				 34 public int getBalance() {
				 35 return balance;
				 36 }
				 37
				 38 public void deposit(int amount) {
				 39 int newBalance = balance + amount;
				 40
				 41 // This delay is deliberately added to magnify the
				 42 // data-corruption problem and make it easy to see.
				 43 try {
				 44 Thread.sleep(5);
				 45 }
				 46 catch (InterruptedException ex) {
				 47 }
				 48
				 49 balance = newBalance;
				 50 }
				 51 }
				 52 }

The classes AddAPennyTask and Account in lines 24–51 are inner classes. Line 4 creates an Account with initial balance 0. Line 11 creates a task to add a penny to the account and submits the task to the executor. Line 11 is repeated 100 times in lines 10–12. The program repeatedly checks whether all tasks are completed in lines 17 and 18. The account balance is displayed in line 20 after all tasks are completed.

The program creates 100 threads executed in a thread pool executor (lines 10–12). The isTerminated() method (line 17) is used to test whether all the threads in the pool are terminated.

The balance of the account is initially 0 (line 32). When all the threads are finished, the ­balance should be 100 but the output is unpredictable. As can be seen in Figure 32.10, the answers are wrong in the sample run. This demonstrates the data-corruption problem that occurs when all the threads have access to the same data source simultaneously.

 Figure 32.10

The AccountWithoutSync program causes data inconsistency.

Lines 39–49 could be replaced by one statement:

balance = balance + amount;

It is highly unlikely, although plausible, that the problem can be replicated using this ­single statement. The statements in lines 39–49 are deliberately designed to magnify the data-­corruption problem and make it easy to see. If you run the program several times but still do not see the problem, increase the sleep time in line 44. This will increase the chances for showing the problem of data inconsistency.

What, then, caused the error in this program? A possible scenario is shown in Figure 32.11.

 Figure 32.11

Task 1 and Task 2 both add 1 to the same balance.

In Step 1, Task 1 gets the balance from the account. In Step 2, Task 2 gets the same ­balance from the account. In Step 3, Task 1 writes a new balance to the account. In Step 4, Task 2 writes a new balance to the account.

The effect of this scenario is that Task 1 does nothing because in Step 4, Task 2 overrides Task 1’s result. Obviously, the problem is that Task 1 and Task 2 are accessing a common resource in a way that causes a conflict. This is a common problem, known as a race condition, in multithreaded programs. A class is said to be thread-safe if an object of the class does not cause a race condition in the presence of multiple threads. As demonstrated in the preceding example, the Account class is not thread-safe.

race condition

thread-safe

32.7.1 The synchronized Keyword

To avoid race conditions, it is necessary to prevent more than one thread from simultaneously entering a certain part of the program, known as the critical region. The critical region in ­Listing 32.4 is the entire deposit method. You can use the keyword synchronized to synchronize the method so that only one thread can access the method at a time. There are several ways to correct the problem in Listing 32.4. One approach is to make Account thread-safe by adding the keyword synchronized in the deposit method in line 38, as follows:

critical region

public synchronized void deposit(double amount)

A synchronized method acquires a lock before it executes. A lock is a mechanism for exclusive use of a resource. In the case of an instance method, the lock is on the object for which the method was invoked. In the case of a static method, the lock is on the class. If one thread invokes a synchronized instance method (respectively, static method) on an object, the lock of that object (respectively, class) is acquired first, then the method is executed, and finally the lock is released. Another thread invoking the same method of that object (respectively, class) is blocked until the lock is released.

With the deposit method synchronized, the preceding scenario cannot happen. If Task 1 enters the method, Task 2 is blocked until Task 1 finishes the method, as shown in Figure 32.12.

 [image: Task 1: acquire a lock on the object account; execute the deposit method; release the lock. Task 2: wait to acquire the lock; acquire a lock on the object account; execute the deposit method; release the lock.]Figure 32.12

Task 1 and Task 2 are synchronized.

32.7.2 Synchronizing Statements

Invoking a synchronized instance method of an object acquires a lock on the object, and invoking a synchronized static method of a class acquires a lock on the class. A synchronized statement can be used to acquire a lock on any object, not just this object, when executing a block of the code in a method. This block is referred to as a synchronized block. The general form of a synchronized statement is as follows:

synchronized block

synchronized (expr) {
 statements;
}

The expression expr must evaluate to an object reference. If the object is already locked by another thread, the thread is blocked until the lock is released. When a lock is obtained on the object, the statements in the synchronized block are executed and then the lock is released.

Synchronized statements enable you to synchronize part of the code in a method instead of the entire method. This increases concurrency. You can make Listing 32.4 thread-safe by placing the statement in line 26 inside a synchronized block:

synchronized (account) {
 account.deposit(1);
}

 Note

Any synchronized instance method can be converted into a synchronized statement. For example, the following synchronized instance method in (a) is equivalent to (b):

	public synchronized void xMethod() {
 // method body
}

	
	public void xMethod() {
 synchronized (this) {
 // method body
 }
}

	(a)

	
	(b)

	32.7.1	Give some examples of possible resource corruption when running multiple threads. How do you synchronize conflicting threads?

	32.7.2	Suppose you place the statement in line 26 of Listing 32.4 inside a synchronized block to avoid race conditions, as follows:

synchronized (this) {
 account.deposit(1);
}

Will it work?

32.8 Synchronization Using Locks

	Locks and conditions can be explicitly used to synchronize threads.

Recall that in Listing 32.4, 100 tasks deposit a penny to the same account concurrently, which causes conflicts. To avoid it, you use the synchronized keyword in the deposit method, as follows:

public synchronized void deposit(double amount)

A synchronized instance method implicitly acquires a lock on the instance before it executes the method.

lock

Java enables you to acquire locks explicitly, which give you more control for coordinating threads. A lock is an instance of the Lock interface, which defines the methods for acquiring and releasing locks, as shown in Figure 32.13. A lock may also use the newCondition() method to create any number of Condition objects, which can be used for thread communications.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: << interface >>. Line 2, indented once: j ay v ay, period, u t i l, period, concurrent, period, locks, period, lock. Line 3: + lock, left parenthesis, right parenthesis, colon, void. Note: it acquires the lock. Line 4: + unlock, left parenthesis, right parenthesis, colon, void. Note: it releases the lock. Line 5: + new condition, left parenthesis, right parenthesis, colon, condition. Note: it returns a new condition instance that is bound to this lock instance. Line 6: j ay v ay, period, u t i l, period, concurrent, period, locks, period, reentrant lock. Line 7: + reentrant lock, left parenthesis, right parenthesis. Note: Same as reentrant lock, false. Line 8: + reentrant lock, left parenthesis, fair, colon, boolean, right parenthesis. Note: it creates a lock with the given fairness policy. When the fairness is true, the longest-waiting thread will get the lock. Otherwise, there is no particular access order.]Figure 32.13

The ReentrantLock class implements the Lock interface to represent a lock.

ReentrantLock is a concrete implementation of Lock for creating mutually exclusive locks. You can create a lock with the specified fairness policy. True fairness policies guarantee that the longest waiting thread will obtain the lock first. False fairness policies grant a lock to a waiting thread arbitrarily. Programs using fair locks accessed by many threads may have poorer overall performance than those using the default setting, but they have smaller variances in times to obtain locks and prevent starvation.

fairness policy

Listing 32.5 revises the program in Listing 32.7 to synchronize the account modification using explicit locks.

Listing 32.5 AccountWithSyncUsingLock.java

		 1 import java.util.concurrent.*;
 package for locks 2 import java.util.concurrent.locks.*;
		 3
		 4 public class AccountWithSyncUsingLock {
		 5 private static Account account = new Account();
		 6
		 7 public static void main(String[] args) {
		 8 ExecutorService executor = Executors.newCachedThreadPool();
		 9
		 10 // Create and launch 100 threads
		 11 for (int i = 0; i < 100; i++) {
		 12 executor.execute(new AddAPennyTask());
		 13 }
		 14
		 15 executor.shutdown();
		 16
		 17 // Wait until all tasks are finished
		 18 while (!executor.isTerminated()) {
		 19 }
		 20
		 21 System.out.println("What is balance? " + account.getBalance());
		 22 }
		 23
		 24 // A thread for adding a penny to the account
		 25 public static class AddAPennyTask implements Runnable {
		 26 public void run() {
		 27 account.deposit(1);
		 28 }
		 29 }
		 30
		 31 // An inner class for Account
		 32 public static class Account {
create a lock	 33 private static Lock lock = new ReentrantLock(); // Create a lock
		 34 private int balance = 0;
		 35
		 36 public int getBalance() {
		 37 return balance;
		 38 }
		 39
		 40 public void deposit(int amount) {
acquire the lock 41 lock.lock(); // Acquire the lock
		 42
		 43 try {
		 44 int newBalance = balance + amount;
		 45
		 46 // This delay is deliberately added to magnify the
		 47 // data-corruption problem and make it easy to see.
		 48 Thread.sleep(5);
		 49
		 50 balance = newBalance;
		 51 }
		 52 catch (InterruptedException ex) {
		 53 }
		 54 finally {
release the lock 55 lock.unlock(); // Release the lock
		 56 }
		 57 }
		 58 }
		 59 }

Line 33 creates a lock, line 41 acquires the lock, and line 55 releases the lock.

 Tip

It is a good practice to always immediately follow a call to lock() with a try-catch block and release the lock in the finally clause, as shown in lines 41–56, to ensure that the lock is always released.

Listing 32.5 can be implemented using a synchronize method for deposit rather than using a lock. In general, using synchronized methods or statements is simpler than using explicit locks for mutual exclusion. However, using explicit locks is more intuitive and flexible to synchronize threads with conditions, as you will see in the next section.

	32.8.1	How do you create a lock object? How do you acquire a lock and release a lock?

32.9 Cooperation among Threads

	Conditions on locks can be used to coordinate thread interactions.

Thread synchronization suffices to avoid race conditions by ensuring the mutual exclusion of multiple threads in the critical region, but sometimes you also need a way for threads to cooperate. Conditions can be used to facilitate communications among threads. A thread can specify what to do under a certain condition. Conditions are objects created by invoking the newCondition() method on a Lock object. Once a condition is created, you can use its await(), signal(), and signalAll() methods for thread communications, as shown in Figure 32.14. The await() method causes the current thread to wait until the condition is signaled. The signal() method wakes up one waiting thread, and the signalAll() method wakes all waiting threads.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: << interface >>. Line 2: j ay v ay, period, u t i l, period, concurrent, period, condition. Line 3: + ay wait, left parenthesis, right parenthesis, colon, void. Note: It causes the current thread to wait until the condition is signaled. Line 4: + signal, left parenthesis, right parenthesis, colon, void. Note: It wakes up one waiting thread. Line 5: + signal all, left parenthesis, right parenthesis, colon, condition. Note: It wakes up all waiting threads.]Figure 32.14

The Condition interface defines the methods for performing synchronization.

condition

Let us use an example to demonstrate thread communications. Suppose you create and launch two tasks: one that deposits into an account, and one that withdraws from the same account. The withdraw task has to wait if the amount to be withdrawn is more than the current balance. Whenever new funds are deposited into the account, the deposit task notifies the withdraw thread to resume. If the amount is still not enough for a withdrawal, the withdraw thread has to continue to wait for a new deposit.

thread cooperation example

To synchronize the operations, use a lock with a condition: newDeposit (i.e., new deposit added to the account). If the balance is less than the amount to be withdrawn, the withdraw task will wait for the newDeposit condition. When the deposit task adds money to the account, the task signals the waiting withdraw task to try again. The interaction between the two tasks is shown in Figure 32.15.

 Figure 32.15

The condition newDeposit is used for communications between the two threads.

You create a condition from a Lock object. To use a condition, you have to first obtain a lock. The await() method causes the thread to wait and automatically releases the lock on the condition. Once the condition is right, the thread reacquires the lock and continues executing.

Assume the initial balance is 0 and the amount to deposit and withdraw are ­randomly generated. Listing 32.6 gives the program. A sample run of the program is shown in Figure 32.16.

 Figure 32.16

The withdraw task waits if there are not sufficient funds to withdraw.

Listing 32.6 ThreadCooperation.java

		 1 import java.util.concurrent.*;
		 2 import java.util.concurrent.locks.*;
		 3
		 4 public class ThreadCooperation {
		 5 private static Account account = new Account();
		 6
		 7 public static void main(String[] args) {
		 8 // Create a thread pool with two threads
 create two threads 9 ExecutorService executor = Executors.newFixedThreadPool(2);
	 10 executor.execute(new DepositTask());
		 11 executor.execute(new WithdrawTask());
		 12 executor.shutdown();
		 13
		 14 System.out.println("Thread 1\t\tThread 2\t\tBalance");
		 15 }
		 16
		 17 public static class DepositTask implements Runnable {
		 18 @Override // Keep adding an amount to the account
		 19 public void run() {
		 20 try { // Purposely delay it to let the withdraw method proceed
		 21 while (true) {
		 22 account.deposit((int)(Math.random() * 10) + 1);
		 23 Thread.sleep(1000);
		 24 }
		 25 }
		 26 catch (InterruptedException ex) {
		 27 ex.printStackTrace();
		 28 }
		 29 }
		 30 }
		 31
		 32 public static class WithdrawTask implements Runnable {
		 33 @Override // Keep subtracting an amount from the account
		 34 public void run() {
		 35 while (true) {
		 36 account.withdraw((int)(Math.random() * 10) + 1);
		 37 }
		 38 }
		 39 }
	 40
		 41 // An inner class for account
		 42 private static class Account {
		 43 // Create a new lock
create a lock	 44 private static Lock lock = new ReentrantLock();
		 45
		 46 // Create a condition
create a condition 47 private static Condition newDeposit = lock.newCondition();
		 48
		 49 private int balance = 0;
		 50
		 51 public int getBalance() {
		 52 return balance;
		 53 }
		 54
 55 public void withdraw(int amount) {
acquire the lock 56 lock.lock(); // Acquire the lock
		 57 try {
		 58 while (balance < amount) {
		 59 System.out.println("\t\t\tWait for a deposit");
wait on the condition 60 newDeposit.await();
		 61 }
		 62
		 63 balance -= amount;
		 64 System.out.println("\t\t\tWithdraw " + amount +
		 65 "\t\t" + getBalance());
		 66 }
		 67 catch (InterruptedException ex) {
		 68 ex.printStackTrace();
		 69 }
		 70 finally {
release the lock 71 lock.unlock(); // Release the lock
		 72 }
		 73 }
		 74
		 75 public void deposit(int amount) {
acquire the lock 76 lock.lock(); // Acquire the lock
		 77 try {
		 78 balance += amount;
		 79 System.out.println("Deposit " + amount +
		 80 "\t\t\t\t\t" + getBalance());
		 81
		 82 // Signal thread waiting on the condition
signal threads 83 newDeposit.signalAll();
		 84 }
		 85 finally {
release the lock 86 lock.unlock(); // Release the lock
		 87 }
		 88 }
		 89 }
		 90 }

The example creates a new inner class named Account to model the account with two methods, deposit(int) and withdraw(int), a class named DepositTask to add an amount to the balance, a class named WithdrawTask to withdraw an amount from the balance, and a main class that creates and launches two threads.

The program creates and submits the deposit task (line 10) and the withdraw task (line 11). The deposit task is purposely put to sleep (line 23) to let the withdraw task run. When there are not enough funds to withdraw, the withdraw task waits (line 59) for notification of the balance change from the deposit task (line 83).

A lock is created in line 44. A condition named newDeposit on the lock is created in line 47. A condition is bound to a lock. Before waiting or signaling the condition, a thread must first acquire the lock for the condition. The withdraw task acquires the lock in line 56, waits for the newDeposit condition (line 60) when there is not a sufficient amount to withdraw, and releases the lock in line 71. The deposit task acquires the lock in line 76 and signals all waiting threads (line 83) for the newDeposit condition after a new deposit is made.

What will happen if you replace the while loop in lines 58–61 with the following if statement?

if (balance < amount) {
 System.out.println("\t\t\tWait for a deposit");
 newDeposit.await();
}

The deposit task will notify the withdraw task whenever the balance changes. (balance < amount) may still be true when the withdraw task is awakened. Using the if statement would lead to incorrect withdraw. Using the loop statement, the withdraw task will have a chance to recheck the condition.

 Caution

Once a thread invokes await() on a condition, the thread waits for a signal to resume. If you forget to call signal() or signalAll() on the condition, the thread will wait forever.

ever-waiting threads

 Caution

A condition is created from a Lock object. To invoke its method (e.g., await(), ­signal(), and signalAll()), you must first own the lock. If you invoke these methods without acquiring the lock, an IllegalMonitorStateException will be thrown.

IllegalMonitorState Exception

Locks and conditions were introduced in Java 5. Prior to Java 5, thread communications were programmed using the object’s built-in monitors. Locks and conditions are more powerful and flexible than the built-in monitor, so will not need to use monitors. However, if you are working with legacy Java code, you may encounter Java’s built-in monitor.

Java’s built-in monitor

A monitor is an object with mutual exclusion and synchronization capabilities. Only one thread can execute a method at a time in the monitor. A thread enters the monitor by acquiring a lock on it and exits by releasing the lock. Any object can be a monitor. An object becomes a monitor once a thread locks it. Locking is implemented using the synchronized keyword on a method or a block. A thread must acquire a lock before executing a synchronized method or block. A thread can wait in a monitor if the condition is not right for it to continue executing in the monitor. You can invoke the wait() method on the monitor object to release the lock so some other thread can get in the monitor and perhaps change the monitor’s state. When the condition is right, the other thread can invoke the notify() or notifyAll() method to signal one or all waiting threads to regain the lock and resume execution. The template for invoking these methods is shown in Figure 32.17.

monitor

 [image: program code. In the code, the words in the variable names are merged. Task 1: Line 1: synchronized, left parenthesis, an object, right parenthesis, left brace. Line 2, indented once: try, left brace. Line 3, indented twice: forward slash, forward slash, wait for the condition to become true. Line 4, indented twice: while, left parenthesis, exclamation mark, condition, right parenthesis. Line 5, indented 3 times: an object, period, wait, left parenthesis, right parenthesis, semicolon. Line 6: blank. Line 7, indented twice: forward slash, forward slash, do something when condition is true. Line 8, indented once: right brace. Line 9, indented once: catch, left parenthesis, interrupted exception e x, right parenthesis, left brace. Line 10, indented twice: e x, period, print stack trace, left parenthesis, right parenthesis, semicolon. Line 11, indented once: right brace. Line 12: right brace. Line 13: synchronized, left parenthesis, an object, right parenthesis, left brace. Line 14, indented once: forward slash, forward slash, When condition becomes true. Line 15, indented once: an object, period, notify, left parenthesis, right parenthesis, semicolon, or an object, period, notify all, left parenthesis, right parenthesis, semicolon. Line 16, indented once: point, point, point. Line 17: right brace.]Figure 32.17

The wait(), notify(), and notifyAll() methods coordinate thread communication.

The wait(), notify(), and notifyAll() methods must be called in a synchronized method or a synchronized block on the receiving object of these methods. Otherwise, an IllegalMonitorStateException will occur.

When wait() is invoked, it pauses the thread and simultaneously releases the lock on the object. When the thread is restarted after being notified, the lock is automatically reacquired.

The wait(), notify(), and notifyAll() methods on an object are analogous to the await(), signal(), and signalAll() methods on a condition.

	32.9.1	How do you create a condition on a lock? What are the await(), signal(), and signalAll() methods for?

	32.9.2	What would happen if the while loop in line 58 of Listing 32.6 was changed to an if statement?

	32.9.3	Why does the following class have a syntax error?

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() throws InterruptedException {
 Thread thread = new Thread(this);
 thread.sleep(1000);
 }

 public synchronized void run() {
 }
}

	32.9.4	What is a possible cause for IllegalMonitorStateException?

	32.9.5	Can wait(), notify(), and notifyAll() be invoked from any object? What is the purpose of these methods?

	32.9.6	What is wrong in the following code?

synchronized (object1) {
 try {
 while (!condition) object2.wait();
 }
 catch (InterruptedException ex) {
 }
}

32.10 Case Study: Producer/Consumer

	This section gives the classic Consumer/Producer example for demonstrating thread coordination.

Suppose that you use a buffer to store integers and that the buffer size is limited. The buffer provides the method write(int) to add an int value to the buffer and the method read() to read and delete an int value from the buffer. To synchronize the operations, use a lock with two conditions: notEmpty (i.e., the buffer is not empty) and notFull (i.e., the buffer is not full). When a task adds an int to the buffer, if the buffer is full, the task will wait for the notFull condition. When a task reads an int from the buffer, if the buffer is empty, the task will wait for the notEmpty condition. The interaction between the two tasks is shown in Figure 32.18.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented once: task for adding an i n t. Line 2: while, left parenthesis, count = = capacity, right parenthesis. Line 3, indented once: not full, period, await, left parenthesis, right parenthesis, semicolon. Line 4, indented once: add an i n t to the buffer.Line 5, indented once: not empty, period, signal, left parenthesis, right parenthesis, semicolon. Line 6, indented once: task for deleting an i n t. Line 7: while, left parenthesis, count = = 0, right parenthesis. Line 8, indented once: not empty, period, await, left parenthesis, right parenthesis, semicolon. Line 9: delete an i n t from the buffer, point. Line 10, indented once: not full, period, signal, left parenthesis, right parenthesis, semicolon.]Figure 32.18

The conditions notFull and notEmpty are used to coordinate task interactions.

Listing 32.7 presents the complete program. The program contains the Buffer class (lines 50–101) and two tasks for repeatedly adding and consuming numbers to and from the buffer (lines 16–47). The write(int) method (lines 62–79) adds an integer to the buffer. The read() method (lines 81–100) deletes and returns an integer from the buffer.

The buffer is actually a first-in, first-out queue (lines 52 and 53). The conditions notEmpty and notFull on the lock are created in lines 59 and 60. The conditions are bound to a lock. A lock must be acquired before a condition can be applied. If you use the wait() and notify() methods to rewrite this example, you have to designate two objects as monitors.

Listing 32.7 ConsumerProducer.java

		 1 import java.util.concurrent.*;
		 2 import java.util.concurrent.locks.*;
		 3
		 4 public class ConsumerProducer {
create a buffer 5 private static Buffer buffer = new Buffer();
		 6
 7 public static void main(String[] args) {
		 8 // Create a thread pool with two threads
create two threads 9 ExecutorService executor = Executors.newFixedThreadPool(2);
		 10 executor.execute(new ProducerTask());
		 11 executor.execute(new ConsumerTask());
		 12 executor.shutdown();
		 13 }
		 14
		 15 // A task for adding an int to the buffer
producer task 16 private static class ProducerTask implements Runnable {
		 17 public void run() {
		 18 try {
		 19 int i = 1;
		 20 while (true) {
		 21 System.out.println("Producer writes " + i);
		 22 buffer.write(i++); // Add a value to the buffer
		 23 // Put the thread into sleep
		 24 Thread.sleep((int)(Math.random() * 10000));
		 25 }
		 26 }
		 27 catch (InterruptedException ex) {
		 28 ex.printStackTrace();
		 29 }
		 30 }
		 31 }
		 32
		 33 // A task for reading and deleting an int from the buffer
consumer task 34 private static class ConsumerTask implements Runnable {
		 35 public void run() {
		 36 try {
		 37 while (true) {
		 38 System.out.println("\t\t\tConsumer reads " + buffer.read());
		 39 // Put the thread into sleep
		 40 Thread.sleep((int)(Math.random() * 10000));
		 41 }
		 42 }
		 43 catch (InterruptedException ex) {
		 44 ex.printStackTrace();
		 45 }
		 46 }
		 47 }
		 48
		 49 // An inner class for buffer
		 50 private static class Buffer {
		 51 private static final int CAPACITY = 1; // buffer size
		 52 private java.util.LinkedList<Integer> queue =
		 53 new java.util.LinkedList<>();
		 54
		 55 // Create a new lock
create a lock 56 private static Lock lock = new ReentrantLock();
		 57
		 58 // Create two conditions
create a condition 59 private static Condition notEmpty = lock.newCondition();
create a condition 60 private static Condition notFull = lock.newCondition();
		 61
		 62 public void write(int value) {
acquire the lock 63 lock.lock(); // Acquire the lock
		 64 try {
		 65 while (queue.size() == CAPACITY) {
		 66 System.out.println("Wait for notFull condition");
wait for notFull 67 notFull.await();
		 68 }
		 69
		 70 queue.offer(value);
signal notEmpty 71 notEmpty.signal(); // Signal notEmpty condition
		 72 }
		 73 catch (InterruptedException ex) {
		 74 ex.printStackTrace();
		 75 }
		 76 finally {
release the lock 77 lock.unlock(); // Release the lock
		 78 }
		 79 }
		 80
		 81 public int read() {
		 82 int value = 0;
acquire the lock 83 lock.lock(); // Acquire the lock
		 84 try {
		 85 while (queue.isEmpty()) {
		 86 System.out.println("\t\t\tWait for notEmpty condition");
wait for notEmpty 87 notEmpty.await();
	 88 }
		 89
		 90 value = queue.remove();
signal notFull 91 notFull.signal(); // Signal notFull condition
		 92 }
		 93 catch (InterruptedException ex) {
		 94 ex.printStackTrace();
		 95 }
		 96 finally {
release the lock 97 lock.unlock(); // Release the lock
	 98 return value;
		 99 }
		 100 }
		 101 }
		 102 }

A sample run of the program is shown in Figure 32.19.

 Figure 32.19

Locks and conditions are used for communications between the Producer and Consumer threads.

	32.10.1	Can the read and write methods in the Buffer class be executed concurrently?

	32.10.2	When invoking the read method, what happens if the queue is empty?

	32.10.3	When invoking the write method, what happens if the queue is full?

32.11 Blocking Queues

	Java Collections Framework provides ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue for supporting blocking queues.

Queues and priority queues were introduced in Section 20.9. A blocking queue causes a thread to block when you try to add an element to a full queue or to remove an element from an empty queue. The BlockingQueue interface extends java.util.Queue and provides the synchronized put and take methods for adding an element to the tail of the queue and for removing an element from the head of the queue, as shown in Figure 32.20.

blocking queue

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: << interface >>. Line 2, indented once: j ay v ay, period, u t i l, period, collection < e >. Line 3, indented twice: << interface >>. Line 4, indented once: j ay v ay, period, u t i l, period, queue < e >. Line 5, indented twice: << interface >>. Line 6: j ay v ay, period, u t i l, period, concurrent, period, blocking queue, < e >. Line 7: + put, left parenthesis, element, colon, e, right parenthesis, colon, void. Note: It inserts an element to the tail of the queue. It waits if the queue is full. Line 8: blank. Line 9: + take, left parenthesis, right parenthesis, colon, e. Note: It retrieves and removes the head of this queue. It waits if the queue is empty.]Figure 32.20

BlockingQueue is a subinterface of Queue.

Three concrete blocking queues—ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue—are provided in Java, as shown in Figure 32.21. All are in the java.util.concurrent package. ArrayBlockingQueue implements a blocking queue using an array. You have to specify a capacity or an optional fairness to construct an ArrayBlockingQueue. LinkedBlockingQueue implements a blocking queue using a linked list. You can create an unbounded or bounded LinkedBlockingQueue. PriorityBlockingQueue is a priority queue. You can create an unbounded or bounded priority queue.

 Figure 32.21

ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue are concrete ­blocking queues.

 Note

The put method will never block an unbounded LinkedBlockingQueue or PriorityBlockingQueue.

unbounded queue

Listing 32.8 gives an example of using an ArrayBlockingQueue to simplify the Consumer/Producer example in Listing 32.10. Line 5 creates an ArrayBlockingQueue to store integers. The Producer thread puts an integer into the queue (line 22) and the Consumer thread takes an integer from the queue (line 38).

Listing 32.8 ConsumerProducerUsingBlockingQueue.java

		 1 import java.util.concurrent.*;
		 2
		 3 public class ConsumerProducerUsingBlockingQueue {
 4 private static ArrayBlockingQueue<Integer> buffer =
create a buffer 5 new ArrayBlockingQueue<>(2);
		 6
		 7 public static void main(String[] args) {
		 8 // Create a thread pool with two threads
create two threads 9 ExecutorService executor = Executors.newFixedThreadPool(2);
		 10 executor.execute(new ProducerTask());
		 11 executor.execute(new ConsumerTask());
		 12 executor.shutdown();
		 13 }
		 14
		 15 // A task for adding an int to the buffer
producer task 16 private static class ProducerTask implements Runnable {
	 17 public void run() {
		 18 try {
		 19 int i = 1;
		 20 while (true) {
		 21 System.out.println("Producer writes " + i);
put		 22 buffer.put(i++); // Add any value to the buffer, say, 1
		 23 // Put the thread into sleep
		 24 Thread.sleep((int)(Math.random() * 10000));
		 25 }
		 26 }
		 27 catch (InterruptedException ex) {
		 28 ex.printStackTrace();
		 29 }
		 30 }
		 31 }
		 32
		 33 // A task for reading and deleting an int from the buffer
Consumer task	 34 private static class ConsumerTask implements Runnable {
		 35 public void run() {
		 36 try {
		 37 while (true) {
take		 38 System.out.println("\t\t\tConsumer reads " + buffer.take());
		 39 // Put the thread into sleep
		 40 Thread.sleep((int)(Math.random() * 10000));
		 41 }
		 42 }
		 43 catch (InterruptedException ex) {
		 44 ex.printStackTrace();
		 45 }
		 46 }
		 47 }
		 48 }

In Listing 32.7, you used locks and conditions to synchronize the Producer and Consumer threads. This program does not use locks and conditions because synchronization is already implemented in ArrayBlockingQueue.

	32.11.1	What is a blocking queue? What blocking queues are supported in Java?

	32.11.2	What method do you use to add an element to an ArrayBlockingQueue? What happens if the queue is full?

	32.11.3	What method do you use to retrieve an element from an ArrayBlockingQueue? What happens if the queue is empty?

32.12 Semaphores

	Semaphores can be used to restrict the number of threads that access a shared resource.

In computer science, a semaphore is an object that controls the access to a common resource. Before accessing the resource, a thread must acquire a permit from the semaphore. After finishing with the resource, the thread must return the permit back to the semaphore, as shown in Figure 32.22.

 Figure 32.22

A limited number of threads can access a shared resource controlled by a semaphore.

semaphore

To create a semaphore, you have to specify the number of permits with an optional fairness policy, as shown in Figure 32.23. A task acquires a permit by invoking the semaphore’s acquire() method and releases the permit by invoking the semaphore’s release() method. Once a permit is acquired, the total number of available permits in a semaphore is reduced by 1. Once a permit is released, the total number of available permits in a semaphore is increased by 1.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: java, period, u t i l, period, concurrent, period, semaphore. Line 2: blank. Line 3: + semaphore, left parenthesis, number of permits, colon, i n t, right parenthesis. Note: It creates a semaphore with the specified number of permits. The fairness policy is false. Line 4: + semaphore, left parenthesis, number of permits, colon, i n t, comma, fair, colon. Line 5, indented once: boolean, right parenthesis. Note: It creates a semaphore with the specified number of permits and the fairness policy. Line 6: + acquire, left parenthesis, right parenthesis, colon, void. Note: It acquires a permit from this semaphore. If no permit is available, the thread is blocked until one is available. Line 7: blank. Line 8: + release, left parenthesis, right parenthesis, colon, void. Note: It releases a permit back to the semaphore.]Figure 32.23

The Semaphore class contains the methods for accessing a semaphore.

A semaphore with just one permit can be used to simulate a mutually exclusive lock. ­Listing 32.9 revises the Account inner class in Listing 32.9 using a semaphore to ensure that only one thread at a time can access the deposit method.

Listing 32.9 New Account Inner Class

 		 1 // An inner class for Account
		 2 private static class Account {
		 3 // Create a semaphore
create a semaphore 4 private static Semaphore semaphore = new Semaphore(1);
		 5 private int balance = 0;
		 6
		 7 public int getBalance() {
		 8 return balance;
		 9 }
		 10
		 11 public void deposit(int amount) {
		 12 try {
acquire a permit 13 semaphore.acquire(); // Acquire a permit
		 14 int newBalance = balance + amount;
		 15
		 16 // This delay is deliberately added to magnify the
		 17 // data-corruption problem and make it easy to see
		 18 Thread.sleep(5);
		 19
		 20 balance = newBalance;
		 21 }
		 22 catch (InterruptedException ex) {
		 23 }
		 24 finally {
release a permit 25 semaphore.release(); // Release a permit
		 26 }
		 27 }
		 28 }

A semaphore with one permit is created in line 4. A thread first acquires a permit when executing the deposit method in line 13. After the balance is updated, the thread releases the permit in line 25. It is a good practice to always place the release() method in the finally clause to ensure that the permit is finally released even in the case of exceptions.

	32.12.1	What are the similarities and differences between a lock and a semaphore?

	32.12.2	How do you create a semaphore that allows three concurrent threads? How do you acquire a semaphore? How do you release a semaphore?

32.13 Avoiding Deadlocks

	Deadlocks can be avoided by using a proper resource ordering.

Sometimes two or more threads need to acquire the locks on several shared objects. This could cause a deadlock, in which each thread has the lock on one of the objects and is waiting for the lock on the other object. Consider the scenario with two threads and two objects, as shown in Figure 32.24. Thread 1 has acquired a lock on object1, and Thread 2 has acquired a lock on object2. Now Thread 1 is waiting for the lock on object2, and Thread 2 for the lock on object1. Each thread waits for the other to release the lock it needs and until that happens, neither can continue to run.

 [image: Program code. In the code, the words in the variable names are merged. Thread 1: Line 1: synchronized, left parenthesis, object 1, right parenthesis, left brace. Line 2: blank. Line 3, indented once: forward slash, forward slash, do something here. Line 4: blank. Line 5, indented once: synchronized, left parenthesis, object 2, right parenthesis, left brace. Note: Wait for thread 2 to release the lock on object 2. Line 6: blank. Line 7, indented twice: forward slash, forward slash, do something here. Line 8: right brace. Line 9: right brace. Thread 2: Line 1: blank. Line 2: synchronized, left parenthesis, object 2, right parenthesis, left brace. Line 3: blank. Line 4, indented once: forward slash, forward slash, do something here. Line 5: blank. Line 6, indented once: synchronized, left parenthesis, object 1, right parenthesis, left brace. Note: Wait for thread 1 to release the lock on object 1. Line 7, indented twice: forward slash, forward slash, do something here. Line 8: right brace. Line 9: right brace.]Figure 32.24

Thread 1 and Thread 2 are deadlocked.

deadlock

Deadlock is easily avoided by using a simple technique known as resource ordering. With this technique, you assign an order to all the objects whose locks must be acquired and ensure that each thread acquires the locks in that order. For example in Figure 32.24, suppose the objects are ordered as object1 and object2. Using the resource-ordering technique, Thread 2 must acquire a lock on object1 first, then on object2. Once Thread 1 acquires a lock on object1, Thread 2 has to wait for a lock on object1. Thus, Thread 1 will be able to acquire a lock on object2 and no deadlock will occur.

resource ordering

	32.13.1	What is a deadlock? How can you avoid deadlock?

32.14 Thread States

	A thread state indicates the status of thread.

Tasks are executed in threads. Threads can be in one of the five states: New, Ready, Running, Blocked, or Finished (see Figure 32.25).

 [image: Thread created in state new; start: it is in state ready; run: it is in state running; 1, yield or time out: it is in state ready; 2, join: it waits for target to finish in state blocked, after which it is in state ready; 3, sleep: it waits for time out in state blocked, after which it is in state ready; 4, wait: it waits to be notified in state blocked, after which it is in state ready; 5, run completed: it is in state finished.]Figure 32.25

A thread can be in one of the five states: New, Ready, Running, Blocked, or Finished.

When a thread is newly created, it enters the New state. After a thread is started by calling its start() method, it enters the Ready state. A ready thread is runnable but may not be running yet. The operating system has to allocate CPU time to it.

When a ready thread begins executing, it enters the Running state. A running thread can enter the Ready state if its given CPU time expires or its yield() method is called.

A thread can enter the Blocked state (i.e., become inactive) for several reasons. It may have invoked the join(), sleep(), or wait() method. It may be waiting for an I/O operation to finish. A blocked thread may be reactivated when the action inactivating it is reversed. For example, if a thread has been put to sleep and the sleep time has expired, the thread is ­reactivated and enters the Ready state.

Finally, a thread is Finished if it completes the execution of its run() method.

The isAlive() method is used to find out the state of a thread. It returns true if a thread is in the Ready, Blocked, or Running state; it returns false if a thread is new and has not started or if it is finished.

The interrupt() method interrupts a thread in the following way: If a thread is currently in the Ready or Running state, its interrupted flag is set; if a thread is currently blocked, it is awakened and enters the Ready state, and a java.lang.InterruptedException is thrown.

	32.14.1	What is a thread state? Describe the states for a thread.

32.15 Synchronized Collections

	Java Collections Framework provides synchronized collections for lists, sets, and maps.

The classes in the Java Collections Framework are not thread-safe; that is, their contents may become corrupted if they are accessed and updated concurrently by multiple threads. You can protect the data in a collection by locking the collection or by using synchronized collections.

synchronized collection

The Collections class provides six static methods for wrapping a collection into a synchronized version, as shown in Figure 32.26. The collections created using these methods are called synchronization wrappers.

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: java, period, u t i l, period, collections. Line 2: + synchronized collection, left parenthesis, c, colon, collection, right parenthesis, colon, collection. Note: It returns a synchronized collection. Line 3: + synchronized list, left parenthesis, list, colon, list, right parenthesis, colon, list. Note: It returns a synchronized list from the specified list. Line 4: +synchronized map, left parenthesis, m, colon, map, right parenthesis, colon, map. Note: It returns a synchronized map from the specified map. Line 5: + synchronized set, left parenthesis, s, colon, set, right parenthesis, colon, set. Note: It returns a synchronized set from the specified set. Line 6: + synchronized sorted map, left parenthesis, s, colon, sorted map, right parenthesis, colon, sorted map. Note: It returns a synchronized sorted map from the specified sorted map. Line 7: +synchronized sorted set, left parenthesis, s, colon, sorted set, right parenthesis, colon, sorted set. Note: It returns a synchronized sorted set.]Figure 32.26

You can obtain synchronized collections using the methods in the Collections class.

synchronization wrapper

Invoking synchronizedCollection(Collection c) returns a new ­Collection object, in which all the methods that access and update the original collection c are synchronized. These methods are implemented using the synchronized keyword. For ­example, the add method is implemented like this:

public boolean add(E o) {
 synchronized (this) {
 return c.add(o);
 }
}

Synchronized collections can be safely accessed and modified by multiple threads concurrently.

 Note

The methods in java.util.Vector, java.util.Stack, and java.util.Hashtable are already synchronized. These are old classes introduced in JDK 1.0. Starting with JDK 1.5, you should use java.util.ArrayList to replace Vector, java.util.LinkedList to replace Stack, and java.util.Map to replace Hashtable. If synchronization is needed, use a synchronization wrapper.

fail-fast

The synchronization wrapper classes are thread-safe, but the iterator is fail-fast. This means that if you are using an iterator to traverse a collection while the underlying collection is being modified by another thread, then the iterator will immediately fail by throwing java.util.ConcurrentModificationException, which is a subclass of RuntimeException. To avoid this error, you need to create a synchronized collection object and acquire a lock on the object when traversing it. For example, to traverse a set, you have to write the code like this:

Set hashSet = Collections.synchronizedSet(new HashSet());

synchronized (hashSet) { // Must synchronize it
 Iterator iterator = hashSet.iterator();

 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
}

Failure to do so may result in nondeterministic behavior, such as a Con­current- ­Modi­ficationException.

	32.15.1	What is a synchronized collection? Is ArrayList synchronized? How do you make it synchronized?

	32.15.2	Explain why an iterator is fail-fast.

32.16 Parallel Programming

	The Fork/Join Framework is used for parallel programming in Java.

Section 7.12 introduced the Arrays.sort and Arrays.parallelSort method for sorting an array. The parallelSort method utilizes multiple processors to reduce sort time. Chapter 22 introduced parallel streams for executing stream operations in parallel to speed up processing using multiple processors. The parallel processing are implemented using the Fork/Join Framework. This section, introduces the new Fork/Join Framework so you can write own code for parallel programming.

The Fork/Join Framework is illustrated in Figure 32.27 (the diagram resembles a fork, hence its name). A problem is divided into nonoverlapping subproblems, which can be solved independently in parallel. The solutions to all subproblems are then joined to obtain an overall solution for the problem. This is the parallel implementation of the divide-and-conquer approach. In JDK 7’s Fork/Join Framework, a fork can be viewed as an independent task that runs on a thread.

 Figure 32.27

The nonoverlapping subproblems are solved in parallel.

JDK 7 feature

Fork/Join Framework

The framework defines a task using the ForkJoinTask class, as shown in Figure 32.28 and executes a task in an instance of ForkJoinPool, as shown in Figure 32.29.

 [image: A U M L class diagram for java dot util dot concurrent dot future < v >.]Figure 32.28

The ForkJoinTask class defines a task for asynchronous execution.

Description

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: << interface >>. Line 2, indented once: jay vay, period, u t i l, period, concurrent, period, executor service. Line 3, indented once: java, period, u t i l, period, concurrent, period, fork join pool. Line 4: + fork join pool, left parenthesis, right parenthesis. Note: It creates a fork join pool with all available processors. Line 5: + fork join pool, left parenthesis, parallelism, colon, i n t, right parenthesis. Note: It creates a fork join pool with the specified number of processors. Line 6: + invoke, left parenthesis, fork join task, < t >, right parenthesis, colon, t. Note: It performs the task and returns its result upon completion.]Figure 32.29

The ForkJoinPool executes Fork/Join tasks.

ForkJoinTask

ForkJoinPool

ForkJoinTask is the abstract base class for tasks. A ForkJoinTask is a thread-like entity, but it is much lighter than a normal thread because huge numbers of tasks and subtasks can be executed by a small number of actual threads in a ForkJoinPool. The tasks are primarily coordinated using fork() and join(). Invoking fork() on a task arranges asynchronous execution and invoking join() waits until the task is completed. The invoke() and invokeAll(tasks) methods implicitly invoke fork() to execute the task and join() to wait for the tasks to complete and return the result, if any. Note the static method invokeAll takes a variable number of ForkJoinTask arguments using the ... syntax, which is introduced in Section 7.9.

The Fork/Join Framework is designed to parallelize divide-and-conquer solutions, which are naturally recursive. RecursiveAction and RecursiveTask are two subclasses of ­ForkJoinTask. To define a concrete task class, your class should extend RecursiveAction or RecursiveTask. RecursiveAction is for a task that doesn’t return a value and ­RecursiveTask is for a task that does return a value. Your task class should override the ­compute() method to specify how a task is performed.

RecursiveAction

RecursiveTask

We now use a merge sort to demonstrate how to develop parallel programs using the Fork/Join Framework. The merge sort algorithm (introduced in Section 25.3) divides the array into two halves and applies a merge sort on each half recursively. After the two halves are sorted, the algorithm merges them. Listing 32.10 gives a parallel implementation of the merge sort algorithm and compares its execution time with a sequential sort.

Listing 32.10 ParallelMergeSort.java

			 1 import java.util.concurrent.RecursiveAction;
			 2 import java.util.concurrent.ForkJoinPool;
			 3
			 4 public class ParallelMergeSort {
			 5 public static void main(String[] args) {
			 6 final int SIZE = 7000000;
			 7 int[] list1 = new int[SIZE];
			 8 int[] list2 = new int[SIZE];
			 9
			 10 for (int i = 0; i < list1.length; i++)
			 11 list1[i] = list2[i] = (int)(Math.random() * 10000000);
			 12
			 13 long startTime = System.currentTimeMillis();
invoke parallel sort 14 parallelMergeSort(list1); // Invoke parallel merge sort
			 15 long endTime = System.currentTimeMillis();
			 16 System.out.println("\nParallel time with "
			 17 + Runtime.getRuntime().availableProcessors() +
			 18 " processors is " + (endTime - startTime) + " milliseconds");
			 19
			 20 startTime = System.currentTimeMillis();
invoke sequential sort 21 MergeSort.mergeSort(list2); // MergeSort is in Listing 23.5
			 22 endTime = System.currentTimeMillis();
			 23 System.out.println("\nSequential time is " +
			 24 (endTime - startTime) + " milliseconds");
			 25 }
			 26
			 27 public static void parallelMergeSort(int[] list) {
create a ForkJoinTask 28 RecursiveAction mainTask = new SortTask(list);
create a ForkJoinPool	 29 ForkJoinPool pool = new ForkJoinPool();
execute a task 30 pool.invoke(mainTask);
			 31 }
			 32
define concrete ForkJoinTask 33 private static class SortTask extends RecursiveAction {
			 34 private final int THRESHOLD = 500;
			 35 private int[] list;
			 36
			 37 SortTask(int[] list) {
			 38 this.list = list;
			 39 }
			 40
			 41 @Override
			 42 protected void compute() {
perform the task	 43 if (list.length < THRESHOLD)
sort a small list	 44 java.util.Arrays.sort(list);
			 45 else {
			 46 // Obtain the first half
split into two parts	 47 int[] firstHalf = new int[list.length / 2];
			 48 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
			 49
			 50 // Obtain the second half
			 51 int secondHalfLength = list.length - list.length / 2;
			 52 int[] secondHalf = new int[secondHalfLength];
			 53 System.arraycopy(list, list.length / 2,
			 54 secondHalf, 0, secondHalfLength);
			 55
			 56 // Recursively sort the two halves
solve each part 57 invokeAll(new SortTask(firstHalf),
		 58 new SortTask(secondHalf));
			 59
			 60 // Merge firstHalf with secondHalf into list
merge two parts 61 MergeSort.merge(firstHalf, secondHalf, list);
			 62 }
			 63 }
			 64 }
			 65 }

Parallel time with two processors is 2829 milliseconds
Sequential time is 4751 milliseconds

Since the sort algorithm does not return a value, we define a concrete ForkJoinTask class by extending RecursiveAction (lines 33–64). The compute method is overridden to implement a recursive merge sort (lines 42–63). If the list is small, it is more efficient to be solved sequentially (line 44). For a large list, it is split into two halves (lines 47–54). The two halves are sorted concurrently (lines 57 and 58) and then merged (line 61).

The program creates a main ForkJoinTask (line 28), a ForkJoinPool (line 29), and places the main task for execution in a ForkJoinPool (line 30). The invoke method will return after the main task is completed.

When executing the main task, the task is split into subtasks, and the subtasks are invoked using the invokeAll method (lines 57 and 58). The invokeAll method will return after all the subtasks are completed. Note each subtask is further split into smaller tasks recursively. Huge numbers of subtasks may be created and executed in the pool. The Fork/Join Framework automatically executes and coordinates all the tasks efficiently.

The MergeSort class is defined in Listing 23.5. The program invokes MergeSort.merge to merge two sorted sublists (line 61). The program also invokes MergeSort.mergeSort (line 21) to sort a list using merge sort sequentially. You can see that the parallel sort is much faster than the sequential sort.

Note the loop for initializing the list can also be parallelized. However, you should avoid using Math.random() in the code because it is synchronized and cannot be executed in parallel (see Programming Exercise 32.12). The parallelMergeSort method only sorts an array of int values, but you can modify it to become a generic method (see Programming Exercise 32.13).

In general, a problem can be solved in parallel using the following pattern:

if (the program is small)
 solve it sequentially;
else {
 divide the problem into nonoverlapping subproblems;
 solve the subproblems concurrently;
 combine the results from subproblems to solve the whole problem;
}

Listing 32.11 develops a parallel method that finds the maximal number in a list.

Listing 32.11 ParallelMax.java

			 1 import java.util.concurrent.*;
			 2
			 3 public class ParallelMax {
			 4 public static void main(String[] args) {
			 5 // Create a list
			 6 final int N = 9000000;
			 7 int[] list = new int[N];
			 8 for (int i = 0; i < list.length; i++)
			 9 list[i] = i;
			 10
			 11 long startTime = System.currentTimeMillis();
invoke max		 12 System.out.println("\nThe maximal number is " + max(list));
			 13 long endTime = System.currentTimeMillis();
			 14 System.out.println("The number of processors is " +
			 15 Runtime.getRuntime().availableProcessors());
			 16 System.out.println("Time is " + (endTime − startTime)
			 17 + " milliseconds");
			 18 }
			 19
			 20 public static int max(int[] list) {
create a ForkJoinTask	 21 RecursiveTask<Integer> task = new MaxTask(list, 0, list.length);
create a ForkJoinPool 22 ForkJoinPool pool = new ForkJoinPool();
execute a task		 23 return pool.invoke(task);
			 24 }
		 25
define concrete ForkJoinTask 26 private static class MaxTask extends RecursiveTask<Integer> {
			 27 private final static int THRESHOLD = 1000;
			 28 private int[] list;
			 29 private int low;
			 30 private int high;
			 31
			 32 public MaxTask(int[] list, int low, int high) {
			 33 this.list = list;
			 34 this.low = low;
			 35 this.high = high;
			 36 }
			 37
			 38 @Override
perform the task 39 public Integer compute() {
 40 if (high − low < THRESHOLD) {
solve a small problem 41 int max = list[0];
split into two parts 42 for (int i = low; i < high; i++)
			 43 if (list[i] > max)
			 44 max = list[i];
			 45 return new Integer(max);
			 46 }
			 47 else {
			 48 int mid = (low + high) / 2;
			 49 RecursiveTask<Integer> left = new MaxTask(list, low, mid);
			 50 RecursiveTask<Integer> right = new MaxTask(list, mid, high);
			 51
fork right 52 right.fork();
fork left 53 left.fork();
join tasks 54 return new Integer(Math.max(left.join().intValue(),
 55 right.join().intValue()));
			 56 }
			 57 }
			 58 }
			 59 }

The maximal number is 8999999
The number of processors is 2
Time is 44 milliseconds

Since the algorithm returns an integer, we define a task class for fork join by extending RecursiveTask<Integer> (lines 26–58). The compute method is overridden to return the max element in a list[low..high] (lines 39–57). If the list is small, it is more efficient to be solved sequentially (lines 40–46). For a large list, it is split into two halves (lines 48–50). The tasks left and right find the maximal element in the left half and right half, respectively. Invoking fork() on the task causes the task to be executed (lines 52 and 53). The join() method awaits for the task to complete and then returns the result (lines 54 and 55).

	32.16.1	How do you define a ForkJoinTask? What are the differences between ­RecursiveAction and RecursiveTask?

	32.16.2	How do you tell the system to execute a task?

	32.16.3	What method can you use to test if a task has been completed?

	32.16.4	How do you create a ForkJoinPool? How do you place a task into a ForkJoinPool?

Key Terms

	condition 32-18

	deadlock 32-30

	fail-fast 32-32

	fairness policy 32-17

	Fork/Join Framework 32-32

	lock 32-16

	monitor 32-22

	multithreading 32-2

	race condition 32-15

	semaphore 32-28

	synchronization wrapper 32-31

	synchronized block 32-16

	thread 32-2

	thread-safe 32-15

Chapter Summary

	Each task is an instance of the Runnable interface. A thread is an object that facilitates the execution of a task. You can define a task class by implementing the Runnable interface and create a thread by wrapping a task using a Thread constructor.

	After a thread object is created, use the start() method to start a thread, and the sleep(long) method to put a thread to sleep so other threads get a chance to run.

	A thread object never directly invokes the run method. The JVM invokes the run method when it is time to execute the thread. Your class must override the run method to tell the system what the thread will do when it runs.

	To prevent threads from corrupting a shared resource, use synchronized methods or blocks. A synchronized method acquires a lock before it executes. In the case of an instance method, the lock is on the object for which the method was invoked. In the case of a static method, the lock is on the class.

	A synchronized statement can be used to acquire a lock on any object, not just this object, when executing a block of the code in a method. This block is referred to as a synchronized block.

	You can use explicit locks and conditions to facilitate communications among threads, as well as using the built-in monitor for objects.

	The blocking queues (ArrayBlockingQueue, LinkedBlockingQueue, and Priority­BlockingQueue) provided in the Java Collections Framework provide automatical synchronization for the access to a queue.

	You can use semaphores to restrict the number of concurrent accesses to a shared resource.

	Deadlock occurs when two or more threads acquire locks on multiple objects and each has a lock on one object and is waiting for the lock on the other object. The resource­ordering technique can be used to avoid deadlock.

	The JDK 7’s Fork/Join Framework is designed for developing parallel programs. You can define a task class that extends RecursiveAction or RecursiveTask and execute the tasks concurrently in ForkJoinPool and obtain the overall solution after all tasks are completed.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Sections 32.1–32.5

	*32.1	(Revise Listing 32.1) Rewrite Listing 32.1 to display the output in a text area, as shown in Figure 32.30 .

 Figure 32.30

The output from three threads is displayed in a text area.

	32.2	(Racing cars) Rewrite Programming Exercise 15.29 using a thread to control car racing. Compare the program with Programming Exercise 15.29 by setting the delay time to 10 in both the programs. Which one runs the animation faster?

	32.3	(Raise flags) Rewrite Listing 15.13 using a thread to animate a flag being raised. Compare the program with Listing 15.13 by setting the delay time to 10 in both programs. Which one runs the animation faster?

Sections 32.8–32.12

	32.4	(Synchronize threads) Write a program that launches 1,000 threads. Each thread adds 1 to a variable sum that initially is 0. You need to pass sum by reference to each thread. In order to pass it by reference, define an Integer wrapper object to hold sum. Run the program with and without synchronization to see its effect.

	32.5	(Display a running fan) Rewrite Programming Exercise 15.28 using a thread to control the fan animation.

	32.6	(Bouncing balls) Rewrite Listing 15.17 , BallPane.java using a thread to animate bouncing ball movements.

	32.7	(Control a clock) Rewrite Programming Exercise 15.32 using a thread to control the clock animation.

	32.8	(Account synchronization) Rewrite Listing 32.6 , ThreadCooperation.java, using the object’s wait() and notifyAll() methods.

	32.9	(Demonstrate ConcurrentModificationException) The iterator is fail-fast. Write a program to demonstrate it by creating two threads that concurrently access and modify a set. The first thread creates a hash set filled with numbers and adds a new number to the set every second. The second thread obtains an iterator for the set and traverses the set back and forth through the iterator every second. You will receive a ConcurrentModificationException because the underlying set is being modified in the first thread while the set in the second thread is being traversed.

	*32.10	(Use synchronized sets) Using synchronization, correct the ­problem in the preceding exercise so that the second thread does not throw a Concurrent­ModificationException.

Section 32.15

	*32.11	(Demonstrate deadlock) Write a program that demonstrates deadlock.

Section 32.18

	*32.12	(Parallel array initializer) Implement the following method using the Fork/Join Framework to assign random values to the list.

public static void parallelAssignValues(double[] list)

Write a test program that creates a list with 9,000,000 elements and invokes ­parallelAssignValues to assign random values to the list. Also implement a sequential algorithm and compare the execution time of the two. Note if you use Math.random(), your parallel code execution time will be worse than the sequential code execution time because Math.random() is synchronized and cannot be executed in parallel. To fix this problem, create a Random object for assigning random values to a small list.

	32.13	(Generic parallel merge sort) Revise Listing 32.10 , ParallelMergeSort.java, to define a generic parallelMergeSort method as follows:

public static <E extends Comparable<E>> void parallelMergeSort(E[] list)

	*32.14	(Parallel quick sort) Implement the following method in parallel to sort a list using quick sort (see Listing 23.7):

public static void parallelQuickSort(int[] list)

Write a test program that times the execution time for a list of size 9,000,000 using this parallel method and a sequential method.

	*32.15	(Parallel sum) Implement the following method using Fork/Join to find the sum of a list.

public static double parallelSum(double[] list)

Write a test program that finds the sum in a list of 9,000,000 double values.

	*32.16	(Parallel matrix addition) Programming Exercise 8.5 describes how to perform matrix addition. Suppose you have multiple processors, so you can speed up the matrix addition. Implement the following method in parallel:

public static double[][] parallelAddMatrix(
 double[][] a, double[][] b)

Write a test program that measures the execution time for adding two
2000×2000 matrices using the parallel method and sequential method, respectively.

	*32.17	(Parallel matrix multiplication) Programming Exercise 7.6 describes how to perform matrix multiplication. Suppose that you have multiple processors, so you can speed up the matrix multiplication. Implement the following method in parallel:

public static double[][] parallelMultiplyMatrix(
 double[][] a, double[][] b)

Write a test program that measures the execution time for multiplying two
2000×2000 matrices using the parallel method and sequential method, respectively.

	*32.18	(Parallel Eight Queens) Revise Listing 22.11 , EightQueens.java, to develop a ­parallel algorithm that finds all solutions for the Eight Queens problem. (Hint: Launch eight subtasks, each of which places the queen in a different column in the first row.)

Comprehensive

	***32.19	(Sorting animation) Write an animation for selection sort, insertion sort, and bubble sort, as shown in Figure 32.31 . Create an array of integers 1, 2, . . . , 50. Shuffle it randomly. Create a pane to display the array in a histogram. You should invoke each sort method in a separate thread. Each algorithm uses two nested loops. When the algorithm completes an iteration in the outer loop, put the thread to sleep for 0.5 seconds and redisplay the array in the histogram. Color the last bar in the sorted subarray.

 Figure 32.31

Three sorting algorithms are illustrated in the animation.

	***32.20	(Sudoku search animation) Modify Programming Exercise 22.21 to display the intermediate results of the search. Figure 32.32 gives a snapshot of an animation in progress with number 2 placed in the cell in Figure 32.32a , number 3 placed in the cell in Figure 32.32b , and number 3 placed in the cell in Figure 32.32c . The animation displays all the search steps.

 Figure 32.32

The intermediate search steps are displayed in the animation for the Sudoku problem.

	 32.21	(Combine colliding bouncing balls) Rewrite Programming Exercise 20.5 using a thread to animate bouncing ball movements.

	***32.22	(Eight Queens animation) Modify Listing 22.11 , EightQueens.java, to display the intermediate results of the search. As shown in Figure 32.33 , the current row being searched is highlighted. Every one second, a new state of the chess board is displayed.

 Figure 32.33

The intermediate search steps are displayed in the animation for the Eight Queens problem.

CHAPTER 33 Networking

Objectives

	To explain the terms: TCP, IP, domain name, domain name server, stream-based communications, and packet-based communications (§33.2).

	To create servers using server sockets (§33.2.1) and clients using client sockets (§33.2.2).

	To implement Java networking programs using stream sockets (§33.2.3).

	To develop an example of a client/server application (§33.2.4).

	To obtain Internet addresses using the InetAddress class (§33.3).

	To develop servers for multiple clients (§33.4).

	To send and receive objects on a network (§33.5).

	To develop an interactive tic-tac-toe game played on the Internet (§33.6).

33.1 Introduction

[image:]

	Computer networking is used to send and receive messages among computers on the Internet.

To browse the Web or send an email, your computer must be connected to the Internet. The Internet is the global network of millions of computers. Your computer can connect to the Internet through an Internet Service Provider (ISP) using a dialup, DSL, or cable modem, or through a local area network (LAN).

When a computer needs to communicate with another computer, it needs to know the other computer’s address. An Internet Protocol (IP) address uniquely identifies the ­computer on the Internet. An IP address consists of four dotted decimal numbers between 0 and 255, such as 130.254.204.33. Since it is not easy to remember so many numbers, they are often mapped to meaningful names called domain names, such as liang.armstrong.edu. Special servers called Domain Name Servers (DNS) on the Internet translate host names into IP addresses. When a computer contacts liang.armstrong.edu, it first asks the DNS to translate this domain name into a numeric IP address then sends the request using the IP address.

IP address

domain name

domain name server

The Internet Protocol is a low-level protocol for delivering data from one computer to another across the Internet in packets. Two higher-level protocols used in conjunction with the IP are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP enables two hosts to establish a connection and exchange streams of data. TCP guarantees delivery of data and also guarantees that packets will be delivered in the same order in which they were sent. UDP is a standard, low-overhead, connectionless, host-to-host protocol that is used over the IP. UDP allows an application program on one computer to send a datagram to an application program on another computer.

TCP

UDP

Java supports both stream-based and packet-based communications. Stream-based communications use TCP for data transmission, whereas packet-based communications use UDP. Since TCP can detect lost transmissions and resubmit them, transmissions are lossless and reliable. UDP, in contrast, cannot guarantee lossless transmission. Stream-based ­communications are used in most areas of Java programming and are the focus of this chapter. Packet-based communications are introduced in Supplement III.P, Networking Using ­Datagram Protocol.

stream-based communication

packet-based communication

33.2 Client/Server Computing

[image:]

	Java provides the ServerSocket class for creating a server socket, and the Socket class for creating a client socket. Two programs on the Internet communicate through a server socket and a client socket using I/O streams.

Networking is tightly integrated in Java. The Java API provides the classes for creating sockets to facilitate program communications over the Internet. Sockets are the endpoints of logical connections between two hosts and can be used to send and receive data. Java treats socket communications much as it treats I/O operations; thus, programs can read from or write to sockets as easily as they can read from or write to files.

socket

Network programming usually involves a server and one or more clients. The client sends requests to the server, and the server responds. The client begins by attempting to establish a connection to the server. The server can accept or deny the connection. Once a connection is established, the client and the server communicate through sockets.

The server must be running when a client attempts to connect to the server. The server waits for a connection request from the client. The statements needed to create sockets on a server and on a client are shown in Figure 33.1.

 [image: Program code. In the code, the words in the variable names are merged. Server host. Step 1: Create a server socket, on a port, for example, 8000, using the following statement: Line 1: server socket, server socket, = new. Line 2, indented once: server socket, left parenthesis, 8000, right parenthesis, semicolon. Step 2: Create a socket to connect to a client, using the following statement: Line 1: socket socket, =. Line 2, indented once: server socket, period, accept, left parenthesis, right parenthesis, semicolon. Client host. Step 3: a client program uses the following statement to connect to the server: Line 1: socket socket, = new. Line 2, indented once: socket, left parenthesis, server host, comma, 8000, right parenthesis, semicolon. They connect via network i o stream.]Figure 33.1
 The server creates a server socket and, once a connection to a client is established, ­connects to the client with a client socket.

33.2.1 Server Sockets

server socket

port
To establish a server, you need to create a server socket and attach it to a port, which is where the server listens for connections. The port identifies the TCP service on the socket. Port numbers range from 0 to 65536, but port numbers 0 to 1024 are reserved for privileged services. For instance, the email server runs on port 25, and the Web server usually runs on port 80. You can choose any port number that is not currently used by other programs. The following statement creates a server socket serverSocket:

ServerSocket serverSocket = new ServerSocket(port);

[image:]Note

Attempting to create a server socket on a port already in use would cause a java.net.BindException.

BindException

33.2.2 Client Sockets

After a server socket is created, the server can use the following statement to listen for connections:

Socket socket = serverSocket.accept();

This statement waits until a client connects to the server socket. The client issues the following statement to request a connection to a server:

Socket socket = new Socket(serverName, port);

connect to client

This statement opens a socket so that the client program can communicate with the server. serverName is the server’s Internet host name or IP address. The following statement creates a socket on the client machine to connect to the host 130.254.204.33 at port 8000:

client socket

use IP address

Socket socket = new Socket("130.254.204.33", 8000);

Alternatively, you can use the domain name to create a socket, as follows:

use domain name

Socket socket = new Socket("liang.armstrong.edu", 8000);

When you create a socket with a host name, the JVM asks the DNS to translate the host name into the IP address.

[image:]Note

A program can use the host name localhost or the IP address 127.0.0.1 to refer to the machine on which a client is running.

localhost

[image:]Note

The Socket constructor throws a java.net.UnknownHostException if the host cannot be found.

UnknownHostException

33.2.3 Data Transmission through Sockets

After the server accepts the connection, the communication between the server and the client is conducted in the same way as for I/O streams. The statements needed to create the streams and to exchange data between them are shown in Figure 33.2.

 [image: A U M L class diagram for server and client.]Figure 33.2
 The server and client exchange data through I/O streams on top of the socket.

Description

To get an input stream and an output stream, use the getInputStream() and ­getOutputStream() methods on a socket object. For example, the following statements create an InputStream stream called input and an OutputStream stream called output from a socket:

InputStream input = socket.getInputStream();
OutputStream output = socket.getOutputStream();

The InputStream and OutputStream streams are used to read or write bytes. You can use DataInputStream, DataOutputStream, BufferedReader, and PrintWriter to wrap on the InputStream and OutputStream to read or write data, such as int, double, or String. The following statements, for instance, create the DataInputStream stream input and the DataOutputstream output to read and write primitive data values:

DataInputStream input = new DataInputStream
 (socket.getInputStream());
DataOutputStream output = new DataOutputStream
 (socket.getOutputStream());

The server can use input.readDouble() to receive a double value from the client, and output.writeDouble(d) to send the double value d to the client.

Tip

Recall that binary I/O is more efficient than text I/O because text I/O requires encoding and decoding. Therefore, it is better to use binary I/O for transmitting data between a server and a client to improve performance.

33.2.4 A Client/Server Example

This example presents a client program and a server program. The client sends data to a server. The server receives the data, uses it to produce a result, and then sends the result back to the ­client. The client displays the result on the console. In this example, the data sent from the ­client comprise the radius of a circle, and the result produced by the server is the area of ­the circle (see Figure 33.3).

 [image:]Figure 33.3
 The client sends the radius to the server; the server computes the area and sends it to the client.

The client sends the radius through a DataOutputStream on the output stream socket, and the server receives the radius through the DataInputStream on the input stream socket, as shown in Figure 33.4a. The server computes the area and sends it to the client through a DataOutputStream on the output stream socket, and the client receives the area through a DataInputStream on the input stream socket, as shown in Figure 33.4b. The server and client programs are given in Listings 33.1 and 33.2. Figure 33.5 contains a sample run of the server and the client.

 [image:]Figure 33.4
 (a) The client sends the radius to the server. (b) The server sends the area to the client.

 [image:]Figure 33.5
 The client sends the radius to the server. The server receives it, computes the area, and sends the area to the client.

Listing 33.1  Server.java

 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
			 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10
 11 public class Server extends Application {
 12 @Override // Override the start method in the Application class
 13 public void start(Stage primaryStage) {
 14 // Text area for displaying contents
create server UI 15 TextArea ta = new TextArea();
 16
 17 // Create a scene and place it in the stage
 18 Scene scene = new Scene(new ScrollPane(ta), 450, 200);
 19 primaryStage.setTitle("Server"); // Set the stage title
 20 primaryStage.setScene(scene); // Place the scene in the stage
 21 primaryStage.show(); // Display the stage
 22
 23 new Thread(() -> {
 24 try {
 25 // Create a server socket
server socket 26 ServerSocket serverSocket = new ServerSocket(8000);
update UI 27 Platform.runLater(() ->
 28 ta.appendText("Server started at " + new Date() + '\n'));
 29
 30 // Listen for a connection request
connect client 31 Socket socket = serverSocket.accept();
 32
 33 // Create data input and output streams
input from client 34 DataInputStream inputFromClient = new DataInputStream(
 35 socket.getInputStream());
output to client 36 DataOutputStream outputToClient = new DataOutputStream(
 37 socket.getOutputStream());
 38
 39 while (true) {
 40 // Receive radius from the client
read radius 41 double radius = inputFromClient.readDouble();
 42
 43 // Compute area
 44 double area = radius * radius * Math.PI;
 45
 46 // Send area back to the client
write area 47 outputToClient.writeDouble(area);
 48
update UI 49 Platform.runLater(() -> {
 50 ta.appendText("Radius received from client: "
 51 + radius + '\n');
 52 ta.appendText("Area is: " + area + '\n');
 53 });
 54 }
 55 }
 56 catch(IOException ex) {
 57 ex.printStackTrace();
 58 }
 59 }).start();
 60 }
 61 }

Listing 33.2  Client.java

 1 import java.io.*;
 2 import java.net.*;
 3 import javafx.application.Application;
 4 import javafx.geometry.Insets;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.ScrollPane;
 9 import javafx.scene.control.TextArea;
 10 import javafx.scene.control.TextField;
 11 import javafx.scene.layout.BorderPane;
 12 import javafx.stage.Stage;
 13
 14 public class Client extends Application {
 15 // IO streams
 16 DataOutputStream toServer = null;
 17 DataInputStream fromServer = null;
 18
 19 @Override // Override the start method in the Application class
 20 public void start(Stage primaryStage) {
 21 // Panel p to hold the label and text field
create UI 22 BorderPane paneForTextField = new BorderPane();
 23 paneForTextField.setPadding(new Insets(5, 5, 5, 5));
 24 paneForTextField.setStyle("-fx-border-color: green");
 25 paneForTextField.setLeft(new Label("Enter a radius: "));
 26
 27 TextField tf = new TextField();
 28 tf.setAlignment(Pos.BOTTOM_RIGHT);
 29 paneForTextField.setCenter(tf);
 30
 31 BorderPane mainPane = new BorderPane();
 32 // Text area to display contents
 33 TextArea ta = new TextArea();
 34 mainPane.setCenter(new ScrollPane(ta));
 35 mainPane.setTop(paneForTextField);
 36
 37 // Create a scene and place it in the stage
 38 Scene scene = new Scene(mainPane, 450, 200);
 39 primaryStage.setTitle("Client"); // Set the stage title
 40 primaryStage.setScene(scene); // Place the scene in the stage
 41 primaryStage.show(); // Display the stage
 42
handle action event 43 tf.setOnAction(e -> {
 44 try {
 45 // Get the radius from the text field
read radius 46 double radius = Double.parseDouble(tf.getText().trim());
 47
 48 // Send the radius to the server
write radius 49 toServer.writeDouble(radius);
 50 toServer.flush();
 51
 52 // Get area from the server
read area 53 double area = fromServer.readDouble();
 54
 55 // Display to the text area
 56 ta.appendText("Radius is " + radius + "\n");
 57 ta.appendText("Area received from the server is "
 58 + area + '\n');
 59 }
 60 catch (IOException ex) {
 61 System.err.println(ex);
 62 }
 63 });
 64
 65 try {
 66 // Create a socket to connect to the server
request connection 67 Socket socket = new Socket("localhost", 8000);
 68 // Socket socket = new Socket("130.254.204.36", 8000);
 69 // Socket socket = new Socket("drake.Armstrong.edu", 8000);
 70
 71 // Create an input stream to receive data from the server
input from server 72 fromServer = new DataInputStream(socket.getInputStream());
 73
 74 // Create an output stream to send data to the server
output to server 75 toServer = new DataOutputStream(socket.getOutputStream());
 76 }
 77 catch (IOException ex) {
 78 ta.appendText(ex.toString() + '\n');
 79 }
 80 }
 81 }

You start the server program first then start the client program. In the client program, enter a radius in the text field and press Enter to send the radius to the server. The server computes the area and sends it back to the client. This process is repeated until one of the two programs terminates.

The networking classes are in the package java.net. You should import this package when writing Java network programs.

The Server class creates a ServerSocket serverSocket and attaches it to port 8000 using this statement (line 26 in Server.java):

ServerSocket serverSocket = new ServerSocket(8000);

The server then starts to listen for connection requests, using the following statement (line 31 in Server.java):

Socket socket = serverSocket.accept();

The server waits until the client requests a connection. After it is connected, the server reads the radius from the client through an input stream, computes the area, and sends the result to the client through an output stream. The ServerSocket accept() method takes time to execute. It is not appropriate to run this method in the JavaFX application thread. So, we place it in a separate thread (lines 23–59). The statements for updating GUI needs to run from the JavaFX application thread using the Platform.runLater method (lines 27–28, 49–53).

The Client class uses the following statement to create a socket that will request a connection to the server on the same machine (localhost) at port 8000 (line 67 in Client.java).

Socket socket = new Socket("localhost", 8000);

If you run the server and the client on different machines, replace localhost with the server machine’s host name or IP address. In this example, the server and the client are running on the same machine.

If the server is not running, the client program terminates with a java.net.­ConnectException. After it is connected, the client gets input and output streams—wrapped by data input and output streams—in order to receive and send data to the server.

If you receive a java.net.BindException when you start the server, the server port is currently in use. You need to terminate the process that is using the server port then restart the server.

[image:]Note

When you create a server socket, you have to specify a port (e.g., 8000) for the socket. When a client connects to the server (line 67 in Client.java), a socket is created on the client. This socket has its own local port. This port number (e.g., 2047) is automatically chosen by the JVM, as shown in Figure 33.6.

 [image:]Figure 33.6
 The JVM automatically chooses an available port to create a socket for the client.

client socket port

To see the local port on the client, insert the following statement in line 70 in ­Client.java.

System.out.println("local port: " + socket.getLocalPort());

[image:]

	33.2.1 How do you create a server socket? What port numbers can be used? What happens if a requested port number is already in use? Can a port connect to multiple clients?

	33.2.2 What are the differences between a server socket and a client socket?

	33.2.3 How does a client program initiate a connection?

	33.2.4 How does a server accept a connection?

	33.2.5 How are data transferred between a client and a server?

33.3 The InetAddress Class

[image:]

	The server program can use the InetAddress class to obtain the information about the IP address and host name for the client.

Occasionally, you would like to know who is connecting to the server. You can use the ­InetAddress class to find the client’s host name and IP address. The InetAddress class models an IP address. You can use the following statement in the server program to get an instance of InetAddress on a socket that connects to the client:

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client’s host name and IP address, as follows:

System.out.println("Client's host name is " +
 inetAddress.getHostName());
System.out.println("Client's IP Address is " +
 inetAddress.getHostAddress());

You can also create an instance of InetAddress from a host name or IP address using the static getByName method. For example, the following statement creates an InetAddress for the host liang.armstrong.edu.

InetAddress address = InetAddress.getByName("liang.armstrong.edu");

Listing 33.3 gives a program that identifies the host name and IP address of the arguments you pass in from the command line. Line 7 creates an InetAddress using the getByName method. Lines 8 and 9 use the getHostName and getHostAddress methods to get the host’s name and IP address. Figure 33.7 shows a sample run of the program.

 [image:]Figure 33.7
 The program identifies host names and IP addresses.

Listing 33.3  IdentifyHostNameIP.java

 1 import java.net.*;
 2
 3 public class IdentifyHostNameIP {
 4 public static void main(String[] args) {
 5 for (int i = 0; i < args.length; i++) {
 6 try {
get an InetAddress 7 InetAddress address = InetAddress.getByName(args[i]);
get host name 8 System.out.print("Host name: " + address.getHostName() + " ");
get host IP 9 System.out.println("IP address: " + address.getHostAddress());
 10 }
 11 catch (UnknownHostException ex) {
 12 System.err.println("Unknown host or IP address " + args[i]);
 13 }
 14 }
 15 }
 16 }

	33.3.1 How do you obtain an instance of InetAddress?

	33.3.2 What methods can you use to get the IP address and hostname from an InetAddress?

33.4 Serving Multiple Clients

[image:]

	A server can serve multiple clients. The connection to each client is handled by one thread.

Multiple clients are quite often connected to a single server at the same time. Typically, a server runs continuously on a server computer, and clients from all over the Internet can connect to it. You can use threads to handle the server’s multiple clients simultaneously—simply create a thread for each connection. Here is how the server handles the establishment of a connection:

while (true) {
 Socket socket = serverSocket.accept(); // Connect to a client
 Thread thread = new ThreadClass(socket);
 thread.start();
}

The server socket can have many connections. Each iteration of the while loop creates a new connection. Whenever a connection is established, a new thread is created to handle communication between the server and the new client, and this allows multiple connections to run at the same time.

Listing 33.4 creates a server class that serves multiple clients simultaneously. For each connection, the server starts a new thread. This thread continuously receives input (the radius of a circle) from clients and sends the results (the area of the circle) back to them (see Figure 33.8). The client program is the same as in Listing 33.2. A sample run of the server with two clients is shown in Figure 33.9.

 [image:]Figure 33.8
 Multithreading enables a server to handle multiple independent clients.

 [image:]Figure 33.9
 The server spawns a thread in order to serve a client.

Listing 33.4  MultiThreadServer.java

 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10
 11 public class MultiThreadServer extends Application {
 12 // Text area for displaying contents
 13 private TextArea ta = new TextArea();
 14
 15 // Number a client
 16 private int clientNo = 0;
 17
 18 @Override // Override the start method in the Application class
 19 public void start(Stage primaryStage) {
 20 // Create a scene and place it in the stage
 21 Scene scene = new Scene(new ScrollPane(ta), 450, 200);
 22 primaryStage.setTitle("MultiThreadServer"); // Set the stage title
 23 primaryStage.setScene(scene); // Place the scene in the stage
 24 primaryStage.show(); // Display the stage
 25
 26 new Thread(() -> {
 27 try {
 28 // Create a server socket
server socket 29 ServerSocket serverSocket = new ServerSocket(8000);
 30 ta.appendText("MultiThreadServer started at "
 31 + new Date() + '\n');
 32
 33 while (true) {
 34 // Listen for a new connection request
connect client 35 Socket socket = serverSocket.accept();
 36
 37 // Increment clientNo
 38 clientNo++;
 39
update GUI 40 Platform.runLater(() -> {
 41 // Display the client number
 42 ta.appendText("Starting thread for client " + clientNo +
 43 " at " + new Date() + '\n');
 44
 45 // Find the client's host name, and IP address
network information 46 InetAddress inetAddress = socket.getInetAddress();
 47 ta.appendText("Client " + clientNo + "'s host name is "
 48 + inetAddress.getHostName() + "\n");
 49 ta.appendText("Client " + clientNo + "'s IP Address is"
 50 + inetAddress.getHostAddress() + "\n");
 51 });
 52
 53 // Create and start a new thread for the connection
create task 54 new Thread(new HandleAClient(socket)).start();
 55 }
 56 }
 57 catch(IOException ex) {
 58 System.err.println(ex);
 59 }
start thread 60 }).start();
 61 }
 62
 63 // Define the thread class for handling new connection
 64 class HandleAClient implements Runnable {
task class 65 private Socket socket; // A connected socket
 66
 67 /** Construct a thread */
 68 public HandleAClient(Socket socket) {
 69 this.socket = socket;
 70 }
 71
 72 /** Run a thread */
 73 public void run() {
 74 try {
 75 // Create data input and output streams
I/O 76 DataInputStream inputFromClient = new DataInputStream(
 77 socket.getInputStream());
 78 DataOutputStream outputToClient = new DataOutputStream(
 79 socket.getOutputStream());
 80
 81 // Continuously serve the client
 82 while (true) {
 83 // Receive radius from the client
 84 double radius = inputFromClient.readDouble();
 85
 86 // Compute area
 87 double area = radius * radius * Math.PI;
 88
 89 // Send area back to the client
 90 outputToClient.writeDouble(area);
 91
 92 Platform.runLater(() -> {
update GUI 93 ta.appendText("radius received from client: " +
 94 radius + '\n');
 95 ta.appendText("Area found: " + area + '\n');
 96 });
 97 }
 98 }
 99 catch(IOException ex) {
 100 ex.printStackTrace();
 101 }
 102 }
 103 }
 104 }

The server creates a server socket at port 8000 (line 29) and waits for a connection (line 35). When a connection with a client is established, the server creates a new thread to handle the communication (line 54). It then waits for another connection in an infinite while loop (lines 33–55).

The threads, which run independently of one another, communicate with designated clients. Each thread creates data input and output streams that receive and send data to a client.

	33.4.1 How do you make a server serve multiple clients?[image:]

33.5 Sending and Receiving Objects

[image:]

	A program can send and receive objects from another program.

In the preceding examples, you learned how to send and receive data of primitive types. You can also send and receive objects using ObjectOutputStream and ObjectInputStream on socket streams. To enable passing, the objects must be serializable. The following example demonstrates how to send and receive objects.

The example consists of three classes: StudentAddress.java (Listing 33.5), StudentClient.java (Listing 33.6), and StudentServer.java (Listing 33.7). The client program collects student ­information from the client and sends it to a server, as shown in Figure 33.10.

 [image:]Figure 33.10
 The client sends the student information in an object to the server.

The StudentAddress class contains the student information: name, street, city, state, and zip. The StudentAddress class implements the Serializable interface. Therefore, a StudentAddress object can be sent and received using the object output and input streams.

Listing 33.5  StudentAddress.java

 serialized 1 public class StudentAddress implements java.io.Serializable {
 2 private String name;
 3 private String street;
 4 private String city;
 5 private String state;
 6 private String zip;
 7
 8 public StudentAddress(String name, String street, String city,
 9 String state, String zip) {
 10 this.name = name;
 11 this.street = street;
 12 this.city = city;
 13 this.state = state;
 14 this.zip = zip;
 15 }
 16
 17 public String getName() {
 18 return name;
 19 }
 20
 21 public String getStreet() {
 22 return street;
 23 }
 24
 25 public String getCity() {
 26 return city;
 27 }
 28
 29 public String getState() {
 30 return state;
 31 }
 32
 33 public String getZip() {
 34 return zip;
 35 }
 36 }

The client sends a StudentAddress object through an ObjectOutputStream on the output stream socket, and the server receives the Student object through the ­ObjectInputStream on the input stream socket, as shown in Figure 33.11. The ­client uses the writeObject method in the ObjectOutputStream class to send data about a student to the server, and the server receives the student’s information using the ­read­Object method in the ­ObjectInputStream class. The server and client programs are given in Listings 33.6 and 33.7.

 [image:]Figure 33.11
 The client sends a StudentAddress object to the server.

Listing 33.6  StudentClient.java

 1 import java.io.*;
 2 import java.net.*;
 3 import javafx.application.Application;
 4 import javafx.event.ActionEvent;
 5 import javafx.event.EventHandler;
 6 import javafx.geometry.HPos;
 7 import javafx.geometry.Pos;
 8 import javafx.scene.Scene;
 9 import javafx.scene.control.Button;
 10 import javafx.scene.control.Label;
 11 import javafx.scene.control.TextField;
 12 import javafx.scene.layout.GridPane;
 13 import javafx.scene.layout.HBox;
 14 import javafx.stage.Stage;
 15
 16 public class StudentClient extends Application {
 17 private TextField tfName = new TextField();
 18 private TextField tfStreet = new TextField();
 19 private TextField tfCity = new TextField();
 20 private TextField tfState = new TextField();
 21 private TextField tfZip = new TextField();
 22
 23 // Button for sending a student to the server
 24 private Button btRegister = new Button("Register to the Server");
 25
 26 // Host name or ip
 27 String host = "localhost";
 28
 29 @Override // Override the start method in the Application class
 30 public void start(Stage primaryStage) {
create UI 31 GridPane pane = new GridPane();
 32 pane.add(new Label("Name"), 0, 0);
 33 pane.add(tfName, 1, 0);
 34 pane.add(new Label("Street"), 0, 1);
 35 pane.add(tfStreet, 1, 1);
 36 pane.add(new Label("City"), 0, 2);
 37
 38 HBox hBox = new HBox(2);
 39 pane.add(hBox, 1, 2);
 40 hBox.getChildren().addAll(tfCity, new Label("State"), tfState,
 41 new Label("Zip"), tfZip);
 42 pane.add(btRegister, 1, 3);
 43 GridPane.setHalignment(btRegister, HPos.RIGHT);
 44
 45 pane.setAlignment(Pos.CENTER);
 46 tfName.setPrefColumnCount(15);
 47 tfStreet.setPrefColumnCount(15);
 48 tfCity.setPrefColumnCount(10);
 49 tfState.setPrefColumnCount(2);
 50 tfZip.setPrefColumnCount(3);
 51
register listener 52 btRegister.setOnAction(new ButtonListener());
 53
 54 // Create a scene and place it in the stage
 55 Scene scene = new Scene(pane, 450, 200);
 56 primaryStage.setTitle("StudentClient"); // Set the stage title
			 57 primaryStage.setScene(scene); // Place the scene in the stage
 58 primaryStage.show(); // Display the stage
 59 }
 60
 61 /** Handle button action */
 62 private class ButtonListener implements EventHandler<ActionEvent> {
 63 @Override
 64 public void handle(ActionEvent e) {
 65 try {
 66 // Establish connection with the server
server socket 67 Socket socket = new Socket(host, 8000);
 68
 69 // Create an output stream to the server
output stream 70 ObjectOutputStream toServer =
 71 new ObjectOutputStream(socket.getOutputStream());
 72
 73 // Get text field
 74 String name = tfName.getText().trim();
 75 String street = tfStreet.getText().trim();
 76 String city = tfCity.getText().trim();
 77 String state = tfState.getText().trim();
 78 String zip = tfZip.getText().trim();
 79
 80 // Create a Student object and send to the server
 81 StudentAddress s =
 82 new StudentAddress(name, street, city, state, zip);
send to server 83 toServer.writeObject(s);
 84 }
 85 catch (IOException ex) {
 86 ex.printStackTrace();
 87 }
 88 }
 89 }
 90 }

Listing 33.7  StudentServer.java

 1 import java.io.*;
 2 import java.net.*;
 3
 4 public class StudentServer {
 5 private ObjectOutputStream outputToFile;
 6 private ObjectInputStream inputFromClient;
 7
 8 public static void main(String[] args) {
 9 new StudentServer();
 10 }
 11
 12 public StudentServer() {
 13 try {
 14 // Create a server socket
server socket 15 ServerSocket serverSocket = new ServerSocket(8000);
 16 System.out.println("Server started ");
 17
 18 // Create an object output stream
output to file 19 outputToFile = new ObjectOutputStream(
 20 new FileOutputStream("student.dat", true));
 21
 22 while (true) {
 23 // Listen for a new connection request
connect to client 24 Socket socket = serverSocket.accept();
 25
 26 // Create an input stream from the socket
input stream 27 inputFromClient =
 28 new ObjectInputStream(socket.getInputStream());
 29
 30 // Read from input
get from client 31 Object object = inputFromClient.readObject();
 32
 33 // Write to the file
write to file 34 outputToFile.writeObject(object);
 35 System.out.println("A new student object is stored");
 36 }
 37 }
 38 catch(ClassNotFoundException ex) {
 39 ex.printStackTrace();
 40 }
 41 catch(IOException ex) {
 42 ex.printStackTrace();
 43 }
 44 finally {
 45 try {
 46 inputFromClient.close();
 47 outputToFile.close();
 48 }
 49 catch (Exception ex) {
 50 ex.printStackTrace();
 51 }
 52 }
 53 }
 54 }

On the client side, when the user clicks the Register to the Server button, the client creates a socket to connect to the host (line 67), creates an ObjectOutputStream on the output stream of the socket (lines 70 and 71), and invokes the writeObject method to send the StudentAddress object to the server through the object output stream (line 83).

On the server side, when a client connects to the server, the server creates an Object­InputStream on the input stream of the socket (lines 27 and 28), invokes the readObject method to receive the StudentAddress object through the object input stream (line 31), and writes the object to a file (line 34).

[image:]

	33.5.1 How does a server receive connection from a client? How does a client connect to a server?

	33.5.2 How do you find the host name of a client program from the server?

	33.5.3 How do you send and receive an object?

33.6 Case Study: Distributed Tic-Tac-Toe Games

[image:]

	This section develops a program that enables two players to play the tic-tac-toe game on the Internet.

In Section 16.12, Case Study: Developing a Tic-Tac-Toe Game, you developed a program for a tic-tac-toe game that enables two players to play the game on the same machine. In this section, you will learn how to develop a distributed tic-tac-toe game using multithreads and networking with socket streams. A distributed tic-tac-toe game enables users to play on different machines from anywhere on the Internet.

You need to develop a server for multiple clients. The server creates a server socket and accepts connections from every two players to form a session. Each session is a thread that communicates with the two players and determines the status of the game. The server can establish any number of sessions, as shown in Figure 33.12.

 [image:]Figure 33.12
 The server can create many sessions, each of which facilitates a tic-tac-toe game for two players.

For each session, the first client connecting to the server is identified as player 1 with token X, and the second client connecting is identified as player 2 with token O. The server notifies the players of their respective tokens. Once two clients are connected to it, the server starts a thread to facilitate the game between the two players by performing the steps repeatedly, as shown in Figure 33.13.

 [image: Tic Tac Toe sequence for 2 players.]Figure 33.13 
The server starts a thread to facilitate communications between the two players.

Description

The server does not have to be a graphical component, but creating it in a GUI in which game information can be viewed is user friendly. You can create a scroll pane to hold a text area in the GUI and display game information in the text area. The server creates a thread to handle a game session when two players are connected to the server.

The client is responsible for interacting with the players. It creates a user interface with nine cells and displays the game title and status to the players in the labels. The client class is very similar to the TicTacToe class presented in the case study in Listing 16.13. However, the client in this example does not determine the game status (win or draw); it simply passes the moves to the server and receives the game status from the server.

Based on the foregoing analysis, you can create the following classes:

	TicTacToeServer serves all the clients in Listing 33.9.

	HandleASession facilitates the game for two players. This class is defined in Listing 33.9, ­TicTacToeServer.java.

	TicTacToeClient models a player in Listing 33.10.

	Cell models a cell in the game. It is an inner class in TicTacToeClient.

	TicTacToeConstants is an interface that defines the constants shared by all the classes in the example in Listing 33.8.

The relationships of these classes are shown in Figure 33.14.

 [image: Cell is Similar to listing 18.10, leads to tic tac toe client, leading to j applet and runnable and connected to tic tac toe server. Handle a session leads runnable, tic tac toe constants, and tic tac toe server, leading to j frame.]Figure 33.14
 TicTacToeServer creates an instance of HandleASession for each session of two players. ­TicTacToeClient creates nine cells in the UI.

Listing 33.8  TicTacToeConstants.java

 1 public interface TicTacToeConstants {
 2 public static int PLAYER1 = 1; // Indicate player 1
 3 public static int PLAYER2 = 2; // Indicate player 2
 4 public static int PLAYER1_WON = 1; // Indicate player 1 won
 5 public static int PLAYER2_WON = 2; // Indicate player 2 won
 6 public static int DRAW = 3; // Indicate a draw
 7 public static int CONTINUE = 4; // Indicate to continue
 8 }

Listing 33.9  TicTacToeServer.java

 1 import java.io.*;
 2 import java.net.*;
			 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10
 11 public class TicTacToeServer extends Application
 12 implements TicTacToeConstants {
 13 private int sessionNo = 1; // Number a session
 14
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
create UI 17 TextArea taLog = new TextArea();
 18
 19 // Create a scene and place it in the stage
 20 Scene scene = new Scene(new ScrollPane(taLog), 450, 200);
 21 primaryStage.setTitle("TicTacToeServer"); // Set the stage title
 22 primaryStage.setScene(scene); // Place the scene in the stage
 23 primaryStage.show(); // Display the stage
 24
 25 new Thread(() -> {
 26 try {
 27 // Create a server socket
server socket 28 ServerSocket serverSocket = new ServerSocket(8000);
 29 Platform.runLater(() -> taLog.appendText(new Date() +
 30 ": Server started at socket 8000\n"));
 31
 32 // Ready to create a session for every two players
 33 while (true) {
 34 Platform.runLater(() -> taLog.appendText(new Date() +
 35 ": Wait for players to join session " + sessionNo + '\n'));
 36
 37 // Connect to player 1
connect to client 38 Socket player1 = serverSocket.accept();
 39
 40 Platform.runLater(() -> {
 41 taLog.appendText(new Date() + ": Player 1 joined session "
 42 + sessionNo + '\n');
 43 taLog.appendText("Player 1's IP address" +
 44 player1.getInetAddress().getHostAddress() + '\n');
 45 });
 46
 47 // Notify that the player is Player 1
to player1 48 new DataOutputStream(
 49 player1.getOutputStream()).writeInt(PLAYER1);
 50
 51 // Connect to player 2
connect to client 52 Socket player2 = serverSocket.accept();
 53
 54 Platform.runLater(() -> {
 55 taLog.appendText(new Date() +
 56 ": Player 2 joined session " + sessionNo + '\n');
 57 taLog.appendText("Player 2's IP address" +
 58 player2.getInetAddress().getHostAddress() + '\n');
 59 });
 60
to player2 61 // Notify that the player is Player 2
 62 new DataOutputStream(
 63 player2.getOutputStream()).writeInt(PLAYER2);
 64
 65 // Display this session and increment session number
 66 Platform.runLater(() ->
 67 taLog.appendText(new Date() +
 68 ": Start a thread for session " + sessionNo++ + '\n'));
 69
a session for two players 70 // Launch a new thread for this session of two players
 71 new Thread(new HandleASession(player1, player2)).start();
 72 }
 73 }
 74 catch(IOException ex) {
 75 ex.printStackTrace();
 76 }
 77 }).start();
 78 }
 79
 80 // Define the thread class for handling a new session for two players
 81 class HandleASession implements Runnable, TicTacToeConstants {
 82 private Socket player1;
 83 private Socket player2;
 84
 85 // Create and initialize cells
 86 private char[][] cell = new char[3][3];
 87
 88 private DataInputStream fromPlayer1;
 89 private DataOutputStream toPlayer1;
 90 private DataInputStream fromPlayer2;
 91 private DataOutputStream toPlayer2;
 92
 93 // Continue to play
 94 private boolean continueToPlay = true;
 95
 96 /** Construct a thread */
 97 public HandleASession(Socket player1, Socket player2) {
 98 this.player1 = player1;
 99 this.player2 = player2;
 100
 101 // Initialize cells
 102 for (int i = 0; i < 3; i++)
 103 for (int j = 0; j < 3; j++)
 104 cell[i][j] = ' ';
 105 }
 106
 107 /** Implement the run() method for the thread */
 108 public void run() {
 109 try {
 110 // Create data input and output streams
IO streams 111 DataInputStream fromPlayer1 = new DataInputStream(
 112 player1.getInputStream());
 113 DataOutputStream toPlayer1 = new DataOutputStream(
 114 player1.getOutputStream());
 115 DataInputStream fromPlayer2 = new DataInputStream(
 116 player2.getInputStream());
 117 DataOutputStream toPlayer2 = new DataOutputStream(
 118 player2.getOutputStream());
 119
 120 // Write anything to notify player 1 to start
 121 // This is just to let player 1 know to start
 122 toPlayer1.writeInt(1);
 123
 124 // Continuously serve the players and determine and report
 125 // the game status to the players
 126 while (true) {
 127 // Receive a move from player 1
 128 int row = fromPlayer1.readInt();
 129 int column = fromPlayer1.readInt();
 130 cell[row][column] = 'X';
 131
 132 // Check if Player 1 wins
X won? 133 if (isWon('X')) {
 134 toPlayer1.writeInt(PLAYER1_WON);
 135 toPlayer2.writeInt(PLAYER1_WON);
 136 sendMove(toPlayer2, row, column);
 137 break; // Break the loop
 138 }
Is full? 139 else if (isFull()) { // Check if all cells are filled
 140 toPlayer1.writeInt(DRAW);
 141 toPlayer2.writeInt(DRAW);
 142 sendMove(toPlayer2, row, column);
 143 break;
 144 }
 145 else {
 146 // Notify player 2 to take the turn
 147 toPlayer2.writeInt(CONTINUE);
 148
 149 // Send player 1's selected row and column to player 2
 150 sendMove(toPlayer2, row, column);
 151 }
 152
 153 // Receive a move from Player 2
 154 row = fromPlayer2.readInt();
 155 column = fromPlayer2.readInt();
 156 cell[row][column] = 'O';
 157
 158 // Check if Player 2 wins
O won? 159 if (isWon('O')) {
 160 toPlayer1.writeInt(PLAYER2_WON);
 161 toPlayer2.writeInt(PLAYER2_WON);
 162 sendMove(toPlayer1, row, column);
 163 break;
 164 }
 165 else {
 166 // Notify player 1 to take the turn
 167 toPlayer1.writeInt(CONTINUE);
 168
 169 // Send player 2's selected row and column to player 1
 170 sendMove(toPlayer1, row, column);
 171 }
 172 }
 173 }
 174 catch(IOException ex) {
 175 ex.printStackTrace();
 176 }
 177 }
 178
 179 /** Send the move to other player */
send a move 180 private void sendMove(DataOutputStream out, int row, int column)
 181 throws IOException {
 182 out.writeInt(row); // Send row index
 183 out.writeInt(column); // Send column index
 184 }
 185
 186 /** Determine if the cells are all occupied */
 187 private boolean isFull() {
 188 for (int i = 0; i < 3; i++)
 189 for (int j = 0; j < 3; j++)
 190 if (cell[i][j] == ' ')
 191 return false; // At least one cell is not filled
 192
 193 // All cells are filled
 194 return true;
 195 }
 196
 197 /** Determine if the player with the specified token wins */
			 198 private boolean isWon(char token) {
 199 // Check all rows
 200 for (int i = 0; i < 3; i++)
 201 if ((cell[i][0] == token)
 202 && (cell[i][1] == token)
 203 && (cell[i][2] == token)) {
 204 return true;
 205 }
 206
 207 /** Check all columns */
 208 for (int j = 0; j < 3; j++)
 209 if ((cell[0][j] == token)
 210 && (cell[1][j] == token)
 211 && (cell[2][j] == token)) {
 212 return true;
 213 }
 214
 215 /** Check major diagonal */
 216 if ((cell[0][0] == token)
 217 && (cell[1][1] == token)
 218 && (cell[2][2] == token)) {
 219 return true;
 220 }
 221
 222 /** Check subdiagonal */
 223 if ((cell[0][2] == token)
 224 && (cell[1][1] == token)
 225 && (cell[2][0] == token)) {
 226 return true;
 227 }
 228
 229 /** All checked, but no winner */
 230 return false;
 231 }
 232 }
 233 }

Listing 33.10  TicTacToeClient.java

 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.ScrollPane;
 9 import javafx.scene.control.TextArea;
 10 import javafx.scene.layout.BorderPane;
 11 import javafx.scene.layout.GridPane;
 12 import javafx.scene.layout.Pane;
 13 import javafx.scene.paint.Color;
 14 import javafx.scene.shape.Ellipse;
 15 import javafx.scene.shape.Line;
 16 import javafx.stage.Stage;
 17
 18 public class TicTacToeClient extends Application
 19 implements TicTacToeConstants {
 20 // Indicate whether the player has the turn
 21 private boolean myTurn = false;
 22
 23 // Indicate the token for the player
 24 private char myToken = ' ';
 25
 26 // Indicate the token for the other player
 27 private char otherToken = ' ';
 28
 29 // Create and initialize cells
 30 private Cell[][] cell = new Cell[3][3];
 31
 32 // Create and initialize a title label
 33 private Label lblTitle = new Label();
 34
 35 // Create and initialize a status label
 36 private Label lblStatus = new Label();
 37
 38 // Indicate selected row and column by the current move
 39 private int rowSelected;
 40 private int columnSelected;
 41
 42 // Input and output streams from/to server
 43 private DataInputStream fromServer;
 44 private DataOutputStream toServer;
 45
 46 // Continue to play?
 47 private boolean continueToPlay = true;
 48
 49 // Wait for the player to mark a cell
 50 private boolean waiting = true;
 51
 52 // Host name or ip
 53 private String host = "localhost";
 54
 55 @Override // Override the start method in the Application class
 56 public void start(Stage primaryStage) {
 57 // Pane to hold cell
create UI 58 GridPane pane = new GridPane();
 59 for (int i = 0; i < 3; i++)
 60 for (int j = 0; j < 3; j++)
 61 pane.add(cell[i][j] = new Cell(i, j), j, i);
 62
 63 BorderPane borderPane = new BorderPane();
 64 borderPane.setTop(lblTitle);
 65 borderPane.setCenter(pane);
 66 borderPane.setBottom(lblStatus);
 67
 68 // Create a scene and place it in the stage
 69 Scene scene = new Scene(borderPane, 320, 350);
 70 primaryStage.setTitle("TicTacToeClient"); // Set the stage title
 71 primaryStage.setScene(scene); // Place the scene in the stage
 72 primaryStage.show(); // Display the stage
 73
 74 // Connect to the server
connect to server 75 connectToServer();
 76 }
 77
 78 private void connectToServer() {
 79 try {
 80 // Create a socket to connect to the server
 81 Socket socket = new Socket(host, 8000);
 82
 83 // Create an input stream to receive data from the server
input from server 84 fromServer = new DataInputStream(socket.getInputStream());
 85
 86 // Create an output stream to send data to the server
output to server 87 toServer = new DataOutputStream(socket.getOutputStream());
 88 }
 89 catch (Exception ex) {
 90 ex.printStackTrace();
 91 }
 92
 93 // Control the game on a separate thread
 94 new Thread(() -> {
 95 try {
 96 // Get notification from the server
 97 int player = fromServer.readInt();
 98
 99 // Am I player 1 or 2?
 100 if (player == PLAYER1) {
 101 myToken = 'X';
 102 otherToken = 'O';
 103 Platform.runLater(() -> {
 104 lblTitle.setText("Player 1 with token 'X'");
 105 lblStatus.setText("Waiting for player 2 to join");
 106 });
 107
 108 // Receive startup notification from the server
 109 fromServer.readInt(); // Whatever read is ignored
 110
 111 // The other player has joined
 112 Platform.runLater(() ->
 113 lblStatus.setText("Player 2 has joined. I start first"));
 114
 115 // It is my turn
 116 myTurn = true;
 117 }
 118 else if (player == PLAYER2) {
 119 myToken = 'O';
 120 otherToken = 'X';
 121 Platform.runLater(() -> {
 122 lblTitle.setText("Player 2 with token 'O'");
 123 lblStatus.setText("Waiting for player 1 to move");
 124 });
 125 }
 126
 127 // Continue to play
 128 while (continueToPlay) {
 129 if (player == PLAYER1) {
 130 waitForPlayerAction(); // Wait for player 1 to move
 131 sendMove(); // Send the move to the server
 132 receiveInfoFromServer(); // Receive info from the server
 133 }
 134 else if (player == PLAYER2) {
 135 receiveInfoFromServer(); // Receive info from the server
 136 waitForPlayerAction(); // Wait for player 2 to move
 137 sendMove(); // Send player 2's move to the server
 138 }
 139 }
 140 }
 141 catch (Exception ex) {
 142 ex.printStackTrace();
 143 }
 144 }).start();
 145 }
 146
 147 /** Wait for the player to mark a cell */
 148 private void waitForPlayerAction() throws InterruptedException {
 149 while (waiting) {
 150 Thread.sleep(100);
 151 }
 152
 153 waiting = true;
 154 }
 155
 156 /** Send this player's move to the server */
 157 private void sendMove() throws IOException {
 158 toServer.writeInt(rowSelected); // Send the selected row
 159 toServer.writeInt(columnSelected); // Send the selected column 160 }
 161
 162 /** Receive info from the server */
 163 private void receiveInfoFromServer() throws IOException {
 164 // Receive game status
 165 int status = fromServer.readInt();
 166
 167 if (status == PLAYER1_WON) {
 168 // Player 1 won, stop playing
 169 continueToPlay = false;
 170 if (myToken == 'X') {
 171 Platform.runLater(() -> lblStatus.setText("I won! (X)"));
 172 }
 173 else if (myToken == 'O') {
 174 Platform.runLater(() ->
 175 lblStatus.setText("Player 1 (X) has won!"));
 176 receiveMove();
 177 }
 178 }
 179 else if (status == PLAYER2_WON) {
 180 // Player 2 won, stop playing
 181 continueToPlay = false;
 182 if (myToken == 'O') {
 183 Platform.runLater(() -> lblStatus.setText("I won! (O)"));
 184 }
 185 else if (myToken == 'X') {
 186 Platform.runLater(() ->
 187 lblStatus.setText("Player 2 (O) has won!"));
 188 receiveMove();
 189 }
 190 }
 191 else if (status == DRAW) {
 192 // No winner, game is over
 193 continueToPlay = false;
 194 Platform.runLater(() ->
 195 lblStatus.setText("Game is over, no winner!"));
 196
 197 if (myToken == 'O') {
 198 receiveMove();
 199 }
 200 }
 201 else {
 202 receiveMove();
 203 Platform.runLater(() -> lblStatus.setText("My turn"));
 204 myTurn = true; // It is my turn
 205 }
 206 }
 207
 208 private void receiveMove() throws IOException {
 209 // Get the other player's move
 210 int row = fromServer.readInt();
 211 int column = fromServer.readInt();
 212 Platform.runLater(() -> cell[row][column].setToken(otherToken));
 213 }
 214
 215 // An inner class for a cell
model a cell 216 public class Cell extends Pane {
 217 // Indicate the row and column of this cell in the board
 218 private int row;
 219 private int column;
 220
 221 // Token used for this cell
 222 private char token = ' ';
 223
 224 public Cell(int row, int column) {
 225 this.row = row;
 226 this.column = column;
 227 this.setPrefSize(2000, 2000); // What happens without this?
			 228 setStyle("-fx-border-color: black"); // Set cell's border
register listener 229 this.setOnMouseClicked(e -> handleMouseClick());
 230 }
 231
 232 /** Return token */
 233 public char getToken() {
 234 return token;
 235 }
 236
 237 /** Set a new token */
 238 public void setToken(char c) {
 239 token = c;
 240 repaint();
 241 }
 242
 243 protected void repaint() {
 244 if (token == 'X') {
draw X 245 Line line1 = new Line(10, 10,
 246 this.getWidth() − 10, this.getHeight() − 10);
 247 line1.endXProperty().bind(this.widthProperty().subtract(10));
 248 line1.endYProperty().bind(this.heightProperty().subtract(10));
 249 Line line2 = new Line(10, this.getHeight() − 10,
 250 this.getWidth() − 10, 10);
 251 line2.startYProperty().bind(
 252 this.heightProperty().subtract(10));
 253 line2.endXProperty().bind(this.widthProperty().subtract(10));
 254
 255 // Add the lines to the pane
 256 this.getChildren().addAll(line1, line2);
 257 }
 258 else if (token == 'O') {
draw O 259 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
 260 this.getHeight() / 2, this.getWidth() / 2 − 10,
 261 this.getHeight() / 2 − 10);
 262 ellipse.centerXProperty().bind(
 263 this.widthProperty().divide(2));
 264 ellipse.centerYProperty().bind(
 265 this.heightProperty().divide(2));
 266 ellipse.radiusXProperty().bind(
 267 this.widthProperty().divide(2).subtract(10));
 268 ellipse.radiusYProperty().bind(
 269 this.heightProperty().divide(2).subtract(10));
 270 ellipse.setStroke(Color.BLACK);
 271 ellipse.setFill(Color.WHITE);
 272
 273 getChildren().add(ellipse); // Add the ellipse to the pane
			 274 }
 275 }
 276
 277 /* Handle a mouse click event */
mouse clicked handler 278 private void handleMouseClick() {
 279 // If cell is not occupied and the player has the turn
 280 if (token == ' ' && myTurn) {
 281 setToken(myToken); // Set the player's token in the cell
			 282 myTurn = false;
 283 rowSelected = row;
 284 columnSelected = column;
 285 lblStatus.setText("Waiting for the other player to move");
 286 waiting = false; // Just completed a successful move
 287 }
 288 }
 289 }
 290 }

The server can serve any number of sessions simultaneously. Each session takes care of two players. The client can be deployed to run as a Java applet. To run a client as a Java applet from a Web browser, the server must run from a Web server. Figures 33.15 and 33.16 show sample runs of the server and the clients.

 [image:]Figure 33.15
 TicTacToeServer accepts connection requests and creates sessions to serve pairs of players.

 [image:]Figure 33.16 
TicTacToeClient can run as an applet or standalone.

The TicTacToeConstants interface defines the constants shared by all the classes in the project. Each class that uses the constants needs to implement the interface. Centrally defining constants in an interface is a common practice in Java.

Once a session is established, the server receives moves from the players in alternation. Upon receiving a move from a player, the server determines the status of the game. If the game is not finished, the server sends the status (CONTINUE) and the player’s move to the other player. If the game is won or a draw, the server sends the status (PLAYER1_WON, PLAYER2_WON, or DRAW) to both players.

The implementation of Java network programs at the socket level is tightly synchronized. An operation to send data from one machine requires an operation to receive data from the other machine. As shown in this example, the server and the client are tightly synchronized to send or receive data.

[image:]

	33.6.1 What would happen if the preferred size for a cell is not set in line 227 in Listing 33.10 ?

	33.6.2 If a player does not have the turn but clicks on an empty cell, what will the client program in Listing 33.10 do?

Key Terms

	client socket 33-3

	domain name  33-2

	domain name server 33-2

	localhost 33-3

	IP address 33-2

	port 33-2

	packet-based communication 33-2

	server socket 33-2

	socket 33-2

	stream-based communication 33-2

	TCP 33-2

	UDP 33-2

Chapter Summary

	Java supports stream sockets and datagram sockets. Stream sockets use TCP (Transmission Control Protocol) for data transmission, whereas datagram sockets use UDP (User Datagram Protocol). Since TCP can detect lost transmissions and resubmit them, transmissions are lossless and reliable. UDP, in contrast, cannot guarantee lossless transmission.

	To create a server, you must first obtain a server socket, using new ServerSocket(port). After a server socket is created, the server can start to listen for connections, using the accept() method on the server socket. The client requests a connection to a server by using new Socket(serverName, port) to create a client socket.

	Stream socket communication is very much like input/output stream communication after the connection between a server and a client is established. You can obtain an input stream using the getInputStream() method and an output stream using the getOutputStream() method on the socket.

	A server must often work with multiple clients at the same time. You can use threads to handle the server’s multiple clients simultaneously by creating a thread for each connection.

Quiz

Answer the quiz for this chapter online at book Companion Website.

Programming Exercises

Section 33.2

	*33.1 (Loan server) Write a server for a client. The client sends loan information (annual interest rate, number of years, and loan amount) to the server (see Figure 33.17a). The server computes monthly payment and total payment, and sends them back to the client (see Figure 33.17b). Name the client Exercise33_01Client and the server Exercise33_01Server.

 [image:]Figure 33.17
 The client in (a) sends the annual interest rate, number of years, and loan amount to the server and receives the monthly payment and total payment from the server in (b).

	*33.2 (BMI server) Write a server for a client. The client sends the weight and height for a person to the server (see Figure 33.18a). The server computes BMI (Body Mass Index) and sends back to the client a string that reports the BMI (see Figure 33.18b). See Section 3.8 for computing BMI. Name the client Exercise33_02Client and the server Exercise33_02Server.

 [image:]Figure 33.18
 The client in (a) sends the weight and height of a person to the server and receives the BMI from the server in (b).

Sections 33.3 and 33.4

	*33.3 (Loan server for multiple clients) Revise Programming Exercise 33.1 to write a server for multiple clients.

Section 33.5

	33.4 (Count clients) Write a server that tracks the number of the clients connected to the server. When a new connection is established, the count is incremented by 1. The count is stored using a random-access file. Write a client program that receives the count from the server and displays a message, such as “You are visitor number 11”, as shown in ­Figure 33.19. Name the client Exercise33_04Client and the server Exercise33_04Server.

 [image:]Figure 33.19
 The client displays how many times the server has been accessed. The server stores the count.

	33.5 (Send loan information in an object) Revise Exercise 33.1 for the client to send a loan object that contains annual interest rate, number of years, and loan amount and for the server to send the monthly payment and total payment.

Section 33.6

	33.6 (Display and add addresses) Develop a client/server application to view and add addresses, as shown in Figure 33.20.

 [image:]Figure 33.20
 You can view and add an address.

	Use the StudentAddress class defined in Listing 33.5 to hold the name, street, city, state, and zip in an object.

	The user can use the buttons First, Next, Previous, and Last to view an address, and the Add button to add a new address.

	Limit the concurrent connections to two clients.

Name the client Exercise33_06Client and the server Exercise33_6Server.

	*33.7 (Transfer last 100 numbers in an array) Programming Exercise 22.12 retrieves the last 100 prime numbers from a file PrimeNumbers.dat. Write a client program that requests the server to send the last 100 prime numbers in an array. Name the server program Exercise33_07Server and the client program Exercise33_07Client. Assume the numbers of the long type are stored in PrimeNumbers.dat in binary format.

	*33.8 (Transfer last 100 numbers in an ArrayList) Programming Exercise 24.12 retrieves the last 100 prime numbers from a file PrimeNumbers.dat. Write a client program that requests the server to send the last 100 prime numbers in an ArrayList. Name the server program Exercise33_08Server and the client program Exercise33_08Client. Assume the numbers of the long type are stored in PrimeNumbers.dat in binary format.

Section 33.7

	**33.9 (Chat) Write a program that enables two users to chat. Implement one user as the server (see Figure 33.21a) and the other as the client (see Figure 33.21b). The server has two text areas: one for entering text, and the other (noneditable) for displaying text received from the client. When the user presses the Enter key, the current line is sent to the client. The client has two text areas: one (noneditable) for displaying text from the server and the other for entering text. When the user presses the Enter key, the current line is sent to the server. Name the client Exercise33_09Client and the server Exercise33_09Server.

 [image:]Figure 33.21 
The server and client send text to and receive text from each other.

	***33.10 (Multiple client chat) Write a program that enables any number of clients to chat. Implement one server that serves all the clients, as shown in Figure 33.22. Name the client Exercise33_10Client and the server Exercise33_10Server.

 [image:]Figure 33.22
 The server starts in (a) with three clients in (b) and (c).

CHAPTER 34 Java Database Programming

Objectives

	To understand the concepts of databases and database management systems (§34.2).

	To understand the relational data model: relational data structures, constraints, and languages (§34.2).

	To use SQL to create and drop tables and to retrieve and modify data (§34.3).

	To learn how to load a driver, connect to a database, execute statements, and process result sets using JDBC (§34.4).

	To use prepared statements to execute precompiled SQL statements (§34.5).

	To use callable statements to execute stored SQL procedures and functions (§34.6).

	To explore database metadata using the DatabaseMetaData and ResultSetMetaData interfaces (§34.7).

34.1 Introduction

	Java provides the API for developing database applications that works with any ­relational database systems.

You may have heard a lot about database systems. Database systems are everywhere. Your social security information is stored in a database by the government. If you shop online, your purchase information is stored in a database by the company. If you attend a ­university, your academic information is stored in a database by the university. Database ­systems not only store data, they also provide means of accessing, updating, manipulating, and analyzing data. Your social security information is updated periodically, and you can register for courses online. Database systems play an important role in society and in commerce.

This chapter introduces database systems, the SQL language, and how database applications can be developed using Java. If you already know SQL, you can skip Sections 34.2 and 34.3.

34.2 Relational Database Systems

	SQL is the standard database language for defining and accessing databases.

A database system consists of a database, the software that stores and manages data in the database, and the application programs that present data and enable the user to interact with the database system, as shown in Figure 34.1.

[image:]
Figure 34.1

A database system consists of data, database management software, and application programs.

database system

A database is a repository of data that form information. When you purchase a database system—such as MySQL, Oracle, IBM’s DB2 and Informix, Microsoft SQL Server, or ­Sybase—from a software vendor, you actually purchase the software comprising a database management system (DBMS). Database management systems are designed for use by professional programmers and are not suitable for ordinary customers. Application programs are built on top of the DBMS for customers to access and update the database. Thus, application programs can be viewed as the interfaces between the database system and its users. Application programs may be stand-alone GUI applications or Web applications and may access several different database systems in the network, as shown in Figure 34.2.

[image:]
Figure 34.2

An application program can access multiple database systems.

DBMS

Most of today’s database systems are relational database systems. They are based on the relational data model, which has three key components: structure, integrity, and language. Structure defines the representation of the data. Integrity imposes constraints on the data. Language provides the means for accessing and manipulating data.

34.2.1 Relational Structures

The relational model is built around a simple and natural structure. A relation is actually a table that consists of nonduplicate rows. Tables are easy to understand and use. The relational model provides a simple yet powerful way to represent data.

relational model

A row of a table represents a record, and a column of a table represents the value of a single attribute of the record. In relational database theory, a row is called a tuple, and a column is called an attribute. Figure 34.3 shows a sample table that stores information about the courses offered by a university. The table has eight tuples, and each tuple has five attributes.

[image:]
Figure 34.3

A table has a table name, column names, and rows.

tuple

attribute

Tables describe the relationship among data. Each row in a table represents a record of related data. For example, “11111,” “CSCI,” “1301,” “Introduction to Java I,” and “4” are related to form a record (the first row in Figure 34.3) in the Course table. Just as the data in the same row are related, so too data in different tables may be related through common attributes. Suppose the database has two other tables, Student and Enrollment, as shown in Figures 34.4 and 34.5. The Course table and the Enrollment table are related through their common attribute courseId, and the Enrollment table and the Student table are related through ssn.

[image:]
Figure 34.4

A Student table stores student information.

[image:]
Figure 34.5

An Enrollment table stores student enrollment information.

34.2.2 Integrity Constraints

An integrity constraint imposes a condition that all the legal values in a table must satisfy. Figure 34.6 shows an example of some integrity constraints in the Subject and Course tables.

[image:]
Figure 34.6

The Enrollment table and the Course table have integrity constraints.

integrity constraint

In general, there are three types of constraints: domain constraints, primary key constraints, and foreign key constraints. Domain constraints and primary key constraints are known as intrarelational constraints, meaning that a constraint involves only one relation. The foreign key constraint is interrelational, meaning that a constraint involves more than one relation.

Domain Constraints

Domain constraints specify the permissible values for an attribute. Domains can be specified using standard data types, such as integers, floating-point numbers, fixed-length strings, and variant-length strings. The standard data type specifies a broad range of values. Additional constraints can be specified to narrow the ranges. For example, you can specify that the ­numOfCredits attribute (in the Course table) must be greater than 0 and less than 5. If an attribute has different values for each tuple in a relation, you can specify the attribute to be unique. You can also specify whether an attribute can be null, which is a special value in a database meaning unknown or not applicable. As shown in the Student table, birthDate may be null.

domain constraint

Primary Key Constraints

A primary key is a set of attributes that uniquely identifyies the tuples in a relations. Why is it called a primary key, rather than simply key? To understand this, it is helpful to know superkeys, keys, and candidate keys. A superkey is an attribute or a set of attributes that uniquely identifies the relation. That is, no two tuples have the same values on a superkey. By definition, a relation consists of a set of distinct tuples. The set of all attributes in the relation forms a superkey.

superkey

A key K is a minimal superkey, meaning that any proper subset of K is not a superkey. A relation can have several keys. In this case, each of the keys is called a candidate key. The primary key is one of the candidate keys designated by the database designer. The primary key is often used to identify tuples in a relation. As shown in Figure 34.6, courseId is the primary key in the Course table, and ssn and courseId form a primary key in the Enrollment table.

candidate key

primary key

Foreign Key Constraints

In a relational database, data are related. Tuples in a relation are related, and tuples in different relations are related through their common attributes. Informally speaking, the common attributes are foreign keys. The foreign key constraints define the relationships among relations.

relational database

foreign key constraint

Formally, a set of attributes FK is a foreign key in a relation R that references relation T if it satisfies the following two rules:

foreign key

	The attributes in FK have the same domain as the primary key in T.

	A nonnull value on FK in R must match a primary key value in T.

As shown in Figure 34.6, courseId is the foreign key in Enrollment that references the primary key courseId in Course. Every courseId value must match a courseId value in Course.

Enforcing Integrity Constraints

The database management system enforces integrity constraints and rejects operations that would violate them. For example, if you attempt to insert the new record (“11115,” “CSCI,” “2490,” “C++ Programming,” “0”) into the Course table, it would fail because the credit hours must be greater than 0; if you attempted to insert a record with the same primary key as an existing record in the table, the DBMS would report an error and reject the operation; if you attempted to delete a record from the Course table whose primary key value is referenced by the records in the Enrollment table, the DBMS would reject this operation.

auto enforcement

[image:]Note

All relational database systems support primary key constraints and foreign key ­constraints, but not all database systems support domain constraints. In the Microsoft Access database, for example, you cannot specify the constraint that numOfCredits is greater than 0 and less than 5.

[image:]

	34.2.1 What are superkeys, candidate keys, and primary keys?

	34.2.2 What is a foreign key?

	34.2.3 Can a relation have more than one primary key or foreign key?

	34.2.4 Does a foreign key need to be a primary key in the same relation?

	34.2.5 Does a foreign key need to have the same name as its referenced primary key?

	34.2.6 Can a foreign key value be null?

34.3 SQL

	Structured Query Language (SQL) is the language for defining tables and integrity constraints, and for accessing and manipulating data.

SQL (pronounced “S-Q-L” or “sequel”) is the universal language for accessing relational database systems. Application programs may allow users to access a database without directly using SQL, but these applications themselves must use SQL to access the database. This ­section introduces some basic SQL commands.

SQL

database language

[image:]Note

There are many relational database management systems. They share the common SQL language but do not all support every feature of SQL. Some systems have their own extensions to SQL. This section introduces standard SQL supported by all systems.

standard SQL

SQL can be used on MySQL, Oracle, Sybase, IBM DB2, IBM Informix, MS Access, Apache Derby, or any other relational database system. Apache Derby is an open source relational database management system developed using Java. Oracle distributes Apache Derby as Java DB and bundled with Java so you can use it in any Java application without installing a database. Java DB is ideal for supporting a small database in a Java application. This chapter uses MySQL to demonstrate SQL and Java database programming.

The Companion Website contains the following supplements on how to install and use three popular databases: MySQL, Oracle, and Java DB:

	Supplement IV.B: Tutorial for MySQL

MySQL Tutorial

	Supplement IV.C: Tutorial for Oracle

Oracle Tutorial

	Supplement IV.D: Tutorial for Java DB

Java DB Tutorial

34.3.1 Creating a User Account on MySQL

Assume you have installed MySQL 5 with the default configuration. To match all the examples in this book, you should create a user named scott with the password tiger. You can perform the administrative tasks using the MySQL Workbench or using the command line. MySQL Workbench is a GUI tool for managing MySQL databases. Here are the steps to create a user from the command line:

	From the DOS command prompt, type

mysql –uroot -p

You will be prompted to enter the root password, as shown in Figure 34.7.

	At the mysql prompt, enter

use mysql;

	To create user scott with password tiger, enter

create user 'scott'@'localhost' identified by 'tiger';

	To grant privileges to scott, enter

grant select, insert, update, delete, create, create view, drop, execute, references on *.* to 'scott'@'localhost';

	If you want to enable remote access of the account from any IP address, enter

grant all privileges on *.* to 'scott'@'%' identified by 'tiger';

	If you want to restrict the account’s remote access to just one particular IP address, enter

grant all privileges on *.* to 'scott'@'ipAddress' identified by 'tiger';

	Enter

exit;

to exit the MySQL console.

[image:]
Figure 34.7

You can access a MySQL database server from the command window.

[image:]Note

On Windows, your MySQL database server starts every time your computer starts. You can stop it by typing the command net stop mysql and restart it by typing the ­command net start mysql.

stop mysql

start mysql

By default, the server contains two databases named mysql and test. The mysql ­database contains the tables that store information about the server and its users. This database is intended for the server administrator to use. For example, the administrator can use it to create users and grant or revoke user privileges. Since you are the owner of the server installed on your system, you have full access to the mysql database. However, you should not create user tables in the mysql database. You can use the test database to store data or create new databases. You can also create a new database using the command create database ­databasename or delete an existing database using the command drop database databasename.

34.3.2 Creating a Database

To match the examples in this book, you should create a database named javabook. Here are the steps to create it:

	From the DOS command prompt, type

mysql –uscott -ptiger

to login to mysql, as shown in Figure 34.8.

	At the mysql prompt, enter

create database javabook;

[image:]
Figure 34.8

You can create databases in MySQL.

For your convenience, the SQL statements for creating and initializing tables used in this book are provided in Supplement IV.A. You can download the script for MySQL and save it to script.sql. To execute the script, first switch to the javabook database using the following command:

use javabook;

then type

source script.sql;

run script file

as shown in Figure 34.9.

[image:]
Figure 34.9

You can run SQL commands in a script file.

[image:]Note

You can populate the javabook database using the script from Supplement IV.A.

populating database

34.3.3 Creating and Dropping Tables

Tables are the essential objects in a database. To create a table, use the create table statement to specify a table name, attributes, and types, as in the following example:

create table

create table Course (
 courseId char(5),
 subjectId char(4) not null,
 courseNumber integer,
 title varchar(50) not null,
 numOfCredits integer,
 primary key (courseId)
);

This statement creates the Course table with attributes courseId, subjectId, ­courseNumber, title, and numOfCredits. Each attribute has a data type that specifies the type of data stored in the attribute. char(5) specifies that courseId consists of five characters. varchar(50) specifies that title is a variant-length string with a maximum of 50 characters. integer specifies that courseNumber is an integer. The primary key is courseId.

The tables Student and Enrollment can be created as follows:

create table Student (
 ssn char(9),
 firstName varchar(25),
 mi char(1),
 lastName varchar(25),
 birthDate date,
 street varchar(25),
 phone char(11),
 zipCode char(5),
 deptId char(4),
 primary key (ssn)
);

create table Enrollment (
 ssn char(9),
 courseId char(5),
 dateRegistered date,
 grade char(1),
 primary key (ssn, courseId),
 foreign key (ssn) references
 Student(ssn),
 foreign key (courseId) references
 Course(courseId)
);

[image:]Note

SQL keywords are not case sensitive. This book adopts the following naming ­conventions: tables are named in the same way as Java classes, and attributes are named in the same way as Java variables. SQL keywords are named in the same way as Java keywords.

naming convention

If a table is no longer needed, it can be dropped permanently using the drop table ­command. For example, the following statement drops the Course table:

drop table

drop table Course;

If a table to be dropped is referenced by other tables, you have to drop the other tables first. For example, if you have created the tables Course, Student, and Enrollment and want to drop Course, you have to first drop Enrollment, because Course is referenced by Enrollment.

Figure 34.10 shows how to enter the create table statement from the MySQL console.

[image:]
Figure 34.10

A table is created using the create table statement.

If you make typing errors, you have to retype the whole command. To avoid retyping, you can save the command in a file, then run the command from the file. To do so, create a text file to contain commands, named, for example, test.sql. You can create the text file using any text editor, such as Notepad, as shown in Figure 34.11a. To comment a line, precede it with two dashes. You can now run the script file by typing source test.sql from the SQL command prompt, as shown in Figure 34.11b.

[image:]
Figure 34.11

(a) You can use Notepad to create a text file for SQL commands. (b) You can run the SQL commands in a script file from MySQL.

34.3.4 Simple Insert, Update, and Delete

Once a table is created, you can insert data into it. You can also update and delete records. This section introduces simple insert, update, and delete statements.

The syntax to insert a record into a table is:

insert into tableName [(column1, column2, ..., column)]
values (value1, value2, ..., valuen);

For example, the following statement inserts a record into the Course table. The new record has the courseId ‘11113’, subjectId ‘CSCI’, courseNumber ‘3720’, title ‘Database Systems’, and creditHours 3.

insert into Course (courseId, subjectId, courseNumber, title, numOfCredits)
values ('11113', 'CSCI', '3720', 'Database Systems', 3);

The column names are optional. If they are omitted, all the column values for the record must be entered, even though the columns have default values. String values are case sensitive and enclosed inside single quotation marks in SQL.

The syntax to update a table is:

update tableName
set column1 = newValue1 [, column2 = newValue2, ...]
[where condition];

For example, the following statement changes the numOfCredits for the course whose title is Database Systems to 4.

update Course
set numOfCredits = 4
where title = 'Database Systems';

The syntax to delete records from a table is:

delete from tableName
[where condition];

For example, the following statement deletes the Database Systems course from the Course table:

delete from Course
where title = 'Database Systems';

The following statement deletes all the records from the Course table:

delete from Course;

34.3.5 Simple Queries

To retrieve information from tables, use a select statement with the following syntax:

select column-list
from table-list
[where condition];

The select clause lists the columns to be selected. The from clause refers to the tables involved in the query. The optional where clause specifies the conditions for the selected rows.

Query 1: Select all the students in the CS department, as shown in Figure 34.12.

select firstName, mi, lastName
from Student
where deptId = 'CS';

[image:]
Figure 34.12

The result of the select statement is displayed in the MySQL console.

34.3.6 Comparison and Boolean Operators

SQL has six comparison operators, as shown in Table 34.1, and three Boolean operators, as shown in Table 34.2.

Table 34.1 Comparison Operators

	Operator

	Description

	=

	Equal to

	<> or !=

	Not equal to

	<

	Less than

	<=

	Less than or equal to

	>

	Greater than

	>=

	Greater than or equal to

Table 34.2 Boolean Operators

	Operator

	Description

	not

	Logical negation

	and

	Logical conjunction

	or

	Logical disjunction

[image:]Note

The comparison and Boolean operators in SQL have the same meanings as in Java. In SQL the equal to operator is =, but in Java it is ==. In SQL the not equal to operator is <> or !=, but in Java it is !=. The not, and, and or operators are !, && (&), and || (|) in Java.

Query 2: Get the names of the students who are in the CS dept and live in the ZIP code 31411.

select firstName, mi, lastName
from Student
where deptId = 'CS' and zipCode = '31411';

[image:]Note

To select all the attributes from a table, you don’t have to list all the attribute names in the select clause. Instead, you can just use an asterisk (*), which stands for all the attributes. For example, the following query displays all the attributes of the students who are in the CS dept and live in ZIP code 31411.

select *
from Student
where deptId = 'CS' and zipCode = '31411';

34.3.7 The like, between-and, and is null Operators

SQL has a like operator that can be used for pattern matching. The syntax to check whether a string s has a pattern p is

s like p or s not like p

You can use the wildcard characters % (percent symbol) and _ (underline symbol) in the pattern p. % matches zero or more characters, and _ matches any single character in s. For example, lastName like '_mi%' matches any string whose second and third letters are m and i. lastName not like '_mi%' excludes any string whose second and third letters are m and i.

[image:]Note

In earlier versions of MS Access, the wildcard character is *, and the character ? matches any single character.

The between-and operator checks whether a value v is between two other values, v1 and v2, using the following syntax:

	v between v1 and v2 or v not between v1 and v2

	v between v1 and v2 is equivalent to v >= v1 and v <= v2, and v not between v1 and v2 is equivalent to v < v1 or v > v2.

The is null operator checks whether a value v is null using the following syntax:

v is null or v is not null

Query 3: Get the Social Security numbers of the students whose grades are between ‘C’ and ‘A’.

select ssn
from Enrollment
where grade between 'C' and 'A';

34.3.8 Column Alias

When a query result is displayed, SQL uses the column names as column headings. Usually the user gives abbreviated names for the columns, and the columns cannot have spaces when the table is created. Sometimes it is desirable to give more descriptive names in the result heading. You can use the column aliases with the following syntax:

 select columnName [as] alias

Query 4: Get the last name and ZIP code of the students in the CS department. Display the column headings as “Last Name” for lastName and “Zip Code” for zipCode. The query result is shown in Figure 34.13.

[image:]
Figure 34.13

You can use a column alias in the display.

select lastName as "Last Name", zipCode as "Zip Code"
from Student
where deptId = 'CS';

[image:]Note

The as keyword is optional in MySQL and Oracle, but it is required in MS Access.

34.3.9 The Arithmetic Operators

You can use the arithmetic operators * (multiplication), / (division), + (addition), and − (subtraction) in SQL.

Query 5: Assume a credit hour is 50 minutes of lectures and get the total minutes for each course with the subject CSCI. The query result is shown in Figure 34.14.

[image:]
Figure 34.14

You can use arithmetic operators in SQL.

select title, 50 * numOfCredits as "Lecture Minutes Per Week"
from Course
where subjectId = 'CSCI';

34.3.10 Displaying Distinct Tuples

SQL provides the distinct keyword, which can be used to eliminate duplicate tuples in the result. Figure 34.15a displays all the subject IDs used by the courses, and Figure 34.15b displays all the distinct subject IDs used by the courses using the following statement:

select distinct subjectId as "Subject ID"
from Course;

[image:]
Figure 34.15

(a) The duplicate tuples are displayed. (b) The distinct tuples are displayed.

When there is more than one column in the select clause, the distinct keyword applies to the whole tuple in the result. For example, the following statement displays all tuples with distinct subjectId and title, as shown in Figure 34.16. Note some tuples may have the same subjectId but different title. These tuples are distinct.

select distinct subjectId, title
from Course;

[image:]
Figure 34.16

The keyword distinct applies to the entire tuple.

34.3.11 Displaying Sorted Tuples

SQL provides the order by clause to sort the output using the following syntax:

select column-list
from table-list
[where condition]
[order by columns-to-be-sorted];

In the syntax, columns-to-be-sorted specifies a column or a list of columns to be sorted. By default, the order is ascending. To sort in a descending order, append the desc keyword. You could also append the asc keyword after columns-to-be-sorted, but it is not necessary. When multiple columns are specified, the rows are sorted based on the first column, then the rows with the same values on the first column are sorted based on the second column, and so on.

Query 6: List the full names of the students in the CS department, ordered primarily on their last names in descending order and secondarily on their first names in ascending order. The query result is shown in Figure 34.17.

[image:]
Figure 34.17

You can sort results using the order by clause.

select lastName, firstName, deptId
from Student
where deptId = 'CS'
order by lastName desc, firstName asc;

34.3.12 Joining Tables

Often you need to get information from multiple tables, as demonstrated in the next query.

Query 7: List the courses taken by the student Jacob Smith. To solve this query, you need to join tables Student and Enrollment, as shown in Figure 34.18.

[image:]
Figure 34.18

Student and Enrollment are joined on ssn.

You can write the query in SQL as follows:

select distinct lastName, firstName, courseId
from Student, Enrollment
where Student.ssn = Enrollment.ssn and
 lastName = 'Smith' and firstName = 'Jacob';

The tables Student and Enrollment are listed in the from clause. The query examines every pair of rows, each made of one item from Student and another from Enrollment and selects the pairs that satisfy the condition in the where clause. The rows in Student have the last name, Smith, and the first name, Jacob, and both rows from Student and Enrollment have the same ssn values. For each pair selected, lastName and firstName from Student and courseId from Enrollment are used to produce the result, as shown in Figure 34.19. Student and Enrollment have the same attribute ssn. To distinguish them in a query, use Student.ssn and Enrollment.ssn.

[image:]
Figure 34.19

Query 7 demonstrates queries involving multiple tables.

For more features of SQL, see Supplements IV.H and IV.I.

[image:]

	34.3.1 Create the tables Course, Student, and Enrollment using the create table statements in Section 34.3.3 , Creating and Dropping Tables. Insert rows into the Course, Student, and Enrollment tables using the data in Figures 34.3 –34.5.

	34.3.2 List all CSCI courses with at least four credit hours.

	34.3.3 List all students whose last names contain the letter e two times.

	34.3.4 List all students whose birthdays are null.

	34.3.5 List all students who take Math courses.

	34.3.6 List the number of courses in each subject.

	34.3.7 Assume each credit hour is 50 minutes of lectures. Get the total minutes for the courses that each student takes.

34.4 JDBC

	JDBC is the Java API for accessing relational database.

The Java API for developing Java database applications is called JDBC. JDBC is the trademarked name of a Java API that supports Java programs that access relational databases. JDBC is not an acronym, but it is often thought to stand for Java Database Connectivity.

JDBC provides Java programmers with a uniform interface for accessing and manipulating relational databases. Using the JDBC API, applications written in the Java programming language can execute SQL statements, retrieve results, present data in a user-friendly interface, and propagate changes back to the database. The JDBC API can also be used to interact with multiple data sources in a distributed, heterogeneous environment.

The relationships among Java programs, JDBC API, JDBC drivers, and relational databases are shown in Figure 34.20. The JDBC API is a set of Java interfaces and classes used to write Java programs for accessing and manipulating relational databases. Since a JDBC driver serves as the interface to facilitate communications between JDBC and a proprietary database, JDBC drivers are database specific and are normally provided by the database vendors. You need MySQL JDBC drivers to access the MySQL database, Oracle JDBC drivers to access the Oracle database, and DB2 JDBC driver to access the DB2 database.

[image:]
Figure 34.20

Java programs access and manipulate databases through JDBC drivers.

34.4.1 Developing Database Applications Using JDBC

The JDBC API is a Java application program interface to generic SQL databases that enables Java developers to develop DBMS-independent Java applications using a uniform interface.

The JDBC API consists of classes and interfaces for establishing connections with databases, sending SQL statements to databases, processing the results of SQL statements, and obtaining database metadata. Four key interfaces are needed to develop any database application using Java: Driver, Connection, Statement, and ResultSet. These interfaces define a framework for generic SQL database access. The JDBC API defines these interfaces, and the JDBC driver vendors provide the implementation for the interfaces. Programmers use these interfaces.

The relationship of these interfaces is shown in Figure 34.21. A JDBC application loads an appropriate driver using the Driver interface, connects to the database using the ­Connection interface, creates and executes SQL statements using the Statement interface, and processes the result using the ResultSet interface if the statements return results. Note some statements, such as SQL data definition statements and SQL data modification statements, do not return results.

[image:]
Figure 34.21

JDBC classes enable Java programs to connect to the database, send SQL statements, and process results.

The JDBC interfaces and classes are the building blocks in the development of Java database programs. A typical Java program takes the following steps to access a database.

	Loading drivers.

An appropriate driver must be loaded using the statement shown below before connecting to a database.

Class.forName("JDBCDriverClass");

A driver is a concrete class that implements the java.sql.Driver interface. The drivers for MySQL, Oracle, and Java DB are listed in Table 34.3. If your program accesses several different databases, all their respective drivers must be loaded.

Table 34.3 JDBC Drivers

	Database

	Driver Class

	Source

	MySQL

	com.mysql.jdbc.Driver

	mysql-connector-java-5.1.26.jar

	Oracle

	oracle.jdbc.driver.OracleDriver

	ojdbc6.jar

	Java DB (embedded)

	org.apache.derby.jdbc.EmbeddedDriver

	derby.jar

	Java DB (network)

	org.apache.derby.jdbc.ClientDriver

	derbynet.jar

mysql-connector-java-5.1.26.jar

ojdbc6.jar
The most recent platform independent version of MySQL JDBC driver is mysql-­connector-java-5.1.26.jar. This file is contained in a ZIP file downloadable from dev.mysql.com/downloads/connector/j/. The most recent version of Oracle JDBC driver is ojdbc6.jar (downloadable from www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html). Java DB has two versions: embedded and networked. Embedded version is used when you access Java DB locally, while the network version enables you to access Java DB on the network. To use these drivers, you have to add their jar files in the classpath using the following DOS command on Windows:

set classpath=%classpath%;c:\book\lib\mysql-connector-java-5.1.26. jar;c:\book\lib\ojdbc6.jar;c:\program files\jdk1.8.0\db\lib\derby.jar

If you use an IDE such as Eclipse or NetBeans, you need to add these jar files into the library in the IDE.

[image:]Note

com.mysql.jdbc.Driver is a class in mysql-connector-java-5.1.26.jar, and ­oracle.jdbc.driver.OracleDriver is a class in ojdbc6.jar. mysql-connector-java-5.1.26.jar, ojdbc6.jar, and derby.jar contains many classes to support the driver. These classes are used by JDBC but not directly by JDBC programmers. When you use a class explicitly in the program, it is automatically loaded by the JVM. The driver classes, however, are not used explicitly in the program, so you have to write the code to tell the JVM to load them.

why load a driver?

[image:]Note

Java supports automatic driver discovery, so you don’t have to load the driver explicitly. At the time of this writing, however, this feature is not supported for all database drivers. To be safe, load the driver explicitly.

automatic driver discovery

	Establishing connections.

To connect to a database, use the static method getConnection(databaseURL) in the DriverManager class, as follows:

Connection connection = DriverManager.getConnection(databaseURL);

where databaseURL is the unique identifier of the database on the Internet. Table 34.4 lists the URL patterns for the MySQL, Oracle, and Java DB.

Table 34.4 JDBC URLs

	Database

	URL Pattern

	MySQL

	jdbc:mysql://hostname/dbname

	Oracle

	jdbc:oracle:thin:@hostname:port#:oracleDBSID

	Java DB (embedded)

	jdbc:derby:dbname

	Java DB (network)

	jdbc:derby://hostname/dbname

The databaseURL for a MySQL database specifies the host name and database name to locate a database. For example, the following statement creates a Connection object for the local MySQL database javabook with username scott and password tiger:

connect MySQL DB

Connection connection = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook", "scott", "tiger");

Recall that by default, MySQL contains two databases named mysql and test. ­Section 34.3.2, Creating a Database, created a custom database named javabook. We will use javabook in the examples.

The databaseURL for an Oracle database specifies the hostname, the port# where the ­database listens for incoming connection requests, and the oracleDBSID database name to locate a database. For example, the following statement creates a Connection object for the Oracle database on liang.armstrong.edu with the username scott and password tiger:

connect Oracle DB

Connection connection = DriverManager.getConnection
 ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
 "scott", "tiger");

	Creating statements.

If a Connection object can be envisioned as a cable linking your program to a database, an object of Statement can be viewed as a cart that delivers SQL statements for execution by the database and brings the result back to the program. Once a Connection object is created, you can create statements for executing SQL statements as follows:

Statement statement = connection.createStatement();

	Executing statements.

SQL data definition language (DDL) and update statements can be executed using executeUpdate(String sql), and an SQL query statement can be executed using executeQuery(String sql). The result of the query is returned in ResultSet. For ­example, the following code executes the SQL statement create table Temp (col1 char(5), col2 char(5)):

statement.executeUpdate
 ("create table Temp (col1 char(5), col2 char(5))");

This next code executes the SQL query select firstName, mi, lastName from Student where lastName = 'Smith':

// Select the columns from the Student table
ResultSet resultSet = statement.executeQuery
 ("select firstName, mi, lastName from Student where lastName " + " = 'Smith'");

	Processing ResultSet.

The ResultSet maintains a table whose current row can be retrieved. The initial row position is null. You can use the next method to move to the next row and the various getter methods to retrieve values from a current row. For example, the following code displays all the results from the preceding SQL query:

// Iterate through the result and print the student names
while (resultSet.next())
 System.out.println(resultSet.getString(1) + " " +
 resultSet.getString(2) + " " + resultSet.getString(3));

The getString(1), getString(2), and getString(3) methods retrieve the ­column values for firstName, mi, and lastName, respectively. Alternatively, you can use getString("firstName"), getString("mi"), and getString("lastName") to retrieve the same three column values. The first execution of the next() method sets the ­current row to the first row in the result set, and subsequent invocations of the next() method set the current row to the second row, third row, and so on, to the last row.

Listing 34.1 is a complete example that demonstrates connecting to a database, executing a simple query, and processing the query result with JDBC. The program connects to a local MySQL database and displays the students whose last name is Smith.

Listing 34.1 SimpleJdbc.java

 1 import java.sql.*;
 2
 3 public class SimpleJdbc {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
load driver 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
 10 // Connect to a database
connect database 11 Connection connection = DriverManager.getConnection
 12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 13 System.out.println("Database connected");
 14
 15 // Create a statement
create statement 16 Statement statement = connection.createStatement();
 17
 18 // Execute a statement
execute statement 19 ResultSet resultSet = statement.executeQuery
 20 ("select firstName, mi, lastName from Student where lastName "
 21 + " = 'Smith'");
 22
 23 // Iterate through the result and print the student names
get result 24 while (resultSet.next())
 25 System.out.println(resultSet.getString(1) + "\t" +
 26 resultSet.getString(2) + "\t" + resultSet.getString(3));
 27
close connection 28 // Close the connection
 29 connection.close();
 30 }
 31 }

The statement in line 7 loads a JDBC driver for MySQL, and the statement in lines 11–13 connects to a local MySQL database. You can change them to connect to an Oracle or other databases. The program creates a Statement object (line 16), executes an SQL statement and returns a ResultSet object (lines 19–21), and retrieves the query result from the ResultSet object (lines 24–26). The last statement (line 29) closes the connection and releases resources related to the connection. You can rewrite this program using the try-with-resources syntax. See www.cs.armstrong.edu/liang/intro11e/html/SimpleJdbcWithAutoClose.html7.

[image:]Note

If you run this program from the DOS prompt, specify the appropriate driver in the classpath, as shown in Figure 34.22.

run from DOS prompt

The classpath directory and jar files are separated by commas. The period (.) ­represents the current directory. For convenience, the driver files are placed under the lib directory.

[image:]
Figure 34.22

You must include the driver file to run Java database programs.

 Caution

Do not use a semicolon (;) to end the Oracle SQL command in a Java program. The semicolon may not work with the Oracle JDBC drivers. It does work, however, with the other drivers used in this book.

the semicolon issue

[image:]Note

The Connection interface handles transactions and specifies how they are processed. By default, a new connection is in autocommit mode, and all its SQL statements are executed and committed as individual transactions. The commit occurs when the statement completes or the next execute occurs, whichever comes first. In the case of statements returning a result set, the statement completes when the last row of the result set has been retrieved or the result set has been closed. If a single statement returns multiple results, the commit occurs when all the results have been retrieved. You can use the setAutoCommit(false) method to disable autocommit, so all SQL statements are grouped into one transaction that is terminated by a call to either the commit() or the rollback() method. The rollback() method undoes all the changes made by the transaction.

autocommit

34.4.2 Accessing a Database from JavaFX

This section gives an example that demonstrates connecting to a database from a JavaFX program. The program lets the user enter the SSN and the course ID to find a student’s grade, as shown in Figure 34.23. The code in Listing 34.2 uses the MySQL database on the localhost.

[image:]
Figure 34.23

A JavaFX client can access the database on the server.

Listing 34.2 FindGrade.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.VBox;
 8 import javafx.stage.Stage;
 9 import java.sql.*;
			 10
 11 public class FindGrade extends Application {
 12 // Statement for executing queries
 13 private Statement stmt;
 14 private TextField tfSSN = new TextField();
 15 private TextField tfCourseId = new TextField();
 16 private Label lblStatus = new Label();
 17
 18 @Override / Override the start method in the Application class
 19 public void start(Stage primaryStage) {
 20 // Initialize database connection and create a Statement object
 21 initializeDB();
 22
 23 Button btShowGrade = new Button("Show Grade");
 24 HBox hBox = new HBox(5);
 25 hBox.getChildren().addAll(new Label("SSN"), tfSSN,
 26 new Label("Course ID"), tfCourseId, (btShowGrade));
 27
 28 VBox vBox = new VBox(10);
 29 vBox.getChildren().addAll(hBox, lblStatus);
 30
 31 tfSSN.setPrefColumnCount(6);
 32 tfCourseId.setPrefColumnCount(6);
button listener 33 btShowGrade.setOnAction(e -> showGrade());
 34
 35 // Create a scene and place it in the stage
 36 Scene scene = new Scene(vBox, 420, 80);
 37 primaryStage.setTitle("FindGrade"); // Set the stage title
 38 primaryStage.setScene(scene); // Place the scene in the stage
 39 primaryStage.show(); // Display the stage
 40 }
 41
 42 private void initializeDB() {
 43 try {
 44 // Load the JDBC driver
load driver 45 Class.forName("com.mysql.jdbc.Driver");
Oracle driver commented 46 // Class.forName("oracle.jdbc.driver.OracleDriver");
 47 System.out.println("Driver loaded");
 48
 49 // Establish a connection
connect to MySQL database 50 Connection connection = DriverManager.getConnection
 51 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
connect to Oracle commented 52 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
 53 // "scott", "tiger");
 54 System.out.println("Database connected");
 55
 56 // Create a statement
execute statement 57 stmt = connection.createStatement();
 58 }
 59 catch (Exception ex) {
 60 ex.printStackTrace();
 61 }
 62 }
 63
show result 64 private void showGrade() {
 65 String ssn = tfSSN.getText();
 66 String courseId = tfCourseId.getText();
 67 try {
 68 String queryString = "select firstName, mi, " +
create statement 69 "lastName, title, grade from Student, Enrollment, Course " +
 70 "where Student.ssn = '" + ssn + "' and Enrollment.courseId "
 71 + "= '" + courseId +
 72 "' and Enrollment.courseId = Course.courseId " +
 73 " and Enrollment.ssn = Student.ssn";
 74
 75 ResultSet rset = stmt.executeQuery(queryString);
 76
 77 if (rset.next()) {
 78 String lastName = rset.getString(1);
 79 String mi = rset.getString(2);
 80 String firstName = rset.getString(3);
 81 String title = rset.getString(4);
 82 String grade = rset.getString(5);
 83
 84 // Display result in a label
 85 lblStatus.setText(firstName + " " + mi +
 86 " " + lastName + "'s grade on course " + title + " is " +
 87 grade);
 88 } else {
 89 lblStatus.setText("Not found");
 90 }
 91 }
 92 catch (SQLException ex) {
 93 ex.printStackTrace();
 94 }
 95 }
 96 }

The initializeDB() method (lines 42–62) loads the MySQL driver (line 45), connects to the MySQL database on host liang.armstrong.edu (lines 50–55), and creates a statement (line 57).

[image:]Note

There is a security hole in this program. If you enter 1' or true or '1 in the SSN field, you will get the first student’s score, because the query string now becomes

select firstName, mi, lastName, title, grade
from Student, Enrollment, Course
where Student.ssn = '1' or true or '1' and
 Enrollment.courseId = ' ' and
 Enrollment.courseId = Course.courseId and
 Enrollment.ssn = Student.ssn;

You can avoid this problem by using the PreparedStatement interface, which will be discussed in the next section.

security hole

[image:]

	34.4.1 What are the advantages of developing database applications using Java?

	34.4.2 Describe the following JDBC interfaces: Driver, Connection, Statement, and ResultSet.

	34.4.3 How do you load a JDBC driver? What are the driver classes for MySQL, Oracle, and Java DB?

	34.4.4 How do you create a database connection? What are the URLs for MySQL, ­Oracle, and Java DB?

	34.4.5 How do you create a Statement and execute an SQL statement?

	34.4.6 How do you retrieve values in a ResultSet?

	34.4.7 Does JDBC automatically commit a transaction? How do you set autocommit to false?

34.5  PreparedStatement

	PreparedStatement enables you to create parameterized SQL statements.

Once a connection to a particular database is established, it can be used to send SQL statements from your program to the database. The Statement interface is used to execute static SQL statements that don’t contain any parameters. The PreparedStatement interface, extending Statement, is used to execute a precompiled SQL statement with or without parameters. Since the SQL statements are precompiled, they are efficient for repeated executions.

A PreparedStatement object is created using the prepareStatement method in the Connection interface. For example, the following code creates a PreparedStatement for an SQL insert statement:

PreparedStatement preparedStatement = connection.prepareStatement
 ("insert into Student (firstName, mi, lastName) " +
 "values (?, ?, ?)");

This insert statement has three question marks as placeholders for parameters representing values for firstName, mi, and lastName in a record of the Student table.

As a subinterface of Statement, the PreparedStatement interface inherits all the methods defined in Statement. It also provides the methods for setting parameters in the object of PreparedStatement. These methods are used to set the values for the parameters before executing statements or procedures. In general, the setter methods have the following name and signature:

setX(int parameterIndex, X value);

where X is the type of the parameter, and parameterIndex is the index of the parameter in the statement. The index starts from 1. For example, the method setString(int parameterIndex, String value) sets a String value to the specified parameter.

The following statements pass the parameters "Jack", "A", and "Ryan" to the placeholders for firstName, mi, and lastName in preparedStatement:

preparedStatement.setString(1, "Jack");
preparedStatement.setString(2, "A");
preparedStatement.setString(3, "Ryan");

After setting the parameters, you can execute the prepared statement by invoking executeQuery() for a SELECT statement and executeUpdate() for a DDL or update statement.

The executeQuery() and executeUpdate() methods are similar to the ones defined in the Statement interface except that they don’t have any parameters, because the SQL statements are already specified in the prepareStatement method when the object of ­PreparedStatement is created.

Using a prepared SQL statement, Listing 34.2 can be improved as in Listing 34.3.

Listing 34.3 FindGradeUsingPreparedStatement.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.VBox;
 8 import javafx.stage.Stage;
 9 import java.sql.*;
 10
 11 public class FindGradeUsingPreparedStatement extends Application {
 12 // PreparedStatement for executing queries
 13 private PreparedStatement preparedStatement;
 14 private TextField tfSSN = new TextField();
 15 private TextField tfCourseId = new TextField();
 16 private Label lblStatus = new Label();
 17
 18 @Override // Override the start method in the Application class
 19 public void start(Stage primaryStage) {
 20 // Initialize database connection and create a Statement object
 21 initializeDB();
 22
 23 Button btShowGrade = new Button("Show Grade");
 24 HBox hBox = new HBox(5);
 25 hBox.getChildren().addAll(new Label("SSN"), tfSSN,
 26 new Label("Course ID"), tfCourseId, (btShowGrade));
 27
 28 VBox vBox = new VBox(10);
 29 vBox.getChildren().addAll(hBox, lblStatus);
 30
 31 tfSSN.setPrefColumnCount(6);
 32 tfCourseId.setPrefColumnCount(6);
 33 btShowGrade.setOnAction(e -> showGrade());
 34
prepare statement 35 // Create a scene and place it in the stage
 36 Scene scene = new Scene(vBox, 420, 80);
 37 primaryStage.setTitle("FindGrade"); // Set the stage title
 38 primaryStage.setScene(scene); // Place the scene in the stage
 39 primaryStage.show(); // Display the stage
 40 }
 41
 42 private void initializeDB() {
 43 try {
 44 // Load the JDBC driver
load driver 45 Class.forName("com.mysql.jdbc.Driver");
 46 // Class.forName("oracle.jdbc.driver.OracleDriver");
 47 System.out.println("Driver loaded");
 48
 49 // Establish a connection
connect database 50 Connection connection = DriverManager.getConnection
 51 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 52 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
 53 // "scott", "tiger");
 54 System.out.println("Database connected");
 55
 56 String queryString = "select firstName, mi, " +
 57 "lastName, title, grade from Student, Enrollment, Course " +
placeholder 58 "where Student.ssn = ? and Enrollment.courseId = ? " +
 59 "and Enrollment.courseId = Course.courseId";
 60
 61 // Create a statement
 62 preparedStatement = connection.prepareStatement(queryString);
 63 }
 64 catch (Exception ex) {
 65 ex.printStackTrace();
 66 }
 67 }
 68
 69 private void showGrade() {
 70 String ssn = tfSSN.getText();
 71 String courseId = tfCourseId.getText();
 72 try {
 73 preparedStatement.setString(1, ssn);
 74 preparedStatement.setString(2, courseId);
execute statement 75 ResultSet rset = preparedStatement.executeQuery();
 76
 77 if (rset.next()) {
 78 String lastName = rset.getString(1);
 79 String mi = rset.getString(2);
 80 String firstName = rset.getString(3);
 81 String title = rset.getString(4);
 82 String grade = rset.getString(5);
 83
 84 // Display result in a label
show result 85 lblStatus.setText(firstName + " " + mi +
 86 " " + lastName + "'s grade on course " + title + " is " +
 87 grade);
 88 } else {
 89 lblStatus.setText("Not found");
 90 }
 91 }
 92 catch (SQLException ex) {
 93 ex.printStackTrace();
 94 }
 95 }
 96 }

This example does exactly the same thing as Listing 34.2 except that it uses the prepared statement to dynamically set the parameters. The code in this example is almost the same as in the preceding example. The new code is highlighted.

A prepared query string is defined in lines 56–59 with ssn and courseId as parameters. An SQL prepared statement is obtained in line 62. Before executing the query, the actual values of ssn and courseId are set to the parameters in lines 73–74. Line 75 executes the prepared statement.

[image:]

	34.5.1 Describe prepared statements. How do you create instances of Prepared­Statement? How do you execute a PreparedStatement? How do you set parameter values in a PreparedStatement?

	34.5.2 What are the benefits of using prepared statements?

34.6  CallableStatement

	CallableStatement enables you to execute SQL stored procedures.

The CallableStatement interface is designed to execute SQL-stored procedures. The procedures may have IN, OUT, or IN OUT parameters. An IN parameter receives a value passed to the procedure when it is called. An OUT parameter returns a value after the procedure is completed, but it doesn’t contain any value when the procedure is called. An IN OUT parameter contains a value passed to the procedure when it is called and returns a value after it is completed. For example, the following procedure in Oracle PL/SQL has IN parameter p1, OUT parameter p2, and IN OUT parameter p3:

IN parameter

OUT parameter

IN OUT parameter

create or replace procedure sampleProcedure
 (p1 in varchar, p2 out number, p3 in out integer) is
begin
 /* do something */
end sampleProcedure;
/

[image:]Note

The syntax of stored procedures is vendor specific. We use both Oracle and MySQL for demonstrations of stored procedures in this book.

A CallableStatement object can be created using the prepareCall(String call) method in the Connection interface. For example, the following code ­creates a ­Callable­Statement cstmt on Connection connection for the procedure sampleProcedure:

CallableStatement callableStatement = connection.prepareCall(
 "{call sampleProcedure(?, ?, ?)}");

{call sampleProcedure(?, ?, ...)} is referred to as the SQL escape syntax, which signals the driver that the code within it should be handled differently. The driver parses the escape syntax and translates it into code that the database understands. In this example, ­sampleProcedure is an Oracle procedure. The call is translated to the string begin ­sampleProcedure(?, ?, ?); end and passed to an Oracle database for execution.

You can call procedures as well as functions. The syntax to create an SQL callable statement for a function is:

{? = call functionName(?, ?, ...)}

CallableStatement inherits PreparedStatement. Additionally, the ­Callable­Statement interface provides methods for registering the OUT parameters and for getting values from the OUT parameters.

Before calling an SQL procedure, you need to use appropriate setter methods to pass ­values to IN and IN OUT parameters, and use registerOutParameter to register OUT and IN OUT parameters. For example, before calling procedure sampleProcedure, the following statements pass values to parameters p1 (IN) and p3 (IN OUT) and register parameters p2 (OUT) and p3 (IN OUT):

callableStatement.setString(1, "Dallas"); // Set Dallas to p1
callableStatement.setLong(3, 1); // Set 1 to p3
// Register OUT parameters
callableStatement.registerOutParameter(2, java.sql.Types.DOUBLE);
callableStatement.registerOutParameter(3, java.sql.Types.INTEGER);

You can use execute() or executeUpdate() to execute the procedure depending on the type of SQL statement, then use getter methods to retrieve values from the OUT parameters. For example, the next statements retrieve the values from parameters p2 and p3:

double d = callableStatement.getDouble(2);
int i = callableStatement.getInt(3);

Let us define a MySQL function that returns the number of the records in the table that match the specified firstName and lastName in the Student table.

/* For the callable statement example. Use MySQL version 5 */
drop function if exists studentFound;

delimiter //

create function studentFound(first varchar(20), last varchar(20))
 returns int
begin
 declare result int;

 select count(*) into result
 from Student
 where Student.firstName = first and
 Student.lastName = last;

 return result;
end;
//

delimiter ;
/* Please note that there is a space between delimiter and ; */

If you use an Oracle database, the function can be defined as follows:

create or replace function studentFound
 (first varchar2, last varchar2)
 /* Do not name firstName and lastName. */
 return number is numberOfSelectedRows number := 0;
begin
 select count(*) into numberOfSelectedRows
 from Student
 where Student.firstName = first and
 Student.lastName = last;

 return numberOfSelectedRows;
end studentFound;
/

Suppose the function studentFound is already created in the database. Listing 34.4 gives an example that tests this function using callable statements.

Listing 34.4 TestCallableStatement.java

 1 import java.sql.*;
 2
 3 public class TestCallableStatement {
 4 /** Creates new form TestTableEditor */
 5 public static void main(String[] args) throws Exception {
load driver 6 Class.forName("com.mysql.jdbc.Driver");
connect database 7 Connection connection = DriverManager.getConnection(
 8 "jdbc:mysql://localhost/javabook",
 9 "scott", "tiger");
 10 // Connection connection = DriverManager.getConnection(
 11 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
 12 // "scott", "tiger");
 13
 14 // Create a callable statement
create callable statement 15 CallableStatement callableStatement = connection.prepareCall(
 16 "{? = call studentFound(?, ?)}");
 17
 18 java.util.Scanner input = new java.util.Scanner(System.in);
 19 System.out.print("Enter student's first name: ");
enter firstName 20 String firstName = input.nextLine();
 21 System.out.print("Enter student's last name: ");
enter lastName 22 String lastName = input.nextLine();
 23
set IN parameter 24 callableStatement.setString(2, firstName);
set IN parameter 25 callableStatement.setString(3, lastName);
register OUT parameter 26 callableStatement.registerOutParameter(1, Types.INTEGER);
execute statement 27 callableStatement.execute();
 28
get OUT parameter 29 if (callableStatement.getInt(1) >= 1)
 30 System.out.println(firstName + " " + lastName +
 31 " is in the database");
 32 else
 33 System.out.println(firstName + " " + lastName +
 34 " is not in the database");
 35 }
 36 }

Enter student's first name: Jacob [image:]
Enter student's last name: Smith [image:]
Jacob Smith is in the database

Enter student's first name: John [image:]
Enter student's last name: Smith [image:]
John Smith is not in the database

The program loads a MySQL driver (line 6), connects to a MySQL database (lines 7–9), and creates a callable statement for executing the function studentFound (lines 15–16).

The function’s first parameter is the return value; its second and third parameters correspond to the first and last names. Before executing the callable statement, the program sets the first name and last name (lines 24–25) and registers the OUT parameter (line 26). The statement is executed in line 27.

The function’s return value is obtained in line 29. If the value is greater than or equal to 1, the student with the specified first and last name is found in the table.

[image:]

	34.6.1 Describe callable statements. How do you create instances of CallableStatement? How do you execute a CallableStatement? How do you register OUT parameters in a CallableStatement?

34.7 Retrieving Metadata

	The database metadata such as database URL, username, and JDBC driver name can be obtained using the DatabaseMetaData interface and result set metadata such as table column count and column names can be obtained using the ResultSetMetaData interface.

JDBC provides the DatabaseMetaData interface for obtaining database-wide information, and the ResultSetMetaData interface for obtaining information on a specific ResultSet.

database metadata

34.7.1 Database Metadata

The Connection interface establishes a connection to a database. It is within the context of a connection that SQL statements are executed and results are returned. A connection also provides access to database metadata information that describes the capabilities of the database, supported SQL grammar, stored procedures, and so on. To obtain an instance of DatabaseMetaData for a database, use the getMetaData method on a Connection object like this:

DatabaseMetaData dbMetaData = connection.getMetaData();

If your program connects to a local MySQL database, the program in Listing 34.5 displays the database information statements shown in Figure 34.24.

[image:]
Figure 34.24

The DatabaseMetaData interface enables you to obtain database information.

Listing 34.5 TestDatabaseMetaData.java

 1 import java.sql.*;
 2
 3 public class TestDatabaseMetaData {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
load driver 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
 10 // Connect to a database
connect database 11 Connection connection = DriverManager.getConnection
 12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 13 System.out.println("Database connected");
 14
database metadata 15 DatabaseMetaData dbMetaData = connection.getMetaData();
get metadata 16 System.out.println("database URL: " + dbMetaData.getURL());
 17 System.out.println("database username: " +
 18 dbMetaData.getUserName());
 19 System.out.println("database product name: " +
 20 dbMetaData.getDatabaseProductName());
 21 System.out.println("database product version: " +
 22 dbMetaData.getDatabaseProductVersion());
 23 System.out.println("JDBC driver name: " +
 24 dbMetaData.getDriverName());
 25 System.out.println("JDBC driver version: " +
 26 dbMetaData.getDriverVersion());
 27 System.out.println("JDBC driver major version: " +
 28 dbMetaData.getDriverMajorVersion());
 29 System.out.println("JDBC driver minor version: " +
 30 dbMetaData.getDriverMinorVersion());
 31 System.out.println("Max number of connections: " +
 32 dbMetaData.getMaxConnections());
 33 System.out.println("MaxTableNameLength: " +
 34 dbMetaData.getMaxTableNameLength());
 35 System.out.println("MaxColumnsInTable: " +
 36 dbMetaData.getMaxColumnsInTable());
 37
 38 // Close the connection
 39 connection.close();
 40 }
 41 }

34.7.2 Obtaining Database Tables

You can identify the tables in the database through database metadata using the getTables method. Listing 34.6 displays all the user tables in the javabook database on a local MySQL database. Figure 34.25 shows a sample output of the program.

[image:]
Figure 34.25

You can find all the tables in the database.

Listing 34.6 FindUserTables.java

 1 import java.sql.*;
 2
 3 public class FindUserTables {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
load driver 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
 10 // Connect to a database
connect database 11 Connection connection = DriverManager.getConnection
 12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 13 System.out.println("Database connected");
 14
database metadata 15 DatabaseMetaData dbMetaData = connection.getMetaData();
 16
obtain tables 17 ResultSet rsTables = dbMetaData.getTables(null, null, null,
 18 new String[] {"TABLE"});
 19 System.out.print("User tables: ");
 20 while (rsTables.next())
get table names 21 System.out.print(rsTables.getString("TABLE_NAME") + " ");
 22
 23 // Close the connection
 24 connection.close();
 25 }
 26 }

Line 17 obtains table information in a result set using the getTables method. One of the columns in the result set is TABLE_NAME. Line 21 retrieves the table name from this result set column.

34.7.3 Result Set Metadata

The ResultSetMetaData interface describes information pertaining to the result set. A ResultSetMetaData object can be used to find the types and properties of the columns in a ResultSet. To obtain an instance of ResultSetMetaData, use the getMetaData method on a result set like this:

ResultSetMetaData rsMetaData = resultSet.getMetaData();

You can use the getColumnCount() method to find the number of columns in the result and the getColumnName(int) method to get the column names. For example, Listing 34.7 displays all the column names and contents resulting from the SQL SELECT statement select * from Enrollment. The output is shown in Figure 34.26.

[image:]
Figure 34.26

The ResultSetMetaData interface enables you to obtain result set information.

Listing 34.7 TestResultSetMetaData.java

 1 import java.sql.*;
 2
 3 public class TestResultSetMetaData {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
load driver 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
 10 // Connect to a database
connect database 11 Connection connection = DriverManager.getConnection
 12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 13 System.out.println("Database connected");
 14
 15 // Create a statement
create statement 16 Statement statement = connection.createStatement();
 17
 18 // Execute a statement
create result set 19 ResultSet resultSet = statement.executeQuery
 20 ("select * from Enrollment");
 21
result set metadata 22 ResultSetMetaData rsMetaData = resultSet.getMetaData();
column count 23 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
column name 24 System.out.printf("%-12s\t", rsMetaData.getColumnName(i));
 25 System.out.println();
 26
 27 // Iterate through the result and print the students' names
 28 while (resultSet.next()) {
 29 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
 30 System.out.printf("%-12s\t", resultSet.getObject(i));
 31 System.out.println();
 32 }
 33
 34 // Close the connection
 35 connection.close();
 36 }
 37 }

[image:]

	34.7.1 What is DatabaseMetaData for? Describe the methods in DatabaseMetaData. How do you get an instance of DatabaseMetaData?

	34.7.2 What is ResultSetMetaData for? Describe the methods in ResultSet­MetaData. How do you get an instance of ResultSetMetaData?

	34.7.3 How do you find the number of columns in a result set? How do you find the ­column names in a result set?

Key Terms

	candidate key 34-5

	database system 34-2

	domain constraint 34-5

	foreign key 34-5

	foreign key constraint 34-5

	integrity constraint 34-4

	primary key 34-5

	relational database 34-5

	Structured Query Language (SQL) 34-6

	superkey 34-5

Chapter Summary

	This chapter introduced the concepts of database systems, relational databases, relational data models, data integrity, and SQL. You learned how to develop database applications using Java.

	The Java API for developing Java database applications is called JDBC. JDBC provides Java programmers with a uniform interface for accessing and manipulating relational databases.

	The JDBC API consists of classes and interfaces for establishing connections with databases, sending SQL statements to databases, processing the results of SQL statements, and obtaining database metadata.

	Since a JDBC driver serves as the interface to facilitate communications between JDBC and a proprietary database, JDBC drivers are database specific. If you use a driver, make sure it is in the classpath before running the program.

	Four key interfaces are needed to develop any database application using Java: Driver, Connection, Statement, and ResultSet. These interfaces define a framework for generic SQL database access. The JDBC driver vendors provide implementation for them.

	A JDBC application loads an appropriate driver using the Driver interface, connects to the database using the Connection interface, creates and executes SQL statements using the Statement interface, and processes the result using the ResultSet interface if the statements return results.

	The PreparedStatement interface is designed to execute dynamic SQL statements with parameters. These SQL statements are precompiled for efficient use when repeatedly executed.

	Database metadata is information that describes the database itself. JDBC provides the DatabaseMetaData interface for obtaining database-wide information and the ResultSetMetaData interface for obtaining information on the specific ResultSet.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

[image:]Programming Exercises

	*34.1 (Access and update a Staff table) Write a program that views, inserts, and updates staff information stored in a database, as shown in Figure 34.27a . The View button displays a record with a specified ID. The Insert button inserts a new record. The Update button updates the record for the specified ID. The Staff table is created as follows:

[image:]
Figure 34.27

(a) The program lets you view, insert, and update staff information. (b) The PieChart and BarChart components display the query data obtained from the data module.

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),
 mi char(1),
 address varchar(20),
 city varchar(20),
 state char(2),
 telephone char(10),
 email varchar(40),
 primary key (id)
);

	**34.2 (Visualize data) Write a program that displays the number of students in each department in a pie chart and a bar chart, as shown in Figure 34.27b . The PieChart and BarChart classes are created in Programming Exercises 14.12 and Exercises 14.13 . The number of students for each department can be obtained from the Student table (see Figure 34.4) using the following SQL statement:

select deptId, count(*)
from Student
where deptId is not null
group by deptId;

	*34.3 (Connection dialog) Develop a subclass of BorderPane named DBConnectionPane that enables the user to select or enter a JDBC driver and a URL and to enter a username and password, as shown in Figure 34.28 . When the Connect to DB button is clicked, a Connection object for the database is stored in the connection property. You can then use the getConnection() method to return the connection.

[image:]
Figure 34.28

The DBConnectionPane component enables the user to enter database information.

	*34.4 (Find grades) Listing 34.2 , FindGrade.java, presented a program that finds a student’s grade for a specified course. Rewrite the program to find all the grades for a specified student, as shown in Figure 34.29 .

[image:]
Figure 34.29

The program displays the grades for the courses for a specified student.

	*34.5 (Display table contents) Write a program that displays the content for a given table. As shown in Figure 34.30a , you enter a table and click the Show Contents button to display the table contents in the text area.

[image:]
Figure 34.30

(a) Enter a table name to display the table contents. (b) Select a table name from the combo box to ­display its contents.

	*34.6 (Find tables and showing their contents) Write a program that fills in table names in a combo box, as shown in Figure 34.30b . You can select a table from the combo box to display its contents in the text area.

	**34.7 (Populate Quiz table) Create a table named Quiz as follows:

create table Quiz(
 questionId int,
 question varchar(4000),
 choicea varchar(1000),
 choiceb varchar(1000),
 choicec varchar(1000),
 choiced varchar(1000),
 answer varchar(5));

The Quiz table stores multiple-choice questions. Suppose the multiple-choice questions are stored in a text file accessible from http://www.cs.armstrong.edu/liang/data/Quiz.txt in the following format:

1. question1
a. choice a
b. choice b
c. choice c
d. choice d
Answer:cd

2. question2
a. choice a
b. choice b
c. choice c
d. choice d
Answer:a

...

Write a program that reads the data from the file and populate it into the Quiz table.

	*34.8 (Populate Salary table) Create a table named Salary as follows:

create table Salary(
 firstName varchar(100),
 lastName varchar(100),
 rank varchar(15),
 salary float);

Obtain the data for salary from http://cs.armstrong.edu/liang/data/Salary.txt and populate it into the Salary table in the database.

	*34.9 (Copy table) Suppose the database contains a student table defined as follows:

create table Student1 (
 username varchar(50) not null,
 password varchar(50) not null,
 fullname varchar(200) not null,
 constraint pkStudent primary key (username)
);

Create a new table named Student2 as follows:

create table Student2 (
 username varchar(50) not null,
 password varchar(50) not null,
 firstname varchar(100),
 lastname varchar(100),
 constraint pkStudent primary key (username)
);

A full name is in the form of firstname mi lastname or firstname lastname. For example, John K Smith is a full name. Write a program that copies table Student1 into Student2. Your task is to split a full name into firstname, mi, and lastname for each record in Student1 and store a new record into Student2.

	*34.10 (Record unsubmitted exercises) The following three tables store information on students, assigned exercises, and exercise submission in LiveLab. LiveLab is an automatic grading system for grading programming exercises.

create table AGSStudent (
 username varchar(50) not null,
 password varchar(50) not null,
 fullname varchar(200) not null,
 instructorEmail varchar(100) not null,
 constraint pkAGSStudent primary key (username)
);

 create table ExerciseAssigned (
 instructorEmail varchar(100),
 exerciseName varchar(100),
 maxscore double default 10,
 constraint pkCustomExercise primary key
 (instructorEmail, exerciseName)
);

create table AGSLog (
 username varchar(50), /* This is the student's user name */
 exerciseName varchar(100), /* This is the exercise */
 score double default null,
 submitted bit default 0,
 constraint pkLog primary key (username, exerciseName)
);

The AGSStudent table stores the student information. The ExerciseAssigned table assigns the exercises by an instructor. The AGSLog table stores the grading results. When a student submits an exercise, a record is stored in the AGSLog table. However, there is no record in AGSLog if a student did not submit the exercise.

Write a program that adds a new record for each student and an assigned exercise to the student in the AGSLog table if a student has not submitted the exercise. The record should have 0 on score and submitted. For example, if the tables contain the following data in AGSLog before you run this program, the AGSLog table now contains the new records after the program runs.

AGSStudent

	username

	password

	fullname

	instructorEmail

	abc

	p1

	John Roo

	t@gmail.com

	cde

	p2

	Yao Mi

	c@gmail.com

	wbc

	p3

	F3

	t@gmail.com

ExerciseAssigned

	instructorEmail

	exerciseName

	maxScore

	t@gmail.com

	e1

	10

	t@gmail.com

	e2

	10

	c@gmail.com

	e1

	4

	c@gmail.com

	e4

	20

AGSLog

	username

	exerciseName

	score

	submitted

	abc

	e1

	9

	1

	wbc

	e2

	7

	1

AGSLog after the program runs

	username

	exerciseName

	score

	submitted

	abc

	e1

	9

	1

	wbc

	e2

	7

	1

	abc

	e2

	

	0

	wbc

	e1

	

	0

	cde

	e1

	

	0

	cde

	e4

	

	0

	*34.11 (Baby names) Create the following table:

create table Babyname (
 year integer,
 name varchar(50),
 gender char(1),
 count integer,
 constraint pkBabyname primary key (year, name, gender)
);

The baby name ranking data was described in Programming Exercises 12.31 . Write a program to read data from the following URL and store into the Babyname table. https://liveexample.pearsoncmg.com/data/babynamesranking2001.txt, . . . https://liveexample.pearsoncmg.com/data/babynamesranking2010.txt.

CHAPTER 35 Advanced Java Database Programming

Objectives

	To create a universal SQL client for accessing local or remote database (§35.2).

	To execute SQL statements in a batch mode (§35.3).

	To process updatable and scrollable result sets (§35.4).

	To simplify Java database programming using RowSet (§35.5).

	To store and retrieve images in JDBC (§35.6).

35.1 Introduction

	This chapter introduces advanced features for Java database programming.

Chapter 34 introduced JDBC’s basic features. This chapter covers its advanced features. You will learn how to develop a universal SQL client for accessing any local or remote relational database, learn how to execute statements in a batch mode to improve performance, learn scrollable result sets and how to update a database through result sets, learn how to use RowSet to simplify database access, and learn how to store and retrieve images.

35.2 A Universal SQL Client

	This section develops a universal SQL client for connecting and accessing any SQL database.

In Chapter 34, you used various drivers to connect to the database, created statements for executing SQL statements, and processed the results from SQL queries. This section presents a universal SQL client that enables you to connect to any relational database and execute SQL commands interactively, as shown in Figure 35.1. The client can connect to any JDBC data source and can submit SQL SELECT commands and non-SELECT commands for execution. The execution result is displayed for the SELECT queries, and the execution status is displayed for the non-SELECT commands. Listing 35.1 gives the program.

 Figure 35.1

You can connect to any JDBC data source and execute SQL commands interactively.

Listing 35.1 SQLClient.java

 1 import java.sql.*;
 2 import javafx.application.Application;
 3 import javafx.collections.FXCollections;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.ComboBox;
 8 import javafx.scene.control.Label;
 9 import javafx.scene.control.PasswordField;
 10 import javafx.scene.control.ScrollPane;
 11 import javafx.scene.control.TextArea;
 12 import javafx.scene.control.TextField;
 13 import javafx.scene.layout.BorderPane;
 14 import javafx.scene.layout.GridPane;
 15 import javafx.scene.layout.HBox;
 16 import javafx.scene.layout.VBox;
 17 import javafx.stage.Stage;
 18
 19 public class SQLClient extends Application {
 20 // Connection to the database
 21 private Connection connection;
 22
 23 // Statement to execute SQL commands
 24 private Statement statement;
 25
 26 // Text area to enter SQL commands
 27 private TextArea tasqlCommand = new TextArea();
 28
 29 // Text area to display results from SQL commands
 30 private TextArea taSQLResult = new TextArea();
 31
 32 // DBC info for a database connection
 33 private TextField tfUsername = new TextField();
 34 private PasswordField pfPassword = new PasswordField();
 35 private ComboBox<String> cboURL = new ComboBox<>();
 36 private ComboBox<String> cboDriver = new ComboBox<>();
 37
 38 private Button btExecuteSQL = new Button("Execute SQL Command");
 39 private Button btClearSQLCommand = new Button("Clear");
 40 private Button btConnectDB = new Button("Connect to Database");
 41 private Button btClearSQLResult = new Button("Clear Result");
 42 private Label lblConnectionStatus
 43 = new Label("No connection now");
 44
 45 @Override // Override the start method in the Application class
 46 public void start(Stage primaryStage) {
 47 cboURL.getItems().addAll(FXCollections.observableArrayList(
 48 "jdbc:mysql://localhost/javabook",
 49 "jdbc:mysql://liang.armstrong.edu/javabook",
 50 "jdbc:odbc:exampleMDBDataSource",
 51 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"));
 52 cboURL.getSelectionModel().selectFirst();
 53
 54 cboDriver.getItems().addAll(FXCollections.observableArrayList(
 55 "com.mysql.jdbc.Driver", "sun.jdbc.odbc.dbcOdbcDriver",
 56 "oracle.jdbc.driver.OracleDriver"));
 57 cboDriver.getSelectionModel().selectFirst();
 58
 59 // Create UI for connecting to the database
 60 GridPane gridPane = new GridPane();
 61 gridPane.add(cboURL, 1, 0);
 62 gridPane.add(cboDriver, 1, 1);
 63 gridPane.add(tfUsername, 1, 2);
 64 gridPane.add(pfPassword, 1, 3);
 65 gridPane.add(new Label("JDBC Driver"), 0, 0);
 66 gridPane.add(new Label("Database URL"), 0, 1);
 67 gridPane.add(new Label("Username"), 0, 2);
 68 gridPane.add(new Label("Password"), 0, 3);
 69
 70 HBox hBoxConnection = new HBox();
 71 hBoxConnection.getChildren().addAll(
 72 lblConnectionStatus, btConnectDB);
 73 hBoxConnection.setAlignment(Pos.CENTER_RIGHT);
 74
 75 VBox vBoxConnection = new VBox(5);
 76 vBoxConnection.getChildren().addAll(
 77 new Label("Enter Database Information"),
 78 gridPane, hBoxConnection);
 79
 80 gridPane.setStyle("-fx-border-color: black;");
 81
 82 HBox hBoxSQLCommand = new HBox(5);
 83 hBoxSQLCommand.getChildren().addAll(
 84 btClearSQLCommand, btExecuteSQL);
 85 hBoxSQLCommand.setAlignment(Pos.CENTER_RIGHT);
 86
 87 BorderPane borderPaneSqlCommand = new BorderPane();
 88 borderPaneSqlCommand.setTop(
 89 new Label("Enter an SQL Command"));
 90 borderPaneSqlCommand.setCenter(
 91 new ScrollPane(tasqlCommand));
 92 borderPaneSqlCommand.setBottom(
 93 hBoxSQLCommand);
 94
 95 HBox hBoxConnectionCommand = new HBox(10);
 96 hBoxConnectionCommand.getChildren().addAll(
 97 vBoxConnection, borderPaneSqlCommand);
 98
 99 BorderPane borderPaneExecutionResult = new BorderPane();
100 borderPaneExecutionResult.setTop(
101 new Label("SQL Execution Result"));
102 borderPaneExecutionResult.setCenter(taSQLResult);
103 borderPaneExecutionResult.setBottom(btClearSQLResult);
104
105 BorderPane borderPane = new BorderPane();
106 borderPane.setTop(hBoxConnectionCommand);
107 borderPane.setCenter(borderPaneExecutionResult);
108
109 // Create a scene and place it in the stage
110 Scene scene = new Scene(borderPane, 670, 400);
111 primaryStage.setTitle("SQLClient"); // Set the stage title
112 primaryStage.setScene(scene); // Place the scene in the stage
113 primaryStage.show(); // Display the stage
114
115 btConnectDB.setOnAction(e -> connectToDB());
116 btExecuteSQL.setOnAction(e -> executeSQL());
117 btClearSQLCommand.setOnAction(e -> tasqlCommand.setText(null));
118 btClearSQLResult.setOnAction(e -> taSQLResult.setText(null));
119 }
120
121 /** Connect to DB */
122 private void connectToDB() {
123 // Get database information from the user input
124 String driver = cboDriver
125 .getSelectionModel().getSelectedItem();
126 String url = cboURL.getSelectionModel().getSelectedItem();
127 String username = tfUsername.getText().trim();
128 String password = pfPassword.getText().trim();
129
130 // Connection to the database
131 try {
132 Class.forName(driver);
133 connection = DriverManager.getConnection(
134 url, username, password);
135 lblConnectionStatus.setText("Connected to " + url);
136 }
137 catch (java.lang.Exception ex) {
138 ex.printStackTrace();
139 }
140 }
141
142 /** Execute SQL commands */
143 private void executeSQL() {
144 if (connection == null) {
145 taSQLResult.setText("Please connect to a database first");
146 return;
147 }
148 else {
149 String sqlCommands = tasqlCommand.getText().trim();
150 String[] commands = sqlCommands.replace('\n', ' ').split(";");
151
152 for (String aCommand: commands) {
153 if (aCommand.trim().toUpperCase().startsWith("SELECT")) {
154 processSQLSelect(aCommand);
155 }
156 else {
157 processSQLNonSelect(aCommand);
158 }
159 }
160 }
161 }
162
163 /** Execute SQL SELECT commands */
164 private void processSQLSelect(String sqlCommand) {
165 try {
166 // Get a new statement for the current connection
167 statement = connection.createStatement();
168
169 // Execute a SELECT SQL command
170 ResultSet resultSet = statement.executeQuery(sqlCommand);
171
172 // Find the number of columns in the result set
173 int columnCount = resultSet.getMetaData().getColumnCount();
174 String row = "";
175
176 // Display column names
177 for (int i = 1; i <= columnCount; i++) {
178 row += resultSet.getMetaData().getColumnName(i) + "\t";
179 }
180
181 taSQLResult.appendText(row + '\n');
182
183 while (resultSet.next()) {
184 // Reset row to empty
185 row = "";
186
187 for (int i = 1; i <= columnCount; i++) {
188 // A non-String column is converted to a string
189 row += resultSet.getString(i) + "\t";
190 }
191
192 taSQLResult.appendText(row + '\n');
193 }
194 }
195 catch (SQLException ex) {
196 taSQLResult.setText(ex.toString());
197 }
198 }
199
200 /** Execute SQL DDL, and modification commands */
201 private void processSQLNonSelect(String sqlCommand) {
202 try {
203 // Get a new statement for the current connection
204 statement = connection.createStatement();
205
206 // Execute a non-SELECT SQL command
207 statement.executeUpdate(sqlCommand);
208
209 taSQLResult.setText("SQL command executed");
210 }
211 catch (SQLException ex) {
212 taSQLResult.setText(ex.toString());
213 }
214 }
215 }

The user selects or enters the JDBC driver, database URL, username, and password, and clicks the Connect to Database button to connect to the specified database using the connectToDB() method (lines 122–140).

When the user clicks the Execute SQL Command button, the executeSQL() method is invoked (lines 143–161) to get the SQL commands from the text area (jtaSQLCommand) and extract each command separated by a semicolon (;). It then determines whether the command is a SELECT query or a DDL or data modification statement (lines 153–158). If the command is a SELECT query, the processSQLSelect method is invoked (lines 164–198). This method uses the executeQuery method (line 170) to obtain the query result. The result is displayed in the text area jtaSQLResult (line 181). If the command is a non-SELECT query, the processSQLNonSelect() method is invoked (lines 201–214). This method uses the executeUpdate method (line 207) to execute the SQL command.

The getMetaData method (lines 173, 178) in the ResultSet interface is used to obtain an instance of ResultSetMetaData. The getColumnCount method (line 173) returns the number of columns in the result set, and the getColumnName(i) method (line 178) returns the column name for the ith column.

35.3 Batch Processing

	You can send a batch of SQL statements to the database for execution at once to improve efficiency.

In all the preceding examples, SQL commands are submitted to the database for execution one at a time. This is inefficient for processing a large number of updates. For example, suppose you wanted to insert a thousand rows into a table. Submitting one INSERT command at a time would take nearly a thousand times longer than submitting all the INSERT commands in a batch at once. To improve performance, JDBC introduced the batch update for processing nonselect SQL commands. A batch update consists of a sequence of nonselect SQL commands. These commands are collected in a batch and submitted to the database all together.

To use the batch update, you add nonselect commands to a batch using the addBatch method in the Statement interface. After all the SQL commands are added to the batch, use the executeBatch method to submit the batch to the database for execution.

For example, the following code adds a create table command, adds two insert statements in a batch, and executes the batch:

Statement statement = connection.createStatement();

// Add SQL commands to the batch
statement.addBatch("create table T (C1 integer, C2 varchar(15))");

statement.addBatch("insert into T values (100, 'Smith')");
statement.addBatch("insert into T values (200, 'Jones')");

// Execute the batch
int count[] = statement.executeBatch();

The executeBatch() method returns an array of counts, each of which counts the number of rows affected by the SQL command. The first count returns 0 because it is a DDL command. The other counts return 1 because only one row is affected.

 Note

To find out whether a driver supports batch updates, invoke supportsBatchUpdates() on a DatabaseMetaData instance. If the driver supports batch updates, it will return true. The JDBC drivers for MySQL, Access, and Oracle all support batch updates.

To demonstrate batch processing, consider writing a program that gets data from a text file and copies the data from the text file to a table, as shown in Figure 35.2. The text file consists of lines that each corresponds to a row in the table. The fields in a row are separated by commas. The string values in a row are enclosed in single quotes. You can view the text file by clicking the View File button and copy the text to the table by clicking the Copy button. The table must already be defined in the database. Figure 35.2 shows the text file table.txt copied to table Person. Person is created using the following statement:

create table Person (
 firstName varchar(20),
 mi char(1),
 lastName varchar(20)
)

 Figure 35.2

The CopyFileToTable utility copies text files to database tables.

Listing 35.2 gives the solution to the problem.

Listing 35.2 CopyFileToTable.java

 1 import java.io.File;
 2 import java.io.FileNotFoundException;
 3 import java.io.IOException;
 4 import java.sql.*;
 5 import java.util.Scanner;
 6 import javafx.application.Application;
 7 import javafx.collections.FXCollections;
 8 import javafx.geometry.Pos;
 9 import javafx.scene.Scene;
 10 import javafx.scene.control.Button;
 11 import javafx.scene.control.ComboBox;
 12 import javafx.scene.control.Label;
 13 import javafx.scene.control.PasswordField;
 14 import javafx.scene.control.SplitPane;
 15 import javafx.scene.control.TextArea;
 16 import javafx.scene.control.TextField;
 17 import javafx.scene.layout.BorderPane;
 18 import javafx.scene.layout.GridPane;
 19 import javafx.scene.layout.HBox;
 20 import javafx.scene.layout.VBox;
 21 import javafx.stage.Stage;
 22
 23 public class CopyFileToTable extends Application {
 24 // Text file info
 25 private TextField tfFilename = new TextField();
 26 private TextArea taFile = new TextArea();
 27
 28 // JDBC and table info
 29 private ComboBox<String> cboURL = new ComboBox<>();
 30 private ComboBox<String> cboDriver = new ComboBox<>();
 31 private TextField tfUsername = new TextField();
 32 private PasswordField pfPassword = new PasswordField();
 33 private TextField tfTableName = new TextField();
 34
 35 private Button btViewFile = new Button("View File");
 36 private Button btCopy = new Button("Copy");
 37 private Label lblStatus = new Label();
 38
 39 @Override // Override the start method in the Application class
 40 public void start(Stage primaryStage) {
 41 cboURL.getItems().addAll(FXCollections.observableArrayList(
 42 "jdbc:mysql://localhost/javabook",
 43 "jdbc:mysql://liang.armstrong.edu/javabook",
 44 "jdbc:odbc:exampleMDBDataSource",
 45 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"));
 46 cboURL.getSelectionModel().selectFirst();
 47
 48 cboDriver.getItems().addAll(FXCollections.observableArrayList(
 49 "com.mysql.jdbc.Driver", "sun.jdbc.odbc.dbcOdbcDriver",
 50 "oracle.jdbc.driver.OracleDriver"));
 51 cboDriver.getSelectionModel().selectFirst();
 52
 53 // Create UI for connecting to the database
 54 GridPane gridPane = new GridPane();
 55 gridPane.add(new Label("JDBC Driver"), 0, 0);
 56 gridPane.add(new Label("Database URL"), 0, 1);
 57 gridPane.add(new Label("Username"), 0, 2);
 58 gridPane.add(new Label("Password"), 0, 3);
 59 gridPane.add(new Label("Table Name"), 0, 4);
 60 gridPane.add(cboURL, 1, 0);
 61 gridPane.add(cboDriver, 1, 1);
 62 gridPane.add(tfUsername, 1, 2);
 63 gridPane.add(pfPassword, 1, 3);
 64 gridPane.add(tfTableName, 1, 4);
 65
 66 HBox hBoxConnection = new HBox(10);
 67 hBoxConnection.getChildren().addAll(lblStatus, btCopy);
 68 hBoxConnection.setAlignment(Pos.CENTER_RIGHT);
 69
 70 VBox vBoxConnection = new VBox(5);
 71 vBoxConnection.getChildren().addAll(
 72 new Label("Target Database Table"),
 73 gridPane, hBoxConnection);
 74
 75 gridPane.setStyle("-fx-border-color: black;");
 76
 77 BorderPane borderPaneFileName = new BorderPane();
 78 borderPaneFileName.setLeft(new Label("Filename"));
 79 borderPaneFileName.setCenter(tfFilename);
 80 borderPaneFileName.setRight(btViewFile);
 81
 82 BorderPane borderPaneFileContent = new BorderPane();
 83 borderPaneFileContent.setTop(borderPaneFileName);
 84 borderPaneFileContent.setCenter(taFile);
 85
 86 BorderPane borderPaneFileSource = new BorderPane();
 87 borderPaneFileSource.setTop(new Label("Source Text File"));
 88 borderPaneFileSource.setCenter(borderPaneFileContent);
 89
 90 SplitPane sp = new SplitPane();
 91 sp.getItems().addAll(borderPaneFileSource, vBoxConnection);
 92
 93 // Create a scene and place it in the stage
 94 Scene scene = new Scene(sp, 680, 230);
 95 primaryStage.setTitle("CopyFileToTable"); // Set the stage title
 96 primaryStage.setScene(scene); // Place the scene in the stage
 97 primaryStage.show(); // Display the stage
 98
 99 btViewFile.setOnAction(e -> showFile());
100 btCopy.setOnAction(e -> {
101 try {
102 copyFile();
103 }
104 catch (Exception ex) {
105 lblStatus.setText(ex.toString());
106 }
107 });
108 }
109
110 /** Display the file in the text area */
111 private void showFile() {
112 Scanner input = null;
113 try {
114 // Use a Scanner to read text from the file
115 input = new Scanner(new File(tfFilename.getText().trim()));
116
117 // Read a line and append the line to the text area
118 while (input.hasNext())
119 taFile.appendText(input.nextLine() + '\n');
120 }
121 catch (FileNotFoundException ex) {
122 System.out.println("File not found: " + tfFilename.getText());
123 }
124 catch (IOException ex) {
125 ex.printStackTrace();
126 }
127 finally {
128 if (input != null) input.close();
129 }
130 }
131
132 private void copyFile() throws Exception {
133 // Load the JDBC driver
134 Class.forName(cboDriver.getSelectionModel()
135 .getSelectedItem().trim());
136 System.out.println("Driver loaded");
137
138 // Establish a connection
139 Connection conn = DriverManager.getConnection(
140 cboURL.getSelectionModel().getSelectedItem().trim(),
141 tfUsername.getText().trim(),
142 String.valueOf(pfPassword.getText()).trim());
143 System.out.println("Database connected");
144
145 // Read each line from the text file and insert it to the table 146 insertRows(conn);
147 }
148
149 private void insertRows(Connection connection) {
150 // Build the SQL INSERT statement
151 String sqlInsert = "insert into " + tfTableName.getText()
152 + " values (";
153
154 // Use a Scanner to read text from the file
155 Scanner input = null;
156
157 // Get file name from the text field
158 String filename = tfFilename.getText().trim();
159
160 try {
161 // Create a scanner
162 input = new Scanner(new File(filename));
163
164 // Create a statement
165 Statement statement = connection.createStatement();
166
167 System.out.println("Driver major version? " +
168 connection.getMetaData().getDriverMajorVersion());
169
170 // Determine if batchUpdatesSupported is supported
171 boolean batchUpdatesSupported = false;
172
173 try {
174 if (connection.getMetaData().supportsBatchUpdates()) {
175 batchUpdatesSupported = true;
176 System.out.println("batch updates supported");
177 }
178 else {
179 System.out.println("The driver " +
180 "does not support batch updates");
181 }
182 }
183 catch (UnsupportedOperationException ex) {
184 System.out.println("The operation is not supported");
185 }
186
187 // Determine if the driver is capable of batch updates
188 if (batchUpdatesSupported) {
189 // Read a line and add the insert table command to the batch 190 while (input.hasNext()) {
191 statement.addBatch(sqlInsert + input.nextLine() + ")");
192 }
193
194 statement.executeBatch();
195
196 lblStatus.setText("Batch updates completed");
197 }
198 else {
199 // Read a line and execute insert table command
200 while (input.hasNext()) {
201 statement.executeUpdate(sqlInsert + input.nextLine() + ")");
202 }
203
204 lblStatus.setText("Single row update completed");
205 }
206 }
207 catch (SQLException ex) {
208 System.out.println(ex);
209 }
210 catch (FileNotFoundException ex) {
211 System.out.println("File not found: " + filename);
212 }
213 finally {
214 if (input != null) input.close();
215 }
216 }
217 }

The insertRows method (lines 149–216) uses the batch updates to submit SQL INSERT commands to the database for execution, if the driver supports batch updates. Lines 174–181 check whether the driver supports batch updates. If the driver does not support the operation, an UnsupportedOperationException exception will be thrown (line 183) when the ­supportsBatchUpdates() method is invoked.

The tables must already be created in the database. The file format and contents must match the database table specification. Otherwise, the SQL INSERT command will fail.

In Exercise 35.1, you will write a program to insert a thousand records to a database and compare the performance with and without batch updates.

	35.3.1	What is batch processing in JDBC? What are the benefits of using batch processing?

	35.3.2	How do you add an SQL statement to a batch? How do you execute a batch?

	35.3.3	Can you execute a SELECT statement in a batch?

	35.3.4	How do you know whether a JDBC driver supports batch updates?

35.4 Scrollable and Updatable Result Set

	You can use scrollable and updatable result set to move the cursor anywhere in the result set to perform insertion, deletion, and update.

The result sets used in the preceding examples are read sequentially. A result set maintains a cursor pointing to its current row of data. Initially the cursor is positioned before the first row. The next() method moves the cursor forward to the next row. This is known as sequential forward reading.

A more powerful way of accessing database is to use a scrollable and updatable result, which enables you to scroll the rows both forward and backward and move the cursor to a desired location using the first, last, next, previous, absolute, or relative method. Additionally, you can insert, delete, or update a row in the result set and have the changes automatically reflected in the database.

To obtain a scrollable or updatable result set, you must first create a statement with an appropriate type and concurrency mode. For a static statement, use

Statement statement = connection.createStatement
 (int resultSetType, int resultSetConcurrency);

For a prepared statement, use

PreparedStatement statement = connection.prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency);

The possible values of resultSetType are the constants defined in the ResultSet:

	TYPE_FORWARD_ONLY: The result set is accessed forward sequentially.

	TYPE_SCROLL_INSENSITIVE: The result set is scrollable, but not sensitive to changes in the database.

	TYPE_SCROLL_SENSITIVE: The result set is scrollable and sensitive to changes made by others. Use this type if you want the result set to be scrollable and updatable.

The possible values of resultSetConcurrency are the constants defined in the ResultSet:

	CONCUR_READ_ONLY: The result set cannot be used to update the database.

	CONCUR_UPDATABLE: The result set can be used to update the database.

For example, if you want the result set to be scrollable and updatable, you can create a statement, as follows:

Statement statement = connection.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE)

You use the executeQuery method in a Statement object to execute an SQL query that returns a result set as follows:

ResultSet resultSet = statement.executeQuery(query);

You can now use the methods first(), next(), previous(), and last() to move the cursor to the first row, next row, previous row, and last row. The absolute(int row) method moves the cursor to the specified row; and the getXxx(int columnIndex) or getXxx(String columnName) method is used to retrieve the value of a specified field at the current row. The methods insertRow(), deleteRow(), and updateRow() can also be used to insert, delete, and update the current row. Before applying insertRow or updateRow, you need to use the method updateXxx(int columnIndex, Xxx value) or update(String columnName, Xxx value) to write a new value to the field at the current row. The cancelRowUpdates() method cancels the updates made to a row. The close() method closes the result set and releases its resource. The wasNull() method returns true if the last column read had a value of SQL NULL.

Listing 35.3 gives an example that demonstrates how to create a scrollable and updatable result set. The program creates a result set for the StateCapital table. The StateCapital table is defined as follows:

create table StateCapital (
 state varchar(40),
 capital varchar(40)
);

Listing 35.3 ScrollUpdateResultSet.java

 1 import java.sql.*;
 2
 3 public class ScrollUpdateResultSet {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("oracle.jdbc.driver.OracleDriver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
13 "scott", "tiger");
14 connection.setAutoCommit(true);
15 System.out.println("Database connected");
16
17 // Get a new statement for the current connection
18 Statement statement = connection.createStatement(
19 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
20
21 // Get ResultSet
22 ResultSet resultSet = statement.executeQuery
23 ("select state, capital from StateCapital");
24
25 System.out.println("Before update ");
26 displayResultSet(resultSet);
27
28 // Update the second row
29 resultSet.absolute(2); // Move cursor to the second row
30 resultSet.updateString("state", "New S"); // Update the column
31 resultSet.updateString("capital", "New C"); // Update the column
32 resultSet.updateRow(); // Update the row in the data source
33
34 // Insert after the last row
35 resultSet.last();
36 resultSet.moveToInsertRow(); // Move cursor to the insert row
37 resultSet.updateString("state", "Florida");
38 resultSet.updateString("capital", "Tallahassee");
39 resultSet.insertRow(); // Insert the row
40 resultSet.moveToCurrentRow(); // Move the cursor to the current row
41
42 // Delete fourth row
43 resultSet.absolute(4); // Move cursor to the 5th row
44 resultSet.deleteRow(); // Delete the second row
45
46 System.out.println("After update ");
47 resultSet = statement.executeQuery
48 ("select state, capital from StateCapital");
49 displayResultSet(resultSet);
50
51 // Close the connection
52 resultSet.close();
53 }
54
55 private static void displayResultSet(ResultSet resultSet)
56 throws SQLException {
57 ResultSetMetaData rsMetaData = resultSet.getMetaData();
58 resultSet.beforeFirst();
59 while (resultSet.next()) {
60 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
61 System.out.printf("%-12s\t", resultSet.getObject(i));
62 System.out.println();
63 }
64 }
65 }

Driver loaded
Database connected

Before update

Indiana			Indianapolis
Illinois		Springfield
California		Sacramento
Georgia			Atlanta
Texas			Austin

After update
Indiana			Indianapolis
New S			New C
California		Sacramento
Texas			Austin
Florida			Tallahassee

The code in lines 18–19 creates a Statement for producing scrollable and updatable result sets.

The program moves the cursor to the second row in the result set (line 29), updates two columns in this row (lines 30–31), and invokes the updateRow() method to update the row in the underlying database (line 32).

An updatable ResultSet object has a special row associated with it that serves as a staging area for building a row to be inserted. This special row is called the insert row. To insert a row, first invoke the moveToInsertRow() method to move the cursor to the insert row (line 36), then update the columns using the updateXxx method (lines 37–38), and finally insert the row using the insertRow() method (line 39). Invoking moveToCurrentRow()moves the cursor to the current inserted row (lines 40).

The program moves to the fourth row and invokes the deleteRow()method to delete the row from the database (lines 43–44).

 Note

Not all current drivers support scrollable and updatable result sets. The example is tested using Oracle ojdbc6 driver. You can use supportsResultSetType(int type) and supportsResultSetConcurrency(int type, int concurrency) in the DatabaseMetaData interface to find out which result type and currency modes are supported by the JDBC driver. But even if a driver supports the scrollable and updatable result set, a result set for a complex query might not be able to perform an update. For example, the result set for a query that involves several tables is likely not to support update operations.

 Note

The program may not work due to an issue in the Oracle JDBC driver if lines 22–23 are replaced by

ResultSet resultSet = statement.executeQuery
 ("select * from StateCapital");

	35.4.1	What is a scrollable result set? What is an updatable result set?

	35.4.2	How do you create a scrollable and updatable ResultSet?

	35.4.3	How do you know whether a JDBC driver supports a scrollable and updatable ResultSet?

35.5  RowSet, JdbcRowSet, and CachedRowSet

	The RowSet interface can be used to simplify database programming.

The RowSet interface extends java.sql.ResultSet with additional capabilities that allow a RowSet instance to be configured to connect to a JDBC url, username, and password, set an SQL command, execute the command, and retrieve the execution result. In essence, it combines Connection, Statement, and ResultSet into one interface.

 Note

Not all JDBC drivers support RowSet. Currently, the JDBC-ODBC driver does not support all features of RowSet.

35.5.1  RowSet Basics

There are two types of RowSet objects: connected and disconnected. A connected RowSet object makes a connection with a data source and maintains that connection throughout its life cycle. A disconnected RowSet object makes a connection with a data source, executes a query to get data from the data source, and then closes the connection. A disconnected rowset may make changes to its data while it is disconnected and then send the changes back to the original source of the data, but it must reestablish a connection to do so.

There are several versions of RowSet. Two frequently used are JdbcRowSet and CachedRowSet. Both are subinterfaces of RowSet. JdbcRowSet is connected, while CachedRowSet is disconnected. Also, JdbcRowSet is neither serializable nor cloneable, while CachedRowSet is both. The database vendors are free to provide concrete implementations for these interfaces. Oracle has provided the reference implementation JdbcRowSetImpl for JdbcRowSet and CachedRowSetImpl for CachedRowSet. Figure 35.3 shows the relationship of these components.

 Figure 35.3

The JdbcRowSetImpl and CachedRowSetImpl are concrete implementations of RowSet.

The RowSet interface contains the JavaBeans properties with getter and setter methods. You can use the setter methods to set a new url, username, password, and command for an SQL statement. Using a RowSet, Listing 34.1 can be simplified, as shown in Listing 35.4.

Listing 35.4 SimpleRowSet.java

 1 import java.sql.SQLException;
 2 import javax.sql.RowSet;
 3 import com.sun.rowset.*;
 4
 5 public class SimpleRowSet {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14
15 // Set RowSet properties
16 rowSet.setUrl("jdbc:mysql://localhost/javabook");
17 rowSet.setUsername("scott");
18 rowSet.setPassword("tiger");
19 rowSet.setCommand("select firstName, mi, lastName " +
20 "from Student where lastName = 'Smith'");
21 rowSet.execute();
22
23 // Iterate through the result and print the student names
24 while (rowSet.next())
25 System.out.println(rowSet.getString(1) + "\t" +
26 rowSet.getString(2) + "\t" + rowSet.getString(3));
27
28 // Close the connection
29 rowSet.close();
30 }
31 }

Line 13 creates a RowSet object using JdbcRowSetImpl. The program uses the RowSet’s set method to set a URL, username, and password (lines 16–18) and a command for a query statement (line 19). Line 24 executes the command in the RowSet. The methods next() and getString(int) for processing the query result (lines 25–26) are inherited from ResultSet.

If you replace JdbcRowSet with CachedRowSet in line 13, the program will work just fine. Note, the JDBC-ODBC driver supports JdbcRowSetImpl, but not CachedRowSetImpl.

 Tip

Since RowSet is a subinterface of ResultSet, all the methods in ResultSet can be used in RowSet. For example, you can obtain ResultSetMetaData from a RowSet using the getMetaData() method.

35.5.2  RowSet for PreparedStatement

The discussion in §34.5, “PreparedStatement,” introduced processing parameterized SQL statements using the PreparedStatement interface. RowSet has the capability to support parameterized SQL statements. The set methods for setting parameter values in PreparedStatement are implemented in RowSet. You can use these methods to set parameter values for a parameterized SQL command. Listing 35.5 demonstrates how to use a parameterized statement in RowSet. Line 19 sets an SQL query statement with two parameters for lastName and mi in a RowSet. Since these two parameters are strings, the setString method is used to set actual values in lines 21–22.

Listing 35.5 RowSetPreparedStatement.java

 1 import java.sql.*;
 2 import javax.sql.RowSet;
 3 import com.sun.rowset.*;
 4
 5 public class RowSetPreparedStatement {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14
15 // Set RowSet properties
16 rowSet.setUrl("jdbc:mysql://localhost/javabook");
17 rowSet.setUsername("scott");
18 rowSet.setPassword("tiger");
19 rowSet.setCommand("select * from Student where lastName = ? " +
20 "and mi = ?");
21 rowSet.setString(1, "Smith");
22 rowSet.setString(2, "R");
23 rowSet.execute();
24
25 ResultSetMetaData rsMetaData = rowSet.getMetaData();
26 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
27 System.out.printf("%-12s\t", rsMetaData.getColumnName(i));
28 System.out.println();
29
30 // Iterate through the result and print the student names
31 while (rowSet.next()) {
32 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
33 System.out.printf("%-12s\t", rowSet.getObject(i));
34 System.out.println();
35 }
36
37 // Close the connection
38 rowSet.close();
39 }
40 }

35.5.3 Scrolling and Updating RowSet

By default, a ResultSet object is neither scrollable nor updatable. However, a RowSet object is both. It is easier to scroll and update a database through a RowSet than through a ResultSet. Listing 35.6 rewrites Listing 35.3 using a RowSet. You can use methods such as absolute(int) to move the cursor and methods such as delete(), updateRow(), and insertRow() to update the database.

Listing 35.6 ScrollUpdateRowSet.java

 1 import java.sql.*;
 2 import javax.sql.RowSet;
 3 import com.sun.rowset.JdbcRowSetImpl;
 4
 5 public class ScrollUpdateRowSet {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14
15 // Set RowSet properties
16 rowSet.setUrl("jdbc:mysql://localhost/javabook");
17 rowSet.setUsername("scott");
18 rowSet.setPassword("tiger");
19 rowSet.setCommand("select state, capital from StateCapital");
20 rowSet.execute();
21
22 System.out.println("Before update ");
23 displayRowSet(rowSet);
24
25 // Update the second row
26 rowSet.absolute(2); // Move cursor to the 2nd row
27 rowSet.updateString("state", "New S"); // Update the column
28 rowSet.updateString("capital", "New C"); // Update the column
29 rowSet.updateRow(); // Update the row in the data source
30
31 // Insert after the second row
32 rowSet.last();
33 rowSet.moveToInsertRow(); // Move cursor to the insert row
34 rowSet.updateString("state", "Florida");
35 rowSet.updateString("capital", "Tallahassee");
36 rowSet.insertRow(); // Insert the row
37 rowSet.moveToCurrentRow(); // Move the cursor to the current row 38
39 // Delete fourth row
40 rowSet.absolute(4); // Move cursor to the fifth row
41 rowSet.deleteRow(); // Delete the second row
42
43 System.out.println("After update ");
44 displayRowSet(rowSet);
45
46 // Close the connection
47 rowSet.close();
48 }
49
50 private static void displayRowSet(RowSet rowSet)
51 throws SQLException {
52 ResultSetMetaData rsMetaData = rowSet.getMetaData();
53 rowSet.beforeFirst();
54 while (rowSet.next()) {
55 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
56 System.out.printf("%-12s\t", rowSet.getObject(i));
57 System.out.println();
58 }
59 }
60 }

If you replace JdbcRowSet with CachedRowSet in line 13, the database is not changed. To make the changes on the CachedRowSet effective in the database, you must invoke the acceptChanges() method after you make all the changes, as follows:

// Write changes back to the database
((com.sun.rowset.CachedRowSetImpl)rowSet).acceptChanges();

This method automatically reconnects to the database and writes all the changes back to the database.

35.5.4  RowSetEvent

A RowSet object fires a RowSetEvent whenever the object’s cursor has moved, a row has changed, or the entire row set has changed. This event can be used to synchronize a RowSet with the components that rely on the RowSet. For example, a visual component that displays the contents of a RowSet should be synchronized with the RowSet. The RowSetEvent can be used to achieve synchronization. The handlers in RowSetListener are cursorMoved(RowSetEvent), rowChanged(RowSetEvent), and cursorSetChanged(RowSetEvent).

Listing 35.7 gives an example that demonstrates RowSetEvent. A listener for RowSetEvent is registered in lines 14–26. When rowSet.execute() (line 33) is executed, the entire row set is changed, so the listener’s rowSetChanged handler is invoked. When rowSet.last() (line 35) is executed, the cursor is moved, so the listener’s cursorMoved handler is invoked. When rowSet.updateRow() (line 37) is executed, the row is updated, so the listener’s rowChanged handler is invoked.

Listing 35.7 TestRowSetEvent.java

 1 import java.sql.*;
 2 import javax.sql.*;
 3 import com.sun.rowset.*;
 4
 5 public class TestRowSetEvent {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14 rowSet.addRowSetListener(new RowSetListener() {
15 public void cursorMoved(RowSetEvent e) {
16 System.out.println("Cursor moved");
17 }
18
19 public void rowChanged(RowSetEvent e) {
20 System.out.println("Row changed");
21 }
22
23 public void rowSetChanged(RowSetEvent e) {
24 System.out.println("row set changed");
25 }
26 });
27
28 // Set RowSet properties
29 rowSet.setUrl("jdbc:mysql://localhost/javabook");
30 rowSet.setUsername("scott");
31 rowSet.setPassword("tiger");
32 rowSet.setCommand("select * from Student");
33 rowSet.execute();
34
35 rowSet.last(); // Cursor moved
36 rowSet.updateString("lastName", "Yao"); // Update column
37 rowSet.updateRow(); // Row updated
38
39 // Close the connection
40 rowSet.close();
41 }
42 }

	35.5.1	What are the advantages of RowSet?

	35.5.2	What are JdbcRowSet and CachedRowSet? What are the differences between them?

	35.5.3	How do you create a JdbcRowSet and a CachedRowSet?

	35.5.4	Can you scroll and update a RowSet? What method must be invoked to write the changes in a CachedRowSet to the database?

	35.5.5	Describe the handlers in RowSetListener.

35.6 Storing and Retrieving Images in JDBC

	You can store and retrieve images using JDBC.

A database can store not only numbers and strings, but also images. SQL3 introduced a new data type called BLOB (Binary Large OBject) for storing binary data, which can be used to store images. Another new SQL3 type is CLOB (Character Large OBject) for storing a large text in the character format. JDBC introduced the interfaces java.sql.Blob and java.sql.Clob to support mapping for these new SQL types. You can use getBlob, setBinaryStream, getClob, setBlob, and setClob, to access SQL BLOB and CLOB values in the interfaces ResultSet and PreparedStatement.

To store an image into a cell in a table, the corresponding column for the cell must be of the BLOB type. For example, the following SQL statement creates a table whose type for the flag column is BLOB:

create table Country(name varchar(30), flag blob,
 description varchar(255));

In the preceding statement, the description column is limited to 255 characters, which is the upper limit for MySQL. For Oracle, the upper limit is 32,672 bytes. For a large character field, you can use the CLOB type for Oracle, which can store up to two GB of characters. MySQL does not support CLOB. However, you can use BLOB to store a long string and convert binary data into characters.

 Note

MS Access database does not support the BLOB and CLOB types.

To insert a record with images to a table, define a prepared statement like this one:

 PreparedStatement pstmt = connection.prepareStatement(
 "insert into Country values(?, ?, ?)");

Images are usually stored in files. You may first get an instance of InputStream for an image file then use the setBinaryStream method to associate the input stream with a cell in the table, as follows:

// Store image to the table cell
File file = new File(imageFilename);
InputStream inputImage = new FileInputStream(file);
pstmt.setBinaryStream(2, inputImage, (int)(file.length()));

To retrieve an image from a table, use the getBlob method, as shown below:

// Store image to the table cell
Blob blob = rs.getBlob(1);
ImageIcon imageIcon = new ImageIcon(
 blob.getBytes(1, (int)blob.length()));

Listing 35.8 gives a program that demonstrates how to store and retrieve images in JDBC. The program first creates the Country table and stores data to it. Then the program retrieves the country names from the table and adds them to a combo box. When the user selects a name from the combo box, the country's flag and description are displayed, as shown in Figure 35.4.

 Figure 35.4

The program enables you to retrieve data, including images, from a table and displays them.

Listing 35.8 StoreAndRetrieveImage.java

 1 import java.sql.*;
 2 import java.io.*;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ComboBox;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.image.Image;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
 10 import javafx.stage.Stage;
 11
 12 public class StoreAndRetrieveImage extends Application {
 13 // Connection to the database
 14 private Connection connection;
 15
 16 // Statement for static SQL statements
 17 private Statement stmt;
 18
 19 // Prepared statement
 20 private PreparedStatement pstmt = null;
 21 private DescriptionPane descriptionPane
 22 = new DescriptionPane();
 23
 24 private ComboBox<String> cboCountry = new ComboBox<>();
 25
 26 @Override // Override the start method in the Application class
 27 public void start(Stage primaryStage) {
 28 try {
 29 connectDB(); // Connect to DB
 30 storeDataToTable(); //Store data to the table (including image)
 31 fillDataInComboBox(); // Fill in combo box
 32 retrieveFlagInfo(cboCountry.getSelectionModel().getSelectedItem());
 33 }
 34 catch (Exception ex) {
 35 ex.printStackTrace();
 36 }
 37
 38 BorderPane paneForComboBox = new BorderPane();
 39 paneForComboBox.setLeft(new Label("Select a country: "));
 40 paneForComboBox.setCenter(cboCountry);
 41 cboCountry.setPrefWidth(400);
 42 BorderPane pane = new BorderPane();
 43 pane.setTop(paneForComboBox);
 44 pane.setCenter(descriptionPane);
 45
 46 Scene scene = new Scene(pane, 350, 150);
 47 primaryStage.setTitle("StoreAndRetrieveImage");
 48 primaryStage.setScene(scene); // Place the scene in the stage
 49 primaryStage.show(); // Display the stage
 50
 51 cboCountry.setOnAction(e ->
 52 retrieveFlagInfo(cboCountry.getValue()));
 53 }
 54
 55 private void connectDB() throws Exception {
 56 // Load the driver
 57 Class.forName("com.mysql.jdbc.Driver");
 58 System.out.println("Driver loaded");
 59
 60 // Establish connection
 61 connection = DriverManager.getConnection
 62 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 63 System.out.println("Database connected");
 64
 65 // Create a statement for static SQL
 66 stmt = connection.createStatement();
 67
 68 // Create a prepared statement to retrieve flag and description
 69 pstmt = connection.prepareStatement("select flag, description " +
 70 "from Country where name = ?");
 71 }
 72
 73 private void storeDataToTable() {
 74 String[] countries = {"Canada", "UK", "USA", "Germany",
 75 "Indian", "China"};
 76
 77 String[] imageFilenames = {"image/ca.gif", "image/uk.gif",
 78 "image/us.gif", "image/germany.gif", "image/india.gif",
 79 "image/china.gif"};
 80
 81 String[] descriptions = {"A text to describe Canadian " +
 82 "flag is omitted", "British flag ...", "American flag ...",
 83 "German flag ...", "Indian flag ...", "Chinese flag ..."};
 84
 85 try {
 86 // Create a prepared statement to insert records
 87 PreparedStatement pstmt = connection.prepareStatement(
 88 "insert into Country values(?, ?, ?)");
 89
 90 // Store all predefined records
 91 for (int i = 0; i < countries.length; i++) {
 92 pstmt.setString(1, countries[i]);
 93
 94 // Store image to the table cell
 95 java.net.URL url =
 96 this.getClass().getResource(imageFilenames[i]);
 97 InputStream inputImage = url.openStream();
 98 pstmt.setBinaryStream(2, inputImage,
 99 (int)(inputImage.available()));
100
101 pstmt.setString(3, descriptions[i]);
102 pstmt.executeUpdate();
103 }
104
105 System.out.println("Table Country populated");
106 }
107 catch (Exception ex) {
108 ex.printStackTrace();
109 }
110 }
111
112 private void fillDataInComboBox() throws Exception {
113 ResultSet rs = stmt.executeQuery("select name from Country");
114 while (rs.next()) {
115 cboCountry.getItems().add(rs.getString(1));
116 }
117 cboCountry.getSelectionModel().selectFirst();
118 }
119
120 private void retrieveFlagInfo(String name) {
121 try {
122 pstmt.setString(1, name);
123 ResultSet rs = pstmt.executeQuery();
124 if (rs.next()) {
125 Blob blob = rs.getBlob(1);
126 ByteArrayInputStream in = new ByteArrayInputStream
127 (blob.getBytes(1, (int)blob.length()));
128 Image image = new Image(in);
129 ImageView imageView = new ImageView(image);
130 descriptionPane.setImageView(imageView);
131 descriptionPane.setTitle(name);
132 String description = rs.getString(2);
133 descriptionPane.setDescription(description);
134 }
135 }
136 catch (Exception ex) {
137 System.err.println(ex);
138 }
139 }
140 }

DescriptionPane (line 21) is a component for displaying a country (name, flag, and description). This component was presented in Listing 16.6, DescriptionPane.java.

The storeDataToTable method (lines 73–110) populates the table with data. The fillDataInComboBox method (lines 112–118) retrieves the country names and adds them to the combo box. The retrieveFlagInfo(name) method (lines 120–139) retrieves the flag and description for the specified country name.

	35.6.1	How do you store images into a database?

	35.6.2	How do you retrieve images from a database?

	35.6.3	Does Oracle support the SQL3 BLOB type and CLOB type? What about MySQL and Access?

Key Terms

	BLOB type  35-20

	CLOB type  35-20

	batch mode  35-2

	cached row set  35-15

	row set  35-15

	scrollable result set  35-2

	updatable result set  35-11

Chapter Summary

	This chapter developed a universal SQL client that can be used to access any local or remote relational database.

	You can use the addBatch(SQLString) method to add SQL statements to a statement for batch processing.

	You can create a statement to specify that the result set be scrollable and updatable. By default, the result set is neither of these.

	The RowSet can be used to simplify Java database programming. A RowSet object is scrollable and updatable. A RowSet can fire a RowSetEvent.

	You can store and retrieve image data in JDBC using the SQL BLOB type.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	*35.1	(Batch update) Write a program that inserts a thousand records to a database, and compare the performance with and without batch updates, as shown in ­Figure35.5a . Suppose the table is defined as follows:

 [image: Program code. In the code, the words in the variable names are merged. Line 1: batch update completed. Line 2: the elapsed time is 174981. Line 3: non-batch update completed. Line 4: the elapsed time is 37-4981.]Figure 35.5

The program demonstrates the performance improvements that result from using batch updates.

create table Temp(num1 double, num2 double, num3 double)

Use the Math.random() method to generate random numbers for each record. Create a dialog box that contains DBConnectionPanel, discussed in Exercise 34.3 . Use this dialog box to connect to the database. When you click the Connect to Database button in Figure 35.5a , the dialog box in Figure 35.5b is displayed.

	**35.2	(Scrollable result set) Write a program that uses the buttons First, Next, Prior, Last, Insert, Delete, and Update, and modify a single record in the Address table, as shown in Figure 35.6 .

Figure 35.6

You can use the buttons to display and modify a single record in the Address table.

The Address table is defined as follows:

create table Address (
 firstname varchar(25),
 mi char(1),
 lastname varchar(25),
 street varchar(40),
 city varchar(20),
 state varchar(2),
 zip varchar(5),
 telephone varchar(10),
 email varchar(30),
 primary key (firstname, mi, lastname)
);

	*35.3	(Display table contents) Write a program that displays the content for a given table. As shown in Figure 35.7a , you enter a table and click the Show Contents button to display the table contents in a table view.

 Figure 35.7

(a) Enter a table name to display the table contents. (b) Select a table name from the combo box to display its contents.

	*35.4	(Find tables and showing their contents) Write a program that fills in table names in a combo box, as shown in Figure 35.7b . You can select a table from the combo box to display its contents in a table view.

	**35.5	(Revise SQLClient.java) Rewrite Listing 35.1 , SQLClient.java, to display the query result in a TableView, as shown in Figure 35.8 .

 Figure 35.8

The query result is displayed in a TableView.

	*35.5	(Populate Salary table) Rewrite Programming Exercise 34.8 using a batch mode to improve performance.

CHAPTER 36 Internationalization

Objectives

	To describe Java’s internationalization features (§36.1).

	To construct a locale with language, country, and variant (§36.2).

	To display date and time based on locale (§36.3).

	To display numbers, currencies, and percentages based on locale (§36.4).

	To develop applications for international audiences using resource bundles (§36.5).

	To specify encoding schemes for text I/O (§36.6).

36.1 Introduction

	This chapter introduces writing Java code for international audience.

Many websites maintain several versions of webpages so that readers can choose one written in a language they understand. Because there are so many languages in the world, it would be highly problematic to create and maintain enough different versions to meet the needs of all clients everywhere. Java comes to the rescue. Java is the first language designed from the ground up to support internationalization. In consequence, it allows your programs to be customized for any number of countries or languages without requiring cumbersome changes in the code.

Here are the major Java features that support internationalization:

	Java characters use Unicode, a 16-bit encoding scheme established by the Unicode Consortium to support the interchange, processing, and display of written texts in the world’s diverse languages. The use of Unicode encoding makes it easy to write Java programs that can manipulate strings in any international language. (To see all the Unicode characters, visit mindprod.com/jgloss/reuters.html.)

	Java provides the Locale class to encapsulate information about a specific locale. A Locale object determines how locale-sensitive information, such as date, time, and number, is displayed, and how locale-sensitive operations, such as sorting strings, are performed. The classes for formatting date, time, and numbers, and for sorting strings are grouped in the java.text package.

	Java uses the ResourceBundle class to separate locale-specific information, such as status messages and GUI component labels, from the program. The information is stored outside the source code and can be accessed and loaded dynamically at runtime from a ResourceBundle, rather than hard-coded into the program.

In this chapter, you will learn how to format dates, numbers, currencies, and percentages for different regions, countries, and languages. You will also learn how to use resource bundles to define which images and strings are used by a component, depending on the user’s locale and preferences.

36.2 The Locale Class

	The Locale class defines a locale: language and nation.

A Locale object represents a geographical, political, or cultural region in which a specific language or custom is used. For example, Americans speak English, and the Chinese speak Chinese. The conventions for formatting dates, numbers, currencies, and percentages may differ from one country to another. The Chinese, for instance, use year/month/day to represent the date, while Americans use month/day/year. It is important to realize that locale is not defined only by country. For example, Canadians speak either Canadian English or Canadian French, depending on which region of Canada they reside in.

To create a Locale object, use one of the three constructors with a specified language and optional country and variant, as shown in Figure 36.1.

[image: A U M L class diagram for java dot u t i l dot locale.]
Figure 36.1

The Locale class encapsulates a locale.

Description

The language should be a valid language code—that is, one of the lowercase two-letter codes defined by ISO-639. For example, zh stands for Chinese, da for Danish, en for English, de for German, and ko for Korean. Table 36.1 lists the language codes.

Table 31.1 Common Language Codes

	Code

	Language

	Code

	Language

	da

	Danish

	ja

	Japanese

	de

	German

	ko

	Korean

	el

	Greek

	nl

	Dutch

	en

	English

	no

	Norwegian

	es

	Spanish

	pt

	Portuguese

	fi

	Finnish

	sv

	Swedish

	fr

	French

	tr

	Turkish

	it

	Italian

	zh

	Chinese

The country should be a valid ISO country code—that is, one of the uppercase, two-letter codes defined by ISO-3166. For example, CA stands for Canada, CN for China, DK for Denmark, DE for Germany, and US for the United States. Table 36.2 lists the country codes.

Table 31.2 Common Country Codes

	Code

	Country

	Code

	Country

	AT

	Austria

	IE

	Ireland

	BE

	Belgium

	HK

	Hong Kong

	CA

	Canada

	IT

	Italy

	CH

	Switzerland

	JP

	Japan

	CN

	China

	KR

	Korea

	DE

	Germany

	NL

	Netherlands

	DK

	Denmark

	NO

	Norway

	ES

	Spain

	PT

	Portugal

	FI

	Finland

	SE

	Sweden

	FR

	France

	TR

	Turkey

	GB

	United Kingdom

	TW

	Taiwan

	GR

	Greece

	US

	United States

The argument variant is rarely used and is needed only for exceptional or system-dependent situations to designate information specific to a browser or vendor. For example, the Norwegian language has two sets of spelling rules, a traditional one called bokmål and a new one called nynorsk. The locale for traditional spelling would be created as follows:

new Locale("no", "NO", "B");

For convenience, the Locale class contains many predefined locale constants. Locale.CANADA is for the country Canada and language English; Locale.CANADA_FRENCH is for the country Canada and language French. Several other common constants are:

Locale.US, Locale.UK, Locale.FRANCE, Locale.GERMANY, Locale.ITALY, Locale.CHINA, Locale.KOREA, Locale.JAPAN, and Locale.TAIWAN

The Locale class also provides the following constants based on language:

Locale.CHINESE, Locale.ENGLISH, Locale.FRENCH, Locale.GERMAN, Locale.ITALIAN, Locale.JAPANESE, Locale.KOREAN, Locale.SIMPLIFIED_CHINESE, and Locale.TRADITIONAL_CHINESE

Tip

You can invoke the static method getAvailableLocales() in the Locale class to obtain all the available locales supported in the system. For example,

Locale[] availableLocales = Calendar.getAvailableLocales();

returns all the locales in an array.

Tip

Your machine has a default locale. You may override it by supplying the language and region parameters when you run the program, as follows:

java –Duser.language=zh –Duser.region=CN MainClass

An operation that requires a Locale to perform its task is called locale sensitive. Displaying a number such as a date or time, for example, is a locale-sensitive operation; the number should be formatted according to the customs and conventions of the user’s locale. The sections that follow introduce locale-sensitive operations.

[image:]

	36.2.1 How does Java support international characters in languages like Chinese and Arabic?

	36.2.2 How do you construct a Locale object? How do you get all the available locales from a Calendar object?

	36.2.3 How do you create a locale for the French-speaking region of Canada? How do you create a locale for the Netherlands?

36.3 Displaying Date and Time

	The representation of date and time is dependent on locale.

Applications often need to obtain date and time. Java provides a system-independent encapsulation of date and time in the java.util.Date class; it also provides java.util.TimeZone for dealing with time zones, and java.util.Calendar for extracting detailed information from Date. Different locales have different conventions for displaying date and time. Should the year, month, or day be displayed first? Should slashes, periods, or colons be used to separate fields of the date? What are the names of the months in the language? The java.text.DateFormat class can be used to format date and time in a locale-sensitive way for display to the user. The Date class was introduced in Section 9.6.1, “The Date Class,” and the Calendar class and its subclass GregorianCalendar were introduced in Section 13.4, “Case Study: Calendar and GregorianCalendar.”

36.3.1 The TimeZone Class

TimeZone represents a time zone offset and also figures out daylight savings. To get a ­TimeZone object for a specified time zone ID, use TimeZone.getTimeZone(id). To set a time zone in a Calendar object, use the setTimeZone method with a time zone ID. For example, cal.setTimeZone(TimeZone.getTimeZone("CST")) sets the time zone to Central Standard Time. To find all the available time zones supported in Java, use the static method getAvailableIDs() in the TimeZone class. In general, the international time zone ID is a string in the form of continent/city like Europe/Berlin, Asia/Taipei, and America/Washington. You can also use the static method getDefault() in the TimeZone class to obtain the default time zone on the host machine.

36.3.2 The DateFormat Class

The DateFormat class can be used to format date and time in a number of styles. The DateFormat class supports several standard formatting styles. To format date and time, simply create an instance of DateFormat using one of the three static methods getDateInstance, getTimeInstance, and getDateTimeInstance and apply the format(Date) method on the instance, as shown in Figure 36.2.

[image:]
Figure 36.2

The DateFormat class formats date and time.

Description

The dateStyle and timeStyle are one of the following constants: DateFormat.SHORT, DateFormat.MEDIUM, DateFormat.LONG, DateFormat.FULL. The exact result depends on the locale, but generally,

	SHORT is completely numeric, such as 7/24/98 (for date) and 4:49 PM (for time).

	MEDIUM is longer, such as 24-Jul-98 (for date) and 4:52:09 PM (for time).

	LONG is even longer, such as July 24, 1998 (for date) and 4:53:16 PM EST (for time).

	FULL is completely specified, such as Friday, July 24, 1998 (for date) and 4:54:13 o’clock PM EST (for time).

The statements given below display current time with a specified time zone (CST), formatting style (full date and full time), and locale (US).

GregorianCalendar calendar = new GregorianCalendar();
DateFormat formatter = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, Locale.US);
TimeZone timeZone = TimeZone.getTimeZone("CST");
formatter.setTimeZone(timeZone);
System.out.println("The local time is " +
 formatter.format(calendar.getTime()));

36.3.3 The SimpleDateFormat Class

The date and time formatting subclass, SimpleDateFormat, enables you to choose any user-defined pattern for date and time formatting. The constructor shown below can be used to create a SimpleDateFormat object, and the object can be used to convert a Date object into a string with the desired format.

public SimpleDateFormat(String pattern)

The parameter pattern is a string consisting of characters with special meanings. For example, y means year, M means month, d means day of the month, G is for era designator, h means hour, m means minute of the hour, s means second of the minute, and z means time zone. Therefore, the following code will display a string like “Current time is 1997.11.12 AD at 04:10:18 PST” because the pattern is “yyyy.MM.dd G ‘at’ hh:mm:ss z”.

SimpleDateFormat formatter
 = new SimpleDateFormat("yyyy.MM.dd G 'at' hh:mm:ss z");
date currentTime = new Date();
String dateString = formatter.format(currentTime);
System.out.println("Current time is " + dateString);

36.3.4 The DateFormatSymbols Class

The DateFormatSymbols class encapsulates localizable date-time formatting data, such as the names of the months and the names of the days of the week, as shown in Figure 36.3.

[image:]
Figure 36.3

The DateFormatSymbols class encapsulates localizable date-time formatting data.

Description

For example, the following statement displays the month names and weekday names for the default locale:

DateFormatSymbols symbols = new DateFormatSymbols();
String[] monthNames = symbols.getMonths();
for (int i = 0; i < monthNames.length; i++) {
 System.out.println(monthNames[i]); // Display January, ...
}

String[] weekdayNames = symbols.getWeekdays();
for (int i = 0; i < weekdayNames.length; i++) {
 System.out.println(weekdayNames[i]); // Display Sunday, Monday, ...
}

The following two examples demonstrate how to display date, time, and calendar based on locale. The first example creates a clock and displays date and time in locale-sensitive format. The second example displays several different calendars with the names of the days shown in the appropriate local language.

36.3.5 Example: Displaying an International Clock

Write a program that displays a clock to show the current time based on the specified locale and time zone. The locale and time zone are selected from the combo boxes that contain the available locales and time zones in the system, as shown in Figure 36.4.

 [image:]Figure 36.4

The program displays a clock that shows the current time with the specified locale and time zone.

Here are the major steps in the program:

	Create a subclass of BorderPane named WorldClock (see Listing 36.1) to contain an instance of the ClockPane class (developed in Listing 14.21, ClockPane.java), and place it in the center. Create a Label to display the digit time, and place it in the bottom. Use the GregorianCalendar class to obtain the current time for a specific locale and time zone.

	Create a subclass of BorderPanel named WorldClockControl (see Listing 36.2) to contain an instance of WorldClock and two instances of ComboBox for selecting locales and time zones.

	Create an application named WorldClockApp (see Listing 36.3) to display an instance of WorldClockControl.

The relationship among these classes is shown in Figure 36.5.

 [image:]
Figure 36.5

WorldClockApp contains WorldClockControl, and WorldClockControl contains WorldClock.

Description

Listing 36.1 WorldClock.java

 1 import java.util.Calendar;
 2 import java.util.TimeZone;
 3 import java.util.GregorianCalendar;
 4 import java.text.*;
 5 import java.util.Locale;
 6 import javafx.animation.KeyFrame;
 7 import javafx.animation.Timeline;
 8 import javafx.event.ActionEvent;
 9 import javafx.event.EventHandler;
10 import javafx.geometry.Pos;
11 import javafx.scene.control.Label;
12 import javafx.scene.layout.BorderPane;
13 import javafx.util.Duration;
14
15 public class WorldClock extends BorderPane {
16 private TimeZone timeZone = TimeZone.getTimeZone("EST");
17 private Locale locale = Locale.getDefault();
18 private ClockPane clock = new ClockPane(); // Still clock
19 private Label lblDigitTime = new Label();
20
21 public WorldClock() {
22 setCenter(clock);
23 setBottom(lblDigitTime);
24 BorderPane.setAlignment(lblDigitTime, Pos.CENTER);
25
26 EventHandler<ActionEvent> eventHandler = e -> {
27 setCurrentTime(); // Set a new clock time
28 };
29
30 // Create an animation for a running clock
31 Timeline animation = new Timeline(
32 new KeyFrame(Duration.millis(1000), eventHandler));
33 animation.setCycleCount(Timeline.INDEFINITE);
34 animation.play(); // Start animation
35
36 // Resize the clock
37 widthProperty().addListener(ov -> clock.setWidth(getWidth()));
38 heightProperty().addListener(ov -> clock.setHeight(getHeight()));
39 }
40
41 public void setTimeZone(TimeZone timeZone) {
42 this.timeZone = timeZone;
43 }
44
45 public void setLocale(Locale locale) {
46 this.locale = locale;
47 }
48
49 private void setCurrentTime() {
50 Calendar calendar = new GregorianCalendar(timeZone, locale);
51 clock.setHour(calendar.get(Calendar.HOUR));
52 clock.setMinute(calendar.get(Calendar.MINUTE));
53 clock.setSecond(calendar.get(Calendar.SECOND));
54
55 // Display digit time on the label
56 DateFormat formatter = DateFormat.getDateTimeInstance
57 (DateFormat.MEDIUM, DateFormat.LONG, locale);
58 formatter.setTimeZone(timeZone);
59 lblDigitTime.setText(formatter.format(calendar.getTime()));
60 }
61 }

Listing 36.2 WorldClockControl.java

 1 import java.util.*;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.control.ComboBox;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.GridPane;
 7
 8 public class WorldClockControl extends BorderPane {
 9 // Obtain all available locales and time zone ids
10 private Locale[] availableLocales = Locale.getAvailableLocales();
11 private String[] availableTimeZones = TimeZone.getAvailableIDs();
12
13 // Comboxes to display available locales and time zones
14 private ComboBox<String> cboLocales = new ComboBox<>();
15 private ComboBox<String> cboTimeZones = new ComboBox<>();
16
17 // Create a clock
18 private WorldClock clock = new WorldClock();
19
20 public WorldClockControl() {
21 // Initialize cboLocales with all available locales
22 setAvailableLocales();
23
24 // Initialize cboTimeZones with all available time zones
25 setAvailableTimeZones();
26
27 // Initialize locale and time zone
28 clock.setLocale(
29 availableLocales[cboLocales.getSelectionModel()
30 .getSelectedIndex()]);
31 clock.setTimeZone(TimeZone.getTimeZone(
32 availableTimeZones[cboTimeZones.getSelectionModel()
33 .getSelectedIndex()]));
34
35 GridPane pane = new GridPane();
36 pane.setHgap(5);
37 pane.add(new Label("Locale"), 0, 0);
38 pane.add(new Label("Time Zone"), 0, 1);
39 pane.add(cboLocales, 1, 0);
40 pane.add(cboTimeZones, 1, 1);
41
42 setTop(pane);
43 setCenter(clock);
44 BorderPane.setAlignment(pane, Pos.CENTER);
45 BorderPane.setAlignment(clock, Pos.CENTER);
46
47 cboLocales.setOnAction(e ->
48 clock.setLocale(availableLocales[cboLocales.
49 getSelectionModel().getSelectedIndex()]));
50 cboTimeZones.setOnAction(e ->
51 clock.setTimeZone(TimeZone.getTimeZone(
52 availableTimeZones[cboTimeZones.
53 getSelectionModel().getSelectedIndex()])));
54 }
55
56 private void setAvailableLocales() {
57 for (int i = 0; i < availableLocales.length; i++)
58 cboLocales.getItems().add(availableLocales[i]
59 .getDisplayName() + " " + availableLocales[i].toString());
60
61 cboLocales.getSelectionModel().selectFirst();
62 }
63
64 private void setAvailableTimeZones() {
65 // Sort time zones
66 Arrays.sort(availableTimeZones);
67 for (int i = 0; i < availableTimeZones.length; i++) {
68 cboTimeZones.getItems().add(availableTimeZones[i]);
69 }
70 cboTimeZones.getSelectionModel().selectFirst();
71 }
72 }

Listing 36.3 WorldClockApp.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.stage.Stage;
 4
 5 public class WorldClockApp extends Application {
 6 @Override // Override the start method in the Application class
 7 public void start(Stage primaryStage) {
 8 // Create a scene and place it in the stage
 9 Scene scene = new Scene(new WorldClockControl(), 450, 350);
10 primaryStage.setTitle("WorldClockApp"); // Set the stage title
11 primaryStage.setScene(scene); // Place the scene in the stage
12 primaryStage.show(); // Display the stage
13 }
14 }

The WorldClock class creates an instance of ClockPane (line 18) and places it in the center of the border pane (line 22). The setCurrentTime() method uses GregorianCalendar to obtain a Calendar object for the specified locale and time zone (line 50). The clock time is updated every one second using the current Calendar object in lines 51–53.

An instance of DateFormat is created (lines 56–57) and is used to format the date in accordance with the locale (line 59).

The WorldClockControl class contains an instance of WorldClock and two combo boxes. The combo boxes store all the available locales and time zones (lines 56–71). The newly selected locale and time zone are set in the clock (lines 47–53) and used to display a new time based on the current locale and time zone.

36.3.6 Example: Displaying a Calendar

Write a program that displays a calendar based on the specified locale, as shown in ­Figure 36.6. The user can specify a locale from a combo box that consists of a list of all the available locales supported by the system. When the program starts, the calendar for the current month of the year is displayed. The user can use the Prior and Next buttons to browse the calendar.

 [image:]Figure 36.6

The calendar program displays a calendar with a specified locale.

Here are the major steps in the program:

	Define a subclass of BorderPane named CalendarPane (see Listing 36.4) to display the calendar for the given year and month based on the specified locale.

	Define an application named CalendarApp (Listing 36.5). Create a pane to hold an instance of CalendarPane in the center, two buttons, Prior and Next in the bottom, and a combo box in the top of the pane. The relationships among these classes are shown in Figure 36.7.

 [image: Code for calendar app contains calendar pane.]Figure 36.7

CalendarApp contains CalendarPane.

Description

Listing 36.4 CalendarPane.java

 1 import java.text.DateFormatSymbols;
 2 import java.text.SimpleDateFormat;
 3 import java.util.Calendar;
 4 import java.util.GregorianCalendar;
 5 import java.util.Locale;
 6 import javafx.geometry.Pos;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.GridPane;
 10 import javafx.scene.paint.Color;
 11 import javafx.scene.text.TextAlignment;
 12
 13 public class CalendarPane extends BorderPane {
 14 // The header label
 15 private Label lblHeader = new Label();
 16
 17 // Maximum number of labels to display day names and days
 18 private Label[] lblDay = new Label[49];
 19
 20 private Calendar calendar;
 21 private int month; // The specified month
 22 private int year; // The specified year
 23 private Locale locale = Locale.CHINA;
 24
 25 public CalendarPane() {
 26 // Create labels for displaying days
 27 for (int i = 0; i < 49; i++) {
 28 lblDay[i] = new Label();
 29 lblDay[i].setTextAlignment(TextAlignment.RIGHT);
 30 }
 31
 32 showDayNames(); // Display day names for the locale
 33
 34 GridPane dayPane = new GridPane();
 35 dayPane.setAlignment(Pos.CENTER);
 36
 37 dayPane.setHgap(10);
 38 dayPane.setVgap(10);
 39 for (int i = 0; i < 49; i++) {
 40 dayPane.add(lblDay[i], i % 7, i / 7);
 41 }
 42
 43 // Place header and calendar body in the pane
 44 this.setTop(lblHeader);
 45 BorderPane.setAlignment(lblHeader, Pos.CENTER);
 46 this.setCenter(dayPane);
 47
 48 // Set current month and year
 49 calendar = new GregorianCalendar();
 50 month = calendar.get(Calendar.MONTH);
 51 year = calendar.get(Calendar.YEAR);
 52 updateCalendar();
 53
 54 // Show calendar
 55 showHeader();
 56 showDays();
 57 }
 58
 59 /** Update the day names based on locale */
 60 private void showDayNames() {
 61 DateFormatSymbols dfs = new DateFormatSymbols(locale);
 62 String dayNames[] = dfs.getWeekdays();
 63
 64 // jlblDay[0], jlblDay[1], ..., jlblDay[6] for day names
 65 for (int i = 0; i < 7; i++) {
 66 lblDay[i].setText(dayNames[i + 1]);
 67 }
 68 }
 69
 70 /** Update the header based on locale */
 71 private void showHeader() {
 72 SimpleDateFormat sdf =
 73 new SimpleDateFormat("MMMM yyyy", locale);
 74 String header = sdf.format(calendar.getTime());
 75 lblHeader.setText(header);
 76 }
 77
 78 public void showDays() {
 79 // Get the day of the first day in a month
 80 int startingDayOfMonth = calendar.get(Calendar.DAY_OF_WEEK);
 81
 82 // Fill the calendar with the days before this month
 83 Calendar cloneCalendar = (Calendar) calendar.clone();
 84 cloneCalendar.add(Calendar.DATE, -1); // Becomes preceding month
 85 int daysInPrecedingMonth = cloneCalendar.getActualMaximum(
 86 Calendar.DAY_OF_MONTH);
 87
 88 for (int i = 0; i < startingDayOfMonth - 1; i++) {
 89 lblDay[i + 7].setTextFill(Color.LIGHTGRAY);
 90 lblDay[i + 7].setText(daysInPrecedingMonth
 91 - startingDayOfMonth + 2 + i + "");
 92 }
 93
 94 // Display days of this month
 95 int daysInCurrentMonth = calendar.getActualMaximum(
 96 Calendar.DAY_OF_MONTH);
 97 for (int i = 1; i <= daysInCurrentMonth; i++) {
 98 lblDay[i - 2 + startingDayOfMonth + 7].setTextFill(Color.BLACK);
 99 lblDay[i - 2 + startingDayOfMonth + 7].setText(i + "");
100 }
101
102 // Fill the calendar with the days after this month
103 int j = 1;
104 for (int i = daysInCurrentMonth - 1 + startingDayOfMonth + 7;
105 i < 49; i++) {
106 lblDay[i].setTextFill(Color.LIGHTGRAY);
107 lblDay[i].setText(j++ + "");
108 }
109 }
110
111 /** Set the calendar to the first day of the
112 * specified month and year
113 */
114 public void updateCalendar() {
115 calendar.set(Calendar.YEAR, year);
116 calendar.set(Calendar.MONTH, month);
117 calendar.set(Calendar.DATE, 1);
118 }
119
120 public int getMonth() {
121 return month;
122 }
123
124 public void setMonth(int newMonth) {
125 month = newMonth;
126 updateCalendar();
127 showHeader();
128 showDays();
129 }
130
131 public int getYear() {
132 return year;
133 }
134
135 public void setYear(int newYear) {
136 year = newYear;
137 updateCalendar();
138 showHeader();
139 showDays();
140 }
141
142 public void setLocale(Locale locale) {
143 this.locale = locale;
144 updateCalendar();
145 showDayNames();
146 showHeader();
147 showDays();
148 }
149 }

CalendarPane is created to control and display the calendar. It displays the month and year in the header, and the day names and days in the calendar body. The header and day names are locale sensitive.

The showHeader method (lines 71–76) displays the calendar title in a form like “MMMM yyyy”. The SimpleDateFormat class used in the showHeader method is a subclass of DateFormat. SimpleDateFormat allows you to customize the date format to display the date in various nonstandard styles.

The showDayNames method (lines 60–68) displays the day names in the calendar. The DateFormatSymbols class used in the showDayNames method is a class for encapsulating localizable date-time formatting data, such as the names of the months, the names of the days of the week, and the time-zone data. The getWeekdays method is used to get an array of day names.

The showDays method (lines 60–68) displays the days for the specified month of the year. As you can see in Figure 36.6, the labels before the current month are filled with the last few days of the preceding month, and the labels after the current month are filled with the first few days of the next month.

To fill the calendar with the days before the current month, a clone of calendar, named cloneCalendar, is created to obtain the days for the preceding month (line 83). cloneCalendar is a copy of calendar with separate memory space. Thus you can change the properties of cloneCalendar without corrupting the calendar object. The clone() method is defined in the Object class, which was introduced in Section 13.7, “The Cloneable Interface.” You can clone any object as long as its defining class implements the Cloneable interface. The Calendar class implements Cloneable.

The cloneCalendar.getActualMaximum(Calendar.DAY_OF_MONTH) method (lines 95–96) returns the number of days in the month for the specified calendar.

Listing 36.5 CalendarApp.java

 1 import java.util.Locale;
 2 import javafx.application.Application;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.ComboBox;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.HBox;
10 import javafx.stage.Stage;
11
12 public class CalendarApp extends Application {
13 private CalendarPane calendarPane = new CalendarPane();
14 private Button btPrior = new Button("Prior");
15 private Button btNext = new Button("Next");
16 private ComboBox<String> cboLocales = new ComboBox<>();
17 private Locale[] availableLocales = Locale.getAvailableLocales();
18
19 @Override // Override the start method in the Application class
20 public void start(Stage primaryStage) {
21 HBox hBox = new HBox(5);
22 hBox.getChildren().addAll(btPrior, btNext);
23 hBox.setAlignment(Pos.CENTER);
24
25 // Initialize cboLocales with all available locales
26 setAvailableLocales();
27 HBox hBoxLocale = new HBox(5);
28 hBoxLocale.getChildren().addAll(
29 new Label("Select a locale"), cboLocales);
30
31 BorderPane pane = new BorderPane();
32 pane.setCenter(calendarPane);
33 pane.setTop(hBoxLocale);
34 hBoxLocale.setAlignment(Pos.CENTER);
35 pane.setBottom(hBox);
36 hBox.setAlignment(Pos.CENTER);
37
38 // Create a scene and place it in the stage
39 Scene scene = new Scene(pane, 600, 300);
40 primaryStage.setTitle("CalendarApp"); // Set the stage title
41 primaryStage.setScene(scene); // Place the scene in the stage
42 primaryStage.show(); // Display the stage
43
44 btPrior.setOnAction(e -> {
45 int currentMonth = calendarPane.getMonth();
46 if (currentMonth == 0) { // The previous month is 11 for Dec 47 calendarPane.setYear(calendarPane.getYear() - 1);
48 calendarPane.setMonth(11);
49 }
50 else {
51 calendarPane.setMonth((currentMonth - 1) % 12);
52 }
53 });
54
55 btNext.setOnAction(e -> {
56 int currentMonth = calendarPane.getMonth();
57 if (currentMonth == 11) // The next month is 0 for Jan
58 calendarPane.setYear(calendarPane.getYear() + 1);
59
60 calendarPane.setMonth((currentMonth + 1) % 12);
61 });
62
63 cboLocales.setOnAction(e ->
64 calendarPane.setLocale(availableLocales[cboLocales.
65 getSelectionModel().getSelectedIndex()]));
66 }
67
68 private void setAvailableLocales() {
69 for (int i = 0; i < availableLocales.length; i++)
70 cboLocales.getItems().add(availableLocales[i]
71 .getDisplayName() + " " + availableLocales[i].toString());
72
73 cboLocales.getSelectionModel().selectFirst();
74 }
75 }

CalendarApp creates the user interface and handles the button actions and combo box item selections for locales. The Locale.getAvailableLocales() method (line 17) is used to find all the available locales that have calendars. Its getDisplayName() method returns the name of each locale and adds the name to the combo box (lines 70–71). When the user selects a locale name in the combo box, a new locale is passed to calendarPane, and a new calendar is displayed based on the new locale (lines 63–65).

[image:]

	36.3.1 How do you set the time zone “PST” for a Calendar object?

	36.3.2 How do you display current date and time in German?

	36.3.3 How do you use the SimpleDateFormat class to display date and time using the pattern “yyyy.MM.dd hh:mm:ss”?

	36.3.4 In line 66 of Listing 36.2 , WorldClockControl.java, Arrays.sort(availableTimeZones) is used to sort the available time zones. What happens if you attempt to sort the available locales using Arrays.sort(availableLocales)?

36.4 Formatting Numbers

	You can format numbers based on locales.

Formatting numbers is highly locale dependent. For example, number 5000.555 is displayed as 5,000.555 in the United States, but as 5 000,555 in France and as 5.000,555 in Germany.

Numbers are formatted using the java.text.NumberFormat class, an abstract base class that provides the methods for formatting and parsing numbers, as shown in Figure 36.8.

[image: A U M L class diagram for java dot text dot number format.]
Figure 36.8

The NumberFormat class provides the methods for formatting and parsing numbers.

Description

With NumberFormat, you can format and parse numbers for any locale. Your code will be completely independent of locale conventions for decimal points, thousands-separators, currency format, and percentage formats.

36.4.1 Plain Number Format

You can get an instance of NumberFormat for the current locale using Number­Format. get­Instance() or NumberFormat.getNumberInstance and for the specified locale using ­NumberFormat.getInstance(Locale) or NumberFormat.getNumberInstance(Locale). You can then invoke format(number) on the NumberFormat instance to return a formatted number as a string.

For example, to display number 5000.555 in France, use the following code:

NumberFormat numberFormat = NumberFormat.getInstance(Locale.FRANCE);
System.out.println(numberFormat.format(5000.555));

You can control the display of numbers with such methods as setMaximumFraction­Digits and setMinimumFractionDigits. For example, 5000.555 will be displayed as 5000.6 if you use numberFormat.setMaximumFractionDigits(1).

36.4.2 Currency Format

To format a number as a currency value, use NumberFormat.getCurrency­Instance() to get the currency number format for the current locale or NumberFormat.getCurrencyInstance(Locale) to get the currency number for the specified locale.

For example, to display number 5000.555 as currency in the United States, use the following code:

NumberFormat currencyFormat =
 NumberFormat.getCurrencyInstance(Locale.US);
System.out.println(currencyFormat.format(5000.555));

5000.555 is formatted into $5,000,56. If the locale is set to France, the number will be formatted into 5,000,56 €.

36.4.3 Percent Format

To format a number in a percent, use NumberFormat.getPercentInstance() or NumberFormat.getPercentInstance(Locale) to get the percent number format for the current locale or the specified locale.

For example, to display number 0.555367 as a percent in the United States, use the following code:

NumberFormat percentFormat =
 NumberFormat.getPercentInstance(Locale.US);
System.out.println(percentFormat.format(0.555367));

0.555367 is formatted into 56%. By default, the format truncates the fraction part in a percent number. If you want to keep three digits after the decimal point, use percentFormat. setMinimumFractionDigits(3). So 0.555367 would be displayed as 55.537%.

36.4.4 Parsing Numbers

You can format a number into a string using the format(numericalValue) method. You can also use the parse(String) method to convert a formatted plain number, currency value, or percent number with the conventions of a certain locale into an instance of java.lang.Number. The parse method throws a java.text.ParseException if parsing fails. For example, U.S. $5,000.56 can be parsed into a number using the following statements:

NumberFormat currencyFormat =
 NumberFormat.getCurrencyInstance(Locale.US);
try {
 Number number = currencyFormat.parse("$5,000.56");
 System.out.println(number.doubleValue());
}
catch (java.text.ParseException ex) {
 System.out.println("Parse failed");
}

36.4.5  The DecimalFormat Class

If you want even more control over the format or parsing, cast the NumberFormat you get from the factory methods to a java.text.DecimalFormat, which is a subclass of NumberFormat. You can then use the applyPattern(String pattern) method of the DecimalFormat class to specify the patterns for displaying the number.

A pattern can specify the minimum number of digits before the decimal point and the maximum number of digits after the decimal point. The characters '0' and '#' are used to specify a required digit and an optional digit, respectively. The optional digit is not displayed if it is zero. For example, the pattern "00.0##" indicates minimum two digits before the decimal point and maximum three digits after the decimal point. If there are more actual digits before the decimal point, all of them are displayed. If there are more than three digits after the decimal point, the number of digits is rounded. Applying the pattern "00.0##", number 111.2226 is formatted to 111.223, number 1111.2226 to 1111.223, number 1.22 to 01.22, and number 1 to 01.0. Here is the code:

NumberFormat numberFormat = NumberFormat.getInstance(Locale.US);
DecimalFormat decimalFormat = (DecimalFormat)numberFormat;
decimalFormat.applyPattern("00.0##");
System.out.println(decimalFormat.format(111.2226));
System.out.println(decimalFormat.format(1111.2226));
System.out.println(decimalFormat.format(1.22));
System.out.println(decimalFormat.format(1));

The character '%' can be put at the end of a pattern to indicate that a number is formatted as a percentage. This causes the number to be multiplied by 100 and appends a percent sign %.

36.4.5 Example: Formatting Numbers

Create a loan calculator for computing loans. The calculator allows the user to choose locales, and displays numbers in accordance with locale-sensitive format. As shown in Figure 36.9, the user enters interest rate, number of years, and loan amount, then clicks the Compute button to display the interest rate in percentage format, the number of years in normal number format, and the loan amount, total payment, and monthly payment in currency format. Listing 36.6 gives the solution to the problem.

 [image:]Figure 36.9

The locale determines the format of the numbers displayed in the loan calculator.

Listing 36.6 NumberFormatDemo.java

 1 import java.util.*;
 2 import java.text.NumberFormat;
 3 import javafx.application.Application;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.ComboBox;
 8 import javafx.scene.control.Label;
 9 import javafx.scene.control.TextField;
 10 import javafx.scene.layout.GridPane;
 11 import javafx.scene.layout.HBox;
 12 import javafx.scene.layout.VBox;
 13 import javafx.stage.Stage;
 14
 15 public class NumberFormatDemo extends Application {
 16 // Combo box for selecting available locales
 17 private ComboBox<String> cboLocale = new ComboBox<>();
 18
 19 // Text fields for interest rate, year, and loan amount
 20 private TextField tfInterestRate = new TextField("6.75");
 21 private TextField tfNumberOfYears = new TextField("15");
 22 private TextField tfLoanAmount = new TextField("107000");
 23 private TextField tfFormattedInterestRate = new TextField();
 24 private TextField tfFormattedNumberOfYears = new TextField();
 25 private TextField tfFormattedLoanAmount = new TextField();
 26
 27 // Text fields for monthly payment and total payment
 28 private TextField tfTotalPayment = new TextField();
 29 private TextField tfMonthlyPayment = new TextField();
 30
 31 // Compute button
 32 private Button btCompute = new Button("Compute");
 33
 34 // Current locale
 35 private Locale locale = Locale.getDefault();
 36
 37 // Declare locales to store available locales
 38 private Locale locales[] = Calendar.getAvailableLocales();
 39
 40 /** Initialize the combo box */
 41 public void initializeComboBox() {
 42 // Add locale names to the combo box
 43 for (int i = 0; i < locales.length; i++)
 44 cboLocale.getItems().add(locales[i].getDisplayName());
 45 }
 46
 47 @Override // Override the start method in the Application class
 48 public void start(Stage primaryStage) {
 49 initializeComboBox();
 50
 51 // Pane to hold the combo box for selecting locales
 52 HBox hBox = new HBox(5);
 53 hBox.getChildren().addAll(
 54 new Label("Choose a Locale"), cboLocale);
 55
 56 // Pane to hold the input
 57 GridPane gridPane = new GridPane();
 58 gridPane.add(new Label("Interest Rate"), 0, 0);
 59 gridPane.add(tfInterestRate, 1, 0);
 60 gridPane.add(tfFormattedInterestRate, 2, 0);
 61 gridPane.add(new Label("Number of Years"), 0, 1);
 62 gridPane.add(tfNumberOfYears, 1, 1);
 63 gridPane.add(tfFormattedNumberOfYears, 2, 1);
 64 gridPane.add(new Label("Loan Amount"), 0, 2);
 65 gridPane.add(tfLoanAmount, 1, 2);
 66 gridPane.add(tfFormattedLoanAmount, 2, 2);
 67
 68 // Pane to hold the output
 69 GridPane gridPaneOutput = new GridPane();
 70 gridPaneOutput.add(new Label("Monthly Payment"), 0, 0);
 71 gridPaneOutput.add(tfMonthlyPayment, 1, 0);
 72 gridPaneOutput.add(new Label("Total Payment"), 0, 1);
 73 gridPaneOutput.add(tfTotalPayment, 1, 1);
 74
 75 // Set text field alignment
 76 tfFormattedInterestRate.setAlignment(Pos.BASELINE_RIGHT);
 77 tfFormattedNumberOfYears.setAlignment(Pos.BASELINE_RIGHT);
 78 tfFormattedLoanAmount.setAlignment(Pos.BASELINE_RIGHT);
 79 tfTotalPayment.setAlignment(Pos.BASELINE_RIGHT);
 80 tfMonthlyPayment.setAlignment(Pos.BASELINE_RIGHT);
 81
 82 // Set editable false
 83 tfFormattedInterestRate.setEditable(false);
 84 tfFormattedNumberOfYears.setEditable(false);
 85 tfFormattedLoanAmount.setEditable(false);
 86 tfTotalPayment.setEditable(false);
 87 tfMonthlyPayment.setEditable(false);
 88
 89 VBox vBox = new VBox(5);
 90 vBox.getChildren().addAll(hBox,
 91 new Label("Enter Annual Interest Rate, " +
 92 "Number of Years, and Loan Amount"), gridPane,
 93 new Label("Payment"), gridPaneOutput, btCompute);
 94
 95 // Create a scene and place it in the stage
 96 Scene scene = new Scene(vBox, 400, 300);
 97 primaryStage.setTitle("NumberFormatDemo"); // Set the stage title
 98 primaryStage.setScene(scene); // Place the scene in the stage
 99 primaryStage.show(); // Display the stage
100
101 // Register listeners
102 cboLocale.setOnAction(e -> {
103 locale = locales[cboLocale
104 .getSelectionModel().getSelectedIndex()];
105 computeLoan();
106 });
107
108 btCompute.setOnAction(e -> computeLoan());
109 }
110
111 /** Compute payments and display results locale-sensitive format */
112 private void computeLoan() {
113 // Retrieve input from user
114 double loan = new Double(tfLoanAmount.getText()).doubleValue();
115 double interestRate =
116 new Double(tfInterestRate.getText()).doubleValue() / 1240;
117 int numberOfYears =
118 new Integer(tfNumberOfYears.getText()).intValue();
119
120 // Calculate payments
121 double monthlyPayment = loan * interestRate/
122 (1 - (Math.pow(1 / (1 + interestRate), numberOfYears * 12)));
123 double totalPayment = monthlyPayment * numberOfYears * 12;
124
125 // Get formatters
126 NumberFormat percentFormatter =
127 NumberFormat.getPercentInstance(locale);
128 NumberFormat currencyForm =
129 NumberFormat.getCurrencyInstance(locale);
130 NumberFormat numberForm = NumberFormat.getNumberInstance(locale);
131 percentFormatter.setMinimumFractionDigits(2);
132
133 // Display formatted input
134 tfFormattedInterestRate.setText(
135 percentFormatter.format(interestRate * 12));
136 tfFormattedNumberOfYears.setText
137 (numberForm.format(numberOfYears));
138 tfFormattedLoanAmount.setText(currencyForm.format(loan));
139
140 // Display results in currency format
141 tfMonthlyPayment.setText(currencyForm.format(monthlyPayment));
142 tfTotalPayment.setText(currencyForm.format(totalPayment));
143 }
144 }

The computeLoan method (lines 112–143) gets the input on interest rate, number of years, and loan amount from the user, computes monthly payment and total payment, and displays annual interest rate in percentage format, number of years in normal number format, and loan amount, monthly payment, and total payment in locale-sensitive format.

The statement percentFormatter.setMinimumFractionDigits(2) (line 131) sets the minimum number of fractional parts to 2. Without this statement, 0.075 would be displayed as 7% rather than 7.5%.

[image:]

	36.4.1 Write the code to format number 12345.678 in the United Kingdom locale. Keep two digits after the decimal point.

	36.4.2 Write the code to format number 12345.678 in U.S. currency.

	36.4.3 Write the code to format number 0.345678 as percentage with at least three digits after the decimal point.

	36.4.4 Write the code to parse 3,456.78 into a number.

	36.4.5 Write the code that uses the DecimalFormat class to format number 12345.678 using the pattern “0.0000#”.

36.5 Resource Bundles

	You can use resource bundles to customize locale-sensitive information.

The NumberFormatDemo in the preceding example displays the numbers, currencies, and percentages in local customs, but displays all the message strings, titles, and button labels in English. In this section, you will learn how to use resource bundles to localize message strings, titles, button labels, and so on.

A resource bundle is a Java class file or text file that provides locale-specific information. This information can be accessed by Java programs dynamically. When a locale-­specific resource is needed—a message string, for example—your program can load it from the resource bundle appropriate for the desired locale. In this way, you can write program code that is largely independent of the user’s locale, isolating most, if not all, of the locale-specific information in resource bundles.

With resource bundles, you can write programs that separate the locale-sensitive part of your code from the locale-independent part. The programs can easily handle multiple locales, and can easily be modified later to support even more locales.

The resources are placed inside the classes that extend the ResourceBundle class or a subclass of ResourceBundle. Resource bundles contain key/value pairs. Each key uniquely identifies a locale-specific object in the bundle. You can use the key to retrieve the object. ListResourceBundle is a convenient subclass of ResourceBundle that is often used to simplify the creation of resource bundles. Here is an example of a resource bundle that contains four keys using ListResourceBundle:

// MyResource.java: resource file public class MyResource extends java.util.ListResourceBundle {
 static final Object[][] contents = {
 {"nationalFlag", "us.gif"},
 {"nationalAnthem", "us.au"},
 {"nationalColor", Color.red},
 {"annualGrowthRate", new Double(7.8)}
 };
 public Object[][] getContents() {
 return contents;
 }
}

Keys are case-sensitive strings. In this example, the keys are nationalFlag, national­Anthem, nationalColor, and annualGrowthRate. The values can be any type of Object.

If all the resources are strings, they can be placed in a convenient text file with the extension .properties. A typical property file would look like this:

#Wed Jul 01 07:23:24 EST 1998
nationalFlag=us.gif
nationalAnthem=us.au

To retrieve values from a ResourceBundle in a program, you first need to create an instance of ResourceBundle using one of the following two static methods:

public static final ResourceBundle getBundle(String baseName)
 throws MissingResourceException

public static final ResourceBundle getBundle
 (String baseName, Locale locale) throws MissingResourceException

The first method returns a ResourceBundle for the default locale, and the second method returns a ResourceBundle for the specified locale. baseName is the base name for a set of classes, each of which describes the information for a given locale. These classes are named in Table 36.3.

Table 36.3 Resource Bundle Naming Conventions

	
	BaseName_language_country_variant.class

	BaseName_language_country.class

	BaseName_language.class

	BaseName.class

	BaseName_language_country_variant.properties

	BaseName_language_country.properties

	BaseName_language.properties

	BaseName.properties

For example, MyResource_en_BR.class stores resources specific to the United Kingdom, MyResource_en_US.class stores resources specific to the United States, and ­MyResource_en.class stores resources specific to all the English-speaking countries.

The getBundle method attempts to load the class that matches the specified locale by language, country, and variant by searching the file names in the order shown in Table 36.3. The files searched in this order form a resource chain. If no file is found in the resource chain, the getBundle method raises a MissingResourceException, a subclass of RuntimeException.

Once a resource bundle object is created, you can use the getObject method to retrieve the value according to the key. For example,

ResourceBundle res = ResourceBundle.getBundle("MyResource");
String flagFile = (String)res.getObject("nationalFlag");
String anthemFile = (String)res.getObject("nationalAnthem");
Color color = (Color)res.getObject("nationalColor");
 double growthRate = (Double)res.getObject("annualGrowthRate");

Tip

If the resource value is a string, the convenient getString method can be used to replace the getObject method. The getString method simply casts the value returned by getObject to a string.

What happens if a resource object you are looking for is not defined in the resource bundle? Java employs an intelligent look-up scheme that searches the object in the parent file along the resource chain. This search is repeated until the object is found or all the parent files in the resource chain have been searched. A MissingResourceException is raised if the search is unsuccessful.

Let us modify the NumberFormatDemo program in the preceding example so it displays messages, title, and button labels in multiple languages, as shown in Figure 36.10.

 [image:]Figure 36.10

The program displays the strings in multiple languages.

You need to provide a resource bundle for each language. Suppose the program supports three languages: English (default), Chinese, and French. The resource bundle for the English language, named MyResource.properties, is given as follows:

#MyResource.properties for English language
Number_Of_Years=Years
Total_Payment=French Total\ Payment
Enter_Interest_Rate=Enter\ Interest\ Rate,\ Years,\ and\ Loan\ Amount
Payment=Payment
Compute=Compute
Annual_Interest_Rate=Interest\ Rate
Number_Formatting=Number\ Formatting\ Demo
Loan_Amount=Loan\ Amount
Choose_a_Locale=Choose\ a\ Locale
Monthly_Payment=Monthly\ Payment

The resource bundle for the Chinese language, named MyResource_zh.properties, is given as follows:

#MyResource_zh.properties for Chinese language
Choose_a_Locale = \u9078\u64c7\u570b\u5bb6
Enter_Interest_Rate =
 \u8f38\u5165\u5229\u7387,\ u5e74\u9650,\ u8cbo8\u6b3e\u7e3d\u984d
Annual_Interest_Rate = \u5229\u7387
Number_Of_Years = \u5e74\u9650
Loan_Amount = \u8cbo8\u6b3e\u984d\u5ea6
Payment = \u4ed8\u606f
Monthly_Payment = \u6708\u4ed8
Total_Payment = \u7e3d\u984d
Compute = \u8a08\u7b97\u8cbo8\u6b3e\u5229\u606f

The resource bundle for the French language, named MyResource_fr.properties, is given as follows:

#MyResource_fr.properties for French language
Number_Of_Years=annees
Annual_Interest_Rate=le taux d'interet
Loan_Amount=Le montant du pret
Enter_Interest_Rate=inscrire le taux d'interet, les annees, et le montant du pret
Payment=paiement
Compute=Calculer l'hypotheque
Number_Formatting=demonstration du formatting des chiffres
Choose_a_Locale=Choisir la localite
Monthly_Payment=versement mensuel
Total_Payment=reglement total

The resource-bundle file should be placed in the class directory (e.g., c:\book for the examples in this book). The program is given in Listing 36.7.

Listing 36.7 ResourceBundleDemo.java

 1 import java.util.*;
 2 import java.text.NumberFormat;
 3 import javafx.application.Application;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.ComboBox;
 8 import javafx.scene.control.Label;
 9 import javafx.scene.control.TextField;
 10 import javafx.scene.layout.GridPane;
 11 import javafx.scene.layout.HBox;
 12 import javafx.scene.layout.VBox;
 13 import javafx.stage.Stage;
 14
 15 public class ResourceBundleDemo extends Application {
 16 private ResourceBundle res
 17 = ResourceBundle.getBundle("MyResource");
 18
 19 // Create labels
 20 private Label lblInterestRate =
 21 new Label(res.getString("Annual_Interest_Rate"));
 22 private Label lblNumberOfYears =
 23 new Label(res.getString("Number_Of_Years"));
 24 private Label lblLoanAmount =
 25 new Label(res.getString("Loan_Amount"));
 26 private Label lblMonthlyPayment =
 27 new Label(res.getString("Monthly_Payment"));
 28 private Label lblTotalPayment =
 29 new Label(res.getString("Total_Payment"));
 30 private Label lblPayment =
 31 new Label(res.getString("Payment"));
 32 private Label lblChooseALocale =
 33 new Label(res.getString("Choose_a_Locale"));
 34 private Label lblEnterInterestRate =
 35 new Label(res.getString("Enter_Interest_Rate"));
 36
 37 // Combo box for selecting available locales
 38 private ComboBox<String> cboLocale = new ComboBox<>();
 39
 40 // Text fields for interest rate, year, and loan amount
 41 private TextField tfInterestRate = new TextField("6.75");
 42 private TextField tfNumberOfYears = new TextField("15");
 43 private TextField tfLoanAmount = new TextField("107000");
 44 private TextField tfFormattedInterestRate = new TextField();
 45 private TextField tfFormattedNumberOfYears = new TextField();
 46 private TextField tfFormattedLoanAmount = new TextField();
 47
 48 // Text fields for monthly payment and total payment
 49 private TextField tfTotalPayment = new TextField();
 50 private TextField tfMonthlyPayment = new TextField();
 51
 52 // Compute button
 53 private Button btCompute = new Button("Compute");
 54
 55 // Current locale
 56 private Locale locale = Locale.getDefault();
 57
 58 // Declare locales to store available locales
 59 private Locale locales[] = Calendar.getAvailableLocales();
 60
 61 /** Initialize the combo box */
 62 public void initializeComboBox() {
 63 // Add locale names to the combo box
 64 for (int i = 0; i < locales.length; i++)
 65 cboLocale.getItems().add(locales[i].getDisplayName());
 66 }
 67
 68 @Override // Override the start method in the Application class
 69 public void start(Stage primaryStage) {
 70 initializeComboBox();
 71
 72 // Pane to hold the combo box for selecting locales
 73 HBox hBox = new HBox(5);
 74 hBox.getChildren().addAll(lblChooseALocale, cboLocale);
 75
 76 // Pane to hold the input
 77 GridPane gridPane = new GridPane();
 78 gridPane.add(lblInterestRate, 0, 0);
 79 gridPane.add(tfInterestRate, 1, 0);
 80 gridPane.add(tfFormattedInterestRate, 2, 0);
 81 gridPane.add(lblNumberOfYears, 0, 1);
 82 gridPane.add(tfNumberOfYears, 1, 1);
 83 gridPane.add(tfFormattedNumberOfYears, 2, 1);
 84 gridPane.add(lblLoanAmount, 0, 2);
 85 gridPane.add(tfLoanAmount, 1, 2);
 86 gridPane.add(tfFormattedLoanAmount, 2, 2);
 87
 88 // Pane to hold the output
 89 GridPane gridPaneOutput = new GridPane();
 90 gridPaneOutput.add(lblMonthlyPayment, 0, 0);
 91 gridPaneOutput.add(tfMonthlyPayment, 1, 0);
 92 gridPaneOutput.add(lblTotalPayment, 0, 1);
 93 gridPaneOutput.add(tfTotalPayment, 1, 1);
 94
 95 // Set text field alignment
 96 tfFormattedInterestRate.setAlignment(Pos.BASELINE_RIGHT);
 97 tfFormattedNumberOfYears.setAlignment(Pos.BASELINE_RIGHT);
 98 tfFormattedLoanAmount.setAlignment(Pos.BASELINE_RIGHT);
 99 tfTotalPayment.setAlignment(Pos.BASELINE_RIGHT);
100 tfMonthlyPayment.setAlignment(Pos.BASELINE_RIGHT);
101
102 // Set editable false
103 tfFormattedInterestRate.setEditable(false);
104 tfFormattedNumberOfYears.setEditable(false);
105 tfFormattedLoanAmount.setEditable(false);
106 tfTotalPayment.setEditable(false);
107 tfMonthlyPayment.setEditable(false);
108
109 VBox vBox = new VBox(5);
110 vBox.getChildren().addAll(hBox, lblEnterInterestRate,
111 gridPane, lblPayment, gridPaneOutput, btCompute);
112
113 // Create a scene and place it in the stage
114 Scene scene = new Scene(vBox, 400, 300);
115 primaryStage.setTitle("ResourceBundleDemo"); // Set the stage title
116 primaryStage.setScene(scene); // Place the scene in the stage
117 primaryStage.show(); // Display the stage
118
119 // Register listeners
120 cboLocale.setOnAction(e -> {
121 locale = locales[cboLocale
122 .getSelectionModel().getSelectedIndex()];
123 updateStrings();
124 computeLoan();
125 });
126
127 btCompute.setOnAction(e -> computeLoan());
128 }
129
130 /** Compute payments and display results locale-sensitive format */
131 private void computeLoan() {
132 // Retrieve input from user
133 double loan = new Double(tfLoanAmount.getText()).doubleValue();
134 double interestRate =
135 new Double(tfInterestRate.getText()).doubleValue() / 1240;
136 int numberOfYears =
137 new Integer(tfNumberOfYears.getText()).intValue();
138
139 // Calculate payments
140 double monthlyPayment = loan * interestRate/
141 (1 - (Math.pow(1 / (1 + interestRate), numberOfYears * 12)));
142 double totalPayment = monthlyPayment * numberOfYears * 12;
143
144 // Get formatters
145 NumberFormat percentFormatter =
146 NumberFormat.getPercentInstance(locale);
147 NumberFormat currencyForm =
148 NumberFormat.getCurrencyInstance(locale);
149 NumberFormat numberForm = NumberFormat.getNumberInstance(locale);
150 percentFormatter.setMinimumFractionDigits(2);
151
152 // Display formatted input
153 tfFormattedInterestRate.setText(
154 percentFormatter.format(interestRate * 12));
155 tfFormattedNumberOfYears.setText
156 (numberForm.format(numberOfYears));
157 tfFormattedLoanAmount.setText(currencyForm.format(loan));
158
159 // Display results in currency format
160 tfMonthlyPayment.setText(currencyForm.format(monthlyPayment));
161 tfTotalPayment.setText(currencyForm.format(totalPayment));
162 }
163
164 /** Update resource strings */
165 private void updateStrings() {
166 res = ResourceBundle.getBundle("MyResource", locale);
167 lblInterestRate.setText(res.getString("Annual_Interest_Rate"));
168 lblNumberOfYears.setText(res.getString("Number_Of_Years"));
169 lblLoanAmount.setText(res.getString("Loan_Amount"));
170 lblTotalPayment.setText(res.getString("Total_Payment"));
171 lblMonthlyPayment.setText(res.getString("Monthly_Payment"));
172 btCompute.setText(res.getString("Compute"));
173 lblChooseALocale.setText(res.getString("Choose_a_Locale"));
174 lblEnterInterestRate.setText(
175 res.getString("Enter_Interest_Rate"));
176 lblPayment.setText(res.getString("Payment"));
177 }
178 }

Property resource bundles are implemented as text files with a .properties extension, and are placed in the same location as the class files for the program. ListResourceBundles are provided as Java class files. Because they are implemented using Java source code, new and modified ListResourceBundles need to be recompiled for deployment. With Property­ResourceBundles, there is no need for recompilation when translations are modified or added to the application. Nevertheless, ListResourceBundles provide considerably better performance than PropertyResourceBundles.

If the resource bundle is not found or a resource object is not found in the resource bundle, a MissingResourceException is raised. Since MissingResourceException is a subclass of RuntimeException, you do not need to catch the exception explicitly in the code.

This example is the same as Listing 36.6, NumberFormatDemo.java, except that the program contains the code for handling resource strings. The updateString method (lines 165–177) is responsible for displaying the locale-sensitive strings. This method is invoked when a new locale is selected in the combo box.

[image:]

	36.5.1 How does the getBundle method locate a resource bundle?

	36.5.2 How does the getObject method locate a resource?

36.6 Character Encoding

	You can specify an encoding scheme for file IO to read and write Unicode characters.

Java programs use Unicode. When you read a character using text I/O, the Unicode code of the character is returned. The encoding of the character in the file may be different from the Unicode encoding. Java automatically converts it to the Unicode. When you write a character using text I/O, Java automatically converts the Unicode of the character to the encoding specified for the file. This is pictured in Figure 36.11.

 [image:]Figure 36.11

The encoding of the file may be different from the encoding used in the program.

You can specify an encoding scheme using a constructor of Scanner/PrintWriter for text I/O, as follows:

public Scanner(File file, String encodingName)
public PrintWriter(File file, String encodingName)

For a list of encoding schemes supported in Java, see http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html and mindprod.com/jgloss/encoding.html. For example, you may use the encoding name GB18030 for simplified Chinese characters, Big5 for traditional Chinese characters, Cp939 for Japanese characters, Cp933 for Korean characters, and Cp838 for Thai characters.

The following code in Listing 36.8 creates a file using the GB18030 encoding (line 8). You have to read the text using the same encoding (line 12). The output is shown in Figure 36.12a.

 [image:]Figure 36.12

You can specify an encoding scheme for a text file.

Listing 36.8 EncodingDemo.java

 1 import java.util.*;
 2 import java.io.*;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8
 9 public class EncodingDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) throws Exception {
12 try (
13 PrintWriter output = new PrintWriter("temp.txt", "GB18030");
14) {
15 output.print("\u6B22\u8FCE Welcome \u03b1\u03b2\u03b3");
16 }
17
18 try (
19 Scanner input = new Scanner(new File("temp.txt"), "GB18030");
20) {
21 StackPane pane = new StackPane();
22 pane.getChildren().add(new Text(input.nextLine()));
23
24 // Create a scene and place it in the stage
25 Scene scene = new Scene(pane, 200, 200);
26 primaryStage.setTitle("EncodingDemo"); // Set the stage title 27 primaryStage.setScene(scene); // Place the scene in the stage 28 primaryStage.show(); // Display the stage
29 }
30 }
31 }

If you don’t specify an encoding in lines 13 and 19, the system’s default encoding scheme is used. The US default encoding is ASCII. ASCII code uses 8 bits. Java uses the 16-bit Unicode. If a Unicode is not an ASCII code, the character '?' is written to the file. Thus, when you write \u6B22 to an ASCII file, the ? character is written to the file. When you read it back, you will see the ? character, as shown in Figure 36.12b.

To find out the default encoding on your system, use

System.out.println(System.getProperty("file.encoding"));

The default encoding name is Cp1252 on Windows, which is a variation of ASCII.

[image:]

	36.6.1 How do you specify an encoding scheme for a text file?

	36.6.2 What would happen if you wrote a Unicode character to an ASCII text file?

	36.6.3 How do you find the default encoding name on your system?

Key Terms

	locale 36-2

	resource bundle 36-21

	file encoding scheme 36-28

Chapter Summary

	Java is the first language designed from the ground up to support internationalization. In consequence, it allows your programs to be customized for any number of countries or languages without requiring cumbersome changes in the code.

	Java characters use Unicode in the program. The use of Unicode encoding makes it easy to write Java programs that can manipulate strings in any international language.

	Java provides the Locale class to encapsulate information about a specific locale. A Locale object determines how locale-sensitive information, such as date, time, and number, is displayed, and how locale-sensitive operations, such as sorting strings, are performed. The classes for formatting date, time, and numbers, and for sorting strings are grouped in the java.text package.

	Different locales have different conventions for displaying date and time. The java.text.DateFormat class and its subclasses can be used to format date and time in a locale-sensitive way for display to the user.

	To format a number for the default or a specified locale, use one of the factory class methods in the NumberFormat class to get a formatter. Use getInstance or getNumberInstance to get the normal number format. Use getCurrencyInstance to get the currency number format. Use getPercentInstance to get a format for displaying percentages.

	Java uses the ResourceBundle class to separate locale-specific information, such as status messages and GUI component labels, from the program. The information is stored outside the source code and can be accessed and loaded dynamically at runtime from a ResourceBundle, rather than hard-coded into the program.

	You can specify an encoding for a text file when constructing a PrintWriter or a Scanner.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

[image:]Programming Exercises

Sections 36.1–36.2

	*36.1 (Unicode viewer) Develop a GUI application that displays Unicode characters, as shown in Figure 36.13 . The user specifies a Unicode in the text field and presses the Enter key to display a sequence of Unicode characters starting with the specified Unicode. The Unicode characters are displayed in a scrollable text area of 20 lines. Each line contains 16 characters preceded by the Unicode that is the code for the first character on the line.

 [image:]Figure 36.13

The program displays the Unicode characters.

	**36.2 (Display date and time) Write a program that displays the current date and time as shown in Figure 36.14 . The program enables the user to select a locale, time zone, date style, and time style from the combo boxes.

 [image:]Figure 36.14

The program displays the current date and time.

Section 36.3

	36.3 (Place the calendar and clock in a panel) Write a program that displays the current date in a calendar and current time in a clock, as shown in Figure 36.15 . Enable the program to run standalone.

 [image:]Figure 36.15

The calendar and clock display the current date and time.

	36.4 (Find the available locales and time zone IDs) Write two programs to display the available locales and time zone IDs using buttons, as shown in Figure 36.16 .

 [image: Program code. In the code, the words in the variable names are merged. Line 1: Spanish, left parenthesis, Puerto rice, right parenthesis, e s, underscore, p r. Line 2: Spanish, left parenthesis, Chile, left parenthesis, e s, underscore, c l. Line 3: Finnish f i. Line 4: German, left parenthesis, Austria, left parenthesis, d e, underscore, ay t. Line 5: Danish d ay. Line 6: English, left parenthesis, united kingdom, right parenthesis, e n, underscore, g b. Line 7: Spanish, left parenthesis, panama, right parenthesis, e s, underscore, p ay. Line 8: Serbian s r. Line 9: America, forward slash, phoenix. Line 10: America, forward slash, port, underscore, au, underscore, prince. Line 11: America, forward slash, port, underscore, of, underscore, Spain. Line 12: America, forward slash, Porto, underscore, acre. Line 13: America, forward slash, Porto, underscore, Velho. Line 14: America, forward slash, Puerto, underscore, Rico. Line 15: America, forward slash, rainy, underscore, river. Line 16: America, forward slash, Rankin, underscore, inlet. Line 17: America, forward slash, Recife. Line 18: America, forward slash, Regina.]Figure 36.16

The program displays available locales and time zones using buttons.

Section 36.4

	*36.5 (Compute loan amortization schedule) Rewrite Exercise 4.22 using JavaFX, as shown in Figure 36.17 . The program allows the user to set the loan amount, loan period, and interest rate, and displays the corresponding interest, principal, and balance in the currency format.

 [image:]Figure 36.17

The program displays the loan payment schedule.

	36.6 (Convert dollars to other currencies) Write a program that converts U.S. dollars to Canadian dollars, German marks, and British pounds, as shown in Figure 36.18 . The user enters the U.S. dollar amount and the conversion rate, and clicks the Convert button to display the converted amount.

 [image:]Figure 36.18

The program converts U.S. dollars to Canadian dollars, German marks, and British pounds.

	36.7 (Compute loan payments) Rewrite Listing 2.8 , ComputeLoan.java, to display the monthly payment and total payment in currency.

	36.8 (Use the DecimalFormat class) Rewrite Exercise 5.8 to display at most two digits after the decimal point for the temperature using the DecimalFormat class.

Section 36.5

	*36.9 (Use resource bundle) Modify the example for displaying a calendar in Section36.3.6 , “Example: Displaying a Calendar,” to localize the labels “Choose a locale” and “Calendar Demo” in French, German, Chinese, or a language of your choice.

	**36.10 (Flag and anthem) Rewrite Listing 16.13 , ImageAudioAnimation.java, to use the resource bundle to retrieve image and audio files.

		(Hint: When a new country is selected, set an appropriate locale for it. Have your program look for the flag and audio file from the resource file for the locale.)

Section 36.6

	**36.11 (Specify file encodings) Write a program named Exercise36_11Writer that writes 1307×16 Chinese Unicode characters starting from \u0E00 to a file named Exercise36_11.gb using the GBK encoding scheme. Output 16 characters per line and separate the characters with spaces. Write a program named Exercise36_11Reader that reads all the characters from a file using a specified encoding. Figure 36.19 displays the file using the GBK encoding scheme.

 [image:]Figure 36.19

The program displays the file using the specified encoding scheme.

CHAPTER 37 Servlets

Objectives

	To explain how a servlet works (§37.2).

	To create/develop/run servlets (§37.3).

	To deploy servlets on application servers such as Tomcat and GlassFish (§37.3).

	To describe the servlets API (§37.4).

	To create simple servlets (§37.5).

	To create and process HTML forms (§37.6).

	To develop servlets to access databases (§37.7).

	To use hidden fields, cookies, and HttpSession to track sessions (§37.8).

37.1 Introduction

	Java Servlets is the foundation for developing Web applications using Java.

Servlets are Java programs that run on a Web server. They can be used to process client requests or produce dynamic webpages. For example, you can write servlets to generate dynamic webpages that display stock quotes or process client registration forms and store registration data in a database. This chapter introduces the concept of Java servlets. You will learn how to develop Java servlets using NetBeans.

Note

You can develop servlets without using an IDE. However, using an IDE such as NetBeans can greatly simplify the development task. The tool can automatically create the supporting directories and files. We choose NetBeans because it has the best support for Java Web development. You can still use your favorite IDE or no IDE for this chapter.

Note

Servlets are the foundation of Java Web technologies. JSP, JSF, and Java Web services are based on servlets. A good understanding of servlets helps you see the big picture of Java Web technology and learn JSP, JSF, and Web services.

37.2 HTML and Common Gateway Interface

	Java servlets are Java programs that function like CGI programs. They are executed upon request from a Web browser.

Java servlets run in the Web environment. To understand Java servlets, let us review HTML and the Common Gateway Interface (CGI).

37.2.1 Static Web Contents

You create webpages using HTML. Your webpages are stored as files on the Web server. The files are usually stored in the /htdocs directory on Unix, as shown in Figure 37.1. A user types a URL for the file from a Web browser. The browser contacts the Web server and requests the file. The server finds the file and returns it to the browser. The browser then displays the file to the user. This works fine for static information that does not change regardless of who requests it or when it is requested. Static information is stored in files. The information in the files can be updated, but at any given time every request for the same document returns exactly the same result.

[image:]Figure 37.1

A Web browser requests a static HTML page from a Web server.

37.2.2 Dynamic Web Contents and Common Gateway Interface

Not all information, however, is static in nature. Stock quotes are updated whenever a trade takes place. Election vote counts are updated constantly on Election Day. Weather reports are frequently updated. The balance in a customer’s bank account is updated whenever a transaction takes place. To view up-to-date information on the Web, the HTML pages for displaying this information must be generated dynamically. Dynamic Web pages are generated by Web servers. The Web server needs to run certain programs to process user requests from Web browsers in order to produce a customized response.

The Common Gateway Interface, or CGI, was proposed to generate dynamic Web content. The interface provides a standard framework for Web servers to interact with external programs, known as CGI programs. As shown in Figure 37.2, the Web server receives a request from a Web browser and passes it to the CGI program. The CGI program processes the request and generates a response at runtime. CGI programs can be written in any language, but the Perl language is the most popular choice. CGI programs are typically stored in the /cgi-bin directory. Here is a pseudocode example of a CGI program for displaying a customer’s bank account balance:

[image:]Figure 37.2

A Web browser requests a dynamic HTML page from a Web server.

	Obtain account ID and password.

	Verify account ID and password. If it fails, generate an HTML page to report incorrect account ID and password, and exit.

	Retrieve account balance from the database; generate an HTML page to display the account ID and balance.

37.2.3 The GET and POST Methods

The two most common HTTP requests, also known as methods, are GET and POST. The Web browser issues a request using a URL or an HTML form to trigger the Web server to execute a CGI program. HTML forms will be introduced in §37.6, “HTML Forms.” When issuing a CGI request directly from a URL, the GET method is used. This URL is known as a query string. The URL query string consists of the location of the CGI program, the parameters, and their values. For example, the following URL causes the CGI program getBalance to be invoked on the server side:

http://www.webserverhost.com/cgi-bin/
 getBalance.cgi?accountId=scott+smith&password=tiger

The ? symbol separates the program from the parameters. The parameter name and value are associated using the = symbol. Parameter pairs are separated using the & symbol. The + symbol denotes a space character. So, here accountId is scott smith.

When issuing a request from an HTML form, either a GET method or a POST method can be used. The form explicitly specifies one of these. If the GET method is used, the data in the form are appended to the request string as if it were submitted using a URL. If the POST method is used, the data in the form are packaged as part of the request file. The server program obtains the data by reading the file. The POST method is more secure than the GET method.

Note

The GET and POST methods both send requests to the Web server. The POST method always triggers the execution of the corresponding CGI program. The GET method may not cause the CGI program to be executed, if the previous same request is cached in the Web browser. Web browsers often cache webpages so that the same request can be quickly responded to without contacting the Web server. The browser checks the request sent through the GET method as a URL query string. If the results for the exact same URL are cached on a disk, then the previous webpages for the URL may be displayed. To ensure that a new webpage is always displayed, use the POST method. For example, use a POST method if the request will actually update the database. If your request is not time sensitive, such as finding the address of a student in the database, use the GET method to speed up performance.

37.2.4 From CGI to Java Servlets

CGI provides a relatively simple approach for creating dynamic Web applications that accept a user request, process it on the server side, and return responses to the Web browser. But CGI is very slow when handling a large number of requests simultaneously, because the Web server spawns a process for executing each CGI program. Each process has its own runtime environment that contains and runs the CGI program. It is not difficult to imagine what will happen if many CGI programs were executed simultaneously. System resource would be quickly exhausted, potentially causing the server to crash.

Several new approaches have been developed to remedy the performance problem of CGI programs. Java servlets are one successful technology for this purpose. Java servlets are Java programs that function like CGI programs. They are executed upon request from a Web browser. All servlets run inside a servlet container, also referred to as a servlet server or a servlet engine. A servlet container is a single process that runs in a Java Virtual Machine. The JVM creates a thread to handle each servlet. Java threads have much less overhead than full-blown processes. All the threads share the same memory allocated to the JVM. Since the JVM persists beyond the life cycle of a single servlet execution, servlets can share objects already created in the JVM. For example, if multiple servlets access the same database, they can share the connection object. Servlets are much more efficient than CGI.

Servlets have other benefits that are inherent in Java. As Java programs, they are object oriented, portable, and platform independent. Since you know Java, you can develop servlets immediately with the support of Java API for accessing databases and network resources.

[image:]

	37.2.1 What is the common gateway interface?

	37.2.2 What are the differences between the GET and POST methods in an HTML form?

	37.2.3 Can you submit a GET request directly from a URL? Can you submit a POST request directly from a URL?

	37.2.4 What is wrong in the following URL for submitting a GET request to the servlet FindScore on host liang at port 8084 with parameter name?

http://liang:8084/findScore?name=“P Yates”

	37.2.5 What are the differences between CGI and servlets?

37.3 Creating and Running Servlets

	An IDE such as NetBeans is an effective tool for creating Java servlet.

To run Java servlets, you need a servlet container. Many servlet containers are available for free. Two popular ones are Tomcat (developed by Apache, www.apache.org) and GlassFish (developed by Sun, glassfish.dev.java.net). Both Tomcat and GlassFish are bundled and integrated with NetBeans 7 (Java EE version). When you run a servlet from NetBeans, Tomcat or GlassFish will be automatically started. You can choose to use either of them, or any other application server. GlassFish has more features than Tomcat and it takes more system resource.

37.3.1 Creating a Servlet

Before our introduction to the servlet API, let us look at a simple example to see how servlets work. A servlet to some extent resembles a JavaFX program. Every Java applet is a subclass of the Application class. You need to override appropriate methods in the Application class to implement the application. Every servlet is a subclass of the HttpServlet class. You need to override appropriate methods in the HttpServlet class to implement the servlet. Listing 37.1 is a servlet that generates a response in HTML using the doGet method.

Listing 37.1 FirstServlet.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5
 6 public class FirstServlet extends HttpServlet {
 7 /** Handle the HTTP GET method.
 8 * @param request servlet request
 9 * @param response servlet response
10 */
11 protected void doGet(HttpServletRequest request,
12 HttpServletResponse response)
13 throws ServletException, java.io.IOException {
14 response.setContentType("text/html");
15 java.io.PrintWriter out = response.getWriter();
16 // output your page here
17 out.println("<html>");
18 out.println("<head>");
19 out.println("<title>Servlet</title>");
20 out.println("</head>");
21 out.println("<body>");
22 out.println("Hello, Java Servlets");
23 out.println("</body>");
24 out.println("</html>");
25 out.close();
26 }
27 }

The doGet method (line 11) is invoked when the Web browser issues a request using the GET method. The doGet method has two parameters: request and response. request is for obtaining data from the Web browser, and response is for sending data back to the browser. Line 14 indicates that data are sent back to the browser as text/html. Line 15 obtains an instance of PrintWriter for actually outputting data to the browser.

37.3.2 Creating Servlets in NetBeans

NetBeans is updated frequently. The current version is 8 at the time of this writing. To create a servlet in NetBeans 8, you have to first create a Web project, as follows:

	Choose File, New Project to display the New Project dialog box. Choose Java Web in the Categories section and Web Application in the Projects section, as shown in Figure 37.3a. Click Next to display the New Web Application dialog box, as shown in Figure 37.3b.

[image:]Figure 37.3

(a) Choose Web Application to create a Web project. (b) Specify project name and location.

	Enter liangweb in the Project Name field and c:\book in the Project Location field. Check Set as Main Project. Click Next to display the dialog box for specifying server and settings, as shown in Figure 37.4.

[image:]Figure 37.4

Choose servers and settings.

	Select GlassFish Server 4.1 for server and Java EE 7 Web for Java EE Version. Click Finish to create the Web project, as shown in Figure 37.5.

[image: Program code. In the code, the words in the variable names are merged. Line 1: < exclamation mark, doc type h t m l >. Line 2: < exclamation mark, minus, minus. Line 3: to change this license header, comma, choose license header. Line 4: to change this template file, comma, choose tools | template. Line 5: and open the template in the editor, period. Line 6: blank. Line 7: < h t m l >. Line 8, indented once: < head >. Line 9, indented twice: < title > to do, supply a title <, forward slash, title >. Line 10, indented twice: < meta c h ay r set =, open quotes, u t f-8, close quotes, >. Line 11, indented twice: < meta name =, open quotes, view port, close quotes, content, colon, open quotes, width = device. Line 12, indented once: <, forward slash, head >. Line 13, indented once: < body >. Line 14, indented twice: < i v, > to do write content <, forward slash, d i v, >. Line 15, indented once: <, forward slash, body >.]Figure 37.5

A new Web project is created.

Now you can create a servlet in the project, as follows:

	Right-click the liangweb node in the project pane to display a context menu. Choose New, Servlet to display the New Servlet dialog box, as shown in Figure 37.6.

[image:]Figure 37.6

You can create a servlet in the New Servlet dialog box.

	Enter FirstServlet in the Class Name field and chapter37 in the Package field and click Next to display the Configure Servlet Deployment dialog box, as shown in Figure 37.7.

[image:]Figure 37.7

You need to click the checkbox to add servlet information to web.xml.

	Select the checkbox to add the servlet information to web.xml and click Finish to create the servlet. A servlet template is now created in the project, as shown in Figure 37.8.

[image:]Figure 37.8

A new servlet class is created in the project.

	Replace the code in the content pane for the servlet using the code in Listing 37.1.

	Right-click liangweb node in the Project pane to display a context menu and choose Run to launch the Web server. In the Web browser, enter http://localhost:8084/liangweb/FirstServlet in the URL. You will now see the servlet result displayed, as shown in Figure 37.9.

[image:]Figure 37.9

Servlet result is displayed in a Web browser.

Note

If the servlet is not displayed in the browser, do the following: 1. Make sure that you have added the servlet in the xml.web file. 2. Right-click liangweb and choose Clean and Build. 3. Right-click liangweb and choose Run. Reenter http://localhost:8084/liangweb/FirstServlet in the URL. If still not working, exit NetBeans and restart it.

Note

Depending on the server setup, you may have a port number other than 8084.

Tip

You can deploy a Web application using a Web archive file (WAR) to a Web application server (e.g., Tomcat). To create a WAR file for the liangweb project, right-click liangweb and choose Build Project. You can now locate liangweb.war in the c:\book\liangweb\dist folder. To deploy on Tomcat, simply place liangweb.war into the webapps directory. When Tomcat starts, the .war file will be automatically installed.

Note

If you wish to use NetBeans as the development tool and Tomcat as the deployment server, please see Supplement V.E, “Tomcat Tutorial.”

[image:]

	37.3.1 Can you display an HTML file (e.g. c:\ test.html) by typing the complete file name in the Address field of Internet Explorer? Can you run a servlet by simply typing the servlet class file name?

	37.3.2 How do you create a Web project in NetBeans?

	37.3.3 How do you create a servlet in NetBeans?

	37.3.4 How do you run a servlet in NetBeans?

	37.3.5 When you run a servlet from NetBeans, what is the port number by default? What happens if the port number is already in use?

	37.3.6 What is the .war file? How do you obtain a .war file for a Web project in NetBeans?

37.4 The Servlet API

	The Servlet interface defines the methods init, service, and destroy to managing the life-cylce of a serlvet.

You have to know the servlet API in order to understand the source code in Listing 37.1, in ­FirstServlet.java. The servlet API provides the interfaces and classes that support servlets. These interfaces and classes are grouped into two packages, javax.servlet and javax.servlet.http, as shown in Figure 37.10. The javax.servlet package provides basic interfaces, and the javax.servlet.http package provides classes and interfaces derived from them, which provide specific means for servicing HTTP requests.

[image:]Figure 37.10

The servlet API contains interfaces and classes that you use to develop and run servlets.

37.4.1 The Servlet Interface

The javax.servlet.Servlet interface defines the methods that all servlets must ­implement. The methods are listed below:

/** Invoked for every servlet constructed */
public void init() throws ServletException;

/** Invoked to respond to incoming requests */
public void service(ServletRequest request, ServletResponse response)
 throws ServletException, IOException;

/** Invoked to release resource by the servlet */
public void destroy();

The init, service, and destroy methods are known as life-cycle methods and are called in the following sequence (see Figure 37.11):

[image:]Figure 37.11

The JVM uses the init, service, and destroy methods to control the servlet.

	The init method is called when the servlet is first created and is not called again as long as the servlet is not destroyed. This resembles an applet’s init method, which is invoked after the applet is created and is not invoked again as long as the applet is not destroyed.

	The service method is invoked each time the server receives a request for the servlet. The server spawns a new thread and invokes service.

	The destroy method is invoked after a timeout period has passed or as the Web server is terminated. This method releases resources for the servlet.

37.4.2 The GenericServlet Class, ServletConfig Interface, and HttpServlet Class

The javax.servlet.GenericServlet class defines a generic, protocol-independent servlet. It implements javax.servlet.Servlet and javax.servlet.ServletConfig. ServletConfig is an interface that defines four methods (getInitParameter, getInitParameterNames, getServletContext, and getServletName) for obtaining information from a Web server during initialization. All the methods in Servlet and ServletConfig are implemented in GenericServlet except service. Therefore, GenericServlet is an abstract class.

The javax.servlet.http.HttpServlet class defines a servlet for the HTTP protocol. It extends GenericServlet and implements the service method. The service method is implemented as a dispatcher of HTTP requests. The HTTP requests are processed in the following methods:

	doGet is invoked to respond to a GET request.

	doPost is invoked to respond to a POST request.

	doDelete is invoked to respond to a DELETE request. Such a request is normally used to delete a file on the server.

	doPut is invoked to respond to a PUT request. Such a request is normally used to send a file to the server.

	doOptions is invoked to respond to an OPTIONS request. This returns information about the server, such as which HTTP methods it supports.

	doTrace is invoked to respond to a TRACE request. Such a request is normally used for debugging. This method returns an HTML page that contains appropriate trace information.

All these methods use the following signature:

protected void doXxx(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, java.io.IOException

The HttpServlet class provides default implementation for these methods. You need to override doGet, doPost, doDelete, and doPut if you want the servlet to process a GET, POST, DELETE, or PUT request. By default, nothing will be done. Normally, you should not override the doOptions method unless the servlet implements new HTTP methods beyond those implemented by HTTP 1.1. Nor is there any need to override the doTrace method.

Note

GET and POST requests are often used, whereas DELETE, PUT, OPTIONS, and TRACE are not. For more information about these requests, please refer to the HTTP 1.1 specification from www.cis.ohio-state.edu/htbin/rfc/rfc2068.html.

Note

Although the methods in HttpServlet are all nonabstract, HttpServlet is defined as an abstract class. Thus you cannot create a servlet directly from HttpServlet. Instead you have to define your servlet by extending HttpServlet.

The relationship of these interfaces and classes is shown in Figure 37.12.

[image: A U M L diagram for the relationship of interfaces and classes.]Figure 37.12

HttpServlet inherits abstract class GenericServlet, which implements interfaces Servlet and ServletConfig.

Description

37.4.3 The ServletRequest Interface and HttpServlet­Request Interface

Every doXxx method in the HttpServlet class has a parameter of the HttpServlet­Request type, which is an object that contains HTTP request information, including parameter name and values, attributes, and an input stream. HttpServletRequest is a subinterface of Servlet­Request. ServletRequest defines a more general interface to provide information for all kinds of clients. The frequently used methods in these two interfaces are shown in Figure 37.13.

[image: A U M L diagram for java x dot servlet dot servlet request.]Figure 37.13

HttpServletRequest is a subinterface of ServletRequest.

Description

37.4.4 The ServletResponse Interface and HttpServlet­Response Interface

Every doXxx method in the HttpServlet class has a parameter of the HttpServlet­Response type, which is an object that assists a servlet in sending a response to the ­client. HttpServletResponse is a subinterface of ServletResponse. ServletResponse defines a more general interface for sending output to the client.

The frequently used methods in these two interfaces are shown in Figure 37.14.

[image: Program code. In the code, the words in the variable names are merged. Line 1, indented twice: < < interface > >. Line 2, indented once: java x, period, servlet, period, servlet response. Line 3: + get writer, left parenthesis, right parenthesis, colon, java, period, i o, period, print writer. Note: Returns a print writer object that can send character text to the client. Line 4: + set content type, left parenthesis, type, colon, string, right parenthesis, colon, void. Note: Sets the content type of the response being sent to the client before writing response to the client. When you are writing h t m l to the client, the type should be set to, text or h t m l. For plain text, use, text or plain. For sending a gif image to the browser, use, image or gif. Line 5, indented once: < < interface > >. Line 6: java x, period, servlet, period, h t t p, period, h t t p servlet response. Line 7: + add cookie, left parenthesis, cookie cookie, right parenthesis, colon, void. Adds the specified cookie to the response. This method can be called multiple times to set more than one cookie.]Figure 37.14

HttpServletResponse is a subinterface of ServletResponse.

[image:]

	37.4.1 Describe the life cycle of a servlet.

	37.4.2 Suppose you started the Web server, ran the following servlet twice by issuing an appropriate URL from the Web browser, and finally stopped Tomcat. What was displayed on the console when the servlet was first invoked? What was displayed on the console when the servlet was invoked for the second time? What was ­displayed on the console when Tomcat was shut down?

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class Test extends HttpServlet {
 public Test() {
 System.out.println("Constructor called");
 }

 /** Initialize variables */
 public void init() throws ServletException {
 System.out.println("init called");
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println("doGet called");
 }

 /** Clean up resources */
 public void destroy() {
 System.out.println("destroy called");
 }
}

37.5 Creating Servlets

	You can define a servlet class by extending the HttpServlet class and implement the doGet and doPost methods.

Servlets are the opposite of Java applets. Java applets run from a Web browser on the client side. To write Java programs, you define classes. To write a Java applet, you define a class that extends the Applet class. The Web browser runs and controls the execution of the applet through the methods defined in the Applet class. Similarly, to write a Java servlet, you define a class that extends the HttpServlet class. The servlet container runs and controls the execution of the servlet through the methods defined in the HttpServlet class. Like a Java applet, a servlet does not have a main method. A servlet depends on the servlet engine to call the methods. Every servlet has a structure like the one shown below:

package chapter37;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MyServlet extends HttpServlet {
 /** Called by the servlet engine to initialize servlet */
 public void init() throws ServletException {
 ...
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 ...
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 ...
 }

 /** Called by the servlet engine to release resource */
 public void destroy() {
 ...
 }

 // Other methods if necessary
}

The servlet engine controls the servlets using init, doGet, doPost, destroy, and other methods. By default, the doGet and doPost methods do nothing. To handle a GET request, you need to override the doGet method; to handle a POST request, you need to override the doPost method.

Listing 37.2 gives a simple Java servlet that generates a dynamic webpage for displaying the current time, as shown in Figure 37.15.

[image: Program code. In the code, the words in the variable names are merged. Line 1: the current time is fri, jun, 10 11, colon, 47, colon, 12 e d t 2011.]Figure 37.15

Servlet CurrentTime displays the current time.

Listing 37.2 CurrentTime.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6
 7 public class CurrentTime extends HttpServlet {
 8 /** Process the HTTP Get request */
 9 public void doGet(HttpServletRequest request, HttpServletResponse
10 response) throws ServletException, IOException {
11 response.setContentType("text/html");
12 PrintWriter out = response.getWriter();
13 out.println("<p>The current time is " + new java.util.Date());
14 out.close(); // Close stream
15 }
16 }

The HttpServlet class has a doGet method. The doGet method is invoked when the browser issues a request to the servlet using the GET method. Your servlet class should override the doGet method to respond to the GET request. In this case, you write the code to display the current time.

Servlets return responses to the browser through an HttpServletResponse object. Since the setContentType("text/html") method sets the MIME type to “text/html,” the browser will display the response in HTML. The getWriter method returns a PrintWriter object for sending HTML back to the client.

Note

The URL query string uses the GET method to issue a request to the servlet. The current time may not be current if the webpage for displaying the current time is cached. To ensure that a new current time is displayed, refresh the page in the browser. In the next example, you will write a new servlet that uses the POST method to obtain the current time.

37.6 HTML Forms

	HTML forms are used to collect and submit data from a client to a Web server.

HTML forms enable you to submit data to the Web server in a convenient form. As shown in Figure 37.16, the form can contain text fields, text area, check boxes, combo boxes, lists, radio buttons, and buttons.

[image:]Figure 37.16

An HTML form may contain text fields, radio buttons, combo boxes, lists, check boxes, text areas, and buttons.

The HTML code for creating the form in Figure 37.16 is given in Listing 37.3. (If you are unfamiliar with HTML, please see Supplement V.A, “HTML and XHTML Tutorial.”)

Listing 37.3 StudentRegistrationForm.html

 1 <!--An HTML Form Demo -->
 2 <html>
 3 <head>
 4 <title>Student Registration Form</title>
 5 </head>
 6 <body>
 7 <h3>Student Registration Form</h3>
 8
 9 <form action = "GetParameters"
10 method = "get">
11 <!-- Name text fields -->
12 <p><label>Last Name</label>
13 <input type = "text" name = "lastName" size = "20" />
14 <label>First Name</label>
15 <input type = "text" name = "firstName" size = "20" />
16 <label>MI</label>
17 <input type = "text" name = "mi" size = "1" /></p>
18
19 <!-- Gender radio buttons -->
20 <p><label>Gender:</label>
21 <input type = "radio" name = "gender" value = "M" checked />
22 Male
23 <input type = "radio" name = "gender" value = "F" /> Female</p>
24
25 <!-- Major combo box -->
26 <p><label>Major</label>
27 <select name = "major" size = "1">
28 <option value = "CS">Computer Science</option>
29 <option value = "Math">Mathematics</option>
30 <option>English</option>
31 <option>Chinese</option>
32 </select>
33
34 <!-- Minor list -->
35 <label>Minor</label>
36 <select name = "minor" size = "2" multiple>
37 <option>Computer Science</option>
38 <option>Mathematics</option>
39 <option>English</option>
40 <option>Chinese</option>
41 </select></p>
42
43 <!-- Hobby check boxes -->
44 <p><label>Hobby:</label>
45 <input type = "checkbox" name = "tennis" /> Tennis
46 <input type = "checkbox" name = "golf" /> Golf
47 <input type = "checkbox" name = "pingPong" checked />Ping Pong
48 </p>
49
50 <!-- Remark text area -->
51 <p>Remarks:</p>
52 <p><textarea name = "remarks" rows = "3" cols = "56">
53 </textarea></p>
54
55 <!-- Submit and Reset buttons -->
56 <p><input type = "submit" value = "Submit" />
57 <input type = "reset" value = "Reset" /></p>
58 </form>
59 </body>
60 </html>

The following HTML tags are used to construct HTML forms:

	<form> . . . </form> defines a form body. The attributes for the <form> tag are action and method. The action attribute specifies the server program to be executed on the Web server when the form is submitted. The method attribute is either get or post.

	<label> . . . </label> simply defines a label.

	<input> defines an input field. The attributes for this tag are type, name, value, checked, size, and maxlength. The type attribute specifies the input type. Possible types are text for a one-line text field, radio for a radio button, and checkbox for a check box. The name attribute gives a formal name for the attribute. This name attribute is used by the servlet program to retrieve its associated value. The names of the radio buttons in a group must be identical. The value attribute specifies a default value for a text field and text area. The checked attribute indicates whether a radio button or a check box is initially checked. The size attribute specifies the size of a text field, and the maxlength attribute specifies the maximum length of a text field.

	<select> . . . </select> defines a combo box or a list. The attributes for this tag are name, size, and multiple. The size attribute specifies the number of rows visible in the list. The multiple attribute specifies that multiple values can be selected from a list. Set size to 1 and do not use a multiple for a combo box.

	<option> . . . </option> defines a selection list within a <select> . . . </select> tag. This tag may be used with the value attribute to specify a value for the selected option (e.g., <option value = "CS">Computer Science). If no value is specified, the selected option is the value.

	<textarea> . . . </textarea> defines a text area. The attributes are name, rows, and cols. The rows and cols attributes specify the number of rows and columns in a text area.

Note

You can create the HTML file from NetBeans. Right-click liangweb and choose New, HTML, to display the New HTML File dialog box. Enter StudentRegistrationForm as the file name and click Finish to create the file.

37.6.1 Obtaining Parameter Values from HTML Forms

To demonstrate how to obtain parameter values from an HTML form, Listing 37.4 creates a servlet to obtain all the parameter values from the preceding student registration form in Figure 37.16 and display their values, as shown in Figure 37.17.

[image: Program code. In the code, the words in the variable names are merged. Line 1: last name, colon, smith first name, colon, john m i, colon, d. Line 2: gender, colon, m. Line 3: major, colon, math minor, colon, computer science mathematics. Line 4: tennis, colon, on golf, colon, null ping pong, colon, on. Line 5: remarks, colon, this is an example of an h t m l form that contain text fields, comma. Line 6: radio buttons, comma, combo boxes, comma, lists, comma, check boxes, comma, text areas, comma, and buttons.]Figure 37.17

The servlet displays the parameter values entered in Figure 37.16.

Listing 37.4 GetParameters.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6
 7 public class GetParameters extends HttpServlet {
 8 /** Process the HTTP Post request */
 9 public void doGet(HttpServletRequest request, HttpServletResponse
10 response) throws ServletException, IOException {
11 response.setContentType("text/html");
12 PrintWriter out = response.getWriter();
13
14 // Obtain parameters from the client
15 String lastName = request.getParameter("lastName");
16 String firstName = request.getParameter("firstName");
17 String mi = request.getParameter("mi");
18 String gender = request.getParameter("gender");
19 String major = request.getParameter("major");
20 String[] minors = request.getParameterValues("minor");
21 String tennis = request.getParameter("tennis");
22 String golf = request.getParameter("golf");
23 String pingPong = request.getParameter("pingPong");
24 String remarks = request.getParameter("remarks");
25
26 out.println("Last Name: " + lastName + " First Name: " 27 + firstName + " MI: " + mi + "
");
28 out.println("Gender: " + gender + "
");
29 out.println("Major: " + major + " Minor: ");
30
31 if (minors != null)
32 for (int i = 0; i < minors.length; i++)
33 out.println(minors[i] + " ");
34
35 out.println("
 Tennis: " + tennis + " Golf: " +
36 golf + " PingPong: " + pingPong + "
");
37 out.println("Remarks: " + remarks + "");
38 out.close(); // Close stream
39 }
40 }

The HTML form is already created in StudentRegistrationForm.html and displayed in ­Figure 37.16. Since the action for the form is GetParameters, clicking the Submit button invokes the GetParameters servlet.

Each GUI component in the form has a name attribute. The servlet uses the name attribute in the getParameter(attributeName) method to obtain the parameter value as a string. In case of a list with multiple values, use the getParameterValues(attributeName) method to return the parameter values in an array of strings (line 20).

You may optionally specify the value attribute in a text field, text area, combo box, list, check box, or radio button in an HTML form. For text field and text area, the value attribute specifies a default value to be displayed in the text field and text area. The user can type in new values to replace it. For combo box, list, check box, and radio button, the value attribute specifies the parameter value to be returned from the getParameter and getParameterValues methods. If the value attribute is not specified for a combo box or a list, it returns the selected string from the combo box or the list. If the value attribute is not specified for a radio button or a check box, it returns string on for a checked radio button or a checked check box, and returns null for an unchecked check box.

Note

If an attribute does not exist, the getParameter(attributeName) method returns null. If an empty value of the parameter is passed to the servlet, the ­getParameter­(attributeName) method returns a string with an empty value. In this case, the length of the string is 0.

37.6.2 Obtaining Current Time Based on Locale and Time Zone

This example creates a servlet that processes the GET and POST requests. The GET request generates a form that contains a combo box for locale and a combo box for time zone, as shown in Figure 37.18a. The user can choose a locale and a time zone from this form to submit a POST request to obtain the current time based on the locale and time zone, as shown in Figure 37.18b.

[image: Program code. In the code, the words in the variable names are merged. Line 1: current time is venerdi 10 giugno 2011 4, period, 09, period, 40 g m t, minus 12, colon, 00.]Figure 37.18

The GET method in the TimeForm servlet displays a form in (a), and the POST method in the TimeForm servlet displays the time based on locale and time zone in (b).

Listing 37.5 gives the servlet.

Listing 37.5 TimeForm.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.util.*;
 7 import java.text.*;
 8
 9 public class TimeForm extends HttpServlet {
10 private static final String CONTENT_TYPE = "text/html";
11 private Locale[] allLocale = Locale.getAvailableLocales();
12 private String[] allTimeZone = TimeZone.getAvailableIDs();
13
14 /** Process the HTTP Get request */
15 public void doGet(HttpServletRequest request, HttpServletResponse
16 response) throws ServletException, IOException {
17 response.setContentType(CONTENT_TYPE);
18 PrintWriter out = response.getWriter();
19 out.println("<h3>Choose locale and time zone</h3>");
20 out.println("<form method=\"post\" action=" +
21 "TimeForm>");
22 out.println("Locale <select size=\"1\" name=\"locale\">");
23
24 // Fill in all locales
25 for (int i = 0; i < allLocale.length; i++) {
26 out.println("<option value=\"" + i +"\">" +
27 allLocale[i].getDisplayName() + "</option>");
28 }
29 out.println("</select>");
30
31 // Fill in all time zones
32 out.println("<p>Time Zone<select size=\"1\" name=\"timezone\">");
33 for (int i = 0; i < allTimeZone.length; i++) {
34 out.println("<option value=\"" + allTimeZone[i] +"\">" +
35 allTimeZone[i] + "</option>");
36 }
37 out.println("</select>");
38
39 out.println("<p><input type=\"submit\" value=\"Submit\" >");
40 out.println("<input type=\"reset\" value=\"Reset\"></p>");
41 out.println("</form>");
42 out.close(); // Close stream
43 }
44
45 /** Process the HTTP Post request */
46 public void doPost(HttpServletRequest request, HttpServletResponse
47 response) throws ServletException, IOException {
48 response.setContentType(CONTENT_TYPE);
49 PrintWriter out = response.getWriter();
50 out.println("<html>");
51 int localeIndex = Integer.parseInt(
52 request.getParameter("locale"));
53 String timeZoneID = request.getParameter("timezone");
54 out.println("<head><title>Current Time</title></head>");
55 out.println("<body>");
56 Calendar calendar =
57 new GregorianCalendar(allLocale[localeIndex]);
58 TimeZone timeZone = TimeZone.getTimeZone(timeZoneID);
59 DateFormat dateFormat = DateFormat.getDateTimeInstance(
60 DateFormat.FULL, DateFormat.FULL, allLocale[localeIndex]);
61 dateFormat.setTimeZone(timeZone);
62 out.println("Current time is " +
63 dateFormat.format(calendar.getTime()) + "</p>");
64 out.println("</body></html>");
65 out.close(); // Close stream
66 }
67 }

When you run this servlet, the servlet TimeForm’s doGet method is invoked to generate the time form dynamically. The method of the form is POST, and the action invokes the same servlet, TimeForm. When the form is submitted to the server, the doPost method is invoked to process the request.

The variables allLocale and allTimeZone (lines 11–12), respectively, hold all the available locales and time zone IDs. The names of the locales are displayed in the locale list. The values for the locales are the indexes of the locales in the array allLocale. The time zone IDs are strings. They are displayed in the time zone list. They are also the values for the list. The indexes of the locale and the time zone are passed to the servlet as parameters. The doPost method obtains the values of the parameters (lines 51–53) and finds the current time based on the locale and time zone.

Note

If you choose an Asian locale (e.g., Chinese, Korean, or Japanese), the time will not be displayed properly, because the default character encoding is UTF-8. To fix this problem, insert the following statement in line 48 to set an international character encoding:

response.setCharacterEncoding("GB18030");

For information on encoding, see Sections 36.6.6, “Character Encoding.”

37.7 Database Programming in Servlets

	Servlets can access and manipulate databases using JDBC.

Many dynamic Web applications use databases to store and manage data. Servlets can connect to any relational database via JDBC. In Chapter 34, Java Database Programming, you learned how to create Java programs to access and manipulate relational databases via JDBC. Connecting a servlet to a database is no different from connecting a Java application or applet to a database. If you know Java servlets and JDBC, you can combine them to develop interesting and practical Web-based interactive projects.

To demonstrate connecting to a database from a servlet, let us create a servlet that processes a registration form. The client enters data in an HTML form and submits the form to the server, as shown in Figure 37.19. The result of the submission is shown in Figure 37.20. The server collects the data from the form and stores them in a database.

[image:]Figure 37.19

The HTML form enables the user to enter student information.

[image: Program code. In the code, the words in the variable names are merged. Line 1: John Smith is now registered in the database.]Figure 37.20

The servlet processes the form and stores data in a database.

The registration data are stored in an Address table consisting of the following fields: firstName, mi, lastName, street, city, state, zip, telephone, and email, defined in the following statement:

create table Address (
 firstname varchar(25),
 mi char(1),
 lastname varchar(25),
 street varchar(40),
 city varchar(20),
 state varchar(2),
 zip varchar(5),
 telephone varchar(10),
 email varchar(30)
)

MySQL, Oracle, and Access were used in Chapter 34. You can use any relational database. If the servlet uses a database driver other than the JDBC-ODBC driver (e.g., the MySQL JDBC driver and the Oracle JDBC driver), you need to add the JDBC driver (e.g., mysqljdbc.jar for MySQL and ojdbc6.jar for Oracle) into the Libraries node in the project.

Create an HTML file named SimpleRegistration.html in Listing 37.6 for collecting the data and sending them to the database using the post method.

Listing 37.6 SimpleRegistration.html

 1 <!-- SimpleRegistration.html -->
 2 <html>
 3 <head>
 4 <title>Simple Registration without Confirmation</title>
 5 </head>
 6 <body>
 7 Please register to your instructor’s student address book.
 8
 9 <form method = "post" action = "SimpleRegistration">
10 <p>Last Name *
11 <input type = "text" name = "lastName">
12 First Name *
13 <input type = "text" name = "firstName">
14 MI <input type = "text" name = "mi" size = "3">
15 </p>
16 <p>Telephone
17 <input type = "text" name = "telephone" size = "20">
18 Email
19 <input type = "text" name = "email" size = "28">
20 </p>
21 <p>Street <input type = "text" name = "street" size = "50">
22 </p>
23 <p>City <input type = "text" name = "city" size = "23">
24 State
25 <select size = "1" name = "state">
26 <option value = "GA">Georgia-GA</option>
27 <option value = "OK">Oklahoma-OK</option>
28 <option value = "IN">Indiana-IN</option>
29 </select>
30 Zip <input type = "text" name = "zip" size = "9">
31 </p>
32 <p><input type = "submit" name = "Submit" value = "Submit">
33 <input type = "reset" value = "Reset">
34 </p>
35 </form>
36 <p>* required fields</p>
37 </body>
38 </html>

Create the servlet named SimpleRegistration in Listing 37.7.

Listing 37.7 SimpleRegistration.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class SimpleRegistration extends HttpServlet {
 9 // Use a prepared statement to store a student into the database
10 private PreparedStatement pstmt;
11
12 /** Initialize variables */
13 public void init() throws ServletException {
14 initializeJdbc();
15 }
16
17 /** Process the HTTP Post request */
18 public void doPost(HttpServletRequest request, HttpServletResponse
19 response) throws ServletException, IOException {
20 response.setContentType("text/html");
21 PrintWriter out = response.getWriter();
22
23 // Obtain parameters from the client
24 String lastName = request.getParameter("lastName");
25 String firstName = request.getParameter("firstName");
26 String mi = request.getParameter("mi");
27 String phone = request.getParameter("telephone");
28 String email = request.getParameter("email");
29 String address = request.getParameter("street");
30 String city = request.getParameter("city");
31 String state = request.getParameter("state");
32 String zip = request.getParameter("zip");
33
34 try {
35 if (lastName.length() == 0 || firstName.length() == 0) {
36 out.println("Last Name and First Name are required");
37 }
38 else {
39 storeStudent(lastName, firstName, mi, phone, email,
40 address, city, state, zip);
41
42 out.println(firstName + " " + lastName +
43 " is now registered in the database");
44 }
45 }
46 catch(Exception ex) {
47 out.println("Error: " + ex.getMessage());
48 }
49 finally {
50 out.close(); // Close stream
51 }
52 }
53
54 /** Initialize database connection */
55 private void initializeJdbc() {
56 try {
57 // Load the JDBC driver
58 Class.forName("com.mysql.jdbc.Driver");
59 System.out.println("Driver loaded");
60
61 // Establish a connection
62 Connection conn = DriverManager.getConnection
63 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
64 System.out.println("Database connected");
65
66 // Create a Statement
67 pstmt = conn.prepareStatement("insert into Address " +
68 "(lastName, firstName, mi, telephone, email, street, city, "
69 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
70 }
71 catch (Exception ex) {
72 ex.printStackTrace();
73 }
74 }
75
76 /** Store a student record to the database */
77 private void storeStudent(String lastName, String firstName,
78 String mi, String phone, String email, String address,
79 String city, String state, String zip) throws SQLException {
80 pstmt.setString(1, lastName);
81 pstmt.setString(2, firstName);
82 pstmt.setString(3, mi);
83 pstmt.setString(4, phone);
84 pstmt.setString(5, email);
85 pstmt.setString(6, address);
86 pstmt.setString(7, city);
87 pstmt.setString(8, state);
88 pstmt.setString(9, zip);
89 pstmt.executeUpdate();
90 }
91 }

The init method (line 13) is executed once when the servlet starts. After the servlet has started, the servlet can be invoked many times as long as it is alive in the servlet container. Load the driver and connect to the database from the servlet’s init method (line 14). If a prepared statement or a callable statement is used, it should also be created in the init method. In this example, a prepared statement is desirable, because the servlet always uses the same insert statement with different values.

A servlet can connect to any relational database via JDBC. The initializeJdbc method in this example connects to a MySQL database (line 58). Once connected, it creates a prepared statement for inserting a student record into the database. MySQL is used in this example; you can replace it with any relational database.

Last name and first name are required fields. If either of them is empty, the servlet sends an error message to the client (lines 35–36). Otherwise, the servlet stores the data in the database using the prepared statement.

[image:]

	37.7.1 What would be displayed if you changed the content type to html/plain in ­Listing 37.2 , CurrentTime.java?

	37.7.2 The statement out.close() is used to close the output stream to response. Why isn’t this statement enclosed in a try-catch block?

	37.7.3 What happens when you invoke request.getParameter(paramName) if paramName does not exist?

	37.7.4 How do you write a text field, combo box, check box, and text area in an HTML form?

	37.7.5 How do you retrieve the parameter value for a text field, combo box, list, check box, radio button, and text area from an HTML form?

	37.7.6 If the servlet uses a database driver other than the JDBC-ODBC driver, where should the driver be placed in NetBeans?

37.8 Session Tracking

	You can perform session tracking using hidden values in a form, using cookies, or using HttpSession.

Web servers use the Hyper-Text Transport Protocol (HTTP). HTTP is a stateless protocol. An HTTP Web server cannot associate requests from a client, and therefore treats each request independently. This protocol works fine for simple Web browsing, where each request typically results in an HTML file or a text file being sent back to the client. Such simple requests are isolated. However, the requests in interactive Web applications are often related. Consider the two requests in the following scenario:

	Request 1: A client sends registration data to the server; the server then returns the data to the user for confirmation.

	Request 2: The client confirms the data that was submitted in Request 1.

In Request 2, the data submitted in Request 1 are confirmed. These two requests are related in a session. A session can be defined as a series of related interactions between a single client and the Web server over a period of time. Tracking data among requests in a session is known as session tracking.

This section introduces three techniques for session tracking: using hidden values, using cookies, and using the session tracking tools from servlet API.

37.8.1 Session Tracking Using Hidden Values

You can track a session by passing data from the servlet to the client as hidden values in a dynamically generated HTML form by including a field like this one:

<input type = "hidden" name = "lastName" value = "Smith">

The next request will submit the data back to the servlet. The servlet retrieves this hidden value just like any other parameter value, using the getParameter method.

Let us use an example to demonstrate using hidden values in a form. The example creates a servlet that processes a registration form. The client submits the form using the GET method, as shown in Figure 37.21. The server collects the data in the form, displays them to the client, and asks the client for confirmation, as shown in Figure 37.22. The client confirms the data by submitting the request with the hidden values using the POST method. Finally, the servlet writes the data to a database.

[image:]Figure 37.21

The registration form collects user information.

[image: Program code. In the code, the words in the variable names are merged. Line 1: you entered the following data. Line 2: blank. Line 3: last name, colon, Johnson. Line 4: first name, colon, Pete. Line 5: m i, colon, t. Line 6: telephone, colon, 9 1 2 4 5 4 1 0 2 1. Line 7: email, colon. Line 8: address, colon, 4543 river run trail. Line 9: city, colon, Savannah. Line 10: state, colon, g ay. Line 11: zip, colon, 3 1 4 1 9.]Figure 37.22

The servlet asks the client for confirmation of the input.

Create an HTML form named Registration.html in Listing 37.8 for collecting the data and sending it to the database using the GET method for confirmation. This file is almost identical to Listing 37.6, SimpleRegistration.html except that the action is replaced by Registration (line 9).

Listing 37.8 Registration.html

 1 <!-- Registration.html -->
 2 <html>
 3 <head>
 4 <title>Using Hidden Data for Session Tracking</title>
 5 </head>
 6 <body>
 7 Please register to your instructor’s student address book.
 8
 9 <form method = "get" action = "Registration">
10 <p>Last Name *
11 <input type = "text" name = "lastName">
12 First Name *
13 <input type = "text" name = "firstName">
14 MI <input type = "text" name = "mi" size = "3">
15 </p>
16 <p>Telephone
17 <input type = "text" name = "telephone" size = "20">
18 Email
19 <input type = "text" name = "email" size = "28">
20 </p>
21 <p>Street <input type = "text" name = "street" size = "50">
22 </p>
23 <p>City <input type = "text" name = "city" size = "23">
24 State
25 <select size = "1" name = "state">
26 <option value = "GA">Georgia-GA</option>
27 <option value = "OK">Oklahoma-OK</option>
28 <option value = "IN">Indiana-IN</option>
29 </select>
30 Zip <input type = "text" name = "zip" size = "9">
31 </p>
32 <p><input type = "submit" name = "Submit" value = "Submit">
33 <input type = "reset" value = "Reset">
34 </p>
35 </form>
36 <p>* required fields</p>
37 </body>
38 </html>

Create the servlet named Registration in Listing 37.9.

Listing 37.9 Registration.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class Registration extends HttpServlet {
 9 // Use a prepared statement to store a student into the database
 10 private PreparedStatement pstmt;
 11
 12 /** Initialize variables */
 13 public void init() throws ServletException {
 14 initializeJdbc();
 15 }
 16
 17 /** Process the HTTP Get request */
 18 public void doGet(HttpServletRequest request, HttpServletResponse
 19 response) throws ServletException, IOException {
 20 response.setContentType("text/html");
 21 PrintWriter out = response.getWriter();
 22
 23 // Obtain data from the form
 24 String lastName = request.getParameter("lastName");
 25 String firstName = request.getParameter("firstName");
 26 String mi = request.getParameter("mi");
 27 String telephone = request.getParameter("telephone");
 28 String email = request.getParameter("email");
 29 String street = request.getParameter("street");
 30 String city = request.getParameter("city");
 31 String state = request.getParameter("state");
 32 String zip = request.getParameter("zip");
 33
 34 if (lastName.length() == 0 || firstName.length() == 0) {
 35 out.println("Last Name and First Name are required");
 36 }
 37 else {
 38 // Ask for confirmation
 39 out.println("You entered the following data");
 40 out.println("<p>Last name: " + lastName);
 41 out.println("
First name: " + firstName);
 42 out.println("
MI: " + mi);
 43 out.println("
Telephone: " + telephone);
 44 out.println("
Email: " + email);
 45 out.println("
Address: " + street);
 46 out.println("
City: " + city);
 47 out.println("
State: " + state);
 48 out.println("
Zip: " + zip);
 49
 50 // Set the action for processing the answers
 51 out.println("<p><form method=\"post\" action=" +
 52 "Registration>");
 53 // Set hidden values
 54 out.println("<p><input type=\"hidden\" " +
 55 "value=" + lastName + " name=\"lastName\">");
 56 out.println("<p><input type=\"hidden\" " +
 57 "value=" + firstName + " name=\"firstName\">");
 58 out.println("<p><input type=\"hidden\" " +
 59 "value=" + mi + " name=\"mi\">");
 60 out.println("<p><input type=\"hidden\" " +
 61 "value=" + telephone + " name=\"telephone\">");
 62 out.println("<p><input type=\"hidden\" " +
 63 "value=" + email + " name=\"email\">");
 64 out.println("<p><input type=\"hidden\" " +
 65 "value=" + street + " name=\"street\">");
 66 out.println("<p><input type=\"hidden\" " +
 67 "value=" + city + " name=\"city\">");
 68 out.println("<p><input type=\"hidden\" " +
 69 "value=" + state + " name=\"state\">");
 70 out.println("<p><input type=\"hidden\" " +
 71 "value=" + zip + " name=\"zip\">");
 72 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 73 out.println("</form>");
 74 }
 75
 76 out.close(); // Close stream
 77 }
 78
 79 /** Process the HTTP Post request */
 80 public void doPost(HttpServletRequest request, HttpServletResponse
 81 response) throws ServletException, IOException {
 82 response.setContentType("text/html");
 83 PrintWriter out = response.getWriter();
 84
 85 try {
 86 String lastName = request.getParameter("lastName");
 87 String firstName = request.getParameter("firstName");
 88 String mi = request.getParameter("mi");
 89 String telephone = request.getParameter("telephone");
 90 String email = request.getParameter("email");
 91 String street = request.getParameter("street");
 92 String city = request.getParameter("city");
 93 String state = request.getParameter("state");
 94 String zip = request.getParameter("zip");
 95
 96 storeStudent(lastName, firstName, mi, telephone, email,
 97 street, city, state, zip);
 98
 99 out.println(firstName + " " + lastName +
100 " is now registered in the database");
101 }
102 catch(Exception ex) {
103 out.println("Error: " + ex.getMessage());
104 }
105 }
106
107 /** Initialize database connection */
108 private void initializeJdbc() {
109 try {
110 // Load the JDBC driver
111 Class.forName("com.mysql.jdbc.Driver");
112 System.out.println("Driver loaded");
113
114 // Establish a connection
115 Connection conn = DriverManager.getConnection
116 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
117 System.out.println("Database connected");
118
119 // Create a Statement
120 pstmt = conn.prepareStatement("insert into Address " +
121 "(lastName, firstName, mi, telephone, email, street, city, "
122 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
123 }
124 catch (Exception ex) {
125 System.out.println(ex);
126 }
127 }
128
129 /** Store a student record to the database */
130 private void storeStudent(String lastName, String firstName,
131 String mi, String phone, String email, String address,
132 String city, String state, String zip) throws SQLException {
133 pstmt.setString(1, lastName);
134 pstmt.setString(2, firstName);
135 pstmt.setString(3, mi);
136 pstmt.setString(4, phone);
137 pstmt.setString(5, email);
138 pstmt.setString(6, address);
139 pstmt.setString(7, city);
140 pstmt.setString(8, state);
141 pstmt.setString(9, zip);
142 pstmt.executeUpdate();
143 }
144 }

The servlet processes the GET request by generating an HTML page that displays the client’s input and asks for the client’s confirmation. The input data consist of hidden values in the newly generated forms, so they will be sent back in the confirmation request. The confirmation request uses the POST method. The servlet retrieves the hidden values and stores them in the database.

Since the first request does not write anything to the database, it is appropriate to use the GET method. Since the second request results in an update to the database, the POST method must be used.

Note

The hidden values could also be sent from the URL query string if the request used the GET method.

37.8.2 Session Tracking Using Cookies

You can track sessions using cookies, which are small text files that store sets of name/value pairs on the disk in the client’s computer. Cookies are sent from the server through the instructions in the header of the HTTP response. The instructions tell the browser to create a cookie with a given name and its associated value. If the browser already has a cookie with the key name, the value will be updated. The browser will then send the cookie with any request submitted to the same server. Cookies can have expiration dates set, after which they will not be sent to the server. The javax.servlet.http.Cookie is used to create and manipulate cookies, as shown in Figure 37.23.

[image: A U M L diagram for java x dot servlet dot h t t p dot cookie.]
Figure 37.23

Cookie stores a name/value pair and other information about the cookie.

Description

To send a cookie to the browser, use the addCookie method in the HttpServlet­Response class, as shown below:

response.addCookie(cookie);

where response is an instance of HttpServletResponse.

To obtain cookies from a browser, use

request.getCookies();

where request is an instance of HttpServletRequest.

To demonstrate the use of cookies, let us create an example that accomplishes the same task as Listing 37.9, Registration.java. Instead of using hidden values for session tracking, it uses cookies.

Create the servlet named RegistrationWithCookie in Listing 37.10. Create an HTML file named RegistrationWithCookie.html that is identical to Registration.html except that the action is replaced by RegistrationWithCookie.java.

Listing 37.10 RegistrationWithCookie.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class RegistrationWithCookie extends HttpServlet {
 9 private static final String CONTENT_TYPE = "text/html";
 10 // Use a prepared statement to store a student into the database
 11 private PreparedStatement pstmt;
 12
 13 /** Initialize variables */
 14 public void init() throws ServletException {
 15 initializeJdbc();
 16 }
 17
 18 /** Process the HTTP Get request */
 19 public void doGet(HttpServletRequest request, HttpServletResponse
 20 response) throws ServletException, IOException {
 21 response.setContentType("text/html");
 22 PrintWriter out = response.getWriter();
 23
 24 // Obtain data from the form
 25 String lastName = request.getParameter("lastName");
 26 String firstName = request.getParameter("firstName");
 27 String mi = request.getParameter("mi");
 28 String telephone = request.getParameter("telephone");
 29 String email = request.getParameter("email");
 30 String street = request.getParameter("street");
 31 String city = request.getParameter("city");
 32 String state = request.getParameter("state");
 33 String zip = request.getParameter("zip");
 34
 35 if (lastName.length() == 0 || firstName.length() == 0) {
 36 out.println("Last Name and First Name are required");
 37 }
 38 else {
 39 // Create cookies and send cookies to browsers
 40 Cookie cookieLastName = new Cookie("lastName", lastName);
 41 // cookieLastName.setMaxAge(1000);
 42 response.addCookie(cookieLastName);
 43 Cookie cookieFirstName = new Cookie("firstName", firstName);
 44 response.addCookie(cookieFirstName);
 45 // cookieFirstName.setMaxAge(0);
 46 Cookie cookieMi = new Cookie("mi", mi);
 47 response.addCookie(cookieMi);
 48 Cookie cookieTelephone = new Cookie("telephone", telephone);
 49 response.addCookie(cookieTelephone);
 50 Cookie cookieEmail = new Cookie("email", email);
 51 response.addCookie(cookieEmail);
 52 Cookie cookieStreet = new Cookie("street", street);
 53 response.addCookie(cookieStreet);
 54 Cookie cookieCity = new Cookie("city", city);
 55 response.addCookie(cookieCity);
 56 Cookie cookieState = new Cookie("state", state);
 57 response.addCookie(cookieState);
 58 Cookie cookieZip = new Cookie("zip", zip);
 59 response.addCookie(cookieZip);
 60
 61 // Ask for confirmation
 62 out.println("You entered the following data");
 63 out.println("<p>Last name: " + lastName);
 64 out.println("
First name: " + firstName);
 65 out.println("
MI: " + mi);
 66 out.println("
Telephone: " + telephone);
 67 out.println("
Email: " + email);
 68 out.println("
Street: " + street);
 69 out.println("
City: " + city);
 70 out.println("
State: " + state);
 71 out.println("
Zip: " + zip);
 72
 73 // Set the action for processing the answers
 74 out.println("<p><form method=\"post\" action=" +
 75 "RegistrationWithCookie>");
 76 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 77 out.println("</form>");
 78 }
 79
 80 out.close(); // Close stream
 81 }
 82
 83 /** Process the HTTP Post request */
 84 public void doPost(HttpServletRequest request, HttpServletResponse
 85 response) throws ServletException, IOException {
 86 response.setContentType(CONTENT_TYPE);
 87 PrintWriter out = response.getWriter();
 88
 89 String lastName = "";
 90 String firstName = "";
 91 String mi = "";
 92 String telephone = "";
 93 String email = "";
 94 String street = "";
 95 String city = "";
 96 String state = "";
 97 String zip = "";
 98
 99 // Read the cookies
100 Cookie[] cookies = request.getCookies();
101
102 // Get cookie values
103 for (int i = 0; i < cookies.length; i++) {
104 if (cookies[i].getName().equals("lastName"))
105 lastName = cookies[i].getValue();
106 else if (cookies[i].getName().equals("firstName"))
107 firstName = cookies[i].getValue();
108 else if (cookies[i].getName().equals("mi"))
109 mi = cookies[i].getValue();
110 else if (cookies[i].getName().equals("telephone"))
111 telephone = cookies[i].getValue();
112 else if (cookies[i].getName().equals("email"))
113 email = cookies[i].getValue();
114 else if (cookies[i].getName().equals("street"))
115 street = cookies[i].getValue();
116 else if (cookies[i].getName().equals("city"))
117 city = cookies[i].getValue();
118 else if (cookies[i].getName().equals("state"))
119 state = cookies[i].getValue();
120 else if (cookies[i].getName().equals("zip"))
121 zip = cookies[i].getValue();
122 }
123
124 try {
125 storeStudent(lastName, firstName, mi, telephone, email, street,
126 city, state, zip);
127
128 out.println(firstName + " " + lastName +
129 " is now registered in the database");
130
131 out.close(); // Close stream
132 }
133 catch(Exception ex) {
134 out.println("Error: " + ex.getMessage());
135 }
136 }
137
138 /** Initialize database connection */
139 private void initializeJdbc() {
140 try {
141 // Load the JDBC driver
142 Class.forName("com.mysql.jdbc.Driver");
143 System.out.println("Driver loaded");
144
145 // Establish a connection
146 Connection conn = DriverManager.getConnection
147 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
148 System.out.println("Database connected");
149
150 // Create a Statement
151 pstmt = conn.prepareStatement("insert into Address " +
152 "(lastName, firstName, mi, telephone, email, street, city, "
153 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
154 }
155 catch (Exception ex) {
156 System.out.println(ex);
157 }
158 }
159
160 /** Store a student record to the database */
161 private void storeStudent(String lastName, String firstName,
162 String mi, String telephone, String email, String street,
163 String city, String state, String zip) throws SQLException {
164 pstmt.setString(1, lastName);
165 pstmt.setString(2, firstName);
166 pstmt.setString(3, mi);
167 pstmt.setString(4, telephone);
168 pstmt.setString(5, email);
169 pstmt.setString(6, street);
170 pstmt.setString(7, city);
171 pstmt.setString(8, state);
172 pstmt.setString(9, zip);
173 pstmt.executeUpdate();
174 }
175 }

You have to create a cookie for each value you want to track, using the Cookie class’s only constructor, which defines a cookie’s name and value as shown below (line 40):

Cookie cookieLastName = new Cookie("lastName", lastName);

To send the cookie to the browser, use a statement like this one (line 42):

response.addCookie(cookieLastName);

If a cookie with the same name already exists in the browser, its value is updated; otherwise, a new cookie is created.

Cookies are automatically sent to the Web server with each request from the client. The servlet retrieves all the cookies into an array using the getCookies method (line 100):

Cookie[] cookies = request.getCookies();

To obtain the name of the cookie, use the getName method (line 104):

String name = cookies[i].getName();

The cookie’s value can be obtained using the getValue method:

String value = cookies[i].getValue();

Cookies are stored as strings just like form parameters and hidden values. If a cookie represents a numeric value, you have to convert it into an integer or a double, using the parseInt method in the Integer class or the parseDouble method in the Double class.

By default, a newly created cookie persists until the browser exits. However, you can set an expiration date, using the setMaxAge method, to allow a cookie to stay in the browser for up to 2,147,483,647 seconds (approximately 24,855 days).

37.8.3 Session Tracking Using the Servlet API

You have now learned both session tracking using hidden values and session tracking using cookies. These two session-tracking methods have problems. They send data to the browser either as hidden values or as cookies. The data are not secure, and anybody with knowledge of computers can obtain them. The hidden data are in HTML form, which can be viewed from the browser. Cookies are stored in the Cache directory of the browser. Because of security concerns, some browsers do not accept cookies. The client can turn the cookies off and limit their number. Another problem is that hidden data and cookies pass data as strings. You cannot pass objects using these two methods.

To address these problems, Java servlet API provides the javax.servlet.http .­HttpSession interface, which provides a way to identify a user across more than one page request or visit to a website and to store information about that user. The servlet container uses this interface to create a session between an HTTP client and an HTTP server. The session persists for a specified time period, across more than one connection or page request from the user. A session usually corresponds to one user, who may visit a site many times. The session enables tracking of a large set of data. The data can be stored as objects and are secure because they are kept on the server side.

To use the Java servlet API for session tracking, first create a session object using the ­getSession() method in the HttpServletRequest interface:

HttpSession session = request.getSession();

This obtains the session or creates a new session if the client does not have a session on the server.

The HttpSession interface provides the methods for reading and storing data to the ­session, and for manipulating the session, as shown in Figure 37.24.

[image: A U M L diagram for java x dot servlet dot h t t p dot h t t p session.]
Figure 37.24

HttpSession establishes a persistent session between a client with multiple requests and the server.

Description

Note

HTTP is stateless. So how does the server associate a session with multiple requests from the same client? This is handled behind the scenes by the servlet container and is transparent to the servlet programmer.

To demonstrate using HttpSession, let us rewrite Listing 37.9, Registration.java, and Listing 37.10, RegistrationWithCookie.java. Instead of using hidden values or cookies for session tracking, it uses servlet HttpSession.

Create the servlet named RegistrationWithHttpSession in Listing 37.11. Create an HTML file named RegistrationWithHttpSession.html that is identical to Regis­tration.html except that the action is replaced by RegistrationWithHttpSession.

Listing 37.11 RegistrationWithHttpSession.java

 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class RegistrationWithHttpSession extends HttpServlet {
 9 // Use a prepared statement to store a student into the database
 10 private PreparedStatement pstmt;
 11
 12 /** Initialize variables */
 13 public void init() throws ServletException {
 14 initializeJdbc();
 15 }
 16
 17 /** Process the HTTP Get request */
 18 public void doGet(HttpServletRequest request, HttpServletResponse
 19 response) throws ServletException, IOException {
 20 // Set response type and output stream to the browser
 21 response.setContentType("text/html");
 22 PrintWriter out = response.getWriter();
 23
 24 // Obtain data from the form
 25 String lastName = request.getParameter("lastName");
 26 String firstName = request.getParameter("firstName");
 27 String mi = request.getParameter("mi");
 28 String telephone = request.getParameter("telephone");
 29 String email = request.getParameter("email");
 30 String street = request.getParameter("street");
 31 String city = request.getParameter("city");
 32 String state = request.getParameter("state");
 33 String zip = request.getParameter("zip");
 34
 35 if (lastName.length() == 0 || firstName.length() == 0) {
 36 out.println("Last Name and First Name are required");
 37 }
 38 else {
 39 // Create an Address object
 40 Address address = new Address();
 41 address.setLastName(lastName);
 42 address.setFirstName(firstName);
 43 address.setMi(mi);
 44 address.setTelephone(telephone);
 45 address.setEmail(email);
 46 address.setStreet(street);
 47 address.setCity(city);
 48 address.setState(state);
 49 address.setZip(zip);
 50
 51 // Get an HttpSession or create one if it does not exist
 52 HttpSession httpSession = request.getSession();
 53
 54 // Store student object to the session
 55 httpSession.setAttribute("address", address);
 56
 57 // Ask for confirmation
 58 out.println("You entered the following data");
 59 out.println("<p>Last name: " + lastName);
 60 out.println("<p>First name: " + firstName);
 61 out.println("<p>MI: " + mi);
 62 out.println("<p>Telephone: " + telephone);
 63 out.println("<p>Email: " + email);
 64 out.println("<p>Address: " + street);
 65 out.println("<p>City: " + city);
 66 out.println("<p>State: " + state);
 67 out.println("<p>Zip: " + zip);
 68
 69 // Set the action for processing the answers
 70 out.println("<p><form method=\"post\" action=" +
 71 "RegistrationWithHttpSession>");
 72 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 73 out.println("</form>");
 74 }
 75
 76 out.close(); // Close stream
 77 }
 78
 79 /** Process the HTTP Post request */
 80 public void doPost(HttpServletRequest request, HttpServletResponse
 81 response) throws ServletException, IOException {
 82 // Set response type and output stream to the browser
 83 response.setContentType("text/html");
 84 PrintWriter out = response.getWriter();
 85
 86 // Obtain the HttpSession
 87 HttpSession httpSession = request.getSession();
 88
 89 // Get the Address object in the HttpSession
 90 Address address = (Address)(httpSession.getAttribute("address"));
 91
 92 try {
 93 storeStudent(address);
 94
 95 out.println(address.getFirstName() + " " + address.getLastName()
 96 + " is now registered in the database");
 97 out.close(); // Close stream
 98 }
 99 catch(Exception ex) {
100 out.println("Error: " + ex.getMessage());
101 }
102 }
103
104 /** Initialize database connection */
105 private void initializeJdbc() {
106 try {
107 // Load the JDBC driver
108 Class.forName("com.mysql.jdbc.Driver");
109 System.out.println("Driver loaded");
110
111 // Establish a connection
112 Connection conn = DriverManager.getConnection
113 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
114 System.out.println("Database connected");
115
116 // Create a Statement
117 pstmt = conn.prepareStatement("insert into Address " +
118 "(lastName, firstName, mi, telephone, email, street, city, "
119 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
120 }
121 catch (Exception ex) {
122 System.out.println(ex);
123 }
124 }
125
126 /** Store an address to the database */
127 private void storeStudent(Address address) throws SQLException {
128 pstmt.setString(1, address.getLastName());
129 pstmt.setString(2, address.getFirstName());
130 pstmt.setString(3, address.getMi());
131 pstmt.setString(4, address.getTelephone());
132 pstmt.setString(5, address.getEmail());
133 pstmt.setString(6, address.getStreet());
134 pstmt.setString(7, address.getCity());
135 pstmt.setString(8, address.getState());
136 pstmt.setString(9, address.getZip());
137 pstmt.executeUpdate();
138 }
139 }

The statement (line 52)

HttpSession httpSession = request.getSession();

obtains a session, or creates a new session if the session does not exist.

Since objects can be stored in HttpSession, this program defines an Address class. An Address object is created and is stored in the session using the setAttribute method, which binds the object with a name like the one shown below (line 55):

httpSession.setAttribute("address", address);

To retrieve the object, use the following statement (line 90):

Address address = (Address)(httpSession.getAttribute("address"));

There is only one session between a client and a servlet. You can store any number of objects in a session. By default, the maximum inactive interval on many Web servers including Tomcat and GlassFish is 1800 seconds (i.e., a half-hour), meaning that the session expires if there is no activity for 30 minutes. You can change the default using the setMaxInactive­Interval method. For example, to set the maximum inactive interval to one hour, use

httpSession.setMaxInactiveInterval(3600);

If you set a negative value, the session will never expire.

For this servlet program to work, you have to create the Address class in NetBeans, as follows:

	Choose New, Java Class from the context menu of the liangweb node in the project pane to display the New Java Class dialog box.

	Enter Address as the Class Name and chapter37 as the package name. Click Finish to create the class.

	Enter the code, as shown in Listing 37.12.

Listing 37.12 Address.java

 1 package chapter37;
 2
 3 public class Address {
 4 private String firstName;
 5 private String mi;
 6 private String lastName;
 7 private String telephone;
 8 private String street;
 9 private String city;
10 private String state;
11 private String email;
12 private String zip;
13
14 public String getFirstName() {
15 return this.firstName;
16 }
17
18 public void setFirstName(String firstName) {
19 this.firstName = firstName;
20 }
21
22 public String getMi() {
23 return this.mi;
24 }
25
26 public void setMi(String mi) {
27 this.mi = mi;
28 }
29
30 public String getLastName() {
31 return this.lastName;
32 }
33
34 public void setLastName(String lastName) {
35 this.lastName = lastName;
36 }
37
38 public String getTelephone() {
39 return this.telephone;
40 }
41
42 public void setTelephone(String telephone) {
43 this.telephone = telephone;
44 }
45
46 public String getEmail() {
47 return this.email;
48 }
49
50 public void setEmail(String email) {
51 this.email = email;
52 }
53
54 public String getStreet() {
55 return this.street;
56 }
57
58 public void setStreet(String street) {
59 this.street = street;
60 }
61
62 public String getCity() {
63 return this.city;
64 }
65
66 public void setCity(String city) {
67 this.city = city;
68 }
69
70 public String getState() {
71 return this.state;
72 }
73
74 public void setState(String state) {
75 this.state = state;
76 }
77
78 public String getZip() {
79 return this.zip;
80 }
81
82 public void setZip(String zip) {
83 this.zip = zip;
84 }
85 }

This support class will also be reused in the upcoming chapters.

[image:]

	37.8.1 What is session tracking? What are three techniques for session tracking?

	37.8.2 How do you create a cookie, send a cookie to a browser, get cookies from a browser, get the name of a cookie, set a new value in the cookie, and set cookie expiration time?

	37.8.3 Do you have to create five Cookie objects in the servlet in order to send five cookies to the browser?

	37.8.4 How do you get a session, set object value for the session, and get object value from the session?

	37.8.5 Suppose you inserted the following code in line 53 in Listing 37.11 :

httpSession.setMaxInactiveInterval(1);

What would happen after the user clicked the Confirm button from the browser? Test your answer by running the program.

	37.8.6 Suppose you inserted the following code in line 53 in Listing 37.11 :

httpSession.setMaxInactiveInterval(-1);

What would happen after the user clicked the Confirm button from the browser?

Key Terms

	Common Gateway Interface 37-3

	CGI programs 37-3

	cookie 37-30

	GET and POST methods 37-3

	GlassFish 37-5

	HTML form 37-15

	URL query string 37-3

	servlet 37-2

	servlet container (servlet engine) 37-4

	servelt life-cycle methods 37-10

	Tomcat 37-5

Chapter Summary

	A servlet is a special kind of program that runs from a Web server. Tomcat and GlassFish are Web servers that can run servlets.

	A servlet URL is specified by the host name, port, and request string (e.g., http://localhost:8084/liangweb/ServletClass). There are several ways to invoke a servlet: (1) by typing a servlet URL from a Web browser, (2) by placing a hyper link in an HTML page, and (3) by embedding a servlet URL in an HTML form. All the requests trigger the GET method, except that in the HTML form you can explicitly specify the POST method.

	You develop a servlet by defining a class that extends the HttpServlet class, implements the doGet(HttpServletRequest, HttpServletResponse) method to respond to the GET method, and implements the doPost(HttpServletRequest, HttpServletResponse) method to respond to the POST method.

	The request information passed from a client to the servlet is contained in an object of HttpServletRequest. You can use the methods getParameter, getParameterValues, getRemoteAddr, getRemoteHost, getHeader, getQueryString, ­getCookies, and getSession to obtain the information from the request.

	The content sent back to the client is contained in an object of HttpServletResponse. To send content to the client, first set the type of the content (e.g., html/plain) using the setContentType(contentType) method, then output the content through an I/O stream on the HttpServletResponse object. You can obtain a character PrintWriter stream using the getWriter() method and obtain a binary OutputStream using the getOutputStream() method.

	A servlet may be shared by many clients. When the servlet is first created, its init method is called. It is not called again as long as the servlet is not destroyed. The service method is invoked each time the server receives a request for the servlet. The server spawns a new thread and invokes service. The destroy method is invoked after a timeout period has passed or the Web server is stopped.

	There are three ways to track a session. You can track a session by passing data from the servlet to the client as a hidden value in a dynamically generated HTML form by including a field such as <input type="hidden" name="lastName" value="Smith">. The next request will submit the data back to the servlet. The servlet retrieves this hidden value just like any other parameter value using the getParameter method.

	You can track sessions using cookies. A cookie is created using the constructor new Cookie(String name, String value). Cookies are sent from the server through the object of HttpServletResponse using the addCookie(aCookie) method to tell the browser to add a cookie with a given name and its associated value. If the browser already has a cookie with the key name, the value will be updated. The browser will then send the cookie with any request submitted to the same server. Cookies can have expiration dates set, after which they will not be sent to the server.

	Java servlet API provides a session-tracking tool that enables tracking of a large set of data. A session can be obtained using the getSession() method through an ­HttpServletRequest object. The data can be stored as objects and are secure because they are kept on the server side using the setAttribute(String name, Object value) method.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

[image:]Programming Exercises

Section 37.5

	*37.1 (Factorial table) Write a servlet to display a table that contains factorials for the numbers from 0 to 10, as shown in Figure 37.25 .

[image:]Figure 37.25

(a) The servlet displays factorials for the numbers from 0 to 10 in a table. (b) The servlet displays the multiplication table.

	*37.2 (Multiplication table) Write a servlet to display a multiplication table, as shown in Figure 37.25b .

	*37.3 (Visit count) Develop a servlet that displays the number of visits on the servlet. Also display the client’s host name and IP address, as shown in Figure 37.26 .

[image: Program code. In the code, the words in the variable names are merged. Line 1: you are visitor number 2. Line 2: host name, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 1. Line 3: i p address, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 1.]Figure 37.26

The servlet displays the number of visits and the client’s host name, IP address, and request URL.

Implement this program in three different ways:

	1. Use an instance variable to store count. When the servlet is created for the first time, count is 0. count is incremented every time the servlet’s doGet method is invoked. When the Web server stops, count is lost.

	2. Store the count in a file named Exercise39_3.dat, and use RandomAccessFile to read the count in the servlet’s init method. The count is incremented every time the servlet’s doGet method is invoked. When the Web server stops, store the count back to the file.

	3. Instead of counting total visits from all clients, count the visits by each client identified by the client’s IP address. Use Map to store a pair of IP addresses and visit counts. For the first visit, an entry is created in the map. For subsequent visits, the visit count is updated.

Section 37.6

	*37.4 (Calculate tax) Write an HTML form to prompt the user to enter taxable income and filing status, as shown in Figure 37.27a . Clicking the Compute Tax button invokes a servlet to compute and display the tax, as shown in Figure 37.27b . Use the ­computeTax method introduced in Listing 3.7 , ComputingTax.java, to compute tax.

[image:]Figure 37.27

The servlet computes the tax.

	*37.5 (Calculate loan) Write an HTML form that prompts the user to enter loan amount, interest rate, and number of years, as shown in Figure 37.28a . Clicking the ­Compute Loan Payment button invokes a servlet to compute and display the monthly and total loan payments, as shown in Figure 37.28b . Use the Loan class given in ­Listing 10.2, Loan.java, to compute the monthly and total payments.

[image:]Figure 37.28

The servlet computes the loan payment.

	**37.6 (Find scores from text files) Write a servlet that displays the student name and the current score, given the SSN and class ID. For each class, a text file is used to store the student name, SSN, and current score. The file is named after the class ID with .txt extension. For instance, if the class ID were csci1301, the file name would be csci1301.txt. Suppose each line consists of student name, SSN, and score. These three items are separated by the # sign. Create an HTML form that enables the user to enter the SSN and class ID, as shown in Figure 37.29a . Upon clicking the Submit button, the result is displayed, as shown in Figure 37.29b . If the SSN or the class ID does not match, report an error. Assume three courses are available: CSCI1301, CSCI1302, and CSCI3720.

[image:]Figure 37.29

The HTML form accepts the SSN and class ID from the user and sends them to the servlet to obtain the score.

Section 37.7

	**37.7 (Find scores from database tables) Rewrite the preceding servlet. Assume for each class, a table is used to store the student name, ssn, and score. The table name is the same as the class ID. For instance, if the class ID were csci1301, the table name would be csci1301.

	*37.8 (Change the password) Write a servlet that enables the user to change the password from an HTML form, as shown in Figure 37.30a . Suppose the user information is stored in a database table named Account with three columns: username, password, and name, where name is the real name of the user. The servlet performs the following tasks:

	Verify that the username and old password are in the table. If not, report the error and redisplay the HTML form.

	Verify that the new password and the confirmed password are the same. If not, report this error and redisplay the HTML form.

	If the user information is entered correctly, update the password and report the status of the update to the user, as shown in Figure 37.30b .

[image:]Figure 37.30

The user enters the username and the old password and sets a new password. The servlet reports the ­status of the update to the user.

	**37.9 (Display database tables) Write an HTML form that prompts the user to enter or select a JDBC driver, database URL, username, password, and table name, as shown in Figure 37.31a . Clicking the Submit button displays the table content, as shown in Figure 37.31b .

[image:]Figure 37.31

The user enters database information and specifies a table to display its content.

Section 37.8

	*37.10 (Store cookies) Write a servlet that stores the following cookies in a browser, and set their max age for two days.

	Cookie 1: name is “color” and value is red.

	Cookie 2: name is “radius” and value is 5.5.

	Cookie 3: name is “count” and value is 2.

	*37.11 (Retrieve cookies) Write a servlet that displays all the cookies on the client. The client types the URL of the servlet from the browser to display all the cookies stored on the browser. (see Figure 37.32 .)

[image: Program code. In the code, the words in the variable names are merged. Line 1: here are the cookies from your browser. Line 2: blank. Line 3: color, apostrophe, s value is red. Line 4: radius, apostrophe, s value is 5, period, 5. Line 5: count, apostrophe, s value is 2. Line 6: j session i d, apostrophe, s value is 4 ay 8 b 5 e c c 8 0 6 3 e 2 ay 8 ay 9 e d b f l 9 f 0 0 7.]Figure 37.32

All the cookies on the client are displayed in the browser.

Comprehensive

	***37.12 (Syntax highlighting) Create an HTML form that prompts the user to enter a Java program in a text area, as shown in Figure 37.33a . The form invokes a servlet that displays the Java source code in a syntax-highlighted HTML format, as shown in Figure 37.33b . The keywords, comments, and literals are displayed in bold navy, green, and blue, respectively.

[image: Program code. In the code, the words in the variable names are merged. Line 1: forward slash, forward slash, this application program prints welcome to java exclamation mark. Line 2: public class welcome, left brace. Line 3, indented once: public static void main, left parenthesis, string, open bracket, close bracket, ay r g s, right parenthesis, left brace. Line 4, indented twice: system, period, out, period, print l n, left parenthesis, open quotes, welcome to java exclamation mark,, close quotes, right parenthesis, semicolon. Line 5, indented once: right brace. Line 6: right brace. Line 7: forward slash, forward slash, this application program prints welcome to java exclamation mark. Line 8: public class welcome, left brace. Line 9, indented once: public static void main, left parenthesis, string, open bracket, close bracket, ay r g s, right parenthesis, left brace. Line 10, indented twice: system, period, out, print l n, left parenthesis, open quotes, welcome to java exclamation mark, close quotes, right parenthesis, semicolon. Line 11, indented once: right brace. Line 12: right brace.]Figure 37.33

The Java code in plain text in (a) is displayed in HTML with syntax highlighted in (b).

	**37.13 (Access and update a Staff table) Write a Java servlet for Exercise 33.1 , as shown in Figure 37.34 .

[image:]Figure 37.34

The webpage lets you view, insert, and update staff information.

	***37.14 (Opinion poll) Create an HTML form that prompts the user to answer a question such as “Are you a CS major?”, as shown in Figure 37.35a . When the Submit button is clicked, the servlet increases the Yes or No count in a database and displays the current Yes and No counts, as shown in Figure 37.35b .

[image:]Figure 37.35

The HTML form prompts the user to enter Yes or No for a question in (a), and the servlet updates the Yes or No counts (b).

Create a table named Poll, as follows:

create table Poll (
 question varchar(40) primary key,
 yesCount int,
 noCount int);

Insert one row into the table, as follows:

insert into Poll values ('Are you a CS major? ', 0, 0);

CHAPTER 38 Javaserver Pages

Objectives

	To create a simple JSP page (§38.2).

	To explain how a JSP page is processed (§38.3).

	To use JSP constructs to code JSP script (§38.4).

	To use predefined variables and directives in JSP (§§38.5–38.6).

	To use JavaBeans components in JSP (§38.7).

	To get and set JavaBeans properties in JSP (§38.8).

	To associate JavaBeans properties with input parameters (§38.9).

	To forward requests from one JSP page to another (§38.10).

	To develop an application for browsing database tables using JSP (§38.11).

38.1 Introduction

	JavaServer Pages are the Java scripts and code embedded in an HTML file.

Servlets can be used to generate dynamic Web content. One drawback, however, is that you have to embed HTML tags and text inside the Java source code. Using servlets, you have to modify the Java source code and recompile it if changes are made to the HTML text. If you have a lot of HTML script in a servlet, the program is difficult to read and maintain, since the HTML text is part of the Java program. JavaServer Pages (JSP) was introduced to remedy this drawback. JSP enables you to write regular HTML script in the normal way and embed Java code to produce dynamic content.

38.2 Creating a Simple JSP Page

	An IDE such an NetBeans is an effecitve tools for creating JavaServer Pages.

JSP provides an easy way to create dynamic webpages and simplify the task of building Web applications. A JavaServer page is like a regular HTML page with special tags, known as JSP tags, which enable the Web server to generate dynamic content. You can create a webpage with HTML script and enclose the Java code for generating dynamic content in the JSP tags. Here is an example of a simple JSP page:

<!-- CurrentTime.jsp -->
<html>
 <head>
 <title>
 CurrentTime
 </title>
 </head>
 <body>
 Current time is <%= new java.util.Date() %>
 </body>
</html>

The dynamic content is enclosed in the tag that begins with <%= and ends with %>. The ­current time is returned as a string by invoking the toString method of an object of the java.util.Date class.

An IDE like NetBeans can greatly simplify the task of developing JSP. To create JSP in ­NetBeans, first you need to create a Web project. A Web project named liangweb was created in the preceding chapter. For convenience, this chapter will create JSP in the liangweb project.

Here are the steps to create and run CurrentTime.jsp:

	Right-click the liangweb node in the project pane and choose New, JSP dialog box, as shown in Figure 38.1.

 Figure 38.1

You can create a JSP page using NetBeans.

	Enter CurrentTime in the JSP File Name field and click Finish. You will see CurrentTime.jsp appearing under the webpages node in liangweb.

	Complete the code for CurrentTime.jsp, as shown in Figure 38.2.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: ‹ exclamation mark, minus, minus, current time, period, j s p minus, minus, ›. Line 2: ‹ h t m l ›.– Line 3, indented once: ‹ head ›. Line 4, indented twice: ‹ title ›. Line 5, indented 3 times: current time. Line 6, indented twice: ‹, forward slash, title›. Line 7, indented once: ‹, forward slash, head›. Line 8, indented once: ‹ body ›. Line 9, indented twice: current time is ‹ % = new java, period, u t i l, period, date, left parenthesis, right parenthesis, % ›. Line 10, indented once: ‹, forward slash, body ›. Line 11: ‹, forward slash, html ›.]Figure 38.2

A template for a JSP page is created.

	Right-click CurrentTime.jsp in the project pane and choose Run File. You will see the JSP page displayed in a Web browser, as shown in Figure 38.3.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: current time is sat jun 11 09, colon, 50, colon, 28 e d t 2011.]Figure 38.3

The result from a JSP page is displayed in a Web browser.

 Note

Like servlets, you can develop JSP in NetBeans, create a .war file, and then deploy the .war file in a Java Web server such as Tomcat and GlassFish.

38.3 How Is a JSP Page Processed?

	JavaServer Pages are preprocessed and compiled into Java servlets by a Java Web server.

A JSP page must first be processed by a Web server before it can be displayed in a Web browser. The Web server must support JSP, and the JSP page must be stored in a file with a .jsp extension. The Web server translates the .jsp file into a Java servlet, compiles the servlet, and executes it. The result of the execution is sent to the browser for display. Figure 38.4 shows how a JSP page is processed by a Web server.

 Figure 38.4

A JSP page is translated into a servlet.

 Note

A JSP page is translated into a servlet when the page is requested for the first time. It is not retranslated if the page is not modified. To ensure that the first-time real user does not encounter a delay, JSP developers should test the page after it is installed.

	38.2.1	What is the file-name extension of a JavaServer page? How is a JSP page processed?

	38.2.2	Can you create a .war that contains JSP in NetBeans? Where should the .war be placed in a Java application server?

	38.2.3	You can display an HTML file (e.g., c:\test.html) by typing the complete file name in the Address field of Internet Explorer. Why can’t you display a JSP file by simply typing the file name?

38.4 JSP Scripting Constructs

	There are three main types of JSP constructs: scripting constructs, directives, and actions.

Scripting elements enable you to specify Java code that will become part of the resultant ­servlet. Directives enable you to control the overall structure of the resultant servlet. Actions enable you to control the behavior of the JSP engine. This section introduces scripting constructs.

Three types of JSP scripting constructs can be used to insert Java code into a resultant servlet: expressions, scriptlets, and declarations.

A JSP expression is used to insert a Java expression directly into the output. It has the following form:

<%= Java expression %>

The expression is evaluated, converted into a string, and sent to the output stream of the servlet.

A JSP scriptlet enables you to insert a Java statement into the servlet’s jspService method, which is invoked by the service method. A JSP scriptlet has the following form:

<% Java statement %>

A JSP declaration is for declaring methods or fields into the servlet. It has the following form:

<%! Java declaration %>

HTML comments have the following form:

<!-- HTML Comment -->

If you don’t want the comment to appear in the resultant HTML file, use the following comment in JSP:

<%-- JSP Comment --%>

Listing 38.1 creates a JavaServer page that displays factorials for numbers from 0 to 10, as shown in Figure 38.5.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: Factorial of 0 is 1. Line 2: Factorial of 1 is 1. Line 3: Factorial of 2 is 2. Line 4: Factorial of 3 is 6. Line 5: Factorial of 4 is 24. Line 6: Factorial of 5 is 120. Line 7: Factorial of 6 is 720. Line 8: Factorial of 7 is 5040. Line 9: Factorial of 8 is 40320. Line 10: Factorial of 9 is 362880. Line 11: Factorial of 10 is 3628800.]Figure 38.5

The JSP page displays factorials.

Listing 38.1 Factorial.jsp

 1 <html>
 2 <head>
 3 <title>
 4 Factorial
 5 </title>
 6 </head>
 7 <body>
 8
 9 <% for (int i = 0; i <= 10; i++) { %>
10 Factorial of <%= i %> is
11 <%= computeFactorial(i) %>

12 <% } %>
13
14 <%! private long computeFactorial(int n) {
15 if (n == 0)
16 return 1;
17 else
18 return n * computeFactorial(n − 1);
19 }
20 %>
21
22 </body>
23 </html>

JSP scriptlets are enclosed between <% and %>. Thus,

for (int i = 0; i <= 10; i++) {, (line 9)

is a scriptlet and as such is inserted directly into the servlet’s jspService method.

JSP expressions are enclosed between <%= and %>. Thus,

<%= i %>, (line 10)

is an expression and is inserted into the output stream of the servlet.

JSP declarations are enclosed between <%! and %>. Thus,

<%! private long computeFactorial(int n) {
 ...
 }
 %>

is a declaration that defines methods or fields in the servlet.

What will be different if line 9 is replaced by the two alternatives shown below? Both work fine, but there is an important difference. In (a), i is a local variable in the servlet, whereas in (b), i is an instance variable when translated to the servlet.

<% int i = 0; %>
<% for (; i <= 10; i++) { %>

(a)

<%! int i; %>
<% for (i = 0; i <= 10; i++) { %>

(b)

 Caution

For JSP, the loop body, even though it contains a single statement, must be placed inside braces. It would be wrong to delete the opening brace ({) in line 9 and the closing brace (<% } %>) in line 12.

 Caution

There is no semicolon at the end of a JSP expression. For example, <%= i; %> is incorrect. But there must be a semicolon for each Java statement in a JSP scriptlet. For example, <% int i = 0 %> is incorrect.

 Caution

JSP and Java elements are case sensitive, but HTML is not.

	38.4.1	What are a JSP expression, a JSP scriptlet, and a JSP declaration? How do you write these constructs in JSP?

	38.4.2	Find three syntax errors in the following JSP code:

<%! int k %>
<% for (int j = 1; j <= 9; j++) %>
 <%= j; %>

	38.4.3	In the following JSP, which variables are instance variables, and which are local variables when it is translated into in the servlet?

<%! int k; %>
<%! int i; %>
<% for (int j = 1; j <= 9; j++) k += 1;%>
<%= k>
 <%= i>
 <%= getTime()>

<% private long getTime() {
 long time = System.currentTimeMillis();
 return time;
 } %>

38.5 Predefined Variables

	JSP provides predefined variables that can be conviniently used in the JSP code.

You can use variables in JSP. For convenience, JSP provides eight predefined variables from the servlet environment that can be used with JSP expressions and scriptlets. These variables are also known as JSP implicit objects.

	request represents the client’s request, which is an instance of HttpServlet­Request. You can use it to access request parameters and HTTP headers, such as cookies and host name.

	response represents the servlet’s response, which is an instance of HttpServlet­Response. You can use it to set response type and send output to the client.

	out represents the character output stream, which is an instance of PrintWriter obtained from response.getWriter(). You can use it to send character content to the client.

	session represents the HttpSession object associated with the request, obtained from request.getSession().

	application represents the ServletContext object for storing persistent data for all clients. The difference between session and application is that session is tied to one client, but application is for all clients to share persistent data.

	config represents the ServletConfig object for the page.

	pageContext represents the PageContext object. PageContext is a new class introduced in JSP to give a central point of access to many page attributes.

	page is an alternative to this.

As an example, let us write an HTML page that prompts the user to enter loan amount, annual interest rate, and number of years, as shown in Figure 38.6a. Clicking the Compute Loan ­Payment button invokes a JSP to compute and display the monthly and total loan payments, as shown in Figure 38.6b.

 Figure 38.6

The JSP computes the loan payments.

The HTML file is named ComputeLoan.html (Listing 38.2). The JSP file is named ­ComputeLoan.jsp (Listing 38.3).

Listing 38.2 ComputeLoan.html

 1 <!-- ComputeLoan.html -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan</title>
 5 </head>
 6 <body>
 7 <form method = "get" action = "ComputeLoan.jsp">
 8 Compute Loan Payment

 9 Loan Amount
10 <input type = "text" name = "loanAmount" />

11 Annual Interest Rate
12 <input type = "text" name = "annualInterestRate" />

13 Number of Years
14 <input type = "text" name = "numberOfYears" size = "3" />

15 <p><input type = "submit" name = "Submit"
16 value = "Compute Loan Payment" />
17 <input type = "reset" value = "Reset" /></p>
18 </form>
19 </body>
20 </html>

Listing 38.3 ComputeLoan.jsp

 1 <!-- ComputeLoan.jsp -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan</title>
 5 </head>
 6 <body>
 7 <% double loanAmount = Double.parseDouble(
 8 request.getParameter("loanAmount"));
 9 double annualInterestRate = Double.parseDouble(
10 request.getParameter("annualInterestRate"));
11 double numberOfYears = Integer.parseInt(
12 request.getParameter("numberOfYears"));
13 double monthlyInterestRate = annualInterestRate / 1200;
14 double monthlyPayment = loanAmount * monthlyInterestRate /
15 (1 − 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));
16 double totalPayment = monthlyPayment * numberOfYears * 12; %>
17 Loan Amount: <%= loanAmount >%

18 Annual Interest Rate: <%= annualInterestRate %>

19 Number of Years: <%= numberOfYears %>

20 Monthly Payment: <%= monthlyPayment %>

21 Total Payment: <%= totalPayment %>

22 </body>
23 </html>

ComputeLoan.html is displayed first to prompt the user to enter the loan amount, annual interest rate, and number of years. Since this file does not contain any JSP elements, it is named with an .html extension as a regular HTML file.

ComputeLoan.jsp is invoked upon clicking the Compute Loan Payment button in the HTML form. The JSP page obtains the parameter values using the predefined variable request in lines 7–12 and computes monthly payment and total payment in lines 13–16. The formula for computing monthly payment is given in Listing 2.9, ComputeLoan.java.

What is wrong if the JSP scriptlet <% in line 7 is replaced by the JSP declaration <%!? The predefined variables (e.g., request, response, and out) correspond to local variables defined in the servlet methods doGet and doPost. They must appear in JSP scriptlets, not in JSP declarations.

 Tip

ComputeLoan.jsp can also be invoked using the following query string: http://localhost:8084/liangweb/ComputeLoan.jsp?loanAmount=10000&annualInterestRate=6&numberOfYears=15.

	38.5.1	Describe the predefined variables in JSP.

	38.5.2	What is wrong if the JSP scriptlet <% in line 7 in ComputeLoan.jsp (Listing 38.3) is replaced by JSP declaration <%!?

	38.5.3	Can you use predefined variables (e.g., request, response, and out) in JSP declarations?

38.6 JSP Directives

	You can use JSP directives to instruct JSP engine on how to process the JSP code.

A JSP directive is a statement that gives the JSP engine information about the JSP page. For example, if your JSP page uses a Java class from a package other than the java.lang package, you have to use a directive to import this package. The general syntax for a JSP directive is shown below:

<%@ directive attribute = "value" %>, or
<%@ directive attribute1 = "value1"
 attribute2 = "value2"
 ...
 attributen = "valuen" %>

The possible directives are:

	page lets you provide information for the page, such as importing classes and setting up content type. The page directive can appear anywhere in the JSP file.

	include lets you insert a file into the servlet when the page is translated to a servlet. The include directive must be placed where you want the file to be inserted.

	taglib lets you define custom tags.

The following are useful attributes for the page directive:

	import specifies one or more packages to be imported for this page. For example, the directive <%@ page import="java.util.*, java.text.*" %> imports java.util.* and java.text.*.

	contentType specifies the content type for the resultant JSP page. By default, the content type is text/html for JSP. The default content type for servlets is text/plain.

	session specifies a boolean value to indicate whether the page is part of the ­session. By default, session is true.

	buffer specifies the output stream buffer size. By default, it is 8KB. For example, the directive <%@ page buffer="10KB" %> specifies that the output buffer size is 10KB. The directive <%@ page buffer="none" %> specifies that a buffer is not used.

	autoFlush specifies a boolean value to indicate whether the output buffer should be automatically flushed when it is full or whether an exception should be raised when the buffer overflows. By default, this attribute is true. In this case, the buffer attribute cannot be none.

	isThreadSafe specifies a boolean value to indicate whether the page can be accessed simultaneously without data corruption. By default, it is true. If it is set to false, the JSP page will be translated to a servlet that implements the SingleThreadModel interface.

	errorPage specifies a JSP page that is processed when an exception occurs in the current page. For example, the directive <%@ page errorPage="HandleError.jsp" %> specifies that HandleError.jsp is processed when an exception occurs.

	isErrorPage specifies a boolean value to indicate whether the page can be used as an error page. By default, this attribute is false.

Listing 38.4 gives an example that shows how to use the page directive to import a class. The example uses the Loan class created in Listing 10.2, Loan.java, to simplify Listing 38.3, ­ComputeLoan.jsp. You can create an object of the Loan class and use its monthly­Payment() and totalPayment() methods to compute the monthly payment and total payment.

Listing 38.4 ComputeLoan1.jsp

 1 <!-- ComputeLoan1.jsp -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan Using the Loan Class</title>
 5 </head>
 6 <body>
 7 <%@ page import = "chapter38.Loan" %>
 8 <% double loanAmount = Double.parseDouble(
 9 request.getParameter("loanAmount"));
10 double annualInterestRate = Double.parseDouble(
11 request.getParameter("annualInterestRate"));
12 int numberOfYears = Integer.parseInt(
13 request.getParameter("numberOfYears"));
14 Loan loan =
15 new Loan(annualInterestRate, numberOfYears, loanAmount);
16 %>
17 Loan Amount: <%= loanAmount %>

18 Annual Interest Rate: <%= annualInterestRate %>

19 Number of Years: <%= numberOfYears %>

20 Monthly Payment: <%= loan.getMonthlyPayment() %>

21 Total Payment: <%= loan.getTotalPayment() %>

22 </body>
23 </html>

This JSP uses the Loan class. You need to create the class in the liangweb project in package chapter38 as follows:

package chapter38;
public class Loan {
 // Same as lines 2–71 in Listing 10.2, Loan.java, so omitted

The directive <%@ page import ="chapter38.Loan" %> imports the Loan class in line 7. Line 14 creates an object of Loan for the given loan amount, annual interest rate, and number of years. Lines 20–21 invoke the Loan object's monthlyPayment() and total­Payment() methods to display monthly payment and total payment.

	38.6.1	Describe the JSP directives and attributes for the page directive.

	38.6.2	If a class does not have a package statement, can you import it?

	38.6.3	If you use a custom class from a JSP, where should the class be placed?

38.7 Using JavaBeans in JSP

	You can use JavaBeans to create objects for sharing among different JSP pages.

Normally you create an instance of a class in a program and use it in that program. This method is for sharing the class, not the object. JSP allows you to share the object of a class among different pages. To enable an object to be shared, its class must be a JavaBeans component. Recall that this entails the following three features:

	The class is public.

	The class has a public constructor with no arguments.

	The class is serializable. (This requirement is not necessary in JSP.)

To create an instance for a JavaBeans component, use the following syntax:

<jsp:useBean id = "objectName" scope = "scopeAttribute"
class = "ClassName" />

This syntax is roughly equivalent to

<% ClassName objectName = new ClassName() %>

except that the scope attribute is missing. The scope attribute specifies the scope of the object, and the object is not recreated if it is already within the scope. Listed below are four possible values for the scope attribute:

	application specifies that the object is bound to the application. The object can be shared by all sessions of the application.

	session specifies that the object is bound to the client’s session. Recall that a client’s session is automatically created between a Web browser and a Web server. When a client from the same browser accesses two servlets or two JSP pages on the same server, the session is the same.

	page is the default scope, which specifies that the object is bound to the page.

	request specifies that the object is bound to the client’s request.

When <jsp:useBean id="objectName" scope="scopeAttribute" class="ClassName" /> is processed, the JSP engine first searches for an object of the class with the same id and scope. If found, the preexisting bean is used; otherwise, a new bean is created.

Here is another syntax for creating a bean:

<jsp:useBean id = "objectName" scope = "scopeAttribute"
 class = "ClassName" >
 statements
</jsp:useBean>

The statements are executed when the bean is created. If a bean with the same ID and class name already exists in the scope, the statements are not executed.

Listing 38.5 creates a JavaBeans component named Count and uses it to count the number of visits to a JSP page, as shown in Figure 38.7.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: testing bean scope in j s p, left parenthesis, application, right parenthesis. Line 2: blank. Line 3: you are visitor number 3. Line 4: from host, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, l and session, colon. Line 5: ay 8 9 d q 7 b l f ay 6 5 0 3 5 9 f o 5 3 2 f 2 7 7 1 5 0 9 ay 7 1 9. Line 6: testing bean scope in j s p, left parenthesis, application, right parenthesis. Line 7: blank. Line 8: you are, colon, visitor number 4. Line 9: from host, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 1 and session, colon. Line 10: ay 8 9 d 9 7 b I f ay 6 5 0 3 5 9 f o e 3 2 f 2 7 7 e 0 9 ay 7 1 9.]Figure 38.7

The number of visits to the page is increased when the page is visited.

Listing 38.5 Count.java

 1 package chapter38;
 2
 3 public class Count {
 4 private int count = 0;
 5
 6 /** Return count property */
 7 public int getCount() {
 8 return count;
 9 }
10
11 /** Increase count */
12 public void increaseCount() {
13 count++;
14 }
15 }

The JSP page named TestBeanScope.jsp is created in Listing 38.6.

Listing 38.6 TestBeanScope.jsp

 1 <-- TestBeanScope.jsp -->
 2 <%@ page import = "chapter38.Count" %>
 3 <jsp:useBean id = "count" scope = "application"
 4 class = "chapter38.Count">
 5 </jsp:useBean>
 6 <html>
 7 <head>
 8 <title>TestBeanScope</title>
 9 </head>
10 <body>
11 <h3>Testing Bean Scope in JSP (Application)</h3>
12 <% count.increaseCount(); %>
13 You are visitor number <%= count.getCount() %>

14 From host: <%= request.getRemoteHost() %>
15 and session: <%= session.getId() %>
16 </body>
17 </html>

The scope attribute specifies the scope of the bean. scope="application" (line 3) specifies that the bean is alive in the JSP engine and available for all clients to access. The bean can be shared by any client with the directive <jsp:useBean id="count" scope="application" class="Count"> (lines 3–4). Every client accessing TestBeanScope.jsp causes the count to increase by 1. The first client causes count object to be created, and subsequent access to TestBeanScope uses the same object.

If scope="application" is changed to scope="session", the scope of the bean is ­limited to the session from the same browser. The count will increase only if the page is requested from the same browser. If scope="application" is changed to scope="page", the scope of the bean is limited to the page, and any other page cannot access this bean. The page will always display count 1. If scope="application" is changed to scope="request", the scope of the bean is limited to the client’s request, and any other request on the page will always display count 1.

If the page is destroyed, the count restarts from 0. You can fix the problem by storing the count in a random access file or in a database table. Assume you store the count in the Count table in a database. The Count class can be modified in Listing 38.7.

Listing 38.7 Count.java (Revised Version)

 1 package chapter38;
 2
 3 import java.sql.*;
 4
 5 public class Count {
 6 private int count = 0;
 7 private Statement statement = null;
 8
 9 public Count() {
10 initializeJdbc();
11 }
12
13 /** Return count property */
14 public int getCount() {
15 try {
16 ResultSet rset = statement.executeQuery
17 ("select countValue from Count");
18 rset.next();
19 count = rset.getInt(1);
20 }
21 catch (Exception ex) {
22 ex.printStackTrace();
23 }
24
25 return count;
26 }
27
28 /** Increase count */
29 public void increaseCount() {
30 count++;
31 try {
32 statement.executeUpdate(
33 "update Count set countValue = " + count);
34 }
35 catch (Exception ex) {
36 ex.printStackTrace();
37 }
38 }
39
40 /** Initialize database connection */
41 public void initializeJdbc() {
42 try {
43 Class.forName("com.mysql.jdbc.Driver");
44
45 // Connect to the sample database
46 Connection connection = DriverManager.getConnection
47 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
48
49 statement = connection.createStatement();
50 }
51 catch (Exception ex) {
52 ex.printStackTrace();
53 }
54 }
55 }

	38.7.1	You can create an object in a JSP scriptlet. What is the difference between an object created using the new operator and a bean created using the <jsp:useBean ... > tag?

	38.7.2	What is the scope attribute for? Describe four scope attributes.

	38.7.3	Describe how a <jsp:useBean ... > statement is processed by the JSP engine.

38.8 Getting and Setting Properties

	JSP provides convenient syntax for getting and setting JavaBeans properties.

By convention, a JavaBeans component provides the get and set methods for reading and modifying its private properties. You can get the property in JSP using the syntax shown below:

<jsp:getProperty name = "beanId" property = "sample" />

This is roughly equivalent to

<%= beanId.getSample() %>

You can set the property in JSP using the following syntax:

<jsp:setProperty name = "beanId"
 property = "sample" value = "test1" />

This is equivalent to

<% beanId.setSample("test1"); %>

38.9 Associating Properties with Input Parameters

Often properties are associated with input parameters. Suppose you want to get the value of the input parameter named score and set it to the JavaBeans property named score. You could write the following code:

<% double score = Double.parseDouble(
 request.getParameter("score")); %>
<jsp:setProperty name = "beanId" property = "score"
 value = "<%= score %>" />

This is cumbersome. JSP provides a convenient syntax that can be used to simplify it:

<jsp:setProperty name = "beanId" property = "score"
 param = "score" />

Instead of using the value attribute, you use the param attribute to name an input parameter. The value of this parameter is set to the property.

 Note

Simple type conversion is performed automatically when a bean property is associated with an input parameter. A string input parameter is converted to an appropriate primitive data type or a wrapper class for a primitive type. For example, if the bean property is of the int type, the value of the parameter will be converted to the int type. If the bean property is of the Integer type, the value of the parameter will be converted to the Integer type.

Often the bean property and the parameter have the same name. You can use the following convenient statement to associate all the bean properties in beanId with the parameters that match the property names:

<jsp:setProperty name = "beanId" property = "*" />

38.9.1 Example: Computing Loan Payments Using JavaBeans

This example uses JavaBeans to simplify Listing 38.4, ComputeLoan1.jsp, by associating the bean properties with the input parameters. The new ComputeLoan2.jsp is given in ­Listing 38.8.

Listing 38.8 ComputeLoan2.jsp

 1 <!-- ComputeLoan2.jsp -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan Using the Loan Class</title>
 5 </head>
 6 <body>
 7 <%@ page import = "chapter38.Loan" %>
 8 <jsp:useBean id = "loan" class = "chapter38.Loan"
 9 scope = "page" ></jsp:useBean>
10 <jsp:setProperty name = "loan" property = "*" />
11 Loan Amount: <%= loan.getLoanAmount() %>

12 Annual Interest Rate: <%= loan.getAnnualInterestRate() %>

13 Number of Years: <%= loan.getNumberOfYears() %>

14 Monthly Payment: <%= loan.monthlyPayment() %>

15 Total Payment: <%= loan.totalPayment() %>

16 </body>
17 </html>

Lines 8–9

<jsp:useBean id = "loan" class = "chapter38.Loan"
 scope = "page" ></jsp:useBean>

create a bean named loan for the Loan class. Line 10

<jsp:setProperty name = "loan" property = "*" />

associates the bean properties loanAmount, annualInteresteRate, and numberOfYears with the input parameter values and performs type conversion automatically.

Lines 11–13 use the accessor methods of the loan bean to get the loan amount, annual interest rate, and number of years.

This program acts the same as in Listings 38.3 and 38.4, ComputeLoan.jsp and ­ComputeLoan1.jsp, but the coding is much, more simplified.

38.9.2 Example: Computing Factorials Using JavaBeans

This example creates a JavaBeans component named FactorialBean and uses it to compute the factorial of an input number in a JSP page named FactorialBean.jsp, as shown in Figure 38.8.

 Figure 38.8

The factorial of an input integer is computed using a method in FactorialBean.

Create a JavaBeans component named FactorialBean.java (Listing 38.9). Create ­FactorialBean.jsp (Listing 38.10).

Listing 38.9 FactorialBean.java

 1 package chapter38;
 2
 3 public class FactorialBean {
 4 private int number;
 5
 6 /** Return number property */
 7 public int getNumber() {
 8 return number;
 9 }
10
11 /** Set number property */
12 public void setNumber(int newValue) {
13 number = newValue;
14 }
15
16 /** Obtain factorial */
17 public long getFactorial() {
18 long factorial = 1;
19 for (int i = 1; i <= number; i++)
20 factorial *= i;
21 return factorial;
22 }
23 }

Listing 38.10 FactorialBean.jsp

 1 <!-- FactorialBean.jsp -->
 2 <%@ page import = "chapter38.FactorialBean" %>
 3 <jsp:useBean id = "factorialBeanId"
 4 class = "chapter38.FactorialBean" scope = "page" >
 5 </jsp:useBean>
 6 <jsp:setProperty name = "factorialBeanId" property = "*" />
 7 <html>
 8 <head>
 9 <title>
10 FactorialBean
11 </title>
12 </head>
13 <body>
14 <h3>Compute Factorial Using a Bean</h3>
15 <form method = "post">
16 Enter new value: <input name = "number" />

17 <input type = "submit" name = "Submit"
18 value = "Compute Factorial" />
19 <input type = "reset" value = "Reset" />

20 Factorial of
21 <jsp:getProperty name = "factorialBeanId"
22 property = "number" /> is
23 <%@ page import = "java.text.*" %>
24 <% NumberFormat format = NumberFormat.getNumberInstance(); %>
25 <%= format.format(factorialBeanId.getFactorial()) %>
26 </form>
27 </body>
28 </html>

The jsp:useBean tag (lines 3–4) creates a bean factorialBeanId of the FactorialBean class. Line 5 <jsp:setProperty name="factorialBeanId" property="*" /> associates all the bean properties with the input parameters that have the same name. In this case, the bean property number is associated with the input parameter number. When you click the Compute Factorial button, JSP automatically converts the input value for number from string into int and sets it to factorialBean before other statements are executed.

Lines 21–22 <jsp:getProperty name="factorialBeanId" property="number" /> tag (line 21) is equivalent to <%= factorialBeanId.getNumber() %>. The method factorialBeanId.getFactorial() (line 25) returns the factorial for the number in factorialBeanId.

 Design Guide

Mixing a lot of Java code with HTML in a JSP page makes the code difficult to read and to maintain. You should move the Java code to a .java file as much as you can.

Following the preceding design guide, you may improve the preceding example by moving the Java code in lines 23–25 to the FactorialBean class. The new FactorialBean.java and FactorialBean.jsp are given in Listings 38.11 and 38.12.

Listing 38.11 NewFactorialBean.java

 1 package chapter38;
 2
 3 import java.text.*;
 4
 5 public class NewFactorialBean {
 6 private int number;
 7
 8 /** Return number property */
 9 public int getNumber() {
10 return number;
11 }
12
13 /** Set number property */
14 public void setNumber(int newValue) {
15 number = newValue;
16 }
17
18 /** Obtain factorial */
19 public long getFactorial() {
20 long factorial = 1;
21 for (int i = 1; i <= number; i++)
22 factorial *= i;
23 return factorial;
24 }
25
26 /** Format number */
27 public static String format(long number) {
28 NumberFormat format = NumberFormat.getNumberInstance();
29 return format.format(number);
30 }
31 }

Listing 38.12 NewFactorialBean.jsp

 1 <!-- NewFactorialBean.jsp -->
 2 <%@ page import = "chapter38.NewFactorialBean" %>
 3 <jsp:useBean id = "factorialBeanId"
 4 class = "chapter38.NewFactorialBean" scope = "page" >
 5 </jsp:useBean>
 6 <jsp:setProperty name = "factorialBeanId" property = "*" />
 7 <html>
 8 <head>
 9 <title>
10 FactorialBean
11 </title>
12 </head>
13 <body>
14 <h3>Compute Factorial Using a Bean</h3>
15 <form method = "post">
16 Enter new value: <input name = "number" />

17 <input type = "submit" name = "Submit"
18 value = "Compute Factorial" />
19 <input type = "reset" value = "Reset" />

20 Factorial of
21 <jsp:getProperty name = "factorialBeanId"
22 property = "number" /> is
23 <%= NewFactorialBean.format(factorialBeanId.getFactorial()) %>
24 </form>
25 </body>
26 </html>

There is a problem in this page. The program cannot display large factorials. For example, if you entered value 21, the program would display an incorrect factorial. To fix this problem, all you need to do is to revise the NewFactorialBean class using BigInteger to computing factorials (see Exercise 38.18).

38.9.3 Example: Displaying International Time

Listing 37.5, TimeForm.java, gives a Java servlet that uses the doGet method to generate an HTML form for the user to specify a locale and time zone (see Figure 37.18a) and uses the doPost method to display the current time for the specified time zone in the specified locale ­(see Figure 37.18b). This section rewrites the servlet using JSP. You have to create two JSP pages, one for displaying the form, and the other for displaying the current time.

In the TimeForm.java servlet, arrays allLocale and allTimeZone are the data fields. The doGet and doPost methods both use the arrays. Since the available locales and time zones are used in both pages, it is better to create an object that contains all available locales and time zones. This object can be shared by both pages.

Let us create a JavaBeans component named TimeBean.java (Listing 38.13). This class obtains all the available locales in an array in line 7 and all time zones in an array in line 8. The bean properties localeIndex and timeZoneIndex (lines 9–10) are defined to refer to an element in the arrays. The currentTimeString() method (lines 42–52) returns a string for the current time with the specified locale and time zone.

Listing 38.13 TimeBean.java

 1 package chapter38;
 2
 3 import java.util.*;
 4 import java.text.*;
 5
 6 public class TimeBean {
 7 private Locale[] allLocale = Locale.getAvailableLocales();
 8 private String[] allTimeZone = TimeZone.getAvailableIDs();
 9 private int localeIndex;
10 private int timeZoneIndex;
11
12 public TimeBean() {
13 Arrays.sort(allTimeZone);
14 }
15
16 public Locale[] getAllLocale() {
17 return allLocale;
18 }
19
20 public String[] getAllTimeZone() {
21 return allTimeZone;
22 }
23
24 public int getLocaleIndex() {
25 return localeIndex;
26 }
27
28 public int getTimeZoneIndex() {
29 return timeZoneIndex;
30 }
31
32 public void setLocaleIndex(int index) {
33 localeIndex = index;
34 }
35
36 public void setTimeZoneIndex(int index) {
37 timeZoneIndex = index;
38 }
39
40 /** Return a string for the current time
41 * with the specified locale and time zone */
42 public String currentTimeString(
43 int localeIndex, int timeZoneIndex) {
44 Calendar calendar =
45 new GregorianCalendar(allLocale[localeIndex]);
46 TimeZone timeZone =
47 TimeZone.getTimeZone(allTimeZone[timeZoneIndex]);
48 DateFormat dateFormat = DateFormat.getDateTimeInstance(
49 DateFormat.FULL, DateFormat.FULL, allLocale[localeIndex]);
50 dateFormat.setTimeZone(timeZone);
51 return dateFormat.format(calendar.getTime());
52 }
53 }

Create DisplayTimeForm.jsp (Listing 38.14). This page displays a form just like the one shown in Figure 37.18a. Line 2 imports the TimeBean class. A bean is created in lines 3–5 and is used in lines 17, 19, 24, and 26 to return all locales and time zones. The scope of the bean is application (line 4), so the bean can be shared by all sessions of the application.

Listing 38.14 DisplayTimeForm.jsp

 1 <!-- DisplayTimeForm.jsp -->
 2 <%@ pageimport = "chapter38.TimeBean" %>
 3 <jsp:useBean id = "timeBeanId"
 4 class = "chapter38.TimeBean" scope = "application" >
 5 </jsp:useBean>
 6
 7 <html>
 8 <head>
 9 <title>
10 Display Time Form
11 </title>
12 </head>
13 <body>
14 <h3>Choose locale and time zone</h3>
15 <form method = "post" action = "DisplayTime.jsp">
16 Locale <select size = "1" name = "localeIndex">
17 <% for (int i = 0; i < timeBeanId.getAllLocale().length; i++) {%>
18 <option value = "<%= i %>">
19 <%= timeBeanId.getAllLocale()[i] %>
20 </option>
21 <%}%>
22 </select>

23 Time Zone <select size = "1" name = "timeZoneIndex">
24 <% for (int i = 0; i < timeBeanId.getAllTimeZone().length; i++) {%>
25 <option value = "<%= i %>">
26 <%= timeBeanId.getAllTimeZone()[i] %>
27 </option>
28 <%}%>
29 </select>

30 <input type = "submit" name = "Submit"
31 value = "Get Time" />
32 <input type = "reset" value = "Reset" />
33 </form>
34 </body>
35 </html>

Create DisplayTime.jsp (Listing 38.15). This page is invoked from DisplayTimeForm.jsp to display the time with the specified locale and time zone, just as in Figure 37.18b.

Listing 38.15 DisplayTime.jsp

 1 <!-- DisplayTime.jsp -->
 2 <%@page pageEncoding = "GB18030"%>
 3 <%@ page import = "chapter38.TimeBean" %>
 4 <jsp:useBean id = "timeBeanId"
 5 class = "chapter38.TimeBean" scope = "application" >
 6 </jsp:useBean>
 7 <jsp:setProperty name = "timeBeanId" property = "*" />
 8
 9 <html>
10 <head>
11 <title>
12 Display Time
13 </title>
14 </head>
15 <body>
16 <h3>Choose locale and time zone</h3>
17 Current time is
18 <%= timeBeanId.currentTimeString(timeBeanId.getLocaleIndex(),
19 timeBeanId.getTimeZoneIndex()) %>
20 </body>
21 <html>

Line 2 sets the character encoding for the page to GB18030 for displaying international ­characters. By default, it is UTF-8.

Line 5 imports chapter38.TimeBean and creates a bean using the same id as in the ­preceding page. Since the object is already created in the preceding page, the timeBeanId in this page (lines 4–6) and in the preceding page point to the same object.

38.9.4 Example: Registering Students

Listing 37.11, RegistrationWithHttpSession.java, gives a Java servlet that obtains student information from an HTML form (see Figure 37.21) and displays the information for user confirmation (see Figure 37.22). Once the user confirms it, the servlet stores the data into the database. This section rewrites the servlet using JSP. You will create two JSP pages, one named GetRegistrationData.jsp for displaying the data for user confirmation and the other named StoreData.jsp for storing the data into the database.

Since every session needs to connect to the same database, you should declare a class for connecting to the database and for storing a student to the database. This class named StoreData is given in Listing 38.16. The initializeJdbc method (lines 15–31) connects to the database and creates a prepared statement for storing a record to the Address table. The storeStudent method (lines 34–45) executes the prepared statement to store a student address. The Address class is created in Listing 37.12.

Listing 38.16 StoreData.java

 1 package chapter38;
 2
 3 import java.sql.*;
 4 import chapter37.Address;
 5
 6 public class StoreData {
 7 // Use a prepared statement to store a student into the database
 8 private PreparedStatement pstmt;
 9
10 public StoreData() {
11 initializeJdbc();
12 }
13
14 /** Initialize database connection */
15 private void initializeJdbc() {
16 try {
17 Class.forName("com.mysql.jdbc.Driver");
18
19 // Connect to the sample database
20 Connection connection = DriverManager.getConnection
21 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
22
23 // Create a Statement
24 pstmt = connection.prepareStatement("insert into Address " +
25 "(lastName, firstName, mi, telephone, email, street, city, " 26 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
27 }
28 catch (Exception ex) {
29 System.out.println(ex);
30 }
31 }
32
33 /** Store a student record to the database */
34 public void storeStudent(Address address) throws SQLException {
35 pstmt.setString(1, address.getLastName());
36 pstmt.setString(2, address.getFirstName());
37 pstmt.setString(3, address.getMi());
38 pstmt.setString(4, address.getTelephone());
39 pstmt.setString(5, address.getEmail());
40 pstmt.setString(6, address.getStreet());
41 pstmt.setString(7, address.getCity());
42 pstmt.setString(8, address.getState());
43 pstmt.setString(9, address.getZip());
44 pstmt.executeUpdate();
45 }
46 }

The HTML file that displays the form is identical to Registration.html in Listing 37.8 except that the action is replaced by HGetRegistrationData.jsp.

GetRegistrationData.jsp, which obtains the data from the form, is shown in ­Listing 38.17. A bean is created in lines 3–4. Line 5 obtains the property values from the form. This is a shorthand notation. Note the parameter names and the property names must be the same to use this notation.

Listing 38.17 GetRegistrationData.jsp

 1 <!-- GetRegistrationData.jsp -->
 2 <%@ page import = "chapter37.Address" %>
 3 <jsp:useBean id = "addressId"
 4 class = "chapter37.Address" scope = "session"></jsp:useBean>
 5 <jsp:setProperty name = "addressId" property = "*" />
 6
 7 <html>
 8 <body>
 9 <h1>Registration Using JSP</h1>
10
11 <%
12 if (addressId.getLastName() == null ||
13 addressId.getFirstName() == null) {
14 out.println("Last Name and First Name are required");
15 return; // End the method
16 }
17 %>
18
19 <p>You entered the following data</p>
20 <p>Last name: <%= addressId.getLastName() %></p>
21 <p>First name: <%= addressId.getFirstName() %></p>
22 <p>MI: <%= addressId.getMi() %></p>
23 <p>Telephone: <%= addressId.getTelephone() %></p>
24 <p>Email: <%= addressId.getEmail() %></p>
25 <p>Address: <%= addressId.getStreet() %></p>
26 <p>City: <%= addressId.getCity() %></p>
27 <p>State: <%= addressId.getState() %></p>
28 <p>Zip: <%= addressId.getZip() %></p>
29
30 <!-- Set the action for processing the answers -->
31 <form method = "post" action = "StoreStudent.jsp">
32 <input type = "submit" value = "Confirm">
33 </form>
34 </body>
35 </html>

GetRegistrationData.jsp invokes StoreStudent.jsp (line 31) when the user clicks the Confirm button. In Listing 38.18, the same addressId is shared with the preceding page within the scope of the same session in lines 3–4. A bean for StoreData is created in lines 5–6 with the scope of application.

Listing 38.18 StoreStudent.jsp

 1 <!-- StoreStudent.jsp -->
 2 <%@ page import = "chapter37.Address" %>
 3 <jsp:useBean id = "addressId" class = "chapter37.Address"
 4 scope = "session"></jsp:useBean>
 5 <jsp:useBean id = "storeDataId" class = "chapter38.StoreData"
 6 scope = "application"></jsp:useBean>
 7
 8 <html>
 9 <body>
10 <%
11 storeDataId.storeStudent(addressId);
12
13 out.println(addressId.getFirstName() + " " +
14 addressId.getLastName() +
15 " is now registered in the database");
16 out.close(); // Close stream
17 %>
18 </body>
19 </html>

 Note

The scope for addressId is session, but the scope for storeDataId is application. Why? GetRegistrationData.jsp obtains student information, and StoreData.jsp stores the information in the same session. So the session scope is appropriate for addressId. All the sessions access the same database and use the same prepared statement to store data. With the application scope for storeDataId, the bean for StoreData needs to be created just once.

 Note

The storeStudent method in line 11 may throw a java.sql.SQLException. In JSP, you can omit the try-block for checked exceptions. In case of an exception, JSP displays an error page.

 Tip

Using beans is an effective way to develop JSP. You should put Java code into a bean as much as you can. The bean not only simplifies JSP programming but also makes code reusable. The bean can also be used to implement persistent sessions.

38.10 Forwarding Requests from JavaServer Pages

	You can use the JSP forward tag to jump to navigate to another HTML page.

Web applications developed using JSP generally consist of many pages linked together. JSP provides a forwarding tag in the following syntax that can be used to forward a page to another page:

<jsp:forward page = "destination" />

	38.10.1	How do you associate bean properties with input parameters?

	38.10.2	How do you write a statement to forward requests to another JSP page?

38.11 Case Study: Browsing Database Tables

This section presents a very useful JSP application for browsing tables. When you start the application, the first page prompts the user to enter the JDBC driver, URL, username, and password for a database, as shown in Figure 38.9. After you log in to the database, you can select a table to browse, as shown in Figure 38.10. Clicking the Browse Table Content button displays the table content, as shown in Figure 38.11.

 Figure 38.9

To access a database, you need to provide the JDBC driver, URL, username, and password.

 Figure 38.10

You can select a table to browse from this page.

 Figure 38.11

The contents of the selected table are displayed.

Create a JavaBeans component named DBBean.java (see Listing 38.19).

Listing 38.19 DBBean.java

 1 package chapter38;
 2
 3 import java.sql.*;
 4
 5 public class DBBean {
 6 private Connection connection = null;
 7 private String username;
 8 private String password;
 9 private String driver;
10 private String url;
11
12 /** Initialize database connection */
13 public void initializeJdbc() {
14 try {
15 System.out.println("Driver is " + driver);
16 Class.forName(driver);
17
18 // Connect to the sample database
19 connection = DriverManager.getConnection(url, username,
20 password);
21 }
22 catch (Exception ex) {
23 ex.printStackTrace();
24 }
25 }
26
27 /** Get tables in the database */
28 public String[] getTables() {
29 String[] tables = null;
30
31 try {
32 DatabaseMetaData dbMetaData = connection.getMetaData();
33 ResultSet rsTables = dbMetaData.getTables(null, null, null,
34 new String[] {"TABLE"});
35
36 int size = 0;
37 while (rsTables.next()) size++;
38
39 rsTables = dbMetaData.getTables(null, null, null,
40 new String[] {"TABLE"});
41
42 tables = new String[size];
43 int i = 0;
44 while (rsTables.next())
45 tables[i++] = rsTables.getString("TABLE_NAME");
46 }
47 catch (Exception ex) {
48 ex.printStackTrace();
49 }
50
51 return tables;
52 }
53
54 /** Return connection property */
55 public Connection getConnection() {
56 return connection;
57 }
58
59 public void setUsername(String newUsername) {
60 username = newUsername;
61 }
62
63 public String getUsername() {
64 return username;
65 }
66
67 public void setPassword(String newPassword) {
68 password = newPassword;
69 }
70
71 public String getPassword() {
72 return password;
73 }
74
75 public void setDriver(String newDriver) {
76 driver = newDriver;
77 }
78
79 public String getDriver() {
80 return driver;
81 }
82
83 public void setUrl(String newUrl) {
84 url = newUrl;
85 }
86
87 public String getUrl() {
88 return url;
89 }
90 }

Create an HTML file named DBLogin.html (see Listing 38.20) that prompts the user to enter database information and three JSP files named DBLoginInitialization.jsp (see ­Listing 38.21), Table.jsp (see Listing 38.22), and BrowseTable.jsp (see Listing 38.23) to ­process and obtain database information.

Listing 38.20 DBLogin.html

 1 <!-- DBLogin.html -->
 2 <html>
 3 <head>
 4 <title>
 5 DBLogin
 6 </title>
 7 </head>
 8 <body>
 9 <form method = "post" action = "DBLoginInitialization.jsp">
10 JDBC URL
11 <select name = "url" size = "1">
12 <option>jdbc:odbc:ExampleMDBDataSource</option>
13 <option>jdbc:mysql://localhost/javabook</option>
14 <option>jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl</option>
15 </select>

16 Username <input name = "username" />

17 Password <input name = "password" />

18 <input type = "submit" name = "Submit" value = "Login" />
19 <input type = "reset" value = "Reset" />
20 </form>
21 </body>
22 </html>

Listing 38.21 DBLoginInitialization.jsp

 1 <!-- DBLoginInitialization.jsp -->
 2 <%@ page import = "chapter38.DBBean" %>
 3 <jsp:useBean id = "dBBeanId" scope = "session"
 4 class = "chapter38.DBBean">
 5 </jsp:useBean>
 6 <jsp:setProperty name = "dBBeanId" property = "*" />
 7 <html>
 8 <head>
 9 <title>DBLoginInitialization</title>
10 </head>
11 <body>
12
13 <%-- Connect to the database --%>
14 <% dBBeanId.initializeJdbc(); %>
15
16 <% if (dBBeanId.getConnection() == null) { %>
17 Error: Login failed. Try again.
18 <% }
19 else {%>
20 <jsp:forward page = "Table.jsp" />
21 <% } %>
22 </body>
23 </html>

Listing 38.22 Table.jsp

 1 <!-- Table.jsp -->
 2 <%@ page import = "chapter38.DBBean" %>
 3 <jsp:useBean id = "dBBeanId" scope = "session"
 4 class = "chapter38.DBBean">
 5 </jsp:useBean>
 6 <html>
 7 <head>
 8 <title>Table</title>
 9 </head>
10 <body>
11 <% String[] tables = dBBeanId.getTables();
12 if (tables == null) { %>
13 No tables
14 <% }
15 else { %>
16 <form method = "post" action = "BrowseTable.jsp">
17 Select a table
18 <select name = "tablename" size = "1">
19 <% for (int i = 0; i < tables.length; i++) { %>
20 <option><%= tables[i] %></option>
21 <% }
22 } %>
23 </select>

24 <input type = "submit" name = "Submit"
25 value = "Browse Table Content">
26 <input type = "reset" value = "Reset">
27 </form>
28 </body>
29 </html>

Listing 38.23 BrowseTable.jsp

 1 <!-- BrowseTable.jsp -->
 2 <%@ page import = "chapter38.DBBean" %>
 3 <jsp:useBean id = "dBBeanId" scope = "session"
 4 class = "chapter38.DBBean" >
 5 </jsp:useBean>
 6 <%@ page import = "java.sql.*" %>
 7 <html>
 8 <head>
 9 <title>BrowseTable</title>
10 </head>
11 <body>
12
13 <% String tableName = request.getParameter("tablename");
14
15 ResultSet rsColumns = dBBeanId.getConnection().getMetaData().
16 getColumns(null, null, tableName, null);
17 %>
18 <table border = "1">
19 <tr>
20 <% // Add column names to the table
21 while (rsColumns.next()) { %>
22 <td><%= rsColumns.getString("COLUMN_NAME") %></td>
23 <%}%>
24 </tr>
25
26 <% Statement statement =
27 dBBeanId.getConnection().createStatement();
28 ResultSet rs = statement.executeQuery(
29 "select * from " + tableName);
30
31 // Get column count
32 int columnCount = rs.getMetaData().getColumnCount();
33
34 // Store rows to rowData
35 while (rs.next()) {
36 out.println("<tr>");
37 for (int i = 0; i < columnCount; i++) { %>
38 <td><%= rs.getObject(i + 1) %></td>
39 <% }
40 out.println("</tr>");
41 } %>
42 </table>
43 </body>
44 </html>

You start the application from DBLogin.html. This page prompts the user to enter a JDBC driver, URL, username, and password to log in to a database. A list of accessible drivers and URLs is provided in the selection list. You must make sure that these database drivers are added into the Libraries node in the project.

When you click the Login button, DBLoginInitialization.jsp is invoked. When this page is processed for the first time, an instance of DBBean named dBBeanId is created. The input parameters driver, url, username, and password are passed to the bean properties. The initializeJdbc method loads the driver and establishes a connection to the database. If login fails, the connection property is null. In this case, an error message is displayed. If login succeeds, control is forwarded to Table.jsp.

Table.jsp shares dBBeanId with DBLoginInitialization.jsp in the same session, so it can access connection through dBBeanId and obtain tables in the database using the database metadata. The table names are displayed in a selection box in a form. When the user selects a table name and clicks the Browse Table Content button, BrowseTable.jsp is processed.

BrowseTable.jsp shares dBBeanId with Table.jsp and DBLoginInitialization.jsp in the same session. It retrieves the table contents for the selected table from Table.jsp.

JSP Scripting Constructs Syntax

	<%= Java expression %> The expression is evaluated and inserted into the page.

	<% Java statement %> Java statements inserted in the jspService method.

	<%! Java declaration %> Defines data fields and methods.

	<%-- JSP comment %> The JSP comments do not appear in the resultant HTML file.

	<%@ directive attribute="value" %> The JSP directives give the JSP engine information about the JSP page. For example, <%@ page import="java.util.*, java.text.*" %> imports java.util.* and java.text.*.

	<jsp:useBean id="objectName" scope="scopeAttribute" class="ClassName" /> Creates a bean if new. If a bean is already created, associates the id with the bean in the same scope.

	<jsp:useBean id="objectName" scope="scopeAttribute" class="ClassName" > statements </jsp:useBean> The statements are executed when the bean is created. If a bean with the same id and class name already exists, the statements are not executed.

	<jsp:getProperty name="beanId" property="sample" /> Gets the property value from the bean, which is the same as <%= beanId.getSample() %>.

	<jsp:setProperty name="beanId" property="sample" value="test1" /> Sets the property value for the bean, which is the same as <% beanId.setSample("test1"); %>.

	<jsp:setProperty name="beanId" property="score" param="score" /> Sets the property with an input parameter.

	<jsp:setProperty name="beanId" property="*" /> Associates and sets all the bean properties in beanId with the input parameters that match the property names.

	<jsp:forward page="destination" /> Forwards this page to a new page.

JSP Predefined Variables

	application represents the ServletContext object for storing persistent data for all clients.

	config represents the ServletConfig object for the page.

	out represents the character output stream, which is an instance of PrintWriter, obtained from response.getWriter().

	page is alternative to this.

	request represents the client's request, which is an instance of HttpServlet­Request in the servlet's service method.

	response represents the client's response, which is an instance of HttpServlet­Response in the servlet's service method.

	session represents the HttpSession object associated with the request, obtained from request.getSession().

Chapter Summary

	A JavaServer page is like a regular HTML page with special tags, known as JSP tags, which enable the Web server to generate dynamic content. You can create a webpage with static HTML and enclose the code for generating dynamic content in the JSP tags.

	A JSP page must be stored in a file with a .jsp extension. The Web server translates the .jsp file into a Java servlet, compiles the servlet, and executes it. The result of the execution is sent to the browser for display.

	A JSP page is translated into a servlet when the page is requested for the first time. It is not retranslated if the page is not modified. To ensure that the first-time real user does not encounter a delay, JSP developers should test the page after it is installed.

	There are three main types of JSP constructs: scripting constructs, directives, and actions. Scripting elements enable you to specify Java code that will become part of the resultant servlet. Directives enable you to control the overall structure of the resultant servlet. Actions enable you to control the behaviors of the JSP engine.

	Three types of scripting constructs can be used to insert Java code into the resultant servlet: expressions, scriptlets, and declarations.

	The scope attribute (application, session, page, and request) specifies the scope of a JavaBeans object. Application specifies that the object be bound to the application. ­Session specifies that the object be bound to the client’s session. Page is the default scope, which specifies that the object be bound to the page. Request specifies that the object be bound to the client’s request.

	Web applications developed using JSP generally consist of many pages linked together. JSP provides a forwarding tag in the following syntax that can be used to forward a page to another page: <jsp:forward page="destination" />.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

 Note

Solutions to even-numbered exercises in this chapter are in exercise\jspexercise from evennumberedexercise.zip, which can be downloaded from the Companion Website.

Section 38.4

	38.1	(Factorial table in JSP) Rewrite Exercise 37.1 using JSP.

	38.2	(Muliplication table in JSP) Rewrite Exercise 37.2 using JSP.

Section 38.5

	*38.3	(Obtain parameters in JSP) Rewrite the servlet in Listing 37.4 , GetParameters.java, using JSP. Create an HTML form that is identical to Student_Registration_Form.html in Listing 37.3 except that the action is replaced by Exercise40_3.jsp for obtaining parameter values.

Section 38.6

	38.4	(Calculate tax in JSP) Rewrite Exercise 37.4 using JSP. You need to import ­ComputeTax in the JSP.

	*38.5	(Find scores from text files) Rewrite Exercise 37.6 using servlets.

	**38.6	(Find scores from database tables) Rewrite Exercise 37.7 using servlets.

Section 38.7

	**38.7	(Change the password) Rewrite Exercise 37.8 using servlets.

Comprehensive

	*38.8		(Store cookies in JSP) Rewrite Exercise 37.10 using JSP. Use response.addCookie(Cookie) to add a cookie.

	*38.9		(Retrieve cookies in JSP) Rewrite Exercise 37.11 using JSP. Use Cookie[] ­cookies = request.getCookies() to get all cookies.

	38.10		(Draw images) Write a JSP program that displays a country's flag and description as shown in Figure 38.12 . The country code such as us is passed as a parameter in the URL. The country's flag file is named as CountryCode.gif and the description is stored in a text file named CountryCode.txt on the server. So, for the country code us, the flag file us.gif and the text file is us.txt.

 Figure 38.12

The program displays an image and the description of the image.

	***38.11	(Syntax highlighting) Rewrite Exercise 37.12 using JSP.

	**38.12		(Opinion poll) Rewrite Exercise 37.13 using JSP.

	***38.13	(Multiple-question opinion poll) The Poll table in Exercise 37.13 contains only one question. Suppose you have a Poll table that contains multiple questions. Write a JSP that reads all the questions from the table and display them in a form, as shown in Figure 38.13 a. When the user clicks the Submit button, another JSP page is invoked. This page updates the Yes or No counts for each question and displays the current Yes and No counts for each question in the Poll table, as shown in Figure 38.13b . Note that the table may contain many questions. The questions in the figure are just examples. Sort the questions in alphabetical order.

 Figure 38.13

The form prompts the user to enter Yes or No for each question in (a), and the updated Yes or No counts are displayed in (b).

	**38.14	(Addition quiz) Write a JSP program that generates addition quizzes randomly, as shown in Figure 38.14a . After the user answers all questions, the JSP displays the result, as shown in Figure 38.14b .

 Figure 38.14

The program displays addition questions in (a) and answers in (b).

	**38.15	(Subtraction quiz) Write a JSP program that generates subtraction quizzes ­randomly, as shown in Figure 38.14a . The first number must always be greater than or equal to the second number. After the user answers all questions, the JSP displays the result, as shown in Figure 38.14b .

 Figure 38.14

The program displays subtraction questions in (a) and answers in (b).

	**38.16	(Guess birthday) Listing 3.3 , GuessBirthDay.java, gives a program for guessing a birthday. Write a JSP program that displays five sets of numbers, as shown in Figure38.15 a. After the user checks the appropriate boxes and clicks the Find Date button, the program displays the date, as shown in Figure 38.15b .

 Figure 38.15

(a) The program displays five sets of numbers for the user to check the boxes. (b) The program displays the date.

	**38.17	(Guess capitals) Write a JSP that prompts the user to enter a capital for a state, as shown in Figure 38.16 a. Upon receiving the user input, the program reports whether the answer is correct, as shown in Figure 38.16b . You can click the Next button to display another question. You can use a two-dimensional array to store the states and capitals, as proposed in Exercise 9.22. Create a list from the array and apply the shuffle method to reorder the list so the questions will appear in random order.

 Figure 38.16

(a) The program displays a question. (b) The program displays the answer to the question.

	*38.18	(Large factorial) Rewrite Listing 38.11 to handle a large factorial. Use the ­BigInteger class introduced in §14.12.

	**38.19	(Access and update a Staff table) Write a JSP for Exercise 33.1 , as shown in Figure 38.17 .

 Figure 38.17

The JSP page lets you view, insert, and update staff information.

	*38.20	(Guess number) Write a JSP page that generates a random number between 1 and 1000 and let the user enter a guess. When the user enters a guess, the program should tell the user whether the guess is correct, too high, or too low.

CHAPTER 39 JavaServer Faces

Objectives

	To explain what JSF is (§39.1).

	To create a JSF project in NetBeans (§39.2.1).

	To create a JSF page (§39.2.2).

	To create a JSF managed bean (§39.2.3).

	To use JSF expressions in a facelet (§39.2.4).

	To use JSF GUI components (§39.3).

	To obtain and process input from a form (§39.4).

	To develop a calculator using JSF (§39.5).

	To track sessions in application, session, view, and request scopes (§39.6).

	To validate input using the JSF validators (§39.7).

	To bind database with facelets (§39.8).

	To open a new JSF page from the current page (§39.9).

	To program using contexts and dependency injection (§39.10).

39.1 Introduction

	JavaServer Faces (JSF) is a new technology for developing server-side Web ­applications using Java.

JSF

JSF enables you to completely separate Java code from HTML. You can quickly build Web applications by assembling reusable UI components in a page, connecting these components to Java programs and wiring client-generated events to server-side event handlers. The application developed using JSF is easy to debug and maintain.

JSF 2

XHTML

CSS

 Note

This chapter introduces JSF 2, the latest standard for JavaServer Faces. You need to know XHTML (eXtensible HyperText Markup Language) and CSS (Cascading Style Sheet) to start this chapter. For information on XHTML and CSS, see Supplements V.A and V.B.

 Caution

The examples and exercises in this chapter were tested using NetBeans 7.3.1, GlassFish 4, and Java EE 7. You need to use NetBeans 7.3.1 or a higher version with GlassFish 4 and Java EE 7 to develop your JSF projects.

NetBeans 7.3.1

GlassFish 4

Java EE 7

39.2 Getting Started with JSF

	NetBeans is an effective tool for developing JSF applications.

We begin with a simple example that illustrates the basics of developing JSF projects using NetBeans. The example is to display the date and time on the server, as shown in Figure 39.1.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: the current time m o n j u n 17 17, colon, 0 9, colon, 0 2 e d t 2013.]Figure 39.1

The application displays the date and time on the server.

39.2.1 Creating a JSF Project

Here are the steps to create the application.

	Step 1: Choose File, New Project to display the New Project dialog box. In this box, choose Java Web in the Categories pane and Web Application in the Projects pane. Click Next to display the New Web Application dialog box.

In the New Web Application dialog box, enter and select the following fields, as shown in Figure 39.2a:

 Figure 39.2

The New Web Application dialog box enables you to create a new Web project.

Project Name: jsf2demo

Project Location: c:\book

create a project

	Step 2: Click Next to display the dialog box for choosing servers and settings. Select the following fields as shown in Figure 39.2b. (Note: You can use any server such as GlassFish 4.x that supports Java EE 6.)

Server: GlassFish 4

Java EE Version: Java EE 7 Web

choose server and Java EE 7

	Step 3: Click Next to display the dialog box for choosing frameworks, as shown in Figure 39.3. Check JavaServer Faces and JSF 2.0 as Server Library. Click Finish to create the project, as shown in Figure 39.4.

 [image:]Figure 39.3

Check JavaServer Faces and JSF 2.2 to create a Web project.

 [image: Code for a default j s f page.]Figure 39.4

A default JSF page is created in a new Web project.

Description

choose JavaServer Faces and JSF2.2

39.2.2 A Basic JSF Page

facelet

A new project was just created with a default page named index.xhtml, as shown in Figure 39.4. This page is known as a facelet, which mixes JSF tags with XHTML tags. Listing 39.1 lists the contents of index.xhtml.

Listing 39.1 index.xhtml

xml version	 1 <?xml version='1.0' encoding='UTF-8' ?>
comment		 2 <!-- index.xhtml -->
DOCTYPE		 3 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 4 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
default namespace 5 <html xmlns="http://www.w3.org/1999/xhtml"
JSF namespace	 6 xmlns:h="http://xmlns.jcp.org/jsf/html">
h:head	 7 <h:head>
		 8 <title>Facelet Title</title>
		 9 </h:head>
h:body		 10 <h:body>
	 11 Hello from Facelets
		 12 </h:body>
		 13 </html>

XML declaration

Line 1 is an XML declaration to state that the document conforms to the XML version 1.0 and uses the UTF-8 encoding. The declaration is optional, but it is a good practice to use it. A document without the declaration may be assumed of a different version, which may lead to errors. If an XML declaration is present, it must be the first item to appear in the document. This is because an XML processor looks for the first line to obtain information about the document so that it can be processed correctly.

XML comment

Line 2 is a comment for documenting the contents in the file. XML comment always begins with <!-- and ends with -->.

DOCTYPE

Lines 3 and 4 specify the version of XHTML used in the document. This can be used by the Web browser to validate the syntax of the document.

element

tag

An XML document consists of elements described by tags. An element is enclosed between a start tag and an end tag. XML elements are organized in a tree-like hierarchy. Elements may contain subelements, but there is only one root element in an XML document. All the elements must be enclosed inside the root tag. The root element in XHTML is defined using the html tag (line 5).

Each tag in XML must be used in a pair of the start tag and the end tag. A start tag begins with < followed by the tag name and ends with >. An end tag is the same as its start tag except that it begins with </. The start tag and end tag for html are <html> and </html>.

html tag

The html element is the root element that contains all other elements in an XHTML page. The starting <html> tag (lines 5 and 6) may contain one or more xmlns (XML namespace) attributes to specify the namespace for the elements used in the document. Namespaces are like Java ­packages. Java packages are used to organize classes and to avoid naming conflict. XHTML namespaces are used to organize tags and resolve naming conflict. If an element with the same name is defined in two namespaces, the fully qualified tag names can be used to differentiate them.

Each xmlns attribute has a name and a value separated by an equal sign (=). The following declaration (line 5)

xmlns

xmlns="http://www.w3.org/1999/xhtml"

specifies that any unqualified tag names are defined in the default standard XHTML namespace.

The following declaration (line 6)

xmlns:h="http://xmlns.jcp.org/jsf/html"

allows the tags defined in the JSF tag library to be used in the document. These tags must have a prefix h.

h:head

An html element contains a head and a body. The h:head element (lines 7–9) defines an HTML title element. The title is usually displayed in the browser window’s title bar.

h:body

An h:body element defines the page’s content. In this simple example, it contains a string to be displayed in the Web browser.

 Note

The XML tag names are case sensitive, whereas HTML tags are not. So, <html> is different from <HTML> in XML. Every start tag in XML must have a matching end tag, whereas some tags in HTML do not need end tags.

You can now display the page in index.xhtml by right-clicking on index.xhtml in the projects pane and choose Run File. The page is displayed in a browser, as shown in Figure 39.5.

 Figure 39.5

The index.xhtml is displayed in the browser.

 Note

The JSF page is processed and converted into a regular HTML page for displaying by a browser. The Java software that runs on the server side for producing the HTML page is known as Java server container or simply container. The container is responsible for handling all server-side tasks for Java EE. GlassFish is a Java server container.

container

39.2.3 Managed JavaBeans for JSF

JSF applications are developed using the Model-View-Controller (MVC) architecture, which separates the application’s data (contained in the model) from the graphical presentation (the view). The controller is the JSF framework that is responsible for coordinating interactions between view and the model.

In JSF, the facelets are the view for presenting data. Data are obtained from Java objects. Objects are defined using Java classes. In JSF, the objects that are accessed from a facelet are JavaBeans objects. A JavaBean class is simply a public Java class with a no-arg constructor. JavaBeans may contain properties. By convention, a property is defined with a getter and a setter method. If a property only has a getter method, the property is called a read-only property. If a property only has a setter method, the property is called a write-only property. A property does not need to be defined as a data field in the class.

JavaBean

Our example in this section is to develop a JSF facelet to display current time. We will create a JavaBean with a getTime() method that returns the current time as a string. The facelet will invoke this method to obtain current time.

Here are the steps to create a JavaBean named TimeBean.

	Step 1. Right-click the project node jsf2demo to display a context menu as shown in Figure 39.6. Choose New, JSF Managed Bean to display the New JSF Managed Bean dialog box, as shown in Figure 39.7. (Note: if you don’t see JSF Managed Bean in the menu, choose Other to locate it in the JavaServer Faces category.)

 Figure 39.6

Choose JSF Managed Bean to create a JavaBean for JSF.

 Figure 39.7

Specify the name, location, and scope for the bean.

	Step 2. Enter and select the following fields, as shown in Figure 39.7:

Class Name: TimeBean

Package: jsf2demo

Name: timeBean

Scope: request

Click Finish to create TimeBean.java, as shown in Figure 39.8.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: package j s f 2 demo, semicolon. Line 2: blank. Line 3: import java x, period, inject, period, named, semicolon. Line 4: import java x, period, enterprise, period, context, period, request scoped, semicolon. Line 5: blank. Line 6: at named, left parenthesis, value =, open quotes, time bean, close quotes, right parenthesis. Line 7: at request scoped. Line 8: public class time bean, left brace. Line 9, indented once: public time bean, left parenthesis, right parenthesis, left brace. Line 10, indented once: right brace. Line 11: right brace.]Figure 39.8

A JavaBean for JSF was created.

	Step 3. Add the getTime() method to return the current time, as shown in Listing 39.2.

Listing 39.2 TimeBean.java

	 1 package jsf2demo;
	 2
	 3 import javax.inject.Named;
	 4 import javax.enterprise.context.RequestScoped;
	 5
@Named 6 @Named (value = "timeBean")
@RequestScoped 7 @RequestScoped
	 8 public class TimeBean {
	 9 public TimeBean() {
	 10 }
	 11
time property 12 public String getTime() {
	 13 return new java.util.Date().toString();
	 14 }
	 15 }

TimeBean is a JavaBeans with the @Named annotation, which indicates that the JSF framework will create and manage the TimeBean objects used in the application. You have learned to use the @Override annotation in Chapter 11. The @Override annotation tells the compiler that the annotated method is required to override a method in a superclass. The @Named annotation tells the compiler to generate the code to enable the bean to be used by JSF facelets.

@RequestScope

The @RequestScope annotation specifies that the scope of the JavaBeans object is within a request. You can also use @ViewScope, @SessionScope or @ApplicationScope to specify the scope for a session or for the entire application.

39.2.4 JSF Expressions

We demonstrate JSF expressions by writing a simple application that displays the current time. You can display current time by invoking the getTime() method in a TimeBean object using a JSF expression.

To keep index.xhtml intact, we create a new JSF page named CurrentTime.xhtml as follows:

	Step 1. Right-click the jsf2demo node in the project pane to display a context menu and choose New, JSF Page to display the New JSF File dialog box, as shown in Figure 39.9.

 Figure 39.9

The New JSF Page dialog is used to create a JSF page.

	Step 2. Enter CurrentTime in the File Name field, choose Facelets and click Finish to generate CurrentTime.xhtml, as shown in Figure 39.10.

 [image: Code for a new j s f page current time.]Figure 39.10

A New JSF page CurrentTime was created.

Description

	Step 3. Add a JSF expression to obtain the current time, as shown in Listing 39.3.

	Step 4. Right-click on CurrentTime.xhtml in the project to display a context menu and choose Run File to display the page in a browser as shown in Figure 39.1.

Listing 39.3 CurrentTime.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
		 6 <h:head>
		 7 <title>Display Current Time</title>
refresh page 8 <meta http-equiv="refresh" content ="60" />
	 9 </h:head>
		10 <h:body>
JSF expression 11 The current time is #{timeBean.time}
	 12 </h:body>
		13 </html>

Line 11 defines a meta tag inside the h:head tag to tell the browser to refresh every 60 ­seconds. This line can also be written as

<meta http-equiv="refresh" content ="60"></ meta>

empty element

An element is called an empty element if there are no contents between the start tag and the end tag. In an empty element, data are typically specified as attributes in the start tag. You can close an empty element by placing a slash immediately preceding the start tag’s right angle bracket, as shown in line 8, for brevity.

Line 8 uses a JSF expression #{timeBean.time} to obtain the current time. timeBean is an object of the TimeBean class. The object name can be changed in the @Named annotation (line 6 in Listing 39.2) using the following syntax:

@Named(name = "anyObjectName")

By default, the object name is the class name with the first letter in lowercase.

Note that time is a JavaBeans property because the getTime() method is defined in TimeBeans. The JSF expression can either use the property name or invoke the method to obtain the current time. So the following two expressions are fine:

#{timeBean.time}
#{timeBean.getTime()}

The syntax of a JSF expression is

#{expression}

JSF expressions bind JavaBeans objects with facelets. You will see more use of JSF expressions in the upcoming examples in this chapter.

	39.2.1	What is JSF?

	39.2.2	How do you create a JSF project in NetBeans?

	39.2.3	How do you create a JSF page in a JSF project?

	39.2.4	What is a facelet?

	39.2.5	What is the file extension name for a facelet?

	39.2.6	What is a managed bean?

	39.2.7	What is the @Named annotation for?

	39.2.8	What is the @RequestScope annotation for?

39.3 JSF GUI Components

	JSF provides many elements for displaying GUI components.

Table 39.1 lists some of the commonly used elements. The tags with the h prefix are in the JSF HTML Tag library. The tags with the f prefix are in the JSF Core Tag library.

Table 39.1 JSF GUI Form Elements

	JSF Tag

	Description

	h:form

	inserts an XHTML form into a page.

	h:panelGroup

	similar to a JavaFX FlowPane.

	h:panelGrid

	similar to a JavaFX GridPane.

	h:inputText

	displays a textbox for entering input.

	h:outputText

	displays a textbox for displaying output.

	h:inputTextArea

	displays a textarea for entering input.

	h:inputSecret

	displays a textbox for entering password.

	h:outputLabel

	displays a label.

	h:outputLink

	displays a hypertext link.

	h:selectOneMenu

	displays a combo box for selecting one item.

	h:selectOneRadio

	displays a set of radio button.

	h:selectManyCheckbox

	displays checkboxes.

	h:selectOneListbox

	displays a list for selecting one item.

	h:selectManyListbox

	displays a list for selecting multiple items.

	f:selectItem

	specifies an item in an h:selectOneMenu, h:selectOneRadio, or h:selectManyListbox.

	h:message

	displays a message for validating input.

	h:dataTable

	displays a data table.

	h:column

	specifies a column in a data table.

	h:graphicImage

	displays an image.

Listing 39.4 is an example that uses some of these elements to display a student registration form, as shown in Figure 39.11.

 Figure 39.11

A student registration form is displayed using JSF elements.

Listing 39.4 StudentRegistrationForm.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
jsf core namespace 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
		 7 <h:head>
		 8 <title>Student Registration Form</title>
		 9 </h:head>
		 10 <h:body>
		 11 <h:form>
		 12 <!-- Use h:graphicImage -->
		 13 <h3>Student Registration Form
graphicImage 14 <h:graphicImage name="usIcon.gif" library="image"/>
		 15 </h3>
		 16
		 17 <!-- Use h:panelGrid -->
h:panelGrid	 18 <h:panelGrid columns="6" style="color:green">
h:outputLabel	 19 <h:outputLabel value="Last Name"/>
h:inputText	 20 <h:inputText id="lastNameInputText" />
		 21 <h:outputLabel value="First Name" />
		 22 <h:inputText id="firstNameInputText" />
		 23 <h:outputLabel value="MI" />
		 24 <h:inputText id="miInputText" size="1" />
		 25 </h:panelGrid>
		 26
		 27 <!-- Use radio buttons -->
		 28 <h:panelGrid columns="2">
		 29 <h:outputLabel>Gender </h:outputLabel>
h:selectOneRadio	 30 <h:selectOneRadio id="genderSelectOneRadio">
f:selectItem	 31 <f:selectItem itemValue="Male"
		 32 itemLabel="Male"/>
		 33 <f:selectItem itemValue="Female"
		 34 itemLabel="Female"/>
		 35 </h:selectOneRadio>
		 36 </h:panelGrid>
		 37
		 38 <!-- Use combo box and list -->
		 39 <h:panelGrid columns="4">
		 40 <h:outputLabel value="Major "/>
h:selectOneMenu	 41 <h:selectOneMenu id="majorSelectOneMenu">
		 42 <f:selectItem itemValue="Computer Science"/>
		 43 <f:selectItem itemValue="Mathematics"/>
		 44 </h:selectOneMenu>
		 45 <h:outputLabel value="Minor "/>
h:selectManyListBox 46 <h:selectManyListbox id="minorSelectManyListbox">
		 47 <f:selectItem itemValue="Computer Science"/>
		 48 <f:selectItem itemValue="Mathematics"/>
		 49 <f:selectItem itemValue="English"/>
		 50 </h:selectManyListbox>
		 51 </h:panelGrid>
		 52
		 53 <!-- Use check boxes -->
		 54 <h:panelGrid columns="4">
		 55 <h:outputLabel value="Hobby: "/>
h:selectManyCheckbox 56 <h:selectManyCheckbox id="hobbySelectManyCheckbox">
		 57 <f:selectItem itemValue="Tennis"/>
		 58 <f:selectItem itemValue="Golf"/>
		 59 <f:selectItem itemValue="Ping Pong"/>
		 60 </h:selectManyCheckbox>
		 61 </h:panelGrid>
		 62
		 63 <!-- Use text area -->
		 64 <h:panelGrid columns="1">
		 65 <h:outputLabel>Remarks:</h:outputLabel>
h:inputTextarea	 66 <h:inputTextarea id="remarksInputTextarea"
		 67 style="width:400px; height:50px;" />
		 68 </h:panelGrid>
		 69
		 70 <!-- Use command button -->
h:commandButton	 71 <h:commandButton value="Register" />
		 72 </h:form>
		 73 </h:body>
		 74 </html>

The tags with prefix f are in the JSF core tag library. Line 6

jsf core xmlns

xmlns:f="http://xmlns.jcp.org/jsf/core">

locates the library for these tags.

h:graphicImage

The h:graphicImage tag displays an image in the file usIcon.gif (line 14). The file is located in the /resources/image folder. In JSF 2.0, all resources (image files, audio files, and CCS files) should be placed under the resources folder under the Web Pages node. You can create these folders as follows:

	Step 1: Right-click the Web Pages node in the project pane to display a context menu and choose New, Folder to display the New Folder dialog box. (If Folder is not in the context menu, choose Other to locate it.)

	Step 2: Enter resources as the Folder Name and click Finish to create the resources folder, as shown in Figure 39.12.

 Figure 39.12

The resources folder was created.

	Step 3: Right-click the resources node in the project pane to create the image folder under resources. You can now place usIcon.gif under the image folder.

h:panelGrid

JSF provides h:panelGrid and h:panelGroup elements to contain and layout subelements. h:panelGrid places the elements in a grid like the JavaFX GridPane. h:panelGrid places the elements in a grid with the specified number of columns. Lines 18–25 place six elements (labels and input texts) that are in an h:panelGrid. The columns attribute specifies that each row in the grid has 6 columns. The elements are placed into a row from left to right in the order they appear in the facelet. When a row is full, a new row is created to hold the elements. We used h:panelGrid in this example. You may replace it with h:panelGroup to see how the elements would be arranged.

the style attribute

You may use the style attribute with a JSF html tag to specify the CSS style for the element and its subelements. The style attribute in line 18 specifies the color green for all elements in this h:panelGrid element.

h:outputLabel

The h:outputLabel element is for displaying a label (line 19). The value attribute specifies the label’s text.

h:inputText

The h:inputText element is for displaying a text input box for the user to enter a text (line 20). The id attribute is useful for other elements or the server program to reference this element.

h:selectOneRadio

The h:selectOneRadio element is for displaying a group of radio buttons (line 30). Each radio button is defined using an f:selectItem element (lines 31–34).

The h:selectOneMenu element is for displaying a combo box (line 41). Each item in the combo box is defined using an f:selectItem element (lines 42 and 43).

h:selectOneMenu

h:selectManyListbox

The h:selectManyListbox element is for displaying a list for the user to choose multiple items in a list (line 46). Each item in the list is defined using an f:selectItem element (lines 47–49).

h:selectManyCheckbox

The h:selectManyCheckbox element is for displaying a group of check boxes (line 56). Each item in the check box is defined using an f:selectItem element (lines 57–59).

h:selectTextarea

The h:selectTextarea element is for displaying a text area for multiple lines of input (line 66). The style attribute is used to specify the width and height of the text area (line 67).

h:commandButton

The h:commandButton element is for displaying a button (line 71). When the button is clicked, an action is performed. The default action is to request the same page from the server. The next section shows how to process the form.

	39.3.1	What is the name space for JSF tags with prefix h and prefix f?

	39.3.2	Describe the use of the following tags?

	h:form, h:panelGroup, h:panelGrid, h:inputText, h:outputText,

	h:inputTextArea, h:inputSecret, h:outputLabel, h:outputLink,

	h:selectOneMenu, h:selectOneRadio, h:selectBooleanCheckbox,

	h:selectOneListbox, h:selectManyListbox, h:selectItem,

	h:message, h:dataTable, h:columm, h:graphicImage

39.4 Processing the Form

	Processing forms is a common task for Web programming. JSF provides tools for processing forms.

The preceding section introduced how to display a form using common JSF elements. This section shows how to obtain and process the input.

To obtain input from the form, simply bind each input element with a property in a managed bean. We now define a managed bean named registration as shown in Listing 39.5.

Listing 39.5 RegistrationJSFBean.java

		 1 package jsf2demo;
		 2
		 3 import javax.enterprise.context.RequestScoped;
		 4 import javax.inject.Named;
		 5
managed bean	 6 @Named(value = "registration")
request scope	 7 @RequestScoped
property lastName  8 public class RegistrationJSFBean {
		 9 private String lastName;
		 10 private String firstName;
		 11 private String mi;
		 12 private String gender;
		 13 private String major;
		 14 private String[] minor;
		 15 private String[] hobby;
		 16 private String remarks;
		 17
		 18 public RegistrationJSFBean() {
		 19 }
		 20
		 21 public String getLastName() {
		 22 return lastName;
		 23 }
		 24
		 25 public void setLastName(String lastName) {
		 26 this.lastName = lastName;
		 27 }
		 28
		 29 public String getFirstName() {
		 30 return firstName;
		 31 }
		 32
		 33 public void setFirstName(String firstName) {
		 34 this.firstName = firstName;
		 35 }
		 36
		 37 public String getMi() {
		 38 return mi;
		 39 }
		 40
		 41 public void setMi(String mi) {
		 42 this.mi = mi;
		 43 }
		 44
		 45 public String getGender() {
		 46 return gender;
		 47 }
		 48
		 49 public void setGender(String gender) {
		 50 this.gender = gender;
		 51 }
		 52
		 53 public String getMajor() {
		 54 return major;
		 55 }
		 56
		 57 public void setMajor(String major) {
		 58 this.major = major;
		 59 }
		 60
		 61 public String[] getMinor() {
		 62 return minor;
		 63 }
		 64
		 65 public void setMinor(String[] minor) {
		 66 this.minor = minor;
		 67 }
		 68
		 69 public String[] getHobby() {
		 70 return hobby;
		 71 }
		 72
		 73 public void setHobby(String[] hobby) {
		 74 this.hobby = hobby;
		 75 }
		 76
		 77 public String getRemarks() {
		 78 return remarks;
		 79 }
	 80
		 81 public void setRemarks(String remarks) {
		 82 this.remarks = remarks;
		 83 }
		 84
getResponse() 85 public String getResponse() {
	 86 if (lastName == null)
		 87 return ""; // Request has not been made
		 88 else {
		 89 String allMinor = "";
		 90 for (String s: minor) {
		 91 allMinor += s + " ";
		 92 }
		 93
		 94 String allHobby = "";
		 95 for (String s: hobby) {
		 96 allHobby += s + " ";
		 97 }
		 98
		 99 return "<p style=\"color:red\">You entered
" +
		 100 "Last Name: " + lastName + "
" +
		 101 "First Name: " + firstName + "
" +
		 102 "MI: " + mi + "
" +
		 103 "Gender: " + gender + "
" +
		 104 "Major: " + major + "
" +
		 105 "Minor: " + allMinor + "
" +
		 106 "Hobby: " + allHobby + "
" +
		 107 "Remarks: " + remarks + "</p>";
		 108 }
		 109 }
		 110 }

bean properties

The RegistrationJSFBean class is a managed bean that defines the properties lastName, firstName, mi, gender, major, minor, and remarks, which will be bound to the elements in the JSF registration form.

The registration form can now be revised as shown in Listing 39.6. Figure 39.13 shows that new JSF page displays the user input upon clicking the Register button.

 Figure 39.13

The user input is collected and displayed after clicking the Register button.

Listing 39.6 ProcessStudentRegistrationForm.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "–//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
jsf core namespace 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
		 7 <h:head>
		 8 <title>Student Registration Form</title>
		 9 </h:head>
		 10 <h:body>
		 11 <h:form>
		 12 <!-- Use h:graphicImage -->
		 13 <h3>Student Registration Form
		 14 <h:graphicImage name="usIcon.gif" library="image"/>
		 15 </h3>
		 16
		 17 <!-- Use h:panelGrid -->
		 18 <h:panelGrid columns="6" style="color:green">
		 19 <h:outputLabel value="Last Name"/>
		 20 <h:inputText id="lastNameInputText"
bind lastName  21 value="#{registration.lastName}"/>
	 22 <h:outputLabel value="First Name" />
		 23 <h:inputText id="firstNameInputText"
bind firstName	 24 value="#{registration.firstName}"/>
		 25 <h:outputLabel value="MI" />
		 26 <h:inputText id="miInputText" size="1"
bind mi		 27 value="#{registration.mi}"/>
		 28 </h:panelGrid>
		 29
		 30 <!-- Use radio buttons -->
		 31 <h:panelGrid columns="2">
		 32 <h:outputLabel>Gender </h:outputLabel>
		 33 <h:selectOneRadio id="genderSelectOneRadio"
bind gender	 34 value="#{registration.gender}">
	 35 <f:selectItem itemValue="Male"
		 36 itemLabel="Male"/>
		 37 <f:selectItem itemValue="Female"
		 38 itemLabel="Female"/>
		 39 </h:selectOneRadio>
		 40 </h:panelGrid>
		 41
		 42 <!-- Use combo box and list -->
		 43 <h:panelGrid columns="4">
		 44 <h:outputLabel value="Major "/>
		 45 <h:selectOneMenu id="majorSelectOneMenu"
bind major	 46 value="#{registration.major}">
	 47 <f:selectItem itemValue="Computer Science"/>
		 48 <f:selectItem itemValue="Mathematics"/>
		 49 </h:selectOneMenu>
		 50 <h:outputLabel value="Minor "/>
		 51 <h:selectManyListbox id="minorSelectManyListbox"
bind minor	 52 value="#{registration.minor}">
		 53 <f:selectItem itemValue="Computer Science"/>
		 54 <f:selectItem itemValue="Mathematics"/>
		 55 <f:selectItem itemValue="English"/>
		 56 </h:selectManyListbox>
		 57 </h:panelGrid>
		 58
		 59 <!-- Use check boxes -->
		 60 <h:panelGrid columns="4">
		 61 <h:outputLabel value="Hobby: "/>
		 62 <h:selectManyCheckbox id="hobbySelectManyCheckbox"
bind hobby	 63 value="#{registration.hobby}">
		 64 <f:selectItem itemValue="Tennis"/>
		 65 <f:selectItem itemValue="Golf"/>
		 66 <f:selectItem itemValue="Ping Pong"/>
		 67 </h:selectManyCheckbox>
		 68 </h:panelGrid>
		 69
		 70 <!-- Use text area -->
		 71 <h:panelGrid columns="1">
		 72 <h:outputLabel>Remarks:</h:outputLabel>
		 73 <h:inputTextarea id="remarksInputTextarea"
		 74 style="width:400px; height:50px;"
bind remarks  75 value="#{registration.remarks}"/>
		 76 </h:panelGrid>
		 77
		 78 <!-- Use command button -->
		 79 <h:commandButton value="Register" />
		 80

		 81 <h:outputText escape="false" style="color:red"
bind response	 82 value="#{registration.response}" />
		 83 </h:form>
		 84 </h:body>
		 85 </html>

binding input texts

The new JSF form in this listing binds the h:inputText element for last name, first name, and mi with the properties lastName, firstName, and mi in the managed bean (lines 21, 24, and 27). When the Register button is clicked, the page is sent to the server, which invokes the setter methods to set the properties in the managed bean.

binding radio buttons

The h:selectOneRadio element is bound to the gender property (line 34). Each radio button has an itemValue. The selected radio button’s itemValue is set to the gender property in the bean when the page is sent to the server.

binding combo box

The h:selectOneMenu element is bound to the major property (line 46). When the page is sent to the server, the selected item is returned as a string and is set to the major property.

binding list box

The h:selectManyListbox element is bound to the minor property (line 52). When the page is sent to the server, the selected items are returned as an array of strings and set to the minor property.

binding check boxes

The h:selectManyCheckbox element is bound to the hobby property (line 63). When the page is sent to the server, the checked boxes are returned as an array of itemValues and set to the hobby property.

binding text area

The h:selectTextarea element is bound to the remarks property (line 75). When the page is sent to the server, the content in the text area is returned as a string and set to the remarks property.

binding response

The h:outputText element is bound to the response property (line 82). This is a read-only property in the bean. It is "" if lastName is null (lines 86 and 87 in Listing 39.5). When the page is returned to the client, the response property value is displayed in the output text element (line 82).

escape attribute

The h:outputText element’s escape attribute is set to false (line 81) to enable the contents to be displayed in HTML. By default, the escape attribute is true, which indicates the contents are considered regular text.

	39.4.1	In the h:outputText tag, what is the escape attribute for?

	39.4.2	Does every GUI component tag in JSF have the style attribute?

39.5 Case Study: Calculator

	This section gives a case study on using GUI elements and processing forms.

This section uses JSF to develop a calculator to perform addition, subtraction, multiplication, and division, as shown in Figure 39.14.

 Figure 39.14

This JSF application enables you to perform addition, subtraction, multiplication, and division.

Here are the steps to develop this project:

create managed bean

create JSF facelet

	Step 1. Create a new managed bean named calculator with the request scope as shown in Listing 39.7, CalculatorJSFBean.java.

	Step 2. Create a JSF facelet in Listing 39.8, Calculator.xhtml.

Listing 39.7 CalculatorJSFBean.java

		 1 package jsf2demo;
		 2
		 3 import javax.inject.Named;
		 4 import javax.enterprise.context.RequestScoped;
		 5
		 6 @Named(value = "calculator")
		 7 @RequestScoped
		 8 public class CalculatorJSFBean {
property number1  9 private Double number1;
property number2  10 private Double number2;
property result  11 private Double result;
	 12
		 13 public CalculatorJSFBean() {
		 14 }
		 15
		 16 public Double getNumber1() {
		 17 return number1;
		 18 }
		 19
		 20 public Double getNumber2() {
		 21 return number2;
		 22 }
		 23
		 24 public Double getResult() {
		 25 return result;
		 26 }
		 27
		 28 public void setNumber1(Double number1) {
		 29 this.number1 = number1;
		 30 }
		 31
		 32 public void setNumber2(Double number2) {
		 33 this.number2 = number2;
		 34 }
		 35
		 36 public void setResult(Double result) {
		 37 this.result = result;
		 38 }
		 39
add		 40 public void add() {
	 41 result = number1 + number2;
		 42 }
		 43
subtract		 44 public void subtract() {
	 45 result = number1 - number2;
		 46 }
		 47
divide		 48 public void divide() {
		 49 result = number1 / number2;
		 50 }
		 51
multiply		 52 public void multiply() {
	 53 result = number1 * number2;
		 54 }
		 55 }

The managed bean has three properties number1, number2, and result (lines 9–38). The methods add(), subtract(), divide(), and multiply() add, subtract, multiply, and divide number1 with number2 and assigns the result to result (lines 40–54).

Listing 39.8 Calculator.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
		 6 <h:head>
		 7 <title>Calculator</title>
		 8 </h:head>
		 9 <h:body>
		10 <h:form>
		11 <h:panelGrid columns="6">
		12 <h:outputLabel value="Number 1"/>
		13 <h:inputText id="number1InputText" size ="4"
right align	14 style="text-align: right"
bind text input 15 value="#{calculator.number1}"/>
	 16 <h:outputLabel value="Number 2" />
		17 <h:inputText id="number2InputText" size ="4"
		18 style="text-align: right"
		19 value="#{calculator.number2}"/>
		20 <h:outputLabel value="Result" />
		21 <h:inputText id="resultInputText" size ="4"
		22 style="text-align: right"
		23 value="#{calculator.result}"/>
		24 </h:panelGrid>
		25
		26 <h:panelGrid columns="4">
		27 <h:commandButton value="Add"
action 28 action ="#{calculator.add}"/>
	 29 <h:commandButton value="Subtract"
		30 action ="#{calculator.subtract}"/>
		31 <h:commandButton value="Multiply"
		32 action ="#{calculator.multiply}"/>
		33 <h:commandButton value="Divide"
		34 action ="#{calculator.divide}"/>
		35 </h:panelGrid>
		36 </h:form>
		37 </h:body>
		38 </html>

Three text input components along with their labels are placed in the grid panel (lines 11–24). Four button components are placed in the grid panel (lines 26–35).

The bean property number1 is bound to the text input for Number 1 (line 15). The CSS style text-align: right (line 14) specifies that the text is right aligned in the input box.

The action attribute for the Add button is set to the add method in the calculator bean (line 28). When the Add button is clicked, the add method in the bean is invoked to add number1 with number2 and assign the result to result. Since the result property is bound to the Result input text (line 23), the new result is now displayed in the text input field.

39.6 Session Tracking

	You can create a managed bean at the application scope, session scope, view scope, or request scope.

JSF supports session tracking for managed beans at the application scope, session scope, view scope, and request scope. The scope is the lifetime of a bean. A request-scoped bean is alive in a single HTTP request. After the request is processed, the bean is no longer alive. A view-scoped bean lives as long as you are in the same JSF page. A session-scoped bean is alive for the entire Web session between a client and the server. An application-scoped bean lives as long as the Web application runs. In essence, a request-scoped bean is created once for a request; a view-scoped bean is created once for the view; a session-scoped bean is created once for the entire session; and an application-scoped bean is created once for the entire application. A managed bean with a session scope must be serializable because the system may need to free resources during and session and stores the bean to a file if the bean is not used for a while. When the bean is used again, the system will restore the bean to the memory.

scope

request scope

view scope

session scope

application scope

Consider the following example that prompts the user to guess a number. When the page starts, the program randomly generates a number between 0 and 99. This number is stored in a bean. When the user enters a guess, the program checks the guess with the random number in the bean and tells the user whether the guess is too high, too low, or just right, as shown in Figure 39.15.

 Figure 39.15

The user enters a guess and the program displays the result.

Here are the steps to develop this project:

create managed bean

	Step 1. Create a new managed bean named guessNumber with the view scope as shown in Listing 39.9, GuessNumberJSFBean.java.

	Step 2. Create a JSF facelet in Listing 39.10, GuessNumber.xhtml.

create JSF facelet

Listing 39.9 GuessNumberJSFBean.java

		 1 package jsf2demo;
		 2
		 3 import javax.inject.Named;
		 4 import javax.faces.view.ViewScoped;
		 5
		 6 @Named(value = "guessNumber")
view scope	 7 @ViewScoped
		 8 public class GuessNumberJSFBean {
random number 9 private int number;
guess by user 10 private String guessString;
		 11
		 12 public GuessNumberJSFBean() {
create random number 13 number = (int)(Math.random() * 100);
		 14 }
		 15
getter method	 16 public String getGuessString() {
		 17 return guessString;
		 18 }
		 19
setter method	 20 public void setGuessString(String guessString) {
		 21 this.guessString = guessString;
		 22 }
		 23
get response	 24 public String getResponse() {
		 25 if (guessString == null)
		 26 return ""; // No user input yet
		 27
check guess	 28 int guess = Integer.parseInt(guessString);
		 29 if (guess < number)
		 30 return "Too low";
		 31 else if (guess == number)
		 32 return "You got it";
		 33 else
		 34 return "Too high";
		 35 }
		 36 }

The managed bean uses the @ViewScope annotation (line 7) to set up the view scope for the bean. The view scope is most appropriate for this project. The bean is alive as long as the view is not changed. The bean is created when the page is displayed for the first time. A random number between 0 and 99 is assigned to number (line 13) when the bean is created. This number will not change as long as the bean is alive in the same view.

The getResponse method converts guessString from the user input to an integer (line 28) and determines if the guess is too low (line 30), too high (line 34), and just right (line 32).

Listing 39.10 GuessNumber.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
	 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
		 6 <h:head>
		 7 <title>Guess a number</title>
		 8 </h:head>
		 9 <h:body>
		 10 <h:form>
		 11 <h:outputLabel value="Enter you guess: "/>
		 12 <h:inputText style="text-align: right; width: 50px"
		 13 id="guessInputText"
bind text input 14 value="#{guessNumber.guessString}"/>
		 15 <h:commandButton style="margin-left: 60px" value="Guess" />
		 16

		 17 <h:outputText style="color: red"
bind text output 18 value="#{guessNumber.response}" />
	 19 </h:form>
		 20 </h:body>
		 21 </html>

The bean property guessString is bound to the text input (line 14). The CSS style text-align: right (line 13) specifies that the text is right aligned in the input box.

The CSS style margin-left: 60px (line 15) specifies that the command button has a left margin of 60 pixels.

The bean property response is bound to the text output (line 18). The CSS style color: red (line 17) specifies that the text is displayed in red in the output box.

scope

The project uses the view scope. What happens if the scope is changed to the request scope? Every time the page is refreshed, JSF creates a new bean with a new random number. What happens if the scope is changed to the session scope? The bean will be alive as long as the browser is alive. What happens if the scope is changed to the application scope? The bean will be created once when the application is launched from the server. So every client will use the same random number.

	39.6.1	What is a scope? What are the available scopes in JSF? Explain request scope, view scope, session scope, and application scope. How do you set a request scope, view scope, session scope, and application scope in a managed bean?

	39.6.2	What happens if the bean scope in Listing 39.9 , GuessNumberJSFBean.java is changed to request?

	39.6.3	What happens if the bean scope in Listing 39.9 , GuessNumberJSFBean.java is changed to session?

	39.6.4	What happens if the bean scope in Listing 39.9 , GuessNumberJSFBean.java is changed to application?

39.7 Validating Input

	JSF provides tools for validating user input.

In the preceding GuessNumber page, an error would occur if you entered a noninteger in the input box before clicking the Guess button. One way to fix the problem is to check the text field before processing any event. But a better way is to user the validators. You can use the standard validator tags in the JSF Core Tag Library or create custom validators. Table 39.2 lists some JSF input validator tags.

Table 39.2 JSF Input Validator Tags

	JSF Tag

	Description

	f:validateLength

	validates the length of the input.

	f:validateDoubleRange

	validates whether numeric input falls within acceptable range of double values.

	f:validateLongRange

	validates whether numeric input falls within acceptable range of long values.

	f:validateRequired

	validates whether a field is not empty.

	f:validateRegex

	validates whether the input matches a regualar expression.

	f:validateBean

	invokes a custom method in a bean to perform custom validation.

Consider the following example that displays a form for collecting user input as shown in ­Figure 39.16. All text fields in the form must be filled. If not, error messages are displayed. The SSN must be formatted correctly. If not, an error is displayed. If all input are correct, clicking Submit displays the result in an output text, as shown in Figure 39.17.

 Figure 39.16

The input fields are validated.

 Figure 39.17

The correct input values are displayed.

Here are the steps to create this project.

	Step 1. Create a new page in Listing 39.11, ValidateForm.xhtml.

	Step 2. Create a new managed bean named validateForm, as shown in Listing 39.12.

Listing 39.11 ValidateForm.xhtml

			1 <?xml version='1.0' encoding='UTF-8' ?>
			2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
			3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
			4 <html xmlns="http://www.w3.org/1999/xhtml"
			5 xmlns:h="http://xmlns.jcp.org/jsf/html"
			6 xmlns:f="http://xmlns.jcp.org/jsf/core">
			7 <h:head>
			8 <title>Validate Form</title>
			9 </h:head>
		 10 <h:body>
		 11 <h:form>
		 12 <h:panelGrid columns="3">
		 13 <h:outputLabel value="Name:"/>
required input	 14 <h:inputText id="nameInputText" required="true"
required message 15 requiredMessage="Name is required"
validator message 16 validatorMessage="Name must have 1 to 10 chars"
		 17 value="#{validateForm.name}">
validate length 18 <f:validateLength minimum="1" maximum="10" />
		 19 </h:inputText>
message element 20 <h:message for="nameInputText" style="color:red"/>
		 21
		 22 <h:outputLabel value="SSN:" />
		 23 <h:inputText id="ssnInputText" required="true"
		 24 requiredMessage="SSN is required"
		 25 validatorMessage="Invalid SSN"
		 26 value="#{validateForm.ssn}">
validate regex 27 <f:validateRegex pattern="[\d]{3}–[\d]{2}–[\d]{4}"/>
		 28 </h:inputText>
		 29 <h:message for="ssnInputText" style="color:red"/>
		 30
		 31 <h:outputLabel value="Age:" />
		 32 <h:inputText id="ageInputText" required="true"
		 33 requiredMessage="Age is required"
		 34 validatorMessage="Age must be between 16 and 120"
		 35 value="#{validateForm.ageString}">
validate integer range 36 <f:validateLongRange minimum="16" maximum="120"/>
		 37 </h:inputText>
		 38 <h:message for="ageInputText" style="color:red"/>
		 39
		 40 <h:outputLabel value="Height:" />
		 41 <h:inputText id="heightInputText" required="true"
		 42 requiredMessage="Height is required"
		 43 validatorMessage="Height must be between 3.5 and 9.5"
		 44 value="#{validateForm.heightString}">
validate double range 45 <f:validateDoubleRange minimum="3.5" maximum="9.5"/>
		 46 </h:inputText>
		 47 <h:message for="heightInputText" style="color:red"/>
		 48 </h:panelGrid>
		 49
		 50 <h:commandButton value="Submit" />
		 51
		 52 <h:outputText style="color:red"
		 53 value="#{validateForm.response}" />
		 54 </h:form>
		 55 </h:body>
		 56 </html>

required attribute

For each input text field, set its required attribute true (lines 14, 23, 32, and 41) to indicate that an input value is required for the field. When a required input field is empty, the requiredMessage is displayed (lines 15, 24, 33, and 42).

requiredMessage

validatorMessage

f:validateLength

The validatorMessage attribute specifies a message to be displayed if the input field is invalid (line 16). The f:validateLength tag specifies the minimum or maximum length of the input (line 18). JSF will determine whether the input length is valid.

h:message

The h:message element displays the validatorMessage if the input is invalid. The element’s for attribute specifies the id of the element for which the message will be displayed (line 20).

f:validateRegex

The f:validateRegex tag specifies a regular expression for validating the input (line 27). For information on regular expression, see Appendix H.

f:validateLongRange

The f:validateLongRange tag specifies a range for an integer input using the minimum and maximum attributes (line 45). In this project, a valid age value is between 16 and 120.

f:validateDoubleRange

The f:validateDoubleRange tag specifies a range for a double input using the minimum and maximum attributes (line 36). In this project, a valid height value is between 3.5 and 9.5.

Listing 39.12 ValidateFormJSFBean.java

		 1 package jsf2demo;
		 2
		 3 import javax.enterprise.context.RequestScoped;
		 4 import javax.inject.Named;
		 5
		 6 @Named(value = "validateForm")
		 7 @RequestScoped
		 8 public class ValidateFormJSFBean {
		 9 private String name;
		 10 private String ssn;
		 11 private String ageString;
		 12 private String heightString;
		 13
		 14 public String getName() {
		 15 return name;
		 16 }
		 17
		 18 public void setName(String name) {
		 19 this.name = name;
		 20 }
		 21
		 22 public String getSsn() {
		 23 return ssn;
		 24 }
		 25
		 26 public void setSsn(String ssn) {
		 27 this.ssn = ssn;
		 28 }
		 29
		 30 public String getAgeString() {
		 31 return ageString;
		 32 }
		 33
		 34 public void setAgeString(String ageString) {
		 35 this.ageString = ageString;
		 36 }
		 37
		 38 public String getHeightString() {
		 39 return heightString;
		 40 }
		 41
		 42 public void setHeightString(String heightString) {
		 43 this.heightString = heightString;
		 44 }
		 45
		 46 public String getResponse() {
		 47 if (name == null || ssn == null || ageString == null
		 48 || heightString == null) {
some input not set 49 return "";
		 50 }
		 51 else {
		 52 return "You entered " +
		 53 " Name: " + name +
		 54 " SSN: " + ssn +
		 55 " Age: " + ageString +
		 56 " Height: " + heightString;
		 57 }
		 58 }
		 59 }

If an input is invalid, its value is not set to the bean. So only when all input are correct, the getResponse() method will return all input values (lines 46–58).

	39.7.1	Write a tag that validates an input text with minimal length of 2 and maximum 12.

	39.7.2	Write a tag that validates an input text for SSN using a regular expression.

	39.7.3	Write a tag that validates an input text for a double value with minimal 4.5 and maximum 19.9.

	39.7.4	Write a tag that validates an input text for an integer value with minimal 4 and maximum 20.

	39.7.5	Write a tag that makes an input text required.

39.8 Binding Database with Facelets

	You can bind a database in JSF applications.

Often you need to access a database from a webpage. This section gives examples of building Web applications using databases.

Consider the following example that lets the user choose a course, as shown in Figure 39.18. After a course is selected in the combo box, the students enrolled in the course are displayed in the table, as shown in Figure 39.19. In this example, all the course titles in the Course table are bound to the combo box and the query result for the students enrolled in the course is bound to the table.

 Figure 39.18

You need to choose a course and display the students enrolled in the course.

 Figure 39.19

The table displays the students enrolled in the course.

Here are the steps to create this project:

managed bean

JSF page

style sheet

	Step 1. Create a managed bean named courseName with application scope, as shown in Listing 39.13.

	Step 2. Create a JSF in Listing 39.14, DisplayStudent.xhtml.

	Step 3. Create a cascading style sheet for formatting the table as follows:

	Step 3.1. Right-click the resources node to choose New, Others to display the New File dialog box, as shown in Figure 39.20.

 Figure 39.20

You can create CSS files for Web project in NetBenas.

	Step 3.2. Choose Others in the Categories section and Cascading Style Sheet in the File Types section to display the New Cascading Style Sheet dialog box, as shown in Figure 39.21.

 Figure 39.21

The New Cascading Style Sheet dialog box creates a new style sheet file.

	Step 3.3. Enter tablestyle as the File Name and click Finish to create tablestyle.css under the resources node.

	Step 3.4. Define the CSS style as shown in Listing 39.15.

Listing 39.13 CourseNameJSFBean.java

		 1 package jsf2demo;
		 2
		 3 import java.sql.*;
		 4 import java.util.ArrayList;
		 5 import javax.enterprise.context.ApplicationScoped;
		 6 import javax.inject.Named;
		 7
		 8 @Named(value = "courseName")
application scope 9 @ApplicationScoped
		 10 public class CourseNameJSFBean {
		 11 private PreparedStatement studentStatement = null;
		 12 private String choice; // Selected course
		 13 private String[] titles; // Course titles
		 14
		 15 /** Creates a new instance of CourseName */
		 16 public CourseNameJSFBean() {
initialize JDBC	 17 initializeJdbc();
		 18 }
		 19
		 20 /** Initialize database connection */
		 21 private void initializeJdbc() {
		 22 try {
		 23 Class.forName("com.mysql.jdbc.Driver");
		 24 System.out.println("Driver loaded");
		 25
		 26 // Connect to the sample database
connect to database 27 Connection connection = DriverManager.getConnection(
		 28 "jdbc:mysql://localhost/javabook", "scott", "tiger");
		 29
		 30 // Get course titles
		 31 PreparedStatement statement = connection.prepareStatement(
get course titles 32 "select title from course");
		 33
execute SQL	 34 ResultSet resultSet = statement.executeQuery();
		 35
		 36 // Store resultSet into array titles
		 37 ArrayList<String> list = new ArrayList<>();
		 38 while (resultSet.next()) {
		 39 list.add(resultSet.getString(1));
		 40 }
titles array 41 titles = new String[list.size()]; // Array for titles
		 42 list.toArray(titles); // Copy strings from list to array
		 43
		 44 // Define a SQL statement for getting students
		 45 studentStatement = connection.prepareStatement(
		 46 "select Student.ssn, "
		 47 + "student.firstName, Student.mi, Student.lastName, "
		 48 + "Student.phone, Student.birthDate, Student.street, "
		 49 + "Student.zipCode, Student.deptId "
		 50 + "from Student, Enrollment, Course "
		 51 + "where Course.title = ? "
		 52 + "and Student.ssn = Enrollment.ssn "
		 53 + "and Enrollment.courseId = Course.courseId;");
		 54 }
		 55 catch (Exception ex) {
		 56 ex.printStackTrace();
		 57 }
		 58 }
		 59
		 60 public String[] getTitles() {
		 61 return titles;
		 62 }
		 63
		 64 public String getChoice() {
		 65 return choice;
		 66 }
		 67
		 68 public void setChoice(String choice) {
		 69 this.choice = choice;
		 70 }
		 71
get students	 72 public ResultSet getStudents() throws SQLException {
		 73 if (choice == null) {
		 74 if (titles.length == 0)
		 75 return null;
		 76 else
set a default course 77 studentStatement.setString(1, titles[0]);
	 78 }
		 79 else {
set a course	 80 studentStatement.setString(1, choice); // Set course title
		 81 }
		 82
		 83 // Get students for the specified course
return students	 84 return studentStatement.executeQuery();
		 85 }
		 86 }

We use the same MySQL database javabook created in Chapter 34, “Java Database Programming.” The scope for this managed bean is application. The bean is created when the project is launched from the server. The initializeJdbc method loads the JDBC driver for MySQL (lines 23 and 24), connects to the MySQL database (lines 27 and 28), creates statement for obtaining course titles (lines 31 and 32), and creates a statement for obtaining the student information for the specified course (lines 45–53). Lines 31–42 execute the statement for obtaining course titles and store them in array titles.

The getStudents() method returns a ResultSet that consists of all students enrolled in the specified course (lines 72–85). The choice for the title is set in the statement to obtain the student for the specified title (line 80). If choice is null, the first title in the titles array is set in the statement (line 77). If no titles in the course, getStudents() returns null (line 75).

add MySQL in the Libraries node

 Tip

In order to use the MySQL database from this project, you have to add the MySQL JDBC driver from the Libraries node in the Project pane in NetBeans.

Listing 39.14 DisplayStudent.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
		 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
		 7 <h:head>
		 8 <title>Display Student</title>
style sheet 9 <h:outputStylesheet name="tablestyle.css"/>
	 10 </h:head>
		11 <h:body>
		12 <h:form>
		13 <h:outputLabel value="Choose a Course: " />
bind choice 14 <h:selectOneMenu value="#{courseName.choice}">
titles		15 <f:selectItems value="#{courseName.titles}" />
	 16 </h:selectOneMenu>
		17
display button 18 <h:commandButton style="margin-left: 20px"
	 19 value="Display Students" />
		20
		21

bind result set 22 <h:dataTable value="#{courseName.students}" var="student"
rowClasses	23 rowClasses="oddTableRow, evenTableRow"
headerClass	24 headerClass="tableHeader"
styleClass	25 styleClass="table">
	 26 <h:column>
		27 <f:facet name="header">SSN</f:facet>
ssn column	28 #{student.ssn}
		29 </h:column>
		30
		31 <h:column>
		32 <f:facet name="header">First Name</f:facet>
firstName column  33 #{student.firstName}
	 34 </h:column>
		35
		36 <h:column>
		37 <f:facet name="header">MI</f:facet>
mi column	38 #{student.mi}
	 39 </h:column>
		40
		41 <h:column>
		42 <f:facet name="header">Last Name</f:facet>
lastName column  43 #{student.lastName}
	 44 </h:column>
		45
		46 <h:column>
		47 <f:facet name="header">Phone</f:facet>
phone column 48 #{student.phone}
	 49 </h:column>
		50
		51 <h:column>
		52 <f:facet name="header">Birth Date</f:facet>
birthDate column  53 #{student.birthDate}
		54 </h:column>
		55
		56 <h:column>
		57 <f:facet name="header">Dept</f:facet>
deptId column	58 #{student.deptId}
	 59 </h:column>
		60 </h:dataTable>
		61 </h:form>
		62 </h:body>
		63 </html>

Line 9 specifies that the style sheet tablestyle.css created in Step 3 is used in this XMTHL file. The rowClasses = "oddTableRow, evenTableRow" attribute specifies the style applied to the rows alternately using oddTableRow and evenTableRow (line 23). The headerClasses = "tableHeader" attribute specifies that the tableHeader class is used for header style (line 24). The styleClasses = "table" attribute specifies that the table class is used for the style of all other elements in the table (line 25).

Line 14 binds the choice property in the courseName bean with the combo box. The selection values in the combo box are bound with the titles array property (line 15).

Line 22 binds the table value with a database result set using the attribute value = "#{courseName.students}". The var="student" attribute associates a row in the result set with student. Lines 26–59 specify the column values using student.ssn (line 28), student.firstName (line 33), student.mi (line 38), student.lastName (line 33), student.phone (line 48), student.birthDate (line 53), and student.deptId (line 58).

Listing 39.15 tablestyle.css

	 1 /* Style for table */
tableHeader 2 .tableHeader {
	 3 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;
	 4 border-collapse:collapse;
	 5 font-size:1.1em;
	 6 text-align:left;
	 7 padding-top:5px;
	 8 padding-bottom:4px;
	 9 background-color:#A7C942;
	 10 color:white;
	 11 border:1px solid #98bf21;
	 12 }
	 13
oddTableRow 14 .oddTableRow {
	 15 border:1px solid #98bf21;
	 16 }
	 17
evenTableRow 18 .evenTableRow {
	 19 background-color: #eeeeee;
	 20 font-size:1em;
	 21
	 22 padding:3px 7px 2px 7px;
	 23
	 24 color:#000000;
	 25 background-color:#EAF2D3;
	 26 }
	 27
table	 28 .table {
	 29 border:1px solid green;
	 30 }

The style sheet file defines the style classes tableHeader (line 2) for table header style, oddTableRow for odd table rows (line 14), evenTableRow for even table rows (line 18), and table for all other table elements (line 28).

39.9 Opening New JSF Pages

	You can open new JSF pages from the current JSF pages.

All the examples you have seen so far use only one JSF page in a project. Suppose you want to register student information to the database. The application first displays the page as shown in Figure 39.22 to collect student information. After the user enters the information and clicks the Submit button, a new page is displayed to ask the user to confirm the input, as shown in Figure 39.23. If the user clicks the Confirm button, the data are stored into the database and the status page is displayed, as shown in Figure 39.24. If the user clicks the Go Back button, it goes back to the first page.

 Figure 39.22

This page lets the user enter input.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: you entered. Line 2: last name, colon, smith. Line 3: first name, colon, john. Line 4: m i, colon, c. Line 5: telephone, colon, 2 1 3 5 4 9 9 8 9. Line 6: email, colon, smith at g mail, period, com. Line 7: street, colon, 100 main street. Line 8: city, colon, Atlanta. Line 9: street, colon, 100 main street. Line 10: city, colon, Atlanta. Line 11: state, colon, g ay. Line 12: zip, colon, 34313.]Figure 39.23

This page lets the user confirm the input.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: john smith is now registered in the database.]Figure 39.24

This page displays the status of the user input.

For this project, you need to create three JSF pages named AddressRegistration.xhtml, ConfirmAddress.xhtml, and AddressStoredStatus.xhtml in Listings 39.16–39.18. The ­project starts with AddressRegistration.xhtml. When clicking the Submit button, the action for the button returns “ConfirmAddress” if the last name and first name are not empty, which causes ConfirmAddress.xhtml to be displayed. When clicking the Confirm button, the status page AddressStoredStatus.xhtml is displayed. When clicking the Go Back button, the first page AddressRegistration.xhtml is now displayed.

Listing 39.16 AddressRegistration.xhtml

			1 <?xml version='1.0' encoding='UTF-8' ?>
			2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
			3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
			4 <html xmlns="http://www.w3.org/1999/xhtml"
			5 xmlns:h="http://xmlns.jcp.org/jsf/html"
jsf core namespace	6 xmlns:f="http://xmlns.jcp.org/jsf/core">
			7 <h:head>
			8 <title>Student Registration Form</title>
			9 </h:head>
		 10 <h:body>
		 11 <h:form>
		 12 <!-- Use h:graphicImage -->
		 13 <h3>Student Registration Form
		 14 <h:graphicImage name="usIcon.gif" library="image"/>
		 15 </h3>
		 16
		 17 Please register to your instructor's student address book.
		 18 <!-- Use h:panelGrid -->
		 19 <h:panelGrid columns="6">
		 20 <h:outputLabel value="Last Name" style="color:red"/>
		 21 <h:inputText id="lastNameInputText"
bind lastName	 22 value="#{addressRegistration.lastName}"/>
		 23 <h:outputLabel value="First Name" style="color:red"/>
		 24 <h:inputText id="firstNameInputText"
bind firstName	 25 value="#{addressRegistration.firstName}"/>
		 26 <h:outputLabel value="MI" />
		 27 <h:inputText id="miInputText" size="1"
bind mi		 28 value="#{addressRegistration.mi}"/>
 29 </h:panelGrid>
		 30
		 31 <h:panelGrid columns="4">
		 32 <h:outputLabel value="Telephone"/>
		 33 <h:inputText id="telephoneInputText"
bind telephone   34 value="#{addressRegistration.telephone}"/>
		 35 <h:outputLabel value="Email"/>
		 36 <h:inputText id="emailInputText"
bind email	 37 value="#{addressRegistration.email}"/>
		 38 </h:panelGrid>
		 39
		 40 <h:panelGrid columns="4">
		 41 <h:outputLabel value="Street"/>
		 42 <h:inputText id="streetInputText"
bind street	 43 value="#{addressRegistration.street}"/>
		 44 </h:panelGrid>
		 45
		 46 <h:panelGrid columns="6">
		 47 <h:outputLabel value="City"/>
		 48 <h:inputText id="cityInputText"
bind city	 49 value="#{addressRegistration.city}"/>
		 50 <h:outputLabel value="State"/>
		 51 <h:selectOneMenu id="stateSelectOneMenu"
bind state	 52 value="#{addressRegistration.state}">
		 53 <f:selectItem itemLabel="Georgia-GA" itemValue="GA" />
		 54 <f:selectItem itemLabel="Oklahoma-OK" itemValue="OK" />
		 55 <f:selectItem itemLabel="Indiana-IN" itemValue="IN"/>
		 56 </h:selectOneMenu>
		 57 <h:outputLabel value="Zip"/>
		 58 <h:inputText id="zipInputText"
bind zip	 59 value="#{addressRegistration.zip}"/>
		 60 </h:panelGrid>
		 61
		 62 <!-- Use command button -->
		 63 <h:commandButton value="Register"
 process register 64 action="#{addressRegistration.processSubmit()}"/>
		 65

		 66 <h:outputText escape="false" style="color:red"
		 67 value="#{addressRegistration.requiredFields}" />
		 68 </h:form>
		 69 </h:body>
		 70 </html>

Listing 39.17 ConfirmAddress.xhtml

			1 <?xml version='1.0' encoding='UTF-8' ?>
			2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
			3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
			4 <html xmlns="http://www.w3.org/1999/xhtml"
			5 xmlns:h="http://xmlns.jcp.org/jsf/html">
			6 <h:head>
			7 <title>Confirm Student Registration</title>
			8 </h:head>
			9 <h:body>
		 10 <h:form>
		 11 <h:outputText escape="false" style="color:red"
		 12 value="#{registration1.input}" />
		 13 <h:panelGrid columns="2">
		 14 <h:commandButton value="Confirm"
process confirm 15 action = "#{registration1.storeStudent()}"/>
go to		 16 <h:commandButton value="Go Back"
AddressRegistration page 17 action = "AddressRegistration"/>
		 18 </h:panelGrid>
		 19 </h:form>
		 20 </h:body>
		 21 </html>

Listing 39.18 AddressStoredStatus.xhtml

		1 <?xml version='1.0' encoding='UTF-8' ?>
	 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		4 <html xmlns="http://www.w3.org/1999/xhtml"
		5 xmlns:h="http://xmlns.jcp.org/jsf/html">
		6 <h:head>
		7 <title>Address Stored?</title>
		8 </h:head>
		9 <h:body>
	 10 <h:form>
	 11 <h:outputText escape="false" style="color:green"
display status 12 value="#{registration1.status}" />
	 13 </h:form>
	 14 </h:body>
	 15 </html>

Listing 39.19 AddressRegistrationJSFBean.java

			1 package jsf2demo;
			2
			3 import javax.inject.Named;
			4 import javax.enterprise.context.SessionScoped;
			5 import java.sql.*;
			6 import java.io.Serializable;
			7
managed bean		8 @Named(value = "addressRegistration")
session scope		9 @SessionScoped
		 10 public class AddressRegistrationJSFBean implements Serializable {
property lastName  11 private String lastName;
		 12 private String firstName;
		 13 private String mi;
		 14 private String telephone;
		 15 private String email;
		 16 private String street;
		 17 private String city;
		 18 private String state;
		 19 private String zip;
		 20 private String status = "Nothing stored";
		 21 // Use a prepared statement to store a student into the database
		 22 private PreparedStatement pstmt;
		 23
		 24 public AddressRegistrationJSFBean() {
initialize database 25 initializeJdbc();
		 26 }
		 27
		 28 public String getLastName() {
		 29 return lastName;
		 30 }
		 31
		 32 public void setLastName(String lastName) {
		 33 this.lastName = lastName;
		 34 }
		 35
		 36 public String getFirstName() {
		 37 return firstName;
		 38 }
		 39
		 40 public void setFirstName(String firstName) {
		 41 this.firstName = firstName;
		 42 }
		 43
		 44 public String getMi() {
		 45 return mi;
		 46 }
		 47
		 48 public void setMi(String mi) {
		 49 this.mi = mi;
		 50 }
		 51
		 52 public String getTelephone() {
		 53 return telephone;
		 54 }
		 55
		 56 public void setTelephone(String telephone) {
		 57 this.telephone = telephone;
		 58 }
		 59
		 60 public String getEmail() {
		 61 return email;
		 62 }
		 63
		 64 public void setEmail(String email) {
		 65 this.email = email;
		 66 }
		 67
		 68 public String getStreet() {
		 69 return street;
		 70 }
		 71
		 72 public void setStreet(String street) {
		 73 this.street = street;
		 74 }
		 75
		 76 public String getCity() {
		 77 return city;
		 78 }
		 79
		 80 public void setCity(String city) {
		 81 this.city = city;
		 82 }
		 83
		 84 public String getState() {
		 85 return state;
		 86 }
		 87
		 88 public void setState(String state) {
		 89 this.state = state;
		 90 }
		 91
		 92 public String getZip() {
		 93 return zip;
		 94 }
		 95
		 96 public void setZip(String zip) {
		 97 this.zip = zip;
		 98 }
		 99
		 100 private boolean isRquiredFieldsFilled() {
		 101 return !(lastName == null || firstName == null
		 102 || lastName.trim().length() == 0
		 103 || firstName.trim().length() == 0);
		 104 }
		 105
		 106 public String processSubmit() {
		 107 if (isRquiredFieldsFilled())
go to a new page 108 return "ConfirmAddress";
 109 else
		 110 return "";
		 111 }
		 112
		 113 public String getRequiredFields() {
check required fields 114 if (isRquiredFieldsFilled())
		 115 return "";
		 116 else
		 117 return "Last Name and First Name are required";
		 118 }
		 119
get input 120 public String getInput() {
		 121 return "<p style=\"color:red\">You entered
"
		 122 + "Last Name: " + lastName + "
"
		 123 + "First Name: " + firstName + "
"
		 124 + "MI: " + mi + "
"
		 125 + "Telephone: " + telephone + "
"
		 126 + "Email: " + email + "
"
		 127 + "Street: " + street + "
"
		 128 + "City: " + city + "
"
		 129 + "Street: " + street + "
"
		 130 + "City: " + city + "
"
		 131 + "State: " + state + "
"
		 132 + "Zip: " + zip + "</p>";
		 133 }
		 134
		 135 /** Initialize database connection */
		 136 private void initializeJdbc() {
		 137 try {
		 138 // Explicitly load a MySQL driver
		 139 Class.forName("com.mysql.jdbc.Driver");
		 140 System.out.println("Driver loaded");
		 141
		 142 // Establish a connection
		 143 Connection conn = DriverManager.getConnection(
		 144 "jdbc:mysql://localhost/javabook", "scott", "tiger");
		 145
		 146 // Create a Statement
		 147 pstmt = conn.prepareStatement("insert into Address (lastName,"	 148 + " firstName, mi, telephone, email, street, city, "
		 149 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
		 150 }
		 151 catch (Exception ex) {
		 152 System.out.println(ex);
		 153 }
		 154 }
		 155
		 156 /** Store an address to the database */
store address 157 public String storeStudent() {
		 158 try {
		 159 pstmt.setString(1, lastName);
		 160 pstmt.setString(2, firstName);
		 161 pstmt.setString(3, mi);
		 162 pstmt.setString(4, telephone);
		 163 pstmt.setString(5, email);
		 164 pstmt.setString(6, street);
		 165 pstmt.setString(7, city);
		 166 pstmt.setString(8, state);
		 167 pstmt.setString(9, zip);
		 168 pstmt.executeUpdate();
update status 169 status = firstName + " " + lastName
		 170 + " is now registered in the database.";
		 171 }
		 172 catch (Exception ex) {
		 173 status = ex.getMessage();
		 174 }
		 175
go to a new page 176 return "AddressStoredStatus";
		 177 }
		 178
		 179 public String getStatus() {
		 180 return status;
		 181 }
		 182 }

A session-scoped managed bean must implement the java.io.Serializable interface. So, the AddressRegistration class is defined as a subtype of java.io.Serializable.

The action for the Register button in the AddressRegistration JSF page is processSubmit() (line 64 in AddressRegistration.xhtml). This method checks if last name and first name are not empty (lines 106–111 in AddressRegistrationJSFBean.java). If so, it returns a string "ConfirmAddress", which causes the ConfirmAddress JSF page to be displayed.

The ConfirmAddress JSF page displays the data entered from the user (line 12 in ConfirmAddress.xhtml). The getInput() method (lines 120–133 in AddressRegistrationJSFBean.java) collects the input.

The action for the Confirm button in the ConfirmAddress JSF page is storeStudent() (line 15 in ConfirmAddress.xhtml). This method stores the address in the database (lines 157–177 in AddressRegistrationJSFBean.java) and returns a string "AddressStoredStatus", which causes the AddressStoredStatus page to be displayed. The status message is displayed in this page (line 12 in AddressStoredStatus.xhtml).

The action for the Go Back button in the ConfirmAddress page is "AddressRegistration" (line 17 in ConfirmAddress.xhtml). This causes the AddressRegistration page to be displayed for the user to reenter the input.

The scope of the managed bean is session (line 9 AddressRegistrationJSFBean.java) so the multiple pages can share the same bean.

Note this program loads the database driver explicitly (line 139 AddressRegistrationJSFBean.java). Sometimes, an IDE such as NetBeans is not able to find a suitable driver. Loading a driver explicitly can avoid this problem.

39.10 Contexts and Dependency Injection

	Contexts and dependency injection enables beans to be shared in multiple applications.

Contexts and dependency injection, short for CDI, allows multiple programs to share a bean. To illustrate the need for this, consider two simple webpages and a server object named track. One page contains a button and a message that displays the number of times the button is clicked from the current IP address, as shown in Figure 39.25. When the button is clicked for the first time, the user’s IP address along with count value 1 is stored in a map with the IP address as the key. When the button is clicked again, the count value for the IP address is increased in the map. The other page simply displays the total count from each IP address, as shown in Figure 39.26. The Track class is defined as shown in Listing 39.20.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: the current count is 4 and your i p address is 73, period, 182, period, 3, period, 134, period.]Figure 39.25

The count is updated when the Click Me button is clicked.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: count summary is, left brace, 73, period, 182, period, 3, period, 134 = 4, comma, 130, period, 254, period, 204, period, 35 = 2, comma, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 1 = 7, right brace.]Figure 39.26

The count for each client IP Address is displayed.

Listing 39.20 Track.java

		 1 package jsf2demo;
		 2
		 3 import java.util.HashMap;
		 4 import java.util.Map;
		 5 import javax.enterprise.context.ApplicationScoped;
		 6
application scope 7 @ApplicationScoped
	 8 public class Track {
store counts 9 private Map<String, Integer> map = new HashMap<>();
		 10
		 11 public void add(String ipAddress) {
add or update count 12 map.put(ipAddress, map.containsKey(ipAddress) ?
 13 map.get(ipAddress) + 1 : 1);
		 14 }
		 15
return count 16 public int getCount(String ipAddress) {
		 17 return map.containsKey(ipAddress) ? map.get(ipAddress) : 0;
		 18 }
		 19
return all counts 20 public String getAllCount() {
		 21 return "Count summary is " + map;
		 22 }
		 23 }

A Track object uses a map to store an IP address and its count with IP address as a key (line 9). The add method (lines 11–14) adds an IP Address to the map. If the IP address is not in the map, a new entry is created for the IP Address with value 1. Otherwise, the value for the IP address is incremented by 1 in the map. The getCount method (lines 16–18) returns the count for an IP address. If the IP address is not in the map, the method returns 0. The getAllCount method (lines 20–22) simply returns a string that describes the counts for all IP address in the map.

We now create a page named IncreaseCount.xhtml (Listing 39.21) with a button for displaying the number of times a button is clicked on the client, and create a page named DisplayCount.xhtml (Listing 39.22) for displaying the counts from all clients.

Listing 39.21 IncreaseCount.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
		 6 <h:head>
		 7 <title>IncreaseCount</title>
		 8 </h:head>
		 9 <h:body>
		 10 <h:form>
		 11 <h:commandButton
process a click 12 action="#{increaseCount.click()}" value="Click Me"/>
obtain count 13
The current count is #{increaseCount.getCount()} and your
obtain IP address 14 IP address is #{increaseCount.getIpAddress()}.</br>
	 15 </h:form>
		 16 </h:body>
		 17 </html>

Listing 39.22 DisplayCount.xhtml

		 1 <?xml version='1.0' encoding='UTF-8' ?>
		 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
		 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
		 4 <html xmlns="http://www.w3.org/1999/xhtml"
		 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
		 6 <h:head>
		 7 <title>DisplayCount</title>
		 8 </h:head>
		 9 <h:body>
obtain all counts 10 #{displayCount.getAllCount()}.
		 11 </h:body>
		 12 </html>

The IncreaseCount page uses the increasCount bean to process the click action (line 12), obtain the click count (line 13), and the client’s IP address (line 14). The DisplayCount page uses the displayCount bean to obtain the count from all clients (line 10). Both increasCount and displayCount need to access the same Track object. How can you create a Track object to be used by different objects? JSF supports context dependency injection (CDI) for injecting an object into a class using the @Inject annotation. Listing 39.23 gives the implementation for IncreaseCount.java and Listing 39.24 for DisplayCount.java.

Listing 39.23 IncreaseCount.java

		 1 package jsf2demo;
		 2
		 3 import javax.enterprise.context.SessionScoped;
		 4 import javax.inject.Named;
		 5 import javax.faces.context.FacesContext;
		 6 import javax.inject.Inject;
		 7 import javax.servlet.http.HttpServletRequest;
		 8
		 9 @Named(value = "increaseCount")
session scope	 10 @SessionScoped
		 11 public class IncreaseCount implements java.io.Serializable {
inject track	 12 @Inject private Track track;
		 13 private String ipAddress;
		 14
increase count 15 public IncreaseCount() {
obtain client’s IP 16 HttpServletRequest request = (HttpServletRequest)FacesContext
		 17 .getCurrentInstance().getExternalContext().getRequest();
		 18 this.ipAddress = request.getRemoteAddr();
		 19 }
		 20
		 21 public void click() {
add an IP address 22 track.add(ipAddress);
		 23 }
		 24
		 25 public String getIpAddress() {
		 26 return ipAddress;
		 27 }
		 28
		 29 public int getCount() {
count for an IP 30 return track.getCount(ipAddress);
		 31 }
		 32 }

Listing 39.24 DisplayCount.java

		 1 package jsf2demo;
		 2
		 3 import javax.enterprise.context.ApplicationScoped;
		 4 import javax.inject.Named;
		 5 import javax.inject.Inject;
		 6
		 7 @Named(value = "displayCount")
application scope 8 @ApplicationScoped
		 9 public class DisplayCount {
inject track	 10 @Inject private Track track;
		 11
obtain all counts 12 public String getAllCount() {
		 13 return track.getAllCount();
		 14 }
		 15 }

The @Inject annotation in line 12 of IncreaseCount.java and line 10 of DisplayCount.java injects a Track object. This Track object is created by the Java server container. The track data fields in both classes refer to this object.

In IncreaseCount.java, the constructor obtains the IP address of a client (lines 16 and 17) and sets it in the data field ipAddress (line 18). The click method adds the ipAddress to the map in the track object (line 22).

Note the scope for Track and DisplayCount is ApplicationScoped since these two objects are created once for the entire application. However, the scope for IncreaseCount is SessionScoped since each session has its own IP Address.

Key Terms

	application scope 39-21

	contexts and dependency injection (CDI) 39-40

	JavaBean 39-5

	request scope 39-21

	scope 39-21

	session scope 39-21

	view scope 39-21

Chapter Summary

	JSF enables you to completely separate Java code from HTML.

	A facelet is an XHTML page that mixes JSF tags with XHTML tags.

	JSF applications are developed using the Model-View-Controller (MVC) architecture, which separates the application’s data (contained in the model) from the graphical presentation (the view).

	The controller is the JSF framework that is responsible for coordinating interactions between view and the model.

	In JSF, the facelets are the view for presenting data. Data are obtained from Java objects. Objects are defined using Java classes.

	In JSF, the objects that are accessed from a facelet are JavaBeans objects.

	The JSF expression can either use the property name or invoke the method to obtain the current time.

	JSF provides many elements for displaying GUI components. The tags with the h prefix are in the JSF HTML Tag library. The tags with the f prefix are in the JSF Core Tag library.

	You can specify the JavaBeans objects at the application scope, session scope, view scope, or request scope.

	The view scope keeps the bean alive as long as you stay on the view. The view scope is between session and request scopes.

	JSF provides several convenient and powerful ways for input validation. You can use the standard validator tags in the JSF Core Tag Library or create custom validators.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	*39.1	(Factorial table in JSF) Write a JSF page that displays a factorial page as shown in Figure 39.27 . Display the table in an h:outputText component. Set its escape property to false to display it as HTML contents.

 Figure 39.27

The JSF page displays factorials for the numbers from 0 to 10 in a table.

	*39.2	(Multiplication table) Write a JSF page that displays a multiplication table as shown in Figure 39.28 .

 Figure 39.28

The JSF page displays the multiplication table.

	*39.3	(Calculate tax) Write a JSF page to let the user enter taxable income and filing status, as shown in Figure 39.29a . Clicking the Compute Tax button computes and displays the tax, as shown in Figure 39.29b . Use the computeTax method introduced in Listing 3.5 , ComputeTax.java, to compute tax.

 Figure 39.29

The JSF page computes the tax.

	*39.4	(Calculate loan) Write a JSF page that lets the user enter loan amount, interest rate, and number of years, as shown in Figure 39.30a . Click the Compute Loan Payment button to compute and display the monthly and total loan payments, as shown in Figure 39.30b . Use the Loan class given in Listing 10.2 , Loan.java, to compute the monthly and total payments.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: loan amount, colon, 10000, period, 0. Line 2: annual interest rate, colon, 5, period, 0. Line 3: number of years, colon, 15. Line 4: monthly payment, colon, 79, period, 0 7 9 3 6 2 6 7 4 1 5 4 6 4. Line 5: monthly payment, colon, 14234, period, 2 8 5 2 8 1 3 4 7 8 3 5.]Figure 39.30

The JSF page computes the loan payment.

	*39.5	(Addition quiz) Write a JSF program that generates addition quizzes randomly, as shown in Figure 39.31a . After the user answers all questions, it displays the result, as shown in Figure 39.31b .

 [image: Program code. In the code, the words in the variable names are merged. Line 1: 22 + 7 = 29 correct. Line 2: 18 + 2 = 20 correct. Line 3: 16 + 4 = 20 correct. Line 4: 17 + 1 = 18 correct. Line 5: 14 + 6 = 45 wrong. Line 6: 29 + 5 = 45 wrong. Line 7: 13 + 6 = 45 wrong. Line 8: 25 + 3 = 45 wrong. Line 9: 14 + 1 = 45 wrong. Line 10: 29 + 8 = 37 correct. Line 11: there are 5 correct guesses.]Figure 39.31

The program displays addition questions in (a) and answers in (b).

	*39.6	(Large factorial) Rewrite Exercise 39.1 to handle large factorial as shown in ­Figure39.32 . Use the BigInteger class introduced in Section 10.9 .

 Figure 39.32

The JSF page displays factorials for the numbers from 10 to 20 in a table.

	*39.7	(Guess birthday) Listing 4.3 , GuessBirthday.java, gives a program for guessing a birthday. Write a JSF program that displays five sets of numbers, as shown in Figure 39.33a . After the user checks the appropriate boxes and clicks the Guess Birthday button, the program displays the birthday, as shown in Figure 39.33b .

 Figure 39.33

(a) The program displays five sets of numbers for the user to check the boxes. (b) The program displays the date.

	*39.8	(Guess capitals) Write a JSF that prompts the user to enter a capital for a state, as shown in Figure 39.34a . Upon receiving the user input, the program reports whether the answer is correct, as shown in Figure 39.34b . You can click the Next button to display another question. You can use a two-dimensional array to store the states and capitals, as proposed in Exercise 8.37 . Create a list from the array and apply the shuffle method to reorder the list so the questions will appear in random order.

 Figure 39.34

(a) The program displays a question. (b) The program displays the answer to the question.

	*39.9	(Access and update a Staff table) Write a JSF program that views, inserts, and updates staff information stored in a database, as shown in Figure 39.35 . The view button displays a record with a specified ID. The Staff table is created as follows:

Figure 39.35

The webpage lets you view, insert, and update staff information.

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),
 mi char(1),
 address varchar(20),
 city varchar(20),
 state char(2),
 telephone char(10),
 email varchar(40),
 primary key (id)
);

	*39.10	(Random cards) Write a JSF that displays four random cards from a deck of 52 cards, as shown in Figure 39.36 . When the user clicks the Refresh button, four new random cards are displayed.

 Figure 39.36

This JSF application displays four random cards.

	***39.11	(Game: the 24-point card game) Rewrite Exercise 20.13 using JSF, as shown in Figure 39.37 . Upon clicking the Refresh button, the program displays four random cards and displays an expression if a 24-point solution exists. Otherwise, it displays “No solution”.

 Figure 39.37

The JSF application solves a 24-point card game.

	***39.12	(Game: the 24-point card game) Rewrite Exercise 20.17 using JSF, as shown in Figure 39.38 . The program lets the user enter four card values and finds a solution upon clicking the Find a Solution button.

 Figure 39.38

The user enters four numbers and the program finds a solution.

	*39.13	(Day of week) Write a program that displays the day of the week for a given day, month, and year, as shown in Figure 39.39 . The program lets the user select a day, month, and year, and click the Get Day of Week button to display the day of week. The Time field displays “Future” if it is a future day or “Past” otherwise. Use the ­Zeller’s congruence to find the day of the week (see Programming Exercise 3.21).

 Figure 39.39

The user enters a day, month, and year and the program displays the day of the week.

	*39.14	(Display total count) Revise Listing 39.22 , DisplayCount.xhtml to display the total count of the button clicks form all clients and display the client’s IP address and counts in increasing order of the counts, as shown in Figure 39.40 .

 [image: Program code. In the code, the words in the variable names are merged. Line 1, indented once: total count is 13. Line 2, indented twice: i p address count. Line 3, indented once: 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 0, colon, 1 3. Line 4, indented twice: 130, period, 254, period, 77, period, 131 4. Line 5, indented twice: 130, period, 254, period, 204, period, 35 6.]Figure 39.40

The total counts and individual client counts are displayed.

CHAPTER 40 Remote Method Invocation

Objectives

	To explain how RMI works (§40.2).

	To describe the process of developing RMI applications (§40.3).

	To distinguish between RMI and socket-level programming (§40.4).

	To develop three-tier applications using RMI (§40.5).

	To use callbacks to develop interactive applications (§40.6).

40.1 Introduction

[image:]

	Remote Method Invocation is a high-level Java API for Java network programming.

Remote Method Invocation (RMI) provides a framework for building distributed Java systems. Using RMI, a Java object on one system can invoke a method in an object on another system on the network. A distributed Java system can be defined as a collection of cooperative distributed objects on the network. In this chapter, you will learn how to use RMI to create useful distributed applications.

40.2 RMI Basics

[image:]

	RMI enables you to access a remote object and invoke its methods.

RMI is the Java Distributed Object Model for facilitating communications among distributed objects. RMI is a high-level API built on top of sockets. Socket-level programming allows you to pass data through sockets among computers. RMI enables you also to invoke methods in a remote object. Remote objects can be manipulated as if they were residing on the local host. The transmission of data among different machines is handled by the JVM transparently.

In many ways, RMI is an evolution of the client/server architecture. A client is a component that issues requests for services, and a server is a component that delivers the requested services. Like the client/server architecture, RMI maintains the notion of clients and servers, but the RMI approach is more flexible.

	An RMI component can act as both a client and a server, depending on the scenario in question.

	An RMI system can pass functionality from a server to a client, and vice versa. Typically a client/server system only passes data back and forth between server and client.

40.2.1 How Does RMI Work?

All the objects you have used before this chapter are called local objects. Local objects are accessible only within the local host. Objects that are accessible from a remote host are called remote objects. For an object to be invoked remotely, it must be defined in a Java interface accessible to both the server and the client. Furthermore, the interface must extend the java.rmi.Remote interface. Like the java.io.Serializable interface, java.rmi.Remote is a marker interface that contains no constants or methods. It is used only to identify remote objects.

The key components of the RMI architecture are listed below (see Figure 40.1):

 Figure 40.1

Java RMI uses a registry to provide naming services for remote objects, and uses the stub and the skeleton to facilitate communications between client and server.

	Server object interface: A subinterface of java.rmi.Remote that defines the methods for the server object.

	Server class: A class that implements the remote object interface.

	Server object: An instance of the server class.

	RMI registry: A utility that registers remote objects and provides naming services for locating objects.

	Client program: A program that invokes the methods in the remote server object.

	Server stub: An object that resides on the client host and serves as a surrogate for the remote server object.

	Server skeleton: An object that resides on the server host and communicates with the stub and the actual server object.

RMI works as follows:

	A server object is registered with the RMI registry.

	A client looks through the RMI registry for the remote object.

	Once the remote object is located, its stub is returned in the client.

	The remote object can be used in the same way as a local object. Communication between the client and the server is handled through the stub and the skeleton.

The implementation of the RMI architecture is complex, but the good news is that RMI provides a mechanism that liberates you from writing the tedious code for handling parameter passing and invoking remote methods. The basic idea is to use two helper classes known as the stub and the skeleton for handling communications between client and server.

The stub and the skeleton are automatically generated. The stub resides on the client machine. It contains all the reference information the client needs to know about the server object. When a client invokes a method on a server object, it actually invokes a method that is encapsulated in the stub. The stub is responsible for sending parameters to the server and for receiving the result from the server and returning it to the client.

The skeleton communicates with the stub on the server side. The skeleton receives parameters from the client, passes them to the server for execution, and returns the result to the stub.

40.2.2 Passing Parameters

When a client invokes a remote method with parameters, passing the parameters is handled by the stub and the skeleton. Obviously, invoking methods in a remote object on a server is very different from invoking methods in a local object on a client, since the remote object is in a different address space on a separate machine. Let us consider three types of parameters:

	Primitive data types, such as char, int, double, or boolean, are passed by value like a local call.

	Local object types, such as java.lang.String, are also passed by value, but this is completely different from passing an object parameter in a local call. In a local call, an object parameter’s reference is passed, which corresponds to the memory address of the object. In a remote call, there is no way to pass the object reference, because the address on one machine is meaningless to a different JVM. Any object can be used as a parameter in a remote call as long as it is serializable. The stub serializes the object parameter and sends it in a stream across the network. The skeleton deserializes the stream into an object.

	Remote object types are passed differently from local objects. When a client invokes a remote method with a parameter of a remote object type, the stub of the remote object is passed. The server receives the stub and manipulates the parameter through it. Passing remote objects will be discussed in Section 40.6, RMI Callbacks.

40.2.3 RMI Registry

How does a client locate the remote object? The RMI registry provides the registry services for the server to register the object and for the client to locate the object.

You can use several overloaded static getRegistry() methods in the LocateRegistry class to return a reference to a Registry, as shown in Figure 40.2. Once a Registry is obtained, you can bind an object with a unique name in the registry using the bind or rebind method, or locate an object using the lookup method, as shown in Figure 40.3.

[image: Program code. In the code, the words in the variable names are merged. Line 1: java, period, r m i, period, registry, period, locate registry. Line 2: + get registry, left parenthesis, right parenthesis, colon, registry. Note: Returns a reference to the remote object registry for the local host on the default registry port of 1099. Line 3: + get registry, left parenthesis, port, colon, i n t, right parenthesis, colon, registry. Note: Returns a reference to the remote object registry for the local host on the specified port. Line 4: + get registry, left parenthesis, host, colon, string, right parenthesis, colon, registry. Note: Returns a reference to the remote object registry on the specified host on the default registry port of 1099. Line 5: + get registry, left parenthesis, host, colon, string, comma, port, colon, i n t, right parenthesis, colon, registry. Note: Returns a reference to the remote object registry on the specified host and port.]
Figure 40.2

The LocateRegistry class provides the methods for obtaining a registry on a host.

[image: Program code. In the code, the words in the variable names are merged. Line 1: java, period, r m i, period, registry, period, registry. Line 2: + bind, left parenthesis, name, colon, string, comma, o b j, colon, remote, right parenthesis, colon, void. Note: Binds the specified name with the remote object. Line 3: + rebind, left parenthesis, name, colon, string, comma, o b j, colon, remote, right parenthesis, colon, void. Note: Binds the specified name with the remote object. Any existing binding for the name is replaced. Line 4: + unbind, left parenthesis, name, colon, string, right parenthesis, colon, void. Note: Destroys the binding for the specified name that is associated with a remote object. Line 5: + list, left parenthesis, name, colon, string, right parenthesis, colon, string, open bracket, close bracket. Note: Returns an array of the names bound in the registry. Line 6: + lookup, left parenthesis, name, colon, string, right parenthesis, colon, remote. Note: Returns a reference, a stub, for the remote object associated with the specified name.]
Figure 40.3

The Registry class provides the methods for binding and obtaining references to remote objects in a remote object registry.

40.3 Developing RMI Applications

[image:]

	An RMI application consists of defining server object interface, defining a server object interface implementation class, creating and registering a server object, and developing a client program.

Now that you have a basic understanding of RMI, you are ready to write simple RMI applications. The steps in developing an RMI application are shown in Figure 40.4 and listed below.

 Figure 40.4

The steps in developing an RMI application.

	Define a server object interface that serves as the contract between the server and its clients, as shown in the following outline:

public interface ServerInterface extends Remote {
 public void service1(...) throws RemoteException;
 // Other methods
}

A server object interface must extend the java.rmi.Remote interface.

	Define a class that implements the server object interface, as shown in the following outline:

public class ServerInterfaceImpl extends UnicastRemoteObject
 implements ServerInterface {
 public void service1(...) throws RemoteException {
 // Implement it
 }
 // Implement other methods
}

The server implementation class must extend the java.rmi.server.UnicastRemote Object class. The UnicastRemoteObject class provides support for point-to-point active object references using TCP streams.

	Create a server object from the server implementation class and register it with an RMI registry:

ServerInterface server = new ServerInterfaceImpl(...);
Registry registry = LocateRegistry.getRegistry();
registry.rebind("RemoteObjectName", server);

	Develop a client that locates a remote object and invokes its methods, as shown in the following outline:

Registry registry = LocateRegistry.getRegistry(host);
ServerInterface server = (ServerInterfaceImpl)
 registry.lookup("RemoteObjectName");
server.service1(...);

The example that follows demonstrates the development of an RMI application through these steps.

40.3.1 Example: Retrieving Student Scores from an RMI Server

This example creates a client that retrieves student scores from an RMI server. The client, shown in Figure 40.5, displays the score for the specified name.

 Figure 40.5

You can get the score by entering a student name and clicking the Get Score button.

	Create a server interface named StudentServerInterface in Listing 40.1. The interface tells the client how to invoke the server’s findScore method to retrieve a student score.

Listing 40.1 StudentServerInterface.java

 1 import java.rmi.*;
 2
 3 public interface StudentServerInterface extends Remote {
 4 /**
 5 * Return the score for the specified name
 6 * @param name the student name
 7 * @return a double score or –1 if the student is not found
 8 */
 9 public double findScore(String name) throws RemoteException;
10 }

Any object that can be used remotely must be defined in an interface that extends the java.rmi.Remote interface (line 3). StudentServerInterface, extending Remote, defines the findScore method that can be remotely invoked by a client to find a student’s score. Each method in this interface must declare that it may throw a java.rmi.RemoteException (line 9). Therefore, your client code that invokes this method must be prepared to catch this exception in a try-catch block.

	Create a server implementation named StudentServerInterfaceImpl (Listing 40.2) that implements StudentServerInterface. The findScore method returns the score for a specified student. It returns -1 if the score is not found.

Listing 40.2 StudentServerInterfaceImpl.java

 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.util.*;
 4
 5 public class StudentServerInterfaceImpl
 6 extends UnicastRemoteObject
 7 implements StudentServerInterface {
 8 // Stores scores in a map indexed by name
 9 private HashMap<String, Double> scores =
10 new HashMap<String, Double>();
11
12 public StudentServerInterfaceImpl() throws RemoteException {
13 initializeStudent();
14 }
15
16 /** Initialize student information */
17 protected void initializeStudent() {
18 scores.put("John", new Double(90.5));
19 scores.put("Michael", new Double(100));
20 scores.put("Michelle", new Double(98.5));
21 }
22
23 /** Implement the findScore method from the
24 * Student interface */
25 public double findScore(String name) throws RemoteException {
26 Double d = (Double)scores.get(name);
27
28 if (d == null) {
29 System.out.println("Student " + name + " is not found ");
30 return –1;
31 }
32 else {
33 System.out.println("Student " + name + "\'s score is "
34 + d.doubleValue());
35 return d.doubleValue();
36 }
37 }
38 }

The StudentServerInterfaceImpl class implements StudentServerInterface. This class must also extend the java.rmi.server.RemoteServer class or its subclass. RemoteServer is an abstract class that defines the methods needed to create and export remote objects. Often its subclass java.rmi.server.UnicastRemoteObject is used (line 6). This subclass implements all the abstract methods defined in RemoteServer.

StudentServerInterfaceImpl implements the findScore method (lines 25–37) defined in StudentServerInterface. For simplicity, three students, John, Michael, and Michelle, and their corresponding scores are stored in an instance of java.util.HashMap named scores. HashMap is a concrete class of the Map interface in the Java Collections Framework, which makes it possible to search and retrieve a value using a key. Both values and keys are of Object type. The findScore method returns the score if the name is in the hash map, and returns -1 if the name is not found.

	Create a server object from the server implementation and register it with the RMI server (see Listing 40.3).

Listing 40.3 RegisterWithRMIServer.java

 1 import java.rmi.registry.*;
 2
 3 public class RegisterWithRMIServer {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 try {
 7 StudentServerInterface obj =
 8 new StudentServerInterfaceImpl();
 9 Registry registry = LocateRegistry.getRegistry();
10 registry.rebind("StudentServerInterfaceImpl", obj);
11 System.out.println("Student server " + obj + " registered");
12 }
13 catch (Exception ex) {
14 ex.printStackTrace();
15 }
16 }
17 }

RegisterWithRMIServer contains a main method, which is responsible for starting the server. It performs the following tasks: (1) create a server object (line 8); (2) obtain a reference to the RMI registry (line 9), and (3) register the object in the registry (line 10).

	Create a client named StudentServerInterfaceClient in Listing 40.4. The client locates the server object from the RMI registry and uses it to find the scores.

Listing 40.4 StudentServerInterfaceClient.java

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.GridPane;
 7 import javafx.stage.Stage;
 8 import java.rmi.registry.LocateRegistry;
 9 import java.rmi.registry.Registry;
10
11 public class StudentServerInterfaceClient extends Application {
12 // Declare a Student instance
13 private StudentServerInterface student;
14
15 private Button btGetScore = new Button("Get Score");
16 private TextField tfName = new TextField();
17 private TextField tfScore = new TextField();
18
19 public void start(Stage primaryStage) {
20 GridPane gridPane = new GridPane();
21 gridPane.setHgap(5);
22 gridPane.add(new Label("Name"), 0, 0);
23 gridPane.add(new Label("Score"), 0, 1);
24 gridPane.add(tfName, 1, 0);
25 gridPane.add(tfScore, 1, 1);
26 gridPane.add(btGetScore, 1, 2);
27
28 // Create a scene and place the pane in the stage
29 Scene scene = new Scene(gridPane, 250, 250);
30 primaryStage.setTitle("StudentServerInterfaceClient");
31 primaryStage.setScene(scene); // Place the scene in the stage
32 primaryStage.show(); // Display the stage
33
34 initializeRMI();
35 btGetScore.setOnAction(e − > getScore());
36 }
37
38 private void getScore() {
39 try {
40 // Get student score
41 double score = student.findScore(tfName.getText().trim());
42
43 // Display the result
44 if (score < 0)
45 tfScore.setText("Not found");
46 else
47 tfScore.setText(new Double(score).toString());
48 }
49 catch(Exception ex) {
50 ex.printStackTrace();
51 }
52 }
53
54 /** Initialize RMI */
55 protected void initializeRMI() {
56 String host = "";
57
58 try {
59 Registry registry = LocateRegistry.getRegistry(host);
60 student = (StudentServerInterface)
61 registry.lookup("StudentServerInterfaceImpl");
62 System.out.println("Server object " + student + " found");
63 }
64 catch(Exception ex) {
65 System.out.println(ex);
66 }
67 }
68
69 /**
70 * The main method is only needed for the IDE with limited
71 * JavaFX support. Not needed for running from the command line.
72 */
73 public static void main(String[] args) {
74 launch(args);
75 }
76 }

StudentServerInterfaceClient invokes the findScore method on the server to find the score for a specified student. The key method in StudentServerInterfaceClient is the initializeRMI method (lines 55–67), which is responsible for locating the server stub.

The lookup(String name) method (line 61) returns the remote object with the specified name. Once a remote object is found, it can be used just like a local object. The stub and the skeleton are used behind the scenes to make the remote method invocation work.

	Follow the steps below to run this example.

	5.1. Start the RMI registry by typing “start rmiregistry” at a DOS prompt from the book directory. By default, the port number 1099 is used by rmiregistry. To use a different port number, simply type the command “start rmiregistry portnumber” at a DOS prompt.

	5.2. Start the server RegisterWithRMIServer using the following command at C:\ book directory:

C:\ book>java RegisterWithRMIServer

	5.3. Run the client StudentServerInterfaceClient as an application. A sample run of the application is shown in Figure 40.5(b) .

Note:

You must start rmiregistry from the directory where you will run the RMI server, as shown in Figure 40.6. Otherwise, you will receive the error ClassNotFoundException on StudentServerInterfaceImpl_Stub.

 Figure 40.6

To run an RMI program, first start the rmiregistry, then register the server object with the registry. The ­client locates it from the registry.

Note:

Server, registry, and client can be on three different machines. If you run the client and the server on separate machines, you need to place StudentServerInterface on both machines.

Caution:

If you modify the remote object implementation class, you need to restart the server class to reload the object to the RMI registry. In some old versions of rmiregistry, you may have to restart rmiregistry.

	40.3.1 How do you define an interface for a remote object?

	40.3.2 Describe the roles of the stub and the skeleton.

	40.3.3 What is java.rmi.Remote? How do you define a server class?

	40.3.4 What is an RMI registry for? How do you create an RMI registry?

	40.3.5 What is the command to start an RMI registry?

	40.3.6 How do you register a remote object with the RMI registry?

	40.3.7 What is the command to start a custom RMI server?

	40.3.8 How does a client locate a remote object stub through an RMI registry?

	40.3.9 How do you obtain a registry? How do you register a remote object? How do you locate remote object?

40.4 RMI vs. Socket-Level Programming

[image:]

	RMI is a high-level network programming and socket-level network programming is low-low-level.

RMI enables you to program at a higher level of abstraction. It hides the details of socket server, socket, connection, and sending or receiving data. It even implements a multithreading server under the hood, whereas with socket-level programming, you have to explicitly implement threads for handling multiple clients.

RMI applications are scalable and easy to maintain. You can change the RMI server or move it to another machine without modifying the client program except for resetting the URL to locate the server. (To avoid resetting the URL, you can modify the client to pass the URL as a command-line parameter.) In socket-level programming, a client operation to send data requires a server operation to read it. The implementation of client and server at the socket level is tightly synchronized.

RMI clients can directly invoke the server method, whereas socket-level programming is limited to passing values. Socket-level programming is very primitive. Avoid using it to develop client/server applications. As an analogy, socket-level programming is similar to ­programming in assembly language, whereas RMI programming is like programming in a high-level language.

	40.10 What are the advantages of RMI over socket-level programming?

40.5 Developing Three-Tier Applications Using RMI

[image:]

	RMI can be used in the middle between a client and a database to develop scalable and flexible business applications.

Three-tier applications have gained considerable attention in recent years, largely because of the demand for more scalable and load-balanced systems to replace traditional two-tier client/server database systems. A centralized database system does not just handle data access, but it also processes the business rules on data. Thus, a centralized database is usually heavily loaded, because it requires extensive data manipulation and processing. In some situations, data processing is handled by the client and business rules are stored on the client side. It is preferable to use a middle tier as a buffer between client and database. The middle tier can be used to apply business logic and rules, and to process data to reduce the load on the database.

A three-tier architecture does more than just reduce the processing load on the server. It also provides access to multiple network sites. This is especially useful to Java clients that need to access multiple databases on different servers, since the server may change.

To demonstrate, let us rewrite the example in Section 40.3.1, Example: Retrieving Student Scores from an RMI Server, to find scores stored in a database rather than a hash map. In addition, the system is capable of blocking a client from accessing a student who has not given the university permission to publish his/her score. An RMI component is developed to serve as a middle tier between client and database; it sends a search request to the database, processes the result, and returns an appropriate value to the client.

For simplicity, this example reuses the StudentServerInterface interface and StudentServerInterfaceClient class from Section 40.3.1 with no modifications. All you have to do is to provide a new implementation for the server interface and create a program to register the server with the RMI. Here are the steps to complete the program:

	Store the scores in a database table named Score that contains three columns: name, score, and permission. The permission value is 1 or 0, which indicates whether the student has given the university permission to release his/her grade. The following is the statement to create the table and insert three records:

create table Scores (name varchar(20),
 score number, permission number);

 insert into Scores values ('John', 90.5, 1);
insert into Scores values ('Michael', 100, 1);
insert into Scores values ('Michelle', 100, 0);

	Create a new server implementation named Student3TierImpl in Listing 40.5. The server retrieves a record from the Scores table, processes the retrieved information, and sends the result back to the client.

Listing 40.5 Student3TierImpl.java

 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.sql.*;
 4
 5 public class Student3TierImpl extends UnicastRemoteObject
 6 implements StudentServerInterface {
 7 // Use prepared statement for querying DB
 8 private PreparedStatement pstmt;
 9
10 /** Constructs Student3TierImpl object and exports it on
11 * default port.
12 */
13 public Student3TierImpl() throws RemoteException {
14 initializeDB();
15 }
16
17 /** Constructs Student3TierImpl object and exports it on
18 * specified port.
19 * @param port The port for exporting
20 */
21 public Student3TierImpl(int port) throws RemoteException {
22 super(port);
23 initializeDB();
24 }
25
26 /** Load JDBC driver, establish connection and
27 * create statement */
28 protected void initializeDB() {
29 try {
30 // Load the JDBC driver
31 // Class.forName("oracle.jdbc.driver.OracleDriver");
32 Class.forName("com.mysql.jdbc.Driver ");
33
34 System.out.println("Driver registered");
35
36 // Establish connection
37 /*Connection conn = DriverManager.getConnection
38 ("jdbc:oracle:thin:@drake.armstrong.edu:1521:orcl",
39 "scott", "tiger"); */
40 Connection conn = DriverManager.getConnection
41 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
42 System.out.println("Database connected");
43
44 // Create a prepared statement for querying DB
45 pstmt = conn.prepareStatement(
46 "select * from Scores where name = ?");
47 }
48 catch (Exception ex) {
49 System.out.println(ex);
50 }
51 }
52
53 /** Return the score for specified the name
54 * Return −1 if score is not found.
55 */
56 public double findScore(String name) throws RemoteException {
57 double score = −1;
58 try {
59 // Set the specified name in the prepared statement
60 pstmt.setString(1, name);
61
62 // Execute the prepared statement
63 ResultSet rs = pstmt.executeQuery();
64
65 // Retrieve the score
66 if (rs.next()) {
67 if (rs.getBoolean(3))
68 score = rs.getDouble(2);
69 }
70 }
71 catch (SQLException ex) {
72 System.out.println(ex);
73 }
74
75 return score;
76 }
77 }

Student3TierImpl is similar to Listing 40.2, StudentServerInterfaceImpl.java in ­Section 40.3.1 except that the Student3TierImpl class finds the score from a JDBC data source instead from a hash map.

The table named Scores consists of three columns, name, score, and permission, where the latter indicates whether the student has given permission to show his/her score. Since SQL does not support a boolean type, permission is defined as a number whose value of 1 indicates true and of 0 indicates false.

	The initializeDB() method (lines 28–51) establishes connections with the database and creates a prepared statement for processing the query.

	The findScore method (lines 56–76) sets the name in the prepared statement, ­executes the statement, processes the result, and returns the score for a student whose permission is true.

	Write a main method in the class RegisterStudent3TierServer (see Listing 40.6) that registers the server object using StudentServerInterfaceImpl, the same name as in ­Listing 40.2, so you can use StudentServerInterfaceClient, created in Section 40.3.1, to test the server.

Listing 40.6 RegisterStudent3TierServer.java

 1 import java.rmi.registry.*;
 2
 3 public class RegisterStudent3TierServer {
 4 public static void main(String[] args) {
 5 try {
 6 StudentServerInterface obj = new Student3TierImpl();
 7 Registry registry = LocateRegistry.getRegistry();
 8 registry.rebind("StudentServerInterfaceImpl", obj);
 9 System.out.println("Student server " + obj + " registered");
10 } catch (Exception ex) {
11 ex.printStackTrace();
12 }
13 }
14 }

	Follow the steps below to run this example.

	4.1. Start RMI registry by typing “start rmiregistry” at a DOS prompt from the book directory.

	4.2. Start the server RegisterStudent3TierServer using the following command at the C:\ book directory:

C:\ book>java RegisterStudent3TierServer

	4.3. Run the client StudentServerInterfaceClient. A sample run is shown in ­Figure 40.6 .

	40.5.1 Describe how parameters are passed in RMI.

40.6 RMI Callbacks

[image:]

	RMI callbacks enable the server to invoke the methods on a client.

In a traditional client/server system, a client sends a request to a server, and the server processes the request and returns the result to the client. The server cannot invoke the methods on a client. One important benefit of RMI is that it supports callbacks, which enable the server to invoke methods on the client. With the RMI callback feature, you can develop interactive distributed applications.

In Section 33.6, Case Studies: Distributed TicTacToe Games, you developed a distributed ­TicTacToe game using stream socket programming. The example that follows demonstrates the use of the RMI callback feature to develop an interactive TicTacToe game.

All the examples you have seen so far in this chapter have simple behaviors that are easy to model with classes. The behavior of the TicTacToe game is somewhat complex. To create the classes to model the game, you need to study and understand it and distribute the process appropriately between client and server.

Clearly the client should be responsible for handling user interactions, and the server should coordinate with the client. Specifically, the client should register with the server, and the server can take two and only two players. Once a client makes a move, it should notify the server; the server then notifies the move to the other player. The server should determine the status of the game—that is, whether it has been won or drawn—and notify the players. The server should also coordinate the turns—that is, which client has the turn at a given time. The ideal approach for notifying a player is to invoke a method in the client that sets appropriate properties in the client or sends messages to a player. Figure 40.7 illustrates the relationship between clients and server.

 Figure 40.7

The server coordinates the activities with the clients.

All the calls a client makes can be encapsulated in one remote interface named TicTacToe (Listing 40.7), and all the calls the server invokes can be defined in another interface named CallBack (Listing 40.8). These two interfaces are defined as follows:

Listing 40.7 TicTacToeInterface.java

 1 import java.rmi.*;
 2
 3 public interface TicTacToeInterface extends Remote {
 4 /**
 5 * Connect to the TicTacToe server and return the token.
 6 * If the returned token is ' ', the client is not connected to
 7 * the server
 8 */
 9 public char connect(CallBack client) throws RemoteException;
10
11 /** A client invokes this method to notify the server of its move*/ 12 public void myMove(int row, int column, char token)
13 throws RemoteException;
14 }

Listing 40.8 CallBack.java

 1 import java.rmi.*;
 2
 3 public interface CallBack extends Remote {
 4 /** The server notifies the client for taking a turn */
 5 public void takeTurn(boolean turn) throws RemoteException;
 6
 7 /** The server sends a message to be displayed by the client */
 8 public void notify(java.lang.String message)
 9 throws RemoteException;
10
11 /** The server notifies a client of the other player's move */
12 public void mark(int row, int column, char token)
13 throws RemoteException;
14 }

What does a client need to do? The client interacts with the player. Assume all the cells are initially empty, and the first player takes the X token and the second player the O token. To mark a cell, the player points the mouse to the cell and clicks it. If the cell is empty, the token (X or O) is displayed. If the cell is already filled, the player’s action is ignored.

From the preceding description, it is obvious that a cell is a GUI object that handles mouse-click events and displays tokens. The candidate for such an object could be a button or a panel. Panels are more flexible than buttons. The token (X or O) can be drawn on a panel in any size, but it can be displayed only as a label on a button.

Let Cell be a subclass of JPanel. You can declare a 3×3 grid to be an array Cell[][] cell = new Cell[3][3] for modeling the game. How do you know the state of a cell (marked or not)? You can use a property named marked of the boolean type in the Cell class. How do you know whether the player has a turn? You can use a property named myTurn of boolean. This property (initially false) can be set by the server through a callback.

The Cell class is responsible for drawing the token when an empty cell is clicked, so you need to write the code for listening to the MouseEvent and for painting the shape for tokens X and O. To determine which shape to draw, introduce a variable named marker of the char type. Since this variable is shared by all the cells in a client, it is preferable to declare it in the client and to declare the Cell class as an inner class of the client so this variable will be accessible to all the cells.

Now let us turn our attention to the server side. What does the server need to do? The server needs to implement TicTacToeInterface and notify the clients of the game ­status. The server has to record the moves in the cells and check the status every time a player makes a move. The status information can be kept in a 3×3 array of char. You can implement a method named isFull() to check whether the board is full and a method named isWon(token) to check whether a specific player has won.

Once a client is connected to the server, the server notifies the client which token to use—that is, X for the first client and O for the second. Once a client notifies the server of its move, the server checks the game status and notifies the clients.

Now the most critical question is how the server notifies a client. You know that a client invokes a server method by creating a server stub on the client side. A server cannot directly invoke a client, because the client is not declared as a remote object. The CallBack interface was created to facilitate the server’s callback to the client. In the implementation of CallBack, an instance of the client is passed as a parameter in the constructor of CallBack. The client creates an instance of CallBack and passes its stub to the server, using a remote method named connect() defined in the server. The server then invokes the client’s method through a CallBack instance. The triangular relationship of client, CallBack implementation, and server is shown in Figure 40.8.

 Figure 40.8

The server receives a CallBack stub from the client and invokes the remote methods defined in the CallBack interface, which can invoke the methods defined in the client.

Here are the steps to complete the example.

	Create TicTacToeImpl.java (Listing 40.9) to implement TicTacToeInterface. Add a main method in the program to register the server with the RMI.

Listing 40.9 TicTacToeImpl.java

 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.rmi.registry.*;
 4 import java.rmi.registry.*;
 5
 6 public class TicTacToeImpl extends UnicastRemoteObject
 7 implements TicTacToeInterface {
 8 // Declare two players, used to call players back
 9 private CallBack player1 = null;
 10 private CallBack player2 = null;
 11
 12 // board records players' moves
 13 private char[][] board = new char[3][3];
 14
 15 /** Constructs TicTacToeImpl object and
 16 exports it on default port.
 17 */
 18 public TicTacToeImpl() throws RemoteException {
 19 super();
 20 }
 21
 22 /** Constructs TicTacToeImpl object and exports it on specified
 23 * port.
 24 * @param port The port for exporting
 25 */
 26 public TicTacToeImpl(int port) throws RemoteException {
 27 super(port);
 28 }
 29
 30 /**
 31 * Connect to the TicTacToe server and return the token.
 32 * If the returned token is ' ', the client is not connected to
 33 * the server
 34 */
 35 public char connect(CallBack client) throws RemoteException {
 36 if (player1 == null) {
 37 // player1 (first player) registered
 38 player1 = client;
 39 player1.notify("Wait for a second player to join");
 40 return 'X';
 41 }
 42 else if (player2 == null) {
 43 // player2 (second player) registered
 44 player2 = client;
 45 player2.notify("Wait for the first player to move");
 46 player2.takeTurn(false);
 47 player1.notify("It is my turn (X token)");
 48 player1.takeTurn(true);
 49 return 'O';
 50 }
 51 else {
 52 // Already two players
 53 client.notify("Two players are already in the game");
 54 return ' ';
 55 }
 56 }
 57
 58 /** A client invokes this method to notify the
 59 server of its move*/
 60 public void myMove(int row, int column, char token)
 61 throws RemoteException {
 62 // Set token to the specified cell
 63 board[row][column] = token;
 64
 65 // Notify the other player of the move
 66 if (token == 'X')
 67 player2.mark(row, column, 'X');
 68 else
 69 player1.mark(row, column, 'O');
 70
 71 // Check if the player with this token wins
 72 if (isWon(token)) {
 73 if (token == 'X') {
 74 player1.notify("I won!");
 75 player2.notify("I lost!");
 76 player1.takeTurn(false);
 77 }
 78 else {
 79 player2.notify("I won!");
 80 player1.notify("I lost!");
 81 player2.takeTurn(false);
 82 }
 83 }
 84 else if (isFull()) {
 85 player1.notify("Draw!");
 86 player2.notify("Draw!");
 87 }
 88 else if (token == 'X') {
 89 player1.notify("Wait for the second player to move");
 90 player1.takeTurn(false);
 91 player2.notify("It is my turn, (O token)");
 92 player2.takeTurn(true);
 93 }
 94 else if (token == 'O') {
 95 player2.notify("Wait for the first player to move");
 96 player2.takeTurn(false);
 97 player1.notify("It is my turn, (X token)");
 98 player1.takeTurn(true);
 99 }
100 }
101
102 /** Check if a player with the specified token wins */
103 public boolean isWon(char token) {
104 for (int i = 0; i < 3; i++)
105 if ((board[i][0] == token) && (board[i][1] == token)
106 && (board[i][2] == token))
107 return true;
108
109 for (int j = 0; j < 3; j++)
110 if ((board[0][j] == token) && (board[1][j] == token)
111 && (board[2][j] == token))
112 return true;
113
114 if ((board[0][0] == token) && (board[1][1] == token)
115 && (board[2][2] == token))
116 return true;
117
118 if ((board[0][2] == token) && (board[1][1] == token)
119 && (board[2][0] == token))
120 return true;
121
122 return false;
123 }
124
125 /** Check if the board is full */
126 public boolean isFull() {
127 for (int i = 0; i < 3; i++)
128 for (int j = 0; j < 3; j++)
129 if (board[i][j] == '\u0000')
130 return false;
131
132 return true;
133 }
134
135 public static void main(String[] args) {
136 try {
137 TicTacToeInterface obj = new TicTacToeImpl();
138 Registry registry = LocateRegistry.getRegistry();
139 registry.rebind("TicTacToeImpl", obj);
140 System.out.println("Server " + obj + " registered");
141 }
142 catch (Exception ex) {
143 ex.printStackTrace();
144 }
145 }
146 }

	Create CallBackImpl.java (Listing 40.10) to implement the CallBack interface.

Listing 40.10 CallBackImpl.java

 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3
 4 public class CallBackImpl extends UnicastRemoteObject
 5 implements CallBack {
 6 // The client will be called by the server through callback
 7 private TicTacToeClientRMI thisClient;
 8
 9 /** Constructor */
10 public CallBackImpl(Object client) throws RemoteException {
11 thisClient = (TicTacToeClientRMI)client;
12 }
13
14 /** The server notifies the client for taking a turn */
15 public void takeTurn(boolean turn) throws RemoteException {
16 thisClient.setMyTurn(turn);
17 }
18
19 /** The server sends a message to be displayed by the client */
20 public void notify(String message)throws RemoteException {
21 thisClient.setMessage(message);
22 }
23
24 /** The server notifies a client of the other player's move */
25 public void mark(int row, int column, char token)
26 throws RemoteException {
27 thisClient.mark(row, column, token);
28 }
29 }

	Create a client named TicTacToeClientRMI (Listing 40.11) for interacting with a player and communicating with the server. Enable it to run standalone.

Listing 40.11 TicTacToeClientRMI.java

 1 import java.rmi.*;
 2
 3 import javafx.application.Application;
 4 import javafx.application.Platform;
 5 import javafx.stage.Stage;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.GridPane;
 10 import javafx.scene.layout.Pane;
 11 import javafx.scene.paint.Color;
 12 import javafx.scene.shape.Line;
 13 import javafx.scene.shape.Ellipse;
 14
 15 import java.rmi.registry.Registry;
 16 import java.rmi.registry.LocateRegistry;
 17
 18 public class TicTacToeClientRMI extends Application {
 19 // marker is used to indicate the token type
 20 private char marker;
 21
 22 // myTurn indicates whether the player can move now
 23 private boolean myTurn = false;
 24
 25 // Indicate which player has a turn, initially it is the X player
 26 private char whoseTurn = 'X';
 27
 28 // Create and initialize cell
 29 private Cell[][] cell = new Cell[3][3];
 30
 31 // Create and initialize a status label
 32 private Label lblStatus = new Label("X's turn to play");
 33
 34 // ticTacToe is the game server for coordinating
 35 // with the players
 36 private TicTacToeInterface ticTacToe;
 37
 38 private Label lblIdentification = new Label();
 39
 40 @Override // Override the start method in the Application class
 41 public void start(Stage primaryStage) {
 42 // Pane to hold cell
 43 GridPane pane = new GridPane();
 44 for (int i = 0; i < 3; i++)
 45 for (int j = 0; j < 3; j++)
 46 pane.add(cell[i][j] = new Cell(i, j), j, i);
 47
 48 BorderPane borderPane = new BorderPane();
 49 borderPane.setCenter(pane);
 50 borderPane.setTop(lblStatus);
 51 borderPane.setBottom(lblIdentification);
 52
 53 // Create a scene and place it in the stage
 54 Scene scene = new Scene(borderPane, 450, 170);
 55 primaryStage.setTitle("TicTacToe"); // Set the stage title
 56 primaryStage.setScene(scene); // Place the scene in the stage
 57 primaryStage.show(); // Display the stage
 58
 59 new Thread(() −> {
 60 try {
 61 initializeRMI();
 62 }
 63 catch (Exception ex) {
 64 ex.printStackTrace();
 65 }}).start();
 66 }
 67
 68 /** Initialize RMI */
 69 protected boolean initializeRMI() throws Exception {
 70 String host = "";
 71
 72 try {
 73 Registry registry = LocateRegistry.getRegistry(host);
 74 ticTacToe = (TicTacToeInterface)
 75 registry.lookup("TicTacToeImpl");
 76 System.out.println
 77 ("Server object " + ticTacToe + " found");
 78 }
 79 catch (Exception ex) {
 80 System.out.println(ex);
 81 }
 82
 83 // Create callback for use by the
 84 // server to control the client
 85 CallBackImpl callBackControl = new CallBackImpl(this);
 86
 87 if (
 88 (marker =
 89 ticTacToe.connect((CallBack)callBackControl)) != ' ')
 90 {
 91 System.out.println("connected as " + marker + " player.");
 92 Platform.runLater(() −>
 93 lblIdentification.setText("You are player " + marker));
 94 return true;
 95 }
 96 else {
 97 System.out.println("already two players connected as ");
 98 return false;
 99 }
100 }
101
102 /** Set variable myTurn to true or false */
103 public void setMyTurn(boolean myTurn) {
104 this.myTurn = myTurn;
105 }
106
107 /** Set message on the status label */
108 public void setMessage(String message) {
109 Platform.runLater(() −> lblStatus.setText(message));
110 }
111
112 /** Mark the specified cell using the token */
113 public void mark(int row, int column, char token) {
114 cell[row][column].setToken(token);
115 }
116
117 // An inner class for a cell
118 public class Cell extends Pane {
119 // marked indicates whether the cell has been used
120 private boolean marked = false;
121
122 // row and column indicate where the cell appears on the board 123 int row, column;
124
125 // Token used for this cell
126 private char token = ' ';
127
128 public Cell(final int row, final int column) {
129 this.row = row;
130 this.column = column;
131 setStyle("-fx-border-color: black");
132 this.setPrefSize(2000, 2000);
133 this.setOnMouseClicked(e −> handleMouseClick());
134 }
135
136 /** Return token */
137 public char getToken() {
138 return token;
139 }
140
141 /** Set a new token */
142 public void setToken(char c) {
143 token = c;
144 marked = true;
145
146 if (token == 'X') {
147 Line line1 = new Line(10, 10,
148 this.getWidth() − 10, this.getHeight() − 10);
149 line1.endXProperty().bind(this.widthProperty().subtract(10));
150 line1.endYProperty().bind(this.heightProperty().subtract(10));
151 Line line2 = new Line(10, this.getHeight() − 10,
152 this.getWidth() − 10, 10);
153 line2.startYProperty().bind(
154 this.heightProperty().subtract(10));
155 line2.endXProperty().bind(this.widthProperty().subtract(10));
156
157 // Add the lines to the pane
158 Platform.runLater(() −>
159 this.getChildren().addAll(line1, line2));
160 }
161 else if (token == 'O') {
162 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
163 this.getHeight() / 2, this.getWidth() / 2 − 10,
164 this.getHeight() / 2 − 10);
165 ellipse.centerXProperty().bind(
166 this.widthProperty().divide(2));
167 ellipse.centerYProperty().bind(
168 this.heightProperty().divide(2));
169 ellipse.radiusXProperty().bind(
170 this.widthProperty().divide(2).subtract(10));
171 ellipse.radiusYProperty().bind(
172 this.heightProperty().divide(2).subtract(10));
173 ellipse.setStroke(Color.BLACK);
174 ellipse.setFill(Color.WHITE);
175
176 Platform.runLater(() −>
177 getChildren().add(ellipse)); // Add the ellipse to the pane
178 }
179 }
180
181 /* Handle a mouse click event */
182 private void handleMouseClick() {
183 if (myTurn && !marked) {
184 // Mark the cell
185 setToken(marker);
186
187 // Notify the server of the move
188 try {
189 ticTacToe.myMove(row, column, marker);
190 }
191 catch (RemoteException ex) {
192 System.out.println(ex);
193 }
194 }
195 }
196 }
197
198 /**
199 * The main method is only needed for the IDE with limited
200 * JavaFX support. Not needed for running from the command line.
201 */
202 public static void main(String[] args) {
203 launch(args);
204 }
205 }

	Follow the steps below to run this example.

	4.1. Start RMI registry by typing “start rmiregistry” at a DOS prompt from the book directory.

	4.2. Start the server TicTacToeImpl using the following command at the C:\ book directory:

C:\ book>java TicTacToeImpl

	4.3.	Run the client TicTacToeClientRMI. A sample run is shown in Figure 40.9 .

 Figure 40.9

Two players play each other through the RMI server.

TicTacToeInterface defines two remote methods, connect(CallBack client) and myMove(int row, int column, char token). The connect method plays two roles: one is to pass a CallBack stub to the server, and the other is to let the server assign a token for the player. The myMove method notifies the server that the player has made a specific move.

The CallBack interface defines three remote methods, takeTurn(boolean turn), notify(String message), and mark(int row, int column, char token). The takeTurn method sets the client’s myTurn property to true or false. The notify method displays a message on the client’s status label. The mark method marks the client’s cell with the token at the specified location.

TicTacToeImpl is a server implementation for coordinating with the clients and managing the game. The variables player1 and player2 are instances of CallBack, each of which corresponds to a client, passed from a client when the client invokes the connect method. The variable board records the moves by the two players. This information is needed to determine the game status. When a client invokes the connect method, the server assigns a token X for the first player and O for the second player, and accepts only two players. You can modify the program to accept additional clients as observers. (See Exercise 40.7 for more details).

Once two players are in the game, the server coordinates the turns between them. When a client invokes the myMove method, the server records the move and notifies the other player by marking the other player’s cell. It then checks to see whether the player wins or whether the board is full. If neither condition applies and therefore the game continues, the server gives a turn to the other player.

The CallBackImpl implements the CallBack interface. It creates an instance of ­TicTacToeClientRMI through its constructor. The CallBackImpl relays the server request to the client by invoking the client’s methods. When the server invokes the takeTurn method, CallBackImpl invokes the client’s setMyTurn() method to set the property myTurn in the client. When the server invokes the notify() method, CallBackImpl invokes the client’s setMessage() method to set the message on the client’s status label. When the server invokes the mark method, CallBackImpl invokes the client’s mark method to mark the specified cell.

Interestingly, obtaining the TicTacToeImpl stub for the client is different from obtaining the CallBack stub for the server. The TicTacToeImpl stub is obtained by invoking the lookup() method through the RMI registry, and the CallBack stub is passed to the server through the connect method in the TicTacToeImpl stub. It is a common practice to obtain the first stub with the lookup method, but to pass the subsequent stubs as parameters through remote method invocations.

Since the variables myTurn and marker are defined in TicTacToeClientRMI, the Cell class is defined as an inner class within TicTacToeClientRMI in order to enable all the cells in the client to access them. Exercise 40.8 suggests alternative approaches that implement the Cell as a noninner class.

	40.6.1 What is the problem if the connect method in the TicTacToeInterface is defined as

public boolean connect(CallBack client, char token)
 throws RemoteException;

or as

public boolean connect(CallBack client, Character token)
 throws RemoteException;

	40.6.2 What is callback? How does callback work in RMI?

Key Terms

	callback 40-13

	RMI registry 40-3

	skeleton 40-3

	stub 40-3

Chapter Summary

	RMI is a high-level Java API for building distributed applications using distributed objects.

	The key idea of RMI is its use of stubs and skeletons to facilitate communications between objects. The stub and skeleton are automatically generated, which relieves programmers of tedious socket-level network programming.

	For an object to be used remotely, it must be defined in an interface that extends the java.rmi.Remote interface.

	In an RMI application, the initial remote object must be registered with the RMI registry on the server side and be obtained using the lookup method through the registry on the client side. Subsequent uses of stubs of other remote objects may be passed as parameters through remote method invocations.

	RMI is especially useful for developing scalable and load-balanced multitier distributed applications.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

Section 40.3

	*40.1 (Limit the number of clients) Modify the example in Section40.3.1 , Example: Retrieving Student Scores from an RMI Server, to limit the number of concurrent clients to 10.

	*40.2 (Compute loan) Rewrite Programming Exercise 33.1 using RMI. You need to define a remote interface for computing monthly payment and total payment.

	**40.3 (Web visit count) Rewrite Programming Exercise 33.4 using RMI. You need to define a remote interface for obtaining and increasing the count.

	**40.4 (Display and add addresses) Rewrite Programming Exercise 33.6 using RMI. You need to define a remote interface for adding addresses and retrieving address information.

Section 40.5

	**40.5 (Address in a database table) Rewrite Programming Exercise 40.4 . Assume the address is stored in a table.

	**40.6 (Three-tier application) Use the three-tier approach to modify Programming ­Exercise 40.4 , as follows:

	Create a JavaFX client to manipulate student information, as shown in Figure 33.23a.

	Create a remote object interface with methods for retrieving, inserting, and updating student information, and an object implementation for the interface.

Section 40.6

	**40.7 (Chat) Rewrite Programming Exercise 33.13 using RMI. You need to define a remote interface for sending and receiving a message.

	**40.8 (Improve TicTacToe) Modify the TicTacToe example in Section 40.6 , RMI ­Callbacks, as follows:

	Allow a client to connect to the server as an observer to watch the game.

	Rewrite the Cell class as a noninner class.

CHAPTER 41 Web Services

Objectives

	To describe what a Web service is (§41.1).

	To create a Web service class (§41.2).

	To publish and test a Web service (§41.3).

	To create a Web service client reference (§41.4).

	To explain the role of WSDL (§41.4).

	To pass arguments of object type in a Web service (§41.5).

	To discover how a client communicates with a Web service (§41.5).

	To describe what SOAP requests and SOAP responses are (§41.5).

	To track a session in Web services (§41.6).

41.1 Introduction

[image:]

	Web services is about sharing objects on the Internet.

Web service is a technology that enables programs to communicate through HTTP on the Internet. Web services enable a program on one system to invoke a method in an object on another system. You can develop and use Web services using any languages on any platform. Web services are simple and easy to develop.

Web services run on the Web using HTTP. There are several APIs for Web services. A popular standard is the Simple Object Access Protocol (SOAP), which is based on XML. The computer on which a Web service resides is referred to as a server. The server needs to make the service available to the client, known as publishing a Web service. Using a Web service from a client is known as consuming a Web service.

A client interacts with a Web service through a proxy object. The proxy object facilitates the communication between the client and the Web service. The client passes arguments to invoke methods on the proxy object. The proxy object sends the request to the server and receives the result back from the server, as shown in Figure 41.1.

 Figure 41.1

A proxy object serves as a facilitator between a client and a Web service.

	41.1.1 What is a Web service?

	41.1.2 Can you invoke a Web service from a language other than Java?

	41.1.3 Do Web services support callback? That is, can a Web service call a method from a client’s program?

	41.1.4 What is SOAP? What is it to publish a Web service? What is it to consume a Web service? What is the role of a proxy object?

41.2 Creating Web Services

[image:]

	An IDE such as NetBeans is an effective tool for developing and deploying Web services.

There are many tools for creating Web services. This book demonstrates creating Web services using NetBeans.

Note

Apache Tomcat Server does not work well with Web services. To develop and deploy Web services using NetBeans, you need to install GlassFish. For information on how to install GlassFish on NetBeans.

We now create a Web service for obtaining student scores. A Web service is a class that contains the methods for the client to invoke. Name the class ScoreService with a method named findScore(String name) that returns the score for a student.

First, you need to create a Web project using the following steps:

	Choose File, New Project to display the New Project dialog box. In the New Project dialog box, choose Java Web in the Categories pane and choose Web Application in the Projects pane. Click Next to display the New Web Application dialog box.

	Enter WebServiceProject as the project name, specify the location where you want the project to be stored, and click Next to display the Server and Setting dialog.

	Select GlassFish 4 as the server and Java EE 7 Web as the Java EE version. Click Finish to create the project.

Now you can create the ScoreService class in the project as follows:

	Right-click the WebServiceProject in the Project pane to display a context menu. Choose New, Web Service to display the New Web Service dialog box. (If you don’t see Web Service, click New, Other to display the New File dialog box to choose Web Service in this dialog box.)

	Enter ScoreService in the Web Service Name field and enter chapter41 in the Package field. Click Finish to create ScoreService.

	Complete the source code as shown in Listing 41.1.

Listing 41.1 ScoreService.java

 1 package chapter41;
 2
 3 import java.util.HashMap;
 4 import javax.jws.WebService; // For annotation @WebService
 5 import javax.jws.WebMethod; // For annotation @WebMethod
 6
 7 @WebService(name = "ScoreService", serviceName = "ScoreWebService")
 8 public class ScoreService {
 9 // Stores scores in a map indexed by name
10 private HashMap<String, Double> scores =
11 new HashMap<String, Double>();
12
13 public ScoreService() {
14 scores.put("John", 90.5);
15 scores.put("Michael", 100.0);
16 scores.put("Michelle", 98.5);
17 }
18
19 @WebMethod(operationName = "findScore")
20 public double findScore(String name) {
21 Double d = scores.get(name);
22
23 if (d == null) {
24 System.out.println("Student " + name + " is not found ");
25 return –1;
26 }
27 else {
28 System.out.println("Student " + name + "\’s score is "
29 + d.doubleValue());
30 return d.doubleValue();
31 }
32 }
33 }

Lines 4–5 import the annotations used in the program in lines 7 and 19. Annotation is a new feature in Java, which enables you to simplify coding. The compiler will automatically generate the code for the annotated directives. So, it frees the programmer from writing the detailed boilerplate code that could be generated mechanically. The annotation (line 7)

@WebService(name = "ScoreService", serviceName = "ScoreWebService")

tells the compiler that the class ScoreService is associated with the Web service named ScoreWebService.

The annotation (line 19)

@WebMethod(operationName = "findScore")

indicates that findScore is a method that can be invoked from a client.

The findScore method returns a score if the name is in the hash map. Otherwise, it returns −1.0.

You can manually type the code for the service, or create it from the Design tab, as shown in Figure 41.2.

 Figure 41.2

The services can also be created from the Design pane.

41.3 Deploying and Testing Web Services

[image:]

	Deploying a Web service is to make it available on the Internet for other programs to use.

After a Web service is created, you need to deploy it for clients to use. Deploying Web services is also known as publishing Web services. To deploy it, right-click the WebServiceProject in the Project to display a context menu and choose Deploy. This command will first undeploy the service if it was deployed and then redeploy it.

Now you can test the Web service by entering the follow URL in a browser, as shown in Figure 41.3.

 Figure 41.3

The test page enables you to test Web services.

http://host:8080/WebServiceProject/ScoreWebService?Tester

Note ScoreWebService is the name you specified in line 7 in Listing 41.1. This Web service has only one remote method named findScore. You can define an unlimited number of remote methods in a Web service class. If so, all these methods will be displayed in the test page.

To test the findScore method, enter Michael and click the findScore button. You will see that the method returns 100.0, as shown in Figure 41.4.

 Figure 41.4

The method returns a test value.

Note

If your computer is connected to the Internet, you can test Web services from another computer by entering the following URL:

http://host:8080/WebServiceProject/ScoreWebService?Tester

Where host is the host name or IP address of the server on which the Web service is running. On Windows, you can find your IP address by typing the command ipconfig.

Note

If you are running the server on Windows, the firewall may prevent remote clients from accessing the service. To enable it, do the following:

	In the Windows control panel, click Windows Firewall to display the Windows Firewall dialog box.

	In the Advanced tab, double-click Local Area Connection to display the Advanced Settings dialog box. Check Web Server (HTTP) to enable HTTP access to the server.

	Click OK to close the dialog box.

41.4 Consuming Web Services

[image:]

	Consuming a Web service is for a client to use a Web service.

After a Web service is published, you can write a client program to use it. A client can be any program (standalone application, servlet/JSP/JSF application, or another Web service) and written in any language.

We will use NetBeans to create a Web service client. Our client is a GUI application. The application simply lets the user enter a name and displays the score, as shown in Figure 41.5.

 Figure 41.5

The client uses the Web service to find scores.

Let us create a project for the client. The project named ScoreWebServiceClient­Project can be created as follows:

	Choose File, New Project to display the New Project dialog box.

	In the New Project dialog box, choose Java in the Categories pane and choose Java Application in the Projects pane. Click Next to display the New Java Application dialog box.

	Enter ScoreWebServiceClientProject as the project name, specify the location where you want the project to be stored, and uncheck the Create Main Class check box. Click Finish to create the project.

You need to create a Web service reference to this project. The reference will enable you to create a proxy object to interact with the Web service. Here are the steps to create a Web service reference:

	Right-click the ScoreWebServiceClientProject in the Project pane to display a context menu. Choose New, Web Service Client to display the New Web Service Client dialog box, as shown in Figure 41.6.

 Figure 41.6

The New Web Service Client dialog box creates a Web service reference.

	Check the WSDL URL radio button and enter
http://localhost:8080/WebServiceProject/ScoreWebService?WSDL

in the WSDL URL field.

	Enter myWebservice in the package name field. Click Finish to generate the Web service reference.

Now you will see ScoreWebService created in the Web Service References folder in the Projects tab. The IDE has generated many supporting files for the reference. You can view all the generated .java files from the Files tab in the project pane, as shown in Figure 41.7. These files will be used by the proxy object to interact with the Web service.

 Figure 41.7

You can see the automatically generated boilerplate code for Web services in the Generated Sources folder in the client’s project.

Note

When you created a Web service reference, you entered a WSDL URL, as shown in ­Figure 41.6. This creates a .wsdl file. In this case, it is named ScoreWebService.wsdl under the Web Service References folder, as shown in Figure 41.8. So what is WSDL? WSDL stands for Web Service Description Language. A .wsdl file is an XML file that describes the available Web service to the client—i.e., the remote methods, their parameters and return value types, and so on.

 Figure 41.8

The .wsdl file describes Web services to clients.

Note

If the Web service is modified, you need to refresh the reference for the client. To do so, right-click the Web service node under Web Service References to display a context menu and choose Refresh Client.

Now you are ready to create a client for the Web service. Right-click the ScoreWeb­Service­ClientProject node in the Project pane to display a context menu, and choose New, Class to create a Java client named FindScoreApp in package chapter41, as shown in Listing 41.2.

Listing 41.2 FindScoreApp.java

 1 package chapter41;
 2
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.TextField;
 8 import javafx.scene.layout.GridPane;
 9 import javafx.stage.Stage;
10 import myWebservice.ScoreWebService;
11 import myWebservice.ScoreService;
12
13 public class FindScoreApp extends Application {
14 // Declare a service object and a proxy object
15 private ScoreWebService scoreWebService = new ScoreWebService();
16 private ScoreService proxy
17 = scoreWebService.getScoreServicePort();
18
19 private Button btGetScore = new Button("Get Score");
20 private TextField tfName = new TextField();
21 private TextField tfScore = new TextField();
22
23 public void start(Stage primaryStage) {
24 GridPane gridPane = new GridPane();
25 gridPane.setHgap(5);
26 gridPane.add(new Label("Name"), 0, 0);
27 gridPane.add(new Label("Score"), 0, 1);
28 gridPane.add(tfName, 1, 0);
29 gridPane.add(tfScore, 1, 1);
30 gridPane.add(btGetScore, 1, 2);
31
32 // Create a scene and place the pane in the stage
33 Scene scene = new Scene(gridPane, 250, 250);
34 primaryStage.setTitle("FindScoreApp"); // Set the stage title
35 primaryStage.setScene(scene); // Place the scene in the stage
36 primaryStage.show(); // Display the stage
37
38 btGetScore.setOnAction(e -> getScore());
39 }
40
41 private void getScore() {
42 try {
43 // Get student score
44 double score = proxy.findScore(tfName.getText().trim());
45
46 // Display the result
47 if (score < 0)
48 tfScore.setText("Not found");
49 else
50 tfScore.setText(new Double(score).toString());
51 }
52 catch(Exception ex) {
53 ex.printStackTrace();
54 }
55 }
56 }

The program creates a Web service object (line 11) and creates a proxy object (line 12) to interact with the Web service.

To find a score for a student, the program invokes the remote method findScore on the proxy object (line 39).

41.5 Passing and Returning Arguments

[image:]

	The Simple Object Access Protocol (SOAP) can be used to send and return values to and from a Web service.

In the preceding example, a Web service client you created invokes the findScore method with a string argument, and the Web service executes the method and returns a score as a double value. How does this work? It is the Simple Object Access Protocol (SOAP) that facilitates communications between the client and the server.

SOAP is based on XML. The message between the client and the server is described in XML. Figure 41.9 shows the SOAP request and SOAP response for the findScore method.

 [image: Code for find score method invocation.]Figure 41.9

The client request and server response are described in XML.

Description

When invoking the findScore method, a SOAP request is sent to the server. The request contains the information about the method and the argument. As shown in Figure 41.9, the XML text

<ns1:findScore>
 <arg0>Michael</arg0>
</ns1:findScore>

specifies that the method findScore is called with argument Michael.

Upon receiving the SOAP request, the Web service parses it. After parsing it, the Web service invokes an appropriate method with specified arguments (if any) and sends the response back in a SOAP response. As shown in Figure 41.9, the XML text

<ns1:findScoreResponse>
 <return>100.0</return>
</ns1:findScoreResponse>

specifies that the method returns 100.0.

The proxy object receives the SOAP response from the Web service and parses it. This process is illustrated in Figure 41.10.

 Figure 41.10

A proxy object sends SOAP requests and receives SOAP responses.

Can you pass an argument of any type between a client and a Web service? No. SOAP ­supports only primitive types, wrapper types, arrays, String, Date, Time, List, and several other types. It also supports certain custom classes. An object that is sent to or from a server is serialized into XML. The process of serializing/deserializing objects, called XML serialization/deserialization, is performed automatically. For a custom class to be used with Web methods, the class must meet the following requirements:

	The class must have a no-arg constructor.

	Instance variables that should be serialized must have public get and set methods. The classes of these variables must be supported by SOAP.

To demonstrate how to pass an object argument of a custom class, Listing 41.3 defines a Web service class named AddressService with two remote methods:

	getAddress(String firstName, String lastName) that returns an Address object for the specified firstName and lastName.

	storeAddress(Address address) that stores a Student object to the database.

Address information is stored in a table named Address in the database. The Address class was defined in Listing 42.12, Address.java. An Address object can be passed to or returned from a remote method, since the Address class has a no-arg constructor with get and set methods for all its properties.

Here are the steps to create a Web service named AddressService and the Address class in the project.

	Right-click the WebServiceProject node in the project pane to display a context menu. Choose New, Web Service to display the New Web Service dialog box.

	In the Web Service Name field, enter AddressService. In the Package field, enter chapter41. Click Finish to create the service class.

	Right-click the WebServiceProject node in the project pane to display a context menu. Choose New, Java Class to display the New Java Class dialog box.

	In the Class Name field, enter Address. In the Package field, enter chapter37. Click Finish to create the class.

The Address class is the same as shown in Listing 37.12. Complete the AddressService class as shown in Listing 41.3.

Listing 41.3  AddressService.java

 1 package chapter41;
 2
 3 import chapter37.Address;
 4 import java.sql.*;
 5 import javax.jws.WebMethod;
 6 import javax.jws.WebService;
 7
 8 @WebService(name = "AddressService",
 9 serviceName = "AddressWebService")
10 public class AddressService {
11 // statement1 for retrieving an address and statement2 for storing 12 private PreparedStatement statement1;
13
14 // statement2 for storing an address
15 private PreparedStatement statement2;
16
17 public AddressService() {
18 initializeJdbc();
19 }
20
21 @WebMethod(operationName = "getAddress")
22 public Address getAddress(String firstName, String lastName) {
23 try {
24 statement1.setString(1, firstName);
25 statement1.setString(2, lastName);
26 ResultSet resultSet = statement1.executeQuery();
27
28 if (resultSet.next()) {
29 Address address = new Address();
30 address.setFirstName(resultSet.getString("firstName"));
31 address.setLastName(resultSet.getString("lastName"));
32 address.setMi(resultSet.getString("mi"));
33 address.setTelephone(resultSet.getString("telephone"));
34 address.setFirstName(resultSet.getString("email"));
35 address.setCity(resultSet.getString("telephone"));
36 address.setState(resultSet.getString("state"));
37 address.setZip(resultSet.getString("zip"));
38 return address;
39 }
40 else
41 return null;
42 } catch (SQLException ex) {
43 ex.printStackTrace();
44 }
45
46 return null;
47 }
48
49 @WebMethod(operationName = "storeAddress")
50 public void storeAddress(Address address) {
51 try {
52 statement2.setString(1, address.getLastName());
53 statement2.setString(2, address.getFirstName());
54 statement2.setString(3, address.getMi());
55 statement2.setString(4, address.getTelephone());
56 statement2.setString(5, address.getEmail());
57 statement2.setString(6, address.getStreet());
58 statement2.setString(7, address.getCity());
59 statement2.setString(8, address.getState());
60 statement2.setString(9, address.getZip());
61 statement2.executeUpdate();
62 } catch (SQLException ex) {
63 ex.printStackTrace();
64 }
65 }
66
67 /** Initialize database connection */
68 public void initializeJdbc() {
69 try {
70 Class.forName("com.mysql.jdbc.Driver");
71
72 // Connect to the sample database
73 Connection connection = DriverManager.getConnection(
74 "jdbc:mysql://localhost/javabook", "scott", "tiger");
75
76 statement1 = connection.prepareStatement(
77 "select * from Address where firstName = ? and lastName = ?");
78 statement2 = connection.prepareStatement(
79 "insert into Address " +
80 "(lastName, firstName, mi, telephone, email, street, city, " 81 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
82 } catch (Exception ex) {
83 ex.printStackTrace();
84 }
85 }
86 }

The new Web service is named AddressWebService (line 9) for the AddressService class.

When the service is deployed, the constructor (lines 17–19) of AddressWebService is invoked to initialize a database connection and create prepared statement1 and statement2 (lines 68–85).

The findAddress method searches the address in the Address table for the specified firstName and lastName. If found, the address information is returned in an Address object (lines 29–38). Otherwise, the method returns null (line 41).

The storeAddress method stores the address information from the Address object into the database (lines 52–61).

Note

Don’t forget that you have to add the MySQL library to the WebServiceProject for this example to run.

Before you can use the service, deploy it. Right-click the WebServiceProject node in the Project to display a context menu and choose Deploy.

Now you are ready to develop a Web client that uses the AddressWebService. The client is a JSP program, as shown in Figure 41.11. The program has two functions. First, the user can enter the last name and first name and click the Search button to search for a record, as shown in Figure 41.12. Second, the user can enter the complete address information and click the Store button to store the information to the database, as shown in Figure 41.13.

 Figure 41.11

The TestAddressWebService page allows the user to search and store addresses.

 Figure 41.12

The Search button finds and displays an address.

 Figure 41.13

The Store button stores the address to the database.

Let us create a project for the client. The project named AddressWebServiceClientProject can be created as follows:

	Choose File, New Project to display the New Web Application dialog box. In the New Web Application dialog box, choose Java Web in the Categories pane and choose Web Application in the Projects pane. Click Next to display the Name and Location dialog box.

	Enter AddressWebServiceClientProject as the project name, specify the location where you want the project to be stored, and uncheck the Set as Main Project check box. Click Next to display the Server and Settings dialog box.

	Choose GlassFish Server 4 in the Server field, and Java EE 7 Web as in the Java EE Version field, and click Finish to create the project.

You need to create a Web service reference to this project. The reference will enable you to create a proxy object to interact with the Web service. Here are the steps to create a Web service reference:

	Right-click the AddressWebServiceClientProject node in the Project pane to display a context menu. Choose New, Web Service Client to display the New Web Service Client dialog box.

	Check the WSDL URL radio button and enter
http://localhost:8080/WebServiceProject/AddressWebService?WSDL
in the WSDL URL field.

	Enter myWebservice in the package name field and choose JAX-WS as the JAX version. Click Finish to generate the Web service reference.

Now a reference to AddressWebService is created. Note this process also copies Address.java to the client project, as shown in Figure 41.14.

 Figure 41.14

Address.java is automatically copied to the Web service client reference package.

Create a JSP named TestAddressWebService in the AddressWebServiceClientProject project, as shown in Listing 41.4.

Listing 41.4  TestAddressWebService.jsp

 1 <!-- TestAddressWebService.jsp -->
 2 <%@ page import = "myWebservice.Address" %>
 3 <%@ page import = "myWebservice.AddressWebService" %>
 4 <%@ page import = "myWebservice.AddressService" %>
 5 <jsp:useBean id = "addressId"
 6 class = "myWebservice.Address" scope = "session"></jsp:useBean>
 7 <jsp:setProperty name = "addressId" property = "*" />
 8
 9 <html>
 10 <head>
 11 <title>Address Information</title>
 12 </head>
 13 <body>
 14 <form method = "post" action = "TestAddressWebService.jsp">
 15 Last Name *
 16 <input type = "text" name = "lastName"
 17 <%if (addressId.getLastName() != null) {
 18 out.print("value = \"" + addressId.getLastName() + "\"");}%>
 19 size = "20" />
 20
 21 First Name *
 22 <input type = "text" name = "firstName"
 23 <%if (addressId.getFirstName() != null) {
 24 out.print("value = \"" + addressId.getFirstName() + "\"");}%>
 25 size = "20" />
 26
 27 MI
 28 <input type = "text" name = "mi"
 29 <%if (addressId.getMi() != null) {
 30 out.print("value = \"" + addressId.getMi() + "\" "); } %>
 31 size = "3" />
 32
 33 <p>Telephone
 34 <input type = "text" name = "telephone"
 35 <%if (addressId.getTelephone() != null) {
 36 out.print("value = \"" + addressId.getTelephone() + "\" ");}%>
 37 size = "20" />
 38
 39 Email
 40 <input type = "text" name = "email"
 41 <%if (addressId.getEmail() != null) {
 42 out.print("value = \"" + addressId.getEmail() + "\" ");}%>
 43 size = "28" />
 44 </p>
 45
 46 <p>Street
 47 <input type = "text" name = "street"
 48 <%if (addressId.getStreet() != null) {
 49 out.print("value = \"" + addressId.getStreet() + "\" ");}%>
 50 size = "50" />
 51 </p>
 52
 53 <p>City
 54 <input type = "text" name = "city"
 55 <%if (addressId.getCity() != null) {
 56 out.print("value = \"" + addressId.getCity() + "\" ");}%>
 57 size = "23" />
 58
 59 State
 60 <select size = "1" name = "state">
 61 <option value = "GA">Georgia-GA</option>
 62 <option value = "OK">Oklahoma-OK</option>
 63 <option value = "IN">Indiana-IN</option>
 64 </select>
 65
 66 Zip
 67 <input type = "text" name = "zip"
 68 <%if (addressId.getZip() != null) {
 69 out.print("value = \"" + addressId.getZip() + "\" "); } %>
 70 size = "9" />
 71 </p>
 72
 73 <p><input type = "submit" name = "Submit" value = "Search">
 74 <input type = "submit" name = "Submit" value = "Store">
 75 <input type = "reset" value = "Reset">
 76 </p>
 77 </form>
 78 <p>* required fields</p>
 79
 80 <%
 81 if (request.getParameter("Submit") != null) {
 82 AddressWebService addressWebService = new AddressWebService();
 83 AddressService proxy = addressWebService.getAddressServicePort();
 84
 85 if (request.getParameter("Submit").equals("Store")) {
 86 proxy.storeAddress(addressId);
 87 out.println(addressId.getFirstName() + " " +
 88 addressId.getLastName() + " has been added to the database");
 89 }
 90 else if (request.getParameter("Submit").equals("Search")) {
 91 Address address = proxy.getAddress(addressId.getFirstName(),
 92 addressId.getLastName());
 93 if (address == null)
 94 out.print(addressId.getFirstName() + " " +
 95 addressId.getLastName() + " is not in the database");
 96 else
 97 addressId = address;
 98 }
 99 }
100 %>
101 </body>
102 </html>

Lines 2–4 import the classes for the JSP page. The Address class (line 2) was created in the WebServiceProject and was automatically copied to the AddressWebService­ClientProject project when a Web service reference for AddressWebService was created. A JavaBeans object for Address was created and associated with input parameters in lines 5–7.

The UI interface was laid in the form (lines 14–77). The action for the two buttons Search and Store invokes the same page TestAddressWebService.jsp (line 14).

When a button is clicked, a proxy object for AddressWebService is obtained (lines 82–83). For the Store button, the proxy object invokes the storeAddress method to add an address to the database (line 86). For the Search button, the proxy object invokes the getAddress method to return an address (lines 91–92). If no address is found for the specified first and last names, the returned address is null (line 93).

41.6 Web Service Session Tracking

[image:]

	You can use the HttpSession interface to session tracking for Web.

Section 37.8.3, Session Tracking Using the Servlet API, introduced session tracking for ­servlets using the javax.servlet.http.HttpSession interface. You can use Http­Session to implement session tracking for Web services. To demonstrate this, consider an example that generates random True/False questions for the client and grades the answers on these questions for the client.

The Web client consists of two JSP pages: DisplayQuiz.jsp and GradeQuiz.jsp. The ­DisplayQuiz page invokes the service method getQuestion() to display the questions, as shown in Figure 41.15. When you click the Submit button, the program invokes the service method gradeQuiz to grade the answers. The result is displayed in the GradeQuiz page, as shown in Figure 41.16.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: is Atlanta the capital of Georgia, question mark, indented once, true false. Line 2: is Columbia the capital of South Carolina, question mark, indented once, true false. Line 3: is Fort Wayne the capital of Indiana, question mark, indented once, true false. Line 4: is New Orleans the capital of Louisiana, question mark, indented once, true false. Line 5: is Chicago the capital of Illinois, question mark, indented once, true false.]Figure 41.15

The Submit button submits the answers for grading.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: out of 5 questions, comma, 3 correct.]Figure 41.16

The answers are graded and displayed.

Why is session tracking needed for this project? Each time a client displays a quiz, it creates a randomly reorder the quiz for the client. Each client gets a different quiz every time the DisplayQuiz page is refreshed. When the client submits the answer, the Web service checks the answer against the previously generated quiz. So the quiz has to be stored in the session.

For convenience, let us create the Web service class named QuizService in the Web­ServiceProject in package chapter41. Listing 41.5 gives the program.

Listing 41.5  QuizService.java

 1 package chapter41;
 2
 3 import javax.jws.WebMethod;
 4 import javax.jws.WebService;
 5 import java.util.List;
 6 import java.util.ArrayList;
 7 import com.sun.xml.ws.developer.servlet.HttpSessionScope;
 8
 9 @HttpSessionScope
10 @WebService(name = "QuizService", serviceName = "QuizWebService")
11 public class QuizService {
12 private ArrayList<Object[]> quiz = new ArrayList<Object[]>();
13
14 public QuizService() {
15 // Initialize questions and answers
16 quiz.add(new Object[]{
17 "Is Atlanta the capital of Georgia?", true});
18 quiz.add(new Object[]{
19 "Is Columbia the capital of South Carolina?", true});
20 quiz.add(new Object[]{
21 "Is Fort Wayne the capital of Indiana?", false});
22 quiz.add(new Object[]{
23 "Is New Orleans the capital of Louisiana?", false});
24 quiz.add(new Object[]{
25 "Is Chicago the capital of Illinois?", false});
26
27 // Shuffle to generate a random quiz for a client
28 java.util.Collections.shuffle(quiz);
29 }
30
31 @WebMethod(operationName = "getQuestions")
32 public java.util.List<String> getQuestions() {
33
34 // Extract questions from quiz
35 List<String> questions = new ArrayList<String>();
36 for (int i = 0; i < quiz.size(); i++) {
37 questions.add((String)(quiz.get(i)[0]));
38 }
39
40 return questions; // Return questions in the quiz
41 }
42
43 @WebMethod(operationName = "gradeQuiz")
44 public List<Boolean> gradeQuiz(List<Boolean> answers) {
45 List<Boolean> result = new ArrayList<Boolean>();
46 for (int i = 0; i < quiz.size(); i++)
47 result.add(quiz.get(i)[1] == answers.get(i));
48
49 return result;
50 }
51 }

The Web service class named QuizService contains two methods getQuestions and gradeQuiz. The new Web service is named QuizWebService (line 10).

The annotation @HttpSessionScope (line 9) is new in JAX-WS 2.2, which enables the Web service automatically maintains a separate instance for each client session. To use this annotation, you have add JAX-WS 2.2 into your project’s library. This can be done by clicking the Library node in the project and select Add Library.

Assume five True/False questions are available from the service. The quiz is stored in an ArrayList (lines 16–25).

Each element in the list is an array with two values. The first value is a string that describes the question and the second is a Boolean value indicating whether the answer should be true or false.

A new quiz is generated in the constructor and the quiz is shuffled using the shuffle method in the Collections class (line 28).

The getQuestions method (lines 31–40) returns questions in a list. The questions are extracted from the quiz (lines 34–37) and are returned (line 39).

The gradeQuiz method (lines 42–49) checks the answers from the client with the answers in the quiz. The client’s answers are compared with the key, and the result of the grading is stored in a list. Each element in the list is a Boolean value that indicates whether the answer is correct or incorrect (lines 44–46).

After creating and publishing the Web service, let us create a project for the client. The project named QuizWebServiceClientProject can be created as follows:

	
Choose File, New Project to display the New Web Application dialog box.

	In the New Web Application dialog box, choose Java Web in the Categories pane and choose Web Application in the Projects pane. Click Next to display the Name and Location dialog box.

	Enter QuizWebServiceClientProject as the project name, specify the location where you want the project to be stored, and uncheck the Set as Main Project check box. Click Next to display the Server and Settings dialog box.

	Choose GlassFish Server 4 in the Server field, and Java EE 7 Web as in the Java EE Version field, and click Finish to create the project.

To use QuizWebService, you need to create a Web service client as follows:

	Right-click the QuizWebServiceClientProject project in the Project pane to ­display a context menu. Choose New, Web Service Client to display the New Web Service Client dialog box.

	Check the WSDL URL radio button and enter
http://localhost:8080/WebServiceProject/QuizWebService?WSDL
in the WSDL URL field.

	Enter myWebservice in the Package field.
Click Finish to create the reference for QuizWebService.

Now a reference to QuizWebService is created. You can create a proxy object to access the remote methods in QuizService. Listings 41.6 and 41.7 show DisplayQuiz.jsp and GradeQuiz.jsp.

Listing 41.6  DisplayQuiz.jsp

 1 <!-- DisplayQuiz.jsp -->
 2 <%@ page import = "myWebservice.QuizWebService" %>
 3 <%@ page import = "myWebservice.QuizService" %>
 4 <jsp:useBean id = "quizWebService" scope = "session"
 5 class = "myWebservice.QuizWebService">
 6 </jsp:useBean>
 7
 8 <html>
 9 <body>
10 <%
11 QuizService proxy = quizWebService.getQuizServicePort();
12 java.util.List<String> questions =
13 (java.util.ArrayList<String>)(proxy.getQuestions());
14 %>
15 <form method = "post" action = "GradeQuiz.jsp">
16 <table>
17 <% for (int i = 0; i < questions.size(); i++) {%>
18 <tr>
19 <td>
20 <label><%= questions.get(i) %></label>
21 </td>
22 <td>
23 <input type = "radio" name = <%= "question" + i%>
24 value = "True" /> True
25 </td>
26 <td>
27 <input type = "radio" name = <%= "question" + i%>
28 value = "False" /> False
29 </td>
30 </tr>
31 <%}%>
32 </table>
33 <p><input type = "submit" name = "Submit" value = "Submit">
34 <input type = "reset" value = "Reset">
35 </p>
36 </form>
37 </body>
38 </html>

This page generates a quiz by invoking the getQuestions() in lines 12–13. The questions are displayed in a table with radio buttons (lines 16–32). Clicking the Submit button invokes ­GradeQuiz.jsp.

Listing 41.7  GradeQuiz.jsp

 1 <!-- GradeQuiz.jsp -->
 2 <%@ page import = "myWebservice.QuizWebService" %>
 3 <%@ page import = "myWebservice.QuizService" %>
 4 <jsp:useBean id = "quizWebService" scope = "session"
 5 class = "myWebservice.QuizWebService">
 6 </jsp:useBean>
 7
 8 <html>
 9 <body>
10 <%
11 QuizService proxy = quizWebService.getQuizServicePort();
12 java.util.List<String> quiz = proxy.getQuestions();
13
14 // Get the answer from the DisplayQuiz page
15 java.util.List<Boolean> answers = new java.util.ArrayList<Boolean>();
16 for (int i = 0; i < quiz.size(); i++) {
17 String trueOrFalse = request.getParameter("question" + i);
18 if (trueOrFalse.equals("True"))
19 answers.add(true); // Answered true
20 else if (trueOrFalse.equals("False"))
21 answers.add(false); // Answered false
22 }
23
24 // Grade answers
25 java.util.List<Boolean> result = proxy.gradeQuiz(answers);
26
27 // Find the correct count
28 int correctCount = 0;
29 for (int i = 0; i < result.size(); i++) {
30 if (result.get(i))
31 correctCount++;
32 }
33 %>
34
35 Out of <%= result.size() %> questions, <%= correctCount %> correct.
36 </body>
37 </html>

This page collects the answers passed from the HTML form from the DisplayQuiz page (lines 15–21), invokes the gradeQuiz method to grade the quiz (line 25), finds the correct count (lines 28–31), and displays the result (line 35).

Note

You need to answer all five questions before clicking the Submit button. A runtime error will occur if a radio button is not checked. You can fix this problem in Exercise 41.5.

	41.6.1 What is the annotation to specify a Web service? What is the annotation to specify a Web method?

	41.6.2 How do you deploy a Web service in NetBeans?

	41.6.3 Can you test a Web service from a client?

	41.6.4 How do you create a Web service reference for a client?

	41.6.5 What is WSDL? What is SOAP? What is a SOAP request? What is a SOAP response?

	41.6.6 Can you pass primitive type arguments to a remote method? Can you pass any object type to a remote method? Can you pass an argument of a custom type to a remote method?

	41.6.7 How do you obtain an HttpSession object for tracking a Web session?

	41.6.8 Can you create two Web service references in one package in the same project in NetBeans?

	41.6.9 What happens if you don’t clone the quiz in lines 40–41 in Listing 41.5 , Quiz­Service.java?

Key Terms

	@WebService 41-3

	@WebMethod 41-3

	consuming a Web service 41-2

	proxy object 41-2

	publishing a Web service 41-2

	Web service 41-2

	Web service client reference 41-15

	WSDL 41-6

Chapter Summary

	Web services enable a Java program on one system to invoke a method in an object on another system.

	Web services are platform and language independent. You can develop and use Web services using any language.

	Web services run on the Web using HTTP. SOAP is a popular protocol for implementing Web services.

	The server needs to make the service available to the client, known as publishing a Web service. Using a Web service from a client is known as consuming a Web service.

	A client interacts with a Web service through a proxy object. The proxy object facilitates the communication between the client and the Web service.

	You need to use Java annotation @WebService to annotate a Web service and use annotation @WebMethod to annotate a remote method.

	A Web service class may have an unlimited number of remote methods.

	After a Web service is published, you can write a client program to use it. You have to first create a Web client reference. From the reference, you create a proxy object for facilitating communication between a server and a client.

	WSDL stands for Web Service Description Language. A .wsdl file is an XML file that describes the available Web service to the client—i.e., the remote methods, their parameters and return value types, and so on.

	The message between the client and the server is described in XML. A SOAP request describes the information that is sent to the Web service and a SOAP response describes the information that is received from the Web service.

	The objects passed between client and Web service are serialized in XML. Not all object types are supported by SOAP.

	You can track sessions in Web services using the HttpSession in the same way as in servlets.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

	*41.1 (Get a score from a database table) Suppose the scores are stored in the Scores table. The table was created as follows:

create table Scores (name varchar(20),
 score number, permission boolean);

insert into Scores values (‘John’, 90.5, 1);
insert into Scores values (’Michael’, 100, 1);
insert into Scores values (’Michelle’, 100, 0);

Revise the findScore method in Listing 41.1 , ScoreService.java, to obtain a score for the specified name. Note your program does not need the permission column; ignore it. The next exercise will need the permission column.

	*41.2 (Permission to find scores) Revise the preceding exercise so that the findScore method returns –1 if permission is false. Add an another method named getPermission(String name) that returns 1, 0, or –1. The method returns 1 if the student is in the Scores table and permission is true, 0 if the student is in the Scores table and permission is false, and –1 if the student is not in the Scores table.

	*41.3 (Compute loan) You can compute a loan payment for a loan with the specified amount, the number of years, and the annual interest rate. Write a Web service with two remote methods for computing monthly payment and total payment. Write a client program that prompts the user to enter the loan amount, the number of years, and the annual interest rate.

	*41.4 (Web service visit count) Write a Web service with a method named getCount() that returns the number of the times this method has been invoked from a client. Use a session to store the count variable.

	*41.5 (Quiz) The user needs to answer all five questions before clicking the Submit button in the Quiz application in Section 41.6 , Web Service Session Tracking. A runtime error will occur if a radio button is not checked. Fix this problem.

CHAPTER 42 2–4 Trees and B-Trees

Objectives

	To know what a 2–4 tree is (§42.1).

	To design the Tree24 class that implements the Tree interface (§42.2).

	To search an element in a 2–4 tree (§42.3).

	To insert an element in a 2–4 tree and know how to split a node (§42.4).

	To delete an element from a 2–4 tree and know how to perform transfer and fusion operations (§42.5).

	To traverse elements in a 2–4 tree (§42.6).

	To implement and test the Tree24 class (§§42.7–42.8).

	To analyze the complexity of the 2–4 tree (§42.9).

	To use B-trees for indexing large amount of data (§42.10).

42.1 Introduction

	A 2–4 tree, also known as a 2–3–4 tree, is a completely balanced search tree with all leaf nodes appearing on the same level.

In a 2–4 tree, a node may have one, two, or three elements as shown in Figure 42.1. An interior 2-node contains one element and two children. An interior 3-node contains two elements and three children. An interior 4-node contains three elements and four children.

Figure 42.1

An interior node of a 2–4 tree has two, three, or four children.

Each child is a sub 2–4 tree, possibly empty. The root node has no parent, and leaf nodes have no children. The elements in the tree are distinct. The elements in a node are ordered such that

E(c0) < e0 < E(c1) < e1 < E(c2) < e2 < E(c3)

where E(ck) denote the elements in ck Figure 42.2 shows an example of a 2–4 tree. ck is called the left subtree of ek and ck + 1 is called the right subtree of ek

 Figure 42.2

A 2–4 tree is a full complete search tree.

In a binary tree, each node contains one element. A 2–4 tree tends to be shorter than a corresponding binary search tree, since a 2–4 tree node may contain two or three elements.

 Pedagogical Note

Run from http://liveexample.pearsoncmg.com/dsanimation/24Tree.html to see how a 2–4 tree works, as shown in Figure 42.3.

Figure 42.3

The animation tool enables you to insert, delete, and search elements in a 2–4 tree visually.

42.2 Designing Classes for 2–4 Trees

	The Tree24 class defines a 2–4 tree and provides methods for searching, inserting, and deleting elements.

The Tree24
class can be designed by implementing the Tree interface, as shown in ­Figure 42.4. The Tree interface was
defined in Listing 27.3, Tree.java. The Tree24Node class defines tree nodes. The elements in the node are stored in a list named elements and the links to the child nodes are stored in a list named child, as shown in Figure 42.5.

 [image:]Figure 42.4

The Tree24 class implements Tree.

Description

 Figure 42.5

A 2–4 tree node stores the elements and the links to the child nodes in array lists.

	42.2.1 What is a 2–4 tree? What are a 2-node, 3-node, and 4-node?

	42.2.2 Describe the data fields in the Tree24 class and those in the Tree24Node class.

	42.2.3 What is the minimum number of elements in a 2–4 tree of height 5? What is the maximum number of elements in a 2–4 tree of height 5?

42.3 Searching an Element

	Searching an element in a 2–4 tree is similar to searching an element in a binary tree. The difference is that you have to search an element within a node in addition to searching elements along the path.

To search an element in a 2–4 tree, you start from the root and scan down. If an element is not in the node, move to an appropriate subtree. Repeat the process until a match is found or you arrive at an empty subtree. The algorithm is described in Listing 42.1.

Listing 42.1 Searching an Element in a 2–4 tree

 1 boolean search(E e) {
 2 current = root; // Start from the root
 3
 4 while (current != null) {
 5 if (match(e, current)) { // Element is in the node
 6 return true; // Element is found
 7 }
 8 else {	
 9 current = getChildNode(e, current); // Search in a subtree
10 }
11 }
12 return false; // Element is not in the tree
13 }

The match(e, current) method checks whether element e is in the current node. The getChildNode(e, current) method returns the root of the subtree for further search. Initially, let current point to the root (line 2). Repeat searching for the element in the current node until current is null (line 4) or the element matches an element in the current node.

42.4 Inserting an Element into a 2–4 tree

	Inserting an element involves locating a leaf node and inserting the element into the leaf node.

To insert an element e to a 2–4 tree, locate a leaf node in which the element will be inserted. If the leaf node is a 2-node or 3-node, simply insert the element into the node. If the node is a 4-node, inserting a new element would cause an overflow. To resolve overflow, perform a split operation as follows:

	Let u be the leaf 4-node in which the element will be inserted and parentOfu be the parent of u, as shown in Figure 42.6(a).

 Figure 42.6

The splitting operation creates a new node and inserts the median element to its parent.

	Create a new node named v; move e2 to v.

	If e < e1 insert e to u; otherwise insert e to v. Assume e < e1 e is inserted into u, as shown in Figure 42.6(b).

	Insert e1 along with its right child (i.e., v) to the parent node, as shown in Figure 42.6(b).

The parent node is a 3-node in Figure 42.6. So, there is room to insert e to the parent node. What happens if it is a 4-node, as shown in Figure 42.7? This requires that the parent node be split. The process is the same as splitting a leaf 4-node, except that you must also insert the element along with its right child.

 Figure 42.7

Insertion process continues if the parent node is a 4-node.

The algorithm can be modified as follows:

	Let u be the 4-node (leaf or nonleaf) in which the element will be inserted and parentOfu be the parent of u, as shown in Figure 42.8(a).

 Figure 42.8

An interior node may be split to resolve overflow.

	Create a new node named v, move e2 and its children c2 and c3 to v.

	If e0 < e < e1 insert e along with its right child link to u; otherwise insert e along with its right child link to v, as shown in Figure 42.6(b), (c), (d) for the cases e0 < e < e1, e1 < e < e2 and e2 < e respectively.

	Insert e1 along with its right child (i.e., v) to the parent node, recursively.

Listing 42.2 gives an algorithm for inserting an element.

Listing 42.2 Inserting an Element to a 2–4 tree

 1 public boolean insert(E e) {
 2 if (root == null)
 3 root = new Tree24Node<E>(e); // Create a new root for element
 4 else {
 5 Locate leafNode for inserting e
 6 insert(e, null, leafNode); // The right child of e is null
 7 }
 8
 9 size++; // Increase size
10 return true; // Element inserted
11 }
12
13 private void insert(E e, Tree24Node<E> rightChildOfe,
14 Tree24Node<E> u) {
15 if (u is a 2- or 3- node) { // u is a 2- or 3-node
16 insert23(e, rightChildOfe, u); // Insert e to node u
17 }
18 else { // Split a 4-node u
19 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
20 E median = split(e, rightChildOfe, u, v); // Split u
21
22 if (u == root) { // u is the root
23 root = new Tree24Node<E>(median); // New root
24 root.child.add(u); // u is the left child of median
25 root.child.add(v); // v is the right child of median
26 }
27 else {
28 Get the parent of u, parentOfu;
29 insert(median, v, parentOfu); // Inserting median to parent
30 }
31 }
32 }

The insert(E e, Tree24Node<E> rightChildOfe, Tree24Node<E> u) method inserts element e along with its right child to node u. When inserting e to a leaf node, the right child of e is null (line 6). If the node is a 2- or 3-node, simply insert the element to the node (lines 15–17). If the node is a 4-node, invoke the split method to split the node (line 20). The split method returns the median element. Recursively invoke the insert method to insert the median element to the parent node (line 29). Figure 42.9 shows the steps of inserting elements 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 into a 2–4 tree.

 Figure 42.9

The tree changes after 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 are added into an empty tree.

42.5 Deleting an Element from a 2–4 tree

	Deleting an element involves locating the node that contains the element and removing the element from the node.

To delete an element from a 2–4 tree, first search the element in the tree to locate the node that contains it. If the element is not in the tree, the method returns false. Let u be the node that contains the element and parentOfu be the parent of u. Consider three cases:

Case 1: u is a leaf 3-node or 4-node. Delete e from u.

Case 2: u is a leaf 2-node. Delete e from u. Now u is empty. This situation is known as underflow. To remedy an underflow, consider two subcases:

Case 2.1: u’s immediate left or right sibling is a 3- or 4-node. Let the node be w, as shown in Figure 42.10(a) (assume w is a left sibling of u). Perform a transfer operation that moves an element from parentOfu to u, as shown in Figure 42.10(b), and move an element from w to replace the moved element in parentOfu, as shown in Figure 42.10(c).

 Figure 42.10

The transfer operation fills the empty node u.

Case 2.2: Both u’s immediate left and right siblings are 2-node if they exist (u may have only one sibling). Let the node be w, as shown in Figure 42.11(a) (assume w is a left sibling of u). Perform a fusion operation that discards u and moves an element from parentOfu to w, as shown in Figure 42.11(b). If parentOfu becomes empty, repeat Case 2 recursively to perform a transfer or a fusion on parentOfu.

 Figure 42.11

The fusion operation discards the empty node u.

Case 3: u is a nonleaf node. Find the rightmost leaf node in the left subtree of e. Let this node be w, as shown in Figure 42.12(a). Move the last element in w to replace e in u, as shown in Figure 42.12(b). If w becomes empty, apply a transfer or fusion operation on w.

 Figure 42.12

An element in the internal node is replaced by an element in a leaf node.

Listing 42.3 describes the algorithm for deleting an element.

Listing 42.3 Deleting an Element from a 2–4 tree

 1 /** Delete the specified element from the tree */
 2 public boolean delete(E e) {
 3 Locate the node that contains the element e
 4 if (the node is found) {
 5 delete(e, node); // Delete element e from the node
 6 size−−; // After one element deleted
 7 return true; // Element deleted successfully
 8 }
 9
10 return false; // Element not in the tree
11 }
12
13 /** Delete the specified element from the node */
14 private void delete(E e, Tree24Node<E> node) {
15 if (e is in a leaf node) {
16 // Get the path that leads to e from the root
17 ArrayList<Tree24Node<E>> path = path(e);
18
19 Remove e from the node;
20
21 // Check node for underflow along the path and fix it
22 validate(e, node, path); // Check underflow node
23 }
24 else { // e is in an internal node
25 Locate the rightmost node in the left subtree of node u;
26 Get the rightmost element from the rightmost node;
27
28 // Get the path that leads to e from the root
29 ArrayList<Tree24Node<E>> path = path(rightmostElement);
30
31 Replace the element in the node with the rightmost element
32
33 // Check node for underflow along the path and fix it
34 validate(rightmostElement, rightmostNode, path);
35 }
36 }
37
38 /** Perform a transfer or fusion operation if necessary */
39 private void validate(E e, Tree24Node<E> u,
40 ArrayList<Tree24Node<E>> path) {
41 for (int i = path.size() − 1; i >= 0; i−−) {
42 if (u is not empty)
43 return; // Done, no need to perform transfer or fusion
44
45 Tree24Node<E> parentOfu = path.get(i − 1); // Get parent of u
46
47 // Check two siblings
48 if (left sibling of u has more than one element) {
49 Perform a transfer on u with its left sibling
50 }
51 else if (right sibling of u has more than one element) {
52 Perform a transfer on u with its right sibling
53 }
54 else if (u has left sibling) { // Fusion with a left sibling
55 Perform a fusion on u with its left sibling
56 u = parentOfu; // Back to the loop to check the parent node
57 }
58 else { // Fusion with right sibling (right sibling must exist)
59 Perform a fusion on u with its right sibling
60 u = parentOfu; // Back to the loop to check the parent node
61 }
62 }
63 }

The delete(E e) method locates the node that contains the element e and invokes the delete(E e, Tree24Node<E> node) method (line 5) to delete the element from the node.

If the node is a leaf node, get the path that leads to e from the root (line 17), delete e from the node (line 19), and invoke validate to check and fix the empty node (line 22). The validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path) method performs a transfer or fusion operation if the node is empty. Since these operations may cause the parent of node u to become empty, a path is obtained in order to obtain the parents along the path from the root to node u, as shown in Figure 42.13.

 Figure 42.13

The nodes along the path may become empty as result of a transfer and fusion operation.

If the node is a nonleaf node, locate the rightmost element in the left subtree of the node (lines 25–26), get the path that leads to the rightmost element from the root (line 29), replace e in the node with the rightmost element (line 31), and invoke validate to fix the rightmost node if it is empty (line 34).

The validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path) checks whether u is empty and performs a transfer or fusion operation to fix the empty node. The validate method exits when node is not empty (line 43). Otherwise, consider one of the following cases:

	If u has a left sibling with more than one element, perform a transfer on u with its left sibling (line 49).

	Otherwise, if u has a right sibling with more than one element, perform a transfer on u with its right sibling (line 52).

	Otherwise, if u has a left sibling, perform a fusion on u with its left sibling (line 55) and reset u to parentOfu (line 56).

	Otherwise, u must have a right sibling. Perform a fusion on u with its right sibling (line 59) and reset u to parentOfu (line 60).

Only one of the preceding cases is executed. Afterward, a new iteration starts to perform a transfer or fusion operation on a new node u if needed. Figure 42.14 shows the steps of deleting elements 20, 15, 3, 6, and 34 that are deleted from a 2–4 tree in Figure 42.9(k).

 Figure 42.14

The tree changes after 20, 15, 3, 6, and 34 are deleted from a 2–4 tree.

	42.5.1	How do you search an element in a 2–4 tree?

	42.5.2	How do you insert an element into a 2–4 tree?

	42.5.3	How do you delete an element from a 2–4 tree?

	42.5.4	Show the change of a 2–4 tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 into it, in this order.

	42.5.5	For the tree built in the preceding question, show the change of the tree after deleting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 from it, in this order.

	42.5.6	Show the change of a B-tree of order 6 when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6, 17, 25, 18, 26, 14, 52, 63, 74, 80, 19, and 27 into it, in this order.

	42.5.7	For the tree built in the preceding question, show the change of the tree after deleting 1, 2, 3, 4, 10, 9, 7, 5, and 8, and 6 from it, in this order.

42.6 Traversing Elements in a 2–4 tree

	You can perform inorder, preorder, and postorder for traversing the elements in a 2–4 tree.

Inorder, preorder, and postorder traversals are useful for 2–4 trees. Inorder traversal visits the elements in increasing order. Preorder traversal visits the elements in the root, then recursively visits the subtrees from the left to right. Postorder traversal visits the subtrees from the left to right recursively, and then the elements in the root.

	For example, in the 2–4 tree in Figure 42.9(k), the inorder traversal is

3 15 16 20 24 25 27 29 34 50

	The preorder traversal is

20 15 3 16 27 34 24 25 29 50

	The postorder traversal is

3 16 1 24 25 29 50 27 34 20

42.7 Implementing the Tree24 Class

	This section gives the complete implementation for the Tree24 class.

Listing 42.4 gives the complete source code for the Tree24 class.

Listing 42.4 Tree24.java

 1 import java.util.ArrayList;
 2
 3 public class Tree24<E extends Comparable<E>> implements Tree<E> {
 4 private Tree24Node<E> root;
 5 private int size;
 6
 7 /** Create a default 2–4 tree */
 8 public Tree24() {
 9 }
 10
 11 /** Create a 2–4 tree from an array of objects */
 12 public Tree24(E[] elements) {
 13 for (int i = 0; i < elements.length; i++)
 14 insert(elements[i]);
 15 }
 16
 17 @Override /* Search an element in the tree */
 18 public boolean search(E e) {
 19 Tree24Node<E> current = root; // Start from the root
 20
 21 while (current != null) {
 22 if (matched(e, current)) { // Element is in the node
 23 return true; // Element found
 24 }
 25 else {
 26 current = getChildNode(e, current); // Search in a subtree
 27 }
 28 }
 29
 30 return false; // Element is not in the tree
 31 }
 32
 33 /** Return true if the element is found in this node */
 34 private boolean matched(E e, Tree24Node<E> node) {
 35 for (int i = 0; i < node.elements.size(); i++)
 36 if (node.elements.get(i).equals(e))
 37 return true; // Element found
 38
 39 return false; // No match in this node
 40 }
 41
 42 /** Locate a child node to search element e */
 43 private Tree24Node<E> getChildNode(E e, Tree24Node<E> node) {
 44 if (node.child.size() == 0)
 45 return null; // node is a leaf
 46
 47 int i = locate(e, node); // Locate the insertion point for e
 48 return node.child.get(i); // Return the child node
 49 }
 50
 51 @Override /** Insert element e into the tree
 52 * Return true if the element is inserted successfully
 53 */
 54 public boolean insert(E e) {
 55 if (root == null)
 56 root = new Tree24Node<E>(e); // Create a new root for element
 57 else {
 58 // Locate the leaf node for inserting e
 59 Tree24Node<E> leafNode = null;
60 Tree24Node<E> current = root;
 61 while (current != null)
 62 if (matched(e, current)) {
 63 return false; // Duplicate element found, nothing inserted
 64 }
 65 else {
 66 leafNode = current;
 67 current = getChildNode(e, current);
 68 }
 69
 70 // Insert the element e into the leaf node
 71 insert(e, null, leafNode); // The right child of e is null
 72 }
 73
 74 size++; // Increase size
 75 return true; // Element inserted
 76 }
 77
 78 /** Insert element e into node u */
 79 private void insert(E e, Tree24Node<E> rightChildOfe,
 80 Tree24Node<E> u) {
 81 // Get the search path that leads to element e
 82 ArrayList<Tree24Node<E>> path = path(e);
 83
 84 for (int i = path.size() − 1; i >= 0; i−−) {
 85 if (u.elements.size() < 3) { // u is a 2-node or 3-node
 86 insert23(e, rightChildOfe, u); // Insert e to node u
 87 break; // No further insertion to u's parent needed
 88 }
 89 else {
 90 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
 91 E median = split(e, rightChildOfe, u, v); // Split u
 92
 93 if (u == root) {
 94 root = new Tree24Node<E>(median); // New root
 95 root.child.add(u); // u is the left child of median
 96 root.child.add(v); // v is the right child of median
 97 break; // No further insertion to u's parent needed
 98 }
 99 else {
100 // Use new values for the next iteration in the for loop
101 e = median; // Element to be inserted to parent
102 rightChildOfe = v; // Right child of the element
103 u = path.get(i − 1); // New node to insert element
104 }
105 }
106 }
107 }
108
109 /** Insert element to a 2- or 3- and return the insertion point */
110 private void insert23(E e, Tree24Node<E> rightChildOfe,
111 Tree24Node<E> node) {
112 int i = this.locate(e, node); // Locate where to insert
113 node.elements.add(i, e); // Insert the element into the node
114 if (rightChildOfe != null)
115 node.child.add(i + 1, rightChildOfe); // Insert the child link
116 }
117
118 /** Split a 4-node u into u and v and insert e to u or v */
119 private E split(E e, Tree24Node<E> rightChildOfe,
120 Tree24Node<E> u, Tree24Node<E> v) {
121 // Move the last element in node u to node v
122 v.elements.add(u.elements.remove(2));
123 E median = u.elements.remove(1);
124
125 // Split children for a nonleaf node
126 // Move the last two children in node u to node v
127 if (u.child.size() = 0) {
128 v.child.add(u.child.remove(2));
129 v.child.add(u.child.remove(2));
130 }
131
132 // Insert e into a 2- or 3- node u or v.
133 if (e.compareTo(median) < 0)
134 insert23(e, rightChildOfe, u);
135 else
136 insert23(e, rightChildOfe, v);
137
138 return median; // Return the median element
139 }
140
141 /** Return a search path that leads to element e */
142 private ArrayList<Tree24Node<E>= path(E e) {
143 ArrayList<Tree24Node<E>= list = new ArrayList<Tree24Node<E>=();
144 Tree24Node<E> current = root; // Start from the root
145
146 while (current != null) {
147 list.add(current); // Add the node to the list
148 if (matched(e, current)) {
149 break; // Element found
150 }
151 else {
152 current = getChildNode(e, current);
153 }
154 }
155
156 return list; // Return an array of nodes
157 }
158
159 @Override /** Delete the specified element from the tree */
160 public boolean delete(E e) {
161 // Locate the node that contains the element e
162 Tree24Node<E> node = root;
163 while (node != null)
164 if (matched(e, node)) {
165 delete(e, node); // Delete element e from node
166 size−−; // After one element deleted
167 return true; // Element deleted successfully
168 }
169 else {
170 node = getChildNode(e, node);
171 }
172
173 return false; // Element not in the tree
174 }
175
176 /** Delete the specified element from the node */
177 private void delete(E e, Tree24Node<E> node) {
178 if (node.child.size() == 0) { // e is in a leaf node
179 // Get the path that leads to e from the root
180 ArrayList<Tree24Node<E>> path = path(e);
181
182 node.elements.remove(e); // Remove element e
183
184 if (node == root) { // Special case
185 if (node.elements.size() == 0)
186 root = null; // Empty tree
187 return; // Done
188 }
189
190 validate(e, node, path); // Check underflow node
191 }
192 else { // e is in an internal node
193 // Locate the rightmost node in the left subtree of the node
194 int index = locate(e, node); // Index of e in node
195 Tree24Node<E> current = node.child.get(index);
196 while (current.child.size() > 0) {
197 current = current.child.get(current.child.size() − 1);
198 }
199 E rightmostElement =
200 current.elements.get(current.elements.size() − 1);
201
202 // Get the path that leads to e from the root
203 ArrayList<Tree24Node<E>= path = path(rightmostElement);
204
205 // Replace the deleted element with the rightmost element
206 node.elements.set(index, current.elements.remove(
207 current.elements.size() − 1));
208
209 validate(rightmostElement, current, path); // Check underflow
210 }
211 }
212
213 /** Perform transfer and confusion operations if necessary */
214 private void validate(E e, Tree24Node<E> u,
215 ArrayList<Tree24Node<E>> path) {
216 for (int i = path.size() − 1; u.elements.size() == 0; i−−) {
217 Tree24Node<E> parentOfu = path.get(i − 1); // Get parent of u
218 int k = locate(e, parentOfu); // Index of e in the parent node
219
220 // Check two siblings
221 if (k > 0 && parentOfu.child.get(k − 1).elements.size() > 1) {
222 leftSiblingTransfer(k, u, parentOfu);
223 }
224 else if (k + 1 < parentOfu.child.size() &&
225 parentOfu.child.get(k + 1).elements.size() > 1) {
226 rightSiblingTransfer(k, u, parentOfu);
227 }
228 else if (k − 1 == 0) { // Fusion with a left sibling
229 // Get left sibling of node u
230 Tree24Node<E> leftNode = parentOfu.child.get(k − 1);
231
232 // Perform a fusion with left sibling on node u
233 leftSiblingFusion(k, leftNode, u, parentOfu);
234
235 // Done when root becomes empty
236 if (parentOfu == root && parentOfu.elements.size() == 0) {
237 root = leftNode;
238 break;
239 }
240
241 u = parentOfu; // Back to the loop to check the parent node
242 }
243 else { // Fusion with right sibling (right sibling must exist)
244 // Get left sibling of node u
245 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
246
247 // Perform a fusion with right sibling on node u
248 rightSiblingFusion(k, rightNode, u, parentOfu);
249
250 // Done when root becomes empty
251 if (parentOfu == root && parentOfu.elements.size() == 0) {
252 root = rightNode;
253 break;
254 }
255
256 u = parentOfu; // Back to the loop to check the parent node
257 }
258 }
259 }
260
261 /** Locate the insertion point of the element in the node */
262 private int locate(E o, Tree24Node<E> node) {
263 for (int i = 0; i < node.elements.size(); i++) {
264 if (o.compareTo(node.elements.get(i)) <= 0) {
265 return i;
266 }
267 }
268
269 return node.elements.size();
270 }
271
272 /** Perform a transfer with a left sibling */
273 private void leftSiblingTransfer(int k,
274 Tree24Node<E> u, Tree24Node<E> parentOfu) {
275 // Move an element from the parent to u
276 u.elements.add(0, parentOfu.elements.get(k − 1));
277
278 // Move an element from the left node to the parent
279 Tree24Node<E> leftNode = parentOfu.child.get(k − 1);
280 parentOfu.elements.set(k − 1,
281 leftNode.elements.remove(leftNode.elements.size() − 1));
282
283 // Move the child link from left sibling to the node
284 if (leftNode.child.size() > 0)
285 u.child.add(0, leftNode.child.remove(
286 leftNode.child.size() − 1));
287 }
288
289 /** Perform a transfer with a right sibling */
290 private void rightSiblingTransfer(int k,
291 Tree24Node<E> u, Tree24Node<E> parentOfu) {
292 // Transfer an element from the parent to u
293 u.elements.add(parentOfu.elements.get(k));
294
295 // Transfer an element from the right node to the parent
296 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
297 parentOfu.elements.set(k, rightNode.elements.remove(0));
298
299 // Move the child link from right sibling to the node
300 if (rightNode.child.size() > 0)
301 u.child.add(rightNode.child.remove(0));
302 }
303
304 /** Perform a fusion with a left sibling */
305 private void leftSiblingFusion(int k, Tree24Node<E> leftNode,
306 Tree24Node<E> u, Tree24Node<E> parentOfu) {
307 // Transfer an element from the parent to the left sibling
308 leftNode.elements.add(parentOfu.elements.remove(k − 1));
309
310 // Remove the link to the empty node
311 parentOfu.child.remove(k);
312
313 // Adjust child links for nonleaf node
314 if (u.child.size() > 0)
315 leftNode.child.add(u.child.remove(0));
316 }
317
318 /** Perform a fusion with a right sibling */
319 private void rightSiblingFusion(int k, Tree24Node<E> rightNode,
320 Tree24Node<E> u, Tree24Node<E> parentOfu) {
321 // Transfer an element from the parent to the right sibling
322 rightNode.elements.add(0, parentOfu.elements.remove(k));
323
324 // Remove the link to the empty node
325 parentOfu.child.remove(k);
326
327 // Adjust child links for nonleaf node
328 if (u.child.size() > 0)
329 rightNode.child.add(0, u.child.remove(0));
330 }
331
332 /** Get the number of nodes in the tree */
333 public int getSize() {
334 return size;
335 }
336
337 /** Preorder traversal from the root */
338 public void preorder() {
339 preorder(root);
340 }
341
342 /** Preorder traversal from a subtree */
343 private void preorder(Tree24Node<E> root) {
344 if (root == null)return;
345 for (int i = 0; i < root.elements.size(); i++)
346 System.out.print(root.elements.get(i) + " ");
347
348 for (int i = 0; i < root.child.size(); i++)
349 preorder(root.child.get(i));
350 }
351
352 /** Inorder traversal from the root*/
353 public void inorder() {
354 // Left as exercise
355 }
356
357 /** Postorder traversal from the root */
358 public void postorder() {
359 // Left as exercise
360 }
361
362 /** Return true if the tree is empty */
363 public boolean isEmpty() {
364 return root == null;
365 }
366
367 @Override /** Remove all elements from the tree */
368 public void clear() {
369 root = null;
370 size = 0;
371 }
372
373 /** Return an iterator to traverse elements in the tree */
374 public java.util.Iterator iterator() {
375 // Left as exercise
376 return null;
377 }
378
379 /** Define a 2–4 tree node */
380 protected static class Tree24Node<E extends Comparable<E>> {
381 // elements has maximum three values
382 ArrayList<E> elements = new ArrayList<E>(3);
383 // Each has maximum four childres
384 ArrayList<Tree24Node<E>> child
385 = new ArrayList<Tree24Node<E>>(4);
386
387 /** Create an empty Tree24 node */
388 Tree24Node() {
389 }
390
391 /** Create a Tree24 node with an initial element */
392 Tree24Node(E o) {
393 elements.add(o);
394 }
395 }
396 }

The Tree24 class contains the data fields root and size (lines 4–5). root references the root node and size stores the number of elements in the tree.

The Tree24 class has two constructors: a no-arg constructor (lines 8–9) that constructs an empty tree and a constructor that creates an initial Tree24 from an array of elements (lines 12–15).

The search method (lines 18–31) searches an element in the tree. It returns true (line 23) if the element is in the tree and returns false if the search arrives at an empty subtree (line 30).

The matched(e, node) method (lines 34–40) checks where the element e is in the node.

The getChildNode(e, node) method (lines 43–49) returns the root of a subtree where e should be searched.

The insert(E e) method inserts an element in a tree (lines 54–76). If the tree is empty, a new root is created (line 56). The method locates a leaf node in which the element will be inserted and invokes insert(e, null, leafNode) to insert the element (line 71).

The insert(e, rightChildOfe, u) method inserts an element into node u (lines 79–107). The method first invokes path(e) (line 82) to obtain a search path from the root to node u. Each iteration of the for loop considers u and its parent parentOfu (lines 84–106). If u is a 2-node or 3-node, invoke insert23(e, rightChildOfe, u) to insert e and its child link rightChildOfe into u (line 86). No split is needed (line 87). Otherwise, create a new node v (line 90) and invoke split(e, rightChildOfe, u, v) (line 91) to split u into u and v. The split method inserts e into either u and v and returns the median in the original u. If u is the root, create a new root to hold median, and set u and v as the left and right children for median (lines 95–96). If u is not the root, insert median to parentOfu in the next iteration (lines 101–103).

The insert23(e, rightChildOfe, node) method inserts e along with the reference to its right child into the node (lines 110–116). The method first invokes locate(e, node) (line 112) to locate an insertion point, then insert e into the node (line 113). If rightChildOfe is not null, it is inserted into the child list of the node (line 115).

The split(e, rightChildOfe, u, v) method splits a 4-node u (lines 119-139). This is accomplished as follows: (1) move the last element from u to v and remove the median element from u (lines 122–123); (2) move the last two child links from u to v (lines 127–130) if u is a nonleaf node; (3) if e < median, insert e into u; otherwise, insert e into v (lines 133–136); and (4) return median (line 138).

The path(e) method returns an ArrayList of nodes searched from the root in order to locate e (lines 142–157). If e is in the tree, the last node in the path contains e. Otherwise, the last node is where e should be inserted.

The delete(E e) method deletes an element from the tree (lines 160–174). The method first locates the node that contains e and invokes delete(e, node) to delete e from the node (line 165). If the element is not in the tree, return false (line 173).

The delete(e, node) method deletes an element from node u (lines 177–211). If the node is a leaf node, obtain the path that leads to e (line 180), delete e (line 182), set root to null if the tree becomes empty (lines 184–188), and invoke validate to apply transfer and fusion operation on empty nodes (line 190). If the node is a nonleaf node, locate the rightmost element (lines 194–200), obtain the path that leads to e (line 203), replace e with the rightmost element (lines 206–207), and invoke validate to apply transfer and fusion operations on empty nodes (line 209).

The validate(e, u, path) method ensures that the tree is a valid 2–4 tree (lines 214–259). The for loop terminates when u is not empty (line 216). The loop body is executed to fix the empty node u by performing a transfer or fusion operation. If a left sibling with more than one element exists, perform a transfer on u with the left sibling (line 222). Otherwise, if a right sibling with more than one element exists, perform a transfer on u with the left sibling (line 226). Otherwise, if a left sibling exists, perform a fusion on u with the left sibling (lines 230–239), and validate parentOfu in the next loop iteration (line 241). Otherwise, perform a fusion on u with the right sibling.

The locate(e, node) method locates the index of e in the node (lines 262–270).

The leftSiblingTransfer(k, u, parentOfu) method performs a transfer on u with its left sibling (lines 273–287). The rightSiblingTransfer(k, u, parentOfu) method performs a transfer on u with its right sibling (lines 290–302). The leftSiblingFusion(k, leftNode, u, parentOfu) method performs a fusion on u with its left sibling leftNode (lines 305–316). The rightSiblingFusion(k, rightNode, u, parentOfu) method performs a fusion on u with its right sibling rightNode (lines 319–330).

The preorder() method displays all the elements in the tree in preorder (lines 338–350).

The inner class Tree24Node defines a class for a node in the tree (lines 374–389).

42.8 Testing the Tree24 Class

	This section writes a test program for using the Tree24 class.

Listing 42.5 gives a test program. The program creates a 2–4 tree and inserts elements in lines 6–20, and deletes elements in lines 22–56.

Listing 42.5 TestTree24.java

 1 public class TestTree24 {
 2 public static void main(String[] args) {
 3 // Create a 2–4 tree
 4 Tree24<Integer> tree = new Tree24<Integer>();
 5
 6 tree.insert(34);
 7 tree.insert(3);
 8 tree.insert(50);
 9 tree.insert(20);
10 tree.insert(15);
11 tree.insert(16);
12 tree.insert(25);
13 tree.insert(27);
14 tree.insert(29);
15 tree.insert(24);
16 System.out.print("\nAfter inserting 24:");
17 printTree(tree);
18 tree.insert(23);
19 tree.insert(22);
20 tree.insert(60);
21 tree.insert(70);
22 System.out.print("\nAfter inserting 70:");
23 printTree(tree);
24
25 tree.delete(34);
26 System.out.print("\nAfter deleting 34:");
27 printTree(tree);
28
29 tree.delete(25);
30 System.out.print("\nAfter deleting 25:");
31 printTree(tree);
32
33 tree.delete(50);
34 System.out.print("\nAfter deleting 50:");
35 printTree(tree);
36
37 tree.delete(16);
38 System.out.print("\nAfter deleting 16:");
39 printTree(tree);
40
41 tree.delete(3);
42 System.out.print("\nAfter deleting 3:");
43 printTree(tree);
44
45 tree.delete(15);
46 System.out.print("\nAfter deleting 15:");
47 printTree(tree);
48 }
49
50 public static <E extends Comparable<E>>
51 void printTree(Tree<E> tree) {
52 // Traverse tree
53 System.out.print("\nPreorder: ");
54 tree.preorder();
55 System.out.print("\nThe number of nodes is " + tree.getSize());
56 System.out.println();
57 }
58 }

After inserting 24:
Preorder: 20 15 3 16 27 34 24 25 29 50
The number of nodes is 10

After inserting 70:
Preorder: 20 15 3 16 24 27 34 22 23 25 29 50 60 70
The number of nodes is 14

After deleting 34:
Preorder: 20 15 3 16 24 27 50 22 23 25 29 60 70
The number of nodes is 13

After deleting 25:
Preorder: 20 15 3 16 23 27 50 22 24 29 60 70
The number of nodes is 12

After deleting 50:
Preorder: 20 15 3 16 23 27 60 22 24 29 70
The number of nodes is 11

After deleting 16:
Preorder: 23 20 3 15 22 27 60 24 29 70
The number of nodes is 10

After deleting 3:
Preorder: 23 20 15 22 27 60 24 29 70
The number of nodes is 9

After deleting 15:
Preorder: 27 23 20 22 24 60 29 70
The number of nodes is 8

Figure 42.15 shows how the tree evolves as elements are added. After 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 are added to the tree, it is as shown in Figure 42.15(a). After inserting 23, 22, 60, and 70, the tree is as shown in Figure 42.15(b). After deleting 34, the tree is as shown in Figure 42.15(c). After deleting 25, the tree is as shown in Figure 42.15(d). After deleting 50, the tree is as shown in Figure 42.15(e). After deleting 16, the tree is as shown in Figure 42.15(f). After deleting 3, the tree is as shown in Figure 42.15(g). After deleting 15, the tree is as shown in Figure 42.15(h).

 Figure 42.15

The tree evolves as elements are inserted and deleted.

42.9 Time-Complexity Analysis

	Search, insertion, and deletion operations take O(logn) time in a 2–4 tree.

Since a 2–4 tree is a completely balanced binary tree, its height is at most O(log n). The search, insert, and delete methods operate on the nodes along a path in the tree. It takes a constant time to search an element within a node. So, the search method takes O(log n) time. For the insert method, the time for splitting a node takes a constant time. So, the insert method takes O(log n) time. For the delete method, it takes a constant time to perform a transfer and fusion operation. So, the delete method takes O(log n) time.

42.10 B-Tree

	A B-tree is a generalization of a 2–4 tree.

So far we assume the entire data set is stored in main memory. What if the data set is too large and cannot fit in the main memory, as in the case with most databases, where data is stored on disks? Suppose you use an AVL tree to organize a million records in a database table. To find a record, the average number of nodes traversed is log2 1,000,000 ≈ 20 This is fine if all nodes are stored in main memory. However, for nodes stored on a disk, this means 20 disk reads. Disk I/O is expensive, and it is thousands of times slower than memory access. To improve performance, we need to reduce the number of disk I/Os. An efficient data structure for performing search, insertion, and deletion for data stored on secondary storage such as hard disks is the B-tree, which is a generalization of the 2–4 tree.

A B-tree of order d is defined as follows:

	Each node except the root contains between ⌈ d/2 ⌉ − 1 and d − 1 and d − 1 keys.

	The root may contain up to d − 1 keys.

	A nonleaf node with k keys has k + 1 children.

	All leaf nodes have the same depth.

Figure 42.16 shows a B-tree of order 6. For simplicity, we use integers to represent keys. Each key is associated with a pointer that points to the actual record in the database. For simplicity, the pointers to the records in the database are omitted in the figure.

 Figure 42.16

In a B-tree of order 6, each node except the root may contain between 2 and 5 keys.

Note that a B-tree is a search tree. The keys in each node are placed in increasing order. Each key in an interior node has a left subtree and a right subtree, as shown in Figure 42.17. All keys in the left subtree are less than the key in the parent node, and all keys in the right subtree are greater than the key in the parent node.

 Figure 42.17

The keys in the left (right) subtree of key ki are less than (greater than) ki.

The basic unit of the IO operations on a disk is a block. When you read data from a disk, the whole block that contains the data is read. You should choose an appropriate order d so that a node can fit in a single disk block. This will minimize the number of disk IOs.

A 2–4 tree is actually a B-tree of order 4. The techniques for insertion and deletion in a 2–4 tree can be easily generalized for a B-tree.

Inserting a key to a B-tree is similar to what was done for a 2–4 tree. First, locate the leaf node in which the key will be inserted. Insert the key to the node. After the insertion, if the leaf node has d keys, an overflow occurs. To resolve overflow, perform a split operation similar to the one used in a 2–4 tree, as follows:

Let u denote the node needed to be split and let m denote the median key in the node. Create a new node and move all keys greater than m to this new node. Insert m to the parent node of u. Now u becomes the left child of m and v becomes the right child of m, as shown in Figure 42.18. If inserting m into the parent node of u causes an overflow, repeat the same split process on the parent node.

 Figure 42.18

(a) After inserting a new key to node u. (b) The median key kP is inserted to parentOfu.

A key k can be deleted from a B-tree in the same way as in a 2–4 tree. First locate the node u that contains the key. Consider two cases:

Case 1: If u is a leaf node, remove the key from u. After the removal, if u has less than ⌈ d/2 ⌉ − 1 keys, an underflow occurs. To remedy an underflow, perform a transfer with a sibling w of u that has more than ⌈ d/2 ⌉ − 1 keys if such sibling exists, as shown in ­Figure 42.19. Otherwise, perform a fusion with a sibling w of u, as shown in Figure 42.20.

 Figure 42.19

The transfer operation transfers a key from the parentOfu to u and transfers a key from u ’s sibling parentOfu.

 Figure 42.20

The fusion operation moves key i from the parentOfu u to w and moves all keys in u to w .

Case 2: u is a nonleaf node. Find the rightmost leaf node in the left subtree of k. Let this node be w, as shown in Figure 42.21(a). Move the last key in w to replace k in u, as shown in Figure 42.21(b). If w becomes underflow, apply a transfer or fusion operation on w.

 Figure 42.21

A key in the internal node is replaced by an element in a leaf node.

The performance of a B-tree depends on the number of disk IOs (i.e., the number of nodes accessed). The number of nodes accessed for search, insertion, and deletion operations depends on the height of the tree. In the worst case, each node contains ⌈ d/2 ⌉ − 1 keys. So, the height of the tree is log ⌈ d/2 ⌉ where n is the number of keys. In the best case, each node contains d − 1 keys. So, the height of the tree is logd Consider a B-tree of order 12 for 10 million keys. The height of the tree is between log6 10,000,000 ≈ 7 and log12 10,000,000 ≈ 9. So, for search, insertion, and deletion operations, the maximum number of nodes visited is 42. If you use an AVL tree, the maximum number of nodes visited is log2 10,000,000 ≈ 24.

Key Terms

	2–3–4 tree 42-2

	2–4 tree 42-2

	2-node 42-2

	3-node 42-2

	4-node 42-2

	B-tree 42-11

	fusion operation 42-7

	split operation 42-4

	transfer operation 42-7

Chapter Summary

	A 2–4 tree is a completely balanced search tree. In a 2–4 tree, a node may have one, two, or three elements.

	Searching an element in a 2–4 tree is similar to searching an element in a binary tree. The difference is that you have searched an element within a node.

	To insert an element to a 2–4 tree, locate a leaf node in which the element will be inserted. If the leaf node is a 2- or 3-node, simply insert the element into the node. If the node is a 4-node, split the node.

	The process of deleting an element from a 2–4 tree is similar to that of deleting an element from a binary tree. The difference is that you have to perform transfer or fusion operations for empty nodes.

	The height of a 2–4 tree is O (logn). So, the time complexities for the search, insert, and delete methods are O (logn).

	A B-tree is a generalization of the 2–4 tree. Each node in a B-tree of order d can have between ⌈ d/2 ⌉ − 1 and d − 1 keys except the root. 2–4 trees are flatter than AVL trees and B-trees are flatter than 2–4 trees. B-trees are efficient for creating indexes for data in database systems where large amounts of data are stored on disks.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

 Programming Exercises

	*42.1	(Implement inorder) The inorder method in Tree24 is left as an exercise. Implement it.

	42.2 	(Implement postorder) The postorder method in Tree24 is left as an exercise. Implement it.

	42.3 	(Implement iterator) The iterator method in Tree24 is left as an exercise. Implement it to iterate the elements using inorder.

	*42.4	(Display a 2–4 tree graphically) Write a GUI program that displays a 2–4 tree.

	***42.5	(2–4 tree animation) Write a GUI program that animates the 2–4 tree insert, delete, and search methods, as shown in Figure 42.4 .

	**42.6	(Parent reference for Tree24) Redefine Tree24Node to add a reference to a node’s parent, as shown below:

	Tree24Node<E>

	
	

	elements: ArrayList<E>
child: ArrayList<Tree24Node<E>>
parent: Tree24Node<E>

	
	An array list for storing the elements.
An array list for storing the links to the child nodes.
Refers to the parent of this node.

	+Tree24()
+Tree24(o: E)

	
	Creates an empty tree node.
Creates a tree node with an initial element.

Add the following two new methods in Tree24:

public Tree24Node<E> getParent(Tree24Node<E> node)
 Returns the parent for the specified node.
public ArrayList<Tree24Node<E>> getPath(Tree24Node<E> node)
 Returns the path from the specified node to the root in an array list.

		Write a test program that adds numbers 1, 2, ..., 100 to the tree and displays the paths for all leaf nodes.

	***42.7	(The BTree class) Design and implement a class for B-trees.

CHAPTER 43 Red-Black Trees

Objectives

	To know what a red-black tree is (§43.1).

	To convert a red-black tree to a 2–4 tree and vice versa (§43.2).

	To design the RBTree class that extends the BST class (§43.3).

	To insert an element in a red-black tree and resolve the double-red violation if necessary (§43.4).

	To delete an element from a red-black tree and resolve the double-black problem if necessary (§43.5).

	To implement and test the RBTree class (§§43.6–43.7).

	To compare the performance of AVL trees, 2–4 trees, and RBTree (§43.8).

43.1 Introduction

	A red-black tree is a balanced binary search tree derived from a 2–4 tree. A red-black tree corresponds to a 2-4 tree.

Each node in a red-black tree has a color attribute red or black, as shown in Figure 43.1(a). A node is called external if its left or right subtree is empty. Note that a leaf node is external, but an external node is not necessarily a leaf node. For example, node 25 is external, but it is not a leaf. The black depth of a node is defined as the number of black nodes in a path from the node to the root. For example, the black depth of node 25 is 2, and that of node 27 is 2.

 Figure 43.1

A red-black tree can be represented using a 2-4 tree, and vice versa.

[image:] Note

The red nodes appear in blue in the text.

A red-black tree has the following properties:

	The root is black.

	Two adjacent nodes cannot be both red.

	All external nodes have the same black depth.

The red-black tree in Figure 43.1(a) satisfies all three properties. A red-black tree can be converted to a 2-4 tree, and vice versa. Figure 43.1(b) shows an equivalent 2-4 tree for the red-black tree in Figure 43.1(a).

43.2 Conversion between Red-Black Trees and 2-4 Trees

	This section discusses the correspondence between a red-black tree and a 2-4 tree.

You can design insertion and deletion algorithms for red-black trees without having knowledge of 2-4 trees. However, the correspondence between red-black trees and 2-4 trees provides useful intuition about the structure of red-black trees and operations. For this reason, this section discusses the correspondence between these two types of trees.

To convert a red-black tree to a 2-4 tree, simply merge every red node with its parent to create a 3-node or a 4-node. For example, the red nodes 15 and 34 are merged to their parent to create a 4-node, and the red node 27 is merged to its parent to create a 3-node, as shown in Figure 43.1(b).

To convert a 2-4 tree to a red-black tree, perform the following transformations for each node u:

	If u is a 2-node, color it black, as shown in Figure 43.2(a).

 Figure 43.2

A node in a 2-4 tree can be transformed to nodes in a red-black tree.

	If u is a 3-node with element values e0 and e1, there are two ways to convert it. Either make e0 the parent of e1 or make e1 the parent of e0. In any case, color the parent black and the child red, as shown in Figure 43.2(b).

	If u is a 4-node with element values e0, e1 and e2 make e1 the parent of e0 and e2. Color e1 black and e0 and e2 red, as shown in Figure 43.2(c).

Let us apply the transformation for the 2-4 tree in Figure 43.1(b). After transforming the 4-node, the tree is as shown in Figure 43.3(a). After transforming the 3-node, the tree is as shown in Figure 43.3(b). Note the transformation for a 3-node is not unique. Therefore, the conversion from a 2-4 tree to a red-black tree is not unique. After transforming the 3-node, the tree could also be as shown in Figure 43.3(c).

 Figure 43.3

The conversion from a 2-4 tree to a red-black tree is not unique.

You can prove the conversion results in a red-black tree that satisfies all three properties.

	Property 1. The root is black.

	Proof: If the root of a 2-4 tree is a 2-node, the root of the red-black tree is black. If the root of a 2-4 tree is a 3-node or 4-node, the transformation produces a black parent at the root.

	Property 2. Two adjacent nodes cannot be both red.

	Proof: Since the parent of a red node is always black, no two adjacent nodes can be both red.

	Property 3. All external nodes have the same black depth.

	Proof: When you covert a node in a 2-4 tree to red-black tree nodes, you get one black node and zero, one, or two red nodes as its children, depending on whether the original node is a 2-, 3-, or 4-node. Only a leaf 2-4 node may produce external red-black nodes. Since a 2-4 tree is perfectly balanced, the number of black nodes in any path from the root to an external node is the same.

	43.2.1	What is a red-black tree? What is an external node? What is black depth?

	43.2.2	Describe the properties of a red-black tree.

	43.2.3	How do you convert a red-black tree to a 2-4 tree? Is the conversion unique?

	43.2.4	How do you convert a 2-4 tree to a red-black tree? Is the conversion unique?

43.3 Designing Classes for Red-Black Trees

	A red-black tree designs a class for a red-black tree.

A red-black tree is a binary search tree. So, you can define the RBTree class to extend the BST class, as shown in Figure 43.4. The BST and TreeNode classes are defined in §26.2.5.

 [image: A U M L diagram for r b tree class extends b s t.]Figure 43.4

The RBTree class extends BST with new implementations for the insert and delete methods.

Description

Each node in a red-black tree has a color property. Because the color is either red or black, it is efficient to use the boolean type to denote it. The RBTreeNode class can be defined to extend BST.TreeNode with the color property. For convenience, we also provide the methods for checking the color and setting a new color. Note that TreeNode is defined as a static inner class in BST. RBTreeNode will be defined as a static inner class in RBTree. Note that BSTNode contains the data fields element, left, and right, which are inherited in RBTreeNode. So, RBTreeNode contains four data fields, as pictured in Figure 43.5.

[image: Program code. In the code, the words in the variable names are merged. Line 1, indented once: node, colon, r b tree node, < e =. Line 2: hash, element, colon, e. Line 3: minus, red, colon, boolean. Line 4: hash, left, colon, tree node. Line 5: hash, right, colon, tree node.]
Figure 43.5

An RBTreeNode contains data fields element, red, left, and right.

In the BST class, the createNewNode() method creates a TreeNode object. This method is overridden in the RBTree class to create an RBTreeNode. Note the return type of the createNewNode() method in the BST class is TreeNode, but the return type of the createNewNode() method in RBTree class is RBTreeNode. This is fine, since RBTreeNode is a subtype of TreeNode.

Searching an element in a red-black tree is the same as searching in a regular binary search tree. So, the search method defined in the BST class also works for RBTree.

The insert and delete methods are overridden to insert and delete an element and perform operations for coloring and restructuring if necessary to ensure that the three properties of the red-black tree are satisfied.

 Pedagogical Note

Run from http://liveexample.pearsoncmg.com/dsanimation/RBTree.html to see how a red-black tree works, as shown in Figure 43.6.

 Figure 43.6

The animation tool enables you to insert, delete, and search elements in a red-black tree visually.

43.4 Overriding the insert Method

	This section discusses how to insert an element to red-black tree.

A new element is always inserted as a leaf node. If the new node is the root, color it black. Otherwise, color it red. If the parent of the new node is red, it violates Property 2 of the red-black tree. We call this a double-red violation.

Let u denote the new node inserted, v the parent of u, w the parent of v, and x the sibling of v. To fix the double-red violation, consider two cases:

Case 1: x is black or x is null. There are four possible configurations for u, v, w, and x, as shown in Figures 43.7(a), 43.8(a), 43.9(a), and 43.10(a). In this case, u, v, and w form a 4-node in the corresponding 2-4 tree, as shown in Figures 43.7(c), 43.8(c), 43.9(c), and 43.10(c), but are represented incorrectly in the red-black tree. To correct this error, restructure and recolor three nodes u, v, and w, as shown in Figures 43.7(b), 43.8(b), 43.9(b), and 43.10(b). Note x, y1, y2 and y3 may be null.

 Figure 43.7

Case 1.1: u<v<w.

 Figure 43.8

Case 1.2: v<u<w

 Figure 43.9

Case 1.3: w<v<u

 Figure 43.10

Case 1.4: w<u<v

Case 2: x is red. There are four possible configurations for u, v, w, w, and x, as shown in Figures 43.11(a), 43.11(b), 43.11(c), and 43.11(d). All of these configurations correspond to an overflow situation in the corresponding 4-node in a 2-4 tree, as shown in Figure 43.12(a). A splitting operation is performed to fix the overflow problem in a 2-4 tree, as shown in Figure 43.12(b). We perform an equivalent recoloring operation to fix the problem in a red-black tree. Color w and u red and color two children of w black. Assume u is a left child of v, as shown in Figure 43.11(a). After recoloring, the nodes are shown in Figure 43.12(c). Now w is red, if w’s parent is black, the double-red violation is fixed. Otherwise, a new double-red violation occurs at node w. We need to continue the same process to eliminate the double-red violation at w, recursively.

 Figure 43.11

Case 2 has four possible configurations.

 Figure 43.12

Splitting a 4-node corresponds to recoloring the nodes in the red-black tree.

A more detailed algorithm for inserting an element is described in Listing 43.1.

Listing 43.1 Inserting an Element to a Red-Black Tree

 1 public boolean insert(E e) {
 2 boolean successful = super.insert(e);
 3 if (!successful)
 4 return false; // e is already in the tree
 5 else {
 6 ensureRBTree(e);
 7 }
 8
 9 return true; // e is inserted
10 }
11
12 /** Ensure that the tree is a red-black tree */
13 private void ensureRBTree(E e) {
14 Get the path that leads to element e from the root.
15 int i = path.size() – 1; // Index to the current node in the path
16 Get u, v from the path. u is the node that contains e and v
17 is the parent of u.
18 Color u red;
19
20 if (u == root) // If e is inserted as the root, set root black
21 u.setBlack();
22 else if (v.isRed())
23 fixDoubleRed(u, v, path, i); // Fix double-red violation at u
24 }
25
26 /** Fix double-red violation at node u */
27 private void fixDoubleRed(RBTreeNode<E> u, RBTreeNode<E> v,
28 ArrayList<TreeNode<E>> path, int i) {
29 Get w from the path. w is the grandparent of u.
30
31 // Get v’s sibling named x
32 RBTreeNode<E> x = (w.left == v) ?
33 (RBTreeNode<E>)(w.right) : (RBTreeNode<E>)(w.left);
34
35 if (x == null || x.isBlack()) {
36 // Case 1: v's sibling x is black
37 if (w.left == v && v.left == u) {
38 // Case 1.1: u < v < w, Restructure and recolor nodes
39 }
40 else if (w.left == v && v.right == u) {
41 // Case 1.2: v < u < w, Restructure and recolor nodes
42 }
43 else if (w.right == v && v.right == u) {
44 // Case 1.3: w < v < u, Restructure and recolor nodes
45 }
46 else {
47 // Case 1.4: w < u < v, Restructure and recolor nodes
48 }
49 }
50 else { // Case 2: v's sibling x is red
51 Color w and u red
52 Color two children of w black.
53
54 if (w is root) {
55 Set w black;
56 }
57 else if (the parent of w is red) {
58 // Propagate along the path to fix new double-red violation
59 u = w;
60 v = parent of w;
61 fixDoubleRed(u, v, path, i – 2); // i – 2 propagates upward
62 }
63 }
64 }

The insert(E e) method (lines 1–10) invokes the insert method in the BST class to create a new leaf node for the element (line 2). If the element is already in the tree, return false (line 4). Otherwise, invoke ensureRBTree(e) (line 6) to ensure that the tree satisfies the color and black depth property of the red-black tree.

The ensureRBTree(E e) method (lines 13–24) obtains the path that leads to e from the root (line 14), as shown in Figure 43.13. This path plays an important role to implement the algorithm. From this path, you get nodes u and v (lines 16–17). If u is the root, color u black (lines 20–21). If v is red, a double-red violation occurs at node u. Invoke fixDoubleRed to fix the problem.

 Figure 43.13

The path consists of the nodes from u to the root.

The fixDoubleRed method (lines 27–63) fixes the double-red violation. It first obtains w (the parent of v) from the path (line 29) and x (the sibling of v) (lines 32–33). If x is empty or a black node, restructure and recolor three nodes u, v, and w to eliminate the problem (lines 35–49). If x is a red node, recolor the nodes u, v, w, and x (lines 51–52). If w is the root, color w black (lines 54–56). If the parent of w is red, the double-red violation reappears at w. Invoke fixDoubleRed with new u and v to fix the problem (line 61). Note that now i – 2 points to the new u in the path. This adjustment is necessary to locate the new nodes w and parent of w along the path.

Figure 43.14 shows the steps of inserting 34, 3, 50, 20, 15, 16, 25, and 27 into an empty red-black tree. When inserting 20 into the tree in (d), Case 2 applies to recolor 3 and 50 to black. When inserting 15 into the tree in (g), Case 1.4 applies to restructure and recolor nodes 15, 20, and 3. When inserting 16 into the tree in (i), Case 2 applies to recolor nodes 3 and 20 to black and nodes 15 and 16 to red. When inserting 27 into the tree in (l), Case 2 applies to recolor nodes 16 and 25 to black and nodes 20 and 27 to red. Now a new double-red problem occurs at node 20. Apply Case 1.2 to restructure and recolor nodes. The new tree is shown in (n).

 Figure 43.14

Inserting into a red-black tree: (a) initial empty tree; (b) inserting 34; (c) inserting 3; (d) inserting 50; (e) inserting 20 causes a double red; (f) after recoloring (Case 2); (g) inserting 15 causes a double red; (h) after restructuring and recoloring (Case 1.4); (i) inserting 16 causes a double red; (j) after recoloring (Case 2); (k) inserting 25; (l) inserting 27 causes a double red at 27; (m) a double red at 20 reappears after ­recoloring (Case 2); and (n) after restructuring and recoloring (Case 1.2).

43.5 Overriding the delete Method

	This section discusses how to delete an element to red-black tree.

To delete an element from a red-black tree, first search the element in the tree to locate the node that contains the element. If the element is not in the tree, the method returns false. Let u be the node that contains the element. If u is an internal node with both left and right children, find the rightmost node in the left subtree of u. Replace the element in u with the element in the rightmost node. Now we will only consider deleting external nodes.

Let u be an external node to be deleted. Since u is an external node, it has at most one child, denoted by childOfu. childOfu may be null. Let parentOfu denote the parent of u, as shown in Figure 43.15(a). Delete u by connecting childOfu with parentOfu, as shown in Figure 43.15(b).

 Figure 43.15

u is an external node and childOfu may be null.

Consider the following case:

	If u is red, we are done.

	If u is black and childOfu is red, color childOfu black to maintain the black height for childOfu.

	Otherwise, assign childOfu a fictitious double black, as shown in Figure 43.16(a). We call this a double-black problem, which indicates that the black depth is short by 1, caused by deleting a black node u.

 Figure 43.16

(a) childOfu is denoted double black. (b) u corresponds to an empty node in a 2-4 tree.

A double black in a red-black tree corresponds to an empty node for u (i.e., underflow situation) in the corresponding 2-4 tree, as shown in Figure 43.16(b). To fix the double-black problem, we will perform equivalent transfer and fusion operations. Consider three cases:

Case 1: The sibling y of childOfu is black and has a red child. This case has four possible configurations, as shown in Figures 43.17(a), 43.18(a), 43.19(a), and 43.20(a). The dashed ­circle denotes that the node is either red or black. To eliminate the double-black problem, restructure and recolor the nodes, as shown in Figures 43.17(b), 43.18(b), 43.19(b), and 43.20(b).

 Figure 43.17

Case 1.1: The sibling y of childOfu is black and y1 is red.

 Figure 43.18

Case 1.2: The sibling y of childOfu is black and y2 is red.

 Figure 43.19

Case 1.3: The sibling y of childOfu is black and y1 is red.

 Figure 43.20

Case 1.4: the sibling y of childOfu is black and y2 is red.

[image:] Note

Case 1 corresponds to a transfer operation in the 2-4 tree. For example, the corresponding 2-4 tree for Figure 43.17(a) is shown in Figure 43.21(a), and it is transformed into Figure 43.21(b) through a transfer operation.

 Figure 43.21

Case 1 corresponds to a transfer operation in the corresponding 2-4 tree.

Case 2: The sibling y of childOfu is black and its children are black or null. In this case, change y’s color to red. If parent is red, change it to black, and we are done, as shown in Figure 43.22. If parent is black, we denote parent double black, as shown in Figure 43.23. The double-black problem propagates to the parent node.

 Figure 43.22

Case 2: Recoloring eliminates the double-black problem if parent is red.

 Figure 43.23

Case 2: Recoloring propagates the double-black problem if parent is black.

[image:] Note

Figures 43.22 and 43.23 show that childOfu is a right child of parent. If childOfu is a left child of parent, recoloring is performed identically.

[image:] Note

Case 2 corresponds to a fusion operation in the 2-4 tree. For example, the corresponding 2-4 tree for Figure 43.22(a) is shown in Figure 43.24(a), and it is transformed into Figure 43.24(b) through a fusion operation.

 Figure 43.24

Case 2 corresponds to a fusion operation in the corresponding 2-4 tree.

Case 3: The sibling y of childOfu is red. In this case, perform an adjustment operation. If y is a left child of parent, let y1 and y2 be the left and right children of y, as shown in Figure 43.25. If y is a right children of parent, let y1 and y2 be the left and right child of y, as shown in Figure 43.26. In both cases, color y black and parent red. childOfu is still a fictitious double-black node. After the adjustment, the sibling of childOfu is now black, and either Case 1 or Case 2 applies. If Case 1 applies, a one-time restructuring and recoloring operation eliminates the double-black problem. If Case 2 applies, the double-black problem cannot reappear, since parent is now red. Therefore, one-time application of Case 1 or Case 2 will complete Case 3.

 Figure 43.25

Case 3.1: y is a left red child of parent.

 Figure 43.26

Case 3.2: y is a right red child of parent.

[image:] Note

Case 3 results from the fact that a 3-node may be transformed in two ways to a red-black tree, as shown in Figure 43.27.

 Figure 43.27

A 3-node may be transformed in two ways to red-black tree nodes.

Based on the foregoing discussion, Listing 43.2 presents a more detailed algorithm for deleting an element.

Listing 43.2 Deleting an Element from a Red-Black Tree

 1 public boolean delete(E e) {
 2 Locate the node to be deleted
 3 if (the node is not found)
 4 return false;
 5
 6 if (the node is an internal node) {
 7 Find the rightmost node in the subtree of the node;
 8 Replace the element in the node with the one in rightmost;
 9 The rightmost node is the node to be deleted now;
10 }
11
12 Obtain the path from the root to the node to be deleted;
13
14 // Delete the last node in the path and propagate if needed
15 deleteLastNodeInPath(path);
16
17 size--; // After one element deleted
18 return true; // Element deleted
19 }
20
21 /** Delete the last node from the path. */
22 public void deleteLastNodeInPath(ArrayList<TreeNode<e>> path) {
23 Get the last node u in the path;
24 Get parentOfu and grandparentOfu in the path;
25 Get childOfu from u;
26 Delete node u. Connect childOfu with parentOfu
27
28 // Recolor the nodes and fix double black if needed
29 if (childOfu == root || u.isRed())
30 return; // Done if childOfu is root or if u is red
31 else if (childOfu != null && childOfu.isRed())
32 childOfu.setBlack(); // Set it black, done
33 else // u is black, childOfu is null or black
34 // Fix double black on parentOfu
35 fixDoubleBlack(grandparentOfu, parentOfu, childOfu, path, i);
36 }
37
38 /** Fix the double black problem at node parent */
39 private void fixDoubleBlack(
40 RBTreeNode<E> grandparent, RBTreeNode<E> parent,
41 RBTreeNode<E> db, ArrayList<TreeNode<E>> path, int i) {
42 Obtain y, y1, and y2
43
44 if (y.isBlack() && y1 != null && y1.isRed()) {
45 if (parent.right == db) {
46 // Case 1.1: y is a left black sibling and y1 is red
47 Restructure and recolor parent, y, and y1 to fix the problem;
48 }
49 else {
50 // Case 1.3: y is a right black sibling and y1 is red
51 Restructure and recolor parent, y1, and y to fix the problem;
52 }
53 }
54 else if (y.isBlack() && y2 != null && y2.isRed()) {
55 if (parent.right == db) {
56 // Case 1.2: y is a left black sibling and y2 is red
57 Restructure and recolor parent, y2, and y to fix the problem;
58 }
59 else {
60 // Case 1.4: y is a right black sibling and y2 is red
61 Restructure and recolor parent, y, and y2 to fix the problem;
62 }
63 }
64 else if (y.isBlack()) {
65 // Case 2: y is black and y's children are black or null
66 Recolor y to red;
67
68 if (parent.isRed())
69 parent.setBlack(); // Done
70 else if (parent != root) {
71 // Propagate double black to the parent node
72 // Fix new appearance of double black recursively
73 db = parent;
74 parent = grandparent;
75 grandparent =
76 (i >= 3) ? (RBTreeNode<E>)(path.get(i − 3)) : null;
77 fixDoubleBlack(grandparent, parent, db, path, i − 1);
78 }
79 }
80 else if (y.isRed()) {
81 if (parent.right == db) {
82 // Case 3.1: y is a left red child of parent
83 parent.left = y2;
84 y.right = parent;
85 }
86 else {
87 // Case 3.2: y is a right red child of parent
88 parent.right = y.left;
89 y.left = parent;
90 }
91
92 parent.setRed(); // Color parent red
93 y.setBlack(); // Color y black
94 connectNewParent(grandparent, parent, y); // y is new parent
95 fixDoubleBlack(y, parent, db, path, i − 1);
96 }
97 }

The delete(E e) method (lines 1–19) locates the node that contains e (line 2). If the node does not exist, return false (lines 3–4). If the node is an internal node, find the right most node in its left subtree and replace the element in the node with the element in the right most node (lines 6–9). Now the node to be deleted is an external node. Obtain the path from the root to the node (line 12). Invoke deleteLastNodeInPath(path) to delete the last node in the path and ensure that the tree is still a red-black tree (line 15).

The deleteLastNodeInPath method (lines 22–36) obtains the last node u, parentOfu, grandparendOfu, and childOfu (lines 23–26). If childOfu is the root or u is red, the tree is fine (lines 29–30). If childOfu is red, color it black (lines 31–32). We are done. Otherwise, u is black and childOfu is null or black. Invoke fixDoubleBlack to eliminate the double-black problem (line 35).

The fixDoubleBlack method (lines 39–97) eliminates the double-black problem. Obtain y, y1, and y2 (line 42). y is the sibling of the double-black node. y1 and y2 are the left and right children of y. Consider three cases:

	If y is black and one of its children is red, the double-black problem can be fixed by one-time restructuring and recoloring in Case 1 (lines 44–63).

	If y is black and its children are null or black, change y to red. If parent of y is black, denote parent to be the new double-black node and invoke fixDoubleBlack recursively (line 77).

	If y is red, adjust the nodes to make parent a child of y (lines 84, 89) and color ­parent red and y black (lines 92–93). Make y the new parent (line 94). Recursively invoke fixDoubleBlack on the same double-black node with a different color for parent (line 95).

Figure 43.28 shows the steps of deleting elements. To delete 50 from the tree in ­Figure 43.28(a), apply Case 1.2, as shown in Figure 43.28(b). After restructuring and recoloring, the new tree is as shown in Figure 43.28(c).

 Figure 43.28

Delete elements from a red-black tree.

When deleting 20 in Figure 43.28(c), 20 is an internal node, and it is replaced by 16, as shown in Figure 43.28(d). Now Case 2 applies to deleting the rightmost node, as shown in Figure 43.28(e). Recolor the nodes results in a new tree, as shown in Figure 43.28(f).

When deleting 15, connect node 3 with node 20 and color node 3 black, as shown in ­Figure 43.28(g). We are done.

After deleting 25, the new tree is as shown in Figure 43.28(j). Now delete 16. Apply Case 2, as shown in Figure 43.28(k). The new tree is shown in Figure 43.28(l).

After deleting 34, the new tree is as shown in Figure 43.28(m).

After deleting 27, the new tree is as shown in Figure 43.28(n).

	43.5.1	What are the data fields in RBTreeNode?

	43.5.2	How do you insert an element into a red-black tree and how do you fix the double-red violation?

	43.5.3	How do you delete an element from a red-black tree and how do you fix the ­double-black problem?

	43.5.4	Show the change of the tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 into it, in this order.

	43.5.5	For the tree built in the preceding question, show the change of the tree after deleting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 from it in this order.

43.6 Implementing RBTree Class

	This section implements the RBTree class.

Listing 43.3 gives a complete implementation for the RBTree class.

Listing 43.3 RBTree.java

 1 import java.util.ArrayList;
 2
 3 public class RBTree<E extends Comparable<E>> extends BST<E> {
 4 /** Create a default RB tree */
 5 public RBTree() {
 6 }
 7
 8 /** Create an RB tree from an array of elements */
 9 public RBTree(E[] elements) {
 10 super(elements);
 11 }
 12
 13 @Override /** Override createNewNode to create an RBTreeNode */
 14 protected RBTreeNode<E> createNewNode(E e) {
 15 return new RBTreeNode<E>(e);
 16 }
 17
 18 @Override /** Override the insert method to
 19 balance the tree if necessary */
 20 public boolean insert(E e) {
 21 boolean successful = super.insert(e);
 22 if (!successful)
 23 return false; // e is already in the tree
 24 else {
 25 ensureRBTree(e);
 26 }
 27
 28 return true; // e is inserted
 29 }
 30
 31 /** Ensure that the tree is a red-black tree */
 32 private void ensureRBTree(E e) {
 33 // Get the path that leads to element e from the root
 34 ArrayList<TreeNode<E>> path = path(e);
 35
 36 int i = path.size() − 1; // Index to the current node in the path
 37
 38 // u is the last node in the path. u contains element e
 39 RBTreeNode<E> u = (RBTreeNode<E>)(path.get(i));
 40
 41 // v is the parent of of u, if exists
 42 RBTreeNode<E> v = (u == root) ? null :
 43 (RBTreeNode<E>)(path.get(i − 1));
 44
 45 u.setRed(); // It is OK to set u red
 46
 47 if (u == root) // If e is inserted as the root, set root black
 48 u.setBlack();
 49 else if (v.isRed())
 50 fixDoubleRed(u, v, path, i); // Fix double-red violation at u
 51 }
 52
 53 /** Fix double-red violation at node u */
 54 private void fixDoubleRed(RBTreeNode<E> u, RBTreeNode<E> v,
 55 ArrayList<TreeNode<E>> path, int i) {
 56 // w is the grandparent of u
 57 RBTreeNode<E> w = (RBTreeNode<E>)(path.get(i − 2));
 58 RBTreeNode<E> parentOfw = (w == root) ? null :
 59 (RBTreeNode<E>)path.get(i – 3);
 60
 61 // Get v's sibling named x
 62 RBTreeNode<E> x = (w.left == v) ?
 63 (RBTreeNode<E>)(w.right) : (RBTreeNode<E>)(w.left);
 64
 65 if (x == null || x.isBlack()) {
 66 // Case 1: v's sibling x is black
 67 if (w.left == v && v.left == u) {
 68 // Case 1.1: u < v < w, Restructure and recolor nodes
 69 restructureRecolor(u, v, w, w, parentOfw);
 70
 71 w.left = v.right; // v.right is y3 in Figure 43.6
 72 v.right = w;
 73 }
 74 else if (w.left == v && v.right == u) {
 75 // Case 1.2: v < u < w, Restructure and recolor nodes
 76 restructureRecolor(v, u, w, w, parentOfw);
 77 v.right = u.left;
 78 w.left = u.right;
 79 u.left = v;
 80 u.right = w;
 81 }
 82 else if (w.right == v && v.right == u) {
 83 // Case 1.3: w < v < u, Restructure and recolor nodes
 84 restructureRecolor(w, v, u, w, parentOfw);
 85 w.right = v.left;
 86 v.left = w;
 87 }
 88 else {
 89 // Case 1.4: w < u < v, Restructure and recolor nodes
 90 restructureRecolor(w, u, v, w, parentOfw);
 91 w.right = u.left;
 92 v.left = u.right;
 93 u.left = w;
 94 u.right = v;
 95 }
 96 }
 97 else { // Case 2: v's sibling x is red
 98 // Recolor nodes
 99 w.setRed();
100 u.setRed();
101 ((RBTreeNode<E>)(w.left)).setBlack();
102 ((RBTreeNode<E>)(w.right)).setBlack();
103
104 if (w == root) {
105 w.setBlack();
106 }
107 else if (((RBTreeNode<E>)parentOfw).isRed()) {
108 // Propagate along the path to fix new double-red violation
109 u = w;
110 v = (RBTreeNode<E>)parentOfw;
111 fixDoubleRed(u, v, path, i − 2); // i – 2 propagates upward
112 }
113 }
114 }
115
116 /** Connect b with parentOfw and recolor a, b, c for a < b < c */
117 private void restructureRecolor(RBTreeNode<E> a, RBTreeNode<E> b,
118 RBTreeNode<E> c, RBTreeNode<E> w, RBTreeNode<E> parentOfw) {
119 if (parentOfw == null)
120 root = b;
121 else if (parentOfw.left == w)
122 parentOfw.left = b;
123 else
124 parentOfw.right = b;
125
126 b.setBlack(); // b becomes the root in the subtree
127 a.setRed(); // a becomes the left child of b
128 c.setRed(); // c becomes the right child of b
129 }
130
131 @Override /** Delete an element from the RBTree.
132 * Return true if the element is deleted successfully
133 * Return false if the element is not in the tree */
134 public boolean delete(E e) {
135 // Locate the node to be deleted
136 TreeNode<E> current = root;
137 while (current != null) {
138 if (e.compareTo(current.element) < 0) {
139 current = current.left;
140 }
141 else if (e.compareTo(current.element) > 0) {
142 current = current.right;
143 }
144 else
145 break; // Element is in the tree pointed by current
146 }
147
148 if (current == null)
149 return false; // Element is not in the tree
150
151 java.util.ArrayList<TreeNode<E>> path;
152
153 // current node is an internal node
154 if (current.left != null && current.right != null) {
155 // Locate the rightmost node in the left subtree of current
156 TreeNode<E> rightMost = current.left;
157 while (rightMost.right != null) {
158 rightMost = rightMost.right; // Keep going to the right
159 }
160
161 path = path(rightMost.element); // Get path before replacement
162
163 // Replace the element in current by the element in rightMost
164 current.element = rightMost.element;
165 }
166 else
167 path = path(e); // Get path to current node
168
169 // Delete the last node in the path and propagate if needed
170 deleteLastNodeInPath(path);
171
172 size--; // After one element deleted
173 return true; // Element deleted
174 }
175
176 /** Delete the last node from the path. */
177 public void deleteLastNodeInPath(ArrayList<TreeNode<E>> path) {
178 int i = path.size() − 1; // Index to the node in the path
179 // u is the last node in the path
180 RBTreeNode<E> u = (RBTreeNode<E>)(path.get(i));
181 RBTreeNode<E> parentOfu = (u == root) ? null :
182 (RBTreeNode<E>)(path.get(i − 1));
183 RBTreeNode<E> grandparentOfu = (parentOfu == null ||
184 parentOfu == root) ? null :
185 (RBTreeNode<E>)(path.get(i − 2));
186 RBTreeNode<E> childOfu = (u.left == null) ?
187 (RBTreeNode<E>)(u.right) : (RBTreeNode<E>)(u.left);
188
189 // Delete node u. Connect childOfu with parentOfu
190 connectNewParent(parentOfu, u, childOfu);
191
192 // Recolor the nodes and fix double black if needed
193 if (childOfu == root || u.isRed())
194 return; // Done if childOfu is root or if u is red
195 else if (childOfu != null && childOfu.isRed())
196 childOfu.setBlack(); // Set it black, done
197 else // u is black, childOfu is null or black
198 // Fix double black on parentOfu
199 fixDoubleBlack(grandparentOfu, parentOfu, childOfu, path, i);
200 }
201
202 /** Fix the double-black problem at node parent */
203 private void fixDoubleBlack(
204 RBTreeNode<E> grandparent, RBTreeNode<E> parent,
205 RBTreeNode<E> db, ArrayList<TreeNode<E>> path, int i) {
206 // Obtain y, y1, and y2
207 RBTreeNode<E> y = (parent.right == db) ?
208 (RBTreeNode<E>)(parent.left) : (RBTreeNode<E>)(parent.right);
209 RBTreeNode<E> y1 = (RBTreeNode<E>)(y.left);
210 RBTreeNode<E> y2 = (RBTreeNode<E>)(y.right);
211
212 if (y.isBlack() && y1 != null && y1.isRed()) {
213 if (parent.right == db) {
214 // Case 1.1: y is a left black sibling and y1 is red
215 connectNewParent(grandparent, parent, y);
216 recolor(parent, y, y1); // Adjust colors
217
218 // Adjust child links
219 parent.left = y.right;
220 y.right = parent;
221 }
222 else {
223 // Case 1.3: y is a right black sibling and y1 is red
224 connectNewParent(grandparent, parent, y1);
225 recolor(parent, y1, y); // Adjust colors
226
227 // Adjust child links
228 parent.right = y1.left;
229 y.left = y1.right;
230 y1.left = parent;
231 y1.right = y;
232 }
233 }
234 else if (y.isBlack() && y2 != null && y2.isRed()) {
235 if (parent.right == db) {
236 // Case 1.2: y is a left black sibling and y2 is red
237 connectNewParent(grandparent, parent, y2);
238 recolor(parent, y2, y); // Adjust colors
239
240 // Adjust child links
241 y.right = y2.left;
242 parent.left = y2.right;
243 y2.left = y;
244 y2.right = parent;
245 }
246 else {
247 // Case 1.4: y is a right black sibling and y2 is red
248 connectNewParent(grandparent, parent, y);
249 recolor(parent, y, y2); // Adjust colors
250
251 // Adjust child links
252 y.left = parent;
253 parent.right = y1;
254 }
255 }
256 else if (y.isBlack()) {
257 // Case 2: y is black and y’s children are black or null
258 y.setRed(); // Change y to red
259 if (parent.isRed())
260 parent.setBlack(); // Done
261 else if (parent != root) {
262 // Propagate double black to the parent node
263 // Fix new appearance of double black recursively
264 db = parent;
265 parent = grandparent;
266 grandparent =
267 (i >= 3) ? (RBTreeNode<E>)(path.get(i − 3)) : null;
268 fixDoubleBlack(grandparent, parent, db, path, i − 1);
269 }
270 }
271 else { // y.isRed()
272 if (parent.right == db) {
273 // Case 3.1: y is a left red child of parent
274 parent.left = y2;
275 y.right = parent;
276 }
277 else {
278 // Case 3.2: y is a right red child of parent
279 parent.right = y.left;
280 y.left = parent;
281 }
282
283 parent.setRed(); // Color parent red
284 y.setBlack(); // Color y black
285 connectNewParent(grandparent, parent, y); // y is new parent
286 fixDoubleBlack(y, parent, db, path, i − 1);
287 }
288 }
289
290 /** Recolor parent, newParent, and c. Case 1 removal */
291 private void recolor(RBTreeNode<E> parent,
292 RBTreeNode<E> newParent, RBTreeNode<E> c) {
293 // Retain the parent’s color for newParent
294 if (parent.isRed())
295 newParent.setRed();
296 else
297 newParent.setBlack();
298
299 // c and parent become the children of newParent; set them black
300 parent.setBlack();
301 c.setBlack();
302 }
303
304 /** Connect newParent with grandParent */
305 private void connectNewParent(RBTreeNode<E> grandparent,
306 RBTreeNode<E> parent, RBTreeNode<E> newParent) {
307 if (parent == root) {
308 root = newParent;
309 if (root != null)
310 newParent.setBlack();
311 }
312 else if (grandparent.left == parent)
313 grandparent.left = newParent;
314 else
315 grandparent.right = newParent;
316 }
317
318 @Override /** Preorder traversal from a subtree */
319 protected void preorder(TreeNode<E> root) {
320 if (root == null) return;
321 System.out.print(root.element +
322 (((RBTreeNode<E>)root).isRed() ? " (red) " : " (black) "));
323 preorder(root.left);
324 preorder(root.right);
325 }
326
327 /** RBTreeNode is TreeNode plus color indicator */
328 protected static class RBTreeNode<E extends Comparable<E>> extends
329 BST.TreeNode<E> {
330 private boolean red = true; // Indicate node color
331
332 public RBTreeNode(E e) {
333 super(e);
334 }
335
336 public boolean isRed() {
337 return red;
338 }
339
340 public boolean isBlack() {
341 return !red;
342 }
343
344 public void setBlack() {
345 red = false;
346 }
347
348 public void setRed() {
349 red = true;
350 }
351
352 int blackHeight;
353 }
354 }

The RBTree class extends BST. Like the BST class, the RBTree class has a no-arg constructor that constructs an empty RBTree (lines 5–6) and a constructor that creates an initial RBTree from an array of elements (lines 9–11).

The createNewNode() method defined in the BST class creates a TreeNode. This method is overridden to return an RBTreeNode (lines 14–16). This method is invoked in the insert method in BST to create a node.

The insert method in RBTree is overridden in lines 20–29. The method first invokes the insert method in BST, then invokes ensureRBTree(e) (line 25) to ensure that tree is still a red-black tree after inserting a new element.

The ensureRBTree(E e) method first obtains the path of nodes that lead to element e from the root (line 34). It obtains u and v (the parent of u) from the path. If u is the root, color u black (lines 47–48). If v is red, invoke fixDoubleRed to fix the double red on both u and v (lines 49–50).

The fixDoubleRed(u, v, path, i) method fixes the double-red violation at node u. The method first obtains w (the grandparent of u from the path) (line 57), parentOfw if exists (lines 58–59), and x (the sibling of v) (lines 62–63). If x is null or black, consider four subcases to fix the double-red violation (lines 67–96). If x is red, color w and u red and color w’s two children black (lines 101–104). If w is the root, color w black (lines 104–106). Otherwise, propagate along the path to fix the new double-red violation (lines 109–111).

The delete(E e) method in RBTree is overridden in lines 134–174. The method locates the node that contains e (lines 136–146). If the node is null, no element is found (lines 148–149). The method considers two cases:

	If the node is internal, find the rightmost node in its left subtree (lines 156–159). Obtain a path from the root to the rightmost node (line 161), and replace the element in the node with the element in the rightmost node (line 164).

	If the node is external, obtain the path from the root to the node (line 167).

The last node in the path is the node to be deleted. Invoke deleteLastNodeInPath(path) to delete it and ensure the tree is a red-black after the node is deleted (line 170).

The deleteLastNodeInPath(path) method first obtains u, parentOfu, grand­parendOfu, and childOfu (lines 180–187). u is the last node in the path. Connect childOfu as a child of parentOfu (line 190). This in effect deletes u from the tree. Consider three cases:

	If childOfu is the root or childOfu is red, we are done (lines 193–194).

	Otherwise, if childOfu is red, color it black (lines 195–196).

	Otherwise, invoke fixDoubleBlack to fix the double-black problem on childOfu (line 199).

The fixDoubleBlack method first obtains y, y1, and y2 (lines 207–210). y is the sibling of the first double-black node, and y1 and y2 are the left and right children of y. Consider three cases:

	If y is black and y1 or y2 is red, fix the double-black problem for Case 1 (lines 213–255).

	Otherwise, if y is black, fix the double-black problem for Case 2 by recoloring the nodes. If parent is black and not a root, propagate double black to parent and recursively invoke fixDoubleBlack (lines 264–268).

	Otherwise, y is red. In this case, adjust the nodes to make parent the child of y (lines 272–281). Invoke fixDoubleBlack with the adjusted nodes (line 286) to fix the double-black problem.

The preorder(TreeNode<E> root) method is overridden to display the node colors (lines 319–325).

43.7 Testing the RBTree Class

	This section gives a test program that uses the RBTree class.

Listing 43.4 gives a test program. The program creates an RBTree initialized with an array of integers 34, 3, and 50 (lines 4–5), inserts elements in lines 10–22, and deletes elements in lines 25–46.

Listing 43.4 TestRBTree.java

 1 public class TestRBTree {
 2 public static void main(String[] args) {
 3 // Create an RB tree
 4 RBTree<Integer> tree =
 5 new RBTree<Integer>(new Integer[]{34, 3, 50});
 6 printTree(tree);
 7
 8 tree.insert(20);
 9 printTree(tree);
10
11 tree.insert(15);
12 printTree(tree);
13
14 tree.insert(16);
15 printTree(tree);
16
17 tree.insert(25);
18 printTree(tree);
19
20 tree.insert(27);
21 printTree(tree);
22
23 tree.delete(50);
24 printTree(tree);
25
26 tree.delete(20);
27 printTree(tree);
28
29 tree.delete(15);
30 printTree(tree);
31
32 tree.delete(3);
33 printTree(tree);
34
35 tree.delete(25);
36 printTree(tree);
37
38 tree.delete(16);
39 printTree(tree);
40
41 tree.delete(34);
42 printTree(tree);
43
44 tree.delete(27);
45 printTree(tree);
46 }
47
48 public static <E extends Comparable<E>>
49 void printTree(BST <E> tree) {
50 // Traverse tree
51 System.out.print("\nInorder (sorted): ");
52 tree.inorder();
53 System.out.print("\nPostorder: ");
54 tree.postorder();
55 System.out.print("\nPreorder: ");
56 tree.preorder();
57 System.out.print("\nThe number of nodes is " + tree.getSize());
58 System.out.println();
59 }
60 }

Inorder (sorted): 3 34 50
Postorder: 3 50 34
Preorder: 34 (black) 3 (red) 50 (red)
The number of nodes is 3

Inorder (sorted): 3 20 34 50
Postorder: 20 3 50 34
Preorder: 34 (black) 3 (black) 20 (red) 50 (black)
The number of nodes is 4

Inorder (sorted): 3 15 20 34 50
Postorder: 3 20 15 50 34
Preorder: 34 (black) 15 (black) 3 (red) 20 (red) 50 (black)
The number of nodes is 5

Inorder (sorted): 3 15 16 20 34 50
Postorder: 3 16 20 15 50 34
Preorder: 34 (black) 15 (red) 3 (black) 20 (black) 16 (red) 50 (black)
The number of nodes is 6

Inorder (sorted): 3 15 16 20 25 34 50
Postorder: 3 16 25 20 15 50 34
Preorder: 34 (black) 15 (red) 3 (black) 20 (black) 16 (red) 25 (red)
 50 (black)
The number of nodes is 7

Inorder (sorted): 3 15 16 20 25 27 34 50
Postorder: 3 16 15 27 25 50 34 20
Preorder: 20 (black) 15 (red) 3 (black) 16 (black) 34 (red) 25 (black)
 27 (red) 50 (black)
The number of nodes is 8

Inorder (sorted): 3 15 16 20 25 27 34
Postorder: 3 16 15 25 34 27 20
Preorder: 20 (black) 15 (red) 3 (black) 16 (black) 27 (red)
 25 (black) 34 (black)
The number of nodes is 7

Inorder (sorted): 3 15 16 25 27 34
Postorder: 3 15 25 34 27 16
Preorder: 16 (black) 15 (black) 3 (red) 27 (red) 25 (black) 34 (black)
The number of nodes is 6

Inorder (sorted): 3 16 25 27 34
Postorder: 3 25 34 27 16
Preorder: 16 (black) 3 (black) 27 (red) 25 (black) 34 (black)
The number of nodes is 5

Inorder (sorted): 16 25 27 34
Postorder: 25 16 34 27
Preorder: 27 (black) 16 (black) 25 (red) 34 (black)
The number of nodes is 4

Inorder (sorted): 16 27 34
Postorder: 16 34 27
Preorder: 27 (black) 16 (black) 34 (black)
The number of nodes is 3

Inorder (sorted): 27 34
Postorder: 34 27
Preorder: 27 (black) 34 (red)
The number of nodes is 2

Inorder (sorted): 27
Postorder: 27
Preorder: 27 (black)
The number of nodes is 1

Inorder (sorted):
Postorder:
Preorder:
The number of nodes is 0

Figure 43.14 shows how the tree evolves as elements are added to it, and Figure 43.28 shows how the tree evolves as elements are deleted from it.

43.8 Performance of the RBTree Class

	This search, insertion, and deletion operations take O(logn) time in a red-black tree.

The search, insertion, and deletion times in a red-black tree depend on the height of the tree. A red-black tree corresponds to a 2–4 tree. When you convert a node in a 2–4 tree to red-black tree nodes, you get one black node and zero, one, or two red nodes as its children, depending on whether the original node is a 2-node, 3-node, or 4-node. So, the height of a red-black tree is at most as twice that of its corresponding 2–4 tree. Since the height of a 2–4 tree is log n, the height of a red-black tree is 2log n.

A red-black tree has the same time complexity as an AVL tree, as shown in Table 43.1. In general, a red-black is more efficient than an AVL tree, because a red-black tree requires only one-time restructuring of the nodes for insert and delete operations.

Table 43.1  Time Complexities for Methods in RBTree, AVLTree, and Tree234

	Methods

	Red-Black Tree

	AVL Tree

	2-4 Tree

	search (e: E)

	O(logn)

	O(logn)

	O(logn)

	insert (e: E)

	O(logn)

	O(logn)

	O(logn)

	delete (e: E)

	O(logn)

	O(logn)

	O(logn)

	getSize()

	O(l)

	O(l)

	O(l)

	isEmpty()

	O(l)

	O(l)

	O(l)

A red-black tree has the same time complexity as a 2–4 tree, as shown in Table 43.1. In general, a red-black is more efficient than a 2–4 tree for two reasons:

	A red-black tree requires only one-time restructuring of the nodes for insert and delete operations. However, a 2–4 tree may require many splits for an insert operation and fusion for a delete operation.

	A red-black tree is a binary search tree. A binary tree can be implemented more space efficiently than a 2–4 tree, because a node in a 2–4 tree has at most three elements and four children. Space is wasted for 2-nodes and 3-nodes in a 2–4 tree.

Listing 43.5 gives an empirical test of the performance of AVL trees, 2–4 trees, and red-black trees.

Listing 43.5 TreePerformanceTest.java

 1 public class TreePerformanceTest {
 2 public static void main(String[] args) {
 3 final int TEST_SIZE = 500000; // Tree size used in the test
 4
 5 // Create an AVL tree
 6 Tree<Integer> tree1 = new AVLTree<Integer>();
 7 System.out.println("AVL tree time: " +
 8 getTime(tree1, TEST_SIZE) + " milliseconds");
 9
10 // Create a 2-4 tree
11 Tree<Integer> tree2 = new Tree24<Integer>();
12 System.out.println("2-4 tree time: "
13 + getTime(tree2, TEST_SIZE) + " milliseconds");
14
15 // Create a red-black tree
16 Tree<Integer> tree3 = new RBTree<Integer>();
17 System.out.println("RB tree time: "
18 + getTime(tree3, TEST_SIZE) + " milliseconds");
19 }
20
21 public static long getTime(Tree<Integer> tree, int testSize) {
22 long startTime = System.currentTimeMillis(); // Start time
23
24 // Create a list to store distinct integers
25 java.util.List<Integer> list = new java.util.ArrayList<Integer>();
26 for (int i = 0; i < testSize; i++)
27 list.add(i);
28
29 java.util.Collections.shuffle(list); // Shuffle the list
30
31 // Insert elements in the list to the tree
32 for (int i = 0; i < testSize; i++)
33 tree.insert(list.get(i));
34
35 java.util.Collections.shuffle(list); // Shuffle the list
36
37 // Delete elements in the list from the tree
38 for (int i = 0; i < testSize; i++)
39 tree.delete(list.get(i));
40
41 // Return elapse time
42 return System.currentTimeMillis() - startTime;
43 }
44 }

AVL tree time: 7609 milliseconds
2–4 tree time: 8594 milliseconds
RB tree time: 5515 milliseconds

The getTestTime method creates a list of distinct integers from 0 to testSize – 1 (lines 25–27), shuffles the list (line 29), adds the elements from the list to a tree (lines 32–33), shuffles the list again (line 35), removes the elements from the tree (lines 38–39), and finally returns the execution time (line 42).

The program creates an AVL (line 6), a 2-4 tree (line 11), and a red-black tree (line 16). The program obtains the execution time for adding and removing 500000 elements in the three trees.

As you see, the red-black tree performs the best, followed by the AVL tree.

[image:] Note

The java.util.TreeSet class in the Java API is implemented using a red-black tree. Each entry in the set is stored in the tree. Since the search, insert, and delete methods in a red-black tree take O(log n) time, the get, add, remove, and contains methods in java.util.TreeSet take O(log n) time.

[image:] Note

The java.util.TreeMap class in the Java API is implemented using a red-black tree. Each entry in the map is stored in the tree. The order of the entries is determined by their keys. Since the search, insert, and delete methods in a red-black tree take O(log n) time, the get, put, remove, and containsKey methods in java.util.TreeMap take O(log n) time.

Key Terms

	black depth 43-2

	double-black violation 43-11

	double-red violation 43-7

	external node 43-9

	red-black tree 43-2

Chapter Summary

	A red-black tree is a binary search tree, derived from a 2-4 tree. A red-black tree corresponds to a 2-4 tree. You can convert a red-black tree to a 2-4 tree or vice versa.

	In a red-black tree, each node is colored red or black. The root is always black. Two adjacent nodes cannot be both red. All external nodes have the same black depth.

	Since a red-black tree is a binary search tree, the RBTree class extends the BST class.

	Searching an element in a red-black tree is the same as in binary search tree, since a red-black tree is a binary search tree.

	A new element is always inserted as a leaf node. If the new node is the root, color it black. Otherwise, color it red. If the parent of the new node is red, we have to fix the double-red violation by reassigning the color and/or restructuring the tree.

	If a node to be deleted is internal, find the rightmost node in its left subtree. Replace the element in the node with the element in the rightmost node. Delete the rightmost node.

	If the external node to be deleted is red, simply reconnect the parent node of the external node with the child node of the external node.

	If the external node to be deleted is black, you need to consider several cases to ensure that black height for external nodes in the tree is maintained correctly.

	The height of a red-black tree is O(logn). So, the time complexities for the search, insert, and delete methods are O(logn).

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

	*43.1	(red-black tree to 2-4 tree) Write a program that converts a red-black tree to a 2-4 tree.

	*43.2	(2-4 tree to red-black tree) Write a program that converts a red-black tree to a 2-4 tree.

	***43.3	(red-black tree animation) Write a GUI program that animates the red-black tree insert, delete, and search methods, as shown in Figure 43.6 .

	**43.4	(Parent reference for RBTree) Suppose the TreeNode class defined in BST contains a reference to the node’s parent, as shown in Exercise 26.17. Implement the RBTree class to support this change. Write a test program that adds numbers 1, 2, . . . , 100 to the tree and displays the paths for all leaf nodes.

CHAPTER 44 Testing Using JUnit

Objectives

	To know what JUnit is and how JUnit works (§44.2).

	To create and run a JUnit test class from the command window (§44.2).

	To create and run a JUnit test class from NetBeans (§44.3).

	To create and run a JUnit test class from Eclipse (§44.4).

44.1 Introduction

[image:]

	JUnit is a tool for testing Java programs.

At the very beginning of this book in Section 2.16, we introduced software development process that includes requirements specification, analysis, design, implementation, testing, deployment, and maintenance. Testing is an important part of this process. This chapter introduces how to test Java classes using JUnit.

44.2 JUnit Basics

[image:]

	To test a class, you need to write a test class and run it through JUnit to generate a report for the class.

JUnit is the de facto framework for testing Java programs. JUnit is a third-party open-source library packed in a jar file. The jar file contains a tool called test runner, which is used to run test programs. Suppose you have a class named A. To test this class, you write a test class named ATest. This test class, called a test runner, contains the methods you write for testing class A. The test runner executes ATest to generate a test report, as shown in Figure 44.1.

 Figure 44.1

JUnit test runner executes the test class to generate a test report.

You will see how JUnit works from an example. To create the example, first you need to download JUnit from http://sourceforge.net/projects/junit/files/. At present, the latest version is junit-4.10.jar. Download this file to c:\book\lib and add it to the classpath environment variable as follows:

set classpath=.;%classpath%;c:\book\lib\junit-4.10.jar

To test if this environment variable is set correctly, open a new command window, and type the following command:

java org.junit.runner.JUnitCore

You should see the message displayed as shown in Figure 44.2.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: c, colon, back slash, book > java o r g, period, j unit, period, runner, period, j unit core. Line 2: j unit version 4, period, 10. Line 3: blank. Line 4: time, colon, 0, period, 0 0 3. Line 5: o k < 0 tests >. Line 6: blank. Line 7: c, colon, back slash, book >.]Figure 44.2

The JUnit test runner displays the JUnit version.

To use JUnit, create a test class. By convention, if the class to be tested is named A, the test class should be named ATest. A simple template of a test class may look like this:

 1 package mytest;
 2
 3 import org.junit.*;
 4 import static org.junit.Assert.*;
 5
 6 public class ATest {
 7 @Test
 8 public void m1() {
 9 // Write a test method
10 }
11
12 @Test
13 public void m2() {
14 // Write another test method
15 }
16
17 @Before
18 public void setUp() throws Exception {
19 // Common objects used by test methods may be set up here
20 }
21 }

This class should be placed in a directory under mytest. Suppose the class is placed under c:\book\mytest. You need to compile it from the mytest directory and run it from c:\book as shown in the following screen shot.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: c, colon, back slash, book, back slash, my test, > notepad a test, period, java. Line 2: blank. Line 3: c, colon, back slash, book, back slash, my test, > java c ay test, period, java. Line 4: blank. Line 5: c, colon, back slash, book, back slash, my test, > c d, period, period. Line 6: blank. Line 7: c, colon, back slash, book > java o r g, period, j unit, period, runner, period, j unit core, my test, period, a test. Line 8: j unit version 4, period, 10. Line 9: period, period. Line 10: time, colon, 0, period, 02. Line 11: blank. Line 12: ok, left parenthesis, 2 tests, right parenthesis. Line 13: blank. Line 14: c, colon, back slash, book >.]

Note the command to run the test from the console is:

java org.junit.runner.JUnitCore mytest.ATest

When this command is executed, JUnitCore controls the execution of ATest. It first executes the setUp() method to set up the common objects used for the test, and then executes test methods m1 and m2 in this order. You may define multiple test methods if desirable.

The following methods can be used to implement a test method:

	assertTrue(booleanExpression)

The method reports success if the booleanExpression evaluates true.

	assertEquals(Object, Object)

The method reports success if the two objects are the same using the equals method.

	assertNull(Object)

The method reports success if the object reference passed is null.

	fail(String)

The method causes the test to fail and prints out the string.

Listing 44.1 is an example of a test class for testing java.util.ArrayList.

Listing 44.1 ArrayListTest.java

 1 package mytest;
 2
 3 import org.junit.*;
 4 import static org.junit.Assert.*;
 5 import java.util.*;
 6
 7 public class ArrayListTest {
 8 private ArrayList<String> list = new ArrayList<String>();
 9
10 @Before
11 public void setUp() throws Exception {
12 }
13
14 @Test
15 public void testInsertion() {
16 list.add("Beijing");
17 assertEquals("Beijing", list.get(0));
18 list.add("Shanghai");
19 list.add("Hongkong");
20 assertEquals("Hongkong", list.get(list.size() – 1));
21 }
22
23 @Test
24 public void testDeletion() {
25 list.clear();
26 assertTrue(list.isEmpty());
27
28 list.add("A");
29 list.add("B");
30 list.add("C");
31 list.remove("B");
32 assertEquals(2, list.size());
33 }
34 }

A test run of the program is shown in Figure 44.3. Note that you have to first compile ArrayListTest.java. The ArrayListTest class is placed in the mytest package. So you should place ArrayListTest.java in the directory named mytest.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: c, colon, back slash, book > c d my test. Line 2: blank. Line 3: c, colon, back slash, book, back slash, my test, > java c array list test, period, java. Line 4: blank. Line 5: c, colon, back slash, book, back slash, my test, > c d, period, period. Line 6: blank. Line 7: c, colon, back slash, book > java o r g, period, j unit, period, runner, period, j unit core, my test, period, array list test. Line 8: j unit version 4, period, 10. Line 9: period, period. Line 10: time, colon, 0, period, 02. Line 11: blank. Line 12: ok, left parenthesis, 2 tests, right parenthesis. Line 13: blank. Line 14: c, colon, back slash, book >.]Figure 44.3

The test report is displayed from running ArrayListTest.

No errors are reported in this JUnit run. If you mistakenly change

assertEquals(2, list.size());

in line 32 to

assertEquals(3, list.size());

Run ArrayListTest now. You will see an error reported as shown in Figure 44.4.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: c, colon, back slash, book > java o r g, period, j unit, period, runner, period, j unit core my test, period, array list text. Line 2: j unit, version 4, period, 10. Line 3: period, e period. Line 4: Time, colon, 0, period, 0 1 6. Line 5: There was 1 failure, colon. Line 6: 1 > test deletion < my test, period, array list, test >. Line 7: java, period, lang, period, assertion error, colon, expected, colon, < 3 > but was, colon, < 2 >. Line 8, indented once: at o r g, period, j unit, period, assert, period, fail < assert, period, java, colon, 93 >. Line 9, indented once: at o r g, period, j unit, period, assert, period, fail not equals, < assert, period, java, colon, 647 >. Line 10, indented once: at o r g, period, j unit, period, assert, period, assert equals, < assert, period, java, colon, 128 >. Line 11, indented once: at o r g, period, j unit, period, assert, period, assert equals, < assert, period, java, colon, 472 >. Line 12, indented once: at o r g, period, j unit, period, assert, period, assert equals, < assert, period, java, colon, 456 >. Line 13, indented once: at my test, period, array list test, period, test deletion < array list test, period, java, colon, 32 >.]Figure 44.4

The test report reports an error.

You can define any number of test methods. In this example, the two test methods test­Insertion and testDeletion are defined. JUnit executes testInsertion and test­Deletion in this order.

Note

The test class must be placed in a named package such as mytest in this example. The JUnit will not work if the test class is placed a default package.

Listing 44.2 gives a test class for testing the Loan class in Listing 10.2. For convenience, we create Loan.java in the same directory with LoanTest.java. The Loan class is shown in Listing 44.3.

Listing 44.2 LoanTest.java

 1 package mytest;
 2
 3 import org.junit.*;
 4 import static org.junit.Assert.*;
 5
 6 public class LoanTest {
 7 @Before
 8 public void setUp() throws Exception {
 9 }
10
11 @Test
12 public void testPaymentMethods() {
13 double annualInterestRate = 2.5;
14 int numberOfYears = 5;
15 double loanAmount = 1000;
16 Loan loan = new Loan(annualInterestRate, numberOfYears,
17 loanAmount);
18
19 assertTrue(loan.getMonthlyPayment() ==
20 getMonthlyPayment(annualInterestRate, numberOfYears,
21 loanAmount));
22 assertTrue(loan.getTotalPayment() ==
23 getTotalPayment(annualInterestRate, numberOfYears,
24 loanAmount));
25 }
26
27 /** Find monthly payment */
28 private double getMonthlyPayment(double annualInterestRate,
29 int numberOfYears, double loanAmount) {
30 double monthlyInterestRate = annualInterestRate / 1200;
31 double monthlyPayment = loanAmount * monthlyInterestRate / (1 –
32 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
33 return monthlyPayment;
34 }
35
36 /** Find total payment */
37 public double getTotalPayment(double annualInterestRate,
38 int numberOfYears, double loanAmount) {
39 return getMonthlyPayment(annualInterestRate, numberOfYears,
40 loanAmount) * numberOfYears * 12;
41 }
42 }

Listing 44.3 Loan.java

 1 package mytest;
 2
 3 public class Loan {
 4 private double annualInterestRate;
 5 private int numberOfYears;
 6 private double loanAmount;
 7 private java.util.Date loanDate;
 8
 9 /** Default constructor */
10 public Loan() {
11 this(2.5, 1, 1000);
12 }
13
14 /** Construct a loan with specified annual interest rate,
15 number of years, and loan amount
16 */
17 public Loan(double annualInterestRate, int numberOfYears,
18 double loanAmount) {
19 this.annualInterestRate = annualInterestRate;
20 this.numberOfYears = numberOfYears;
21 this.loanAmount = loanAmount;
22 loanDate = new java.util.Date();
23 }
24
25 /** Return annualInterestRate */
26 public double getAnnualInterestRate() {
27 return annualInterestRate;
28 }
29
30 /** Set a new annualInterestRate */
31 public void setAnnualInterestRate(double annualInterestRate) {
32 this.annualInterestRate = annualInterestRate;
33 }
34
35 /** Return numberOfYears */
36 public int getNumberOfYears() {
37 return numberOfYears;
38 }
39
40 /** Set a new numberOfYears */
41 public void setNumberOfYears(int numberOfYears) {
42 this.numberOfYears = numberOfYears;
43 }
44
45 /** Return loanAmount */
46 public double getLoanAmount() {
47 return loanAmount;
48 }
49
50 /** Set a newloanAmount */
51 public void setLoanAmount(double loanAmount) {
52 this.loanAmount = loanAmount;
53 }
54
55 /** Find monthly payment */
56 public double getMonthlyPayment() {
57 double monthlyInterestRate = annualInterestRate / 1200;
58 double monthlyPayment = loanAmount * monthlyInterestRate / (1 –
59 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
60 return monthlyPayment;
61 }
62
63 /** Find total payment */
64 public double getTotalPayment() {
65 double totalPayment = getMonthlyPayment() * numberOfYears * 12;
66 return totalPayment;
67 }
68
69 /** Return loan date */
70 public java.util.Date getLoanDate() {
71 return loanDate;
72 }
73 }

The testPaymentMethods() in LoanTest creates an instance of Loan (line 16–17) and tests whether loan.getMonthlyPayment() returns the same value as getMonthlyPayment (annualInterestRate, numberOfYears, loanAmount). The latter method is defined in the LoanTest class (lines 28–34).

The testPaymentMethods() also tests whether loan.getTotalPayment() returns the same value as getTotalPayment(annualInterestRate, numberOfYears, loanAmount). The latter method is defined in the LoanTest class (lines 37–41).

A sample run of the program is shown in Figure 44.5.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: c, colon, back slash, book > java c, my test, forward slash, loan test, period, java my test, forward slash, loan, period, java. Line 2: blank. Line 3: c, colon, back slash, book > java o r g, period, j unit, period, runner, period, j unit core, my test, period, loan test. Line 4: j unit, version 4, period, 10. Line 5: blank. Line 6: time, colon, 0, period, 0 4. Line 7: blank. Line 8: o k, left parenthesis, 1 test, right parenthesis. Line 9: blank. Line 10: blank. Line 11: c, colon, back slash, book >.]Figure 44.5

The JUnit test runner executes LoanTest and reports no errors.

	44.2.1	What is JUnit?

	44.2.2	What is a JUnit test runner?

	44.2.3	What is a test class? How do you create a test class?

	44.2.4	How do you use the assertTrue method?

	44.2.5	How do you use the assertEquals method?

44.3 Using JUnit from NetBeans

[image:]

	JUnit is intergrated with NetBeans. Using NetBeans, the test program can be automatically generated and the test process can be automated.

An IDE such as NetBeans and Eclipse can greatly simplify the process for creating and running test classes. This section introduces using JUnit from NetBeans, and the next section will introduce using JUnit from Eclipse.

If you are not familiar with NetBeans, see Supplement II.B. Assume you have installed NetBeans 8 or higher. Create a project named chapter44 as follows:

	Step 1: Choose File, New Project to display the New Project dialog box.

	Step 2: Choose Java in the Categories section and Java Application in the Projects ­section. Click Next to display the New Java Application dialog box.

	Step 3: Enter chapter44 as the Project Name and c:\book as Project Location. Click Finish to create the project as shown in Figure 44.6.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: forward slash, asterisk. Line 2: asterisk, to change this license header, choose license. Line 3: asterisk, to change this template file, choose tools. Line 4: asterisk, and open the template in the editor, period. Line 5: asterisk, forward slash. Line 6: package chapter 44, semicolon. Line 7: blank. Line 8: forward slash, asterisk, asterisk. Line 9: asterisk. Line 10: asterisk, at author y, period, Daniel Liang. Line 11: asterisk, forward slash. Line 12: public class chapter 44, left brace. Line 13: blank. Line 14: forward slash, asterisk, asterisk. Line 15: asterisk, at para, ay r g s, the command line arguments.]Figure 44.6

A new project named chapter44 is created.

To demonstrate how to create a test class, we first create a class to be tested. Let the class be Loan from Listing 10.2. Here are the steps to create the Loan class under chapter44.

	Step 1: Right-click the project node chapter44 and choose New, Java Class to display the New Java Class dialog box.

	Step 2: Enter Loan as Class Name and chapter44 in the Package field and click ­Finish to create the class.

	Step 3: Copy the code in Listing 10.2 to the Loan class and make sure the first line is package chapter44, as shown in Figure 44.7.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: package chapter 44, semicolon. Line 2: blank. Line 3: public class loan, left brace. Line 4, indented once: private double annual interest rate, semicolon. Line 5, indented once: private i n t, number of years, semicolon. Line 6, indented once: private double loan amount, semicolon. Line 7, indented once: private java, period, u t i l, period, date loan date, semicolon. Line 8, indented once: blank. Line 9, indented once: forward slash, asterisk, asterisk, default constructor, asterisk, forward slash. Line 10, indented once: public loan, left parenthesis, right parenthesis, left brace. Line 11, indented twice: this, left parenthesis, 2, period, 5, comma, 1, comma, 1000, right parenthesis, semicolon. Line 12: right brace. Line 13: blank. Line 14: forward slash, asterisk, asterisk, construct a loan with specified annual i n t. Line 15, indented twice: number of years, comma, and loan amount.]Figure 44.7

The Loan class is created.

Now you can create a test class to test the Loan class as follows:

	Step 1: Right-click Loan.java in the project to display a context menu and choose Tools, Create/Update Test to display the Create Test dialog box, as shown in Figure 44.8.

 Figure 44.8

The Create Tests dialog box creates a Test class.

	Step 2: Click OK. You will see the Select JUnit version dialog box displayed as shown in Figure 44.9. Choose Junit 4.x. Click OK to generate a test class named LoanTest as shown in Figure 44.10. Note that LoanTest.java is placed under the Test Packages node in the project.

 Figure 44.9

You should select JUnit 4.x framework to create test classes.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: forward slash, asterisk. Line 2: asterisk, to change this license header, comma, choose license. Line 3: asterisk, to change this template file, comma, choose tools. Line 4: asterisk, and open the template in the editor, period. Line 5: asterisk, forward slash. Line 6: package chapter 44, semicolon. Line 7: blank. Line 8: import java, period, u t i l, period, date, semicolon. Line 9: import o r g, period, j unit, period, after, semicolon. Line 10: import o r g, period, j unit, period, after class, semicolon. Line 11: import o r g, period, j unit, period, before, semicolon. Line 12: import o r g, period, j unit, period, before class, semicolon. Line 13: import o r g, period, j unit, period, test, semicolon. Line 14: import static org, period, j unit, period, assert, period, asterisk, colon. Line 15: blank.]Figure 44.10

The LoanTest class is automatically generated.

You can now modify LoanTest by copying the code from Listing 44.2. Run LoanTest.java. You will see the test report as shown in Figure 44.11.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: package chapter 44, semicolon. Line 2: blank. Line 3: import o r g, period, j unit, period, asterisk, semicolon. Line 4: import static o r g, period, j unit, period, assert, period, asterisk, semicolon. Line 5: blank. Line 6: public class loan test, left brace. Line 7, indented once: at before. Line 8, indented once: public void set up, left parenthesis, right parenthesis, throws exception, left brace. Line 9, indented once: right brace. Line 10, indented once: blank. Line 11, indented once: at test. Line 12, indented once: public void test payment methods, left parenthesis, right parenthesis, left brace. Line 13, indented twice: double annual interest rate, = 2, period, 5, semicolon.]Figure 44.11

The test report is displayed after the LoanTest class is executed.

44.4 Using JUnit from Eclipse

[image:]

	JUnit is intergrated with Eclipse. Using Eclipse, the test program can be automatically generated and the test process can be automated.

This section introduces using JUnit from Eclipse. If you are not familiar with Eclipse, see Supplement II.D. Assume you have installed Eclipse 4.5 or higher. Create a project named chapter50 as follows:

	Step 1: Choose File, New Java Project to display the New Java Project dialog box, as shown in Figure 44.12.

 Figure 44.12

The New Java Project dialog creates a new project.

	Step 2: Enter chapter50 in the project name field and click Finish to create the project.

To demonstrate how to create a test class, we first create a class to be tested. Let the class be Loan from Listing 10.2. Here are the steps to create the Loan class under chapter44.

	Step 1: Right-click the project node chapter44 and choose New, Class to display the New Java Class dialog box, as shown in Figure 44.13.

 Figure 44.13

The New Java Class dialog creates a new Java class.

	Step 2: Enter mytest in the Package field and click Finish to create the class.

	Step 3: Copy the code in Listing 10.2 to the Loan class and make sure the first line is package mytest, as shown in Figure 44.14.

 [image: Code for the loan class.]Figure 44.14

The Loan class is created.

Description

Now you can create a test class to test the Loan class as follows:

	Step 1: Right-click Loan.java in the project to display a context menu and choose New, JUnit Test Case to display the New JUnit Test Case dialog box, as shown in ­Figure 44.15.

 Figure 44.15

The New JUnit Test Case dialog box creates a Test class.

	Step 2: Click Finish. You will see a dialog prompting you to add JUnit 4 to the project build path. Click OK to add it. Now a test class named LoanTest is created as shown in Figure 44.16.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: package my test, semicolon. Line 2: blank. Line 3: import static o r g, period, j unit, period, assert, period, asterisk, colon. Line 4: blank. Line 5: public class loan test, left brace. Line 6: blank. Line 7, indented once: at test. Line 8, indented once: public void test, left parenthesis, right parenthesis, left brace. Line 9, indented twice: fail, left parenthesis, open quotes, not yet implemented, close quotes, right parenthesis, semicolon. Line 10, indented once: right brace. Line 11: blank. Line 12: right brace. Line 13: blank]Figure 44.16

The LoanTest class is automatically generated.

You can now modify LoanTest by copying the code from Listing 44.2. Run LoanTest.java. You will see the test report as shown in Figure 44.17.

 [image: Program code. In the code, the words in the variable names are merged. Line 1: package my test semicolon. Line 2: blank. Line 3: import o r g, period, j unit, period, asterisk, semicolon. Line 4: import static o r g, period, j unit, period, assert, period, asterisk, semicolon. Line 5: blank. Line 6: public class loan test, left brace. Line 7, indented once: at before. Line 8, indented once: public void set up, left parenthesis, right parenthesis, throws exception, left brace. Line 9, indented once: right brace. Line 10: blank. Line 11, indented once: at test. Line 12, indented once: public void test payment methods, left parenthesis, right parenthesis, left brace. Line 13, indented twice: double annual interest rate, = 2, period, 5, semicolon. Line 14, indented twice: i n t number of years = 5, semicolon. Line 15, indented twice: double loan amount = 1000, semicolon. Line 16, indented twice: loan loan = new loan, left parenthesis, annual interest rate, comma, number of. Line 17, indented 3 times: loan amount, right parenthesis, semicolon. Line 18: blank. Line 19, indented twice: assert true, left parenthesis, loan, period, get monthly payment, left parenthesis, right parenthesis, minus, minus.]Figure 44.17

The test report is displayed after the LoanTest class is executed.

Key Terms

	JUnit 44-2

	JUnitCore 44-2

	test class 44-2

	test runner 44-2

Chapter Summary

	JUnit is an open-source framework for testing Java programs.

	To test a Java class, you create a test class for the class to be tested and use JUnit’s test runner to execute the test class to generate a test report.

	You can create and run a test class from the command window or use a tool such as NetBeans and Eclipse.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

Programming Exercises

	44.1	Write a test class to test the methods length, charAt, substring, and indexOf in the java.lang.String class.

	44.2	Write a test class to test the methods add, remove, addAll, removeAll, size, isEmpty, and contains in the java.util.HashSet class.

	44.3	Write a test class to test the method isPrime in Listing 6.7 , PrimeNumberMethod.java.

	44.4	Write a test class to test the methods getBMI and getStatus in the BMI class in Listing 10.4 .

Appendixes

	Appendix A Java Keywords

	Appendix B The ASCII Character Set

	Appendix C Operator Precedence Chart

	Appendix D Java Modifiers

	Appendix E Special Floating-Point Values

	Appendix F Number Systems

	Appendix G Bitwise Operations

	Appendix H Regular Expressions

	Appendix I Enumerated Types

Appendix A Java Keywords

The following 50 keywords are reserved for use by the Java language:

	abstract

	assert

	boolean

	break

	byte

	case

	catch

	char

	class

	const

	continue

	default

	do

	double

	else

	enum

	extends

	final

	finally

	float

	for

	goto

	if

	implements

	import

	instanceof

	int

	interface

	long

	native

	new

	package

	private

	protected

	public

	return

	short

	static

	strictfp*
*The strictfp keyword is a modifier for a method or class that enables it to use strict floating-point ­calculations. Floating-point arithmetic can be executed in one of two modes: strict or nonstrict. The strict mode guarantees that the evaluation result is the same on all Java Virtual Machine implementations. The nonstrict mode allows intermediate results from calculations to be stored in an extended format different from the standard IEEE floating-point number format. The extended format is machine dependent and enables code to be executed faster. However, when you execute the code using the nonstrict mode on different JVMs, you may not always get precisely the same results. By default, the nonstrict mode is used for floating-point calculations. To use the strict mode in a method or a class, add the strictfp keyword in the method or the class declaration. Strict floating-point may give you slightly better precision than nonstrict floating-point, but the distinction will only affect some applications. Strictness is not inherited; that is, the presence of strictfp on a class or interface declaration does not cause extended classes or interfaces to be strict.

	super

	switch

	synchronized

	this

	throw

	throws

	transient

	try

	void

	volatile

	while

The keywords goto and const are C++ keywords reserved, but not currently used in Java. This enables Java compilers to identify them and to produce better error messages if they appear in Java programs.

The literal values true, false, and null are not keywords, just like literal value 100. However, you cannot use them as identifiers, just as you cannot use 100 as an identifier.

In the code listing, we use the keyword color for true, false, and null to be consistent with their coloring in Java IDEs.

Appendix B The ASCII Character Set

Tables B.1 and B.2 show ASCII characters and their respective decimal and hexadecimal codes. The decimal or hexadecimal code of a character is a combination of its row index and column index. For example, in Table B.1, the letter A is at row 6 and column 5, so its decimal equivalent is 65; in Table B.2, letter A is at row 4 and column 1, so its hexadecimal ­equivalent is 41.

Table B.1 ASCII Character Set in the Decimal Index

	

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	0

	nul

	soh

	stx

	etx

	eot

	enq

	ack

	bel

	bs

	ht

	1

	nl

	vt

	ff

	cr

	so

	si

	dle

	dcl

	dc2

	dc3

	2

	dc4

	nak

	syn

	etb

	can

	em

	sub

	esc

	fs

	gs

	3

	rs

	us

	sp

	!

	”

	#

	$

	%

	&

	’

	4

	(

)

	*

	+

	,

	−

	.

	/

	0

	1

	5

	2

	3

	4

	5

	6

	7

	8

	9

	:

	;

	6

	<

	=

	>

	?

	@

	A

	B

	C

	D

	E

	7

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	8

	P

	Q

	R

	S

	T

	U

	V

	W

	X

	Y

	9

	Z

	[

	\

]

	∧

	−

	’

	a

	b

	c

	10

	d

	e

	f

	g

	h

	i

	j

	k

	l

	m

	11

	n

	o

	p

	q

	r

	s

	t

	u

	v

	w

	12

	x

	y

	z

	{

	|

	}

	~

	del

	

	

Table B.2 ASCII Character Set in the Hexadecimal Index

	

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	A

	B

	C

	D

	E

	F

	0

	nul

	soh

	stx

	etx

	eot

	enq

	ack

	bel

	bs

	ht

	nl

	vt

	ff

	cr

	so

	si

	1

	dle

	dcl

	dc2

	dc3

	dc4

	nak

	syn

	etb

	can

	em

	sub

	esc

	fs

	gs

	rs

	us

	2

	sp

	!

	”

	#

	$

	%

	&

	’

	(

)

	*

	+

	,

	−

	.

	/

	3

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	:

	;

	<

	=

	>

	?

	4

	@

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	5

	P

	Q

	R

	S

	T

	U

	V

	W

	X

	Y

	Z

	[

	\

]

	∧

	−

	6

	’

	a

	b

	c

	d

	e

	f

	g

	h

	i

	j

	k

	l

	m

	n

	o

	7

	p

	q

	r

	s

	t

	u

	v

	w

	x

	y

	z

	{

	|

	}

	~

	del

Appendix C Operator Precedence Chart

The operators are shown in decreasing order of precedence from top to bottom. Operators in the same group have the same precedence, and their associativity is shown in the table.

	Operator

	Name

	Associativity

	()

	Parentheses

	Left to right

	()

	Function call

	Left to right

	[]

	Array subscript

	Left to right

	.

	Object member access

	Left to right

	++

	Postincrement

	Left to right

	––

	Postdecrement

	Left to right

	++

	Preincrement

	Right to left

	––

	Predecrement

	Right to left

	+

	Unary plus

	Right to left

	–

	Unary minus

	Right to left

	!

	Unary logical negation

	Right to left

	(type)

	Unary casting

	Right to left

	new

	Creating object

	Right to left

	*

	Multiplication

	Left to right

	/

	Division

	Left to right

	%

	Remainder

	Left to right

	+

	Addition

	Left to right

	–

	Subtraction

	Left to right

	<<

	Left shift

	Left to right

	>>

	Right shift with sign extension

	Left to right

	>>>

	Right shift with zero extension

	Left to right

	<

	Less than

	Left to right

	<=

	Less than or equal to

	Left to right

	>

	Greater than

	Left to right

	>=

	Greater than or equal to

	Left to right

	instanceof

	Checking object type

	Left to right

	==

	Equal comparison

	Left to right

	!=

	Not equal

	Left to right

	&

	(Unconditional AND)

	Left to right

	^

	(Exclusive OR)

	Left to right

	|

	(Unconditional OR)

	Left to right

	&&

	Conditional AND

	Left to right

	||

	Conditional OR

	Left to right

	?:

	Ternary condition

	Right to left

	=

	Assignment

	Right to left

	+=

	Addition assignment

	Right to left

	–=

	Subtraction assignment

	Right to left

	*=

	Multiplication assignment

	Right to left

	/=

	Division assignment

	Right to left

	%=

	Remainder assignment

	Right to left

Appendix D Java Modifiers

Modifiers are used on classes and class members (constructors, methods, data, and class-level blocks), but the final modifier can also be used on local variables in a method. A modifier that can be applied to a class is called a class modifier. A modifier that can be applied to a method is called a method modifier. A modifier that can be applied to a data field is called a data modifier. A modifier that can be applied to a class-level block is called a block modifier. The following table gives a summary of the Java modifiers.

	Modifier

	Class

	Constructor

	Method

	Data

	Block

	Explanation

	(default)*
* Default access doesn’t have a modifier associated with it. For example: class Test {}

	√

	√

	√

	√

	√

	A class, constructor, method, or data field is visible in this package.

	public

	√

	√

	√

	√

	

	A class, constructor, method, or data field is visible to all the ­programs in any package.

	private

	

	√

	√

	√

	

	A constructor, method, or data field is only visible in this class.

	protected

	

	√

	√

	√

	

	A constructor, method, or data field is visible in this package and in subclasses of this class in any package.

	static

	

	

	√

	√

	√

	Define a class method, a class data field, or a static initialization block.

	final

	√

	

	√

	√

	

	A final class cannot be extended. A final method cannot be modified in a subclass. A final data field is a constant.

	abstract

	√

	

	√

	

	

	An abstract class must be extended. An abstract method must be implemented in a concrete subclass.

	native

	

	

	√

	

	

	A native method indicates that the method is implemented using a language other than Java.

	synchronized

	

	

	√

	

	√

	Only one thread at a time can ­execute this method.

	strictfp

	√

	

	√

	

	

	Use strict floating-point ­calculations to guarantee that the evaluation result is the same on all JVMs.

	transient

	

	

	

	√

	

	Mark a nonserializable instance data field.

The modifiers default (no modifier), public, private, and protected are known as visibility or accessibility modifiers because they specify how classes and class members are accessed.

The modifiers public, private, protected, static, final, and abstract can also be applied to inner classes.

Appendix E Special Floating-Point Values

Dividing an integer by zero is invalid and throws ArithmeticException, but dividing a floating-point value by zero does not cause an exception. Floating-point arithmetic can overflow to infinity if the result of the operation is too large for a double or a float, or underflow to zero if the result is too small for a double or a float. Java provides the special floating-point values POSITIVE_INFINITY, NEGATIVE_INFINITY, and NaN (Not a Number) to denote these results. These values are defined as special constants in the Float class and the Double class.

If a positive floating-point number is divided by zero, the result is POSITIVE_INFINITY. If a negative floating-point number is divided by zero, the result is NEGATIVE_INFINITY. If a floating-point zero is divided by zero, the result is NaN, which means that the result is undefined mathematically. The string representations of these three values are Infinity, -Infinity, and NaN. For example,

System.out.print(1.0 / 0); // Print Infinity
System.out.print(–1.0 / 0); // Print –Infinity
System.out.print(0.0 / 0); // Print NaN

These special values can also be used as operands in computations. For example, a number divided by POSITIVE_INFINITY yields a positive zero. Table E.1 summarizes various combinations of the /, *, %, +, and – operators.

Table E.1 Special Floating-Point Values

	x

	y

	x/y

	x*y

	x%y

	x+y

	x−y

	Finite

	±
 0.0

	±
 infinity

	±
 0.0

	NaN

	Finite

	Finite

	Finite

	±
 infinity

	±
 0.0

	±
 0.0

	x

	±
 infinity

	infinity

	±
 0.0

	±
 0.0

	NaN

	±
 0.0

	NaN

	±
 0.0

	±
 0.0

	±
 infinity

	Finite

	±
 infinity

	±
 0.0

	NaN

	±
 infinity

	±
 infinity

	±
 infinity

	±
 infinity

	NaN

	±
 0.0

	NaN

	±
 infinity

	infinity

	±
 0.0

	±
 infinity

	±
 0.0

	NaN

	±
 0.0

	±
 infinity

	±
 0.0

	NaN

	Any

	NaN

	NaN

	NaN

	NaN

	NaN

	Any

	NaN

	NaN

	NaN

	NaN

	NaN

	NaN

Note

If one of the operands is NaN, the result is NaN.

Appendix F Number Systems

F.1 Introduction

Computers use binary numbers internally, because computers are made naturally to store and process 0s and 1s. The binary number system has two digits, 0 and 1. A number or character is stored as a sequence of 0s and 1s. Each 0 or 1 is called a bit (binary digit).

base radix

In our daily life, we use decimal numbers. When we write a number such as 20 in a program, it is assumed to be a decimal number. Internally, computer software is used to convert decimal numbers into binary numbers, and vice versa.

decimal numbers

We write computer programs using decimal numbers. However, to deal with an operating system, we need to reach down to the “machine level” by using binary numbers. Binary numbers tend to be very long and cumbersome. Often hexadecimal numbers are used to abbreviate them, with each hexadecimal digit representing four binary digits. The hexadecimal number system has 16 digits: 0–9 and A–F. The letters A, B, C, D, E, and F correspond to the decimal numbers 10, 11, 12, 13, 14, and 15.

hexadecimal number

The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. A decimal number is represented by a sequence of one or more of these digits. The value that each digit represents depends on its position, which denotes an integral power of 10. For example, the digits 7, 4, 2, and 3 in decimal number 7423 represent 7000, 400, 20, and 3, respectively, as shown below:

The decimal number system has 10 digits, and the position values are integral powers of 10. We say that 10 is the base or radix of the decimal number system. Similarly, since the binary number system has two digits, its base is 2, and since the hex number system has 16 digits, its base is 16.

binary numbers

If 1101 is a binary number, the digits 1, 1, 0, and 1 represent 1×23,1×22,0×21, and 1×20, respectively:

If 7423 is a hex number, the digits 7, 4, 2, and 3 represent 7×163,4×162,2×161, and 3×160, respectively:

F.2 Conversions between Binary and Decimal Numbers

binary to decimal

Given a binary number bnbn−1bn−2… b2b1b0, the equivalent decimal value is

bn×2n+bn−1×2n−1+bn−2×2n−2+…+ b2×22+b1×21+b0×20

Here are some examples of converting binary numbers to decimals:

	Binary

	Conversion Formula

	Decimal

	10

	1×21+0×20

	 2

	1000

	1×23+0×22+0×21+0×20

	 8

	10101011

	1×27+0×26+1×25+0×24+1×23+0×22+1×21+1×20

	171

decimal to binary
To convert a decimal number d to a binary number is to find the bits bn,bn−1,bn−2,… ,b2,b1,b0 and b0 such that

d=bn×2n+bn−1×2n−1+bn−2×2n−2+…+ b2×22+b1×21+b0×20

These bits can be found by successively dividing d by 2 until the quotient is 0. The remainders are b0,b1,b2,… ,bn−2,bn−1, and bn

For example, the decimal number 123 is 1111011 in binary. The conversion is done as follows:

 Tip

The Windows Calculator, as shown in Figure F.1, is a useful tool for performing number conversions. To run it, search for Calculator from the Start button and launch Calculator, then under View select Scientific.

 Figure F.1 
You can perform number conversions using the Windows Calculator.

F.3 Conversions between Hexadecimal and Decimal Numbers

hex to decimal

Given a hexadecimal number hnhn−1hn−2… h2h1h0,
 the equivalent decimal value is

hn×16n+hn−1×16n−1+hn−2×16n−2+…+h2×162+h1×161+h0×160

Here are some examples of converting hexadecimal numbers to decimals:

	Hexadecimal
	Conversion Formula
	Decimal

	7F

	7×161+15×160

	127

	FFFF

	15×163+15×162+15×161+15×160

	65535

	431

	4×162+3×161+1×160

	1073

decimal to hex
To convert a decimal number d to a hexadecimal number is to find the hexadecimal digits hn,hn−1,hn−2,… ,h2,h1, and h0
 such that

d=hn×16n+hn−1×16n−1+hn−2×16n−2+…+h2×162+h1×161+h0×160

These numbers can be found by successively dividing d by 16 until the quotient is 0. The remainders are h0,h1,h2,…, hn−2, hn−1, and hn.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as follows:

F.4 Conversions between Binary and Hexadecimal Numbers

hex to binary
To convert a hexadecimal number to a binary number, simply convert each digit in the hexadecimal number into a four-digit binary number, using Table F.1.
Table F.1 Converting Hexadecimal to Binary

	Hexadecimal

	Binary

	Decimal

	0

	0000

	 0

	1

	0001

	 1

	2

	0010

	 2

	3

	0011

	 3

	4

	0100

	 4

	5

	0101

	 5

	6

	0110

	 6

	7

	0111

	 7

	8

	1000

	 8

	9

	1001

	 9

	A

	1010

	10

	B

	1011

	11

	C

	1100

	12

	D

	1101

	13

	E

	1110

	14

	F

	1111

	15

For example, the hexadecimal number 7B is 1111011, where 7 is 111 in binary and B is 1011 in binary.

To convert a binary number to a hexadecimal number, convert every four binary digits from right to left in the binary number into a hexadecimal number.

binary to hex

For example, the binary number 1110001101 is 38D, since 1101 is D, 1000 is 8, and 11 is 3, as shown below.

 Note

Octal numbers are also useful. The octal number system has eight digits, 0 to 7. A decimal number 8 is represented in the octal system as 10.

Here are some good online resources for practicing number conversions:

	http://forums.cisco.com/CertCom/game/binary_game_page.htm

	http://people.sinclair.edu/nickreeder/Flash/binDec.htm

	http://people.sinclair.edu/nickreeder/Flash/binHex.htm

		F.1	Convert the following decimal numbers into hexadecimal and binary numbers:

100; 4340; 2000

		F.2	Convert the following binary numbers into hexadecimal and decimal numbers:

1000011001; 100000000; 100111

		F.3	Convert the following hexadecimal numbers into binary and decimal numbers:

FEFA9; 93; 2000

Appendix G Bitwise Operations

To write programs at the machine-level, often you need to deal with binary numbers directly and perform operations at the bit level. Java provides the bitwise operators and shift operators defined in Table G.1.

The bit operators apply only to integer types (byte, short, int, and long). A character involved in a bit operation is converted to an integer. All bitwise operators can form bitwise assignment operators, such as =, |=, <<=, >>=, and >>>=.

Table G.1

	Operator

	Name

	Example (using bytes in the example)

	Description

	&

	Bitwise AND

	10101110 & 10010010 yields 10000010

	The AND of two corresponding bits yields a 1 if both bits are 1.

	|

	Bitwise inclusive OR

	10101110 | 10010010 yields 10111110

	The OR of two corresponding bits yields a 1 if either bit is 1.

	^

	Bitwise exclusive OR

	10101110 ^ 10010010 yields 00111100

	The XOR of two corresponding bits yields a 1 only if two bits are different.

	~

	One's complement

	~10101110 yields 01010001

	The operator toggles each bit from 0 to 1 and from 1 to 0.

	<<

	Left shift

	10101110 << 2 yields 10111000

	The operator shifts bits in the first operand left by the number of bits specified in the second operand, filling with 0s on the right.

	>>

	Right shift with sign extension

	10101110 >> 2 yields 11101011

00101110 >> 2 yields 00001011

	The operator shifts bit in the first operand right by the number of bits specified in the second operand, filling with the highest (sign) bit on the left.

	>>>

	Unsigned right shift with zero extension

	10101110 >>> 2 yields 00101011

00101110 >>> 2 yields 00001011

	The operator shifts bit in the first operand right by the number of bits specified in the second operand, filling with 0s on the left.

Appendix H Regular Expressions

Often, you need to write the code to validate user input such as to check whether the input is a number, a string with all lowercase letters, or a Social Security number. How do you write this type of code? A simple and effective way to accomplish this task is to use the regular expression.

regular expression

A regular expression (abbreviated regex) is a string that describes a pattern for matching a set of strings. Regular expression is a powerful tool for string manipulations. You can use regular expressions for matching, replacing, and splitting strings.

H.1 Matching Strings

matches

Let us begin with the matches method in the String class. At first glance, the matches method is very similar to the equals method. For example, the following two statements both evaluate to true:

"Java".matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match not only a fixed string, but also a set of strings that follow a pattern. For example, the following statements all evaluate to true:

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

"Java.*" in the preceding statements is a regular expression. It describes a string pattern that begins with Java followed by any zero or more characters. Here, the substring .* matches any zero or more characters.

H.2 Regular Expression Syntax

A regular expression consists of literal characters and special symbols. Table H.1 lists some frequently used syntax for regular expressions.

Note

Backslash is a special character that starts an escape sequence in a string. So you need to use \\ to represent a literal character \.

Note

Recall that a whitespace character is ' ', '\t', '\n', '\r', or '\f'. So \s is the same as [\t\n\r\f], and \S is the same as [ˆ \t\n\r\f].

Table H.1 Frequently Used Regular Expressions

	Regular Expression

	Matches

	Example

	x

	a specified character x

	Java matches Java

	.

	any single character

	Java matches J..a

	(ab|cd)

	ab or cd

	ten matches t(en|im)

	[abc]

	a, b, or c

	Java matches Ja[uvwx]a

	[ˆabc]

	any character except a, b, or c

	Java matches Ja[ˆars]a

	[a−z]

	a through z

	Java matches [A-M]av[a-d]

	[ˆa−z]

	any character except a through z

	Java matches Jav[ˆb-d]

	[a-e[m−p]]

	a through e or m through p

	Java matches [A-G[I-M]]av[a-d]

	[a-e&&[c−p]]

	intersection of a-e with c-p

	Java matches [A-P&&[I-M]]av[a-d]

	\d

	a digit, same as [0−9]

	Java2 matches "Java[\\d]"

	\D

	a non-digit

	$Java matches "[\\D][\\ D]ava"

	\w

	a word character

	Java1 matches "[\\w]ava[\\w]"

	\W

	a non-word character

	$Java matches "[\\W][\\ w]ava"

	\s

	a whitespace character

	"Java 2" matches "Java\\s2"

	\S

	a non-whitespace char

	Java matches "[\\S]ava"

	p*

	zero or more occurrences of pattern p

	aaaa matches "a*" abab matches "(ab)*"

	p+

	one or more occurrences of pattern p

	Java matches "a+" bbb matches "a+"

	p?

	zero or one occurrence of pattern p

	Java matches "J?Java" ava matches "J?ava"

	p{n}

	exactly n occurrences of pattern p

	Java matches "a{1}" Java does not match "a{2}"

	p{n,}

	at least n occurrences of pattern p

	Java matches "a{1,}" Java does not match "a{2,}"

	p{n,m}

	between n and m occurrences (inclusive)

	Java matches "a{1,9}" Java does not match "a{2,9}"

	\p{P}

	a punctuation character !"#$%&’()*+, -./:;<=>?@[\]ˆ_‘{|}~

	J?a matches "J\p{P}a" J?a. does not match "J\p{P}a"

Note

A word character is any letter, digit, or the underscore character. So \w is the same as [a−z[A−Z][0−9]_] or simply [a−zA−Z0−9_], and \W is the same as [ˆa−zA−Z0−9_].

Note

quantifier

The last six entries *, +, ?, {n}, {n,}, and {n, m} in Table H.1 are called quantifiers that specify how many times the pattern before a quantifier may repeat. For example, A* matches zero or more A’s, A+ matches one or more A’s, A? matches zero or one A, A{3} matches exactly AAA, A{3,} matches at least three A’s, and A{3,6} matches between 3 and 6 A’s. * is the same as {0,}, + is the same as {1,}, and ? is the same as {0,1}.

Caution

Do not use spaces in the repeat quantifiers. For example, A{3,6} cannot be written as A{3, 6} with a space after the comma.

Note

You may use parentheses to group patterns. For example, (ab){3} matches ababab, but ab{3} matches abbb.

Let us use several examples to demonstrate how to construct regular expressions.

Example 1

The pattern for Social Security numbers is xxx−xx−xxxx, where x is a digit. A regular ­expression for Social Security numbers can be described as

[\\d]{3}-[\\d]{2}-[\\d]{4}

For example,

"111−22−3333".matches("[\\d]{3}-[\\d]{2}−[\\d]{4}") returns true.
"11−22−3333".matches("[\\d]{3}-[\\d]{2}−[\\d]{4}") returns false.

Example 2

An even number ends with digits 0, 2, 4, 6, or 8. The pattern for even numbers can be described as

[\\d]*[02468]

For example,

"123".matches("[\\d]*[02468]") returns false.
"122".matches("[\\d]*[02468]") returns true.

Example 3

The pattern for telephone numbers is (xxx) xxx-xxxx, where x is a digit and the first digit cannot be zero. A regular expression for telephone numbers can be described as

\\ ([1−9][\\ d]{2}\\) [\\d]{3}−[\\d]{4}

Note the parentheses symbols (and) are special characters in a regular expression for grouping patterns. To represent a literal (or) in a regular expression, you have to use \\(and \\).

For example,

"(912) 921-2728".matches("\\ ([1−9][\\ d]{2}\\) [\\d]{3}−[\\d]{4}") returns true.
"921-2728".matches("\\ ([1−9][\\ d]{2}\\) [\\d]{3}−[\\d]{4}") returns false.

Example 4

Suppose the last name consists of at most 25 letters, and the first letter is in uppercase. The pattern for a last name can be described as

[A−Z][a−zA−Z]{1,24}

Note you cannot have arbitrary whitespace in a regular expression. For example, [A−Z][a-zA-Z]{1, 24} would be wrong.

For example,

"Smith".matches("[A-Z][a-zA-Z]{1,24}") returns true.
"Jones123".matches("[A-Z][a-zA-Z]{1,24}") returns false.

Example 5

Java identifiers are defined in Section 2.3 , Identifiers.

	An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot start with a digit.

	An identifier is a sequence of characters that consists of letters, digits, underscores (_), and dollar signs ($).

The pattern for identifiers can be described as

[a−zA−Z_$][\\w$]*

Example 6

What strings are matched by the regular expression "Welcome to (Java|HTML)"? The answer is Welcome to Java or Welcome to HTML.

Example 7

What strings are matched by the regular expression ".*"? The answer is any string.

H.3 Replacing and Splitting Strings

The matches method in the String class returns true if the string matches the regular expression. The String class also contains the replaceAll, replaceFirst, and split methods for replacing and splitting strings, as shown in Figure H.1.
Figure H. 1
The String class contains the methods for matching, replacing, and splitting strings using regular expressions.

The replaceAll method replaces all matching substring, and the replaceFirst method replaces the first matching substring. For example, the code

System.out.println("Java Java Java".replaceAll("v\\w", "wi"));

displays

Jawi Jawi Jawi

and this code

System.out.println("Java Java Java".replaceFirst("v\\w", "wi"));

displays

Jawi Java Java

There are two overloaded split methods. The split(regex) method splits a string into substrings delimited by the matches. For example, the statement

String[] tokens = "Java1HTML2Perl".split("\\d");

splits string "Java1HTML2Perl" into Java, HTML, and Perl and saves in tokens[0], tokens[1], and tokens[2].

In the split(regex, limit) method, the limit parameter determines how many times the pattern is matched. If limit <= 0, split(regex, limit) is same as split(regex). If limit > 0, the pattern is matched at most limit −1 times. Here are some examples:

"Java1HTML2Perl".split("\\d", 0); splits into Java, HTML, Perl
"Java1HTML2Perl".split("\\d", 1); splits into Java1HTML2Perl
"Java1HTML2Perl".split("\\d", 2); splits into Java, HTML2Perl
"Java1HTML2Perl".split("\\d", 3); splits into Java, HTML, Perl
"Java1HTML2Perl".split("\\d", 4); splits into Java, HTML, Perl
"Java1HTML2Perl".split("\\d", 5); splits into Java, HTML, Perl

Note

By default, all the quantifiers are greedy. This means that they will match as many occurrences as possible. For example, the following statement displays JRvaa, since the first match is aaa:

System.out.println("Jaaavaa".replaceFirst("a+", "R"));

You can change a qualifier’s default behavior by appending a question mark (?) after it. The quantifier becomes reluctant or lazy, which means that it will match as few occurrences as possible. For example, the following statement displays JRaavaa, since the first match is a:

System.out.println("Jaaavaa".replaceFirst("a+?", "R"));

Appendix I Enumerated Types

I.1 Simple Enumerated Types

An enumerated type defines a list of enumerated values. Each value is an identifier. For example, the following statement declares a type, named MyFavoriteColor, with values RED, BLUE, GREEN, and YELLOW in this order:

enum MyFavoriteColor {RED, BLUE, GREEN, YELLOW};

A value of an enumerated type is like a constant and so, by convention, is spelled with all uppercase letters. So, the preceding declaration uses RED, not red. By convention, an enumerated type is named like a class with first letter of each word capitalized.

Once a type is defined, you can declare a variable of that type:

MyFavoriteColor color;

The variable color can hold one of the values defined in the enumerated type ­MyFavoriteColor or null, but nothing else. Java enumerated type is type-safe, meaning that an attempt to assign a value other than one of the enumerated values or null will result in a compile error.

The enumerated values can be accessed using the syntax

EnumeratedTypeName.valueName

For example, the following statement assigns enumerated value BLUE to variable color:

color = MyFavoriteColor.BLUE;

Note you have to use the enumerated type name as a qualifier to reference a value such as BLUE.

As with any other type, you can declare and initialize a variable in one statement:

MyFavoriteColor color = MyFavoriteColor.BLUE;

An enumerated type is treated as a special class. An enumerated type variable is therefore a reference variable. An enumerated type is a subtype of the Object class and the Comparable interface. Therefore, an enumerated type inherits all the methods in the Object class and the compareTo method in the Comparable interface. Additionally, you can use the following methods on an enumerated object:

	public String name();

Returns a name of the value for the object.

	public int ordinal();

Returns the ordinal value associated with the enumerated value. The first value in an enumerated type has an ordinal value of 0, the second has an ordinal value of 1, the third one 3, and so on.

Listing I.1 gives a program that demonstrates the use of enumerated types.

Listing I.1 EnumeratedTypeDemo.java

 1 public class EnumeratedTypeDemo {
define an enum type 2 static enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 3 FRIDAY, SATURDAY};
 4
 5 public static void main(String[] args) {
declare an enum variable 6 Day day1 = Day.FRIDAY;
 7 Day day2 = Day.THURSDAY;
 8
get enum name 9 System.out.println("day1’s name is " + day1.name());
 10 System.out.println("day2’s name is " + day2.name());
get enum ordinal 11 System.out.println("day1’s ordinal is " + day1.ordinal());
 12 System.out.println("day2’s ordinal is " + day2.ordinal());
 13
compare enum values 14 System.out.println("day1.equals(day2) returns " +
 15 day1.equals(day2));
 16 System.out.println("day1.toString() returns " +
 17 day1.toString());
 18 System.out.println("day1.compareTo(day2) returns " +
 19 day1.compareTo(day2));
 20 }
 21 }

day1’s name is FRIDAY

day2’s name is THURSDAY

day1’s ordinal is 5

day2’s ordinal is 4

day1.equals(day2) returns false

day1.toString() returns FRIDAY

day1.compareTo(day2) returns 1

An enumerated type Day is defined in lines 2 and 3. Variables day1 and day2 are declared as the Day type and assigned enumerated values in lines 6 and 7. Since day1’s value is ­FRIDAY, its ordinal value is 5 (line 11). Since day2’s value is THURSDAY, its ordinal value is 4 (line 12).

Since an enumerated type is a subclass of the Object class and the Comparable interface, you can invoke the methods equals, toString, and compareTo from an enumerated object reference variable (lines 14–19). day1.equals(day2) returns true if day1 and day2 have the same ordinal value. day1.compareTo(day2) returns the difference between day1’s ordinal value and day2’s.

Alternatively, you can rewrite the code in Listing I.1 into Listing I.2.

Listing I.2 StandaloneEnumTypeDemo.java

 1 public class StandaloneEnumTypeDemo {
 2 public static void main(String[] args) {
 3 Day day1 = Day.FRIDAY;
 4 Day day2 = Day.THURSDAY;
 5
 6 System.out.println("day1’s name is " + day1.name());
 7 System.out.println("day2’s name is " + day2.name());
 8 System.out.println("day1’s ordinal is " + day1.ordinal());
 9 System.out.println("day2’s ordinal is " + day2.ordinal());
 10
 11 System.out.println("day1.equals(day2) returns " +
 12 day1.equals(day2));
 13 System.out.println("day1.toString() returns " +
 14 day1.toString());
 15 System.out.println("day1.compareTo(day2) returns " +
 16 day1.compareTo(day2));
 17 }
 18 }
 19
 20 enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 21 FRIDAY, SATURDAY}

An enumerated type can be defined inside a class, as shown in lines 2 and 3 in Listing I.1, or standalone as shown in lines 20 and 21 in Listing I.2. In the former case, the type is treated as an inner class. After the program is compiled, a class named EnumeratedTypeDemo$Day.class is created. In the latter case, the type is treated as a stand-alone class. After the program is compiled, a class named Day.class is created.

Note

When an enumerated type is declared inside a class, the type must be declared as a member of the class and cannot be declared inside a method. Furthermore, the type is always static. For this reason, the static keyword in line 2 in Listing I.1 may be omitted. The visibility modifiers on inner class can be also be applied to enumerated types defined inside a class.

 Tip

Using enumerated values (e.g., Day.MONDAY, Day.TUESDAY, and so on) rather than literal integer values (e.g., 0, 1, and so on) can make the program easier to read and maintain.

I.2 Using if or switch Statements with an ­Enumerated Variable

An enumerated variable holds a value. Often, your program needs to perform a specific action depending on the value. For example, if the value is Day.MONDAY, play soccer; if the value is Day.TUESDAY, take piano lesson, and so on. You can use an if statement or a switch statement to test the value in the variable, as shown in (a) and (b).

In the switch statement in (b), the case label is an unqualified enumerated value (e.g., MONDAY, but not Day.MONDAY).

I.3 Processing Enumerated Values Using a Foreach Loop

Each enumerated type has a static method values() that returns all enumerated values for the type in an array. For example,

Day[] days = Day.values();

You can use a regular for loop in (a) or an enhanced for loop in (b) to process all the values in the array.

I.4 Enumerated Types with Data Fields, ­Constructors, and Methods

The simple enumerated types introduced in the preceding section define a type with a list of enumerated values. You can also define an enumerate type with data fields, constructors, and methods, as shown in Listing I.3.

Listing I.3 TrafficLight.java

 1 public enum TrafficLight {
 2 RED ("Please stop"), GREEN ("Please go"),
 3 YELLOW ("Please caution");
 4
 5 private String description;
 6
 7 private TrafficLight(String description) {
 8 this.description = description;
 9 }
 10
 11 public String getDescription() {
 12 return description;
 13 }
 14 }

The enumerated values are defined in lines 2 and 3. The value declaration must be the first statement in the type declaration. A data field named description is declared in line 5 to describe an enumerated value. The constructor TrafficLight is declared in lines 7−9. The constructor is invoked whenever an enumerated value is accessed. The enumerated value’s argument is passed to the constructor, which is then assigned to description.

Listing I.4 gives a test program to use TrafficLight.

Listing I.4 TestTrafficLight.java

 1 public class TestTrafficLight {
 2 public static void main(String[] args) {
 3 TrafficLight light = TrafficLight.RED;
 4 System.out.println(light.getDescription());
 5 }
 6 }

An enumerated value TrafficLight.red is assigned to variable light (line 3). ­Accessing TrafficLight.RED causes the JVM to invoke the constructor with argument “please stop”. The methods in enumerated type are invoked in the same way as the methods in a class. light.getDescription() returns the description for the enumerated value (line 4).

Note

The Java syntax requires that the constructor for enumerated types be private to prevent it from being invoked directly. The private modifier may be omitted. In this case, it is considered private by default.

Index

Symbols

	−− (decrement operator), 55–56

	− (subtraction operator), 46, 50–51

	. (dot operator), 332

	. (object member access operator), 332, 431

	/ (division operator), 46, 50

	//, in line comment syntax, 18

	/*, in block comment syntax, 18

	/**.*/ (Javadoc comment syntax), 18

	/= (division assignment operator), 54–55

	; (semicolons), common errors, 84

	\ (backslash character), as directory separator, 478

	\ (escape characters), 126

	|| (or logical operator), 93–97

	+ (addition operator), 46, 50

	+ (string concatenation operator), 36, 131

	++ (increment operator), 55–56

	+= (addition assignment operator), augmented, 54–55

	= (assignment operator), 42–43, 54–55

	= (equals operator), 76

	−= (subtraction assignment operator), 54–55

	== (comparison operator), 76, 434

	= (equal to operator), 76

	! (not logical operator), 93–97

	!= (not equal to comparison operator), 76

	$ (dollar sign character), use in source code, 40

	% (remainder or modulo operator), 46, 50

	%= (remainder assignment operator), 54–55

	&& (and logical operator), 93–97

	() (parentheses), 14, 227

	* (multiplication operator), 15, 46, 50

	*= (multiplication assignment operator), 54

	^ (exclusive or logical operator), 93–97

	{} (curly braces), 13, 79, 83

	< (less than comparison operator), 76

	<= (less than or equal to comparison operator), 76

	> (greater than comparison operator), 76

	>= (greater than or equal to comparison operator), 76

Numbers

	24-point game, 810–811

A

	abs method, Math class, 122, 530

	Absolute file name, 477

	Abstract classes

	AbstractCollection class, 776, 777

	AbstractMap class, 830

	AbstractSet class, 816

	case study: abstract number class, 505–507

	case study: Calendar and GregorianCalendar classes, 507–510

	characteristics of, 504–505

	Circle.java and Rectangle.java examples, 502

	compared with interfaces, 523–526

	GeometricObject.java example, 500–502

	InputStream and OutputStream classes, 694–695

	interfaces compared to, 510

	key terms, 534

	overview of, 368–369, 500–501

	questions and excercises, 535–540

	Rational.java example, 528–531

	reasons for using abstract methods, 502

	summary, 534–535

	TestCalendar.java example, 508–510

	TestGeometricObject.java example, 502–503

	TestRationalClass.java example, 527–528

	using as interface, 918

	Abstract data type (ADT), 368

	Abstract methods

	characteristics of, 504

	GenericMatrix.java example, 767–769

	GeometricObject class, 501–502

	implementing in subclasses, 501

	in interfaces, 510

	key terms, 534

	in Number class, 530

	overview of, 227–228

	questions and exercises, 535–540

	reasons for using, 502

	summary, 534–535

	abstract modifier, for denoting abstract methods, 500

	Abstract number class

	LargestNumbers.java, 506–507

	overview of, 505–507

	Abstract Windows Toolkit. see AWT (Abstract Windows Toolkit)

	AbstractCollection class, 777

	AbstractMap class, 830

	AbstractSet class, 816

	Accessibility modifiers, 1163

	Accessor methods. see Getter (accessor) methods

	acos method, trigonometry, 120–121

	ActionEvent, 595–596

	Actions (behaviors), object, 324

	Activation records, invoking methods and, 210

	Actual concrete types, 752

	Actual parameters, defining methods and, 207

	Ada, high-level languages, 8

	add method

	implementing linked lists, 929

	List interface, 783

	Addition (+=) assignment operator, 54–55

	Addition (+) operator, 46, 50

	Adelson-Velsky, G. M., 990

	Adjacency lists, representing edges, 1046–1048

	Adjacency matrices

	representing edges, 1046–1048

	weighted, 1084

	Adjacent edges, overview of, 1042

	ADT (Abstract data type), 368

	Aggregate operations, for collection streams

	AnalyzeNumbersUsingStream.java example, 1144–1145

	case study: analyzing numbers, 1144–1146

	case study: counting keywords, 1149–1150

	case study: counting occurrences of each letter, 1145–1146

	case study: counting occurrences of each letter in string, 1146–1147

	case study: finding directory size, 1148–1149

	case study: occurrences of words, 1150–1152

	case study: processing all elements in two-dimensional array, 1147–1148

	CollectDemo.java example, 1139–1141

	CollectGroupDemo.java example, 1142–1144

	CountKeywordStream.java example, 1149–1150

	CountLettersUsingStream.java example, 1145–1146

	CountOccurrenceOfLettersInAString.java example, 1146–1147

	CountOccurrenceOfWordsStream.java example, 1151–1152

	DirectorySizeStream.java example, 1148–1149

	DoubleStream, 1130–1133

	grouping elements using groupingby collector, 1141–1144

	IntStream, 1130–1133

	IntStreamDemo.java example, 1130–1133

	LongStream, 1130–1133

	overview of, 1124

	parallel streams, 1133–1135

	ParallelStreamDemo.java example, 1133–1135

	quiz and exercises, 1152–1153

	Stream class, 1125

	stream pipelines, 1124–1130

	stream reduction using collect method, 1138–1141

	stream reduction using reduce method, 1135–1138

	StreamDemo.java example, 1126–1127

	StreamReductionDemo.java example, 1136–1138

	summary, 1152

	TwoDimensionalArrayStream.java example, 1147–1148

	Aggregating classes, 376

	Aggregating objects, 376

	Aggregation relationships, objects, 376–377

	AIFF audio files, 676

	Algorithms, 34

	analyzing Towers of Hanoi problem, 846–847

	Big O notation for measuring efficiency of, 840–841

	binary search, 846

	bubble sort, 884–886

	comparing growth functions, 847–848

	comparing prime numbers, 861

	determining Big O for repetition, sequence, and selection statements, 842–845

	EfficientPrimeNumbers.java example, 857–860

	external sorts. see External sorts

	finding closest pair of points, 861–864

	finding convex hull for a set of points, 867–869

	finding Fibonacci numbers, 849–851

	finding greatest common denominator, 851–855

	finding prime numbers, 855–861

	GCDEuclid.java example, 853–855

	GCD.java example, 852–853

	gift-wrapping algorithm, 867–868

	Graham’s algorithm, 868–869

	graph algorithms, 1040–1041

	greedy, 979

	heap sort. see Heap sorts

	insertion sorts, 882–884

	key terms, 869

	merge sorts, 887–890

	overview of, 840

	PrimeNumbers.java example, 856–857

	quick sort, 890–894

	quiz and exercises, 870–879

	recurrence relations and, 847

	selection sort and insertion sort, 846

	SieveOfEratosthenes.java example, 860–861

	solving Eight Queens problem, 864–867

	for sort method, 759

	summary, 869–870

	Algorithms, spanning tree

	Dijkstra’s single-source shortest-path algorithm, 1100–1105

	MST algorithm, 1095–1096

	Prim’s minimum spanning tree algorithm, 1093–1095

	allMatch method, 1126, 1128

	Ambiguous invocation, of methods, 223

	American Standard Code for Information Interchange (ASCII). see ASCII (American Standard Code for Information Interchange)

	And (&&) logical operator, 93–97

	Animation

	case study: bouncing ball, 626–629

	case study: US map, 630–633

	ClockAnimation.java, 625–626

	FadeTransition, 622–623

	key terms, 633

	PathTransition, 619–622

	programming exercises, 634–641

	quiz, 634

	summary, 633–634

	Timeline, 624–625

	Anonymous arrays, 260

	Anonymous objects, 333

	AnonymousHandlerDemo.java, 603–605

	anyMatch method, 1126, 1128

	Application Program Interfaces (APIs), 11

	Apps, developing on Web servers, 11

	Arc

	overview, 575

	ShowArc.java, 575–577

	Arguments

	defining methods and, 207

	passing by values, 214–217

	receiving string arguments from command line, 274–277

	variable-length argument lists, 266–267

	ArithmeticException class, 457

	Arithmetic/logic units, CPU components, 3

	Array elements, 250

	Array initializers, 250–251

	arraycopy method, System class, 258

	ArrayIndexOutOfBoundsException, 253

	ArrayList class

	animation of array lists, 919

	case study: custom stack class, 441–442

	cloning arrays, 519

	compared with LinkedList, 784–786

	creating and adding numbers to array lists, 438–440

	creating array lists, 778–780

	defined under List interface, 782

	DistinctNumbers.java example, 438–440

	as example of generic class, 752–753

	heap sorts, 895

	implementing array lists, 922–929

	implementing bucket sorts, 901–902

	implementing buckets, 1017

	implementing stacks using array lists. see Stacks

	MyArrayList, 918–919, 941

	MyArrayList compared with MyLinkedList, 941

	MyArrayList.java example, 923–927

	MyList.java example, 920–922

	representing edges in graphs, 1047

	SetListPerformanceTest.java example, 825–826

	storing edge objects in, 1045

	for storing elements in a list, 776

	storing heaps in, 895

	storing list of objects in, 434–435

	TestArrayAndLinkedList.java, 785–786

	TestArrayList.java example, 435–438

	TestMyArrayList.java example, 927–929

	Vector class compared with, 781

	Arrays class, 272–274

	Arrays, in general

	edge arrays, 1045

	as fixed-size data structure, 922

	implementing binary heaps using, 895

	ragged arrays, 1046

	sorting using Heap class, 899–900

	storing lists in. see ArrayList class

	storing vertices in, 1044

	Arrays, multi-dimensional

	case study: daily temperature and humidity, 304–306

	case study: guessing birthdays, 306–307

	overview of, 303–304

	questions and exercises, 307–321

	summary, 307

	Arrays, single-dimensional

	accessing elements, 250

	ArrayList class, 437–438

	Arrays class, 272–274

	case study: analyzing numbers, 255–256

	case study: counting occurrences of letters, 263–266

	case study: deck of cards, 256–258

	case study: generic method for sorting, 758–759

	constructing strings from, 388

	converting strings to/from, 391

	copying, 258–259

	creating, 249–250, 514–516

	declaring, 248

	foreach loops, 253–255

	initializers, 250–251

	key terms, 277

	of objects, 353–355

	overview of, 248

	passing to methods, 259–262

	processing, 251–253

	questions and exercises, 278–287

	returning from methods, 262–263

	searching, 267–271

	serializing, 709–711

	size and default values, 250

	sorting, 271–272, 514–516

	summary, 277–278

	treating as objects in Java, 332

	variable-length argument lists, 266–267

	Arrays, two-dimensional

	case study: finding closest pair of points, 298–300

	case study: grading multiple-choice test, 296–298

	case study: processing all elements in a two-dimensional array, 1147–1148

	case study: Sudoku, 300–303

	declaring variables and creating two-dimensional arrays, 290–291

	obtaining length of two-dimensional arrays, 291–292

	passing to methods to two-dimensional arrays, 295–296

	processing two-dimensional arrays, 293–295

	questions and exercises, 307–321

	ragged arrays, 292–293

	representing graph edges with, 1045

	representing weighted graphs, 1083–1084

	summary, 307

	Arrows keys, on keyboards, 6

	ASCII (American Standard Code for Information Interchange)

	character (char data type), 125–126

	decimal and hexadecimal equivalents, 1159

	encoding scheme, 3–4

	text encoding, 692

	text I/O vs. binary I/O, 693–694

	asin method, trigonometry, 120–121

	asList method, 786

	Assemblers, 7

	Assembly language, 7

	Assignment operator (=), 1169

	augmented, 54–55

	overview of, 42–43

	Assignment statements (assignment expressions)

	assigning value to variables, 36

	overview of, 42–43

	Associative array, 1010

	Associative arrays. see Maps

	Associativity, of operators, 105, 1160–1161

	atan method, trigonometry, 120–121

	Attributes, object, 324

	Audio files

	case study: national flags and anthems, 679–681

	MediaDemo.java, 677–679

	Autoboxing/Autounboxing, 386–387, 753–754

	Average-case analysis

	measuring algorithm efficiency, 840, 854

	quick sort and, 894

	AVL trees

	AVLTree.java example, 996–1001

	balancing nodes on a path, 994–995

	deleting elements, 996

	designing classes for, 993–994

	key terms, 1006

	overriding the insert method, 994–995

	overview of, 990

	questions and exercises, 1006–1007

	rebalancing, 990–992

	rotations for balancing, 995

	summary, 1006

	TestAVLTree.java example, 1002–1005

	time complexity of, 1005

	AVLTree class

	delete method, 1001, 1005

	overview of, 996–1001

	as subclass of BST class, 993

	testing, 1002–1005

	AWT (Abstract Windows Toolkit)

	Color class, 553–554

	Date class, 336–337, 507–508

	Error class, 460, 462

	event classes in, 596

	EventObject class, 596–597

	exceptions. see Exception class

	File class, 477–479, 692

	Font class, 554–555

	GeometricObject class, 501–502

	GuessDate class, 306–307

	IllegalArgumentException class, 463

	InputMismatchException class, 458, 483

	KeyEvent class, 613

	MalformedURLException class, 487

	MouseEvent class, 611–612

	Polygon class, 577–578

	String class, 388

	Swing vs., 542

	

B

	Babylonian method, 241

	Backslash character (\), as directory separator, 478

	Backtracking algorithm, 864–867

	Backward pointer, in doubly linked lists, 942

	Balance factor, for AVL nodes, 990, 998

	Balanced nodes

	in AVL trees, 990

	AVLTree class, 996–997, 1000–1001

	Base cases, in recursion, 726

	BaseStream interface, 1124

	BASIC, high-level languages, 8

	Bean machine game, 286–287, 640

	beginIndex method, for obtaining substrings from strings, 136

	Behaviors (actions), object, 324

	Behind the scene evaluation, expressions, 105

	Best-case input

	measuring algorithm efficiency, 840, 854

	quick sort and, 894

	BFS (breadth-first searches). see Breadth-first searches (BFS)

	Big O

	determining for repetition, sequence, and selection statements, 842–845

	for measuring algorithm efficiency, 840–841

	BigDecimal class, 386–387, 505

	Binary

	files, 692

	machine language as binary code, 7

	operator, 48

	searches, 268–271, 730

	Binary digits (Bits), 3

	Binary heaps (binary trees), 894. see also Heap sorts

	complete, 894, 895, 900

	Binary I/O

	BufferedInputStream and BufferedOutputStream classes, 701–704

	characters and strings in, 698–699

	classes, 694–704

	DataInputStream and DataOutputStream classes, 698–701

	DetectEndOfFile.java, 701

	FileInputStream and FileOutputStream classes, 695–698

	FilterInputStream and FilterOutputStream classes, 698

	overview of, 692

	TestDataStream.java, 699–700

	TestFileStream.java, 696–698

	vs. text I/O, 693–694

	Binary numbers

	converting to/from decimal, 745, 1166

	converting to/from hexadecimal, 1167–1168

	overview of, 1165

	Binary search algorithm, 875

	analyzing, 846

	recurrence relations and, 847

	Binary search trees (BST)

	BST class, 958–967

	BSTAnimation.java example, 973–974

	BST.java example, 961–966

	BTView.java example, 974–976

	case study: data compression, 978–983

	deleting elements, 967–973

	displaying/visualizing binary trees, 973–976

	HuffmanCode.java example, 980–983

	implementing using linked structure, 954–955

	inserting elements, 956–957

	iterators, 976–978

	key terms, 983

	overview of, 954

	quiz and exercises, 983–987

	representation of, 955–956

	searching for elements, 956

	summary, 983

	TestBSTDelete.java example, 970–973

	TestBST.java example, 966–967

	TestBSTWithIterator.java example, 977–978

	tree traversal, 957–958

	tree visualization and MVC, 973–976

	Tree.java example, 959–961

	Binary trees, 954

	binarySearch method

	applying to lists, 792

	Arrays class, 273

	Binding properties

	BindingDemo.java, 550–551

	ShowCircleCentered.java, 548–550

	Bit operators, 1169

	Bits (binary digits), 3

	Bitwise operators, 1169

	Block comments, in Welcome.java, 13

	Block modifiers, 1162–1163

	Block style, programming style, 19

	Blocks, in Welcome.java, 13

	BMI (Body Mass Index), 89–90, 372–375

	Boolean accessor method, 347

	boolean data type

	java.util.Random, 337

	overview of, 76–78

	Boolean expressions

	case study: determining leap year, 97–98

	conditional operators, 103–104

	defined, 76

	if statements and, 78–79

	if-else statements, 80–81

	writing, 86–87

	Boolean literals, 77

	Boolean values

	defined, 76

	as format specifier, 146

	logical operators and, 93

	redundancy in testing, 84

	Boolean variables

	assigning, 86

	overview of, 76–77

	redundancy in testing, 84

	BorderPane

	overview of, 563

	ShowBorderPane.java, 563–564

	Bottom-up implementation, 229–231

	Bounded generic types

	erasing, 764–765

	GenericMatrix.java example, 767–769

	MaxUsingGenericType.java example, 760–761

	overview of, 757

	Bounded wildcards, 762

	Boxing, converting wrapper object to primitive value, 385

	Braces. see Curly braces ({})

	Breadth-first searches (BFS)

	applications of, 1071

	finding BFS trees, 1042

	implementing, 1069–1070

	overview of, 1068

	TestBFS.java, 1070

	traversing graphs, 1061

	Breadth-first traversal, tree traversal, 958

	break statements

	controlling loops, 186–189

	using with switch statements, 100, 101

	Breakpoints, setting for debugging, 106

	Brute-force algorithm, 851

	BST (binary search trees). see Binary search trees (BST)

	BST class

	AVLTree class as subclass of, 993

	BST.java example, 961–966

	overview of, 958–959

	TestBSTDelete.java example, 970–973

	TestBST.java example, 966–967

	time complexity of, 971

	Tree.java example, 959–961

	Bubble sorts, 281

	algorithms, 885

	bubble sort algorithms, 885

	BubbleSort.java example, 886

	overview of, 884–885

	time complexity of, 886

	Buckets

	bucket sorts, 901–903

	separate chaining and, 1017, 1035

	BufferedInputStream and BufferedOutputStream classes, 701–704

	Bugs (logic errors), 21, 106

	Bus, function of, 2–3

	Button, 646–648

	Button, ButtonDemo.java, 647–648

	ButtonBase, 646–647

	ButtonDemo.java, 647–648

	byte type, numeric types

	hash codes for primitive types, 1011

	overview of, 45

	Bytecode

	translating Java source file into, 15

	verifier, 18

	Bytes

	defined, 3

	measuring storage capacity in, 4

	

C

	C++, high-level languages, 8

	C, high-level languages, 8

	Cable modems, 6

	Calendar class, 507–508

	Call stacks

	displaying in debugging, 106

	invoking methods and, 210

	Calling

	methods, 208–210

	objects, 333

	canRead method, File class, 478–479

	canWrite method, File class, 478–479

	capacity() method, StringBuilder class, 397

	Case sensitivity

	identifiers and, 40

	in Welcome.java, 13

	Casting. see Type casting

	Casting objects

	CastingDemo.java example, 430–431

	overview of, 429–430

	Catching exceptions. see also try-catch blocks

	catch block omitted when finally clause is used, 471

	CircleWithException.java example, 467

	InputMismatchExceptionDemo.java example, 458–459

	overview of, 463–465

	QuotientWithException.java example, 456–458

	CDs (compact discs), as storage device, 5

	Cells

	in Sudoku grid, 300

	in tic-tac-toe case study, 671–676

	Celsius, converting Fahrenheit to/from, 237–238

	Chained exceptions, 473–474

	char data type. see Characters (char data type)

	Characters (char data type)

	applying numeric operators to, 226

	in binary I/O, 698–699

	case study: ignoring nonalphanumeric characters when checking palindromes, 398–400

	casting to/from numeric types, 127

	comparing, 76

	comparing and testing, 128–129

	constructing strings from arrays of, 388

	converting to strings, 391–392

	decimal and hexadecimal equivalents of ASCII character set, 1159

	escape characters, 126

	finding, 136–137

	generic method for sorting array of Comparable objects, 758

	hash codes for primitive types, 1011

	overview of, 125

	RandomCharacter.java, 226

	retrieving in strings, 131

	TestRandomCharacter.java, 226–227

	Unicode and ASCII and, 125–126

	charAt (index) method

	retrieving characters in strings, 131

	StringBuilder class, 397

	CheckBox, 648–651

	CheckBoxDemo.java, 649–651

	Checked exceptions, 461

	checkIndex method, 929

	Checkpoint Questions, recurrence relations and, 847

	Child, in BST, 955–956

	Choice lists. see ComboBox

	Circle and Ellipse

	overview, 572–573

	ShowEllipse.java, 573–574

	Circle class, 324, 325

	Circular

	doubly linked lists, 942

	singly linked lists, 942

	Clarity, class design guidelines, 532

	Class diagrams, UML, 325

	Class loaders, 18

	Class modifiers, Java modifiers, 1162–1163

	ClassCastException, 430

	Classes

	abstract. see Abstract classes

	abstraction and encapsulation in, 368–372

	benefits of generics, 752–754

	case study: designing class for matrix using generic types, 766–771

	case study: designing class for stacks, 380–382

	case study: designing Course class, 378–380

	in Circle.java (for CircleWithPrivateDataFields), 347–348

	in Circle.java (for CircleWithStaticMembers) example, 340–341

	clients of, 327

	commenting, 19

	in ComputeExpression.java, 14–15

	data field encapsulation for maintaining, 346–347

	defining custom exception classes, 474–477

	defining for objects, 324–326

	defining generic, 754–756

	design guidelines, 531–534

	identifiers, 40

	inner (nested) classes. see Inner (nested) classes

	from Java Library, 336–339

	names/naming conventions, 13, 44

	Point2D, 338–339

	preventing extension of, 445

	raw types and backward compatibility, 760–761

	static variables, constants, and methods, 339–344

	in TestCircleWithPrivateDataFields.java example, 348–349

	in TestCircleWithStaticMembers.java example, 341–344

	in UML diagram, 325, 326

	variable scope and, 339–340

	visibility modifiers, 344–346

	in Welcome.java, 12

	in WelcomeWithThreeMessages.java, 14

	Classes, binary I/O

	BufferedInputStream and BufferedOutputStream classes, 701–704

	DataInputStream and DataOutputStream classes, 698–701

	DetectEndOfFile.java, 701

	FileInputStream and FileOutputStream classes, 695–698

	FilterInputStream and FilterOutputStream classes, 698

	overview of, 694–695

	TestDataStream.java, 699–700

	TestFileStream.java, 696–698

	Classifier, 1141

	Class’s contract, 368

	Clock speed, CPUs, 3

	ClockPane Class

	ClockPane.java, 582–584

	DisplayClock.java, 581–582

	paintClock method, 583–584

	clone method, shallow and deep copies, 520–521

	Cloneable interface

	House.java example, 519–523

	overview, 518–519

	Closest pair problem, two-dimensional array applied to, 298–300

	Closest-pair animation, 875

	Cluster, 1014

	COBOL, high-level languages, 8

	Code

	arrays for simplifying, 252–253

	comments and, 101

	incremental development, 164

	programming. see Programs/programming

	reuse. see Reusable code

	sharing. see Sharing code

	in software development process, 61–62

	Coding trees, 978–983. see also Huffman coding trees

	Coherent purpose, class design guidelines, 531–532

	collect method, stream reduction using, 1138–1141

	Collections

	Collection interface, 776–780

	forEach method, 781–782

	iterators for traversing collections, 780–781

	singleton and unmodifiable, 835

	static methods for, 791–794

	TestCollection.java example, 778–780

	Collections class

	singleton and unmodifiable collections, 835

	static methods, 791

	Collections Framework hierarchy

	ArrayList and LinkedList class, 784–786

	case study: displaying bouncing balls, 794–798

	case study: stacks used to evaluate expressions, 803–807

	Collection interface, 776–778

	Comparator interface, 787–791

	Dequeue interface, 800–802

	designing complex data structures, 1048

	forEach method, 781–782

	iterators for traversing collections, 780–781

	key terms, 807

	List interface, 782–784

	Map interface, 1010

	methods of List interface, 782–784

	overview of, 776

	PriorityQueue class, 801–802

	Queue interface, 800

	queues and priority queues, 799–802

	quiz and exercises, 808–814

	static methods for lists and collections, 791–794

	summary, 807–808

	TestCollection.java example, 778–780

	TestIterator.java example, 780–781

	Vector and Stack classes, 798–799

	Collisions, in hashing

	double hashing, 1015–1017

	handling using open addressing, 1013–1017

	handling using separate chaining, 1017

	linear probing, 1013–1014

	overview of, 1011

	quadratic probing, 1014–1015

	ComboBox

	ComboBoxDemo.java, 660–662

	overview of, 659–660

	Command-line arguments, 274–277

	Comments

	code maintainability and, 101

	programming style and, 18

	in Welcome.java, 13

	Common denominator, finding greatest common denominator. see Gcd (greatest common denominator)

	Communication devices, computers and, 6

	Compact discs (CDs), as storage device, 5

	Comparable interface

	ComparableRectangle.java example, 515–516

	Comparator interface vs., 788

	enumerated types, 1175

	as example of generic interface, 752–753

	generic method for sorting array of Comparable objects, 758

	overview of, 513–515

	PriorityQueue class and, 801

	Rational class implementing, 528

	SortComparableObjects.java example, 515

	SortRectangles.java example, 516–517

	TreeMap class and, 831

	Comparator interface

	Comparable vs., 788

	GeometricObjectComparator.java, 787

	methods of, 787

	PriorityQueue class and, 801, 802

	sorted method, 1127–1128

	SortStringByLength.java, 788–789

	SortStringIgnoreCase.java, 789–790

	TestComparator.java, 787–788

	TestTreeSetWithComparator.java example, 821–823

	TreeMap class and, 831

	compare method, 787–788

	compareTo method

	Cloneable interface and, 518

	Comparable interface defining, 513–514

	ComparableRectangle.java example, 515–516

	comparing strings, generic method for sorting array of Comparable objects, 759

	implementing in Rational class, 528

	wrapper classes and, 383–384

	compareToIgnoreCase method, 134, 789

	Comparison operators (==), 76, 434

	Compatibility, raw types and backward compatibility, 760–761

	Compile errors (Syntax errors)

	common errors, 13–14

	debugging, 106

	programming errors, 20

	Compile time

	error detection at, 752

	restrictions on generic types, 765

	Xlint:unchecked error, 760

	Compilers

	ambiguous invocation and, 223

	reporting syntax errors, 20

	translating Java source file into bytecode file, 15–16

	translating source program into machine code, 8, 9

	Complete binary tree, 894, 895, 900

	Complete graphs, 1042

	Completeness, class design guidelines, 533

	Complex numbers, Math class, 538

	Components

	ListView, 662–664

	ListViewDemo.java, 664–665

	quiz and exercises, 682–689

	ScrollBar, 665–667

	ScrollBarDemo.java, 666–667

	SliderDemo.java, 669–670

	sliders, 669

	summary, 681–682

	TextArea, 655–658

	TextAreaDemo.java, 658

	TextFieldDemo.java, 654–655

	Composition, in designing stacks and queues, 944

	Composition relationships

	aggregation and, 376–377

	between ArrayList and MyStack, 441–442

	Compound expressions

	case study: stacks used to evaluate, 803

	EvaluateExpression.java example, 804–807

	Compression

	data compression using Huffman coding, 978–983

	of hash codes, 1012–1013

	HuffmanCode.java example, 980–983

	Compute expression, 14

	Computers

	communication devices, 6

	CPUs, 3

	input/output devices, 5–6

	memory, 4

	OSs (operating systems), 9–10

	overview of, 2–3

	programming languages, 7–9

	storage devices, 4–5

	concat method, 131

	Concatenate strings, 36, 131–132

	Conditional operators, 103–104

	Connect four game, 315

	Connected circles problem

	ConnectedCircles.java, 1067

	overview of, 1066–1067

	Connected graphs, 1042

	Consistency, class design guidelines, 532

	Consoles

	defined, 12

	formatting output, 145–149

	input, 12

	output, 12

	reading input, 37–39

	Constant time, comparing growth functions, 848

	Constants

	class, 339–340

	declaring, 340

	identifiers, 40

	KeyCode constants, 613

	named constants, 43–44

	naming conventions, 44

	wrapper classes and, 383

	Constructor chaining, 419–420

	Constructor modifiers, 1162–1163

	Constructors, 360

	in abstract classes, 502

	for AVLTree class, 996–997

	for BMI class, 373–374

	calling subclass constructors, 418

	creating Date class, 337

	creating objects with, 331

	creating Random objects, 337

	for DataInputStream and DataOutputStream classes, 699

	generic classes and, 756

	interfaces vs. abstract classes, 523

	invoking with this reference, 360

	for Loan class, 370–372

	object methods and, 324

	private, 346

	for String class, 388

	for StringBuilder class, 395

	in TestCircle.java example, 327, 328

	in TV.java example, 329

	UML diagram of, 326

	for UnweightedGraph class, 1052–1053

	for WeightedGraph class, 1086–1087

	wrapper classes and, 533

	Containers

	creating data structures, 776

	maps as, 828

	removing elements from, 826

	storing objects in, 777

	types supported by Java Collections Framework, 776

	contains method, 826, 827

	continue statements, for controlling loops, 186–189

	Contract, object class as, 324

	Control, 545–548

	Control units, CPUs, 3

	Control variables, in for loops, 173–174

	ControlCircle.java, 600–601

	Conversion methods, for wrapper classes, 383

	Convex hull

	finding for set of points, 867–869

	gift-wrapping algorithm applied to, 867–868

	Graham’s algorithm applied to, 868–869

	Copying

	arrays, 258–259

	files, 704–706

	Core, of CPU, 3

	cos method, trigonometry, 120–121

	Cosine function, 589

	count method, 1128–1129

	Counter-controlled loops, 161

	Coupon collector’s problem, 281–282

	Course class, 378–379

	CPUs (central processing units), 3

	Cubic time, comparing growth functions, 848

	Curly braces {}

	in block syntax, 13

	dangers of omitting, 174

	forgetting to use, 83–84

	Cursor, mouse, 6

	Cycle, connected graphs, 1042

	

D

	.dat files (binary), 694

	Data, arrays for referencing, 248

	Data compression

	Huffman coding for, 978–983

	HuffmanCode.java example, 980–983

	Data fields

	accessing object data, 332–333

	encapsulating, 346–349, 532

	in interfaces, 512

	object state represented by, 324

	referencing, 333, 358–360

	in TestCircle.java example, 327

	in TV.java example, 329

	UML diagram of, 326

	Data modifiers, 1162–1163

	Data streams. see DataInputStream/DataOutputStream classes

	Data structures. see also Collections Framework hierarchy

	array lists. see ArrayList class

	choosing, 776

	collections. see Collections

	first-in, first-out, 799

	linked lists. see LinkedList class

	lists. see Lists

	queues. see Queues

	stacks. see Stacks

	Data structures, implementing

	array lists, 922–929

	GenericQueue.java example, 945

	implementing MyLinkedList class, 933–941

	linked lists, 929–943

	lists, 918–922

	MyArrayList compared with MyLinkedList, 941

	MyArrayList.java example, 923–927

	MyLinkedList class, 918–919, 931, 941

	MyPriorityQueue.java example, 947–948

	overview of, 918

	priority queues, 947–948

	quiz and exercises, 949–951

	stacks and queues, 943–947

	summary, 949

	TestMyArrayList.java example, 927–929

	TestMyLinkedList.java example, 932–933

	TestPriorityQueue.java example, 948

	TestStackQueue.java example, 945–947

	variations on linked lists, 942–943

	Data types

	ADT (Abstract data type), 368

	boolean, 76–78, 337

	char. see Characters (char data type)

	double. see double (double precision), numeric types

	float. see Floating-point numbers (float data type)

	fundamental. see Primitive types (fundamental types)

	generic. see Generics

	int. see Integers (int data type)

	long. see Long, numeric types

	numeric, 45–48

	reference types. see Reference types

	specifying, 35

	strings, 130

	types of, 41

	using abstract class as, 504

	DataInputStream/DataOutputStream classes

	DetectEndOfFile.java, 701

	external sorts and, 903

	overview of, 698

	TestDataStream.java, 699–700

	Date class

	case study: Calendar and GregorianCalendar classes, 507–508

	java.util, 336

	De Morgan’s law, 95

	Debugging

	benefits of stepwise refinement, 234

	code modularization and, 217

	selections, 106

	Decimal numbers

	BigDecimal class, 386–387

	converting to hexadecimals, 184–186, 219–221, 745

	converting to/from binary, 745, 1166

	converting to/from hexadecimal, 1167

	equivalents of ASCII character set, 1159

	overview of, 1165

	Declaring constants, 43, 340

	Declaring exceptions

	CircleWithException.java example, 467

	ReadData.java example, 482–483

	TestCircleWithCustomException.java example, 475–476

	throws keyword for, 462, 467

	Declaring methods

	generic methods, 757

	static methods, 339

	Declaring variables

	array variables, 248

	overview of, 40–41

	specifying data types and, 35–36

	two-dimensional array variables, 290–291

	Decrement (−−) operator, 55–56

	Deep copies, 521

	Default field values, for data fields, 333

	Degree of vertex, 1042

	Delete key, on keyboards, 6

	delete method, AVLTree class, 1001, 1005

	Delimiters, token reading methods and, 483

	Denominator. see Gcd (greatest common denominator)

	Denominators, in rational numbers, 526

	Depth-first searches (DFS)

	applications, 1065–1066

	case study: connected circles problem, 1066–1067

	finding DFS trees, 1042

	implementing, 1063–1065

	traversing graphs, 1061–1062

	Depth-first traversal, tree traversal, 958

	Dequeue interface, LinkedList class, 800–802

	dequeue method, 946

	DescriptionPane class, 657–658

	Descriptive names

	benefits of, 40

	for variables, 35

	Deserialization, of objects, 709

	Design guidelines, classes, 531–534

	Determining Big O

	for repetition statements, 842–845

	for selection statements, 842–845

	for sequence statements, 842–845

	DFS (depth-first searches). see Depth-first searches (DFS)

	Dial-up modems, 6

	Dictionaries, 1010. see also Maps

	Digital subscriber lines (DSLs), 6

	Digital versatile disc (DVDs), 5

	Digits, matching, 98

	Dijkstra’s single-source shortest-path algorithm, 1100–1105

	Direct recursion, 723

	Directed graphs, 1041

	Directories

	case study: determining directory size, 731–732

	DirectorySize.java, 731–732

	File class and, 478

	file paths, 477

	disjoint method, 793

	Disks, as storage device, 5

	Display message

	in Welcome.java, 12

	in WelcomeWithThreeMessages.java, 14

	distinct method, 1126, 1128–1129

	Divide-and-conquer algorithm, 861–864

	Divide-and-conquer strategy. see Stepwise refinement

	Division (/=) assignment operator, 42

	Division operator (/), 46, 50

	Documentation, programming and, 18

	Dot operator (.), 332

	Dot pitch, measuring sharpness of displays, 6

	double (double precision), numeric types

	converting characters and numeric values to strings, 391–392

	declaring variables and, 41

	generic method for sorting array of Comparable objects, 758

	hash codes for primitive types, 1011

	java.util.Random, 337

	overview of numeric types, 45

	precision of, 181

	Double hashing, collision handling, 1015–1017

	Double.parseDouble method, 137

	DoubleStream, 1130–1133

	Doubly linked lists, 942

	deciding when to use, 176–178

	do-while loops, 170–173

	overview of, 168–170

	do-while loops, 170–173

	Downcasting objects, 429

	drawArc method, 575–577

	Drives, 5

	Drop-down lists. see ComboBox

	DSLs (digital subscriber lines), 6

	DVDs (Digital versatile disc), 5

	Dynamic binding, inheritance and, 425–429

	Dynamic programming

	computing Fibonacci numbers, 849–851

	definition, 850

	Dijkstra’s algorithm, 1104

	ImprovedFibonacci.java example, 850–851

	

E

	Eclipse

	built in debugging, 106

	creating/editing Java source code, 15

	Edge arrays

	representing edges, 1045

	weighted edges using, 1083–1084

	Edge class, 1045

	Edges

	adjacency lists, 1046–1048

	adjacency matrices, 1046

	adjacent and incident, 1042

	defining as objects, 1045

	Graph.java example, 1050

	on graphs, 1041

	Prim’s algorithm and, 1093

	representing edge arrays, 1045

	TestGraph.java example, 1050

	TestMinimumSpanningTree.java, 1096–1097

	TestWeightedGraph.java, 1090–1091

	weighted adjacency matrices, 1084

	weighted edges using edge array, 1083–1084

	weighted graphs, 1082

	WeightedGraph class, 1085–1086

	Edge-weighted graphs

	overview of, 1082

	WeightedGraph class, 1084

	Eight Queens puzzle

	EightQueens.java example, 865–867

	recursion, 748

	single-dimensional arrays, 286

	solving, 864–867

	Element type, specifying for arrays, 248

	Emirp, 242

	Encapsulation

	in Circle.java (for CircleWithPrivateDataFields) example, 347–348

	class design guidelines, 530

	of classes, 368–372

	of data fields, 346–349

	information hiding with, 227

	of Rational class, 530

	Encoding schemes

	defined, 3–4

	mapping characters to binary equivalents, 125

	End of file exception (EOFException), 701

	End-of-line style, block styles, 19

	enqueue method, 946

	entrySet method, Map interface, 830

	Enumerated types

	with data fields, constructors, and methods, 1178–1179

	EnumeratedTypeDemo.java example, 1176

	if statements with, 1177

	simple, 1175–1177

	StandaloneEnumTypeDemo.java example, 1176–1177

	switch statements with, 1177

	TestTrafficLight.java example, 1178–1179

	TrafficLight.java example, 1178

	values method, 1178

	Equal (=) operator, for assignment, 76

	== (equal to operator), 76

	Equal to (==) operator, for comparison, 76

	equalArea method, for comparing areas of geometric objects, 503

	Equals method

	Arrays class, 273

	Comparator interface, 787

	Object class, 424

	Erasure and restrictions, on generics, 764–766

	Error class, 460, 462

	Errors, programming. see Programming errors

	(escape characters), 126

	Euclid’s algorithm

	finding greatest common divisors using, 851–855

	GCDEuclid.java example, 853–855

	Euler, 1040–1041

	Event delegation, 596

	Event handlers/event handling, 594–595, 605–607, 613

	Exception class

	exceptions in, 460

	extending, 474

	in java.lang, 474

	subclasses of, 460–461

	Exception handling. see also Programming errors

	catching exceptions, 463–465, 467–470

	chained exceptions, 473–474

	ChainedExceptionDemo.java example, 473–474

	checked and unchecked, 461

	CircleWithException.java example, 467

	ClassCastException, 430

	declaring exceptions (throws), 462, 467

	defined, 454

	defining custom exception classes, 474–477

	EOFException, 701

	in Exception class, 460

	exception classes cannot be generic, 766

	FileNotFoundException, 695

	files input/output, 480–486

	finally clause in, 470–471

	getting information about exceptions, 465–467

	in House.java example, 520

	InputMismatchExceptionDemo.java example, 458–459

	InvalidRadiusException.java example, 474–475

	IOException, 460

	key terms, 490

	NotSerializableException, 709

	overview of, 39, 454–459

	quiz and exercises, 492–497

	Quotient.java example, 454

	QuotientWithException.java example, 456–458

	QuotientWithIf.java example, 455

	QuotientWithMethod.java example, 455–456

	ReadData.java example, 482–483

	ReadFileFromURL.java example, 487–488

	ReplaceText.java example, 484–486

	rethrowing exceptions, 472–473

	summary, 491

	TestCircleWithCustomException.java example, 475–477

	TestCircleWithException.java example, 468–470

	TestException.java example, 466–467

	TestFileClass.java example, 479

	throwing exceptions, 462–463, 467–470

	types of exceptions, 459–461

	unsupported operations of Collection interface, 778

	WebCrawler.java example, 489–490

	when to use exceptions, 471–472

	WriteData.java example, 480–481

	WriteDataWithAutoClose.java example, 481–482

	Exception propagation, 463

	Exclusive or (^) logical operator, 93–97

	Execution stacks. see Call stacks

	exists method, for checking file instances, 478

	Explicit casting, 57, 58, 429

	Exponent method, Math class, 121

	Exponential algorithms, 847, 870

	Expressions

	assignment statements and, 42–43

	behind the scene evaluation, 105

	Boolean. see Boolean expressions

	case study: stacks used to evaluate, 803

	EvaluateExpression.java example, 804–807

	extends keyword, interface inheritance and, 524

	External sorts

	complexity, 910

	CreateLargeFile.java example, 903–904

	implementation phases, 904–909

	overview of, 903

	

F

	Factorials

	case study: computing factorials, 720–723

	ComputeFactorial.java, 721–723

	ComputeFactorialTailRecusion.java, 741

	tail recursion and, 740–741

	FadeTransition, 622–623

	Fahrenheit, converting Celsius to/from, 237–238

	Fall-through behavior, switch statements, 101

	Feet, converting to/from meters, 238

	fib method, 724–726

	Fibonacci, Leonardo, 724

	Fibonacci numbers

	algorithm for finding, 849–851

	case study: computing, 723–726

	ComputeFibonacci.java, 724–726

	computing recursively, 743

	ImprovedFibonacci.java example, 850–851

	recurrence relations and, 847

	File class, 477–479, 692

	File I/O. see Input; Output

	File pointers, random-access files and, 712

	FileInputStream/FileOutputStream classes

	overview of, 695–696

	TestFileStream.java, 696–698

	Files

	case study: copying files, 704–706

	case study: replacing text in, 484–486

	File class, 477–479, 692

	input/output, 480–486

	key terms, 490

	quiz and exercises, 492–497

	reading data from, 482–483

	reading data from Web, 486–488

	summary, 491

	TestFileClass.java example, 479

	writing data to, 480–481

	fill method, 793

	filter method, 1126, 1128

	FilterInputStream/FilterOutputStream classes, 698

	final keyword, for declaring constants, 43

	final modifier, for preventing classes from being extended, 445

	finally clause, in exception handling, 470–471

	findAny method, 1126, 1129–1130

	findFirst method, 1126, 1129–1130

	First-in, first-out data structures, 799

	float data type. see Floating-point numbers (float data type)

	Floating-point numbers (float data type)

	approximation, 66

	converting to integers, 57

	hash codes for primitive types, 1011

	java.util.Random, 337

	minimizing numeric errors related to loops, 180–181

	numeric types for, 45

	overview of numeric types, 45

	special values, 1164

	specifying data types, 35

	specifying precision, 147

	Flowcharts

	do-while loop, 170–171

	if statements and, 78–79

	if-else statements, 80

	for loops, 173, 174

	switch statements, 100

	while loops, 160, 161

	FlowPane

	HBox and VBox, 564–565

	overview, 559

	ShowFlowPane.java, 559–561

	Folding, hash codes and, 1011

	Font, FontDemo.java, 554–555

	for loops

	deciding when to use, 176–178

	nesting, 178–180, 293

	overview of, 173–176

	processing arrays with, 251

	variable scope and, 224–225

	foreach (enhanced) loops

	implicit use of iterator by, 786

	overview of, 253–255

	for traversing collections, 781

	forEach method, 1127

	Formal generic type, 752

	Formal parameters. see Parameters

	Format specifiers, 146–148

	FORTRAN, high-level languages, 8

	Forward pointer, in doubly linked lists, 942

	Fractals

	case study, 736–739

	H-tree fractals, 749

	Koch snowflake fractal, 747

	SierpinskiTriangle.java, 736–739

	Frames (windows)

	ScrollBarDemo.java, 666–667

	SliderDemo.java, 669–670

	Free cells, in Sudoku grid, 300

	frequency method, 794

	Function keys, on keyboards, 5

	Functions, 207. see also Methods

	Fundamental types (Primitive types). see Primitive types (fundamental types)

	

G

	Galton box, 286

	Garbage collection, JVM and, 335

	GBs (gigabytes), of storage, 4

	Gcd (greatest common denominator)

	algorithm for finding, 851–855

	case study: finding greatest common denominator, 182–183

	computing recursively, 743

	gcd method, 217–218

	GCDEuclid.java example, 853–855

	GCD.java example, 852–853

	Rational class and, 526–527

	Generic instantiation, 752

	Generics

	case study: designing class for matrix using generic types, 766–771

	case study: generic method for sorting array, 758–759

	defining generic classes and interfaces, 754–755

	erasing generic types, 764–766

	GenericStack class, 755–756

	key terms, 771

	methods, 756–758

	motivation for using, 752–754

	overview of, 752

	questions and exercises, 772–773

	raw types and backward compatibility and, 760–761

	restrictions on generic types, 764–766

	summary, 771–772

	wildcards for specifying range of generic types, 761–764

	GeometricObject class

	Circle.java and Rectangle.java, 502

	overview of, 501

	TestGeometricObject.java example, 502–503

	getAbsolutePath(), File class, 479

	getArea method, Circle example, 327, 328

	getArray method, 295–296

	getBMI method, BMI class, 373, 374

	getCharacterFrequency method, 981

	getChars method, converting strings into arrays, 391

	getDateCreated method, Date class, 356

	getIndex method, ArrayList class, 437

	getMinimumSpanningTree method, WeightedGraph class, 1097–1098

	getPerimeter method, Circle example, 327

	getRadius method, CircleWithPrivateDataFields.java example, 348

	getRandomLowerCaseLetter method, 263, 265

	getSize method, finding directory size, 442, 1148–1149

	getSource method, events, 596

	getStackTrace method, for getting information about exceptions, 466

	getStatus method, BMI class, 373, 374

	Getter (accessor) methods

	ArrayList class and, 438

	encapsulation of data fields and, 347–348

	implementing linked lists, 929

	Gift-wrapping algorithm, 867–868

	Gigabytes (GBs), of storage, 4

	Gigahertz (GHz), clock speed, 3

	GMT (Greenwich Mean Time), 52

	Gosling, James, 10

	Graham’s algorithm, 868–869

	Graph interface, 1048

	Graph theory, 1041

	Graphical user interface (GUI), 644

	Graphs

	breadth-first searches (BFS), 1068–1069

	case study: connected circles problem, 1066–1067

	case study: nine tails problem, 1071–1077

	ConnectedCircles.java, 1067

	DisplayUSMap.java example, 1059–1061

	Graph.java example, 1051–1052

	GraphView.java example, 1058–1059

	key terms, 1077

	modeling, 1048–1056

	overview of, 1070

	questions and exercises, 1077–1083

	representing edges, 1045–1048

	representing vertices, 1042–1044

	summary, 1077

	terminology regarding, 1041–1042

	TestGraph.java example, 1051–1052

	traversing, 1061

	UnweightedGraph.java example, 1052–1058

	visualization of, 1058–1061

	Greater than (>) comparison operator, 76

	Greater than or equal to (>=) comparison operator, 76

	Greatest common denominator. see Gcd (greatest common denominator)

	Greedy algorithms

	Dijkstra’s algorithm, 1104

	overview of, 979

	Greenwich Mean Time (GMT), 52

	GregorianCalendar class

	Cloneable interface and, 518–519

	in java.util package, 363

	overview of, 507–508

	TestCalendar.java example, 508–510

	GridPane

	overview, 561–562

	ShowGridPane.java, 562–563

	Grids, representing using two-dimensional array, 300

	Group classifier, 1141

	Group processor, 1141

	groupingby collector, grouping elements using, 1141–1144

	Growth rates

	algorithm for comparing, 847–848

	comparing algorithms based on, 840

	

H

	Hamiltonian path/cycle, 1081

	HandleEvent.java, 595–596

	Hand-traces, for debugging, 106

	Hangman game, 285, 494, 589, 809, 810

	Hard disks, as storage device, 5

	Hardware, 2

	Has-a relationships

	in aggregation models, 376–377

	composition and, 442

	Hash codes, 1011

	compressing, 1012–1013

	vs. hash functions, 1011–1013

	for primitive types, 1011

	for strings, 1011–1012

	Hash functions, 1010

	vs. hash codes, 1011–1013

	as index to hash table, 1010

	Hash map, 831, 1028

	Hash set, 816

	Hash tables, 1010, 1029. see also Maps

	measuring fullness using load factor, 1017

	parameters, 1025

	hashCode method, 816, 1011

	Hashing

	collisions handling using open addressing, 1013–1017

	collisions handling using separate chaining, 1017

	compressing hash codes, 1012–1013

	double hashing open addressing, 1015–1017

	function, 1010–1013

	hash codes for primitive types, 1011

	hash codes for strings, 1011–1012

	hash functions vs. hash codes, 1011–1013

	key terms, 1035

	linear probing open addressing, 1013–1014

	load factor and rehashing, 1017–1019

	map implementation with, 1019–1027

	MyHashMap.java example of map implementation, 1021–1026

	MyHashSet.java example of set implementation, 1028–1034

	MyMap.java example of map implementation, 1020–1021

	overview of, 1010

	quadratic probing open addressing, 1014–1015

	quiz and exercises, 1035–1037

	set implementation with, 1028–1035

	summary, 1035

	TestMyHashMap.java example of map implementation, 1026–1027

	TestMyHashSet.java example of set implementation, 1034–1035

	what it is, 1010–1011

	HashMap class

	concrete implementation of Map class, 828–830

	implementation of Map class, 1010

	load factor thresholds, 1018

	overview of, 831

	TestMap.java example, 831–833

	types of maps, 828–829

	HashSet class

	case study: counting keywords, 827–828

	implementation of Set class, 1028

	overview of, 816–820

	TestHashSet.java example, 817–818

	TestMethodsInCollection.java example, 818–819

	types of sets, 816

	Hashtable, 831

	HBox and VBox

	definition, 566

	overview, 564

	ShowHBoxVBox.java, 565–566

	Heap class

	Heap.java example, 898–899

	operations for manipulating heaps in, 898

	sorting arrays with, 899–900

	Heap sorts, 894–901

	adding nodes to heaps, 896

	arrays using heaps, 899–900

	Heap class, 898–899

	Heap.java example, 898–899

	HeapSort.java example, 900

	overview of, 894–895

	removing root from heap, 896–897

	storing heaps, 895

	time complexity of, 900–901

	Heaps

	adding nodes to, 896

	arrays using, 899–900

	binary heaps (binary trees), 894

	dynamic memory allocation and, 261

	height of, 900

	implementing priority queues with, 947–948

	removing root from, 896–897

	storing, 895

	Height, 954

	Height of a heap, 900

	Helper method, recursive

	overview of, 728

	RecursivePalindrome.java, 728–729

	Hertz (Hz), clock speed in, 3

	Hexadecimal numbers

	converting to/from binary, 1167–1168

	converting to/from decimal, 142–144, 184–186, 219–221, 745, 1167

	equivalents of ASCII character set, 1159

	overview of, 1165

	Hidden data fields, 358, 360

	High-level languages, 8–9

	Hilbert curve, 749

	Horizontal scroll bars, 666

	Horizontal sliders, 668, 669

	H-trees

	fractals, 749

	recursive approach to, 720

	Huffman coding, 978–983

	Huffman coding trees

	data compression using, 978–983

	HuffmanCode.java example, 980–983

	Hz (Hertz), clock speed in, 3

	

I

	Identifiers, 40

	IDEs (integrated development environments) for creating/editing Java source code, 11, 12, 15–16

	IEEE (Institute of Electrical and Electronics Engineers), floating point standard (IEEE 754), 45

	if statements

	common errors, 83–87

	in computing body mass index, 89–90

	in computing taxes, 90–93

	conditional operator used with, 104

	with enumerated types, 1177

	nesting, 81

	overview of, 78–80

	SimpleIfDemo.java example, 79–80

	if-else statements

	conditional expressions and, 104

	dangling else ambiguity, 84–85

	multi-way, 81–83

	overview of, 81–83

	recursion and, 726

	IllegalArgumentException class, 463

	Image, 556–558

	Image class, 556

	Image icons, ComboBoxDemo.java, 660

	Images, ShowImage.java, 557–558

	ImageView, 556–558

	Immutable

	BigInteger and BigDecimal classes, 386–387

	class, 355

	objects, 355–356

	Rational class, 530

	String object, 388–389

	wrapper classes, 383

	Implementation (coding), in software development process, 61–62

	Implementation methods, 231–234

	Implicit casting, 127, 429

	Importing, types of import statements, 38

	Increment method, in Increment.java example, 214

	Increment (++) operator, 55–56

	Incremental development

	benefits of stepwise refinement, 234

	coding incrementally, 164

	Indentation, programming style, 19

	Indexed variables elements, 250

	Indexes

	accessing elements in arrays, 248, 250

	finding characters/substrings in a string, 136–137

	List interface and, 782, 783

	MyList.java example, 920–922

	string index range, 131

	indexOf method, 136–137

	implementing MyLinkedList, 940

	List interface, 782

	MyArrayList.java example, 920, 925, 927

	Indirect recursion, 723

	Infinite loops, 162

	Infinite recursion, 723

	Information

	getting information about exceptions, 465–467

	hiding (encapsulation), 227

	Inheritance

	ArrayList object, 434–435

	calling subclass constructors, 418

	calling superclass methods, 420–421

	case study: custom stack class, 441–442

	casting objects and, 429–433

	CastingDemo.java example, 430–431

	Circle.java example, 414–416

	constructor chaining and, 419–420

	in designing stacks and queues, 944

	DistinctNumbers.java example, 438–440

	dynamic binding and, 425–429

	equals method of Object class, 433–434

	generic classes, 756

	GeometricObject.java example, 413–414

	interface inheritance, 510–511, 524

	is-a relationships and, 442

	key terms, 445

	Object class and, 424

	overriding methods and, 421–422

	overview of, 412

	preventing classes from being extended or overridden, 445

	protected data and methods, 442–444

	quiz and exercises, 447–451

	Rectangle.java example, 416–417

	summary, 446

	superclasses and subclasses and, 412–418

	TestArrayList.java example, 435–438

	TestCircleRectangle.java example, 417–418

	using super keyword, 418

	Initializing variables

	AnalyzeNumbers.java, 255

	arrays, 251

	declaring variables and, 41

	multidimensional arrays, 291

	two-dimensional arrays, 293

	Inner (nested) classes

	anonymous, 602–603

	AnonymousHandlerDemo.java, 603–605

	for defining listener classes, 601–602

	KeyEventDemo.java, 614–615

	ShortestPathTree class as inner class of WeightedGraph class, 1104–1105

	TicTacToe.java, 672–676

	Inorder traversal

	time complexity of, 971

	tree traversal, 957

	Input

	reading from console, 37–39

	redirecting using while loops, 170

	runtime errors, 21

	streams. see InputStream classes

	Input, process, output (IPO), 39

	InputMismatchException class, 458, 483

	Input/output devices, computers and, 5–6

	InputStream classes

	BufferedInputStream, 701–704

	case study: copying files, 705

	DataInputStream, 698–701

	deserialization and, 709

	DetectEndOfFile.java, 701

	FileInputStream, 695–696

	FilterInputStream, 698

	ObjectInputStream, 706–707

	overview of, 694–695

	TestDataStream.java, 699–700

	TestFileStream.java, 696–698

	TestObjectInputStream.java, 708

	Insert key, on keyboards, 6

	insert method

	AVLTree class, 1005

	overriding, 994–995

	Insertion order, LinkedHashMap class, 831

	Insertion sort algorithms

	analyzing, 846

	recurrence relations and, 847

	Insertion sorts

	algorithms, 882–884

	InsertionSort.java example, 883–884

	time complexity of, 884

	Instance methods

	accessing object data and methods, 333

	in Circle.java (for CircleWithStaticMembers), 340–341

	class design guidelines, 326–327

	invoking, 370, 373

	when to use instance methods vs. static, 341–344

	Instance variables

	accessing object data and methods, 333

	class design guidelines, 343

	static variables compared with, 339–341

	in TestCircleWithStaticMembers.java example, 341

	when to use instance variables vs. static, 341–344

	Instances. see also Objects

	checking file instantiation, 478

	checking object instantiation, 324, 430

	generic instantiation, 752

	Institute of Electrical and Electronics Engineers (IEEE), floating point standard (IEEE 754), 45

	int data type. see Integers (int data type)

	Integer.parseInt method, 137

	Integers (int data type)

	ArrayList for, 439

	BigInteger class, 386–387

	bit operators and, 1169

	case study: designing class for matrix using generic types, 766, 767

	casting to/from char types, 127

	converting characters and numeric values to strings, 391–392

	declaring variables and, 41

	division of, 454–458

	finding larger between two, 207

	floating-point numbers converted to, 56–57

	generic method for sorting array of Comparable objects, 758

	greatest common denominator of, 851

	hash codes for primitive types, 1011

	IntegerMatrix.java example, 769

	java.util.Random, 337

	numeric types for, 45

	sorting, 901

	sorting int values, 907

	specifying data types, 35

	TestIntegerMatrix.java example, 770

	Integrated development environments (IDEs), 11, 12

	for creating/editing Java source code, 15–16

	overview of, 11

	Intelligent guesses, 164

	Interfaces

	abstract classes compared with, 521–523

	benefits of, 516

	benefits of generics, 752

	case study: Rational class, 526–527

	Cloneable interface, 518–519

	Comparable interface, 513–514

	ComparableRectangle.java example, 515–516

	for defining common class behaviors, 566

	defining generic, 754–756

	House.java example, 519–523

	key terms, 534

	overview of, 501

	questions and exercises, 535–540

	raw types and backward compartibility, 760

	SortComparableObjects.java example, 515

	SortRectangles.java example, 516–517

	summary, 534–535

	TestEdible.java example, 510–513

	Intermediate method, Stream interface, 1124

	Interned strings, 389

	Internet, 11

	Interpreters, translating source program into machine code, 8, 9

	IntStream, 1130–1133

	Invoking methods, 208, 209, 333, 757

	binary I/O classes, 694–695

	BufferedInputStream and BufferedOutputStream classes, 701–704

	case study: copying files, 705

	case study: replacing text, 484–486

	Copy.java, 705–706

	DataInputStream and DataOutputStream classes, 698–701

	DetectEndOfFile.java, 701

	FileInputStream and FileOutputStream classes, 695–698

	FilterInputStream and FilterOutputStream classes, 698

	handling text I/O in Java, 692–693

	key terms, 714

	object I/O, 706–707

	overview of, 481, 692

	questions and exercises, 715–718

	random-access files, 711–714

	reading data from file using Scanner class, 482–484

	reading data from the Web, 486–488

	serializable interface, 708–709

	serializing arrays, 709–711

	summary, 715

	TestDataStream.java, 699–700

	TestFileStream.java, 696–698

	TestObjectInputStream.java, 708

	TestObjectOutputStream.java, 707–708

	TestRandomAccessFile.java, 713–714

	text I/O vs. binary I/O, 693–694

	types of I/O devices, 5–6

	writing data to file using PrintWriter class, 480–481

	IOException, 695, 696

	IPO (input, process, output), 39

	Is-a relationships

	design guide for when to use interfaces vs. classes, 524

	inheritance and, 442

	isAbsolute method, for checking file instances, 478–479

	isDigit method, Character class, 144

	isDirectory method, for checking file instances, 478–479

	isFile method, for checking file instances, 478–479

	isHidden method, for checking file instances, 478–479

	Is-kind-of relationships, 524

	isPalindrome method

	RecursivePalindrome.java, 728–729

	as tail-recursive method, 740

	isPrime method, prime numbers, 219

	isValid method, applying to Sudoku grid, 302

	Iterable interface, 780

	Iteration/iterators

	advantages and variations of, 978

	binary search trees and, 976–978

	implementing MyLinkedList, 938, 940

	Iterable interface, 977

	Iterator object, 780

	lists and, 780–781

	loops and, 160

	MyArrayList.java example, 926, 927

	recursion compared with, 740

	TestIterator.java example, 780–781

	TestMyArrayList.java example, 928

	traversing collections, 780–781

	

J

	Java Collections Framework. see Collections Framework hierarchy

	java command, for executing Java program, 17

	Java Development Toolkit (JDK)

	jdb debugger in, 106

	overview of, 11, 12

	Java EE (Java Enterprise Edition), 12

	Java language specification, 11–12

	Java Library, 336–339

	Java ME (Java Micro Edition), 12

	Java programming

	creating, compiling, and executing programs, 15–18

	displaying text in message dialog box, 23

	high-level languages, 8

	introduction to, 12

	simple examples, 12–15

	using Eclipse, 25–28

	using NetBeans, 23–25

	Java SE (Java Standard Edition), 12

	Java Virtual Machine. see JVM (Java Virtual Machine)

	javac command, for compiling Java program, 17

	Javadoc comments (/**.*/), 18

	JavaFX

	Arc, 575–577

	binding properties, 548–550

	BorderPane, 563–564

	case study: ClockPane Class, 580–584

	Circle and Ellipse, 572–574

	Color class, 553–554

	FlowPane, 559–561

	Font class, 554–555

	GridPane, 561–563

	HBox and VBox, 564–565

	Image and ImageView Classes, 556–558

	key terms, 585

	Layout panes, 558

	Line, 569–570

	nodes, 551–552

	panes, 545–548

	Polygon and Polyline, 577–580

	quiz and exercises, 586–591

	Rectangle, 570–572

	shapes, 567

	structure, 542–545

	summary, 585–586

	vs. Swing and AWT, 542

	Text, 567–569

	JavaFX CSS, 551

	JavaFX UI controls

	ScrollBar, 665-667

	BounceBallSlider.java, 670–671

	button, 646–648

	ButtonDemo.java, 647–648

	case study: developing tic-tac-toe game, 671–676

	case study: national flags and anthems, 679–681

	CheckBox, 648–651

	CheckBoxDemo.java, 649–651

	ComboBox, 659–662

	ComboBoxDemo.java, 660–662

	DescriptionPane.java, 657–658

	Labeled and Label, 644–646

	LabelWithGraphic.java, 644–646

	ListView, 662–664

	ListViewDemo.java, 664–665

	MediaDemo.java, 677–679

	programming exercises, 682–689

	quiz, 682

	RadioButton, 651–653

	RadioButtonDemo.java, 652–653

	ScrollBar, 665–667

	ScrollBarDemo.java, 666–667

	Slider, 668–671

	SliderDemo.java, 669–670

	TextArea, 655–658

	TextAreaDemo.java, 658

	Textfield, 654–655

	TextFieldDemo.java, 654–655

	TicTacToe.java, 672–676

	video and audio, 676–679

	java.io

	File class, 477–479

	PrintWriter class, 480

	RandomAccessFile class, 712

	java.lang

	Comparable interface, 514

	Exception class, 474

	Number class, 505

	packages, 62

	Throwable class, 459–461, 465

	java.net

	MalformedURLException class, 487

	URL class, 486

	java.util

	Arrays class, 272–274

	Calendar class, 507–508

	creating stacks, 806

	Date class, 336

	EventObject class, 596–597

	GregorianCalendar class, 363, 507–508

	Java Collections Framework and, 776

	Random class, 337

	Scanner class, 38, 482–484

	jdb debugger, 106

	JDK (Java Development Toolkit)

	jdb debugger in, 106

	overview of, 12

	JVM (Java Virtual Machine)

	defined, 16

	detecting runtime errors, 454

	garbage collection, 258

	heap as storage area in, 261

	interned string and, 389

	

K

	KBs (kilobytes), 4

	Key constants, 613

	Keyboards, 5–6

	KeyEvents

	ControlCircleWithMouseAndKey.java, 615–616

	KeyEventDemo.java, 614–615

	overview of, 613–614

	Keys

	hashing functions, 1010

	maps and, 1035

	keySet method, Map interface, 830

	Key/value pairs, in maps, 828–829

	Keywords (reserved words)

	break and continue, 186–189

	case study: counting, 827–828

	extends, 524

	final, 43

	list of Java keywords, 1157

	super, 418

	throws, 462, 463

	transient, 709

	in Welcome.java, 13

	Kilobytes (KBs), 4

	Knight’s Tour, 747–748

	Koch snowflake fractal, 747

	Kruskal’s algorithm, 1112

	

L

	Label, 644–646

	Labeled, 644–646

	Labeling vertices, 1044

	Labels, LabelWithGraphic.java, 644–646

	Lambda expression

	LambdaHandlerDemo.java, 607–609

	overview of, 605–607

	Landis, E. M., 990

	LANs (local area networks), 6

	lastIndexOf method

	implementing MyLinkedList, 940

	List interface, 782

	MyArrayList.java example, 925, 927

	MyList.java example, 920

	strings, 136–137

	lastModified method, File class, 479

	Latin square, 320–321

	Layout panes

	BorderPane, 563–564

	FlowPane, 559

	GridPane, 561–563

	HBox and VBox, 564–565

	Lazy operator, 96

	Leaf, 954

	deleting, 968

	Left subtree, of binary trees, 954

	Left-heavy, balancing AVL nodes, 990, 997

	Length, 954

	length method, for checking file instances, 478–479

	Length, strings, 130–131, 397

	Letters, counting, 263–266

	Level, 954

	Libraries, APIs as, 11

	Line

	overview, 569

	ShowLine.java, 569–570

	Line comments, in Welcome.java, 13

	Line numbers, in Welcome.java, 12

	Linear probing, collision handling, 1013–1014

	Linear search algorithm, 875

	comparing growth functions, 848

	recurrence relations and, 847

	Linear searches, arrays, 267–268

	Linked data structures

	binary search trees, 954–955

	hash maps. see LinkedHashMap class

	hash sets. see LinkedHashSet class

	lists. see LinkedList class

	Linked hash map, 831, 832

	Linked hash set, 820, 825

	LinkedHashMap class

	concrete implementation of Map class, 828–830

	implementation of Map class, 1010

	overview of, 831

	TestMap.java example, 831–833

	types of maps, 828–829

	LinkedHashSet class

	implementation of Set class, 1028

	ordering elements in hash sets, 818

	overview of, 820

	SetListPerformanceTest.java example, 825–826

	types of sets, 816

	LinkedList class

	animation of linked lists, 918, 919

	compared with ArrayList class, 784–786

	defined under List interface, 782

	Dequeue interface, 800–802

	implementing buckets, 1017

	implementing linked lists, 929–943

	implementing MyLinkedList class, 933–941

	implementing queues using linked lists. see Queues

	MyArrayList compared with MyLinkedList, 941

	MyLinkedList, 918–919, 931, 941

	representing edges in graphs using linked lists, 1048

	SetListPerformanceTest.java example, 825–826

	TestArrayAndLinkedList.java, 785–786

	TestMyLinkedList.java example, 932–933

	variations on linked lists, 942–943

	Linux OS, 9

	List interface

	common features of lists defined in, 918

	methods of, 782–784

	overview of, 782

	Vector class implementing, 798, 799

	ListIterator interface, 783

	Lists

	adjacency lists for representing edges, 1046–1048

	array lists. see ArrayList class

	as collection type, 776

	comparing performance with sets, 824–826

	implementing, 918–922

	linked lists. see LinkedList class

	List interface, 782–784

	ListViewDemo.java, 664–665

	methods of List interface, 782–784

	MyList.java example, 920–922

	singleton and unmodifiable, 835

	static methods for, 791–794

	ListView, 662–664

	Literal values, not using as identifiers, 1157

	Literals

	Boolean literals, 77

	character literals, 125

	constructing strings from string literal, 388

	defined, 48

	floating-point literals, 49

	integer literals, 49

	LL imbalance, AVL nodes, 990

	LL rotation

	AVLTree class, 997

	balancing nodes on a path, 994

	implementing, 995

	options for balancing AVL nodes, 990

	Load factor

	hash sets and, 816

	rehashing and, 1017–1019

	LoanCalculator.java, 610–611

	Loans

	Loan calculator case study, in event-driven programming, 609–611

	Loan.java object, 370–372

	Local area networks (LANs), 6

	Local variables, 224

	Locker puzzle, 282

	Logarithmic algorithm, 846–848

	Logic errors (bugs), 21, 106

	Logical operators (Boolean operators)

	overview of, 93

	TestBooleanOperators.java example, 94–96

	truth tables, 93–94

	Long, numeric types

	converting characters and numeric values to strings, 391–392

	hash codes for primitive types, 1011

	integer literals and, 49

	java.util.Random, 337

	overview of numeric types, 45

	LongStream, 1130–1133

	Loop body, 160

	Loop-continuation-condition

	do-while loop, 170–171

	loop design and, 166

	in multiple subtraction quiz, 166

	overview of, 160–161

	Loops

	break and continue keywords as controls in, 186–189

	case study: displaying prime numbers, 191–193

	case study: finding greatest common denominator, 182–183

	case study: guessing numbers, 163–166

	case study: multiple subtraction quiz, 166–168

	case study: predicting future tuition, 183–184

	creating arrays, 259

	deciding which to use, 176–178

	design strategies, 166–168

	do-while loop, 170–173

	examples of determining Big O, 842–845

	graph edges, 1042

	input and output redirections, 170

	iteration compared with recursion, 740

	key terms, 193

	for loops, 173–176

	minimizing numeric errors related to, 180–181

	nesting, 178–180

	overview of, 160

	quiz and exercises, 194–204

	sentinel-controlled, 168–170

	summary, 193–194

	while loop, 160–163

	Lottery game, 809

	Lower-bound wildcards, 762

	Low-level languages, 8

	LR imbalance, AVL nodes, 991, 992

	LR rotation

	AVLTree class, 997

	balancing nodes on a path, 994

	options for balancing AVL nodes, 991, 992

	

M

	Mac OS, 9

	Machine language

	bytecode compared with, 16

	overview of, 7

	translating source program into, 8, 9

	Machine stacks. see Call stacks

	Main class

	defined, 325

	in TestSimpleCircle.java example, 326

	main method

	in Circle.java (AlternativeCircle.java) example, 328, 329

	in ComputeExpression.java, 14–15

	invoking, 210

	main class vs., 325

	receiving string arguments from command line, 274–275

	in TestSimpleCircle.java example, 326

	in TestTV.java example, 330–331

	in Welcome.java, 13

	in WelcomeWithThreeMessages.java, 14

	Maintenance, in software development process, 60

	MalformedURLException class, 487

	Map interface

	methods, 829–830, 832

	overview of, 829

	map method, 1128–1129

	Maps

	case study: counting occurrence of words using tree map, 833–834

	containers supported by Java Collections Framework, 776

	hash maps. see HashMap class

	key terms, 835

	linked hash maps. see LinkedHashMap class

	overview of, 816, 828–833

	quiz and exercises, 836–838

	singleton and unmodifiable, 835

	summary, 836

	TestMap.java example, 831–833

	tree maps. see TreeMap class

	Maps, implementing with hashing

	MyHashMap.java example, 1021–1026

	MyMap.java example, 1020–1021

	overview of, 1019

	TestMyHashMap.java example, 1026–1027

	mapToInt method, 1131, 1132

	Marker interfaces, 518

	Match braces, in Welcome.java, 13

	matches method, strings, 390

	Math class

	BigInteger and BigDecimal classes, 386–387

	case study: computing angles of a triangle, 123–124

	complex numbers, 538–539

	exponent methods, 121

	invoking object methods, 333

	methods generally, 120

	random method, 87–88, 98–99, 122

	rounding methods, 121–122

	service methods, 120

	trigonometric methods, 120–121

	Matrices

	adjacency matrices for representing edges, 1046–1048

	case study: designing class for matrix using generic types, 766–767

	GenericMatrix.java example, 767–769

	IntegerMatrix.java example, 769

	RationalMatrix.java example, 769–770

	TestIntegerMatrix.java example, 770

	TestRationalMatrix.java example, 770–771

	two-dimensional arrays for storing, 290–291

	max and min method, 1126, 1128

	max method

	defining and invoking, 208–210

	finding minimum element in lists, 793

	GeometricObjectComparator.java example, 788

	MaxUsingGenericType.java example, 760–761

	overloading, 221

	overview of, 122

	maxRow variable, for finding largest sum, 294

	Mbps (million bits per second), 6

	MBs (megabytes), of storage, 4

	Media, 676–679

	MediaPlayer, 676–679

	MediaView, 676–679

	Megabytes (MBs), of storage, 4

	Megahertz (MHz), clock speed, 3

	Memory, computers, 4

	Merge sorts

	algorithms, 887

	heap sort compared with, 900

	merge sort algorithms, 887

	MergeSort.java example, 887–890

	overview of, 887–890

	quick sorts compared with, 894

	recurrence relations and, 847

	time complexity of, 890

	mergeSort method, 889

	Mersenne prime, 242

	MessagePanel class

	ClockPane.java, 582–584

	DisplayClock.java, 581–582

	Meters, converting to/from feet, 238

	Method header, 207

	Method modifiers, 207, 1162–1163

	Method reference, 789

	Method signature, 207

	Methods

	abstraction and, 227–234

	accessing object methods, 332–333

	calling, 208–210

	case study: converting decimals to hexadecimals, 184–186

	case study: converting a hexadecimal digit to a decimal value, 142–144

	case study: generating random numbers, 225–227

	case study: generic method for sorting array, 758–759

	class, 339–344

	Collection interface, 778

	commenting, 19

	Comparator interface, 787, 788

	defining, 206–208

	generic, 756–758

	identifiers, 40

	implementation methods, 231–234

	invoking, 208, 209, 333, 757

	key terms, 234

	modularizing code, 217–219

	naming conventions, 44

	object actions defined by, 324–326

	overloading, 221–224

	overriding, 994–995

	overview of, 206

	passing arrays to, 259–262

	passing objects to, 349–353

	passing parameters by values, 214–217

	passing to two-dimensional arrays, 295–296

	quiz and exercises, 236–246

	recursive methods, 720

	returning arrays from, 262–263

	rounding, 121–122

	static. see Static methods

	stepwise refinement, 227–234

	summary, 235

	top-down and/or bottom-up implementation, 229–231

	top-down design, 228–230

	tracing or stepping over as debugging technique, 106

	trigonometric, 120–121

	variable scope and, 224–225

	void method example, 211–213

	MHz (Megahertz), clock speed, 3

	Microsoft Windows, 9

	Million bits per second (Mbps), 6

	min method

	finding minimum element in lists, 793

	Math class, 122

	Minimum spanning trees (MSTs)

	MST algorithm, 1095–1096

	overview of, 1086

	Prim’s minimum spanning tree algorithm, 1093–1095

	TestMinimumSpanningTree.java, 1096–1098

	weighted graphs and, 1082

	WeightedGraph class, 1087–1089

	Mnemonics, in assembly language, 7

	Modeling, graphs and, 1048–1056

	Modems (modulator/demodulator), 6

	Modifier keys, on keyboards, 5

	Modifiers

	list of, 1162–1163

	method modifiers, 207

	Modularizing code

	GreatestCommonDivisorMethod.java, 217–218

	overview of, 217

	PrimeNumberMethod.java, 218–219

	Monitors (displays), 6

	Motherboard, 3

	Mouse, as I/O device, 6

	ControlCircleWithMouseAndKey.java, 615–616

	event-driven programming, 611–612

	MouseEvent, 611–612

	MouseEvent, 611–612

	MST algorithm, 1095–1096

	MST class, 1096–1097

	MSTs. see Minimum spanning trees (MSTs)

	Multi-dimensional arrays. see Arrays, multi-dimensional

	Multimedia. see JavaFX UI controls

	Multiple-choice test, 296–298

	Multiplication (*=) assignment operator, 54

	Multiplication operator (*), 15, 46, 50

	Multiplication table, 178, 179

	Multiplicities, in object composition, 375

	Multiprocessing, 10

	Multiprogramming, 10

	Multithreading, 10

	Multi-way if-else statements

	in computing taxes, 90–93

	overview of, 81–83

	Mutator methods. see Setter (mutator) methods

	

N

	Named constants. see Constants

	Naming conventions

	class design guidelines, 532

	interfaces, 524

	programming and, 44

	wrapper classes, 382

	Naming rules, identifiers, 40

	NavigableMap interface, 831

	N-by-n matrix, 240

	Negative angles, drawing arcs, 577

	Neighbors

	depth-first searches (DFS), 1062

	vertices, 1042

	Nested classes. see Inner (nested) classes

	Nested if statements

	in computing body mass index, 89–90

	in computing taxes, 90–93

	overview of, 81

	Nested loops, 178–180, 293, 843

	NetBeans

	built in debugging, 106

	creating/editing Java source code, 15

	Network interface cards (NICs), 6

	new operator

	creating arrays, 249

	creating objects, 331

	next method, whitespace characters and, 133

	nextLine() method, whitespace characters and, 133

	Next-line style, block styles, 19

	NICs (network interface cards), 6

	Nine tails problem

	graphic approach to, 1071–1077

	reducing to shortest path problem, 1108–1111

	No-arg constructors

	class design guidelines, 532

	Loan class, 370

	wrapper classes not having, 383

	Node, 542–545

	Nodes, AVL trees

	balancing on a path, 994–995

	creating, 997

	creating and storing in AVLTreeNode class, 993–994

	deleting elements, 996

	rotation, 997–998

	Nodes, binary trees

	deleting leaf node, 968–969

	overview of, 954

	representing binary search trees, 955–956

	Nodes, JavaFX, 551–552

	Nodes, linked lists

	creating, 934, 935

	deleting, 935–937

	overview of, 929–931

	storing elements in, 933, 934

	noneMatch method, 1128

	Nonleaves, finding, 984

	Not (!) logical operator, 93–97

	Not equal to (!=) comparison operator, 76

	NotSerializableException, 709

	null values, objects, 333–334

	NullPointerException, as runtime error, 334

	Number class

	case study: abstract number class, 505

	as root class for numeric wrapper classes, 505

	Numbers/numeric types

	abstract number class, 505–507

	binary. see Binary numbers

	case study: converting hexadecimals to decimals, 142–144, 219–221

	case study: displaying prime numbers, 191–193

	case study: generating random numbers, 225–227

	case study: guessing numbers, 163–166

	casting to/from char types, 127

	conversion between strings and, 137–138

	converting to/from strings, 391–392

	decimal. see Decimal numbers

	double. see double (double precision), numeric types

	floating-point. see Floating-point numbers (float data type)

	generating random numbers, 87–88

	GreatestCommonDivisorMethod.java, 217–218

	hexadecimal. see Hexadecimal numbers

	integers. see Integers (int data type)

	LargestNumbers.java, 506–507

	overview of, 45–48

	PrimeNumberMethod.java, 218–219

	processing large numbers, 386–387

	types of number systems, 1165–1168

	Numerators, in rational numbers, 526

	Numeric keypads, on keyboards, 6

	Numeric literals, 48–50

	Numeric operators

	applied to characters, 127

	overview of, 46–47

	

O

	Object class, 424, 433–434

	Object I/O. see ObjectInputStream/ObjectOutputStream classes

	Object member access operator (.), 332, 431

	Object reference variables, 332

	ObjectInputStream/ObjectOutputStream classes

	overview of, 706–707

	serializable interface, 708–709

	serializing arrays, 709–711

	TestObjectInputStream.java, 708

	TestObjectOutputStream.java, 707–708

	Object-oriented programming (OOP), 324, 332, 372–375

	Objects

	accessing data and methods of, 332–333

	accessing via reference variables, 332

	array of, 261

	ArrayList class, 434–435

	arrays of, 353–355

	automatic conversion between primitive types and wrapper class types, 385–386

	BigInteger and BigDecimal classes, 386–387

	cannot be created from abstract classes, 504

	case study: designing class for stacks, 380–382

	case study: designing Course class, 378–380

	casting, 429–433

	Circle.java (for CircleWithStaticMembers) example, 340–341

 	in Circle.java (for CircleWithPrivateDataFields) example, 347–348

	class abstraction and encapsulation, 368–372

	class design guidelines, 531–534

	classes from Java Library, 336–339

	comparing primitive variables with reference variables, 334–336

	composing, 376–377

	constructors, 331

	creating, 326–331

	data field encapsulation for maintaining classes, 346–349

	Date class, 336–337

	defining classes for, 324–326

	edges defined as, 1046

	equals method of Object class, 433–434

	event listener object, 597

	event objects, 596

	immutable, 355–356

	inheritance. see Inheritance

	key terms, 361, 400

	Loan.java, 370–372

	null values, 333–334

	Object class, 424

	object-oriented thinking, 372–375

	ObservablePropertyDemo.java, 616–617

	overview of, 324, 368

	passing to methods, 349–353

	processing primitive data type values as, 382–385

	quiz and exercises, 362–366, 401–410

	Random class, 337–338

	reference data fields and, 333–334

	representing edges, 1045

	ResizableCircleRectangle.java, 617–618

	static variables, constants, and methods and, 339–344

	summary, 361–362, 400–401

	TestCircle.java example, 326–327

	in TestCircleWithPrivateDataFields.java example, 348–349

	in TestCircleWithStaticMembers.java example, 341–344

	in TestTV.java example, 330–331

	this reference and, 358–361

	TotalArea.java example, 354–355

	in TV.java example, 329–330

	variable scope and, 357–358

	vertices as object of any type, 1043

	visibility modifiers, 344–346

	Off-by-one errors

	arrays and, 253

	in loops, 162

	OOP (Object-oriented programming), 324, 332, 372–375

	Open addressing, hashing

	collision handling using, 1013–1017

	double hashing, 1015–1017

	linear probing, 1013–1014

	quadratic probing, 1014–1015

	Operands

	defined, 95

	incompatible, 95

	Operators

	assignment operator (=), 42–43

	augmented assignment operators, 54–55

	bit operators, 1169

	comparison operators, 76

	increment and decrement operators, 55–56

	numeric operators, 46–47

	precedence and associativity, 104–105

	precedence and associativity chart, 1160–1161

	processing, 803

	unary and binary, 48

	Option buttons. see Radio buttons

	Or (||) logical operator, 93–97

	OSs (operating systems)

	overview of, 9

	tasks of, 10

	Output

	redirection, 170

	streams, 692

	OutputStream classes

	BufferedOutputStream, 701–704

	case study: copying files, 705

	DataOutputStream, 698–701

	DetectEndOfFile.java, 701

	FileOutputStream, 695–696

	FilterOutputStream, 698

	ObjectOutputStream, 706–707

	overview of, 694–695

	serialization and, 709

	TestDataStream.java, 699–700

	TestFileStream.java, 696–698

	TestObjectOutputStream.java, 707–708

	Overflows

	Rational class, 530

	variables, 65

	Overloading methods, 221–224

	Overriding methods, 421–422, 994–995

	

P

	π (pi), estimating, 239

	Package-private (package-access) visibility modifiers, 344

	Packages

	organizing classes in, 345

	organizing programs in, 18

	Page Down key, on keyboards, 6

	Page Up key, on keyboards, 6

	Pair of points, algorithm for finding closest, 861–864

	Palindromes

	case study: checking if string is a palindrome, 189–191

	case study: ignoring nonalphanumeric characters when checking palindromes, 398–400

	palindrome integers, 236

	palindromic primes, 242

	RecursivePalindrome.java, 728–729

	RecursivePalindromeUsingSubstring.java, 727–728

	Panels

	ButtonInPane.java, 546

	MessagePanel class. see MessagePanel class

	Parallel edges, 1042

	Parallel execution, order of, 1135

	Parallel streams

	overview of, 1133

	ParallelStreamDemo.java example, 1133–1135

	vs. sequential streams, 1134–1135

	Parameters

	actual parameters, 207

	defining methods and, 206–207

	generic classes, 756

	generic methods, 758

	generic parameters not allowed in static context, 765–766

	as local variable, 224

	order association, 214

	passing by values, 214–217

	variable-length argument lists, 266–267

	Parent, 545

	Parentheses (())

	defining and invoking methods and, 227

	in Welcome.java, 14

	Parsing methods, 384

	Pascal, high-level languages, 8

	Pass-by-sharing

	arrays to methods, 260

	objects to methods, 350

	Pass-by-value

	arrays to methods, 260

	Increment.java example, 214

	objects to methods, 349

	overview of, 214

	TestPassByValue.java example, 215–217

	Passwords, checking if string is valid password, 240

	PaswordField, 655

	PathTransition, 619–622

	Pentagonal numbers, 236

	Perfect hash function, 1010

	Perfectly balanced trees, 990

	Pivot element, 890

	Pixels (picture elements), measuring resolution in, 6

	Points

	algorithm for finding closest pair of, 861–864

	finding convex hull for a set of points, 867–869

	Polygon and Polyline

	overview, 577

	ShowPolygon.java, 578–580

	Polymorphism

	CastingDemo.java example, 430–431

	overview of, 425

	PolymorphismDemo.java example, 425

	Polynomial hash codes, 1012

	Postfix decrement operator, 55–56

	Postfix increment operator, 55–56

	Postfix notation, 811–812

	Postorder traversal

	time complexity of, 971

	tree traversal, 957

	Posttest loops, 176

	pow method, Math class, 48

	Precedence, operator, 104–105, 1160–1161

	Prefix decrement operator, 55–56

	Prefix increment operator, 55–56

	Preorder traversal

	time complexity of, 971

	tree traversal, 957

	Pretest loops, 176

	Prime numbers

	algorithm for finding, 855–861

	case study: displaying prime numbers, 191–193

	comparing prime number algorithms, 861

	EfficientPrimeNumbers.java example, 857–860

	PrimeNumberMethod.java, 218–219

	PrimeNumbers.java example, 856–857

	SieveOfEratosthenes.java example, 860–861

	types of, 242

	Primitive types (fundamental types)

	automatic conversion between primitive types and wrapper class types, 385–386, 753

	casting, 431

	comparing parameters of primitive type with parameters of reference types, 351

	comparing primitive variables with reference variables, 334–336

	converting wrapper object to/from (boxing/unboxing), 385

	creating arrays of, 353

	hash codes for, 1011

	Prim’s minimum spanning tree algorithm

	Dijkstra’s algorithm compared to, 1099

	overview of, 1093–1095

	print method, PrintWriter class, 38, 480–481

	printf method, PrintWriter class, 480–481

	Printing arrays, 293

	println method, PrintWriter class, 38, 480–481

	printStackTrace method, 465–466

	PrintWriter class

	case study: replacing text, 484–486

	writing data to file using, 480–481

	for writing text data, 692

	Priority queues

	implementing, 947–948

	MyPriorityQueue.java example, 947–948

	overview of, 799

	PriorityQueue class, 801

	for storing weighted edges, 1083

	TestPriorityQueue.java example, 948

	PriorityQueue class, 801

	private

	encapsulation of data fields and, 346–347

	visibility modifier, 345–346, 442–444

	Problems

	breaking into subproblems, 192

	creating programs to address, 34

	solving with recursion, 726–728

	Procedural paradigm, compared with object-oriented paradigm, 374–375

	Procedures, 207. see also Methods

	Processing arrays, 251–253

	Processor, 1141

	Programming errors. see also Exception handling

	ClassCastException, 430

	debugging, 106

	logic errors, 21

	minimizing numeric errors related to loops, 180–181

	runtime errors, 21

	selections, 83–87

	syntax errors, 13, 14, 20

	using generic classes for detecting, 752–754

	Programming languages

	assembly language, 7

	high-level languages, 8–9

	Java. see Java programming

	machine language, 7

	overview of, 2

	Programming style

	block styles, 19

	comments and, 18–19

	indentation and spacing, 19

	overview of, 18

	Programs/programming

	assignment statements and expressions, 42–43

	case study: counting monetary units, 63–65

	case study: displaying current time, 52–53

	character data type, 125–129

	coding incrementally, 164

	evaluating expressions and operator precedence rules, 50–51

	exponent operations, 48

	identifiers, 40

	increment and decrement operators, 55–56

	introduction to, 34

	with Java language. see Java programming

	key terms, 67

	modularizing code, 217–219

	named constants, 43–44

	naming conventions, 44

	numeric literals, 48–50

	numeric operators, 46–48

	numeric type conversions, 57–59

	numeric types, 45

	overview of, 2

	questions and exercises, 69–74

	reading input from console, 37–39

	recursive methods in, 720

	software development process, 59–63

	string data type, 130–139

	summary, 67–68

	variables, 40–42

	writing a simple program, 34–37

	protected

	data and methods, 442–444

	visibility modifier, 345, 442–444

	Protected data fields, 993

	Pseudocode, 34

	Public classes, 327

	public method, 348

	public visibility modifier, 344–346, 442–444

	Python, high-level languages, 8

	

Q

	Quadratic algorithm, 843, 848

	Quadratic probing, collision handling, 1014–1015

	Query methods, Map interface, 829

	Query operations, Collection interface, 777

	Queue interface, 800

	Queues

	breadth-first search algorithm, 1069

	bucket sorts and, 902–903

	as collection type, 776

	Dequeue interface, 800–802

	GenericQueue.java example, 945

	implementing, 943–947

	overview of, 799

	priority queues. see Priority queues

	Queue interface, 800

	TestStackQueue.java example, 945–947

	WeightedGraph class, 1087–1088

	Quick sorts

	algorithm, 890–891

	merge sorts compared with, 894

	overview of, 890

	QuickSort.java example, 891–894

	Quincunx, 286

	Quotients

	Quotient.java example, 454

	QuotientWithException.java example, 456–458

	QuotientWithIf.java example, 455

	QuotientWithMethod.java example, 455–456

	

R

	Radio buttons, 651–653

	RadioButtonDemo.java, 652–653

	Radix sorts, 901–903

	Ragged arrays, 292–293, 1046

	RAM (random-access memory), 4

	Random class, java.util, 337

	random method

	case study: generating random numbers, 225–227

	case study: lottery, 98–99

	Math class, 87–88, 122

	Random numbers

	case study: generating random numbers, 225–227

	case study: lottery, 98–99

	generating, 87–88

	Random-access files

	overview of, 711–712

	TestRandomAccessFile.java, 713–714

	Random-access memory (RAM), 4

	Rational class

	case study: designing class for matrix using generic types, 766–767

	overview of, 526–527

	Rational.java example, 528–531

	RationalMatrix.java example, 769–770

	TestRationalClass.java example, 527–528

	TestRationalMatrix.java example, 770–771

	Rational numbers, representing and processing, 526–528

	Raw types, backward compatiblity and, 760–761

	readASolution() method, applying to Sudoku grid, 302

	Read-only streams, 711. see also InputStream classes

	Read-only views, Collections class, 835

	Rebalancing AVL trees, 990–992

	Rectangle

	overview, 570–571

	ShowRectangle.java, 571–572

	Recurrence relations, in analysis of algorithm complexity, 847

	Recursion

	binary searches, 730

	case study: computing factorials, 720–723

	case study: computing Fibonacci numbers, 723–726

	case study: determining directory size, 731–732

	case study: fractals, 736–739

	case study: Towers of Hanoi, 733–736

	ComputeFactorial.java, 721–723

	ComputeFactorialTailRecursion.java, 741

	ComputeFibonacci.java, 724–726

	depth-first searches (DFS), 1062

	DirectorySize.java, 731–732

	displaying/visualizing binary trees, 973

	helper method, 728

	iteration compared with, 740

	key terms, 741

	overview of, 720

	problem solving by thinking recursively, 726–728

	questions and exercises, 742–750

	RecursivePalindrome.java, 728–729

	RecursivePalindromeUsingSubstring.java, 727–728

	RecursiveSelectionSort.java, 729

	selection sorts, 729

	SierpinskiTriangle.java, 736–739

	summary, 742

	tail recursion, 740–741

	TowersOfHanoi.java, 734–736

	Recursive methods, 720

	Red–black trees, 1010

	reduce method, stream reduction using, 1135–1138

	Reduction, characteristics of recursion, 726

	Reference data fields, 359

	Reference types

	classes as, 332

	comparing parameters of primitive type with parameters of reference types, 351

	comparing primitive variables with, 334–336

	generic types as, 752

	reference data fields, 333–334

	string data type as, 130

	Reference variables

	accessing objects with, 332

	array of objects as array of, 353

	comparing primitive variables with, 334–336

	Register listeners

	ControlCircle.java, 600–601

	ControlCircleWithMouseAndKey.java, 598–599, 615–616

	KeyEventDemo.java, 614–615

	LoanCalculator.java, 610–611

	overview of, 597–598

	Regular expressions

	matching strings with, 390, 1170

	replacing and splitting strings, 1173–1174

	syntax, 1170–1173

	Rehashing

	load factor and, 1017–1019

	time complexity of hashing methods and, 1026

	Relative file names, 477–478

	Remainder (%=) assignment operator, 54–55

	Remainder (%) or modulo operator, 46, 50

	remove method, linked lists, 929, 939

	Repetition

	determining Big O for repetition statements, 842–845

	loops. see Loops

	replace method, strings, 390

	replaceAll method, strings, 390, 1173

	replaceFirst method, strings, 390, 1173

	Requirements specification, in software development process, 59

	Reserved words. see Keywords (reserved words)

	Resources, role of OSs in allocating, 10

	Responsibilities, separation as class design principle, 532

	return statements, 209

	Return value type

	constructors not having, 331

	in defining methods, 207

	Reusable code

	benefits of stepwise refinement, 234

	code modularization and, 217

	method enabling, 210

	methods for, 206

	reverse method

	applying to lists, 792

	returning arrays from methods, 262

	Right subtree, of binary trees, 954

	Right-heavy, balancing AVL nodes, 990, 998

	RL imbalance, AVL nodes, 991, 992

	RL rotation

	AVLTree class, 998, 999

	balancing nodes on a path, 994

	options for balancing AVL nodes, 991, 992

	Root, of binary trees, 954, 955

	Rotation

	AVLTree class, 997–998

	balancing nodes on a path, 994–995

	implementing, 995

	methods for performing, 1001

	options for balancing AVL nodes, 990–992

	Rounding methods, Math class, 121–122

	RR imbalance, AVL nodes, 990, 992

	RR rotation

	AVLTree class, 998, 999

	balancing nodes on a path, 994

	options for balancing AVL nodes, 990, 992

	Runtime errors

	debugging, 106

	declaring, 461

	exception handling and, 39, 454

	NullPointerException as, 334

	programming errors, 21

	Runtime stacks. see Call stacks

	

S

	Scanner class

	obtaining input with, 67

	for reading console input, 37–39

	reading data from file using, 482–483

	for reading text data, 692

	Scanners

	case study: replacing text, 484–486

	creating, 458

	Scene, 542–545

	Scheduling operations, 10

	Scientific notation, of floating-point literals, 50

	Scope, of variables, 41, 224–225

	Screen resolution, 6

	Scroll bars

	overview of, 665–666

	ScrollBarDemo.java, 666–667

	Scroll panes

	DescriptionPanel.java, 658

	overview of, 656

	scrolling lists, 664

	search method, AVLTree class, 1005

	Searches

	arrays, 267

	binary search trees. see Binary search trees (BST)

	binary searches, 268–271, 730

	linear searches, 267–268

	recursive approach to searching for words, 720

	search keys, 1010, 1035

	SearchTree class

	as inner class of UnweightedGraph class, 1055

	MST class extending, 1095–1096

	ShortestPathTree class extending, 1104

	traversing graphs and, 1061

	Secondary clustering, quadratic probing issue, 1015

	Segments, merging, 906–907

	Selection sort algorithm

	analyzing, 846

	recurrence relations and, 847

	Selection sorts

	arrays, 271–272

	RecursiveSelectionSort.java, 729

	using recursion, 729

	Selection statements, 76, 78

	determining Big O for, 842–845

	Selections

	Addition.Quiz.java example, 77–78

	boolean data type, 76–78

	case study: computing Body Mass Index, 89–90

	case study: computing taxes, 90–93

	case study: determining leap year, 97–98

	case study: guessing birthdays, 139–142

	case study: lottery, 98–99

	common errors, 83–87

	conditional operators, 103–104

	debugging, 106

	formatting output consoles, 145–149

	generating random numbers, 87–88

	if statements, 78–79

	if-else statements, 80–81

	key terms, 107

	logical operators, 93–97

	nested if statements and multi-way if-else statements, 81–83

	operator precedence and associativity, 104–105

	overview of, 76

	questions and exercises, 108–118

	summary, 107

	switch statements, 100–103

	Semicolons (;), common errors, 84

	Sentinel-controlled loops, 168–170

	Separate chaining

	handling collision in hashing, 1017

	implementing map using hashing, 1019

	Sequence statements, determining Big O for, 842–845

	Sequential files, input/output streams, 711

	Sequential streams, 1133

	parallel streams vs., 1134–1135

	Serialization

	of arrays, 709–711

	of objects, 709

	set method, List interface, 783

	Set operations, Collection interface, 777

	setLength method, StringBuilder class, 397

	setRadius method

	Circle example, 327

	CircleWithPrivateDataFields.java example, 348

	Sets

	case study: counting keywords, 827–828

	as collection type, 776

	comparing list performance with, 824–826

	HashSet class, 816–820

	key terms, 835

	LinkedHashSet class, 820

	overview of, 816

	quiz and exercises, 836–838

	singleton and unmodifiable, 835

	summary, 836

	TestHashSet.java example, 817–818

	TestLinkedHashSet.java example, 820

	TestMethodsInCollection.java example, 818–819

	TestTreeSet.java example, 821

	TestTreeSetWithComparator.java example, 821–823

	TreeSet class, 820–824

	Sets, implementing with hashing

	MyHashSet.java example, 1028–1034

	overview of, 1028

	TestMyHashSet.java example, 1034–1035

	Setter (mutator) methods

	ArrayList class and, 438

	encapsulation of data fields and, 347–348

	implementing linked lists, 929

	Seven Bridges of Königsberg problem, 1041

	Shallow copies, clone method and, 520–521

	Shapes, 545–548

	Arc, 575–577

	Circle and Ellipse, 572–574

	Line, 569–570

	Polygon and Polyline, 577–580

	Rectangle, 570–572

	Text, 567–569

	Sharing code, 210

	short, numeric types

	hash codes for primitive types, 1011

	overview of, 45

	Short-circuit operator, 96

	Shortest path tree, 1103

	Shortest paths

	case study: weighted nine tails problem, 1108–1111

	Dijkstra’s algorithm, 1100–1105

	finding with graph, 1040, 1043

	nine tails problem, 1071–1077

	overview of, 1099–1100

	TestShortestPath.java, 1105–1106

	WeightedGraph class and, 1089

	ShortestPathTree class, 1104

	Shuffling arrays, 252, 294–295

	Sibling, 954

	Sierpinski triangle

	case study, 736–739

	computing recursively, 744, 747, 749

	SierpinskiTriangle.java, 736–739

	Sieve of Eratosthenes, 859–861

	Simple graphs, 1042

	sin method, trigonometry, 120–121

	Single abstract method (SAM) interface, 607

	Single precision numbers. see Floating-point numbers (float data type)

	Single-dimensional arrays. see Arrays, single-dimensional

	Single-source shortest-path algorithm, Dijkstra’s, 1100–1105

	Singly linked lists. see LinkedList class

	Sinking sorts, 281, 884–886

	Sliders

	overview of, 668

	SliderDemo.java, 669–670

	Software

	development process, 59–63

	programs as, 2

	sort method

	Arrays class, 273, 274

	ComparableRectangle.java example, 515–516

	lists and, 792

	SortRectangles.java example, 516–517

	using recursion, 729

	sorted method, 1127–1128

	SortedMap interface, 830, 831

	Sorting

	adding nodes to heaps, 895

	arrays using heaps, 899–900

	bubble sort, 884–886

	bucket sorts and radix sorts, 901–903

	complexity of external sorts, 910

	complexity of heap sorts, 900–901

	CreateLargeFile.java example of external sorts, 903–904

	external sorts, 903–910

	Heap class and, 898–899

	heap sort, 894–901

	Heap.java example, 898–899

	HeapSort.java example, 900

	implementation phases of external sorts, 904–909

	insertion sorts, 882–884

	key terms, 910

	merge sorts, 887–890

	overview of, 882

	quick sort, 890–894

	quiz and exercises, 911–915

	removing root from heap, 896–897

	storing heaps, 895

	summary, 910–911

	Sorting arrays

	bubble sorts, 281

	case study: generic method for, 758–759

	insertion sorts, 882–884

	overview of, 271

	selection sorts, 271–272

	Source objects, event sources and, 596–597

	Source program or source code, 8

	Space complexity, 841

	Spacing, programming style and, 19

	Spanning trees

	graphs, 1042

	minimum spanning trees, 1093–1095

	MST algorithm, 1095–1096

	Prim’s minimum spanning tree algorithm, 1093–1095

	TestMinimumSpanningTree.java, 1096–1098

	traversing graphs and, 1061

	Special characters, 14

	Specific import, 38

	split method, strings, 390, 391, 1173, 1174

	Stack class, 799

	StackOfIntegers class, 380–381

	StackOverflowError, recursion causing, 740

	Stacks

	case study: designing class for stacks, 380–382

	case study: evaluating expressions, 803–804

	EvaluateExpression.java example, 804–807

	GenericStack class, 755–756

	implementing, 943–947

	Stack class, 799

	TestStackQueue.java example, 945–947

	Stage, 542, 545

	State, of objects, 324

	Statements

	break statements, 101

	continue statements, 187–188

	executing one at a time, 106

	executing repeatedly (loops), 160

	in high-level languages, 8

	if. see if statements

	if-else. see if-else statements

	return statements, 209

	switch statements, 100–103

	terminators, 13

	Static methods

	in Circle.java (for CircleWithStaticMembers), 340–341

	class design guidelines, 533

	declaring, 340

	defined, 340

	for lists and collections, 791–794

	Stream interface, 1124

	when to use instance methods vs. static, 341–344

	wrapper classes and, 384

	Static variables

	in Circle.java (for CircleWithStaticMembers), 340–341

	class, 339–344

	class design guidelines, 533

	declaring, 340

	instance variables compared with, 339–341

	in TestCircleWithStaticMembers.java example, 341

	when to use instance variables vs. static, 341–344

	Stepwise refinement

	benefits, 234

	implementation methods, 231–234

	method abstraction, 227–234

	top-down and/or bottom-up implementation, 229–231

	top-down design, 228–230

	Storage devices

	CDs and DVDs, 5

	disks, 5

	overview of, 4–5

	USB flash drives, 5

	Storage units, for measuring memory, 3

	Stream.of method, 1127

	Streams, 1124

	AnalyzeNumbersUsingStream.java example, 1144–1145

	case study: analyzing numbers, 1144–1146

	case study: counting keywords, 1149–1150

	case study: counting occurrences of each letter, 1145–1146

	case study: counting occurrences of each letter in string, 1146–1147

	case study: finding directory size, 1148–1149

	case study: occurrences of words, 1150–1152

	case study: processing all elements in two-dimensional array, 1147–1148

	CollectDemo.java example, 1139–1141

	CollectGroupDemo.java example, 1142–1144

	CountKeywordStream.java example, 1149–1150

	CountLettersUsingStream.java example, 1145–1146

	CountOccurrenceOfLettersInAString.java example, 1146–1147

	CountOccurrenceOfWordsStream.java example, 1151–1152

	DirectorySizeStream.java example, 1148–1149

	DoubleStream, 1130–1133

	grouping elements using groupingby collector, 1141–1144

	IntStream, 1130–1133

	IntStreamDemo.java example, 1130–1133

	LongStream, 1130–1133

	overview of, 1124

	parallel streams, 1133–1135

	ParallelStreamDemo.java example, 1133–1135

	quiz and exercises, 1152–1153

	Stream class, 1125

	stream pipelines, 1124–1130

	stream reduction using collect method, 1138–1141

	stream reduction using reduce method, 1135–1138

	StreamDemo.java example, 1126–1127

	StreamReductionDemo.java example, 1136–1138

	summary, 1152

	TwoDimensionalArrayStream.java example, 1147–1148

	String class, 388

	String concatenation operator (+), 36

	String literals, 388

	String variables, 388

	StringBuffer class, 394–395

	StringBuilder class

	case study: ignoring nonalphanumeric characters when checking ­palindromes, 398–400

	modifying strings in, 395–396

	overview of, 394, 395

	toString, capacity, length, setLength, and charAt methods, 397

	Strings

	in binary I/O, 698–699

	case study: checking if string is a palindrome, 189–191

	case study: converting hexadecimals to decimals, 219–221

	case study: counting the occurrences of each letter in a string, 1146–1147

	case study: ignoring nonalphanumeric characters when checking palindromes, 398–400

	case study: revising the lottery program, 144–145

	Character class, 189–191

	command-line arguments, 274–277

	concatenating, 36, 130

	constructing, 388

	conversion between numbers and, 137–138

	converting to/from arrays, 391

	finding characters or substrings in, 390–391

	formatting, 392–394

	generic method for sorting array of Comparable objects, 758–759

	hash codes for, 1011–1012

	immutable and interned, 388–389

	matching, replacing, and splitting by patterns, 390–391, 1173–1174

	overview of, 388

	replacing, and splitting, 389–390

	string data type, 130

	StringBuilder and StringBuffer classes, 394–400

	substrings, 37, 135–136

	in Welcome.java, 13

	Subclasses

	abstract methods and, 501

	abstracting, 504

	constructors, 418

	of Exception class, 460–461

	inheritance and, 412–418

	of RuntimeException class, 461

	Subdirectories, 731

	Subgraphs, 1042

	Subinterfaces, 524

	substring method, 135, 136, 728

	Substrings, 135–136

	Subtraction (−=) assignment operator, 54–55

	Subtraction (−) operator, 46, 50

	Subtrees

	of binary trees, 954

	searching for elements in BST, 956

	Sudoku puzzle, 300–303, 877–878

	sum method, 206, 1131, 1132

	super keyword, 418

	Superclass methods, 420–421

	Superclasses

	of abstract class can be concrete, 504

	classes extending, 523

	inheritance and, 412–418

	subclasses related to, 501

	Supplementary characters, Unicode, 125

	swap method

	swapping elements in an array, 261–262

	in TestPassByValue.java example, 215, 216

	switch statements

	ChineseZodiac.java example, 102–103

	with enumerated types, 1177

	overview of, 100–101

	Syntax errors (compile errors)

	common errors, 13, 14

	debugging, 106

	programming errors, 20

	Syntax rules, in Welcome.java, 14

	System activities, role of OSs, 10

	System analysis, in software development process, 59–61

	System design, in software development process, 60, 61

	System errors, 460

	System.in, 37

	System.out, 37, 145–149

	

T

	Tables, storing, 290

	Tail recursion

	ComputeFactorialTailRecusion.java, 741

	overview of, 740–741

	tan method, trigonometry, 120–121

	TBs (terabytes), of storage, 4–5

	Teamwork, facilitated by stepwise refinement, 234

	Terabytes (TBs), of storage, 4–5

	Terminal method, Stream interface, 1124

	Testing

	benefits of stepwise refinement, 234

	in software development process, 60, 62–63

	TestShortestPath.java, 1105–1106

	Text

	case study: replacing text, 484–486

	files, 692

	overview, 567

	ShowText.java, 568–569

	TextArea, 655–658

	TextAreaDemo.java, 658

	TextField, 654–655

	TextFieldDemo.java, 654–655

	.txt files (text), 694

	Text I/O

	vs. binary I/O, 693–694

	handling in Java, 692–693

	overview of, 692

	TextPad, for creating/editing Java source code, 12

	thenComparing method, 790

	this reference

	invoking constructors with, 360

	overview of, 358

	referencing data fields with, 359

	Three-dimensional arrays. see Arrays, multi-dimensional

	throw keyword

	chained exceptions, 473–474

	throw ex for rethrowing exceptions, 472

	for throwing exceptions, 467

	Throwable class

	generic classes not extending, 766

	getting information about exceptions, 465

	java.lang, 459–461

	Throwing exceptions, 462–463, 467–470

	CircleWithException.java example, 467

	QuotientWithException.java example, 456–458

	rethrowing, 472–473

	TestCircleWithCustomException.java example, 476

	throw keyword for, 463

	throws keyword

	chained exceptions, 474

	for declaring exceptions, 462, 467

	IOException, 695, 696

	for throwing exceptions, 463

	Tic-tac-toe game, 310

	Time complexity, 841

	AVL trees, 1005

	BST class, 971

	bubble sort, 886

	heap sorts, 900–901

	insertion sorts, 884

	merge sorts, 890

	rehashing, 1026

	toArray method, 1126, 1129–1130

	toCharArray method, converting strings into arrays, 391

	ToggleButton, 651

	ToggleGroup, 652

	Token reading methods, Scanner class, 483–484

	Top-down design, 228–230

	Top-down implementation, 229–231

	toString method

	ArrayList class, 437

	Arrays class, 274

	Date class, 337

	implementing MyLinkedList, 939

	MyArrayList.java example, 925, 927

	Object class, 433

	StringBuilder class, 397

	total variable, for storing sums, 294

	Towers of Hanoi problem

	analyzing algorithm for, 846–847

	computing recursively, 744

	nonrecursive computation, 813

	recurrence relations and, 847

	Tracing a program, 36

	transient keyword, serialization and, 709

	Transistors, CPUs, 3

	Traveling salesperson problem (TSP), 1113

	Traversing binary search trees, 957–958

	Traversing graphs

	breadth-first searches (BFS), 1069–1071

	case study: connected circles problem, 1066–1070

	depth-first searches (DFS), 1062–1066

	overview of, 1062

	TestWeightedGraph.java, 1091

	Tree interface, BST class, 959

	Tree traversal, 957–958

	TreeMap class

	case study: counting occurrence of words, 833–834

	concrete implementation of Map class, 828–830

	implementation of Map class, 1010

	overview of, 831

	TestMap.java example, 831–833

	types of maps, 828–829

	Trees

	AVL trees. see AVL trees

	binary search. see Binary search trees (BST)

	connected graphs, 1042

	creating BFS trees, 1069

	Huffman coding. see Huffman coding trees

	overview of, 954

	Red–black trees, 1010

	spanning trees. see Spanning trees

	traversing, 957–958

	TreeSet class

	implementation of Set class, 1028

	overview of, 820–821

	TestTreeSet.java class, 821

	TestTreeSetWithComparator.java class, 821–823

	TestTreeSetWithComparator.java example, 508–510

	types of sets, 816

	Trigonometric methods, Math class, 120–121

	trimToSize method, 926

	True/false (Boolean) values, 76

	Truth tables, 93–94

	try-catch blocks

	catching exceptions, 461, 463–465

	chained exceptions, 473–474

	exception classes cannot be generic, 766

	InputMismatchExceptionDemo.java example, 458–459

	QuotientWithMethod.java example, 455–456

	rethrowing exceptions, 472–473

	TestCircleWithException.java example, 468–470

	when to use exceptions, 471–472

	Twin primes, 242

	Two-dimensional arrays. see Arrays, two-dimensional

	Type casting

	between char and numeric types, 127

	generic types and, 754

	loss of precision, 65

	for numeric type conversion, 57–58

	Type erasure, erasing generic types, 764–765

	

U

	UML (Unified Modeling Language)

	aggregation shown in, 376

	class diagrams with, 325

	diagram for Loan class, 369

	diagram of StackOfIntegers, 380

	diagram of static variables and methods, 339–340

	Unary operators, 48

	Unbounded wildcards, 762

	Unboxing, 385

	Unchecked exceptions, 461

	Unconditional AND operator, 96

	Underflow, floating point numbers, 66

	Undirected graphs, 1041

	Unicode

	character data type (char) and, 125–128

	data input and output streams, 698–699

	generating random numbers and, 225

	text encoding, 692

	text I/O vs. binary I/O, 693–694

	Unified Modeling Language. see UML (Unified Modeling Language)

	Uniform Resource Locators. see URLs (Uniform Resource Locators)

	Unique addresses, for each byte of memory, 4

	Universal serial bus (USB) flash drives, 5

	UNIX epoch, 52

	Unweighted graphs

	defined, 1042

	modeling graphs and, 1042, 1049

	UnweightedGraph.java example, 1052–1058

	Upcasting objects, 429

	Update methods, Map interface, 829

	URL class, java.net, 486

	URLs (Uniform Resource Locators)

	ReadFileFromURL.java example, 487–488

	reading data from Web, 486–488

	USB (universal serial bus) flash drives, 5

	UTF, 699. see also Unicode

	

V

	valueOf methods

	converting strings into arrays, 391

	wrapper classes and, 384

	Value-returning methods

	return statements required by, 209

	TestReturnGradeMethod.java, 211–213

	void method and, 207

	Values

	hashing functions, 1010

	maps and, 1035

	values method, Map interface, 830

	Variable-length argument lists, 266–267

	Variables

	Boolean variables. see Boolean variables

	comparing primitive variables with reference variables, 334–336

	control variables, in for loops, 173–174

	declaring, 35–36, 41

	declaring array variables, 248

	declaring for two-dimensional arrays, 290–291

	displaying/modifying, 106

	hidden, 357

	identifiers, 40

	naming conventions, 44

	overflow, 65

	overview of, 40–42

	reference variables, 332

	scope of, 41, 224–225, 357–358

	static variables, 339–344

	Vector class

	methods, 798–799

	overview of, 798

	Stack class extending, 799

	Vertex-weighted graphs, 1083

	Vertical scroll bars, 666

	Vertical sliders, 668, 669

	Vertices

	adjacent and incident, 1042

	depth-first searches (DFS), 1062

	Graph.java example, 1050

	on graphs, 1042

	Prim’s algorithm and, 1093

	representing on graphs, 1042–1044

	shortest paths. see Shortest paths

	TestBFS.java, 1070

	TestGraph.java example, 1050

	TestMinimumSpanningTree.java, 1096

	TestWeightedGraph.java, 1090

	vertex-weighted graphs, 1083

	weighted adjacency matrices, 1084

	WeightedGraph class, 1085–1086

	Video, MediaDemo.java, 677–679

	Virtual machines (VMs), 16. see also JVM (Java Virtual Machine)

	Visibility modifiers, 1163

	Visibility (accessibility) modifiers

	classes and, 344–346

	protected, public, and private, 442–444

	Visual Basic, high-level languages, 8

	Visualizing (displaying) graphs

	Displayable.java example, 1058

	DisplayUSMap.java example, 1059–1061

	GraphView.java example, 1058–1059

	overview of, 1058

	VLSI (very large-scale integration), 720

	VMs (virtual machines), 16. see also JVM (Java Virtual Machine)

	void method

	defined, 207

	defining and invoking, 211

	TestVoidMethod.java, 211

	

W

	Web, reading file data from, 486–488

	Weighted graphs

	case study: weighted nine tails problem, 1108–1111

	defined, 1042

	Dijkstra’s single-source shortest-path algorithm, 1100–1105

	getMinimumSpanningTree method, 1096

	key terms, 1111

	minimum spanning trees, 1093

	modeling graphs and, 1042

	MST algorithm, 1095–1096

	overview of, 1039–1040

	Prim’s minimum spanning tree algorithm, 1093–1095

	priority adjacency lists, 1084–1085

	questions and exercises, 1112–1118

	representing, 1083

	shortest paths, 1099

	summary, 1112

	TestMinimumSpanningTree.java, 1096–1098

	TestShortestPath.java, 1109–1112

	TestWeightedGraph.java, 1090–1092

	weighted adjacency matrices, 1084

	weighted edges using edge array, 1083–1084

	WeightedGraph class, 1085–1086

	WeightedGraph.java, 1086–1090

	WeightedEdge class, 1084

	WeightedGraph class

	getMinimumSpanningTree method, 1097–1098

	overview of, 1117

	ShortestPathTree class as inner class of, 1104

	TestWeightedGraph.java, 1090–1092

	WeightedGraph.java, 1086–1090

	Well-balanced trees

	AVL trees, 990

	binary search trees, 1010

	while loops

	case study: guessing numbers, 163–166

	case study: multiple subtraction quiz, 166–168

	case study: predicting future tuition, 184

	deciding when to use, 176–178

	design strategies, 166

	do-while loops. see do-while loops

	input and output redirections, 170

	overview of, 160–161

	RepeatAdditionQuiz.java example, 162–163

	sentinel-controlled, 168–170

	syntax of, 160

	Whitespace

	characters, 132, 133

	as delimiter in token reading methods, 483

	Wildcard import, 38

	Wildcards, for specifying range of generic types, 761–764

	Windows. see Frames (windows)

	Windows OSs, 9

	Wireless networking, 6

	Worst-case input

	heap sorts and, 900

	measuring algorithm efficiency, 840, 854

	quick sort and, 894

	Wrapper classes

	automatic conversion between primitive types and wrapper class types, 753

	File class as, 477

	numeric, 526

	primitive types and, 382–385

	Wrapping lines of text or words, 656, 658

	Write-only streams, 711. see also OutputStream classes

	

X

	Xlint:unchecked error, compile time errors, 760

Contents

	Introduction to JAVA™ Introduction to Java™ Programming and Data Structures

Comprehensive Version

	Preface 	ACM/IEEE Curricular 2013 and ABET Course Assessment

	What’s New in This Edition?

	Pedagogical Features

	Flexible Chapter Orderings

	Organization of the Book

	Java Development Tools

	Student Resource Website

	Supplements

	Instructor Resource Website

	Online Practice and Assessment with MyProgrammingLab

	Video Notes

	Algorithm Animations

	Brief Contents

	Contents

	VideoNotes

	Animations

	CHAPTER 1 Introduction to Computers, Programs, and Java™	Objectives

	1.1 Introduction

	1.2 What Is a Computer?	1.2.1 Central Processing Unit

	1.2.2 Bits and Bytes

	1.2.3 Memory

	1.2.4 Storage Devices	Disks

	CDs and DVDs

	USB Flash Drives

	1.2.5 Input and Output Devices	The Keyboard

	The Mouse

	The Monitor

	1.2.6 Communication Devices

	1.3 Programming Languages	1.3.1 Machine Language

	1.3.2 Assembly Language

	1.3.3 High-Level Language

	1.4 Operating Systems	1.4.1 Controlling and Monitoring System Activities

	1.4.2 Allocating and Assigning System Resources

	1.4.3 Scheduling Operations

	1.5 Java, the World Wide Web, and Beyond

	1.6 The Java Language Specification, API, JDK, JRE, and IDE

	1.7 A Simple Java Program

	1.8 Creating, Compiling, and Executing a Java Program

	1.9 Programming Style and Documentation	1.9.1 Appropriate Comments and Comment Styles

	1.9.2 Proper Indentation and Spacing

	1.9.3 Block Styles

	1.10 Programming Errors	1.10.1 Syntax Errors

	1.10.2 Runtime Errors

	1.10.3 Logic Errors

	1.10.4 Common Errors	Common Error 1: Missing Braces

	Common Error 2: Missing Semicolons

	Common Error 3: Missing Quotation Marks

	Common Error 4: Misspelling Names

	1.11 Developing Java Programs Using NetBeans	1.11.1 Creating a Java Project

	1.11.2 Creating a Java Class

	1.11.3 Compiling and Running a Class

	1.12 Developing Java Programs Using Eclipse	1.12.1 Creating a Java Project

	1.12.2 Creating a Java Class

	1.12.3 Compiling and Running a Class

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 2 Elementary Programming	Objectives

	2.1 Introduction

	2.2 Writing a Simple Program	2.2.1 Identify and fix the errors in the following code:

	2.3 Reading Input from the Console

	2.4 Identifiers

	2.5 Variables

	2.6 Assignment Statements and Assignment Expressions

	2.7 Named Constants

	2.8 Naming Conventions

	2.9 Numeric Data Types and Operations	2.9.1 Numeric Types

	2.9.2 Reading Numbers from the Keyboard

	2.9.3 Numeric Operators

	2.9.4 Exponent Operations

	2.10 Numeric Literals	2.10.1 Integer Literals	2.10.2 Floating-Point Literals

	2.10.3 Scientific Notation

	2.11 Evaluating Expressions and Operator Precedence

	2.12 Case Study: Displaying the Current Time

	2.13 Augmented Assignment Operators

	2.14 Increment and Decrement Operators

	2.15 Numeric Type Conversions

	2.16 Software Development Process

	2.17 Case Study: Counting Monetary Units

	2.18 Common Errors and Pitfalls	Common Error 1: Undeclared/Uninitialized Variables and Unused Variables

	Common Error 2: Integer Overflow

	Common Error 3: Round-off Errors

	Common Error 4: Unintended Integer Division

	Common Pitfall 1: Redundant Input Objects

	Key Terms

	Chapter Summary

	 Quiz

	Programming Exercises 	Sections 2.2–2.12

	Sections 2.13–2.17

	CHAPTER 3 Selections	Objectives

	3.1 Introduction

	3.2 boolean Data Type

	3.3 if Statements

	3.4 Two-Way if-else Statements

	3.5 Nested if and Multi-Way if-else Statements

	3.6 Common Errors and Pitfalls

	3.7 Generating Random Numbers

	3.8 Case Study: Computing Body Mass Index

	3.9 Case Study: Computing Taxes

	3.10 Logical Operators

	3.11 Case Study: Determining Leap Year

	3.12 Case Study: Lottery

	3.13 switch Statements

	3.14 Conditional Operators

	3.15 Operator Precedence and Associativity

	3.16 Debugging

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Section 3.2

	Sections 3.3–3.7

	Sections 3.8–3.16

	Comprehensive

	CHAPTER 4 Mathematical Functions, Characters, and Strings	Objectives

	4.1 Introduction

	4.2 Common Mathematical Functions	4.2.1 Trigonometric Methods

	4.2.2 Exponent Methods

	4.2.3 The Rounding Methods

	4.2.4 The min, max, and abs Methods

	4.2.5 The random Method

	4.2.6 Case Study: Computing Angles of a Triangle

	4.3 Character Data Type and Operations	4.3.1 Unicode and ASCII code

	4.3.2 Escape Sequences for Special Characters

	4.3.3 Casting between char and Numeric Types

	4.3.4 Comparing and Testing Characters

	4.4 The String Type	4.4.1 Getting String Length

	4.4.2 Getting Characters from a String

	4.4.3 Concatenating Strings	4.4.4 Converting Strings

	4.4.5 Reading a String from the Console

	4.4.6 Reading a Character from the Console

	4.4.7 Comparing Strings

	4.4.8 Obtaining Substrings

	4.4.9 Finding a Character or a Substring in a String

	4.4.10 Conversion between Strings and Numbers

	4.5 Case Studies	4.5.1 Case Study: Guessing Birthdays

	4.5.2 Case Study: Converting a Hexadecimal Digit to a Decimal Value

	4.5.3 Case Study: Revising the Lottery Program Using Strings

	4.6 Formatting Console Output

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Section 4.2

	Sections 4.3–4.6

	CHAPTER 5 Loops	Objectives

	5.1 Introduction

	5.2 The while Loop

	5.3 Case Study: Guessing Numbers

	5.4 Loop Design Strategies

	5.5 Controlling a Loop with User Confirmation or a Sentinel Value

	5.6 The do-while Loop

	5.7 The for Loop

	5.8 Which Loop to Use?

	5.9 Nested Loops

	5.10 Minimizing Numeric Errors

	5.11 Case Studies	5.11.1 Case Study: Finding the Greatest Common Divisor

	5.11.2 Case Study: Predicting the Future Tuition

	5.11.3 Case Study: Converting Decimals to Hexadecimals

	5.12 Keywords break and continue

	5.13 Case Study: Checking Palindromes

	5.14 Case Study: Displaying Prime Numbers

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 5.2–5.7

	Sections 5.8–5.10

	Comprehensive

	CHAPTER 6 Methods	Objectives

	6.1 Introduction

	6.2 Defining a Method

	6.3 Calling a Method

	6.4 void vs. Value-Returning Methods

	6.5 Passing Parameters by Values

	6.6 Modularizing Code

	6.7 Case Study: Converting Hexadecimals to Decimals

	6.8 Overloading Methods

	6.9 The Scope of Variables

	6.10 Case Study: Generating Random Characters

	6.11 Method Abstraction and Stepwise Refinement	6.11.1 Top-Down Design

	6.11.2 Top-Down and/or Bottom-Up Implementation

	6.11.3 Implementation Details

	6.11.4 Benefits of Stepwise Refinement	Simpler Program

	Reusing Methods

	Easier Developing, Debugging, and Testing

	Better Facilitating Teamwork

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 6.2–6.9

	Sections 6.10 and 6.11

	Sections 6.10–6.12

	Comprehensive

	CHAPTER 7 Single-Dimensional Arrays	Objectives

	7.1 Introduction

	7.2 Array Basics	7.2.1 Declaring Array Variables

	7.2.2 Creating Arrays

	7.2.3 Array Size and Default Values

	7.2.4 Accessing Array Elements

	7.2.5 Array Initializers

	7.2.6 Processing Arrays

	7.2.7 Foreach Loops

	7.3 Case Study: Analyzing Numbers

	7.4 Case Study: Deck of Cards

	7.5 Copying Arrays

	7.6 Passing Arrays to Methods

	7.7 Returning an Array from a Method

	7.8 Case Study: Counting the Occurrences of Each Letter

	7.9 Variable-Length Argument Lists

	7.10 Searching Arrays	7.10.1 The Linear Search Approach

	7.10.2 The Binary Search Approach

	7.11 Sorting Arrays

	7.12 The Arrays Class

	7.13 Command-Line Arguments	7.13.1 Passing Strings to the main Method

	7.13.2 Case Study: Calculator

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 7.2–7.5

	Sections 7.6–7.8

	Section 7.9

	Sections 7.10–7.12

	Section 7.13

	Comprehensive

	CHAPTER 8 Multidimensional Arrays	Objectives

	8.1 Introduction

	8.2 Two-Dimensional Array Basics	8.2.1 Declaring Variables of Two-Dimensional Arrays and Creating Two-Dimensional Arrays

	8.2.2 Obtaining the Lengths of Two-Dimensional Arrays

	8.2.3 Ragged Arrays

	8.3 Processing Two-Dimensional Arrays

	8.4 Passing Two-Dimensional Arrays to Methods

	8.5 Case Study: Grading a Multiple-Choice Test

	8.6 Case Study: Finding the Closest Pair

	8.7 Case Study: Sudoku

	8.8 Multidimensional Arrays	8.8.1 Case Study: Daily Temperature and Humidity

	8.8.2 Case Study: Guessing Birthdays

	Chapter Summary

	 Quiz

	Programming Exercises

	CHAPTER 9 Objects and Classes	Objectives

	9.1 Introduction

	9.2 Defining Classes for Objects

	9.3 Example: Defining Classes and Creating Objects

	9.4 Constructing Objects Using Constructors

	9.5 Accessing Objects via Reference Variables	9.5.1 Reference Variables and Reference Types

	9.5.2 Accessing an Object’s Data and Methods

	9.5.3 Reference Data Fields and the null Value

	9.5.4 Differences between Variables of Primitive Types and ­Reference Types

	9.6 Using Classes from the Java Library	9.6.1 The Date Class

	9.6.2 The Random Class

	9.6.3 The Point2D Class

	9.7 Static Variables, Constants, and Methods

	9.8 Visibility Modifiers

	9.9 Data Field Encapsulation

	9.10 Passing Objects to Methods

	9.11 Array of Objects

	9.12 Immutable Objects and Classes

	9.13 The Scope of Variables

	9.14 The this Reference	9.14.1 Using this to Reference Data Fields

	9.14.2 Using this to Invoke a Constructor

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 9.2–9.5

	Section 9.6

	Sections 9.7–9.9

	CHAPTER 10 Object-Oriented Thinking	Objectives

	10.1 Introduction

	10.2 Class Abstraction and Encapsulation

	10.3 Thinking in Objects

	10.4 Class Relationships	10.4.1 Association

	10.4.2 Aggregation and Composition

	10.5 Case Study: Designing the Course Class

	10.6 Case Study: Designing a Class for Stacks

	10.7 Processing Primitive Data Type Values as Objects

	10.8 Automatic Conversion between Primitive Types and Wrapper Class Types

	10.9 The BigInteger and BigDecimal Classes

	10.10 The String Class	10.10.1 Constructing a String

	10.10.2 Immutable Strings and Interned Strings

	10.10.3 Replacing and Splitting Strings

	10.10.4 Matching, Replacing, and Splitting by Patterns

	10.10.5 Conversion between Strings and Arrays

	10.10.6 Converting Characters and Numeric Values to Strings

	10.10.7 Formatting Strings

	10.11 The StringBuilder and StringBuffer Classes	10.11.1 Modifying Strings in the StringBuilder

	10.11.2 The toString, capacity, length, setLength, and charAt Methods

	10.11.3 Case Study: Ignoring Nonalphanumeric Characters When Checking Palindromes

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 10.2 and 10.3

	Sections 10.4–10.8

	Section 10.9

	Sections 10.10 and 10.11

	CHAPTER 11 Inheritance and Polymorphism	Objectives

	11.1 Introduction

	11.2 Superclasses and Subclasses

	11.3 Using the super Keyword	11.3.1 Calling Superclass Constructors

	11.3.2 Constructor Chaining

	11.3.3 Calling Superclass Methods

	11.4 Overriding Methods

	11.5 Overriding vs. Overloading

	11.6 The Object Class and Its toString() Method

	11.7 Polymorphism

	11.8 Dynamic Binding

	11.9 Casting Objects and the instanceof Operator

	11.10 The Object’s equals Method

	11.11 The ArrayList Class

	11.12 Useful Methods for Lists

	11.13 Case Study: A Custom Stack Class

	11.14 The Protected Data and Methods

	11.15 Preventing Extending and Overriding

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 11.2–11.4

	Sections 11.5–11.14

	CHAPTER 12 Exception Handling and Text I/O	Objectives

	12.1 Introduction

	12.2 Exception-Handling Overview

	12.3 Exception Types

	12.4 More on Exception Handling	12.4.1 Declaring Exceptions

	12.4.2 Throwing Exceptions

	12.4.3 Catching Exceptions

	12.4.4 Getting Information from Exceptions

	12.4.5 Example: Declaring, Throwing, and Catching Exceptions

	12.5 The finally Clause

	12.6 When to Use Exceptions

	12.7 Rethrowing Exceptions

	12.8 Chained Exceptions

	12.9 Defining Custom Exception Classes

	12.10 The File Class

	12.11 File Input and Output	12.11.1 Writing Data Using PrintWriter

	12.11.2 Closing Resources Automatically Using try-with-resources

	12.11.3 Reading Data Using Scanner

	12.11.4 How Does Scanner Work?

	12.11.5 Case Study: Replacing Text

	12.12 Reading Data from the Web

	12.13 Case Study: Web Crawler

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 12.2–12.9

	Sections 12.10–12.12

	CHAPTER 13 Abstract Classes and Interfaces	Objectives

	13.1 Introduction

	13.2 Abstract Classes	13.2.1 Why Abstract Methods?

	13.2.2 Interesting Points about Abstract Classes

	13.3 Case Study: the Abstract Number Class

	13.4 Case Study: Calendar and GregorianCalendar

	13.5 Interfaces

	13.6 The Comparable Interface

	13.7 The Cloneable Interface

	13.8 Interfaces vs. Abstract Classes

	13.9 Case Study: The Rational Class

	13.10 Class-Design Guidelines	13.10.1 Cohesion

	13.10.2 Consistency

	13.10.3 Encapsulation

	13.10.4 Clarity

	13.10.5 Completeness

	13.10.6 Instance vs. Static

	13.10.7 Inheritance vs. Aggregation

	13.10.8 Interfaces vs. Abstract Classes

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 13.2 and 13.3

	Sections 13.4–13.8

	Section 13.9

	CHAPTER 14 JavaFX Basics	Objectives

	14.1 Introduction

	14.2 JavaFX vs. Swing and AWT

	14.3 The Basic Structure of a JavaFX Program

	14.4 Panes, Groups, UI Controls, and Shapes

	14.5 Property Binding

	14.6 Common Properties and Methods for Nodes

	14.7 The Color Class

	14.8 The Font Class

	14.9 The Image and ImageView Classes

	14.10 Layout Panes and Groups	14.10.1  FlowPane

	14.10.2 GridPane

	14.10.3  BorderPane

	14.10.4 HBox and VBox

	14.11 Shapes	14.11.1 Text

	14.11.2 Line

	14.11.3  Rectangle

	14.11.4  Circle and Ellipse

	14.11.5 Arc

	14.11.6 Polygon and Polyline

	14.12 Case Study: The ClockPane Class

	Key Terms

	Chapter Summary

	Quiz

	 Programming Exercises 	Sections 14.2–14.9

	Sections 14.10 and 14.11

	Section 14.12

	CHAPTER 15 Event-Driven Programming and Animations	Objectives

	15.1 Introduction

	15.2 Events and Event Sources

	15.3 Registering Handlers and Handling Events

	15.4 Inner Classes

	15.5 Anonymous Inner-Class Handlers

	15.6 Simplifying Event Handling Using Lambda Expressions

	15.7 Case Study: Loan Calculator

	15.8 Mouse Events

	15.9 Key Events

	15.10 Listeners for Observable Objects

	15.11 Animation	15.11.1 PathTransition

	15.11.2 FadeTransition

	15.12.3  Timeline

	15.12 Case Study: Bouncing Ball

	15.13 Case Study: US Map

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises 	Sections 15.2–15.7

	Sections 15.8 and 15.9

	Section 15.10

	Section 15.11

	CHAPTER 16 JavaFX UI Controls and Multimedia	Objectives

	16.1 Introduction

	16.2 Labeled and Label

	16.3 Button

	16.4 CheckBox

	16.5 RadioButton

	16.6 TextField

	16.7 TextArea

	16.8 ComboBox

	16.9 ListView

	16.10 ScrollBar

	16.11 Slider

	16.12 Case Study: Developing a Tic-Tac-Toe Game

	16.13 Video and Audio

	16.14 Case Study: National Flags and Anthems

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 16.2–16.5

	Sections 16.6–16.8

	Sections 16.6–16.8

	Comprehensive

	CHAPTER 17 Binary I/O	Objectives

	17.1 Introduction

	17.2 How Is Text I/O Handled in Java?

	17.3 Text I/O vs. Binary I/O

	17.4 Binary I/O Classes	17.4.1  FileInputStream/FileOutputStream

	17.4.2 FilterInputStream/FilterOutputStream

	17.4.3 DataInputStream/DataOutputStream	Characters and Strings in Binary I/O

	Creating DataInputStream/DataOutputStream

	Detecting the End of a File

	17.4.4 BufferedInputStream/BufferedOutputStream

	17.5 Case Study: Copying Files

	17.6 Object I/O

	17.6.1 The Serializable Interface

	17.6.2 Serializing Arrays

	17.7 Random-Access Files

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Section 17.3

	Section 17.4

	Section 17.6

	Section 17.7

	Comprehensive

	CHAPTER 18 Recursion	Objectives

	18.1 Introduction

	18.2 Case Study: Computing Factorials

	18.3 Case Study: Computing Fibonacci Numbers

	18.4 Problem Solving Using Recursion

	18.5 Recursive Helper Methods	18.5.1 Recursive Selection Sort

	18.5.2 Recursive Binary Search

	18.6 Case Study: Finding the Directory Size

	18.7 Case Study: Tower of Hanoi

	18.8 Case Study: Fractals

	18.9 Recursion vs. Iteration

	18.10 Tail Recursion

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 18.2 and 18.3

	Section 18.4

	Section 18.5

	Sections 18.6–18.10

	CHAPTER 19 Generics	Objectives

	19.1 Introduction

	19.2 Motivations and Benefits

	19.3 Defining Generic Classes and Interfaces

	19.4 Generic Methods

	19.5 Case Study: Sorting an Array of Objects

	19.6 Raw Types and Backward Compatibility

	19.7 Wildcard Generic Types

	19.8 Erasure and Restrictions on Generics

	19.9 Case Study: Generic Matrix Class

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 20 Lists, Stacks, Queues, and Priority Queues	Objectives

	20.1 Introduction

	20.2 Collections

	20.3 Iterators

	20.4 Using the forEach Method

	20.5 Lists	20.5.1 The Common Methods in the List Interface

	20.5.2 The ArrayList and LinkedList Classes

	20.6 The Comparator Interface

	20.7 Static Methods for Lists and Collections

	20.8 Case Study: Bouncing Balls

	20.9 Vector and Stack Classes

	20.10 Queues and Priority Queues	20.10.1 The Queue Interface

	20.10.2  Deque and LinkedList

	20.11 Case Study: Evaluating Expressions

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 20.2–20.7

	Sections 20.8–20.10

	CHAPTER 21 Sets and Maps	Objectives

	21.1 Introduction

	21.2 Sets	21.2.1  HashSet

	21.2.2  LinkedHashSet

	21.2.3 TreeSet

	21.3 Comparing the Performance of Sets and Lists

	21.4 Case Study: Counting Keywords

	21.5 Maps

	21.6 Case Study: Occurrences of Words

	21.7 Singleton and Unmodifiable Collections and Maps

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 21.2–21.4

	Sections 21.5–21.7

	CHAPTER 22 Developing Efficient Algorithms	Objectives

	22.1 Introduction

	22.2 Measuring Algorithm Efficiency Using Big O Notation

	22.3 Examples: Determining Big O

	22.4 Analyzing Algorithm Time Complexity	22.4.1 Analyzing Binary Search

	22.4.2 Analyzing Selection Sort

	22.4.3 Analyzing the Tower of Hanoi Problem

	22.4.4 Common Recurrence Relations

	22.4.5 Comparing Common Growth Functions

	22.5 Finding Fibonacci Numbers Using Dynamic Programming

	22.6 Finding Greatest Common Divisors Using Euclid’s Algorithm

	22.7 Efficient Algorithms for Finding Prime Numbers

	22.8 Finding the Closest Pair of Points Using Divide-and-Conquer

	22.9 Solving the Eight Queens Problem Using Backtracking

	22.10 Computational Geometry: Finding a Convex Hull	22.10.1 Gift-Wrapping Algorithm

	22.10.2 Graham’s Algorithm

	Key Terms

	Chapter Summary

	Quiz

	 Programming Exercises

	CHAPTER 23 Sorting	Objectives

	23.1 Introduction

	23.2 Insertion Sort

	23.3 Bubble Sort

	23.4 Merge Sort

	23.5 Quick Sort

	23.6 Heap Sort	23.6.1 Storing a Heap

	23.6.2 Adding a New Node

	23.6.3 Removing the Root

	23.6.4 The Heap Class

	23.6.5 Sorting Using the Heap Class

	23.6.6 Heap Sort Time Complexity

	23.7 Bucket and Radix Sorts

	23.8 External Sort	23.8.1 Implementing Phase I

	23.8.2 Implementing Phase II

	23.8.3 Combining Two Phases

	23.8.4 External Sort Complexity

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises 	Sections 23.3–23.5

	Section 23.6

	Section 23.7

	Section 23.8

	Comprehensive

	CHAPTER 24 Implementing Lists, Stacks, Queues, and Priority Queues	Objectives

	24.1 Introduction

	24.2 Common Operations for Lists

	24.3 Array Lists

	24.4 Linked Lists	24.4.1 Nodes

	24.4.2 The MyLinkedList Class

	24.4.3 Implementing MyLinkedList	24.4.3.1 Implementing addFirst(e)

	24.4.3.2 Implementing addLast(e)

	24.4.3.3 Implementing add(index, e)

	24.4.3.4 Implementing removeFirst()

	24.4.3.5 Implementing removeLast()

	24.4.3.6 Implementing remove(index)

	24.6.4  MyArrayList vs. MyLinkedList

	24.4.5 Variations of Linked Lists

	24.5 Stacks and Queues

	24.6 Priority Queues

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 25 Binary Search Trees	Objectives

	25.1 Introduction

	25.2 Binary Search Trees	25.2.1 Representing Binary Search Trees

	25.2.2 Searching for an Element

	25.2.3 Inserting an Element into a BST

	25.2.4 Tree Traversal

	25.2.5 The BST Class

	25.3 Deleting Elements from a BST

	25.4 Tree Visualization and MVC

	25.5 Iterators

	25.6 Case Study: Data Compression

	Key Terms

	Chapter Summary

	 Quiz

	Programming Exercises 	Sections 25.2–25.6

	CHAPTER 26 AVL Trees	Objectives

	26.1 Introduction

	26.2 Rebalancing Trees

	26.3 Designing Classes for AVL Trees

	26.4 Overriding the insert Method

	26.5 Implementing Rotations

	26.6 Implementing the delete Method

	26.7 The AVLTree Class

	26.8 Testing the AVLTree Class

	26.9 AVL Tree Time Complexity Analysis

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 27 Hashing	Objectives

	27.1 Introduction

	27.2 What Is Hashing?

	27.3 Hash Functions and Hash Codes	27.3.1 Hash Codes for Primitive Types

	27.3.2 Hash Codes for Strings

	27.3.3 Compressing Hash Codes

	27.4 Handling Collisions Using Open Addressing	27.4.1 Linear Probing

	27.4.2 Quadratic Probing

	27.4.3 Double Hashing

	27.5 Handling Collisions Using Separate Chaining

	27.6 Load Factor and Rehashing

	27.7 Implementing a Map Using Hashing

	27.8 Implementing Set Using Hashing

	Key Terms

	Chapter Summary

	Quiz

	 Programming Exercises

	CHAPTER 28 Graphs and Applications	Objectives

	28.1 Introduction

	28.2 Basic Graph Terminologies

	28.3 Representing Graphs	28.3.1 Representing Vertices

	28.3.2 Representing Edges: Edge Array

	28.3.3 Representing Edges: Edge Objects

	28.3.4 Representing Edges: Adjacency Matrices

	28.3.5 Representing Edges: Adjacency Lists

	28.4 Modeling Graphs

	28.5 Graph Visualization

	28.6 Graph Traversals

	28.7 Depth-First Search (DFS)	28.7.1 Depth-First Search Algorithm

	28.7.2 Implementation of Depth-First Search

	28.7.3 Applications of the DFS

	28.8 Case Study: The Connected Circles Problem

	28.9 Breadth-First Search (BFS)	28.9.1 Breadth-First Search Algorithm

	28.9.2 Implementation of Breadth-First Search

	28.9.3 Applications of the BFS

	28.10 Case Study: The Nine Tails Problem

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises	Sections 28.6–28.10

	CHAPTER 29 Weighted Graphs and Applications	Objectives

	29.1 Introduction

	29.2 Representing Weighted Graphs	29.2.1 Representing Weighted Edges: Edge Array

	29.2.2 Weighted Adjacency Matrices

	29.2.3 Adjacency Lists

	29.3 The WeightedGraph Class

	29.4 Minimum Spanning Trees	29.4.1 Minimum Spanning Tree Algorithms

	29.4.2 Refining Prim’s MST Algorithm

	29.4.3 Implementation of the MST Algorithm

	29.5 Finding Shortest Paths

	29.6 Case Study: The Weighted Nine Tails Problem

	Key Terms

	Chapter Summary

	 Quiz

	Programming Exercises

	CHAPTER 30 Aggregate Operations for Collection Streams	Objectives

	30.1 Introduction

	30.2 Stream Pipelines	30.2.1 The Stream.of, limit, and forEach Methods

	30.2.2 The sorted Method

	30.2.3 The filter Method

	30.2.4 The max and min Methods

	30.2.5 The anyMatch, allMatch, and noneMatch Methods

	30.2.6 The map, distinct, and count Methods

	30.2.7 The findFirst, findAny, and toArray Methods

	30.3 IntStream, LongStream, and DoubleStream

	30.4 Parallel Streams

	30.5 Stream Reduction Using the reduce Method

	30.6 Stream Reduction Using the collect Method

	30.7 Grouping Elements Using the groupingby Collector

	30.8 Case Studies	30.8.1 Case Study: Analyzing Numbers

	30.8.2 Case Study: Counting the Occurrences of Each Letter

	30.8.3 Case Study: Counting the Occurrences of Each Letter in a String

	30.8.3 Case Study: Processing All Elements in a Two-Dimensional Array

	30.8.4 Case Study: Finding the Directory Size

	30.8.5 Case Study: Counting Keywords

	30.8.6 Case Study: Occurrences of Words

	Chapter Summary

	Quiz

	 Programming Exercises

	CHAPTER 31 Advanced JavaFX and FXML	Objectives

	31.1 Introduction

	31.2 JavaFX CSS

	31.3 QuadCurve, CubicCurve, and Path	31.3.1  QuadCurve and CubicCurve

	31.3.2  Path

	31.4 Coordinate Transformations	31.4.1 Translations

	31.4.2 Rotations

	31.4.3 Scaling

	31.5 Strokes

	31.6 Menus	31.6.1 Creating Menus

	31.6.2 Example: Using Menus

	31.7 Context Menus

	31.8 SplitPane

	31.9 TabPane

	31.10 TableView

	31.11 Developing JavaFX Programs Using FXML	31.11.1 Installing JavaFX Scene Builder

	31.11.2 Creating a JavaFX FXML Project

	31.11.3 Creating User Interfaces

	31.11.4 Handling Events in the Controller

	31.11.5 Linking View with Controller

	31.11.6 Running the Project

	Chapter Summary

	Quiz

	Programming Exercises 	Sections 31.2

	Sections 31.3

	Sections 31.4

	Sections 31.5

	Sections 31.6

	Sections 31.8

	Sections 31.9

	Sections 31.10

	CHAPTER 32 Multithreading and Parallel Programming	Objectives

	32.1 Introduction

	32.2 Thread Concepts

	32.3 Creating Tasks and Threads

	32.4 The Thread Class

	32.5 Animation Using Threads and the Platform.runLater Method

	32.6 Thread Pools

	32.7 Thread Synchronization	32.7.1 The synchronized Keyword

	32.7.2 Synchronizing Statements

	32.8 Synchronization Using Locks

	32.9 Cooperation among Threads

	32.10 Case Study: Producer/Consumer

	32.11 Blocking Queues

	32.12 Semaphores

	32.13 Avoiding Deadlocks

	32.14 Thread States

	32.15 Synchronized Collections

	32.16 Parallel Programming

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises 	Sections 32.1–32.5

	Sections 32.8–32.12

	Section 32.15

	Section 32.18

	Comprehensive

	CHAPTER 33 Networking	Objectives

	33.1 Introduction

	33.2 Client/Server Computing	33.2.1 Server Sockets

	33.2.2 Client Sockets

	33.2.3 Data Transmission through Sockets

	33.2.4 A Client/Server Example

	33.3 The InetAddress Class

	33.4 Serving Multiple Clients

	33.5 Sending and Receiving Objects

	33.6 Case Study: Distributed Tic-Tac-Toe Games

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises 	Section 33.2

	Sections 33.3 and 33.4

	Section 33.5

	Section 33.6

	Section 33.7

	CHAPTER 34 Java Database Programming	Objectives

	34.1 Introduction

	34.2 Relational Database Systems	34.2.1 Relational Structures

	34.2.2 Integrity Constraints	Domain Constraints

	Primary Key Constraints

	Foreign Key Constraints

	Enforcing Integrity Constraints

	34.3 SQL

	34.3.1 Creating a User Account on MySQL

	34.3.2 Creating a Database

	34.3.3 Creating and Dropping Tables

	34.3.4 Simple Insert, Update, and Delete

	34.3.5 Simple Queries

	34.3.6 Comparison and Boolean Operators

	34.3.7 The like, between-and, and is null Operators

	34.3.8 Column Alias

	34.3.9 The Arithmetic Operators

	34.3.10 Displaying Distinct Tuples

	34.3.11 Displaying Sorted Tuples

	34.3.12 Joining Tables

	34.4 JDBC	34.4.1 Developing Database Applications Using JDBC

	34.4.2 Accessing a Database from JavaFX

	34.5  PreparedStatement

	34.6  CallableStatement

	34.7 Retrieving Metadata	34.7.1 Database Metadata

	34.7.2 Obtaining Database Tables

	34.7.3 Result Set Metadata

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises

	CHAPTER 35 Advanced Java Database Programming	Objectives

	35.1 Introduction

	35.2 A Universal SQL Client

	35.3 Batch Processing

	35.4 Scrollable and Updatable Result Set

	35.5  RowSet, JdbcRowSet, and CachedRowSet	35.5.1  RowSet Basics

	35.5.2  RowSet for PreparedStatement

	35.5.3 Scrolling and Updating RowSet

	35.5.4  RowSetEvent

	35.6 Storing and Retrieving Images in JDBC

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 36 Internationalization	Objectives

	36.1 Introduction

	36.2 The Locale Class

	36.3 Displaying Date and Time	36.3.1 The TimeZone Class

	36.3.2 The DateFormat Class

	36.3.3 The SimpleDateFormat Class

	36.3.4 The DateFormatSymbols Class

	36.3.5 Example: Displaying an International Clock

	36.3.6 Example: Displaying a Calendar

	36.4 Formatting Numbers	36.4.1 Plain Number Format

	36.4.2 Currency Format

	36.4.3 Percent Format

	36.4.4 Parsing Numbers

	36.4.5  The DecimalFormat Class

	36.4.5 Example: Formatting Numbers

	36.5 Resource Bundles

	36.6 Character Encoding

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises 	Sections 36.1–36.2

	Section 36.3

	Section 36.4

	Section 36.5

	Section 36.6

	CHAPTER 37 Servlets	Objectives

	37.1 Introduction

	37.2 HTML and Common Gateway Interface	37.2.1 Static Web Contents

	37.2.2 Dynamic Web Contents and Common Gateway Interface

	37.2.3 The GET and POST Methods

	37.2.4 From CGI to Java Servlets

	37.3 Creating and Running Servlets	37.3.1 Creating a Servlet

	37.3.2 Creating Servlets in NetBeans

	37.4 The Servlet API	37.4.1 The Servlet Interface

	37.4.2 The GenericServlet Class, ServletConfig Interface, and HttpServlet Class

	37.4.3 The ServletRequest Interface and HttpServlet­Request Interface

	37.4.4 The ServletResponse Interface and HttpServlet­Response Interface

	37.5 Creating Servlets

	37.6 HTML Forms	37.6.1 Obtaining Parameter Values from HTML Forms

	37.6.2 Obtaining Current Time Based on Locale and Time Zone

	37.7 Database Programming in Servlets

	37.8 Session Tracking	37.8.1 Session Tracking Using Hidden Values

	37.8.2 Session Tracking Using Cookies

	37.8.3 Session Tracking Using the Servlet API

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises 	Section 37.5

	Section 37.6

	Section 37.7

	Section 37.8 	Comprehensive

	CHAPTER 38 Javaserver Pages	Objectives

	38.1 Introduction

	38.2 Creating a Simple JSP Page

	38.3 How Is a JSP Page Processed?

	38.4 JSP Scripting Constructs

	38.5 Predefined Variables

	38.6 JSP Directives

	38.7 Using JavaBeans in JSP

	38.8 Getting and Setting Properties

	38.9 Associating Properties with Input Parameters	38.9.1 Example: Computing Loan Payments Using JavaBeans

	38.9.2 Example: Computing Factorials Using JavaBeans

	38.9.3 Example: Displaying International Time

	38.9.4 Example: Registering Students

	38.10 Forwarding Requests from JavaServer Pages

	38.11 Case Study: Browsing Database Tables

	Chapter Summary

	 Quiz

	 Programming Exercises 	Section 38.4

	Section 38.5

	Section 38.6

	Section 38.7

	Comprehensive

	CHAPTER 39 JavaServer Faces	Objectives

	39.1 Introduction

	39.2 Getting Started with JSF	39.2.1 Creating a JSF Project

	39.2.2 A Basic JSF Page

	39.2.3 Managed JavaBeans for JSF

	39.2.4 JSF Expressions

	39.3 JSF GUI Components

	39.4 Processing the Form

	39.5 Case Study: Calculator

	39.6 Session Tracking

	39.7 Validating Input

	39.8 Binding Database with Facelets

	39.9 Opening New JSF Pages

	39.10 Contexts and Dependency Injection

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 40 Remote Method Invocation	Objectives

	40.1 Introduction

	40.2 RMI Basics	40.2.1 How Does RMI Work?

	40.2.2 Passing Parameters

	40.2.3 RMI Registry

	40.3 Developing RMI Applications	40.3.1 Example: Retrieving Student Scores from an RMI Server

	40.4 RMI vs. Socket-Level Programming

	40.5 Developing Three-Tier Applications Using RMI

	40.6 RMI Callbacks

	Key Terms

	Chapter Summary

	 Quiz

	Programming Exercises 	Section 40.3

	Section 40.5

	Section 40.6

	CHAPTER 41 Web Services	Objectives

	41.1 Introduction

	41.2 Creating Web Services

	41.3 Deploying and Testing Web Services

	41.4 Consuming Web Services

	41.5 Passing and Returning Arguments

	41.6 Web Service Session Tracking

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises

	CHAPTER 42 2–4 Trees and B-Trees	Objectives

	42.1 Introduction

	42.2 Designing Classes for 2–4 Trees

	42.3 Searching an Element

	42.4 Inserting an Element into a 2–4 tree

	42.5 Deleting an Element from a 2–4 tree

	42.6 Traversing Elements in a 2–4 tree

	42.7 Implementing the Tree24 Class

	42.8 Testing the Tree24 Class

	42.9 Time-Complexity Analysis

	42.10 B-Tree

	Key Terms

	Chapter Summary

	 Quiz

	 Programming Exercises

	CHAPTER 43 Red-Black Trees	Objectives

	43.1 Introduction

	43.2 Conversion between Red-Black Trees and 2-4 Trees

	43.3 Designing Classes for Red-Black Trees

	43.4 Overriding the insert Method

	43.5 Overriding the delete Method

	43.6 Implementing RBTree Class

	43.7 Testing the RBTree Class

	43.8 Performance of the RBTree Class

	Key Terms

	Chapter Summary

	 Quiz

	Programming Exercises

	CHAPTER 44 Testing Using JUnit	Objectives

	44.1 Introduction

	44.2 JUnit Basics

	44.3 Using JUnit from NetBeans

	44.4 Using JUnit from Eclipse

	Key Terms

	Chapter Summary

	Quiz

	Programming Exercises

	Appendixes
	Appendix A Java Keywords

	Appendix B The ASCII Character Set

	Appendix C Operator Precedence Chart

	Appendix D Java Modifiers

	Appendix E Special Floating-Point Values

	Appendix F Number Systems

	F.1 Introduction

	F.2 Conversions between Binary and Decimal Numbers

	F.3 Conversions between Hexadecimal and Decimal Numbers

	F.4 Conversions between Binary and Hexadecimal Numbers

	Appendix G Bitwise Operations

	Appendix H Regular Expressions

	H.1 Matching Strings

	H.2 Regular Expression Syntax

	H.3 Replacing and Splitting Strings

	Appendix I Enumerated Types

	I.1 Simple Enumerated Types

	I.2 Using if or switch Statements with an ­Enumerated Variable

	I.3 Processing Enumerated Values Using a Foreach Loop

	I.4 Enumerated Types with Data Fields, ­Constructors, and Methods

	Index 	Symbols

	Numbers

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	Q

	R

	S

	T

	U

	V

	W

	X

List of Illustrations

	Figure 1.1
	Figure 1.2
	Figure 1.3
	Figure 1.4
	Figure 1.5
	Figure 1.6
	Figure 1.7
	Figure 1.8
	Figure 1.9
	Figure 1.10
	Figure 1.11
	Figure 1.12
	Figure 1.13
	Figure 1.14
	Figure 1.15
	Figure 1.16
	Figure 1.17
	Figure 1.18
	Figure 1.19
	Figure 1.20
	Figure 2.1
	Figure 2.2
	Figure 2.3
	Figure 3.1
	Figure 3.2
	Figure 3.3
	Figure 3.4
	Figure 3.5
	Figure 3.6
	Figure 3.7
	Figure 3.8
	Figure 3.9
	Figure 3.10
	Figure 3.11
	Figure 4.1
	Figure 4.2
	Figure 4.3
	Figure 4.4
	Figure 5.1
	Figure 5.2
	Figure 5.3
	Figure 6.1
	Figure 6.2
	Figure 6.3
	Figure 6.4
	Figure 6.5
	Figure 6.6
	Figure 6.7
	Figure 6.8
	Figure 6.9
	Figure 6.10
	Figure 6.11
	Figure 7.1
	Figure 7.2
	Figure 7.3
	Figure 7.4
	Figure 7.5
	Figure 7.6
	Figure 7.7
	Figure 7.8
	Figure 7.9
	Figure 7.11
	Figure 7.12
	Figure 7.13
	Figure 8.1
	Figure 8.2
	Figure 8.3
	Figure 8.4
	Figure 8.5
	Figure 8.6
	Figure 8.7
	Figure 8.8
	Figure 8.9
	Figure 8.10
	Figure 9.1
	Figure 9.2
	Figure 9.3
	Figure 9.4
	Figure 9.5
	Figure 9.6
	Figure 9.7
	Figure 9.8
	Figure 9.9
	Figure 9.10
	Figure 9.11
	Figure 9.12
	Figure 9.13
	Figure 9.16
	Figure 9.17
	Figure 9.18
	Figure 9.19
	Figure 10.1
	Figure 10.2
	Figure 10.3
	Figure 10.4
	Figure 10.6
	Figure 10.7
	Figure 10.8
	Figure 10.9
	Figure 10.10
	Figure 10.11
	Figure 10.12
	Figure 10.13
	Figure 10.14
	Figure 10.15
	Figure 10.16
	Figure 10.17
	Figure 10.18
	Figure 10.19
	Figure 10.20
	Figure 10.21
	Figure 10.22
	Figure 10.23
	Figure 10.24
	Figure 11.1
	Figure 11.2
	Figure 11.3
	Figure 11.4
	Figure 11.5
	Figure 11.6
	Figure 12.1
	Figure 12.2
	Figure 12.3
	Figure 12.4
	Figure 12.5
	Figure 12.6
	Figure 12.7
	Figure 12.8 
	Figure 12.9
	Figure 12.10
	Figure 12.11
	Figure 12.12 
	Figure 12.13 
	Figure 13.1
	Figure 13.2
	Figure 13.3
	Figure 13.4
	Figure 13.5
	Figure 13.6
	Figure 13.7
	Figure 13.8
	Figure 13.9
	Figure 13.10
	Figure 14.1
	Figure 14.2
	Figure 14.3
	Figure 14.4
	Figure 14.5
	Figure 14.6
	Figure 14.8
	Figure 14.9
	Figure 14.10
	Figure 14.11
	Figure 14.12
	Figure 14.13
	Figure 14.14
	Figure 14.15
	Figure 14.16
	Figure 14.17
	Figure 14.18
	Figure 14.19
	Figure 14.20
	Figure 14.21
	Figure 14.22
	Figure 14.23
	Figure 14.24
	Figure 14.25
	Figure 14.26
	Figure 14.27
	Figure 14.28
	Figure 14.29
	Figure 14.30
	Figure 14.31
	Figure 14.32
	Figure 14.33
	Figure 14.34
	Figure 14.35
	Figure 14.36
	Figure 14.37
	Figure 14.38
	Figure 14.39
	Figure 14.40
	Figure 14.41
	Figure 14.42
	Figure 14.43
	Figure 14.44
	Figure 14.45
	Figure 14.46
	Figure 14.47
	Figure 14.48
	Figure 14.49
	Figure 14.50
	Figure 14.51
	Figure 14.52
	Figure 15.1
	Figure 15.2
	Figure 15.3
	Figure 15.4
	Figure 15.5
	Figure 15.6
	Figure 15.8
	Figure 15.9
	Figure 15.10
	Figure 15.11
	Figure 15.12
	Figure 15.13
	Figure 15.14
	Figure 15.15
	Figure 15.16
	Figure 15.17
	Figure 15.18
	Figure 15.19
	Figure 15.20
	Figure 15.21
	Figure 15.22
	Figure 15.23
	Figure 15.24
	Figure 15.25
	Figure 15.26
	Figure 15.27
	Figure 15.28
	Figure 15.29
	Figure 15.30
	Figure 15.31
	Figure 15.32
	Figure 15.33
	Figure 15.34
	Figure 15.35
	Figure 15.36
	Figure 15.37
	Figure 15.38
	Figure 15.39
	Figure 16.1
	Figure 16.2
	Figure 16.3
	Figure 16.4
	Figure 16.5
	Figure 16.6
	Figure 16.7
	Figure 16.8
	Figure 16.9
	Figure 16.10
	Figure 16.11
	Figure 16.12
	Figure 16.13
	Figure 16.14
	Figure 16.15
	Figure 16.16
	Figure 16.17
	Figure 16.18
	Figure 16.19
	Figure 16.20
	Figure 16.21
	Figure 16.22
	Figure 16.23
	Figure 16.24
	Figure 16.25
	Figure 16.26
	Figure 16.27
	Figure 16.28
	Figure 16.29
	Figure 16.30
	Figure 16.31
	Figure 16.32
	Figure 16.33
	Figure 16.34
	Figure 16.35
	Figure 16.36
	Figure 16.37
	Figure 16.38
	Figure 16.39
	Figure 16.40
	Figure 16.41
	Figure 16.42
	Figure 16.43
	Figure 16.44
	Figure 16.45
	Figure 16.46
	Figure 16.47
	Figure 16.48
	Figure 16.49
	Figure 17.1
	Figure 17.2
	Figure 17.3
	Figure 17.4
	Figure 17.5
	Figure 17.6
	Figure 17.7
	Figure 17.8
	Figure 17.9
	Figure 17.10
	Figure 17.11
	Figure 17.12
	Figure 17.13
	Figure 17.14
	Figure 17.15
	Figure 17.16
	Figure 17.17
	Figure 17.18
	Figure 17.19
	Figure 17.20
	Figure 17.21
	Figure 17.22
	Figure 17.23
	Figure 18.1
	Figure 18.2
	Figure 18.3
	Figure 18.4
	Figure 18.5
	Figure 18.6
	Figure 18.7
	Figure 18.8
	Figure 18.9
	Figure 18.10
	Figure 18.12
	Figure 18.13
	Figure 18.14
	Figure 18.15
	Figure 18.16
	Figure 18.17
	Figure 18.18
	Figure 18.19
	Figure 18.20
	Figure 19.3 
	Figure 19.4 
	Figure 19.5 
	Figure 19.6 
	Figure 19.7 
	Figure 20.1 
	Figure 20.2 
	Figure 20.3 
	Figure 20.4 
	Figure 20.5 
	Figure 20.6 
	Figure 20.7 
	Figure 20.8 
	Figure 20.9 
	Figure 20.10 
	Figure 20.11 
	Figure 20.12 
	Figure 20.13 
	Figure 20.14 
	Figure 20.15 
	Figure 20.16 
	Figure 20.17 
	Figure 20.18 
	Figure 20.19 
	Figure 20.20 
	Figure 20.21 
	Figure 21.1 
	Figure 21.2
	Figure 21.3 
	Figure 21.4 
	Figure 21.5 
	Figure 21.6 
	Figure 21.7 
	Figure 21.8 
	Figure 21.9 
	Figure 22.1 
	Figure 22.3 
	Figure 22.4 
	Figure 22.5 
	Figure 22.6 
	Figure 22.7 
	Figure 22.8 
	Figure 22.9 
	Figure 22.10 
	Figure 22.11 
	Figure 22.12 
	Figure 22.13 
	Figure 22.14 
	Figure 22.15 
	Figure 22.16 
	Figure 22.17 
	Figure 23.1 
	Figure 23.2 
	Figure 23.3 
	Figure 23.4 
	Figure 23.5 
	Figure 23.6 
	Figure 23.7 
	Figure 23.8 
	Figure 23.9 
	Figure 23.10 
	Figure 23.11 
	Figure 23.12 
	Figure 23.13 
	Figure 23.14 
	Figure 23.15 
	Figure 23.16 
	Figure 23.17 
	Figure 23.18 
	Figure 23.19 
	Figure 23.20 
	Figure 23.21 
	Figure 23.22 
	Figure 24.1 
	Figure 24.2 
	Figure 24.3 
	Figure 24.4 
	Figure 24.5 
	Figure 24.6 
	Figure 24.7 
	Figure 24.8 
	Figure 24.9 
	Figure 24.10 
	Figure 24.11 
	Figure 24.12 
	Figure 24.13 
	Figure 24.14 
	Figure 24.15 
	Figure 24.16 
	Figure 24.17 
	Figure 24.18 
	Figure 24.19 
	Figure 24.20 
	Figure 24.21 
	Figure 24.22 
	Figure 24.23 
	Figure 24.24 
	Figure 25.1 
	Figure 25.2 
	Figure 25.3 
	Figure 25.4 
	Figure 25.5 
	Figure 25.6 
	Figure 25.7 
	Figure 25.8 
	Figure 25.9 
	Figure 25.10 
	Figure 25.11 
	Figure 25.12 
	Figure 25.13 
	Figure 25.14 
	Figure 25.15 
	Figure 25.16 
	Figure 25.17 
	Figure 25.18 
	Figure 25.19 
	Figure 25.20 
	Figure 25.21 
	Figure 25.22 
	Figure 26.1 
	Figure 26.2 
	Figure 26.3 
	Figure 26.4 
	Figure 26.5 
	Figure 26.6 
	Figure 26.7 
	Figure 26.8 
	Figure 26.9 
	Figure 26.10 
	Figure 26.11 
	Figure 26.12 
	Figure 27.1 
	Figure 27.2 
	Figure 27.3 
	Figure 27.4 
	Figure 27.5 
	Figure 27.6 
	Figure 27.7 
	Figure 27.8 
	Figure 27.9 
	Figure 27.10 
	Figure 28.1 
	Figure 28.2 
	Figure 28.3 
	Figure 28.4 
	Figure 28.5 
	Figure 28.6 
	Figure 28.7 
	Figure 28.8 
	Figure 28.9 
	Figure 28.10 
	Figure 28.11 
	Figure 28.12 
	Figure 28.13 
	Figure 28.14 
	Figure 28.15 
	Figure 28.16 
	Figure 28.17 
	Figure 28.18 
	Figure 28.19 
	Figure 28.20 
	Figure 28.21 
	Figure 28.22 
	Figure 28.23 
	Figure 28.24 
	Figure 28.25 
	Figure 29.1 
	Figure 29.2 
	Figure 29.3 
	Figure 29.4 
	Figure 29.5 
	Figure 29.6 
	Figure 29.7 
	Figure 29.8 
	Figure 29.9 
	Figure 29.10 
	Figure 29.11 
	Figure 29.12 
	Figure 29.13 
	Figure 29.14 
	Figure 29.15 
	Figure 29.16 
	Figure 29.17 
	Figure 29.18 
	Figure 29.19 
	Figure 29.20 
	Figure 29.21 
	Figure 29.22 
	Figure 29.23 
	Figure 29.24 
	Figure 29.25 
	Figure 29.26 
	Figure 29.27 
	Figure 29.28 
	Figure 30.1 
	Figure 31.1
	Figure 31.2
	Figure 31.3
	Figure 31.4
	Figure 31.5
	Figure 31.6
	Figure 31.7
	Figure 31.8
	Figure 31.9
	Figure 31.10
	Figure 31.11
	Figure 31.12
	Figure 31.13
	Figure 31.14
	Figure 31.15
	Figure 31.16
	Figure 31.17
	Figure 31.18
	Figure 31.19
	Figure 31.20
	Figure 31.21
	Figure 31.22
	Figure 31.23
	Figure 31.24
	Figure 31.25
	Figure 31.26
	Figure 31.27
	Figure 31.28
	Figure 31.29
	Figure 31.30
	Figure 31.31
	Figure 31.32
	Figure 31.33
	Figure 31.34
	Figure 31.35 You can choose JavaFX in the Categories and JavaFX FXML Application in the Project to create a FXML project.
	Figure 31.36 You can enter project information in the New JavaFX Application dialog.
	Figure 31.37 A FXML project is created.
	Figure 31.38 The application performs arithmetic operations.
	Figure 31.39 Double-click the .fxml file to open the Scene Builder.
	Figure 31.40 You can open the Library pane by clicking the Library icon and choose View as List.
	Figure 31.41 The UI is empty after deleting the default button in the pane.
	Figure 31.42 A BorderPane is dropped to the UI and an HBox is placed at the bottom of the BorderPane.
	Figure 31.43 The labels and text fields are dropped to the UI.
	Figure 31.44 Set the appropriate id for the text fields.
	Figure 31.45 The buttons are dropped to the HBox.
	Figure 31.46 You can view the contents of the FXML file.
	Figure 31.47 Choosing addButtonAction to generate the code for handling action for the Add button.
	Figure 31.48
	Figure 31.49
	Figure 31.50
	Figure 31.51
	Figure 31.52
	Figure 31.53
	Figure 31.54
	Figure 31.55
	Figure 31.56
	Figure 31.57
	Figure 31.58
	Figure 31.59
	Figure 32.1
	Figure 32.2
	Figure 32.3
	Figure 32.4
	Figure 32.5
	Figure 32.6
	Figure 32.7
	Figure 32.8
	Figure 32.9
	Figure 32.10
	Figure 32.11
	Figure 32.12
	Figure 32.13
	Figure 32.14
	Figure 32.15
	Figure 32.16
	Figure 32.17
	Figure 32.18
	Figure 32.19
	Figure 32.20
	Figure 32.21
	Figure 32.22
	Figure 32.23
	Figure 32.24
	Figure 32.25
	Figure 32.26
	Figure 32.27
	Figure 32.28
	Figure 32.29
	Figure 32.30
	Figure 32.31
	Figure 32.32
	 Figure 32.33
	Figure 33.1
	Figure 33.2
	Figure 33.3
	Figure 33.4
	Figure 33.5
	Figure 33.6
	Figure 33.7
	Figure 33.8
	Figure 33.9
	Figure 33.10
	Figure 33.11
	Figure 33.12
	Figure 33.13 
	Figure 33.14
	Figure 33.15
	Figure 33.16 
	Figure 33.17
	Figure 33.18
	Figure 33.19
	Figure 33.20
	Figure 33.21 
	Figure 33.22
	Figure 34.1
	Figure 34.2
	Figure 34.3
	Figure 34.4
	Figure 34.5
	Figure 34.6
	Figure 34.7
	Figure 34.8
	Figure 34.9
	Figure 34.10
	Figure 34.11
	Figure 34.12
	Figure 34.13
	Figure 34.14
	Figure 34.15
	Figure 34.16
	Figure 34.17
	Figure 34.18
	Figure 34.19
	Figure 34.20
	Figure 34.21
	Figure 34.22
	Figure 34.23
	Figure 34.24
	Figure 34.25
	Figure 34.26
	Figure 34.27
	Figure 34.28
	Figure 34.29
	Figure 34.30
	Figure 35.1
	Figure 35.2
	Figure 35.3
	Figure 35.4
	Figure 35.5
	Figure 35.6
	Figure 35.7
	Figure 35.8
	Figure 36.1
	Figure 36.2
	Figure 36.3
	Figure 36.4
	Figure 36.5
	Figure 36.6
	Figure 36.7
	Figure 36.8
	Figure 36.9
	Figure 36.10
	Figure 36.11
	Figure 36.12
	Figure 36.13
	Figure 36.14
	Figure 36.15
	Figure 36.16
	Figure 36.17
	Figure 36.18
	Figure 36.19
	Figure 37.1
	Figure 37.2
	Figure 37.3
	Figure 37.4
	Figure 37.5
	Figure 37.6
	Figure 37.7
	Figure 37.8
	Figure 37.9
	Figure 37.10
	Figure 37.11
	Figure 37.12
	Figure 37.13
	Figure 37.14
	Figure 37.15
	Figure 37.16
	Figure 37.17
	Figure 37.18
	Figure 37.19
	Figure 37.20
	Figure 37.21
	Figure 37.22
	Figure 37.23
	Figure 37.24
	Figure 37.25
	Figure 37.26
	Figure 37.27
	Figure 37.28
	Figure 37.29
	Figure 37.30
	Figure 37.31
	Figure 37.32
	Figure 37.33
	Figure 37.34
	Figure 37.35
	Figure 38.1
	Figure 38.2
	Figure 38.3
	Figure 38.4
	Figure 38.5
	Figure 38.6
	Figure 38.7
	Figure 38.8
	Figure 38.9
	Figure 38.10
	Figure 38.11
	Figure 38.12
	Figure 38.13
	Figure 38.14
	Figure 38.14
	Figure 38.15
	Figure 38.16
	Figure 38.17
	Figure 39.1
	Figure 39.2
	Figure 39.3
	Figure 39.4
	Figure 39.5
	Figure 39.6
	Figure 39.7
	Figure 39.8
	Figure 39.9
	Figure 39.10
	Figure 39.11
	Figure 39.12
	Figure 39.13
	Figure 39.14
	Figure 39.15
	Figure 39.16
	Figure 39.17
	Figure 39.18
	Figure 39.19
	Figure 39.20
	Figure 39.21
	Figure 39.22
	Figure 39.23
	Figure 39.24
	Figure 39.25
	Figure 39.26
	Figure 39.27
	Figure 39.28
	Figure 39.29
	Figure 39.30
	Figure 39.31
	Figure 39.32
	Figure 39.33
	Figure 39.34
	Figure 39.35
	Figure 39.36
	Figure 39.37
	Figure 39.38
	Figure 39.39
	Figure 39.40
	Figure 40.1
	Figure 40.2
	Figure 40.3
	Figure 40.4
	Figure 40.5
	Figure 40.6
	Figure 40.7
	Figure 40.8
	Figure 40.9
	Figure 41.1
	Figure 41.2
	Figure 41.3
	Figure 41.4
	Figure 41.5
	Figure 41.6
	Figure 41.7
	Figure 41.8
	Figure 41.9
	Figure 41.10
	Figure 41.11
	Figure 41.12
	Figure 41.13
	Figure 41.14
	Figure 41.15
	Figure 41.16
	Figure 42.1
	Figure 42.2
	Figure 42.3
	Figure 42.4
	Figure 42.5
	Figure 42.6
	Figure 42.7
	Figure 42.8
	Figure 42.9
	Figure 42.10
	Figure 42.11
	Figure 42.12
	Figure 42.13
	Figure 42.14
	Figure 42.15
	Figure 42.16
	Figure 42.17
	Figure 42.18
	Figure 42.19
	Figure 42.20
	Figure 42.21
	Figure 43.1
	Figure 43.2
	Figure 43.3
	Figure 43.4
	Figure 43.5
	Figure 43.6
	Figure 43.7
	Figure 43.8
	Figure 43.9
	Figure 43.10
	Figure 43.11
	Figure 43.12
	Figure 43.13
	Figure 43.14
	Figure 43.15
	Figure 43.16
	Figure 43.17
	Figure 43.18
	Figure 43.19
	Figure 43.20
	Figure 43.21
	Figure 43.22
	Figure 43.23
	Figure 43.24
	Figure 43.25
	Figure 43.26
	Figure 43.27
	Figure 43.28
	Figure 44.1
	Figure 44.2
	Figure 44.3
	Figure 44.4
	Figure 44.5
	Figure 44.6
	Figure 44.7
	Figure 44.8
	Figure 44.9
	Figure 44.10
	Figure 44.11
	Figure 44.12
	Figure 44.13
	Figure 44.14
	Figure 44.15
	Figure 44.16
	Figure 44.17
	Figure F.1 
	Figure H. 1

List of Tables

	Table 1.1 Popular High-Level Programming Languages
	Table 1.2 Special Characters
	Table 2.1 Numeric Data Types
	Table 2.2 Methods for Scanner Objects
	Table 2.3 Numeric Operators
	Table 2.4 Augmented Assignment Operators
	Table 2.5 Increment and Decrement Operators
	Table 3.1 Relational Operators
	Table 3.2 2009 U.S. Federal Personal Tax Rates
	Table 3.3 Boolean Operators
	Table 3.4 Truth Table for Operator !
	Table 3.5 Truth Table for Operator &&
	Table 3.6 Truth Table for Operator ||
	Table 3.7 Truth Table for Operator ^
	Table 3.8 Operator Precedence Chart
	Table 4.1 Trigonometric Methods in the Math Class
	Table 4.2 Exponent Methods in the Math Class
	Table 4.3 Rounding Methods in the Math Class
	Table 4.4 ASCII Code for Commonly Used Characters
	Table 4.5 Escape Sequences
	Table 4.6 Methods in the Character Class
	Table 4.7 Simple Methods for String Objects
	Table 4.8 Comparison Methods for String Objects
	Table 4.9 The String Class Contains the Methods for Obtaining Substrings
	Table 4.10 The String Class Contains the Methods for Finding Substrings
	Table 4.11 Frequently Used Format Specifiers
	Table 4.12 Examples of Specifying Width and Precision
	Table 10.1  2001 U.S. Federal Personal Tax Rates
	Table 11.1  Differences and Similarities between Arrays and ArrayList
	Table 11.2 Data and Methods Visibility
	Table 12.1 Examples of Subclasses of Error
	Table 12.2 Examples of Subclasses of Exception
	Table 12.3 Examples of Subclasses of RuntimeException
	Table 13.1 Field Constants in the Calendar Class
	Table 13.2 Interfaces vs. Abstract Classes
	Table 14.1 Panes for Containing and Organizing Nodes
	Table 15.1 User Action, Source Object, Event Type, Handler Interface, and Handler
	Table 15.2 KeyCode Constants
	Table 18.1 Number of Recursive Calls in fib(index)
	Table 20.1 Evaluating an Expression
	Table 22.1 Growth Rates
	Table 22.2 Common Recurrence Functions
	Table 22.3 Change of Growth Rates
	Table 22.4 Comparisons of GCD Algorithms
	Table 22.5 Comparisons of Prime-Number Algorithms
	Table 24.1 Time Complexities for Methods in MyArrayList and MyLinkedList
	Table 27.1 Time Complexities for Methods in MyHashMap
	Table 27.2 Time Complexities for Methods in MyHashSet
	Table 34.1 Comparison Operators
	Table 34.2 Boolean Operators
	Table 34.3 JDBC Drivers
	Table 34.4 JDBC URLs
	Table 31.1 Common Language Codes
	Table 31.2 Common Country Codes
	Table 36.3 Resource Bundle Naming Conventions
	Table 39.1 JSF GUI Form Elements
	Table 39.2 JSF Input Validator Tags
	Table 43.1  Time Complexities for Methods in RBTree, AVLTree, and Tree234
	Table B.1 ASCII Character Set in the Decimal Index
	Table B.2 ASCII Character Set in the Hexadecimal Index
	Table E.1 Special Floating-Point Values
	Table F.1 Converting Hexadecimal to Binary
	Table G.1
	Table H.1 Frequently Used Regular Expressions

Landmarks

	Brief Contents

	
	 Frontmatter

	Start of Content

	
		backmatter

	List of Illustrations
	List of Tables

	i

	ii

	iii

	iv

	v

	vi

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	xvii

	xviii

	xix

	xx

	xxi

	xxii

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	338

	339

	340

	341

	342

	343

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	357

	358

	359

	360

	361

	362

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	374

	375

	376

	377

	378

	379

	380

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	424

	425

	426

	427

	428

	429

	430

	431

	432

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	443

	444

	445

	446

	447

	448

	449

	450

	451

	452

	453

	454

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	474

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	490

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	506

	507

	508

	509

	510

	511

	512

	513

	514

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	530

	531

	532

	533

	534

	535

	536

	537

	538

	539

	540

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	554

	555

	556

	557

	558

	559

	560

	561

	562

	563

	564

	565

	566

	567

	568

	569

	570

	571

	572

	573

	574

	575

	576

	577

	578

	579

	580

	581

	582

	583

	584

	585

	586

	587

	588

	589

	590

	591

	592

	593

	594

	595

	596

	597

	598

	599

	600

	601

	602

	603

	604

	605

	606

	607

	608

	609

	610

	611

	612

	613

	614

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	636

	637

	638

	639

	640

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	670

	671

	672

	673

	674

	675

	676

	677

	678

	679

	680

	681

	682

	683

	684

	685

	686

	687

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	720

	721

	722

	723

	724

	725

	726

	727

	728

	729

	730

	731

	732

	733

	734

	735

	736

	737

	738

	739

	740

	741

	742

	743

	744

	745

	746

	747

	748

	749

	750

	751

	752

	753

	754

	755

	756

	757

	758

	759

	760

	761

	762

	763

	764

	765

	766

	767

	768

	769

	770

	771

	772

	773

	774

	775

	776

	777

	778

	779

	780

	781

	782

	783

	784

	785

	786

	787

	788

	789

	790

	791

	792

	793

	794

	795

	796

	797

	798

	799

	800

	801

	802

	803

	804

	805

	806

	807

	808

	809

	810

	811

	812

	813

	814

	815

	816

	817

	818

	819

	820

	821

	822

	823

	824

	825

	826

	827

	828

	829

	830

	831

	832

	833

	834

	835

	836

	837

	838

	839

	840

	841

	842

	843

	844

	845

	846

	847

	848

	849

	850

	851

	852

	853

	854

	855

	856

	857

	858

	859

	860

	861

	862

	863

	864

	865

	866

	867

	868

	869

	870

	871

	872

	873

	874

	875

	876

	877

	878

	879

	880

	881

	882

	883

	884

	885

	886

	887

	888

	889

	890

	891

	892

	893

	894

	895

	896

	897

	898

	899

	900

	901

	902

	903

	904

	905

	906

	907

	908

	909

	910

	911

	912

	913

	914

	915

	916

	917

	918

	919

	920

	921

	922

	923

	924

	925

	926

	927

	928

	929

	930

	931

	932

	933

	934

	935

	936

	937

	938

	939

	940

	941

	942

	943

	944

	945

	946

	947

	948

	949

	950

	951

	952

	953

	954

	955

	956

	957

	958

	959

	960

	961

	962

	963

	964

	965

	966

	967

	968

	969

	970

	971

	972

	973

	974

	975

	976

	977

	978

	979

	980

	981

	982

	983

	984

	985

	986

	987

	988

	989

	990

	991

	992

	993

	994

	995

	996

	997

	998

	999

	1000

	1001

	1002

	1003

	1004

	1005

	1006

	1007

	1008

	1009

	1010

	1011

	1012

	1013

	1014

	1015

	1016

	1017

	1018

	1019

	1020

	1021

	1022

	1023

	1024

	1025

	1026

	1027

	1028

	1029

	1030

	1031

	1032

	1033

	1034

	1035

	1036

	1037

	1038

	1039

	1040

	1041

	1042

	1043

	1044

	1045

	1046

	1047

	1048

	1049

	1050

	1051

	1052

	1053

	1054

	1055

	1056

	1057

	1058

	1059

	1060

	1061

	1062

	1063

	1064

	1065

	1066

	1067

	1068

	1069

	1070

	1071

	1072

	1073

	1074

	1075

	1076

	1077

	1078

	1079

	1080

	1081

	1082

	1083

	1084

	1085

	1086

	1087

	1088

	1089

	1090

	1091

	1092

	1093

	1094

	1095

	1096

	1097

	1098

	1099

	1100

	1101

	1102

	1103

	1104

	1105

	1106

	1107

	1108

	1109

	1110

	1111

	1112

	1113

	1114

	1115

	1116

	1117

	1118

	1119

	1120

	1121

	1122

	1123

	1124

	1125

	1126

	1127

	1128

	1129

	1130

	1131

	1132

	1133

	1134

	1135

	1136

	1137

	1138

	1139

	1140

	1141

	1142

	1143

	1144

	1145

	1146

	1147

	1148

	1149

	1150

	1151

	1152

	1153

	1154

	31-1

	31-2

	31-3

	31-4

	31-5

	31-6

	31-7

	31-8

	31-9

	31-10

	31-11

	31-12

	31-13

	31-14

	31-15

	31-16

	31-17

	31-18

	31-19

	31-20

	31-21

	31-22

	31-23

	31-24

	31-25

	31-26

	31-27

	31-28

	31-29

	31-30

	31-31

	31-32

	31-33

	31-34

	31-35

	31-36

	31-37

	31-38

	31-39

	31-40

	31-41

	31-42

	31-43

	31-44

	31-45

	31-46

	31-47

	31-48

	31-49

	32-1

	32-2

	32-3

	32-4

	32-5

	32-6

	32-7

	32-8

	32-9

	32-10

	32-11

	32-12

	32-13

	32-14

	32-15

	32-16

	32-17

	32-18

	32-19

	32-20

	32-21

	32-22

	32-23

	32-24

	32-25

	32-26

	32-27

	32-28

	32-29

	32-30

	32-31

	32-32

	32-33

	32-34

	32-35

	32-36

	32-37

	32-38

	32-39

	32-40

	32-41

	32-42

	33-1

	33-2

	33-3

	33-4

	33-5

	33-6

	33-7

	33-8

	33-9

	33-10

	33-11

	33-12

	33-13

	33-14

	33-15

	33-16

	33-17

	33-18

	33-19

	33-20

	33-21

	33-22

	33-23

	33-24

	33-25

	33-26

	33-27

	33-28

	33-29

	33-30

	33-31

	33-32

	33-33

	34-1

	34-2

	34-3

	34-4

	34-5

	34-6

	34-7

	34-8

	34-9

	34-10

	34-11

	34-12

	34-13

	34-14

	34-15

	34-16

	34-17

	34-18

	34-19

	34-20

	34-21

	34-22

	34-23

	34-24

	34-25

	34-26

	34-27

	34-28

	34-29

	34-30

	34-31

	34-32

	34-33

	34-34

	34-35

	34-36

	34-37

	34-38

	34-39

	35-1

	35-2

	35-3

	35-4

	35-5

	35-6

	35-7

	35-8

	35-9

	35-10

	35-11

	35-12

	35-13

	35-14

	35-15

	35-16

	35-17

	35-18

	35-19

	35-20

	35-21

	35-22

	35-23

	35-24

	35-25

	35-26

	36-1

	36-2

	36-3

	36-4

	36-5

	36-6

	36-7

	36-8

	36-9

	36-10

	36-11

	36-12

	36-13

	36-14

	36-15

	36-16

	36-17

	36-18

	36-19

	36-20

	36-21

	36-22

	36-23

	36-24

	36-25

	36-26

	36-27

	36-28

	36-29

	36-30

	36-31

	36-32

	36-33

	37-1

	37-2

	37-3

	37-4

	37-5

	37-6

	37-7

	37-8

	37-9

	37-10

	37-11

	37-12

	37-13

	37-14

	37-15

	37-16

	37-17

	37-18

	37-19

	37-20

	37-21

	37-22

	37-23

	37-24

	37-25

	37-26

	37-27

	37-28

	37-29

	37-30

	37-31

	37-32

	37-33

	37-34

	37-35

	37-36

	37-37

	37-38

	37-39

	37-40

	37-41

	37-42

	37-43

	37-44

	37-45

	37-46

	38-1

	38-2

	38-3

	38-4

	38-5

	38-6

	38-7

	38-8

	38-9

	38-10

	38-11

	38-12

	38-13

	38-14

	38-15

	38-16

	38-17

	38-18

	38-19

	38-20

	38-21

	38-22

	38-23

	38-24

	38-25

	38-26

	38-27

	38-28

	38-29

	38-30

	38-31

	38-32

	38-33

	38-34

	39-1

	39-2

	39-3

	39-4

	39-5

	39-6

	39-7

	39-8

	39-9

	39-10

	39-11

	39-12

	39-13

	39-14

	39-15

	39-16

	39-17

	39-18

	39-19

	39-20

	39-21

	39-22

	39-23

	39-24

	39-25

	39-26

	39-27

	39-28

	39-29

	39-30

	39-31

	39-32

	39-33

	39-34

	39-35

	39-36

	39-37

	39-38

	39-39

	39-40

	39-41

	39-42

	39-43

	39-44

	39-45

	39-46

	39-47

	39-48

	39-49

	39-50

	39-51

	39-52

	40-1

	40-2

	40-3

	40-4

	40-5

	40-6

	40-7

	40-8

	40-9

	40-10

	40-11

	40-12

	40-13

	40-14

	40-15

	40-16

	40-17

	40-18

	40-19

	40-20

	40-21

	40-22

	40-23

	40-24

	40-25

	41-1

	41-2

	41-3

	41-4

	41-5

	41-6

	41-7

	41-8

	41-9

	41-10

	41-11

	41-12

	41-13

	41-14

	41-15

	41-16

	41-17

	41-18

	41-19

	41-20

	41-21

	41-22

	41-23

	42-1

	42-2

	42-3

	42-4

	42-5

	42-6

	42-7

	42-8

	42-9

	42-10

	42-11

	42-12

	42-13

	42-14

	42-15

	42-16

	42-17

	42-18

	42-19

	42-20

	42-21

	42-22

	42-23

	42-24

	42-25

	42-26

	42-27

	42-28

	43-1

	43-2

	43-3

	43-4

	43-5

	43-6

	43-7

	43-8

	43-9

	43-10

	43-11

	43-12

	43-13

	43-14

	43-15

	43-16

	43-17

	43-18

	43-19

	43-20

	43-21

	43-22

	43-23

	43-24

	43-25

	43-26

	43-27

	43-28

	43-29

	43-30

	44-1

	44-2

	44-3

	44-4

	44-5

	44-6

	44-7

	44-8

	44-9

	44-10

	44-11

	44-12

	44-13

	44-14

	44-15

	44-16

	1155

	1156

	1157

	1158

	1159

	1160

	1161

	1162

	1163

	1164

	1165

	1166

	1167

	1168

	1169

	1170

	1171

	1172

	1173

	1174

	1175

	1176

	1177

	1178

	1179

	1180

	1181

	1182

	1183

	1184

	1185

	1186

	1187

	1188

	1189

	1190

	1191

	1192

	1193

	1194

	1195

	1196

	1197

	1198

	1199

	1200

	1201

	1202

	1203

	1204

	1205

	1206

	1207

	1208

	1209

	1210

6 boxes connect to a horizontal line. The line represents the bus, and the boxes represent the components of a computer, as follows: storage devices, such as disk, C D, and tape; memory; C P U; communication devices, such as modem and N I C; input devices, such as keyboard and mouse; output devices, such as monitor and printer.

The data shown are as follows by row, listing memory address, then memory content, then content description: 2000, 0 1 0 0 0 0 1 1, encoding for the character C; 2001, 0 1 1 1 0 0 1 0, encoding for the character r; 2002, 0 1 1 0 0 1 0 1, encoding for the character e; 2003, 0 1 1 1 0 1 1 1, encoding for the character w; 2004, 0 0 0 0 0 0 1 1, the decimal number 3.

The statement reads as follows: area = 5, asterisk, 5, asterisk, 3.1415, semicolon. In figure ay, the interpreter translates the statement directly from the high-level source file into output, on the monitor. In figure b, the compiler translates the statement from the high-level source file into the machine code file as follows, by row: 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0; 1 1 1 1 1 0 0 0 1 1 0 0 01 0 0. Then, the executor translates the digits from the machine-code file into output, on the monitor.

Line 1: public class, Welcome, opening brace. Line 2, 1 indent: public static void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 3, 2 indents: System dot out dot print l n, opening parenthesis, “Welcome to Java!”, closing parenthesis, semicolon. Line 4, 1 indent: closing brace. Line 5: closing brace. The braces in lines 1 and 5 enclose the class block. The braces in lines 2 and 4 enclose the method block.

Top to bottom, the flow chart has the following elements: a box labeled, create or modify source code; a cylinder labeled, source code; a box labeled, compile source code, such as java c, Welcome dot java; a cylinder labeled, bytecode; a box labeled, run bytecode, such as java, Welcome; a terminal labeled, result. After the developer creates or modifies source code, it is saved on the disk, and then compiled. If compile errors occur, return to the first box. If no compile errors occur, the bytecode is stored on the disk. Finally, running the bytecode leads to the terminal, result. If runtime errors or incorrect results occur, return to the first box. Otherwise, the console displays output, Welcome to Java!

Figure ay shows a diagram with 3 steps. Step 1: the Java source code file, Welcome dot Java, is compiled by the Java compiler. Step 2: the compiler generates the Java bytecode executable file, Welcome dot class. Step 3: Welcome dot class, and the library code, are executed by a Java Virtual Machine. Figure b shows three concentric circles. Moving from the outside to the center, these circles represent the Java bytecode, a Java Virtual Machine, and any computer.

The command prompt reads, c, colon, backslash, book, >. To compile, enter the command, java c Welcome dot java. To show files, enter the command, d i r Welcome dot asterisk. The window displays the following output. Line 1: Volume in drive C is BOOTCAMP. Line 2: Volume Serial Number is 8 2 C 4 hyphen 0 6 B 5. Line 3: Directory of c, colon, backslash, book. Line 4: 03, forward slash, 02, forward slash, 2015, 08, colon, 33 Ay M, 424 Welcome dot class. Line 5: 08, forward slash, 05, forward slash, 2014, 02, colon, 08 P M, 179 Welcome dot java. Line 6: 2 File, opening parenthesis, s, closing parenthesis, 603 bytes. Line 7: zero D i r, opening parenthesis, s, closing parenthesis, 76,185,223,168 byes free. To run the program, enter the command, java Welcome. The window displays the following: Welcome to Java!

To compile, enter the command, java c, Show Syntax Errors dot java. The window displays the following output. Line 1: Show Syntax Errors dot java, colon, 2, colon, error, colon, invalid method declaration, semicolon, return type required. Line 2, 1 indent: public static main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Note: subscripted caret under letter m in the word, main. Line 3: blank. Line 4: Show Syntax Errors dot java, colon, 3, colon, error, colon, unclosed string literal. Line 5, 1 indent: System dot out dot print l n, opening parenthesis, “Welcome to Java, closing parenthesis, semicolon. Note: subscripted caret under opening double quotation mark. Line 6: blank. Line 7: Show Syntax Errors dot java, colon, 3, colon, error, colon, opening single quotation, semicolon, closing single quotation, expected. Line 8, 1 indent: System dot out dot print l n, opening parenthesis, “Welcome to Java, closing parenthesis, semicolon, followed by subscripted caret. Line 9: blank. Line 10: Show Syntax Errors dot java, colon, 5, colon, error, colon, reached end of file while parsing. Line 11: closing bracket, followed by subscripted caret. Line 12: 4 errors.

Running the command, java Show Runtime Errors, produces the following output: Line 1: Exception in thread “main” java dot l ay n g dot Arithmetic Exception, colon, forward slash, by zero. Line 2, 1 indent: at Show Runtime Errors dot main, opening parenthesis, Show Runtime Errors dot java, colon, 4, closing parenthesis.

The dialog is divided into a smaller left panel and a larger right panel. The left panel is titled, steps. Step 1 is, choose project. The right panel displays options for step 1. Below a blank search bar, the panel has side-by-side lists titled, categories, and projects. Categories are as follows: Java, selected; Java F X; Maven; Net Beans Modules; Samples, expandable. Projects are as follows: Java Application, selected; Java Class Library; Java Project with Existing Sources; Java Free-Form Project. Below the side-by-side lists, a scrolling text box titled, description, provides details about the selections. Below the right panel, a row of right-aligned buttons are labeled as follows: back, next, finish, cancel, help.

The dialog’s left panel displays step 2, name and location. The right panel displays options for step 2, configured as follows. Input field, project name: demo. Input field, project location: C, colon, backslash, michael, followed by a button labeled, browse. Grayed out field, project folder: C, colon, backslash, michael, backslash, demo. Empty checkbox, use dedicated folder for storing libraries. Empty checkbox, create main class.

Below a row of menu buttons, and a row of icon buttons, the window is divided into a smaller left pane and a larger right pane, which is currently blank. The left pane has tabs titled services, files, and projects, which is selected. The pane shows a hierarchical file structure, in which a folder titled, demo, is selected. This folder is expanded to show subfolders titled, Source Packages, and Libraries. The Source Packages folder is expanded to show a file titled, < default package >.

The dialog’s left panel contains a list of steps, as follows: step 1, choose file type; step 2, name and location. The right panel displays options for step 2, configured as follows. Input field, class name: Welcome. Grayed-out field, project: demo. Drop-down, location: Source Packages. Drop-down, package: blank. Grayed-out field, created file: C, colon, backslash, michael, backslash, demo, backslash, s r c, backslash, Welcome dot java. Below the created file field, the visible portion of a warning reads, it is highly recommended that you do not, before being cut off.

Below the window’s rows of menu and icon buttons, the window’s left and right panes are now split into top and bottom panes. The top left pane shows the hierarchical file structure, with the < default package > folder expanded to show the selected source code file, Welcome dot java. The bottom left pane has a tab titled, Welcome dash Navigator. It shows a hierarchical structure with level 1 reading, Welcome, and level 2 reading, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis. Level 1 is selected. The right side of the window is now divided into the edit pane on the top, and the output pane on the bottom. The edit pane has tabs titled, Welcome dot java, and, Start Page. The first tab is selected, and displays code as follows. Line 1: forward slash, forward slash, This application program prints, Welcome to Java! Line 2: public class, Welcome, begin shading, opening brace, end shading. Line 3, 1 indent: public static void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 4, 2 indents: System dot out dot print l n, opening parenthesis, “Welcome to Java!”, closing parenthesis, semicolon. Line 5, 1 indent: closing brace. Line 6, shaded: closing brace. The output pane a tab titled, Output dash demo, opening parenthesis, run, closing parenthesis. It displays text as follows. Line 1: run, colon. Line 2: Welcome to Java! Line 3: BUILD SUCCESSFUL, opening parenthesis, total time, colon, 0 seconds, closing parenthesis.

The dialog’s options are configured as follows. Project name: demo. Filled checkbox, use default location. Grayed-out field, location: C, colon, backslash, Users, backslash, Daniel, backslash, workspace, backslash, demo, followed by a grayed-out browse button. The remainder of the dialog’s options are divided into 3 groups: J R E, project layout, and working. In the J R E group, select the radio button labeled, use an execution environment J R E. In the drop-down, select, O S G i, forward slash, Minimum dash 1.2. In the project layout group, select the radio button labeled, use project folder as root for sources and class files. There is a checkbox in the working sets group, labeled, add project to working sets. Leave this box blank, then click the Finish button.

Below rows of menu buttons and drop-downs, the window is divided into several panes, which can each display a selection of tabs. The left panel shows a hierarchical file structure, in which a folder titled, demo, is selected. In the top middle panel, the selected tab is titled, Server dot java. The panel is currently blank. The top-right panel displays a selection of icon buttons. In the bottom panel, the selected tab is titled, console. The panel reads, No consoles to display at this time.

A warning at the top of the dialog reads, The use of the default package is discouraged. Options are configured as follows. Input field, source folder: demo, with a browse button. Input field, package: blank, default, with a browse button. Checkbox, enclosing type: not checked, followed by a blank, grayed out input field and browse button. Input field, name: Welcome. Radio buttons, modifiers: public, selected. Input field, superclass: java dot l ay n g dot Object. Input field, interfaces: blank, with buttons labeled Add, and Remove, grayed out. Checkboxes, which method stubs would you like to create, question mark: public static void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, checked; constructors from superclass, not checked; inherited abstract methods, not checked. Checkboxes, do you want to add comments, with a link to configure templates and default value: generate comments, not checked. The buttons in the dialog’s bottom right corner are labeled finish, and cancel.

Flow charts begin and end at terminals, indicated here by small circles at the top and bottom of the figures. The flow chart in figure ay is as follows. Beginning at the top terminal, go to Boolean condition, Boolean dash expression. If false, go to the bottom terminal. If true, go to the statement, or statements, then to the bottom terminal. The flow chart in figure b is as follows. Beginning at the top terminal, go to Boolean condition, opening parenthesis, radius > = 0, closing parenthesis. If false, go to the bottom terminal. If true, go to the statement, then to the bottom terminal. The statement reads as follows. Line 1: area = radius, asterisk, radius, asterisk, P I, semicolon. Line 2: System dot out dot print l n (, "The area for the circle of" +. Line 3, 1 indent: " radius " + radius + " is " + area, closing parenthesis, semicolon.

Box ay contains wrong code, as follows. Line 1: if, i > 0, opening brace. Line 2: System dot out dot print l n, opening parenthesis, “i is positive", closing parenthesis, semicolon. Line 3: closing brace. Box b contains correct code, as follows. Line 1: if, shaded opening parenthesis, i > 0, shaded closing parenthesis, opening brace. Line 2: System dot out dot print l n, opening parenthesis, “i is positive", closing parenthesis, semicolon. Line 3: closing brace.

Box ay contains code as follows. Line 1: if, opening parenthesis, i > 0, closing parenthesis, shaded opening brace. Line 2: System dot out dot print l n, opening parenthesis, “i is positive", closing parenthesis, semicolon. Line 3: shaded closing brace. Box b contains code as follows. Line 1: if, opening parenthesis, i > 0, closing parenthesis. Line 2: System dot out dot print l n, opening parenthesis, “i is positive”, closing parenthesis, semicolon.

The flow chart reads as follows. Terminal: start. Boolean condition: Boolean-expression. If true or false, go to the statement or statements for the true or false case, respectively. Both paths then meet and go to terminal: stop.

Box ay contains the following code. Line 1: if, opening parenthesis, score > = 90, closing parenthesis. Line 2, 1 indent: System dot out dot print, opening parenthesis, "Ay", closing parenthesis, semicolon. Line 3: else. Line 4, 1 indent: if, opening parenthesis, score > = 80, closing parenthesis. Line 5, 2 indents: System dot out dot print, opening parenthesis, "B", closing parenthesis, semicolon. Line 6, 1 indent: else. Line 7, 2 indents: if, opening parenthesis, score > = 70, closing parenthesis. Line 8, 3 indents: System dot out dot print, opening parenthesis, "C", closing parenthesis, semicolon. Line 9, 2 indents: else. Line 10, 3 indents: if, opening parenthesis, score > = 60, closing parenthesis. Line 11, 4 indents: System dot out dot print, opening parenthesis, "D", closing parenthesis, semicolon. Line 12, 3 indents: else. Line 13, 4 indents: System dot out dot print, opening parenthesis, "F", closing parenthesis, semicolon. Box B contains equivalent but better code, as follows. Line 1: if, opening parenthesis, score > = 90, closing parenthesis. Line 2, 1 indent: System dot out dot print, opening parenthesis, "Ay", closing parenthesis, semicolon. Line 3: else, if, opening parenthesis, score > = 80, closing parenthesis. Line 4, 1 indent: System dot out dot print, opening parenthesis, "B", closing parenthesis, semicolon. Line 5: else, if, opening parenthesis, score > = 70, closing parenthesis. Line 6, 1 indent: System dot out dot print, opening parenthesis, "C", closing parenthesis, semicolon. Line 7: else, if, opening parenthesis, score > = 60, closing parenthesis. Line 8, 1 indent: System dot out dot print, opening parenthesis, "D", closing parenthesis, semicolon. Line 9: else. Line 10, 1 indent: System dot out dot print, opening parenthesis, "F", closing parenthesis, semicolon.

The flow chart reads as follows. Terminal, start. Condition, score > = 90. If true, go to statement, grade is Ay. If false, go to condition, score > = 80. If true, go to statement, grade is B. If false, go to condition, score > = 70. If true, go to statement, grade is C. If false, go to condition, score > = 60. If true, go to statement, grade is D. If false, go to statement, grade is F. All grading statements lead to terminal, stop.

Boxes ay and b contain equivalent code. In Box ay, shading indicates a logic error. The code reads as follows. Line 1: if, opening parenthesis, radius > = 0, closing parenthesis, begin shading, semicolon, end shading. Line 2: opening brace. Line 3, 1 indent: area = radius, asterisk, radius, asterisk, P I, semicolon. Line 4, 1 indent: System dot out dot print l n, opening parenthesis, "The area ". Line 5, 2 indents: + " is " + area, closing parenthesis, semicolon. Line 6: closing brace. In box b, shading indicates an empty block in line 1, which reads as follows: if, opening parenthesis, radius > = 0, closing parenthesis, begin shading, opening brace, closing brace, end shading, semicolon. The remainder of the code is identical to the code in Box ay.

Boxes ay and b contain equivalent code. The code in box ay reads as follows: Line 1: if, opening parenthesis, even, double equals sign, true, closing parenthesis. Line 2, 1 indent: System dot out dot print l n, opening parenthesis. Line 3, 2 indents: “ It is even, period”, closing parenthesis, semicolon. The first line of code is improved in box b, where it reads as follows: opening parenthesis, even, closing parenthesis.

Box ay contains code as follows, with shading on indentation that can be improved. Line 1: i n t, i = 1, comma, j = 2, comma, k = 3, semicolon. Line 2: blank. Line 3: if, opening parenthesis, i > j, closing parenthesis. Line 4, 1 indent: begin shading, if, end shading, opening parenthesis, i > k, closing parenthesis. Line 5, 2 indents: System dot out dot print l n, opening parenthesis, "Ay", closing parenthesis, semicolon. Line 6: begin shading, else, end shading. Line 7, 2 indents: System dot out dot print l n, opening parenthesis, "B", closing parenthesis, semicolon. Box b contains better code as follows, with shading on correct indentation. Line 1: i n t, i = 1, comma, j = 2, comma, k = 3, semicolon. Line 2: blank. Line 3: if, opening parenthesis, i > j, closing parenthesis. Line 4, 1 indent: begin shading, if, end shading, opening parenthesis, i > k, closing parenthesis. Line 5, 2 indents: System dot out dot print l n, opening parenthesis, "Ay", closing parenthesis, semicolon. Line 6, 1 indent: begin shading, else, end shading. Line 7, 2 indents: System dot out dot print l n, opening parenthesis, "B", closing parenthesis, semicolon.

Boxes ay and b contain equivalent code, but the code in b is better. Box ay reads as follows. Line 1: if, opening parenthesis, number % 2, double equals sign, 0, closing parenthesis. Line 2, 1 indent: even = true, semicolon. Line 3: else. Line 4, 1 indent: even = false, semicolon. Box b reads as follows. Line 1: boolean, even. Line 2, 1 indent: = number % 2, double equals sign, 0, semicolon.

Box ay reads as follows. Line 1: if, opening parenthesis, i > 0, closing parenthesis, if. Line 2: opening parenthesis, j > 0, closing parenthesis. Line 3: x = 0, semicolon, else. Line 4: if, opening parenthesis, k > 0, closing parenthesis, y = 0, semicolon. Line 5: else, z = 0, semicolon. Box b reads as follows. Line 1: if, opening parenthesis, i > 0, closing parenthesis, opening brace. Line 2, 1 indent: if, opening parenthesis, j > 0, closing parenthesis. Line 3, 2 indents: x = 0, semicolon. Line 4, 1 indent: else, if, opening parenthesis, k > 0, closing parenthesis. Line 5, 2 indents: y = 0, semicolon. Line 6: closing brace. Line 7: else. Line 8, 1 indent: z = 0, semicolon. Box c reads as follows. Line 1: if (i > 0)
Line 2, 1 indent: if, opening parenthesis, j > 0, closing parenthesis. Line 3, 2 indents: x = 0, semicolon. Line 4, 1 indent: else, if, opening parenthesis, k > 0, closing parenthesis. Line 5, 2 indents: y = 0, semicolon. Line 6, 1 indent: else. Line 7, 2 indents: z = 0, semicolon. Box d reads as follows. Line 1: if, opening parenthesis, i > 0, closing parenthesis. Line 2, 1 indent: if, opening parenthesis, j > 0, closing parenthesis. Line 3, 2 indents: x = 0, semicolon. Line 4, 1 indent: else, if, opening parenthesis, k > 0, closing parenthesis. Line 5, 2 indents: y = 0, semicolon. Line 6: else. Line 7, 1 indent: z = 0, semicolon.

Switches are represented by smaller, diamond-shaped rectangles, connected in chains, with the flow either leading from a switch to a statement, or to the next switch. The flow chart reads as follows. Terminal, start. Switch, status is 0: statement, compute tax for single filers; statement, break; terminal, end. Switch, status is 1: statement, compute tax for married jointly or qualifying widow, or widower; statement, break; terminal, end. Switch, status is 2: compute tax for married filing separately; statement, break; terminal, end. Switch, status is 3: statement, compute tax for head of household; statement, break; terminal, end. Switch, default: statement, default actions; terminal, end.

Figures ay, b, and c each show lines extending between pairs of points. The first line extends between (x 1, y 1) and (x 2, y 2), which are positioned consistently in each figure, so the line always rises. The second line changes in each figure. In figure ay, the second line falls from (x 3, y 3) to (x 4, y 4), intersecting the first line at an unknown point. In figure b, the second line falls from an unknown point on the first line, through (x 3, y 3), to (x 4, y 4). In figure c, points (x 3, y 3) and (x 4, y 4) are positioned such that the line between them is parallel to the first line.

Both figures show two rectangles. The larger rectangle has height h 1 and width w 1, and its central point is labeled, (x, 1, y 1). The smaller rectangle has height h 2 and width w 2, and its central point is labeled, (x 2, y 2). In figure ay, the smaller rectangle lies entirely inside the larger one. In figure b, the smaller rectangle’s midpoint lies outside the larger rectangle, so the shapes only partially overlap.

Both figures show two circles. The larger circle is centered on (x 1, y 1), with radius r 1. The smaller circle is centered on (x 2, y 2) with radius r 2. In figure ay, the smaller circle lies entirely inside the larger one. In figure b, the smaller circle’s midpoint lies outside the larger circle, so the shapes only partially overlap.

The triangle has sides ay, b, and c, which are opposite angles Ay, B, and C, respectively. Side ay extends between points (x sub 2, y sub 2) and (x sub 3, y sub 3). Side b extends between points (x sub 3, y sub 3) and (x sub 1, y sub 1). Side c extends between points (x sub 1, y sub 1) and (x sub 2, y sub 2). The following formulas are shown next to the triangle. A = ay c o s, opening parenthesis, opening parenthesis, ay, asterisk, ay, minus b, asterisk, b, minus c, asterisk, c, closing parenthesis, forward slash, opening parenthesis, negative 2, asterisk, b, asterisk, c, closing parenthesis, closing parenthesis. B = ay c o s, opening parenthesis, opening parenthesis, b, asterisk, b, minus ay, asterisk, ay, minus c, asterisk, c, closing parenthesis, forward slash, opening parenthesis, negative 2, asterisk, ay, asterisk, c, closing parenthesis, closing parenthesis. C = ay c o s, opening parenthesis, opening parenthesis, c, asterisk, c, minus b, asterisk, b, minus ay, asterisk, ay, closing parenthesis, forward slash, opening parenthesis, negative 2, asterisk, ay, asterisk, b, closing parenthesis, closing parenthesis.

The string displays the 15-character message, so message dot length, opening parenthesis, closing parenthesis, is 15. The displayed message reads, Welcome to Java. The characters are arranged in an array, consisting of a row of 15 boxes, or elements, with index numbers zero to 14, left to right. The character contained in each element is the value corresponding to that index. The following list provides the index for each element, followed by its value: 0, W; 1, e; 2, l; 3, c; 4, o; 5, m; 6, e; 7, blank; 8, t; 9, o; 10, blank; 11, J; 12, ay; 13, v; 14, ay. The code, message dot c h ay r At, opening parenthesis, 0, closing parenthesis, corresponds to the array’s first letter, W, so the code, message dot c h ay r At, opening parenthesis, 14, closing parenthesis, corresponds to the last letter, the second ay in Java.

The array, message, has 15 elements with index numbers 0 to 14, and reads, Welcome, space, to, space, Java. The first two words, and the spaces after them, correspond to the code, message dot substring, opening parenthesis, 0, comma, 11, closing parenthesis. The last four elements, containing the word, Java, correspond to the code, message dot substring, opening parenthesis, 11, closing parenthesis.

The numbers 0 to 8 correspond to the 9 characters in the name, Kim Jones, in sequence, including the space between the first and last names. The code for k is, 3. The code for Kim is, s dot substring, opening parenthesis, 0, comma, k, closing parenthesis. The code for Jones is, s dot substring, opening parenthesis, k + 1, closing parenthesis.

Figure ay contains a truncated list of decimal values, and their binary equivalents, as follows: 1, 0 0 0 0 1; 2, 0 0 0 1 0; 3, 0 0 0 1 1; 19, 1 0 0 1 1; 31, 1 1 1 1 1. Figure b shows a method for acquiring a binary number with up to 5 digits, by adding the values for the numbers b sub 5, b sub 4, b sub 3, b sub 2, b sub 1. The binary for decimal value 19 = 10,000 + 10 + 1 = 10,011. The binary for decimal value 31 = 10,000 + 1,000 + 100 + 10 + 1 = 11,111.

The code reads as follows. Line 1: double amount = 12618.98, semicolon. Line 2: double interest Rate = 0.0013, semicolon. Line 3: double interest = amount, asterisk, interest Rate, semicolon. Line 4: System dot out dot print f, opening parenthesis, “Interest is, dollar sign, begin shading, % 4.2, f,", comma. Line 5, 1 indent: interest, closing parenthesis, semicolon. In the shaded code, 4.2 f, 4 and 2 specify field width and precision, respectively, and f is the format specifier.

The code reads as follows. Line 1: i n t, count = 5, semicolon. Line 2: double amount = 45.56, semicolon. Line 3: System dot out dot print f, opening parenthesis, “count is % d and amount is % f", count, comma, amount, closing parenthesis, semicolon. In line 3, the format specifiers, % d and % f, correspond to the items at the end of the line, count and amount, respectively. The code displays, count is 5 and amount is 45.560000.

In figure ay, line segments extend between three points on the circumference of the circle, forming a triangle with angles marked as follows: 55, 60, 65. Figure b shows the graph of x = r times cosine of alpha, and y = r times sine of alpha. A right triangle is graphed inside the circle, with its hypotenuse extending from the circle’s center point at (0, 0) to point (x, y) on the circumference, so the hypotenuse has length, r. The triangle’s other 2 legs are positioned horizontally and vertically, and the angle formed by the hypotenuse and the horizontal leg, opposite the vertical leg, is marked, alpha. In figure c, five points labeled P 1 to P 5 are positioned at even intervals counterclockwise around the circumference of the circle, with P 1 at the top right of the circle. Line segments extend between adjacent points, forming a regular pentagon inside the circle, with radius r extending from (0, 0) to point P 3.

The standard phone keypad has 12 buttons arranged in 4 rows and 3 columns. The first three rows contain numbers 1 to 3, 4 to 6, and 7 to 9, and the bottom row contains the asterisk, or star, zero, and the number sign. Most of the buttons also have letters written on them, as follows. 2: ay, b, c. 3: d, e, f. 4: g, h, i. 5: j, k, l. 6: m, n, o. 7: p, q, r, s. 8: t, u, v. 9: w, x, y, z.

The flow chart in figure ay is as follows. From the start terminal, go to the statement or statements before the loop body, and then to the condition, loop-continuation-condition, question mark. If condition is true, return to the condition. If condition is false, go to the stop terminal. The flow chart in figure b is as follows. From the start terminal, go to statement, count = 0, semicolon, and then to the condition, opening parenthesis, count < 100, closing parenthesis, question mark. If condition is true, go to statement, line 1, System dot out dot print l n, opening parenthesis, “Welcome to Java!”, closing parenthesis, semicolon, line 2, count + +, semicolon, then return to the condition. If condition is false, go to the stop terminal.

A code diagram, with the loop-continuation-condition in line 2, and its loop body in lines 2 to 4. Line 1: i n t, count = 0, semicolon. Line 2: while, opening parenthesis, count < 100, closing parenthesis, closing brace. Line 3, 1 indent: System dot out dot print, l n, opening parenthesis, "Welcome to Java!", closing parenthesis, semicolon. Line 4, 1 indent: count + +, semicolon. Line 5: closing brace.

The flow chart in figure ay is as follows. From the start terminal, go to the statement or statements before the loop, then to the statement or statements in the loop body, and then to the condition, loop-continuation-condition, question mark. If condition is true, return to the statement or statements immediately preceding the condition. If condition is false, go to the stop terminal. The flow chart in figure b is as follows. From the start terminal, go to statement, count = 0, semicolon, and then to the statement, line 1, System dot out dot print l n, opening parenthesis, “Welcome to Java!”, closing parenthesis, semicolon, line 2, count + + semicolon, and then to the condition, opening parenthesis, count < 100, closing parenthesis, question mark. If condition is true, return to the statement preceding the condition. If condition is false, go to the stop terminal.

The flow chart in figure ay is as follows. From the start terminal, go to the statement, initial action, and then to the condition, loop-continuation-condition, question mark. If condition is true, go to the statement or statements in the loop body, then to the statement, action-after-each-iteration, and finally, back to the condition. If condition is false, go to the stop terminal. The flow chart in figure b is as follows. From the start terminal, go to statement, 1 = 0, then to the condition, opening parenthesis, 1 < 100, closing parenthesis, question mark. If condition is true, go to statement, System dot out dot print, l n, opening parenthesis, "Welcome to Java", closing parenthesis, semicolon, then to statement, 1 + +, then back to the condition. If condition is false, go to the stop terminal.

The code in all three boxes is equivalent, but box c’s is better than the others’. Box ay contains code as follows. Line 1: for, opening parenthesis, semicolon, semicolon, closing parenthesis, closing brace. Line 2, 1 indent: double forward slash, Do something. Line 3: closing brace. Box b contains code as follows. Line 1: for, opening parenthesis, semicolon, true, semicolon, closing parenthesis, closing brace. Line 2, 1 indent: double forward slash, Do something. Line 3: closing brace. Box c contains code as follows. Line 1: while, opening parenthesis, true, closing parenthesis, closing brace. Line 2, 1 indent: double forward slash, Do something. Line 3: closing brace.

Box ay contains code as follows. Line 1: while, opening parenthesis, loop-continuation-condition, closing parenthesis, closing brace. Line 2, 1 indent: double forward slash, Loop body. Line 3: closing brace. Box b contains code as follows. Line 1: for, opening parenthesis, semicolon, loop-continuation-condition, semicolon, closing parenthesis, closing brace. Line 2, 1 indent: double forward slash, Loop body. Line 3: closing brace.

Box ay contains code as follows. Line 1: for, opening parenthesis, initial-action, semicolon. Line 2, 1 indent: loop-continuation-condition, semicolon. Line 3, 1 indent: action-after-each-iteration, closing parenthesis, closing brace. Line 4, 1 indent: double forward slash, Loop body, semicolon. Line 5: closing brace. Box b contains code as follows. Line 1: initial-action, semicolon. Line 2: while, opening parenthesis, loop-continuation-condition, closing parenthesis, closing brace. Line 3, 1 indent: double forward slash, Loop body, semicolon. Line 4, 1 indent: action-after-each-iteration, semicolon. Line 5: closing brace.

Box ay contains code as follows. Line 1, with shading on an error: for, opening parenthesis, i n t, i = 0, semicolon, i < 10, semicolon, i + +, closing parenthesis, shaded semicolon. Line 2: closing brace. Line 3, 1 indent: System dot out dot print, l n, opening parenthesis, "i is, “, + i, closing parenthesis, semicolon. Line 4: closing brace. Box b contains code as follows. Line 1, with shading on an empty body: for, opening parenthesis, i n t, i = 0, semicolon, i < 10, semicolon, i, +, +, closing parenthesis, begin shading, opening brace, closing brace, semicolon, end shading. Line 2: closing brace. Line 3, 1 indent: System dot out dot print, l n, opening parenthesis, "i is, “, + i, closing parenthesis, semicolon. Line 4: closing brace.

Box c contains code as follows. Line 1: i n t, i = 0, semicolon. Line 2: while, opening parenthesis, i < 10, closing parenthesis, semicolon. Line 3: closing brace. Line 4, 1 indent: System dot out dot print, l n, opening parenthesis, "i is, “, + i, closing parenthesis, semicolon. Line 5, 1 indent: i + +, semicolon. Line 6: closing brace. Box d contains code as follows. Line 1: i n t, i = 0, semicolon. Line 2: while, opening parenthesis, i < 10, closing parenthesis, opening brace, closing brace, semicolon. Line 3: closing brace. Line 4, 1 indent: System dot out dot print, l n, opening parenthesis, "i is, “, + i, closing parenthesis, semicolon. Line 5, 1 indent: i + +, semicolon. Line 6: closing brace.

Line 1: i n t, i = 0, semicolon. Line 2: do, closing brace. Line 3, 1 indent: System dot out dot print, l n, opening parenthesis, "i is, “, + i, closing parenthesis, semicolon. Line 4, 1 indent: i + +, semicolon. Line 5, with shading to indicate correct coding to end the loop, colon closing brace, while, opening parenthesis, i < 10, closing parenthesis, shaded semicolon.

Dividing 127 by 16, the quotient is 7, and remainder h sub 0 is 11. The quotient becomes the dividend for the second calculation. Dividing 7 by 16, the new quotient is 0, and remainder h sub 1 is 7.

The first box contains code as follows. Line 1: i n t, sum = 0, semicolon. Line 2: for, opening parenthesis, i n t, i = 0, semicolon, i < 4, semicolon, i + +, closing parenthesis, closing brace. Line 3, 1 indent: if, opening parenthesis, i % 3, double equals sign, 0, closing parenthesis, continue, semicolon. Line 4, 1 indent: sum, + =, i, semicolon. Line 5: closing brace. After a wrong conversion, the second box contains code as follows. Line 1: i n t, i = 0, sum = 0, semicolon. Line 2: while, opening parenthesis, i < 4, closing parenthesis, closing brace. Line 3, 1 indent: if, opening parenthesis, i % 3, double equals sign, 0, closing parenthesis, continue, semicolon. Line 4, 1 indent: sum, + =, i, semicolon. Line 5, 1 indent: i + +, semicolon. Line 6: closing brace.

The first diagram shows how a method is defined.
Line 1 contains the method header, with elements as follows: modifier, static; return value type, i n t; method signature, containing method name, max, and a parameter list inside parentheses, consisting of the formal parameters, i n t, n u m 1, and, i n t, n u m 2. Note, the code in lines 3 to 10 forms the method body, with the return value in line 10. The code reads as follows.
Line 1 : public static, i n t, max, opening parenthesis, i n t, n u m 1, i n t, n u m 2, closing parenthesis, opening brace. Line 2: blank. Line 3, 1 indent: i n t, result, semicolon. Line 4: blank. Line 5, 1 indent: if, opening parenthesis, n u m 1, >, n u m 2, closing parenthesis. Line 6, 2 indents: result =, n u m 1, semicolon. Line 7, 1 indent: else. Line 8, 2 indents: result =, n u m 2, semicolon. Line 9: blank.
Line 1 0, 1 indent: return, result, semicolon.
Line 1 1: closing brace. The second diagram shows how a method is invoked. Note, when invoking a method, the actual parameters, or arguments, are the variables inside the parentheses.
Line 1 : i n t, z = max, opening parenthesis, x, y, closing parenthesis, semicolon.

The code in the first diagram is as follows.
Line 1 : public static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 2, 1 indent: i n t, i = 5, semicolon. Line 3, 1 indent: i n t, j = 2, semicolon. Line 4, 1 indent: i n t, k = max, opening parenthesis, i, j, closing parenthesis, semicolon. This code passes the values for i and j to the code, n u m 1, and, n u m 2, in line 1 of the code in the second diagram. Line 5: blank. Line 6, 1 indent: System dot out dot print l n, opening parenthesis. Line 7, 2 indents: "The maximum of, " + i +. Line 8, 2 indents: " and " + j + " is " + k, closing parenthesis, semicolon. Line 9: closing brace. The code in the second diagram is as follows.
Line 1 : public static, i n t, max, opening parenthesis, i n t, n u m 1, i n t, n u m 2, closing parenthesis, opening brace. Line 2, 1 indent: i n t, result, semicolon. Line 3: blank. Line 4, 1 indent: if, opening parenthesis, n u m 1, > n u m 2, closing parenthesis. Line 5, 2 indents: result =, n u m 1, semicolon. Line 6, 1 indent: else. Line 7, 2 indents: result =, n u m 2, semicolon. Line 8: blank. Line 9, 1 indent: return, result, semicolon. Control flows from here, to line 4 in the previous diagram, then back to line 1 of this diagram.
Line 1 0: closing brace.

In diagram ay, the main method is invoked, and its activation record is added to the stack. The record reads as follows by row: k, colon, blank; j, colon, 2; i, colon, 5. In diagram b, the max method is invoked. The i and j variables in the activation record for the main method are applied to the new activation record for the max method, at the top of the stack, which contains variables as follows by row: result, blank; n u m 2, 2; n u m 1, 5. In diagram c, the max method is executed, so the value for the result variable becomes, 5. In diagram d, the max method is finished, so it is removed from the stack, and the return value is sent to the k variable. So, the variables remaining in the stack are as follows: k, 5; j, 2; i, 5. In diagram e, the main method is finished, so the stack is empty.

In the first diagram, the main method is invoked, and its activation record is added to the stack, in the space required for the main method. The record reads as follows by row: n u m 2, colon, 2; n u m 1, colon, 1. In the second diagram, the swap method is invoked, and its activation record is added to the top of the stack, in the space required for the swap method, with the values of, n u m 1, and, n u m 2, passed to n 1 and n 2. The record reads as follows by row: temp, colon, blank; n 2, colon, 2; n 1, colon, 1. In the third diagram, the swap method is executed, so the values for n 1 and n 2 are swapped, but this does not affect, n u m 1, and, n u m 2, lower in the stack. In the fourth diagram, the swap method is finished, so it is removed from the stack, and the space required for the main method reads as it did before, by row: n u m 2, colon, 2; n u m 1, colon, 1. In the fifth diagram, the main method is finished, so the stack is empty.

In the following code, the scope of i extends from line 2 to line 4, and the scope of j extends from line 3 to line 4.
Line 1 : public static, void, method 1, opening parenthesis, closing parenthesis, opening brace. Line 2, 1 indent: for, opening parenthesis, i n t, i = 1, semicolon, i < 10, semicolon, i + +, closing parenthesis, opening brace. Line 3, 2 indents: i n t, j, semicolon. Line 4, 1 indent: closing brace. Line 5: closing brace.

The diagram to the left contains code as follows. Note, it is fine to declare, i, in two nonnested blocks."
Line 1 : public static, void, method 1, opening parenthesis, closing parenthesis, opening brace. Line 2: i n t, x = 1, semicolon. Line 3: i n t, y = 1, semicolon. Line 4: blank. Line 5: for, opening parenthesis, begin shading, i n t, i, end shading, = 1, semicolon, i < 10, semicolon, i + +, closing parenthesis, opening brace. Line 6: x, + =, i, semicolon. Line 7: closing brace. Line 8: blank. Line 9: for, opening parenthesis, begin shading, i n t, i, end shading, = 1, semicolon, i < 10, semicolon, i + +, closing parenthesis, opening brace.
Line 1 0: y, + =, i, semicolon.
Line 1 1: closing brace.
Line 1 2: closing brace. The diagram to the right contains code as follows. Note, it is wrong to declare, i, in two nested blocks.
Line 1 : public static, void, method 2, opening parenthesis, closing parenthesis, opening brace. Line 2: blank. Line 3, 1 indent: begin shading, i n t, i, end shading, = 1, semicolon. Line 4, 1 indent: i n t, sum = 0, semicolon. Line 5: blank. Line 6: for, opening parenthesis, begin shading, i n t, i, end shading, i n t, i = 1, semicolon, i < 10, semicolon, i + +, closing parenthesis. Line 7: sum, + =, i, semicolon. Line 8: closing brace. Line 9: blank.
Line 1 0: closing brace.

In figure ay, the problem is named, print Calendar, opening parenthesis, main, closing parenthesis. This problem branches to 2 sub problems, named, read Input, and, print Month. In figure b, print Month is the problem at the top of the chart, rather than a sub problem. It now has 2 sub problems, named print Month Title, and, print Month Body.

Chart ay has problem, get Start Day, and sub problem, get Total Number Of Days. Chart b has problem, get Total Number Of Days, leading to its first sub problem, get Number Of Days In Month. The problem and the sub problem both lead to sub problem, is Leap Year.

The main problem connects to the sub problems, read Input, and, print Month. The latter sub problem connects to the sub problems, print Month Title, and, print Month Body. Sub problem, print Month Title, connects to sub problem, get Month Name. Sub problem, print Month Body, connects to sub problem, get Start Day, and to sub problem, get Number of Days In Month. Sub problem, get Start Day, connects to, get Total Number Of Days, which connects to sub problem, is Leap Year, as does, get Number Of Days In Month.

Working from the right of the card number, 4388, 5760, 1840, 2626, the Luhn check is as follows. 2 times 2 = 4. 2 times 2 = 4. 4 times 2 = 8. 1 times 2 = 2. 6 times 2 = 12, and 1 + 2 = 3. 5 times 2 = 10, and 1 + 0 = 1. 8 times 2 = 16, and 1 + 6 = 7. 4 times 2 = 8.

The code, double, opening bracket, closing bracket, my List, = new, double, opening bracket, 10, closing bracket, semicolon, generates an array with the reference variable, my List, containing ten elements with index numbers, my List, opening bracket, 0, closing bracket, to, my List, opening bracket, 9, closing bracket. The following list provides the index for each element, followed by its value: 0, 5.6; 1, 4.5; 2, 3.3; 3, 13.2; 4, 4.0; 5, 34.33; 6, 34.0; 7, 45.45; 8, 99.993; 9, 1,123.

In diagram 1 the values, 0 to 51, are assigned to the 52 cards in the deck, which are broken into sets of 13 cards per suit, such that 0 to 12 are the 13 Spades, 13 to 25 are the 13 Hearts, 26 to 38 are the 13 Diamonds, and 39 to 51 are the 13 Clubs. In diagram 2 the array, deck, has 52 indices numbered 0 to 51, representing the order of the elements, or cards, in the deck. In diagram 3, after shuffling the array at random, the top 4 indices contain elements 6, 48, 11, and 24. Card number 6 is the 7, or, 6 % 13 = 6, of Spades, or, 6, forward slash, 13 is 0. Card number 48 is the 10, or, 48 % 13 = 9, of Clubs, or, 48, forward slash, 13 is 3. Card number 11 is the Queen, or, 11 % 13 = 11, of Spades, or, 11, forward slash, 13 is 0. Card number 24 is the Queen, or, 24 % 13 = 11, of Hearts, or, 24, forward slash, 13 is 1.

A card’s suit is determined by the code, card Number, forward slash, 13, with numbers corresponding to suits as follows: 0, Spades; 1, Hearts; 2, Diamonds; 3, Clubs. A card’s suit is determined by the code, card Number % 13, with numbers corresponding to card rank as follows: 0, Ace; 1, 2; 2, 3; 3, 4; 4, 5; 5, 6; 6, 7; 7, 8; 8, 9; 9, 10; 10, Jack; 11, Queen; 12, King.

The diagram to the left represents, before the assignment, list 2, =, list 1, semicolon. Here, list 1 connects to, contents of list 1, and list 2 connects to, contents of list 2. The diagram to the right represents, after the assignment, list 2, =, list 1, semicolon. Here, list 1 and list 2 connect to, contents of list 1, and nothing connects to, contents of list 2.

The stack contains activation records for the main method, and for method m, bottom to top. The main method’s record reads as follows.
Line 1 : i n t, opening bracket, closing bracket, y, colon. Line 2: i n t, x, colon, 1. These values are passed to the record for method m, which reads as follows.
Line 1 : i n t, opening bracket, closing bracket, numbers, colon. Line 2: i n t, number, colon, 1. In this case, the first line of each record is a reference to an array of ten, i n t, values.

The stack on the left contains the activation records for the main method, and the swap method, bottom to top. The main method’s record reads as follows.
Line 1 : i n t, opening bracket, closing bracket, ay. This is a reference to the arrays stored in the heap, as follows.
Line 1 : ay, opening bracket, 0, closing bracket, colon, 1. Line 2: ay, opening bracket, 1, closing bracket, colon, 2. These values are passed to the record for the swap method, with line 1 going to line 2, and line 2 going to line 1, such that the swap method’s record reads as follows.
Line 1 : n 2, colon, 2. Line 2: n 1, colon, 1. The stack on the right contains the activation records for the main method, and the, swap First Two In Array, method, bottom to top. The main method’s record reads as follows.
Line 1 : i n t, opening bracket, closing bracket, ay. Like the code in the diagram to the left, this code is a reference to the ay arrays stored in the heap. However, rather than the values in the arrays passing from the heap to the activation record at the top of the stack to the right, the code referring to the arrays passes from line 1 to the top of the stack. So, the activation record for the, swap First Two In Array, method reads as follows.
Line 1 : i n t, opening bracket, closing bracket, array. Note, this line is also a reference to the arrays in the heap.

Line 1: public static, i n t, opening bracket, closing bracket, reverse, opening parenthesis, i n t, opening bracket, closing bracket, list, closing parenthesis, opening brace. Line 2, 1 indent: i n t, opening bracket, closing bracket, result = new i n t, opening bracket, list dot length, closing bracket, semicolon. Line 3: blank. Line 4, 1 indent: for, opening parenthesis, i n t, i = 0, comma, j = result dot length minus 1, semicolon. Line 5, 3 indents: i <, list dot length, semicolon, i + +, comma, j minus minus, closing parenthesis, opening brace. Line 6, 2 indents: result, opening bracket, j, closing bracket, = list, opening bracket, i, closing bracket, semicolon. Line 7, 1 indent: closing brace. Line 8: blank. Line 9, 1 indent: return, result, semicolon.
Line 1 0: closing brace.

Diagram ay is titled, executing, create Array, in line 5.
Here, the stack contains activation records for the, create Array, method, and then the, main, method. The records are identical, reading, c h ay r, opening bracket, closing bracket, c h ay r s, colon, r e f. In the record for, create Array, r e f points to an array of 100 characters in the heap. Diagram b is titled, after exiting, create Array, in line 5. Here, the stack contains the activation record for the, main, method, with its instance of, r e f, now pointing to the array of 100 characters in the heap.

Line 1: public class, Linear Search, opening brace. Line 2, 1 indent: forward slash, double asterisk, The method for finding a key in the list, asterisk, forward slash. Line 3, 1 indent: public static, i n t, linear Search, opening parenthesis, i n t, opening bracket, closing bracket, list, comma, i n t, key, closing parenthesis, opening brace. Line 4, 2 indents: begin shading, for, opening parenthesis, i n t, i = 0, semicolon, i <, list dot length, semicolon, i + +, closing parenthesis, end shading, opening brace. Line 5, 3 indents: if, opening parenthesis, key, double equals sign, list, opening bracket, i, closing bracket, closing parenthesis. Line 6, 4 indents: return, i, semicolon. Line 7, 2 indents: closing brace. Line 8, 2 indents: return, negative 1, semicolon. Line 9, 1 indent: closing brace. Line 10: closing brace.

When key < 50, the array, list, contains thirteen elements with index numbers 0 to 12. Indices 0, 6, and 12 are marked low, mid, and high, respectively. The following list provides the index for each element, followed by its value. 0, 2; 1, 4; 2, 7; 3, 10; 4, 11; 5, 45; 6, 50; 7, 59; 8, 60; 9, 66; 10, 69; 11, 70; 12, 79. When key > 7, the array contains only the first six elements, with index numbers 0 to 5. Indices 0, 2, and 5 are marked low, mid, and high, respectively. When key, double equals sign, 11, the array only contains the three elements at indices 3, 4, and 5, marked low, mid, and high, respectively.

The list of numbers being considered begins as follows: 2, 9, 5, 4, 8, 1, 6. Select 1, the smallest, and swap it with 2, the first in the list. The number 1 is now in the correct position, and thus no longer needs to be considered. The remaining list reads, 9, 5, 4, 8, 2, 6. Select 2, the smallest, and swap it with 9, the first in the remaining list. The number 2 is now in the correct position, and thus no longer needs to be considered. The remaining list reads, 5, 4, 8, 9, 6. Select 4, the smallest, and swap with 5, the first in the remaining list. The number 4 is now in the correct position, and thus no longer needs to be considered. The remaining list reads, 5, 8, 9, 6. 5 is the smallest and in the right position, so no swap is necessary, and it no longer needs to be considered. The remaining list reads, 8, 9, 6. Select 6, the smallest, and swap it with 8, the first in the remaining list. The number 6 is now in the correct position, and thus no longer needs to be considered. The remaining list reads ,9, 8. Select 8, the smallest, and swap it with 9, the first in the remaining list. The number 8 is now in the correct position, and thus no longer need to be considered. Since there is only one element remaining in the list, 9, the sort is completed.

To add, input, java Calculator, 45 + 56. Output: 45 + 56 = 101. To subtract, input, java Calculator, 45 minus 56. Output: 45 minus 56 = negative 11. To multiply, input, java Calculator, 45 dot 56. Output: 45 dot 56 = 2520. To divide, input, java Calculator, 45, forward slash, 56. Output: 45, forward slash, 56 = 0.

A bean machine’s pegs are laid out in a triangle of seven rows, top to bottom, with 1 peg in row 1, 2 pegs in row 2, and so on. The seven bottommost pegs mark divisions between the eight slots at the bottom of the machine. Diagrams ay, b, and c show the bean machine with 13 balls having fallen in the same configuration. From left to right, the following list provides slot numbers, paired with the number of balls shown in that slot: 1, 1; 2, 0; 3, 2; 4, 4; 5, 3; 6, 2; 7, 1; 8, 0. In diagram ay, the fourteenth ball has hit pegs in the first 5 rows, falling left, left, right, right, right. In diagrams b and c, the fourteenth ball’s path places it in slots 4 and 6, respectively.

Figure ay shows an array for the syntax, matrix = new, i n t, opening bracket, 5, closing bracket, opening bracket, 5, closing bracket, semicolon. The array is a 5 by 5 grid of elements, with row and column index numbers from 0 to 4. Currently, all cells in the grid contain the value, zero. Figure b shows an array for the syntax, matrix, opening bracket, 2, closing bracket, opening bracket, 1, closing bracket, = 7, semicolon. Here, the previous array is updated with the value, 7, in the cell at row index 2 and column index 1. Figure c shows syntax for an array initializer, as follows.
Line 1 : i n t, opening bracket, closing bracket, opening bracket, closing bracket, array =, opening brace. Line 2, 1 indent: opening brace, 1, comma, 2, comma, 3, closing brace, comma. Line 3, 1 indent: opening brace, 4, comma, 5, comma, 6, closing brace, comma. Line 4, 1 indent: opening brace, 7, comma, 8, comma, 9, closing brace, comma. Line 5, 1 indent: opening brace, 10, comma, 11, comma, 12, closing brace. Line 6: closing brace, semicolon. The array has 4 rows and 3 columns of elements, so it has row index numbers from 0 to 3, and column index numbers from 0 to 2. The elements contain values from 1 to 12 as follows by row: 1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12.

The code in diagram ay is as follows.
Line 1 : i n t, opening bracket, closing bracket, opening bracket, closing bracket, array = opening brace. Line 2, 1 indent: opening brace, 1, comma, 2, comma, 3, closing brace, comma. Line 3, 1 indent: opening brace, 4, comma, 5, comma, 6, closing brace, comma. Line 4, 1 indent: opening brace, 7, 8, 9, closing brace, comma. Line 5, 1 indent: opening brace, 10, 11, 12, closing brace. Line 6: closing brace, semicolon. The code in diagram b is as follows.
Line 1 : i n t, opening bracket, closing bracket, opening bracket, closing bracket, array = new, i n t, opening bracket, 4, closing bracket, opening bracket, 3, closing bracket, semicolon. Line 2: array, opening bracket, 0, closing bracket, opening bracket, 0, closing bracket, = 1, semicolon, array, opening bracket, 0, closing bracket, opening bracket, 1, closing bracket, = 2, semicolon, array, opening bracket, 0, closing bracket, opening bracket, 2, closing bracket, = 3, semicolon. Line 3: array, opening bracket, 1, closing bracket, opening bracket, 0, closing bracket, = 4, semicolon, array, opening bracket, 1, closing bracket, opening bracket, 1, closing bracket, = 5, semicolon, array, opening bracket, 1, closing bracket, opening bracket, 2, closing bracket, = 6, semicolon. Line 4: array, opening bracket, 2, closing bracket, opening bracket, 0, closing bracket, = 7, semicolon, array, opening bracket, 2, closing bracket, opening bracket, 1, closing bracket, = 8, semicolon, array, opening bracket, 2, closing bracket, opening bracket, 2, closing bracket, = 9, semicolon. Line 5: array, opening bracket, 3, closing bracket, opening bracket, 0, closing bracket, = 10, semicolon, array, opening bracket, 3, closing bracket, opening bracket, 1, closing bracket, = 11, semicolon, array, opening bracket, 3, closing bracket, opening bracket, 2, closing bracket, = 12, semicolon.

The array, x, contains 3 elements with index numbers 0 to 2, arranged in a column. Each of these elements contains its own array of 4 elements, arranged in a row. The array in element, x, opening bracket, 0, closing bracket, contains values as follows: x, opening bracket, 0, closing bracket, opening bracket, 0, closing bracket, then x, opening bracket, 0, closing bracket, opening bracket, 1, closing bracket, then x, opening bracket, 0, closing bracket, opening bracket, 2, closing bracket, then x, opening bracket, 0, closing bracket, opening bracket, 3, closing bracket. The array in element, x, opening bracket, 1, closing bracket, contains values as follows: x, opening bracket, 1, closing bracket, opening bracket, 0, closing bracket, then x, opening bracket, 1, closing bracket, opening bracket, 1, closing bracket, then x, opening bracket, 1, closing bracket, opening bracket, 2, closing bracket, then x, opening bracket, 1, closing bracket, opening bracket, 3, closing bracket. The array in element, x, opening bracket, 2, closing bracket, contains values as follows: x, opening bracket, 2, closing bracket, opening bracket, 0, closing bracket, then x, opening bracket, 2, closing bracket, opening bracket, 1, closing bracket, then x, opening bracket, 2, closing bracket, opening bracket, 2, closing bracket, then x, opening bracket, 2, closing bracket, opening bracket, 3, closing bracket.

The array is created by the following code.
Line 1 : i n t, opening bracket, closing bracket, opening bracket, closing bracket, triangle Array, =, opening brace. Line 2, 1 indent: opening brace, 1, comma, 2, comma, 3, comma, 4, comma, 5, closing brace, comma. Line 3, 1 indent: opening brace, 2, comma, 3, comma, 4, comma, 5, closing brace, comma. Line 4, 1 indent: opening brace, 3, comma, 4, comma, 5, closing brace, comma. Line 5, 1 indent: opening brace, 4, comma, 5, closing brace, comma. Line 6, 1 indent: opening brace, 5, closing brace. Line 7: closing brace, semicolon. The array is diagrammed as a column of 5 elements, which contain arrays of decreasing length, diagrammed in rows. Because each array has a steadily decreasing number of elements, their diagram and their code, when written out, resemble a right triangle, with the exception that the hypotenuse is ragged rather than smooth. The first array has 5 elements, numbered 1 to 5. The second array has 4 elements, numbered 2 to 5. The third array has 3 elements, numbered 3 to 5. The fourth array has 2 elements, numbered 4 and 5. The fifth array has 1 element, numbered 5.

The array contains 8 elements, with index numbers 0 to 7. Each element contains values for x and y. The following list provides the index for each element, followed by the ordered pair for that point: 0, (negative 1, 3); 1, (negative 1, negative 1); 2, (1, 1); 3, (2, 0.5); 4, (2, negative 1); 5, (3, 3); 6, (4, 2); 7, (5, negative 0.5).

The unsolved Sudoku puzzle in diagram ay is filled in as follows by row: 5, 3, blank, blank, 7, blank, blank, blank, blank; 6, blank, blank, 1, 9, 5, blank, blank, blank; blank, 9, 8, blank, blank, blank, blank, 6, blank; 8, blank, blank, blank, 6, blank, blank, blank, 3; 4, blank, blank, 8, blank, 3, blank, blank, 1; 7, blank, blank, blank, 2, blank, blank, blank, 6; blank, 6, blank, blank, blank, blank, blank, blank, blank; blank, blank, blank, 4, 1, 9, blank, blank, 5; blank, blank, blank, blank, 8, blank, blank, 7, 9. In diagram b, the solution is filled in as follows by row: 5, 3, 4, 6, 7, 8, 9, 1, 2; 6, 7, 2, 1, 9, 5, 3, 4, 8; 1, 9, 8, 3, 4, 2, 5, 6, 7; 8, 5, 9, 7, 6, 1, 4, 2, 3; 4, 2, 6, 8, 5, 3, 7, 9, 1; 7, 1, 3, 9, 2, 4, 8, 5, 6; 9, 6, 1, 5, 3, 7, 2, 8, 4; 2, 8, 7, 4, 1, 9, 6, 3, 5; 3, 4, 5, 2, 8, 6, 1, 7, 9.

Figure ay replicates the unsolved Sudoku puzzle, indicating blanks with the digit, 0. Figure b is a code diagram for the same grid, containing code as follows.
Line 1 : i n t, opening bracket, closing bracket, opening bracket, closing bracket, grid =. Line 2, 1 indent: opening brace, opening brace, 5, comma, 3, comma, 0, comma, 0, comma, 7, comma, 0, comma, 0, comma, 0, comma, 0, closing brace, comma. Line 3, 1 indent: opening brace, 6, comma, 0, comma, 0, comma, 1, comma, 9, comma, 5, comma, 0, comma, 0, comma, 0, closing brace, comma. Line 4, 1 indent: opening brace, 0, comma, 9, comma, 8, comma, 0, comma, 0, comma, 0, comma, 0, comma, 6, comma, 0, closing brace, comma. Line 5, 1 indent: opening brace, 8, comma, 0, comma, 0, comma, 0, comma, 6, comma, 0, comma, 0, comma, 0, comma, 3, closing brace, comma. Line 6, 1 indent: opening brace, 4, comma, 0, comma, 0, comma, 8, comma, 0, comma, 3, comma, 0, comma, 0, comma, 1, closing brace, comma. Line 7, 1 indent: opening brace, 7, comma, 0, comma, 0, comma, 0, comma, 2, comma, 0, comma, 0, comma, 0, comma, 6, closing brace, comma. Line 8, 1 indent: opening brace, 0, comma, 6, comma, 0, comma, 0, comma, 0, comma, 0, comma, 2, comma, 8, comma, 0, closing brace, comma. Line 9, 1 indent: opening brace, 0, comma, 0, comma, 0, comma, 4, comma, 1, comma, 9, comma, 0, comma, 0, comma, 5, closing brace, comma.
Line 1 0, 1 indent: opening brace, 0, comma, 0, comma, 0, comma, 0, comma, 8, comma, 0, comma, 0, comma, 7, comma, 9, closing brace.
Line 1 1: closing brace, semicolon.

Line 1: A solution grid is. Line 2, 1 indent: opening brace, opening brace, 5, comma, 3, comma, 4, comma, 6, comma, 7, comma, 8, comma, 9, comma, 1, comma, 2, closing brace, comma. Line 3, 1 indent: opening brace, 6, comma, 7, comma, 2, comma, 1, comma, 9, comma, 5, comma, 3, comma, 4, comma, 8, closing brace, comma. Line 4, 1 indent: opening brace, 1, comma, 9, comma, 8, comma, 3, comma, 4, comma, 2, comma, 5, comma, 6, comma, 7, closing brace, comma. Line 5, 1 indent: opening brace, 8, comma, 5, comma, 9, comma, 7, comma, 6, comma, 1, comma, 4, comma, 2, comma, 3, closing brace, comma. Line 6, 1 indent: opening brace, 4, comma, 2, comma, 6, comma, 8, comma, 5, comma, 3, comma, 7, comma, 9, comma, 1, closing brace, comma. Line 7, 1 indent: opening brace, 7, comma, 1, comma, 3, comma, 9, comma, 2, comma, 4, comma, 8, comma, 5, comma, 6, closing brace, comma. Line 8, 1 indent: opening brace, 9, comma, 6, comma, 1, comma, 5, comma, 3, comma, 7, comma, 2, comma, 8, comma, 4, closing brace, comma. Line 9, 1 indent: opening brace, 2, comma, 8, comma, 7, comma, 4, comma, 1, comma, 9, comma, 6, comma, 3, comma, 5, closing brace, comma.
Line 1 0, 1 indent: opening brace, 3, comma, 4, comma, 5, comma, 2, comma, 8, comma, 6, comma, 1, comma, 7, comma, 9, closing brace.
Line 1 1: closing brace, semicolon.

The syntax, grid, opening bracket, 0, closing bracket, opening bracket, 0, closing bracket, refers to the cell in the first row, first column. Similarly, the syntax, grid, opening bracket, 0, closing bracket, opening bracket, 6, closing bracket, refers to a cell in the same row, but in the seventh column, making it the top left cell in the 3 by 3 box in the top right corner of the larger grid. For any, grid, opening bracket, i, closing bracket, opening bracket, j, closing bracket, in this 3 by 3 box, its starting cell is, grid, opening bracket, 3 ×, opening parenthesis, i, forward slash, 3, closing parenthesis, closing bracket, opening bracket, 3 ×, opening parenthesis, j, forward slash, 3, closing parenthesis, closing bracket, or, grid, opening bracket, 0, closing bracket, opening bracket, 6, closing bracket, closing parenthesis. For example, for, grid, opening bracket, 2, closing bracket, opening bracket, 8, closing bracket, i = 2 and j = 8, 3 ×, opening parenthesis, i, forward slash, 3, closing parenthesis, = 0, and 3 ×, opening parenthesis, j, forward slash, 3, closing parenthesis, = 6. The syntax, grid, opening bracket, 6, closing bracket, opening bracket, 3, closing bracket, refers to top left cell in the bottom middle 3 by 3 box. For any, grid, opening bracket, i, closing bracket, opening bracket, j, closing bracket, in this 3 by 3 box, its starting cell is, grid, opening bracket, 3 ×, opening parenthesis, i, forward slash, 3, closing parenthesis, closing bracket, opening bracket, 3 ×, opening parenthesis, j, forward slash, 3, closing parenthesis, closing bracket, or, grid, opening bracket, 6, closing bracket, opening bracket, 3, closing bracket, closing parenthesis. For example, for, grid, opening bracket, 8, closing bracket, opening bracket, 5, closing bracket, i = 8 and j = 5, 3 ×, opening parenthesis, i, forward slash, 3, closing parenthesis, = 6, and 3 ×, opening parenthesis, j, forward slash, 3, closing parenthesis, = 3.

Figures ay and b both show the first 2, and the last 2, rows of data in a text file, here referred to as lines 1 to 4. In each figure, the values in each line are for day, then hour, then temperature, then humidity. The data in figure ay reads as follows.
Line 1 : 1, 1, 76.4, 0.92. Line 2: 1, 2, 77.7, 0.93. Line 3: 10, 23, 97.7, 0.71. Line 4: 10, 24, 98.7, 0.74. The data in figure b reads as follows.
Line 1 : 10, 24, 98.7, 0.74. Line 2: 1, 2, 77.7, 0.93. Line 3: 10, 23, 97.7, 0.71. Line 4: 1, 1, 76.4, 0.92.

Bank 0 has current balance 25. It has lent 100.5 to bank 1, and 320.5 to bank 4. Bank 1 has current balance 125. It has lent 40 to bank 2, and 85 to bank 3. Bank 2 has current balance 175. It has lent 125 to bank 0, and 75 to bank 3. Bank 3 has current balance 75. It has lent 125 to bank 0. Bank 4 has current balance 181. It has lent 125 to bank 2.

Each array contains 42 single-digit numbers, arranged in 6 rows and 7 columns, with 4 of the numbers shaded to indicate that they satisfy the conditions of being the same value, and adjacent either to the left or right, or diagonally. The first array contains values as follows by row: 0, 1, 0, 3, 1, 6, 1; 0, 1, 6, 8, 6, 0, 1; 5, 6, 2, 1, 8, 2, 9; 6, 5, 6, 1, 1, 9, 1; 1, 3, 6, 1, 4, 0, 7; shaded 3, shaded 3, shaded 3, shaded 3 ,4, 0, 7. The second array contains values as follows by row: 0, 1, 0, 3, 1, 6, 1; 0, 1, 6, 8, 6, 0, 1; 5, shaded 5, 2, 1, 8, 2, 9; 6, shaded 5, 6, 1, 1, 9, 1; 1, shaded 5, 6, 1, 4, 0, 7; 3, shaded 5, 3, 3, 4, 0, 7. The third array contains values as follows by row: 0, 1, 0, 3, 1, 6, 1; 0, 1, 6, 8, 6, 0, 1; 5, 6, 2, 1, shaded 6, 2, 9; 6, 5, 6, shaded 6, 1, 9, 1; 1, 3, shaded 6, 1, 4, 0, 7; 3, shaded 6, 3, 3, 4, 0, 7. The fourth array contains values as follows by row: 0, 1, 0, 3, 1, 6, 1; 0, 1, 6, 8, 6, 0, 1; shaded 9, 6, 2, 1, 8 ,2 ,9; 6, shaded 9, 6, 1, 1, 9, 1; 1, 3, shaded 9, 1, 4, 0, 7; 3, 3, 3, shaded 9, 4 ,0, 7.

Eight line segments extend between four points, forming a 4-sided polygon and its two diagonals. The diagonals divide the polygon into 4 right triangles, with their hypotenuses extending between the 4 vertices. These points are labeled as follows: v sub 1, (x 1, y 1); v sub 2, (x 2, y 2); v sub 3, (x 3, y 3); v sub 4, (x 4, y 4).

The G U I has elements from left to right as follows: buttons labeled okay and cancel; a label reading, enter your name, colon; a text field reading, type name here; marked checkboxes labeled bold, and, italic; radio buttons labeled red, which is selected, and yellow; a combo box with a drop-down arrow, currently set to, freshman.

The class template with class name, circle, contains data fields, radius is, blank, and the methods, get Area, get Perimeter, and, set Radius. Below the class template, the three objects of the circle class are circle object 1, with data fields, radius is, 1, then circle object 2, with data fields, radius is, 25, and circle object 3, with data fields, radius is, 125.

Line 1: class, Circle, opening brace. Line 2, 1 indent: forward slash, double asterisks, The radius of this circle, asterisk, forward slash. Line 3, 1 indent, containing code for a data field: double, radius = 1, semicolon. Line 4: blank. Lines 5 to 12 contain code for the constructors. Line 5, 1 indent: forward slash, double asterisks, Construct a circle object, asterisk, forward slash. Line 6, 1 indent: Circle, opening parenthesis, closing parenthesis, opening brace. Line 7, 1 indent: closing brace. Line 8: blank. Line 9, 1 indent: forward slash, double asterisks, Construct a circle object, asterisk, forward slash.
Line 1 0, 1 indent: Circle, opening parenthesis, double, new Radius, closing parenthesis, opening brace.
Line 1 1, 2 indents: radius =, new Radius, closing parenthesis, opening brace.
Line 1 2, 1 indent: closing brace.
Line 1 3: blank. Lines 14 to 27 contain code for the method.
Line 1 4, 1 indent: forward slash, double asterisks, Return the area of this circle, asterisk, forward slash.
Line 1 5, 1 indent: double, get Area, opening parenthesis, closing parenthesis, opening brace.
Line 1 6, 2 indents: return, radius, asterisk, radius, asterisk, Math dot P I, semicolon.
Line 1 7, 1 indent: closing brace.
Line 1 8: blank.
Line 1 9, 1 indent: forward slash, double asterisks, Return the perimeter of this circle, asterisk, forward slash. Line 20, 1 indent: double, get Perimeter, opening parenthesis, closing parenthesis, opening brace. Line 21, 2 indents: return, 2, asterisk, radius, asterisk, Math dot P I, semicolon. Line 22, 1 indent: closing brace. Line 23: blank. Line 24, 1 indent: forward slash, double asterisks, Set a new radius for this circle, asterisk, forward slash. Line 25, 1 indent: void, set Radius, opening parenthesis, double, new Radius, closing parenthesis, opening brace. Line 26, 2 indents: radius =, new Radius, semicolon. Line 27, 1 indent: closing brace. Line 28: closing brace.

A U M L class diagram has elements from top to bottom as follows: class name, data fields, constructors and methods. The U M L notation for objects is similar, with a name at the top, and a data field below. This U M L class object named, Circle. Its data field is as follows.
Line 1 : radius, colon, double. Constructors and methods read as follows.
Line 1 : Circle, opening parenthesis, closing parenthesis. Line 2: Circle, opening parenthesis, new Radius, colon, double, closing parenthesis. Line 3: get Area, opening parenthesis, closing parenthesis, colon, double. Line 4: get Perimeter, opening parenthesis, closing parenthesis, colon, double. Line 5: set Radius, opening parenthesis, new Radius, colon, double, closing parenthesis, colon, void. Three objects are shown below the class diagram. The first object’s name is, circle 1, colon, Circle. Its data field reads, radius = 1. The second object’s name is, circle 2, colon, Circle. Its data field reads, radius = 25. The third object’s name is, circle 3, colon, Circle. Its data field reads, radius = 125.

The class is named, T V. Data fields are as follows.
Line 1 : Channel, colon, i n t. Note reads, the current channel of this T V, from 1 to 120. Line 2: volume Level, colon, i n t. Note reads, the current volume level of this T V, from 1 to 7. Line 3: on, colon, boolean. Note reads, indicates whether this T V is on or off. Constructors and methods read as follows. Note that the plus sign at the beginning of each line indicates a public modifier.
Line 1 : +, T V, opening parenthesis, closing parenthesis. Note reads, constructs a default T V object. Line 2: +, turn On, opening parenthesis, closing parenthesis, colon, void. Note reads, turns on this T V. Line 3: +, turn Off, opening parenthesis, closing parenthesis, colon, void. Note reads, turns off this T V. Line 4: +, set Channel, opening parenthesis, new Channel, colon, i n t, closing parenthesis, colon, void. Note reads, sets a new channel for this T V. Line 5: +, set Volume, opening parenthesis, new Volume Level, colon, i n t, closing parenthesis, colon, void. Note reads, sets a new volume level for this T V. Line 6: +, channel Up, opening parenthesis, closing parenthesis, colon, void. Note reads, increases the channel number by 1. Line 7: +, channel Down, opening parenthesis, closing parenthesis, colon, void. Note reads, decreases the channel number by 1. Line 8: +, volume Up, opening parenthesis, closing parenthesis, colon, void. Note reads, Increases the volume level by 1. Line 9: +, volume Down, opening parenthesis, closing parenthesis, colon, void. Note reads, decreases the volume level by 1.

The variable, i, is of the primitive type, and indicates the integer, 1. The object, Circle c, is of the reference type. In this case, it points to the class, c, colon, Circle, with data field, radius = 1, which was created using, new Circle, opening parenthesis, closing parenthesis.

Before, c 1, =, c 2, the variable, c 1, refers to the object named, c 1, colon, Circle, with data field, radius = 5, and the variable, c 2, refers to the object named, c 2, colon, Circle, with data field, radius = 9. After, c 1, =, c 2, both variables refer to the object, c 2, colon, Circle, and nothing refers to the object, c 1, colon, Circle.

Data fields are as follows.
Line 1 : +, Date, opening parenthesis, closing parenthesis. Note reads, constructs a Date object for the current time. Line 2: +, Date, opening parenthesis, elapse Time, colon, long, closing parenthesis. Note reads, constructs a Date object for a given time in milliseconds elapsed since January 1, 1970, G M T. Line 3: +, to String, opening parenthesis, closing parenthesis, colon, String. Note reads, returns a string representing the date and time. Line 4: +, get Time, opening parenthesis, closing parenthesis, colon, long. Note reads, returns the number of milliseconds since January 1, 1970, G M T. Line 5: +, set Time, opening parenthesis, elapse Time, colon, long, closing parenthesis, colon, void. Note reads, sets a new elapse time in the object.

Data fields are as follows.
Line 1 : +, Random, opening parenthesis, closing parenthesis. Note reads, constructs a Random object with the current time as its seed. Line 2: +, Random, opening parenthesis, seed, colon, long, closing parenthesis. Note reads, constructs a Random object with a specified seed. Line 3: +, next i n t, opening parenthesis, closing parenthesis, colon, i n t. Note reads, returns a random, i n t, value. Line 4: +, next i n t, opening parenthesis, n, colon, i n t, closing parenthesis, colon, i n t. Note reads, returns a random, i n t, value between 0 and n, excluding n. Line 5: +, next Long, opening parenthesis, closing parenthesis, colon, long. Note reads, returns a random long value. Line 6: +, next Double, opening parenthesis, closing parenthesis, colon, double. Note reads, returns a random double value between 0.0 and 1.0, excluding 1.0. Line 7: +, next Float, opening parenthesis, closing parenthesis, colon, float. Note reads, returns a random float value between, 0.0 F, and, 1.0 F, excluding 1.0 F. Line 8: +, next Boolean, opening parenthesis, closing parenthesis, colon, boolean. Note reads, returns a random boolean value.

Data fields are as follows.
Line 1 : +, Point 2 D, opening parenthesis, x, colon, double, comma, y, colon, double, closing parenthesis. Note reads, constructs a, Point 2 D, object with the specified x- and y-coordinates. Line 2: +, distance, opening parenthesis, x, colon, double, comma, y, colon, double, closing parenthesis, colon, double. Note reads, returns the distance between this point and the specified point (x, y). Line 3: +, distance, opening parenthesis, p, colon, Point 2 D, closing parenthesis, colon, double. Note reads, returns the distance between this point and the specified point p. Line 4: +, get X, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the x-coordinate from this point. Line 5: +, get Y, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the y-coordinate from this point. Line 6: +, midpoint, opening parenthesis, p, colon, Point 2 D, closing parenthesis, colon, Point 2 D. Note reads, returns the midpoint between this point and point p. Line 7: +, to String, opening parenthesis, closing parenthesis, colon, String. Note reads, returns a string representation for the point.

The class diagram’s name, Circle, is underlined. Data fields are as follows.
Line 1 : radius, colon, double. Line 2, underlined: number of objects, colon, i n t. Constructors and methods are as follows.
Line 1 , underlined: get Number Of Objects, opening parenthesis, closing parenthesis, colon, i n t. Line 2: get Area, opening parenthesis, closing parenthesis, colon, double. This class instantiates two objects with the underlined names, circle 1, colon, Circle, and, circle 2, colon, Circle. The first object’s data fields are as follows.
Line 1 : radius = 1. Line 2, underlined: number of Objects, = 2. The second object’s data fields are as follows.
Line 1 : radius = 5. Line 2, underlined: number Of Objects, = 2. The values for radius, 1 and 5, are stored in memory. After two Circle objects were created, number Of Objects, is 2 in memory.

An instance method can invoke an instance method, or a static method, and it can access an instance data field, or a static data field. A static method can invoke a static method, but not an instance method, and can access a static data field, but not an instance data field.

Diagram ay contains code as follows. Note, this code is okay, because c is used inside the class, C.
Line 1 : public, class, begin shading, C, end shading, opening brace. Line 2, 1 indent: begin shading, private, end shading, boolean x, semicolon. Line 3: blank. Line 4, 1 indent: public, static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 5, 2 indents: C c = new, C, opening parenthesis, closing parenthesis, semicolon. Line 6, 2 indents: system dot out dot print l n, opening parenthesis, begin shading, c dot x, end shading, closing parenthesis, semicolon. Line 7, 2 indents: system dot out dot print l n, opening parenthesis, begin shading, c dot convert, opening parenthesis, closing parenthesis, end shading, closing parenthesis, semicolon. Line 8, 1 indent: closing brace. Line 9: blank.
Line 1 0, 1 indent: begin shading, private, end shading, i n t, convert, opening parenthesis, closing parenthesis, opening brace.
Line 1 1, 2 indents: return, x, question mark, 1, colon, negative 1, semicolon.
Line 1 2, 1 indent: closing brace.
Line 1 3: closing brace. Diagram b contains code as follows. Note that the highlighted code in lines 4 and 5 is wrong, because x and convert are private in class C.
Line 1 : public, class, begin shading, Test, end shading, opening brace. Line 2, 1 indent: public, static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 3, 2 indents: C c = new, C, opening parenthesis, closing parenthesis, semicolon. Line 4, 2 indents: system dot out dot print l n, opening parenthesis, begin shading, c dot x, end shading, closing parenthesis, semicolon. Line 5, 2 indents: system dot out dot print l n, opening parenthesis, begin shading, c dot convert, opening parenthesis, closing parenthesis, end shading, closing parenthesis, semicolon. Line 6, 1 indent: closing brace. Line 7: closing brace.

Data fields are as follows. Note that the minus sign at the beginning of each line indicates a private modifier.
Line 1 : minus, radius, colon, double. Note reads, the radius of this circle, which default to 1.0. Line 2, underlined: minus, number Of Objects, colon, i n t. Note reads, the number of circle objects created. Constructors and methods are as follows.
Line 1 : +, Circle, opening parenthesis, closing parenthesis. Note reads, constructs a default circle object. Line 2: +, Circle, opening parenthesis, radius, colon, double, closing parenthesis,. Note reads, constructs a circle object with the specified radius. Line 3: +, get Radius, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the radius of this circle. Line 4: +, set Radius, opening parenthesis, radius, colon, double, closing parenthesis, colon, void. Note reads, sets a new radius for this circle. Line 5, underlined: +, get Number Of Objects, opening parenthesis, closing parenthesis, colon, i n t. Note reads, returns the number of circle objects created. Line 6: +, get Area, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the area of this circle.

Bottom to top, the stack contains activation records for the, main, method, and for the, print Area, method. The main method’s record reads as follows.
Line 1 : i n t, n, colon, 5. Line 2: my Circle, colon, which is a reference to a, Circle, object in the heap. These are also pass-by-values in the record for the, print Area, method, which reads as follows.
Line 1 : i n t, times, colon, 5. Line 2: Circle c, colon, which is a reference to the same, Circle, object in the heap.

Diagram ay contains code as follows. Note that each instance of the word, this, is shaded.
Line 1 : public, class, Circle, opening brace. Line 2, 1 indent: private, double, radius, semicolon. Line 3: blank. The code is truncated at line 4, continuing as follows. Line 5: blank. Line 6, 1 indent: public, double, get Area, opening parenthesis, closing parenthesis, opening brace. Line 7, 1 indent: return, this dot radius, asterisk, this dot radius, asterisk, Math dot P I, semicolon. Line 8, 1 indent: closing brace. Line 9: blank.
Line 1 0, 1 indent: public, String, to String, opening parenthesis, closing parenthesis, opening brace.
Line 1 1, 2 indents: return, "radius, colon, " + this dot radius.
Line 1 2, 3 indents: + "area, colon, " + this dot get Area, opening parenthesis, closing parenthesis, semicolon.
Line 1 3, 1 indent: closing brace.
Line 1 4: closing brace. Diagram b contains code as follows.
Line 1 : public, class, Circle, opening brace. Line 2, 1 indent: private, double, radius, semicolon. Line 3: blank. The code is truncated at line 4, continuing as follows. Line 5: blank. Line 6, 1 indent: public, double, get Area, opening parenthesis, closing parenthesis, opening brace. Line 7, 2 indents: return radius, asterisk, radius, asterisk, Math dot P I, semicolon. Line 8, 1 indent: closing brace. Line 9: blank.
Line 1 0, 1 indent: public, String, to String, opening parenthesis, closing parenthesis, opening brace.
Line 1 1, 2 indents: return, "radius, colon, " + radius.
Line 1 2, 3 indents: + "area, colon, " +, get Area, opening parenthesis, closing parenthesis, semicolon.
Line 1 3, 1 indent: closing brace.
Line 1 4: closing brace.

Note that in diagram ay the syntax, this dot radius, refers to data field, radius, in this object, line 1. The code is as follows. Line 1: private, double, radius, semicolon. Line 2: blank. Line 3: public, void, set Radius, opening parenthesis, double radius, closing parenthesis, opening brace. Line 4, 1 indent: begin shading, this dot radius, end shading, = radius, semicolon. Line 5: closing brace. Note that in diagram b, radius, which is found in line 4, is the parameter defined in the method header in line 3. Line 1: private, double, radius = 1, semicolon. Line 2: blank. Line 3: public, void, set Radius, opening parenthesis, double radius, closing parenthesis, opening brace. Line 4, 1 indent: begin shading, radius, end shading, = radius, semicolon. Line 5: closing brace.

The, this, keyword is used twice in the following code. In line 4, it is used to reference the data field radius of the object being constructed. In line 8, it is used to invoke another constructor. The code is as follows. Line 1: public, class, Circle, opening brace. Line 2, 1 indent: private, double, radius, semicolon. Line 3, 1 indent: public, Circle, opening parenthesis, double, radius, closing parenthesis, opening brace. Line 4, 2 indents: this dot radius, = radius, semicolon. Line 5, 1 indent: closing brace. Line 6: blank. Line 7, 1 indent: public, Circle, opening parenthesis, closing parenthesis, opening brace. Line 8, 2 indents, shaded: this, opening parenthesis, 1.0, closing parenthesis, semicolon. Line 9, 1 indent: closing brace. The remainder of the code is truncated, ending with a closing brace in the last line.

Clients use the class through the contract of the class, which contains the signatures of public constructors, methods, and data fields.

Data fields are as follows.
Line 1: minus, annual Interest Rate, colon, double. Note reads, the annual interest rate of the loan is 2.5, by default.
Line 2: minus, number Of Years, colon, i n t. Note reads, the number of years for the loan is 1, by default.
Line 3: minus, loan Amount, colon, double. Note reads, the loan amount is 1000, by default.
Line 4: minus, loan Date, colon, java dot u t i l dot Date. Note reads, the date this loan was created.
Constructors and methods are as follows.
Line 1: +, Loan, opening parenthesis, closing parenthesis. Note reads, constructs a default Loan object.
Line 2: +, Loan, opening parenthesis, annual Interest Rate, colon, double, comma, number Of Years, colon, i n t, colon, loan Amount, colon, double, closing parenthesis. Note reads, constructs a loan with specified interest rate, years, and loan amount.
Line 3: +, get Annual Interest Rate, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the annual interest rate of this loan.
Line 4: +, get Number Of Years, opening parenthesis, closing parenthesis, colon, i n t. Note reads, returns the number of years of this loan.
Line 5: +, get Loan Amount, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the amount of this loan.
Line 6: +, get Loan Date, opening parenthesis, closing parenthesis, colon, java dot u t i l dot Date. Note reads, returns the date of the creation of this loan.
Line 7: +, set Annual Interest Rate, opening parenthesis, annual Interest Rate, colon, double, closing parenthesis, colon, void. Note reads, sets a new annual interest rate for this loan.
Line 8: +, set Number Of Years, opening parenthesis, number Of Years, colon, i n t, closing parenthesis, colon, void. Note reads, sets a new number of years for this loan.
Line 9: +, set Loan Amount, opening parenthesis, loan Amount, colon, double, closing parenthesis, colon, void. Note reads, sets a new amount for this loan.
Line 10: +, get Monthly Payment, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the monthly payment for this loan.
Line 11: +, get Total Payment, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the total payment for this loan.

Data fields are as follows.
Line 1: minus, name, colon, String. Note reads, the name of the person.
Line 2: minus, age, colon, i n t. Note reads, the age of the person.
Line 3: minus, weight, colon, double. Note reads, the weight of the person in pounds.
Line 4: minus, height, colon, double. Note reads, the height of the person in inches.
Also note, the getter methods for these data fields are provided in the class, but omitted in the U M L diagram for brevity.
Constructors and methods read as follows.
Line 1: +, B M I, opening parenthesis, name, colon, String, comma, age, colon, i n t, weight, colon, double, comma, height, colon, double, closing parenthesis. Note reads, creates a B M I object with the specified name, age, weight, and height.
Line 2: +, B M I, opening parenthesis, name, colon, String, comma, weight, colon, double, comma, height, colon, double, closing parenthesis. Note reads, creates a B M I object with the specified name, weight, height, and a default age 20.
Line 3: +, get B M I, opening parenthesis, closing parenthesis, colon, double. Note reads, returns the B M I.
Line 4: +, get Status, opening parenthesis, closing parenthesis, colon, String. Note reads, returns the B M I status, for example, normal, overweight, et cetera.

Three classes are placed at the left end, center, and right end of a solid line. Left to right, the classes are student, course, and faculty.
Labels along the horizontal segments between the classes describe the relationships between them, so that the diagram reads as follows from left to right.
Class, Student, 5 dot dot 60, take, right arrow, asterisk, class, Course, 0 dot dot 3, teach, left arrow, 1 teacher, class, Faculty.

Class, Name, 1, 1, filled diamond, class, Student, empty diamond, 1 dot dot 3, 1, class, Address.

The first diagram is labeled, aggregated class, and reads as follows.
Line 1: public, class, Name, opening brace.
The code is truncated at line 2, continuing as follows.
Line 3: closing brace.
The second diagram is labeled, aggregating class, and reads as follows.
Line 1: public, class, Student, opening brace.
Line 2, t@b1: private, Name name, semicolon.
Line 3, t@b1: private, Address address, semicolon.
The code is truncated at line 4, continuing as follows.
Line 5: closing brace.
The third diagram is labeled, aggregated class, and reads as follows.
Line 1: public, class, Address, opening brace.
The code is truncated at line 2, continuing as follows.
Line 3: closing brace. .

Diagram Ay contains U M L graphic notation as follows.
Class, Person, empty diamond, 1, Supervisor, m, class, Person.
Diagram b contains code reading as follows.
Line 1: public, class, Person, opening brace.
The code is truncated at line 2, continuing as follows.
Line 3, t@b1: private, Person, opening bracket, closing bracket, supervisors, semicolon.
Line 4: closing brace. .

Data fields are as follows.
Line 1: minus, course Name, colon, String. Note reads, the name of the course.
Line 2: minus, students, colon, String, opening bracket, closing bracket. Note reads, an array to store the students for the course.
Line 3: minus, number Of Students, colon, i n t. Note reads, the number of students, with zero as default.
Constructors and methods are as follows.
Line 1: +, Course, opening parenthesis, course Name, colon, String, closing parenthesis. Note reads, creates a course with the specified name.
Line 2: +, get Course Name, opening parenthesis, closing parenthesis, colon, String. Note reads, returns the course name.
Line 3: +, add Student, opening parenthesis, student, colon, String, closing parenthesis, colon, void. Note reads, adds a new student to the course.
Line 4: +, drop Student, opening parenthesis, student, colon, String, closing parenthesis, colon, void. Note reads, drops a student from the course.
Line 5: +, get Students, opening parenthesis, closing parenthesis, colon, String, opening bracket, closing bracket. Note reads, returns the students for the course.
Lin 6: +, get Number Of Students, opening parenthesis, closing parenthesis, colon, i n t. Note reads, returns the number of students for the course.

Data fields are as follows.
Line 1: minus, elements, colon, i n t, opening bracket, closing bracket. Note reads, an array to store integers in the stack.
Line 2: minus, size, colon, i n t. Note reads, the number of integers in the stack.
Constructors and methods are as follows.
Line 1: +, Stack Of Integers, opening parenthesis, closing parenthesis. Note reads, constructs an empty stack with a default capacity of 16.
Line 2: +, Stack Of Integers, opening parenthesis, capacity, colon, i n t, closing parenthesis. Note reads, constructs an empty stack with a specified capacity.
Line 3: +, empty, opening parenthesis, closing parenthesis, colon, boolean. Note reads, returns true if the stack is empty.
Line 4: +, peek, opening parenthesis, closing parenthesis, colon, i n t. Note reads, returns the integer at the top of the stack without
removing it from the stack.
Line 5: +, push, opening parenthesis, value, colon, i n t, closing parenthesis, colon, void. Note reads, stores an integer into the top of the stack.
Line 6: +, pop, opening parenthesis, closing parenthesis, colon, i n t. Note reads, removes the integer at the top of the stack and returns it.
Line 7: +, get Size, opening parenthesis, closing parenthesis, colon, i n t. Note reads, returns the number of elements in the stack.

In the array, Stack Of Integers, the elements have index numbers increasing from 0 as they move from the bottom of the stack toward the top. The size refers to the range from the bottom of the stack to the topmost element in the stack, with index number, size minus 1. Note, the top element in the array may e below index number, capacity minus 1, which is the topmost element that can accept values."

The first diagram is named, java dot l ay n g dot Integer.
Data fields are as follows:
Line 1: minus, value, colon, i n t.
Line 2, underlined: +, MAX, _, VALUE, colon, i n t.
Line 3, underlined: +, MIN, _, VALUE, colon, i n t.
Constructors and methods are as follows.
Line 1: +, Integer, opening parenthesis, value, colon, i n t, closing parenthesis.
Line 2: +, Integer, opening parenthesis, s, colon, String, closing parenthesis.
Line 3: +, byte Value, opening parenthesis, closing parenthesis, colon, byte.
Line 4: +, short Value, opening parenthesis, closing parenthesis, colon, short.
Line 5: +, int Value, opening parenthesis, closing parenthesis, colon, int.
Line 6: +, long Value, opening parenthesis, closing parenthesis, colon, long.
Line 7: +, float Value, opening parenthesis, closing parenthesis, colon, float.
Line 8: +, double Value, opening parenthesis, closing parenthesis, colon, double.
Line 9: +, compare To, opening parenthesis, o, colon, Integer, closing parenthesis, colon, int.
Line 10: +, to String, opening parenthesis, closing parenthesis, colon, String.
Line 11, underlined: +, value Of, opening parenthesis, s, colon, String, closing parenthesis, colon, Integer.
Line 12, underlined: +, value Of, opening parenthesis, s, colon, String, comma, r ay d i x, colon, i n t, closing parenthesis, colon, Integer.
Line 13, underlined: +, parse i n t, opening parenthesis, s, colon, String, closing parenthesis, colon, int.
Line 14, underlined: +, parse i n t, opening parenthesis, s, colon, String, comma, r ay d i x, colon, i n t, closing parenthesis, colon, int.
The second diagram is named, java dot l ay n g dot Double.
Data fields are as follows.
Line 1: minus, value, colon, double.
Line 2, underlined: +, MAX, _, VALUE, colon, double.
Line 3, underlined: + MIN, _, VALUE, colon, double.
Constructors and methods are as follows.
Line 1: +, Double, opening parenthesis, value, colon, double, closing parenthesis.
Line 2: +, Double, opening parenthesis, s, colon, String, closing parenthesis.
Line 3: +, byte Value, opening parenthesis, closing parenthesis, colon, byte.
Line 4: +, short Value, opening parenthesis, closing parenthesis, colon, short.
Line 5: +, int Value, opening parenthesis, closing parenthesis, colon, int.
Line 6: +, long Value, opening parenthesis, closing parenthesis, colon, long.
Line 7: +, float Value, opening parenthesis, closing parenthesis, colon, float.
Line 8: +, double Value, opening parenthesis, closing parenthesis, colon, double.
Line 9: +, compare To, opening parenthesis, o, colon, Double, closing parenthesis, colon, int.
Line 10: +, to String, opening parenthesis, closing parenthesis, colon, String.
Line 11, underlined: +, value Of, opening parenthesis, s, colon, String, closing parenthesis, colon, Double.
Line 12, underlined: +, value Of, opening parenthesis, s, colon, String, comma, r ay d i x, colon, i n t, closing parenthesis, colon, Double.
Line 13, underlined: +, parse Double, opening parenthesis, s, colon, String, closing parenthesis, colon, double.
Line 14, underlined: +, parse Double, opening parenthesis, s, colon, String, comma, r ay d i x, colon, i n t, closing parenthesis, colon, double.

The code in diagram ay reads as follows: Integer, i n t Object, =, new Integer, opening parenthesis, 2, closing parenthesis, semicolon.
The code in diagram b, with autoboxing, reads as follows: Integer, i n t Object, =, 2, semicolon.

Line 1: Integer, opening bracket, closing bracket, i n t Array, =, opening brace, 1, comma, 2, comma, 3, closing brace, semicolon.
Line 2: System dot out dot print l n, opening parenthesis, i n t Array, opening bracket, 0, closing bracket, +, i n t Array 1, closing bracket, +, i n t Array, opening bracket, 2, closing bracket, closing parenthesis, semicolon.

In the first diagram, after executing, String s, = “Java”, semicolon, variable s points to, colon, String, which is the string object for “Java.” Note, the string’s contents cannot be changed.
In the second diagram, after executing, s = “H T M L”, semicolon, variable s points to the string for H T M L, and the original string, for Java, is now unreferenced.

U M L

Constructors and methods are as follows.
Line 1: +, replace, opening parenthesis, old C h ay r, colon, c h ay r, comma, new C h ay r, colon, c h ay r, closing parenthesis, colon, String. Note reads, returns a new string that replaces all matching characters in this string with the new character.
Line 2: +, replace First, opening parenthesis, old String, colon, String, comma, new String, colon, String, closing parenthesis, colon, String. Note reads, returns a new string that replaces the first matching substring in this string with the new substring.
Line 3: +, replace All, opening parenthesis, old String, colon, String, comma, new String, colon, String, closing parenthesis, colon, String. Note reads, returns a new string that replaces all matching substrings in this string with the new substring.
Line 4: +, split, opening parenthesis, delimiter, colon, String, closing parenthesis, colon, String, opening bracket, closing bracket. Note reads, returns an array of strings consisting of the substrings split by the delimiter.

Constructors and methods are all underlined, and read as follows.
Line 1: +, value Of, opening parenthesis, c, colon, c h ay r, closing parenthesis, colon, String. Note reads, returns a string consisting of the character, c.
Line 2: +, value Of, opening parenthesis, data, colon, c h ay r, opening bracket, closing bracket, closing parenthesis, colon, String. Note reads, returns a string consisting of the characters in the array.
Line 3: +, value Of, opening parenthesis, d, colon, double, closing parenthesis, colon, String. Note reads, returns a string representing the, double, value.
Line 4: +, value Of, opening parenthesis, f, colon, float, closing parenthesis, colon, String. Note reads, returns a string representing the, float, value.
Line 5: +, value Of, opening parenthesis, i, colon, i n t, closing parenthesis, colon, String. Note reads, returns a string representing the, i n t, value.
Line 6: +, value Of, opening parenthesis, l, colon, long, closing parenthesis, colon, String. Note reads, returns a string representing the, long, value.
Line 7: +, value Of, opening parenthesis, b, colon, boolean, closing parenthesis, colon, String. Note reads, returns a string representing the, boolean value.

The constructors and methods section reads as follows.
Line 1: +, String Builder, opening parenthesis, closing parenthesis. Note reads, constructs an empty string builder with capacity 16.
Line 2: +, String Builder, opening parenthesis, capacity, colon, i n t, closing parenthesis. Note reads, constructs a string builder with the specified capacity.
Line 3: +, String Builder, opening parenthesis, s, colon, String, closing parenthesis. Note reads, constructs a string builder with the specified string.

The constructors and methods section reads as follows.
Line 1: +, append, opening parenthesis, data, colon, c h ay r, opening bracket, closing bracket, closing parenthesis, colon, String Builder. This appends a, c h ay r, array into this string builder.
Line 2: +, append, opening parenthesis, data, colon, c h ay, r, opening bracket, closing bracket, offset, colon, i n t, comma l e n, colon, i n t, closing parenthesis, colon, String Builder. This appends a subarray in, data, into this string builder.
Line 3: +, append, opening parenthesis, v, colon, begin italics, a Primitive Type, end italics, closing parenthesis, colon, String Builder. This appends a primitive-type value as a string to this builder.
Line 4: +, append, opening parenthesis, s, colon, String, closing parenthesis, colon, String Builder. This appends a string to this string builder.
Line 5: +delete, opening parenthesis, start Index, colon, i n t, end Index, colon, i n t, closing parenthesis, colon, String Builder. This deletes characters from, start Index, to, end Index minus 1.
Line 6: +, delete C h ay r At, opening parenthesis, index, colon, i n t, closing parenthesis, colon, String Builder. This deletes a character at the specified index.
Line 7: +, insert, opening parenthesis, index, colon, i n t, comma, data, colon, c h ay r, opening bracket, closing bracket, offset, colon, i n t, l e n, colon, i n t, closing parenthesis, colon, String Builder. This inserts a subarray of the data in the array into the builder at the specified index.
Line 8: +, insert, opening parenthesis, offset, colon, i n t, comma, data, colon, c h ay r, opening bracket, closing bracket, closing parenthesis, colon, String Builder. This deletes characters from, start Index, to, end Index minus.
Line 9: +, insert, opening parenthesis, offset, colon, i n t, comma, b, colon, begin italics, a Primitive Type, end italics, closing parenthesis, colon, String Builder. This inserts a value converted to a string into this builder.
Line 10: +, insert, opening parenthesis, offset, colon, i n t, comma, s, colon, String, closing parenthesis, colon, String Builder. This inserts a string into this builder at the position offset.
Line 11: +, replace, opening parenthesis, start Index, colon, i n t, end Index, colon, i n t, s, colon, String, closing parenthesis, colon, String Builder. This replaces the characters in this builder from, start Index, to, end Index minus 1, with the specified string.
Line 12: +, reverse, opening parenthesis, closing parenthesis, colon, String Builder. This reverses the characters in the builder.
Line 13: +, set C h ay r At, opening parenthesis, index, colon, i n t, comma, c h, colon, c h ay r, closing parenthesis, colon, void. This sets a new character at the specified index in this builder.

The constructors and methods section reads as follows.
Line 1: +, to String, opening parenthesis, closing parenthesis, colon, String. returns a, string, object from the string builder
Line 2: +, capacity, opening parenthesis, closing parenthesis, colon, int. Return the capacity of this string builder.
Line 3: +, c h ay r At, opening parenthesis, index, colon, i n t, closing parenthesis, colon, c h ay r. Returns the character at the specified index.
Line 4: +, length, opening parenthesis, closing parenthesis, colon, int. Returns the number of characters in this builder.
Line 5: +, set Length, opening parenthesis, new Length, colon, i n t, closing parenthesis, colon, void. Sets a new length in this builder.
Line 6: +, substring, opening parenthesis, start Index, colon, i n t, closing parenthesis, colon, String. Returns a substring starting at, start Index.
Line 7: +, substring, opening parenthesis, start Index, colon, i n t, comma, end Index, colon, i n t, closing parenthesis, colon, String. Returns a substring from, start Index, to, end Index minus 1.
Line 8: +, trim To Size, opening parenthesis, closing parenthesis, colon, void. Reduces the storage size used for the string builder.

Diagrams ay and b contain triangles made by solid lines between 3 points, with dashed lines extending from the triangle’s vertices to point, p. In diagram ay, p is inside the triangle, so the dashed lines remain inside the triangle. In diagram b, with p outside the triangle, the dashed lines also extend outside the triangle’s solid lines.

Diagram ay shows one rectangle, with point, p, plotted inside of it.
Diagram b shows the rectangle with a smaller rectangle inside of it.
Diagram c shows the first rectangle partially overlaying a third rectangle that is smaller than the first, and larger than the second.
Diagram d shows the first rectangle with 12 points plotted inside at with a random but approximately even distribution.

Line 1: input, java Exercise 10, underscore 26, “4 + 5”. Note that in this example, there are no spaces to the left or right of the plus sign.
Line 2: output, 4 + 5 = 9.
Line 3: input, java Exercise 10, underscore 26, “4, space, +, space, 5”.
Line 4: output, 4 + 5 = 9.
Line 5: input, java Exercise 10, underscore 26, “4, space, +, space, space, 5”.
Line 6: output, 4 + 5 = 9.
Line 7: input, java Exercise 10, underscore 26, “4, space, asterisk, space, space, 5”.
Line 8: output, 4, asterisk, 5 = 20.

The diagrams for the, Circle, and, Rectangle, classes both point to the diagram for the, Geometric Object, class. The data fields for the, Circle, class are as follows.
Line 1 : minus, radius, colon, double. The constructors and methods for this class are as follows.
Line 1 : +, Circle, opening parenthesis, closing parenthesis. Line 2: +, Circle, opening parenthesis, radius, colon, double, closing parenthesis. Line 3: +, Circle, opening parenthesis, radius, colon, double, comma, color, colon, String, comma, filled, colon, boolean, closing parenthesis. Line 4: +, get Radius, opening parenthesis, closing parenthesis, colon, double. Line 5: +, set Radius, opening parenthesis, radius, colon, double, closing parenthesis, colon, void. Line 6: +, get Area, opening parenthesis, closing parenthesis, colon, double. Line 7: +, get Perimeter, opening parenthesis, closing parenthesis, colon, double. Line 8: +, get Diameter, opening parenthesis, closing parenthesis, colon, double. Line 9: +, print Circle, opening parenthesis, closing parenthesis, colon, void. The data fields for the, Rectangle, class are as follows.
Line 1 : minus, width, colon, double. Line 2: minus, height, colon, double. The constructors and methods for this class are as follows.
Line 1 : +, Rectangle, opening parenthesis, closing parenthesis. Line 2: +, Rectangle, opening parenthesis, width, colon, double, comma, height, colon, double, closing parenthesis. Line 3: +, Rectangle, opening parenthesis, width, colon, double, comma, height, colon, double, color, colon, String, comma, filled, colon, boolean, closing parenthesis. Line 4: +, get Width, opening parenthesis, closing parenthesis, colon, double. Line 5: +, set Width, opening parenthesis, width, colon, double, closing parenthesis, colon, void. Line 6: +, get Height, opening parenthesis, closing parenthesis, colon, double. Line 7: +, set Height, opening parenthesis, height, colon, double, closing parenthesis, colon, void. Line 8: +, get Area, opening parenthesis, closing parenthesis, colon, double. Line 9: +, get Perimeter, opening parenthesis, closing parenthesis, colon, double. The data fields for the, Geometric Object, class are as follows.
Line 1 : minus, color, colon, String. This determines the color of the object, with white as the default. Line 2: minus, filled, colon, boolean. This indicates whether the object is filled with a color, with, false, as the default. Line 3: minus, date Created, colon, java dot u t i l dot Date. This is the date when the object was created. The constructors and methods for this class are as follows.
Line 1 : +, Geometric Object, opening parenthesis, closing parenthesis. This creates a, Geometric Object. Line 2: +, Geometric Object, opening parenthesis, color, colon, String, comma, filled, colon, boolean, closing parenthesis. This creates a, Geometric Object, with the specified color and filled values. Line 3: +, get Color, opening parenthesis, closing parenthesis, colon, String. This returns the color. Line 4: +, set Color, opening parenthesis, color, colon, String, closing parenthesis, colon, void. This sets a new color. Line 5: +, is Filled, opening parenthesis, closing parenthesis, colon, boolean. This returns the, filled, property. Line 6: +, set Filled, opening parenthesis, filled, colon, boolean, closing parenthesis, colon, void. This sets a new, filled, property. Line 7: +, get Date Created, opening parenthesis, closing parenthesis, colon, java dot u t i l dot Date. This returns the, date Created. Line 8: +, to String, opening parenthesis, closing parenthesis, colon, String. This returns a string representation of the object.

The first diagram contains code as follows.
Line 1 : public, Class Name, opening parenthesis, closing parenthesis, opening brace. Line 2, 1 indent: double forward slashes, some statements. Line 3: closing brace. The second diagram contains equivalent code, as follows.
Line 1 : public, Class Name, opening parenthesis, closing parenthesis, opening brace. Line 2, 1 indent, shaded: super, opening parenthesis, closing parenthesis, semicolon. Line 3, 1 indent: double forward slashes, some statements. Line 4: closing brace. The third diagram contains code as follows.
Line 1 : public, Class Name, opening parenthesis, parameters, closing parenthesis, opening brace. Line 2, 1 indent: double forward slashes, some statements. Line 3: closing brace. The fourth diagram contains code equivalent to the third diagram, as follows.
Line 1 : public, Class Name, opening parenthesis, parameters, closing parenthesis, opening brace. Line 2, 1 indent, shaded: super, opening parenthesis, closing parenthesis, semicolon. Line 3, 1 indent: double forward slashes, some statements. Line 4: closing brace.

The code in the first diagram is as follows.
Line 1 : public, class, Class Name, opening brace. The code is truncated at line 2, concluding with a closing brace shown in line 3. The code in the second diagram is truncated and finished similarly. The portion with differences, reads as follows.
Line 1 : public, class, Class Nam, extends, Object, opening brace.

Four boxes represent classes, in a flow chart. The chart flows right to left, from class, C sub 1, to class, C sub 2, and eventually reaches class, C sub, n minus 1, and C sub n. In this case, C sub n is also the, java dot l ay n g dot Object. If the object, o, is an instance of C sub 1, o is also an instance of C sub 2, C sub 3, and so on, through C sub n.

The section for constructors and methods reads as follows.
Line 1 : +, Array List, opening parenthesis, closing parenthesis. Creates an empty list. Line 2: +, add, opening parenthesis, e, colon, E, closing parenthesis, colon, void. Appends a new element, e, at the end of the list. Line 3: +, add, opening parenthesis, index, colon, i n t, e, colon, E, closing parenthesis, colon, void. Adds a new element, e, at the specified index in this list. Line 4: +, clear, opening parenthesis, closing parenthesis, colon, void. Removes all elements from this list. Line 5: +, contains, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Returns true if this list contains the element, o. Line 6: +, get, opening parenthesis, index, colon, i n t, closing parenthesis, colon, E. Returns the element from this list at the specified index. Line 7: +, index Of, opening parenthesis, o, colon, Object, closing parenthesis, colon, int. Returns the index of the first matching element in this list. Line 8: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this list contains no elements. Line 9: +, last Index Of, opening parenthesis, o, colon, Object, closing parenthesis, colon, int. Returns the index of the last matching element in this list.
Line 1 0: +, remove, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Removes the first element C D T from this list. Returns true if an element is removed.
Line 11: +, size, opening parenthesis, closing parenthesis, colon, int. Returns the number of elements in this list.
Line 1 2: +, remove, opening parenthesis, index, colon, i n t, closing parenthesis, colon, E. Removes the element at the specified index. Returns the removed element.
Line 1 3: +, set, opening parenthesis, index, colon, i n t, comma, e, colon, E, closing parenthesis, colon, E. Sets the element at the specified index.

The section for data fields reads as follows.
Line 1 : minus, list, colon, Array List, <, Object, >. This is a list to store elements.
The section for constructors and methods reads as follows.
Line 1 : +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this stack is empty. Line 2: +, get Size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of elements in this stack. Line 3: +, peek, opening parenthesis, closing parenthesis, colon, Object. Returns the top element in this stack, without removing it.
Line 4: +, pop, opening parenthesis, closing parenthesis, colon, Object. Returns and removes the top element in this stack. Line 5: +, push, opening parenthesis, o, colon, Object, closing parenthesis, colon, void. Adds a new element to the top of this stack.

The first group contains three code diagrams and is labeled, package, p 1, semicolon. The first diagram in p 1 contains code as follows.
Line 1 : public, class, C 1, opening brace. Line 2, 1 indent: public, i n t, x, semicolon. Line 3, 1 indent: protected, i n t, y, semicolon. Line 4, 1 indent: i n t, z, semicolon. Line 5, 1 indent: private, i n t, u, semicolon. Line 6: blank. Line 7, 1 indent: protected, void, m, opening parenthesis, closing parenthesis, opening brace. Line 8, 1 indent: closing brace. Line 9: closing brace. The second diagram in p 1 contains code as follows.
Line 1 : public, class, C 2, opening brace. Line 2, 1 indent, shaded: C 1, o = new, C 1, opening parenthesis, closing parenthesis, semicolon. Line 3, 1 indent: can access, o dot x, semicolon. Line 4, 1 indent: can access, o dot y, semicolon. Line 5, 1 indent: can access, o dot z, semicolon. Line 6, 1 indent: cannot access, o dot u, semicolon. Line 7: blank. Line 8, 1 indent: can invoke, o dot m, opening parenthesis, closing parenthesis, semicolon. Line 9: closing brace. The third diagram in p 1 contains code as follows.
Line 1 : public, class, C 3. Line 2, 4 indents: begin shading, extends, C 1, end shading, opening brace. Line 3, 1 indent: can access x, semicolon. Line 4, 1 indent: can access y, semicolon. Line 5, 1 indent: can access z, semicolon. Line 6, 1 indent: cannot access u, semicolon. Line 7: blank. Line 8, 1 indent: can invoke m, opening parenthesis, closing parenthesis, semicolon. Line 9: closing brace. The second group, containing the remaining two code diagrams, is labeled, package, p 2, semicolon. The first diagram in p 2 contains code as follows.
Line 1 : public, class, C 4. Line 2, 4 indents: begin shading, extends, C 1, end shading, opening brace. Line 3, 1 indent: can access x, semicolon. Line 4, 1 indent: can access y, semicolon. Line 5, 1 indent: cannot access z, semicolon. Line 6, 1 indent: cannot access u, semicolon. Line 7: blank. Line 8, 1 indent: can invoke m, opening parenthesis, closing parenthesis, semicolon. Line 9: closing brace. The second diagram in p 2 contains code as follows.
Line 1 : public, class, C 5, opening brace. Line 2, 1 indent, shaded: C 1, o = new, C 1, opening parenthesis, closing parenthesis, semicolon. Line 3, 1 indent: can access, o dot x, semicolon. Line 4, 1 indent: cannot access, o dot y, semicolon. Line 5, 1 indent: cannot access, o dot z, semicolon. Line 6, 1 indent: cannot access, o dot u, semicolon. Line 7: blank. Line 8, 1 indent: cannot invoke, o dot m, opening parenthesis, closing parenthesis, semicolon. Line 9: closing brace.

The section for data fields reads as follows. Note that the, get, and, set, methods for these data fields are provided in the class, but omitted in the U M L diagram for brevity.
Line 1 : minus, date, colon, java dot u t i l dot Date. This is the date of this transaction. Line 2: minus, type, colon, c h ay r. This is the type of the transaction, such as, W, for withdrawal, or, D, for deposit. Line 3: minus, amount, colon, double. This is the amount of the transaction. Line 4: minus, balance, colon, double. This is the new balance after this transaction. Line 5: minus, description, colon, String. This is the description of this transaction. The section for constructors and methods reads as follows.
Line 1 : +, Transaction, opening parentheses, type, colon, c h ay r, comma, amount, colon, double, comma, balance, colon, double, description, colon, String, closing parentheses. This constructs a, Transaction, with the specified data, type, balance, and description.

Arrows extend from the various classes in the diagram, showing how they are arranged into subclasses or superclasses. The Object class connects to the Throwable class, which connects to the classes, Error, and, Exception. The Error class includes, Linkage Error, Virtual Machine Error, and many more classes. The Exception class includes, Class Not Found Exception, I O Exception, Runtime Exception, and many more classes. Finally, the Runtime Exception class includes, Arithmetic Exception, Null Pointer Exception, Index Out Of Bounds Exception, Illegal Argument Exception, and many more classes.

The first diagram contains code to catch an exception in lines 3 to 8. The full diagram reads as follows. Line 1:method 1,opening parenthesis, closing parenthesis, opening brace. Line 2: blank. Line 3: try, opening brace. Line 4: invoke method 2, semicolon. Line 5:closing brace. Line 6: catch, opening parenthesis, Exception ex, closing parenthesis, opening brace. Line 7: Process exception, semicolon. Line 8: closing brace. Line 9: closing brace. An arrow points from the code to catch the exception, in the first diagram, to the header, method 2, in the second diagram. This second diagram contains code to declare an exception in line 1 with the syntax, throws, Exception, and the code to throw the exception, in line 4. The full diagram reads as follows. Line 1:method 2,opening parenthesis, closing parenthesis, throws Exception, opening brace. Line 2: blank. Line 3: if, opening parenthesis, an error occurs, closing parenthesis, opening brace. Line 4: throw new Exception, opening parenthesis, closing parenthesis, semicolon. Line 5:closing brace. Line 6:closing brace.

The section for constructors and methods reads as follows. Line 1: +, get Message, opening parenthesis, closing parenthesis, colon, String. This returns the message that describes this exception object. Line 2: +, to String, opening parenthesis, closing parenthesis, colon, String. This returns the concatenation of three strings: 1, the full name of the exceptionclass; 2, a colon and a space; and 3, the, getMessage, opening parenthesis, closing parenthesis, method. Line 3: +, printStackTrace, opening parenthesis, closing parenthesis, colon, void. This prints the, Throwable, object and its call stack trace information on the console. Line 4: +, getStackTrace, opening parenthesis, closing parenthesis, colon, StackTraceElement, opening bracket, closing bracket. This returns an array of stack trace elements representing the stack trace pertaining to this exception object.

The first section of the output is labeled, print Stack Trace, opening parenthesis, closing parenthesis, and reads as follows.
Line 1 : java dot l ay n g dot Array Index Out Of Bounds Exception, colon, 5. Line 2, indented: at, Test Exception dot sum, opening parenthesis, Test Exception dot java, colon, 24, closing parenthesis. Line 3, indented: at, Test Exception dot main, opening parenthesis, Test Exception dot java, colon, 4, closing parenthesis. The second section of the command prompt output is labeled, get Message, opening parenthesis, closing parenthesis, and reads, 5. The third section is labeled, to String, opening parenthesis, closing parenthesis, and reads, java dot l ay n g dot Array Index Out Of Bounds Exception, colon, 5. The fourth section is labeled, using, get Stack Trace, opening parenthesis, closing parenthesis. This code reads as follows.
Line 1 : Trace Info Obtained from, get Stack Trace. Line 2: method sum, opening parenthesis, Test Exception, colon, 24, closing parenthesis. Line 3: method main, opening parenthesis, Test Exception, colon, 4, closing parenthesis.

The section for constructors and methods reads as follows.
Line 1 : +, Exception, opening parenthesis, closing parenthesis. This constructs an exception with no message. Line 2: +, Exception, opening parenthesis, message, colon, String, closing parenthesis. This constructs an exception with the specified message. Line 3: +, Exception, opening parenthesis, message, colon, String, comma, cause, colon, Exception, closing parenthesis. This Constructs an exception with the specified message and a cause. This forms a chained exception.

The section for constructors and methods reads as follows, with each line followed by its respective note.
Line 1 : +, File, opening parenthesis, pathname, colon, String, closing parenthesis. Creates a, File, object for the specified path name. The path name may be a directory or a file. Line 2: +, File, opening parenthesis, parent, colon, String, comma, child, colon, String, closing parenthesis. Creates a File object for the child under the directory parent. The child may be a file name or a subdirectory. Line 3: +, File, opening parenthesis, parent, colon, File, child, colon, String, closing parenthesis. Creates a File object for the child under the directory parent. The parent is a, File, object. In the preceding constructor, the parent is a string. Line 4: +, exists, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the file or the directory represented by the File object exists. Line 5: +, can Read, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the file represented by the File object exists and can be read. Line 6: +, can Write, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the file represented by the File object exists and can be written. Line 7: +, is Directory, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the File object represents a directory. Line 8: +, is File, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the File object represents a file. Line 9: +, is Absolute, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the File object is created using an absolute path name.
Line 1 0: +, is Hidden, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the file represented in the File object is hidden. The exact definition of, hidden, is system dependent. On Windows, you can mark a file hidden in the File Properties dialog box. On Unix systems, a file is hidden if its name begins with a period or, dot, character.
Line 1 1: +, get Absolute Path, opening parenthesis, closing parenthesis, colon, String. Returns the complete absolute file or directory name represented by the File. object.
Line 1 2: +, get Canonical Path, opening parenthesis, closing parenthesis, colon, String. Returns the same as, get Absolute Path, opening parenthesis, closing parenthesis, except that it removes redundant names, such as "dot" and "dot dot", from the path name, resolves symbolic links, on Unix, and converts drive letters to standard uppercase, on Windows.
Line 1 3: +, get Name opening parenthesis, closing parenthesis, colon, String. Returns the last name of the complete directory and file name represented by the File object. For example, new File, opening parenthesis, "c, colon, backslash, backslash, book, backslash, backslash, test dot d ay t", closing parenthesis, dot get Name, opening parenthesis, closing parenthesis, returns, test dot d ay t.
Line 1 4: +, get Path, opening parenthesis, closing parenthesis, colon, String. Returns the complete directory and file name represented by the File object. For example, new File, opening parenthesis, "c, colon, backslash, backslash, book, backslash, backslash, test dot d ay t", closing parenthesis, dot get Path, opening parenthesis, closing parenthesis, returns, c, colon, backslash, book, backslash, test dot d ay t.
Line 1 5: +, get Parent, opening parenthesis, closing parenthesis, colon, String. Returns the complete parent directory of the current directory or the file represented by the File object. For example, new File, opening parenthesis, "c, colon, backslash, backslash, book, backslash, backslash, test dot d ay t", closing parenthesis, dot get Parent, opening parenthesis, closing parenthesis, returns, c, colon, backslash, book.
Line 1 6: +, last Modified, opening parenthesis, closing parenthesis, colon, long. Returns the time that the file was last modified.
Line 1 7: +, length, opening parenthesis, closing parenthesis, colon, long. Returns the size of the file, or 0 if it does not exist or if it is a directory.
Line 1 8: +, list, File, opening parenthesis, closing parenthesis, colon, File, opening bracket, closing bracket. Returns the files under the directory for a directory File object.
Line 1 9: +, delete, opening parenthesis, closing parenthesis, colon, boolean. Deletes the file or directory represented by this File object. The method returns true if the deletion succeeds. Line 20: +, rename To, opening parenthesis, D e s t, colon, 1 File, closing parenthesis, colon, boolean. Renames the file or directory represented by this File object to the specified name represented in, d e s t. The method returns true if the operation succeeds. Line 21: +, m k d i r, opening parenthesis, closing parenthesis, colon, boolean. Creates a directory represented in this File object. Returns true if the directory is created successfully. Line 22: +, m k d i r s, opening parenthesis, closing parenthesis, colon, boolean. Same as, m k d i r, opening parenthesis, closing parenthesis, except that it creates directory along with its parent directories if the parent directories do not exist.

Figure ay shows the sample run in a Windows command prompt. The console reads as follows.
Line 1 : C, colon, backslash, book, >, java, Test File Class. Line 2: Does it exist, question mark, true. Line 3: The file has 2998 bytes. Line 4: Can it be read, question mark, true. Line 5: Can it be written, question mark, true. Line 6: Is it a directory, question mark, false. Line 7: Is it a file, question mark, true. Line 8: Is it absolute, question mark, false. Line 9: Is it hidden, question mark, false.
Line 1 0: Absolute path is, C, colon, backslash, book, backslash, image, backslash, us dot g i f.
Line 1 1: Last modified on, T u e, N o v, 0 2, E S T.
Line 1 2: blank.
Line 1 3: C, colon, backslash, book, >. Figure b sows the sample run in UNIX. Omitting line numbers that match the console output in figure ay, this console reads as follows.
Line 1 : opening bracket, daniel, at symbol, panda book, closing bracket, $, java, Test File Class. Lines 2 to 9 in UNIX match lines 2 to 9 in Windows.
Line 1 0: Absolute path is, forward slash, home, forward slash, daniel, forward slash, book, forward slash, image, forward slash, us, dot g i f.
Line 1 1: Last modified on, T u e, N o v, 0 2, 0 8 colon 20 colon 45, E S T, 2004.
Line 1 2: opening bracket, daniel, at symbol, panda book, closing bracket, $.

The section for constructors and methods reads as follows, with notes provided after each line.
Line 1 : +, Print Writer, opening parenthesis, file, colon, File, closing parenthesis. Creates a, Print Writer, object for the specified file object. Line 2: +, Print Writer, opening parenthesis, filename, colon, String, closing parenthesis. Creates a, Print Writer, object for the specified file name string. Line 3: +, print, opening parenthesis, s, colon, String, closing parenthesis, colon, void. Writes a string to the file. Line 4: +, print, opening parenthesis, c, colon, c h ay r, closing parenthesis, colon, void. Writes a character to the file. Line 5: +, print, opening parenthesis, c Array, colon, c h ay r, opening bracket, closing bracket, closing parenthesis, colon, void. Writes an array of characters to the file. Line 6: +, print, opening parenthesis, i, colon, i n t, closing parenthesis, colon, void. Writes an, i n t, value to the file. Line 7: +, print, opening parenthesis, l, colon, long, closing parenthesis, colon, void. Writes a, long, value to the file. Line 8: +, print, opening parenthesis, f, colon, float, closing parenthesis, colon, void. Writes a, float, value to the file. Line 9: +, print, opening parenthesis, d, colon, double, closing parenthesis, colon, void. Writes a, double, value to the file.
Line 1 0: +, print, opening parenthesis, b, colon, boolean, closing parenthesis, colon, void. Writes a, boolean, value to the file.
Line 1 1: Also contains the overloaded, print l n, methods. A, print l n, method acts like a, print, method; additionally, it prints a line separator. The line-separator string is defined by the system. It is, backslash, r, backslash, n, on Windows and, backslash, n, on Unix.
Line 1 2: Also contains the overloaded, print f, methods. The, print f, method was introduced in section 3.16, titled, Formatting Console Output.

The section for constructors and methods reads as follows, with notes provided after each line.
Line 1 : +, Scanner, opening parenthesis, source, colon, File, closing parenthesis. Creates a, Scanner, that produces values scanned from the specified file. Line 2: +, Scanner, opening parenthesis, source, colon, String, closing parenthesis. Creates a, Scanner, that produces values scanned from the specified string. Line 3: +, close, opening parenthesis, closing parenthesis. Closes this scanner. Line 4: +, has Next, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this scanner has more data to be read. Line 5: +, next, opening parenthesis, closing parenthesis, colon, String. Returns next token as a string from this scanner. Line 6: +, next Line, opening parenthesis, closing parenthesis, colon, String. Returns a line ending with the line separator from this scanner. Line 7: +, next Byte, opening parenthesis, closing parenthesis, colon, byte. Returns next token as a byte from this scanner. Line 8: +, next Short, opening parenthesis, closing parenthesis, colon, short. Returns next token as a short from this scanner. Line 9: +, next I n t, opening parenthesis, closing parenthesis, colon, i n t. Returns next token as an, i n t, from this scanner.
Line 1 0: +, next Long, opening parenthesis, closing parenthesis, colon, long. Returns next token as a long from this scanner.
Line 1 1: +, next Float, opening parenthesis, closing parenthesis, colon, float. Returns next token as a float from this scanner.
Line 1 2: +, next Double, opening parenthesis, closing parenthesis, colon, double. Returns next token as a double from this scanner.
Line 1 3: +, use Delimiter, opening parenthesis, pattern, colon, String, closing parenthesis, colon, Scanner. Sets this scanner’s delimiting pattern and returns this scanner.

The prompt for each input reads as follows: c, colon, backslash, exercise, >, java Exercise 12, underscore, 0 1. In line 1, input, 4 +, 5. Output, 4 +, 5, =, 9. In line 2, input, 4, minus, 5. Output, 4, minus, 5, =, negative 1. In line 3, input, 4 x, minus, 5. Output, Wrong Input, colon, 4 x.

The first diagram has the italicized class name, Geometric Object. Its top section reads as follows. Line 1: minus, color, colon, String. Line 2: minus, filled, colon, boolean. Line 3: minus, date Created, colon, java dot u t i l dot Date. The bottom section reads as follows. Line 1: number sign, Geometric Object, opening parenthesis, closing parenthesis. Line 2: number sign, Geometric Object, opening parenthesis, color, colon, string, filled, colon, boolean, closing parenthesis. Note, the numbers signs in lines 1 and 2 indicate protected modifiers. Line 3: +, get Color, opening parenthesis, closing parenthesis, colon, String. Line 4: +, set Color, opening parenthesis, color, colon, String, closing parenthesis, colon, void. Line 5: +, is Filled, opening parenthesis, closing parenthesis, colon, boolean. Line 6: +, set Filled, opening parenthesis, filled, colon, boolean, closing parenthesis, colon, void. Line 7: +, get Date Created, opening parenthesis, closing parenthesis, colon, java dot u t i l dot Date. Line 8: +, to String, opening parenthesis, closing parenthesis, colon, String. Note, the following italicized lines contain abstract modifiers. Line 9, italicized: +, get Area, opening parenthesis, closing parenthesis, colon, double. Line 10, italicized: +, get Perimeter, opening parenthesis, closing parenthesis, colon, double. The last two methods, get Area, and, get Perimeter, are overridden in the second and third diagrams, which are titled, Circle, and, Rectangle. The top section of the, Circle, diagram reads as follows. Line 1: minus, radius, colon, double. The bottom section reads as follows. Line 1: +, Circle, opening parenthesis, closing parenthesis. Line 2: +, Circle, opening parenthesis, radius, colon, double, closing parenthesis. Line 3: +, Circle, opening parenthesis, radius, colon, double, color, colon, string, filled, colon, boolean, closing parenthesis. Line 4: +, get Radius, opening parenthesis, closing parenthesis, colon, double. Line 5: +, set Radius, opening parenthesis, radius, colon, double, closing parenthesis, colon, void. Line 6: +, get Diameter, opening parenthesis, closing parenthesis, colon, double. The top section of the, Rectangle, diagram reads as follows. Line 1: minus, width, colon, double. Line 2: minus, height, colon, double. The bottom section reads as follows. Line 1: +, Rectangle, opening parenthesis, closing parenthesis. Line 3: +, Rectangle, opening parenthesis, width, colon, double, height, colon, double, closing parenthesis. Line 4: +, Rectangle, opening parenthesis, width, colon, double, height, colon, double, color, colon, string, filled, colon, boolean, closing parenthesis. Line 5: +, get Width, opening parenthesis, closing parenthesis, colon, double. Line 6: +, set Width, opening parenthesis, width, colon, double, closing parenthesis, colon, void. Line 7: +, get Height, opening parenthesis, closing parenthesis, colon, double. Line 8: +, set Height, opening parenthesis, height, colon, double, closing parenthesis, colon, void. Solid lines with hollow triangles point from, Circle, and, Rectangle, to, Geometric Object.

The superclass contains six classes lasted in its data fields, as well as Big Integer and Big Decimal, not shown in this diagram. Data fields are as follows. Line 1: +, byte Value, opening parenthesis, closing parenthesis, colon, byte. Returns this number as a byte. Line 2: +, short Value, opening parenthesis, closing parenthesis, colon, short. Returns this number as a short. Line 3: +, begin italics, i n t Value, opening parenthesis, closing parenthesis, colon, i n t, end italics. Returns this number as an, i n t. Line 4: +, begin italics, long Value, opening parenthesis, closing parenthesis, colon, long, end italics. Returns this number as a long. Line 5: +, begin italics, float Value, opening parenthesis, closing parenthesis, colon, float, end italics. Returns this number as a float. Line 6: +, begin italics, double, Value, opening parenthesis, closing parenthesis, colon, double, end italics. Returns this number as a double.

The first class is named, java dot u t i l dot Gregorian Calendar. The constructors and methods section reads as follows, with notes following each line. Line 1: +, Gregorian Calendar, opening parenthesis, closing parenthesis. Constructs a, Gregorian Calendar, for the current time. Line 2: +, Gregorian Calendar, opening parenthesis, year, colon, i n t, comma, month, colon, i n t, day Of Month, colon, i n t, closing parenthesis. Constructs a, Gregorian Calendar, for the specified year, month, and date. Line 3: +, Gregorian Calendar, opening parenthesis, year, colon, i n t, comma, month, colon, i n t, day Of Month, colon, i n t, comma, hour, colon, i n t, minute, colon, i n t, second, colon, i n t, closing parenthesis. Constructs a, Gregorian Calendar, for the specified year, month, date, hour, minute, and second. The month parameter is 0-based, that is, 0 is for January. The diagram for this class points to the second diagram, for the class, java dot u t i l dot Calendar. Its constructs and methods section reads as follows, with notes following each line. Line 1: number sign Calendar, opening parenthesis, closing parenthesis. Constructs a default calendar. Line 2: +, get, opening parenthesis, field, colon, i n t, closing parenthesis, colon, i n t. Returns the value of the given calendar field. Line 3: +, set, opening parenthesis, field, colon, i n t, comma, value, colon, i n t, closing parenthesis, colon, void. Sets the given calendar to the specified value. Line 4: +, set, opening parenthesis, year, colon, i n t, comma, month, colon, i n t, comma, day Of Month, colon, i n t, closing parenthesis, colon, void. Sets the calendar with the specified year, month, and date. The month parameter is 0-based that is, 0 is for January. Line 5: +, get Actual Maximum, opening parenthesis, field, colon, i n t, closing parenthesis, colon, i n t. Returns the maximum value that the specified calendar field could have. Line 6: +add, opening parenthesis, field, colon, i n t, amount, colon, i n t, closing parenthesis, colon, void. Adds or subtracts the specified amount of time to the given calendar field. Line 7: +, get Time, opening parenthesis, closing parenthesis, colon, java dot u t i l dot Date. Returns a Date object representing this calendar’s time value, in million-second offset from the UNIX epoch. Line 8: +, set Time, opening parenthesis, date, colon, java dot u t i l dot Date, closing parenthesis, colon, void. Sets this calendar’s time with the given Date object.

The classes, Orange, and, Apple, connect to the italicized class, Fruit, with solid lines and a hollow triangle. The classes Fruit and Chicken both connect to the italicized interface supertype, Edible, with dashed lines. The Edible class’s data field contains, +, begin italics, how To Eat, opening parenthesis, closing parenthesis, colon, String. The Chicken class, and the Tiger class, both point to the italicized supertype, Animal, class, with solid lines and hollow triangles. Animal’s data fields read as follows: minus, weight, colon, double, semicolon, +, begin italics, sound, opening parenthesis, closing parenthesis, colon, String. Note that the getter and setter methods for weight are provided, but omitted in the U M L.

Solid lines with hollow triangles extend upward, representing the following sequence: comparable rectangle, rectangle, geometric object. A dashed line with a hollow rectangle also extends from comparable rectangle to interface java dot lang dot Comparable left angle bracket Comparable Rectangle right angle bracket.

In the diagram, all lines between boxes end in hollow triangles in the direction of flow. Class 2 connects to Class 1 via a solid line, and to interfaces 2 1 and 2 2 via dashed lines. Class connects to the object via a solid line, and class 1 and interface 2 1 connect to interface 1 via dashed lines. Interface 1 then connects to interfaces 1 1 and 1 2 via dashed lines.

The main part of the diagram is titled, Rational. Its top section reads as follows, with notes after each line. Line 1: minus, numerator, colon, long. The numerator of this rational number. Line 2: minus, denominator, colon, long. The denominator of this rational number. The bottom section reads as follows, with notes after each line. Line 1: +, Rational, opening parenthesis, closing parenthesis. Creates a rational number with numerator 0 and denominator 1. Line 2: +, Rational, opening parenthesis, numerator, colon, long, denominator, colon, long, closing parenthesis. Creates a rational number with a specified numerator and denominator. Line 3: +, get Numerator, opening parenthesis, closing parenthesis: long. Returns the numerator of this rational number. Line 4: +, get Denominator, opening parenthesis, closing parenthesis: long. Returns the denominator of this rational number. Line 5: +, add, opening parenthesis, second Rational, colon, Rational, closing parenthesis, colon, Rational. Returns the addition of this rational number with another. Line 6: +, subtract, opening parenthesis, second Rational, colon, Rational, closing parenthesis, colon, Rational. Returns the subtraction of this rational number with another. Line 7: +, multiply, opening parenthesis, second Rational, colon, Rational, closing parenthesis, colon, Rational. Returns the multiplication of this rational number with another. Line 8: +, divide, opening parenthesis, second Rational, colon, Rational, closing parenthesis, colon, Rational. Returns the division of this rational number with another. Line 9: +, to String, opening parenthesis, closing parenthesis: String. Returns a string in the form quote numerator, forward slash, denominator.quote Returns the numerator if denominator is 1. Line 10, underlined: minus, g c d, opening parenthesis, n, colon, long, d, colon, long, closing parenthesis, colon, long. Returns the greatest common divisor of n and d.

Figure ay is a command prompt window, displaying output as follows. Line 1: c, colon, backslash, exercise, >, java, Exercise 13, underscore, 16, quote 3, forward slash, 4, +, 1, forward slash, 5quote . Line 2: 3, forward slash, 4, +, 1, forward slash, 5, =, 19, forward slash, 20. Line 3: blank. Line 4: c, colon, backslash, exercise, >, java, Exercise 13, underscore, 16, quote 3, forward slash, 4, forward slash, 1, forward slash, 5quote . Line 5: 3, forward slash, 4, forward slash, 1, forward slash, 5, =, 11, forward slash, 20. Line 6: blank. Line 7: c, colon, backslash, exercise, >, java, Exercise 13, underscore, 16, quote 3, forward slash, 4, asterisk, 1, forward slash, 5quote . Line 8: 3, forward slash, 4, asterisk, 1, forward slash, 5, =, 3, forward slash, 20. Figure B is an x-y plane, with points labeled, 2 + 3 i, and, 3 minus 2 i.

Figure ay is a diagram of a window, using concentric rectangles. The innermost rectangle is a, button, inside a, scene, surrounded by the window’s outermost area, the stage. Figure b shows the preceding window titled, My Java F X, with the large O K button, as well as a second window titled, Second Stage, with a large button reading, New Stage.

Figure ay is a diagram of a window, using concentric rectangles. Moving from the outside to the inside, these rectangles are the stage, then the scene, then the parent, pane, group, or control, and finally, one or more nodes. Figure b is a hierarchical diagram, with elements arranged as follows. Flow Pane, Grid Pane, Border Pane, H Box, V Box, and, Stack Pane, connect to, Pane, with an empty triangle. Pane, Group, and, Control, connect to, Parent, with an empty triangle. Parent connects to Node with an empty triangle, as do, Shape, and, Image View, and Node connects back to, Pane, with a filled diamond marked, asterisk. Finally, Parent connects to, Scene, with a filled diamond marked, 1, and, Scene, connects to Stage, with a filled diamond marked, 1.

In both figures, the scene’s top left corner is at coordinates (0, 0) and the circle’s center is at (100, 100) in the same relative position, but closer to the window’s left margin in b.

Figure ay shows the Java coordinate system, versus the conventional coordinate system in figure b. In figure ay, the point where the x and y axes intersect, indicated by the coordinates (0, 0), is in the top left corner of the coordinate plane, rather than at the center, as shown in figure b. In ay, a point below the x axis and to the right of the y axis is designated (x, y). For comparison, the same point would have a negative y value in figure b.

The getter methods for property values are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, red, colon, double. The red value of this color, between 0.0 and 1.0. Line 2: minus, green, colon, double. The green value of this color, between 0.0 and 1.0. Line 3: minus, blue, colon, double. The blue value of this color, between 0.0 and 1.0. Line 4: minus, opacity, colon, double. The opacity of this color, between 0.0 and 1.0. The bottom area reads as follows, with notes after each line. Line 1: +, Color, opening parenthesis, r, colon, double, comma, g, colon, double, comma, b, colon, double, comma, opacity, colon, double, closing parenthesis. Creates a Color with the specified red, green, blue, and opacity values. Line 2: +, brighter, opening parenthesis, closing parenthesis, colon, Color. Creates a Color that is a brighter version of this Color. Line 3: +, darker, opening parenthesis, closing parenthesis, colon, Color. Creates a Color that is a darker version of this Color. Line 4, underlined: +, color, opening parenthesis, r, colon, double, comma, g, colon, double, comma, b, colon, double, closing parenthesis, colon, Color. Creates an opaque Color with the specified red, green, and blue values. Line 5, underlined: +, color, opening parenthesis, r, colon, double, comma, g, colon, double, comma, b, colon, double, comma, opacity, colon, double, closing parenthesis, colon, Color. Creates a Color with the specified red, green, blue, and opacity values. Line 6, underlined: +, r g b, opening parenthesis, r, colon, i n t, comma, g, colon, i n t, comma, b, colon, i n t, closing parenthesis, colon, Color. Creates a Color with the specified red, green, and blue values in the range from 0 to 255. Line 7, underlined: +, r g b, opening parenthesis, r, colon, i n t, comma, g, colon, i n t, comma, b, colon, i n t, comma, opacity, colon, double, closing parenthesis, colon, Color. Creates a Color with the specified red, green, and blue values in the range from 0 to 255 and a given opacity.

The getter methods for property values are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, size, colon, double. The size of this font. Line 2: minus, name, colon, String. The name of this font. Line 3: minus, family, colon, String. The family of this font. The bottom area reads as follows, with notes after each line. Line 1: +, Font, opening parenthesis, size, colon, double, closing parenthesis. Creates a font with the specified size. Line 2: +, Font, opening parenthesis, name, colon, String, comma, size, colon, double, closing parenthesis. Creates a Font with the specified full font name and size. Line 3, underlined: +, font, opening parenthesis, name, colon, String, comma, size, colon, double, closing parenthesis. Creates a Font with the specified name and size. Line 4, underlined: +, font, opening parenthesis, name, colon, String, comma, w, colon, Font Weight, comma, size, colon, double, closing parenthesis. Creates a Font with the specified name, weight, and size. Line 5, underlined: +, font, opening parenthesis, name, colon, String, comma, w, colon, Font Weight, comma, p, colon, Font Posture, comma, size, colon, double, closing parenthesis. Creates a Font with the specified name, weight, posture, and size. Line 6, underlined: +, get Font Names, opening parenthesis, closing parenthesis, colon, List<String>. Returns a list of all font names installed on the user system.

The getter methods for property values are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, error, colon, Read Only Boolean Property. Indicates whether the image is loaded correctly? Line 2: minus, height, colon, Read Only Double Property. The height of the image. Line 3: minus, width, colon, Read Only Double Property. The width of the image. Line 4: minus, progress, colon, Read Only Double Property. The approximate percentage of image’s loading that is completed. The bottom area reads as follows, with notes after each line. Line 1: +, Image, opening parenthesis, file name Or U R L, colon, String, closing parenthesis. Creates an Image with contents loaded from a file or a U R L.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, fit Height, colon, Double Property. The height of the bounding box within which the image is resized to fit. Line 2: minus, fit Width, colon, Double Property. The width of the bounding box within which the image is resized to fit. Line 3: minus, x, colon, Double Property. The x-coordinate of the Image View origin. Line 4: minus, y, colon, Double Property. The y-coordinate of the Image View origin. Line 5: minus, image, colon, Object Property, <, Image, >. The image to be displayed in the image view. The bottom area reads as follows, with notes after each line. Line 1: +, Image View, opening parenthesis, closing parenthesis. Creates an Image View. Line 2: +, Image View, opening parenthesis, image, colon, Image, closing parenthesis. Creates an Image View with the specified image. Line 3: +, Image View, opening parenthesis, file name Or U R L, colon, String, closing parenthesis. Creates an Image View with image loaded from the specified file or U R L.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, alignment, colon, Object Property, <, P o s, >. The overall alignment of the content in this pane. Default is, P o s dot LEFT. Line 2: minus, orientation, colon, Object Property, <, Orientation, >. The orientation in this pane. Default is, Orientation dot HORIZONTAL. Line 3: minus, h gap, colon, Double Property. The horizontal gap between the nodes. Default is, 0. Line 4: minus, v gap, colon, Double Property. The vertical gap between the nodes. Default is, 0. The bottom area reads as follows, with notes after each line. Line 1: +, Flow Pane, opening parenthesis, closing parenthesis. Creates a default, Flow Pane. Line 2: +, Flow Pane, opening parenthesis, h gap, colon, double, v gap, colon, double, closing parenthesis. Creates a, Flow Pane, with a specified horizontal and vertical gap. Line 3: +, Flow Pane, opening parenthesis, orientation, colon, Object Property, <, Orientation, >, closing parenthesis. Creates a, Flow Pane, with a specified orientation. Line 4: +, Flow Pane, opening parenthesis, orientation, colon, Object Property, <, Orientation, >, h gap, colon, double, v gap, colon, double, closing parenthesis. Creates a, Flow Pane, with a specified orientation, horizontal gap, and vertical gap.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area reads as follows, with notes after each line. Line 1: minus, alignment, colon, Object Property, <, P o s, >. The overall alignment of the content in this pane. Default is, P o s dot LEFT. Line 2: minus, grid Lines Visible, colon, Boolean Property. Is the grid line visible? Default is, false. Line 3: minus, h gap, colon, Double Property. The horizontal gap between the nodes. Default is, 0. Line 4: minus, v gap, colon, Double Property. The vertical gap between the nodes. Default is, 0. The bottom area reads as follows, with notes after each line. Line 1: +, Grid Pane, opening parenthesis, closing parenthesis. Creates a, Grid Pane. Line 2: +, add, opening parenthesis, child, colon, Node, comma, column Index, colon, i n t, comma, row Index, colon, i n t, closing parenthesis, colon, void. Adds a node to the specified column and row. Line 3: +, add Column, opening parenthesis, column Index, colon, i n t, comma, children, colon, Node, closing parenthesis, colon, void. Adds multiple nodes to the specified column. Line 4: +, add Row, opening parenthesis, row Index, colon, i n t, comma, children, colon, Node, closing parenthesis, colon, void. Adds multiple nodes to the specified row. Line 5, underlined: +, get Column Index, opening parenthesis, child, colon, Node, closing parenthesis, colon, i n t. Returns the column index for the specified node. Line 6, underlined: +, set Column Index, opening parenthesis, child, colon, Node, comma, column Index, colon, i n t, closing parenthesis, colon, void. Sets a node to a new column. This method repositions the node. Line 7, underlined: +, get Row Index, opening parenthesis, child, colon, Node, closing parenthesis, colon, i n t. Returns the row index for the specified node. Line 8, underlined: +, set Row Index, opening parenthesis, child, colon, Node, comma, row Index, colon, i n t, closing parenthesis, colon, void. Sets a node to a new row. This method repositions the node. Line 9, underlined: +, set H alignment, opening parenthesis, child, colon, Node, comma, value, colon, H P o s, closing parenthesis, colon, void. Sets the horizontal alignment for the child in the cell. Line 10, underlined: +, set V alignment, opening parenthesis, child, colon, Node, comma, value, colon, V P o s, closing parenthesis, colon, void. Sets the vertical alignment for the child in the cell.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, top, colon, Object Property, <, Node, >. The node placed in the top region. Default is, null. Line 2: minus, right, colon, Object Property, <, Node, >. The node placed in the right region. Default is, null. Line 3: minus, bottom, colon, Object Property, <, Node, >. The node placed in the bottom region. Default is, null. Line 4: minus, left, colon, Object Property, <, Node, >. The node placed in the left region. Default is, null. Line 5: minus, center, colon, Object Property, <, Node, >. The node placed in the center region. Default is, null. The bottom area reads as follows, with notes after each line. Line 1: +, Border Pane, opening parenthesis, closing parenthesis. Creates a Border Pane. Line 2: +, Border Pane, opening parenthesis, node, colon, Node, closing parenthesis. Creates a, Border Pane, with the node placed in the center of the plane. Line 3, underlined: +, set Alignment, opening parenthesis, child, colon, Node, p o s, colon, P o s, closing parenthesis. Sets the alignment of the node in the, Border Pane.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, alignment, colon, Object Property, <, P o s, >. The overall alignment of the children in the box. Default is, P o s dot TOP, underscore, LEFT. Line 2: minus, fill Height, colon, Boolean Property. Is resizable children fill the full height of the box. Default is, true. Line 3: minus, spacing, colon, Double Property. The horizontal gap between two nodes. Default is, 0. The bottom area reads as follows, with notes after each line. Line 1: +, H Box, opening parenthesis, closing parenthesis. Creates a default H Box. Line 2: +, H Box, opening parenthesis, spacing, colon, double, closing parenthesis. Creates an H Box with the specified horizontal gap between nodes. Line 3, underlined: +, set Margin, opening parenthesis, node, colon, Node, comma, value, colon, Insets, closing parenthesis, colon, void. Sets the margin for the node in the pane.

The getter and setter methods for properties values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top area reads as follows, with notes after each line. Line 1: minus, alignment, colon, Object Property, <, P o s, >. The overall alignment of the children in the box. Default is, P o s dot TOP, underscore, LEFT. Line 2: minus, fill Width, colon, Boolean Property. Is resizable children fill the full width of the box. Default is, true. Line 3: minus, spacing, colon, Double Property. The vertical gap between two nodes. Default is, 0. The bottom area reads as follows, with notes after each line. Line 1: +, V Box, opening parenthesis, closing parenthesis. Creates a default, V Box. Line 2: +, V Box, opening parenthesis, spacing, colon, double, closing parenthesis. Creates a, V Box, with the specified horizontal gap between nodes. Line 3, underlined: +, set Margin, opening parenthesis, node, colon, Node, comma, value, colon, Insets, closing parenthesis, colon, void. Sets the margin for the node in the pane.

The getter and setter methods for property value and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, text, colon, String Property. Defines the text to be displayed. Line 2: minus, x, colon, Double Property. Defines the x-coordinate of text. Default is, 0. Line 3: minus, y, colon, Double Property. Defines the y-coordinate of text. Default is, 0. Line 4: minus, underline, colon, Boolean Property. Defines if each line has an underline below it. Default is, false. Line 5: minus, strikethrough, colon, Boolean Property. Defines if each line has a line through it. Default is, false. Line 6: minus, font, colon, Object Property, <, Font, >. Defines the font for the text. The bottom area reads as follows, with notes after each line. Line 1: +, Text, opening parenthesis, closing parenthesis. Creates an empty Text. Line 2: +, Text, opening parenthesis, text, colon, String, closing parenthesis. Creates a Text with the specified text. Line 3: +, Text, opening parenthesis, x, colon, double, comma, y, colon, double, comma, text, colon, String, closing parenthesis. Creates a Text with the specified x hyphen , y-coordinates and text.

Figure ay is a diagram of a text object in the Java coordinate system. Moving clockwise from the top left, the coordinates of the pane’s outermost corners are as follows: opening parenthesis, 0, comma, 0, closing parenthesis, then opening parenthesis, get Width, opening parenthesis, closing parenthesis, comma, 0, closing parenthesis, then opening parenthesis, get Width, opening parenthesis, closing parenthesis, comma, get Height, opening parenthesis, closing parenthesis, closing parenthesis, then opening parenthesis, 0, comma, get height, opening parenthesis, closing parenthesis, closing parenthesis. The text, opening parenthesis, x, comma, y, comma, text, closing parenthesis, displays near the center of the pane. Figure b is a window titled, Show Text, containing text in three fonts and formatting styles.

The getter and setter methods for property value and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, start X, colon, Double Property. The x-coordinate of the start point. Line 2: minus, start Y, colon, Double Property. The y-coordinate of the start point. Line 3: minus, end X, colon, Double Property. The x-coordinate of the end point. Line 4: minus, end Y, colon, Double Property. The y-coordinate of the end point. The bottom area reads as follows, with notes after each line. Line 1: +, Line, opening parenthesis, closing parenthesis. Creates an empty Line. Line 2: +, Line, opening parenthesis, start X, colon, double, comma, start Y, colon, double, comma, end X, colon, double, comma, end Y, colon, double, closing parenthesis. Creates a Line with the specified starting and ending points.

Figure ay is a diagram of a line object in the Java coordinate system. Moving clockwise from the top left, the coordinates of the pane’s outermost corners are as follows: opening parenthesis, 0, comma, 0, closing parenthesis, then opening parenthesis, get Width, opening parenthesis, closing parenthesis, comma, 0, closing parenthesis, then opening parenthesis, get Width, opening parenthesis, closing parenthesis, comma, get Height, opening parenthesis, closing parenthesis, closing parenthesis, then opening parenthesis, 0, comma, get height, opening parenthesis, closing parenthesis, closing parenthesis. A diagonal line is displayed near the center of the pane, falling down and to the right from, opening parenthesis, start X, comma, start Y, closing parenthesis, to, opening parenthesis, end X, comma, end Y, closing parenthesis. Figure b is a window titled, Show Line, containing two lines that form an X.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, x, colon, Double Property. The x-coordinate of the upper hyphen left corner of the rectangle. Default is, 0. Line 2: minus, y, colon, Double Property. The y-coordinate of the upper hyphen left corner of the rectangle. Default is, 0. Line 3: minus, width, colon, Double Property. The width of the rectangle. Default is, 0. Line 4: minus, height, colon, Double Property. The height of the rectangle. Default is, 0. Line 5: minus, arc Width, colon, Double Property. The, arc Width, of the rectangle. Default is, 0. Also note, arc Width, is the horizontal diameter of the arcs at the corner. See Figure 14.31 ay. Line 6: minus, arc Height, colon, Double Property. The, arc Height, of the rectangle. Default is, 0. Also note, arc Height, is the vertical diameter of the arcs at the corner. See Figure 14.31 ay. The bottom area reads as follows, with notes after each line. Line 1: +, Rectangle, opening parenthesis, closing parenthesis. Creates an empty Rectangle. Line 2: +, Rectangle, opening parenthesis, x, colon, double, comma, y, colon, double, comma, width, colon, double, comma, height, colon, double, closing parenthesis. Creates a Rectangle with the specified upper hyphen left corner point, width, and height.

Figure ay shows a rounded rectangle, inside a squared rectangle. The rounded corners are marked with the measurements, ay w divided by 2, and, ay h divided by 2, corresponding to arc width and arc height. Figures b and c show a window titled, Show Rectangle. Both versions of the window display rectangles stacked atop each other at different angles, like pieces of paper on a table. In b, the rectangles are opaque, so only the topmost rectangle is completely visible. In c, the rectangles are transparent, so all their outlines are visible.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, center X, colon, Double Property. The x-coordinate of the center of the circle. Default is, 0. Line 2: minus, center Y, colon, Double Property. The y-coordinate of the center of the circle. Default is, 0. Line 3: minus, radius, colon, Double Property. The radius of the circle. Default is, 0. The bottom area reads as follows, with notes after each line. Line 1: +, Circle, opening parenthesis, closing parenthesis. Creates an empty Circle. Line 2: +, Circle, opening parenthesis, x, colon, double, y, colon, double, closing parenthesis. Creates a Circle with the specified center. Line 3: +, Circle, opening parenthesis, x, colon, double, y, colon, double, radius, colon, double, closing parenthesis. Creates a Circle with the specified center and radius.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, center X, colon, Double Property. The x-coordinate of the center of the ellipse. Default is, 0. Line 2: minus, center Y, colon, Double Property. The y-coordinate of the center of the ellipse. Default is, 0. Line 3: minus, radius X, colon, Double Property. The horizontal radius of the ellipse. Default is, 0. Line 4: minus, radius Y, colon, Double Property. The vertical radius of the ellipse. Default is, 0. The bottom area reads as follows, with notes after each line. Line 1: +, Ellipse, opening parenthesis, closing parenthesis. Creates an empty Ellipse. Line 2: +, Ellipse, opening parenthesis, x, colon, double, comma, y, colon, double, closing parenthesis. Creates an Ellipse with the specified center. Line 3: +, Ellipse, opening parenthesis, x, colon, double, comma, y, colon, double, comma, radius X, colon, double, comma, radius Y, colon, double, closing parenthesis. Creates an Ellipse with the specified center and radiuses.

Figure ay is a diagram of an ellipse, centered at (center X, center Y). Horizontal and vertical measurements from the center to the edge are, radius X, and, radius Y, respectively. Figure B is a window titled, Show Ellipse, displaying a stack of twisting, overlaid ellipses, forming the silhouette of a circle.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, center X, colon, Double Property. The x-coordinate of the center of the ellipse. Default is, 0. Line 2: minus, center Y, colon, Double Property. The y-coordinate of the center of the ellipse. Default is, 0. Line 3: minus, radius X, colon, Double Property. The horizontal radius of the ellipse. Default is, 0. Line 4: minus, radius Y, colon, Double Property. The vertical radius of the ellipse. Default is, 0. Line 5: minus, start Angle, colon, Double Property. The start angle of the arc in degrees. Line 6: minus, length, colon, Double Property. The angular extent of the arc in degrees. Line 7: minus, type: Object Property, <, Arc Type, >. The closure type of the arc. Types include, Arc Type dot OPEN, Arc Type dot CHORD, Arc Type dot ROUND. The bottom area reads as follows, with notes after each line. Line 1: +, Arc, opening parenthesis, closing parenthesis. Creates an empty Arc. Line 2: +, Arc, opening parenthesis, x, colon, double, comma, y, colon, double, comma, radius X, colon, double, comma, radius Y, colon, double, comma, start Angle, colon, double, comma, length, colon, double, closing parenthesis. Creates an Arc with the specified arguments.

Figure ay is a diagram of an ellipse, with measurements, radius X, and, radius Y. Angles are usually measured from 0, directly to the right of the center, meaning lengths are usually measured counterclockwise around the center of the ellipse, or other figure. If an arc is measured below zero degrees, it is either negative, or greater than 180 degrees. Figure b shows arcs 1 to 4 as if they are cut from an ellipse. Arc 1, round, is shaped like a slice of pie, with edges expanding from the center to the curve at the object’s out edge. This arc is filled in. Arc 2, open, is simply a curved line along the outer edge of the ellipse. Arc 3, chord, is similar to arc 2, but adds a horizontal line to connect the arc’s outermost points. The area inside the arc is not filled. Finally, arc 4, chord, is similar to arc 3, but the enclosed area is filled in, similar to arc 1.

The diagram reads as follows, with notes after each line. Line 1: +, Polygon, opening parenthesis, closing parenthesis. Creates an empty Polygon. Line 2: +, Polygon, opening parenthesis, double dot dot points, closing parenthesis. Creates a Polygon with the given points. Line 3: +, get Points, opening parenthesis, closing parenthesis, colon, Observable List, <, Double, >. Returns a list of double, values as x hyphen and y-coordinates of the points.

Figure ay is a window titled, Draw Polygon, showing a regular hexagon. Beside it, a diagram breaks the polygon into components. The polygon is centered at, opening parenthesis, center X, center Y, closing parenthesis, and divided into triangles by extending radii from the center to each vertex. These triangles are labeled, 2 pi, over, 6. The vertices have coordinates, opening parenthesis, x, y, closing parenthesis. Note, x =, center X, +, radius, times, cosine of, 2 pi, divided by 6, and y =, center Y, minus, radius, times, sine of 2 pi, divided by 6. Figure b is a window titled, Show Polygon, which shows only 5 sides of a regular hexagon, forming a, polyline.

The first diagram is titled, Clock Pane. The getter and setter methods for these data fields are provided in the class, but omitted in the U M L diagram for brevity. The top area of the diagram reads as follows, with notes after each line. Line 1: minus, hour, colon, i n t. The hour in the clock. Line 2: minus, minute, colon, i n t. The minute in the clock. Line 3: minus, second, colon, i n t. The second in the clock. The bottom area reads as follows, with notes after each line. Line 1: +, Clock Pane, opening parenthesis, closing parenthesis. Constructs a default clock for the current time. Line 2: +, Clock Pane, opening parenthesis, hour, colon, i n t, minute, colon, i n t, second, colon, i n t, closing parenthesis. Constructs a clock with the specified time. Line 3: +, set Current Time, opening parenthesis, closing parenthesis, colon, void. Sets hour, minute, and second for current time. Line 4: +, set Width, opening parenthesis, width, colon, double, closing parenthesis, colon, void. Sets clock pane’s width and repaint the clock. Line 5: +, set Height, opening parenthesis, height, colon, double, closing parenthesis, colon, void. Sets clock pane’s height and repaint the clock. The second diagram is titled, java f x dot scene dot layout dot Pane.

Figure ay is a window titled, Display Clock, showing a 3 hyphen handed analog clock face and a digital readout. Figure b places the clock face in the Java coordinate system, with (0, 0) at the top left of the pane. The clock’s hands extend from the midpoint of the circle, at (center X, center Y), and the angle of a clock hand, theta, is measured clockwise from the vertical line rising from the center of the clock face to 12, at the top. The hand is labeled, hand Length, and its endpoint is at the coordinates (x End, y End).

Figure ay is a window titled, Exercise 14, underscore, 0 1. It displays a 2 by 2 grid of flags as follows by row: Germany, China; France, U S. Figure b is a window titled, Exercise 14, underscore, 0 2. It displays an incomplete grid of X’s and O’s. Figure c is a window titled, Exercise 14, underscore, 0 3. It displays cards from left to right as follows: 3 of spades, 7 of diamonds, king of clubs.

Figure ay is a window titled, Exercise 14, underscore, 0 4. It displays the word, Java, written 5 times, vertically, in different shades. Figure b is a window titled, Exercise 14, underscore, 0 5. It displays the text, Welcome To Java, in black font, wrapped into a circular shape. Figure c is a window titled, Exercise 14, underscore, 0 6. It displays an 8 by 8 grid of squares that alternate between black and white.

Figure ay is a window titled, Exercise 14, underscore, 0 1. It displays a 10 by 10 grid of text fields, each containing either a zero or a 1. Figure b is a window titled, Exercise 14, underscore, 0 2. It displays 4 circles, 2 over 2, that each contain 4 shaded, conical sections, equally spaced to resemble fan blades. Figure c is a window titled, Exercise 14, underscore, 0 3. It displays a drawing of a cylinder, using a dashed arc to indicate the portion of the base’s circumference hidden by the front of the cylinder.

Figure ay is a window titled, Exercise 14, underscore, 11. It uses basic shapes inside a circle to draw a face: the eyes are dark circles inside white ovals; the nose is a triangle with an upward hyphen pointing apex; the smiling mouth is an arc under the triangle. Figure b is a window titled, Exercise 14, underscore, 12. It contains a bar graph, showing the following data: project = 20%, quiz = 10%, midterm = 30%, final = 40%. Figure c is a window titled, Exercise 14, underscore, 13. It displays the same data as figure b, but using a pie chart instead of a bar graph.

Figure ay is a window titled, Exercise 14, underscore, 14. It displays a wireframe drawing of a rectangular box. Figure b is a window titled, Exercise 14, underscore, 15. It displays the text, STOP, in white font, centered inside a shaded, regular octagon. Figure c is a window titled, Exercise 14, underscore, 16. It displays a 3 by 3 grid of rectangular cells.

Figure ay is a window titled, Exercise 14, underscore, 17. It uses an upside hyphen down L shape and an arc to represent a hangman’s gibbet and the ground beneath the gibbet, respectively. A short line segment extends down from the gibbet’s horizontal bar, representing the noose, connected to a stick figure, representing the hanged man. Figure b is a window titled, Exercise 14, underscore, 18. It displays an x hyphen y plane with the graph of a parabola, opening upward from the origin. Figure c is a window titled, Exercise 14, underscore, 19. It displays an x hyphen y plane, with two overlapping sine waves.

Figure ay is a window titled, Exercise 14, underscore, 20. It displays an arrow extending from the middle hyphen bottom of the pane to a point above and to the right of the center of the pane. Figure b is a window titled, Exercise 14, underscore, 21. It displays two black circles with a line segment extending between them, labeled, 211.2778117183764. Figure c is a window titled, Exercise 14, underscore, 22. It displays two white circles, labeled 1 and 2, with a line segment extending between them.

All three figures show a window titled, Exercise 15, underscore, 23, containing rectangles of different sizes and positions. Labels at the bottoms of the windows describe the contents. Figure ay reads, the rectangles overlap. Figure b reads, one rectangle is contained in another. Figure c reads, the rectangles do not overlap.

Figure ay is a window titled, Exercise 14, underscore, 24. It displays a 5 hyphen sided polygon and a point, above a label reading, the point is inside the polygon. Figure b is a window titled, Exercise 14, underscore, 25. It displays a 5 hyphen sided polygon, with its vertices all lying on the circumference of a circle. Figure c is a window titled, Exercise 14, underscore, 26. It displays two analog clocks with 3 hands each, with hours marked at 3, 6, 9, and 12.

Figure ay is a window titled, Exercise 14, underscore, 27. It displays three hyphen handed analog clock, with hours marked from 1 through 12, as well as 60 tick marks for minutes. Below the clock, a digital readout gives the time as, 22, colon 44 colon 37. Figure b is a window titled, Exercise 14, underscore, 28. It displays a two hyphen handed analog clock, with hours marked at 3, 6, 9, and 12. Below the clock, a digital readout gives the time as, 9 colon 10 colon 0. Figure c is a window titled, Exercise 14, underscore, 29. It displays a bean machine, with 7 rows of pegs above eight slots at the bottom.

Figure ay is a window titled, Handle Event, with buttons labeled, O K, and, cancel. Figure b is a window titled, Command Prompt, dash, java, Handle Event. The window shows text as follows. Line 1: C, colon, backslash, book, >, java, Handle Event. Line 2: O K button clicked. Line 3: Cancel button clicked. Line 4: O K button clicked. Line 5: Cancel button clicked.

In the diagram, a box labeled, button, points to a box labeled, event, which points to a box labeled, handler. The first box is the event source object. Clicking a button fires an action event. The second box is an event object. Note, an event is an object. The third box is an event handler object, which processes the event.

The Java F X event classes are in the java f x dot event package. Mouse event and key event are subclasses of input event. Input event, action event, and window event are subclasses of event. Event is a subclass of the event object, which is outside the package.

Figure ay: A generic source object with a generic event T. 1, A listener object is an instance of a listener interface. A dashed line with a hollow triangle extends from listener, listener class, to interface event handler < T extends event >, with code + handle left parenthesis event colon T right parentheses. 2, Register by invoking source dot set On X Event Type, for listener. A solid line with a hollow diamond leads from listener to source, source class, with code + set On X Event Type left parenthesis listener right parenthesis. A user action triggers an event at the source. Figure b: a button source object with an action event. 1, An action event listener is an instance of event handler < action event >. A dashed line with a hollow triangle leads from listener, custom listener class, to interface, event handle < action event >, with code + handle left parenthesis event colon Action Event right parenthesis. 2, Register by invoking source dot set On Action left parenthesis listener right parenthesis. A solid line with a hollow diamond goes from listener to source, java f x dot scene dot control dot button, with code + set On Action left parenthesis listener right parenthesis.

Diagram ay contains code for inner class, Enlarge Listener, as follows. Note: an arrow points from line 8 to the shaded text in line 5. Line 1: public, void, start, opening parenthesis, Stage, primary Stage, closing parenthesis, opening brace. Line 2, 1 indent: double forward slashes, Omitted. Line 3: blank. Line 4, 1 indent: b t Enlarge dot set On Action, opening parenthesis. Line 5, 2 indents: new, begin shading, Enlarge Handler, opening parenthesis, closing parenthesis, end shading, closing parenthesis, semicolon. Line 6: closing brace. Line 7: blank. Line 8: class, Enlarge Handler. Line 9, 2 indents: implements, Event Handler, <, Action Event, >, opening brace. Line 10, 1 indent: public, void, handle, opening parenthesis, Action Event, e, closing parenthesis, opening brace. Line 11, 2 indents: circle Pane dot enlarge, opening parenthesis, closing parenthesis, semicolon. Line 12, 1 indent: closing brace. Line 13: closing brace. Diagram b contains code as follows. Line 1: public, void, start, opening parenthesis, Stage, primary Stage, closing parenthesis, opening brace. Line 2, 1 indent: double forward slashes, Omitted. Line 3: blank. Line 4, 1 indent: b t Enlarge dot set On Action, opening parenthesis. Line 5, 2 indents: new, begin crossed-out, class, Enlarge Handler, end crossed-out. Line 6, 3 indents: begin crossed-out, implements, end crossed-out, Event Handler, <, Action Event, >, begin shading, opening parenthesis, closing parenthesis, end shading, opening brace. Line 7, 3 indents: public, void, handle, opening parenthesis, Action Event, e, closing parenthesis, opening brace. Line 8, 4 indents: circle Pane dot enlarge, opening parenthesis, closing parenthesis, semicolon. Line 9, 3 indents: closing brace. Line 10, 2 indents: closing brace, closing parenthesis, semicolon. Line 11: closing brace.

The code reads as follows. Line 1: b t Enlarge dot set On Action, opening parenthesis. Line 2, 1 indent: e, minus >, opening brace. Line 3, 2 indents: double forward slashes, code for processing event e. Line 4, 1 indent: closing brace. Line 5:), semicolon. Note 1: The compiler recognizes that the lambda expression is an object of the, Event Handler, <, Action Event, >, type, because the expression is an argument in the, set On Action, method. Note 2: The compiler recognizes that, e, I a parameter of the, Action Event, type, since the, Event Handler, <, Action Event, >, interface defines the handle method with a parameter of the, Action Event, type. Note 3: The compiler recognizes that the code for processing event, e, are the statements in the handle method.

The constructors and methods section reads as follows, with notes following each line. Line 1: +, get Button, opening parenthesis, closing parenthesis, colon, Mouse Button. Indicates which mouse button has been clicked. Line 2: +, get Click Count, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of mouse clicks associated with this event. Line 3: +, get X, opening parenthesis, closing parenthesis, colon, double. Returns the x-coordinate of the mouse point in the event source node. Line 4: +, get Y, opening parenthesis, closing parenthesis, colon, double. Returns the y-coordinate of the mouse point in the event source node. Line 5: +, get Scene X, opening parenthesis, closing parenthesis, colon, double. Returns the x-coordinate of the mouse point in the scene. Line 6: +, get Scene Y, opening parenthesis, closing parenthesis, colon, double. Returns the y-coordinate of the mouse point in the scene. Line 7: +, get Screen X, opening parenthesis, closing parenthesis, colon, double. Returns the x-coordinate of the mouse point in the screen. Line 8: +, get Screen Y, opening parenthesis, closing parenthesis, colon, double. Returns the y-coordinate of the mouse point in the screen. Line 9: +, is Alt Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the, Alt, key is pressed on this event. Line 10: +, is Control Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the, Control, key is pressed on this event. Line 11: +, is Meta Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the mouse, Meta, button is pressed on this event. Line 12: +, is Shift Down, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the, Shift, key is pressed on this event.

The, getter, and, setter, methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The data fields section reads as follows, with notes following each line. Line 1: minus, auto Reverse, colon, Boolean Property. Defines whether the animation reverses direction on alternating cycles. Line 2: minus, cycle Count, colon, Integer Property. Defines the number of cycles in this animation. Line 3: minus, rate, colon, Double Property. Defines the speed and direction for this animation. Line 4: minus, status, colon, Read Only Object Property, comma, <, Animation dot Status, >. Read-only property to indicate the status of the animation. The constructors and methods section reads as follows, with notes following each line. Line 1: +, pause, opening parenthesis, closing parenthesis, colon, void. Pauses the animation. Line 2: +, play, opening parenthesis, closing parenthesis, colon, void. Plays the animation from the current position. Line 3: +, stop, opening parenthesis, closing parenthesis, colon, void. Stops the animation and resets the animation.

The, getter, and, setter, methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The data fields section reads as follows, with notes following each line. Line 1: minus, duration, colon, Object Property, <, Duration, >. The duration of this transition. Line 2: minus, node, colon, Object Property, <, Node, >. The target node of this transition. Line 3: minus, orientation, colon, Object Property, <, Path Transition dot Orientation Type, >. The orientation of the node along the path. Line 4: minus, path, colon, Object Type, <, Shape, >. The shape whose outline is used as a path to animate the node move. The constructors and methods section reads as follows, with notes following each line. Line 1: +, Path Transition, opening parenthesis, closing parenthesis. Creates an empty, Path Transition. Line 2: +, Path Transition, opening parenthesis, duration, colon, Duration, comma, path, colon, Shape, closing parenthesis. Creates a, Path Transition, with the specified duration and path. Line 3: +, Path Transition, opening parenthesis, duration, colon, Duration, comma, path, colon, Shape, comma, node, colon, Node, closing parenthesis. Creates a, Path Transition, with the specified duration and path.

The, getter, and, setter, methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The data fields section reads as follows, with notes following each line. Line 1: minus, duration, colon, Object Property, <, Duration, >. The duration of this transition. Line 2: minus, node, colon, Object Property, <, Node, >. The target node of this transition. Line 3: minus, from Value, colon, Double Property. The start opacity for this animation. Line 4: minus, to Value, colon, Double Property. The stop opacity for this animation. Line 5: minus, by Value, colon, Double Property. The incremental value on the opacity for this animation. The constructors and methods section reads as follows, with notes following each line. Line 1: +, Fade Transition, opening parenthesis, closing parenthesis. Creates an empty, Fade Transition. Line 2: +, Fade Transition, opening parenthesis, duration, colon, Duration, closing parenthesis. Creates a, Fade Transition, with the specified duration. Line 3: +, Fade Transition, opening parenthesis, duration, colon, Duration, comma, node, colon, Node, closing parenthesis. Creates a, Fade Transition, with the specified duration and node.

The diagram shows a 1 to 1 composition from ball pane to bounce ball control. Ball pane inherits java dot scene dot layout dot Pane, and bounce ball control inherits java f x dot application dot Application. Ball pane has the following attributes: hyphen x colon double, hyphen y colon double, hyphen d x colon double, hyphen d y colon double, hyphen radius colon double, hyphen circle colon circle, hyphen animation colon Timeline. Ball pane has the following operations: + ball pane left parenthesis right parenthesis, + play left parenthesis right parenthesis colon void, + pause left parenthesis right parenthesis colon void, + increase Speed left parenthesis right parenthesis colon void, + decrease Speed left parenthesis right parenthesis colon void, + rate Property left parenthesis right parenthesis colon Double Property, hash move Ball left parenthesis right parenthesis colon void.

Figure ay contains 4 random playing cards, above a refresh button. Figure b contains a tall rectangle, rotated approximately 45 degrees clockwise from upright, above a rotate button. Figure c contains a small circle above a row of buttons from left to right labeled, left, right, up, and, down.

Figure ay is a window titled, Exercise 15, underscore, 04, with labels and input fields paired from left to right as follows. Number 1: 4.5. Number 2: 3.4. Result: 7.9. A row of buttons below the fields are labeled, add, subtract, multiply, and, divide. Figure b is a window titled, Exercise 15, underscore, 05, with labels and input fields paired from top to bottom as follows. Investment amount: 10,000. Number of years: 4. Annual interest rate: 3.25. Future value: $11386.28. The calculate button is aligned right, below the input fields.

Figure ay is a window titled, Exercise 15, underscore, 08. It shows the mouse pointer positioned to the left of the middle of the pane, at coordinates, (66.0, 84.0). In figure b, line segments positioned end to end form a chain that moves up, down, left, and right within the pane.

The first window is titled, Exercise 15, underscore, 15, and contains 9 empty circles, or points, spread across the pane at random. The second window is titled, Exercise 15, underscore, 16, and contains 2 empty circles, or vertices, with a line segment, or edge, labeled, 187, extending between them.

Figure ay is a window is titled, Exercise 15, underscore, 17. Its pane contains two bounding rectangles. The first rectangle contains text as follows. Line 1: INSTRUCTION. Line 2: Add, colon, Left Click. Line 3: Remove, colon, Right Click. The second rectangle contains 12 empty circles, without apparent arrangement. Figures b and c are both windows titled, Exercise 15, underscore, 19. In figure b, the pane contains a shaded circle, left of center. In figure c, the pane contains text aligned to the top left, indented once, and reading, Time spent is 22,673 milliseconds.

Figure ay is a window titled, Exercise 15, underscore, 20. Three vertices and edges form a triangle. The vertex angles are labeled, 101.93, 34,53, and, 43.54. Figure b is a window titled, Exercise 15, underscore, 21. Three vertices and edges form a triangle, with all vertices lying on a circle. The vertex angles are labeled, 83.37, 45.56, and 51.07.

Two windows titled, Exercise 15, underscore, 25, show a shaded ball at different points along a sine curve that rises through negative 2 pi, falls through negative pi, and rises through the origin, continuing in this manner across the x y plane. The first image shows the ball near the beginning of its path, to the left of negative 2 pi. The second image shows the ball slightly to the right of 2 pi, near the end of its path.

Figures ay and b are windows titled, Exercise 17, underscore, 27. In figure ay, the phrase, Programming is fun, is positioned near the center of the pane, and aligned to the left margin. Figure b is similar, but the phrase is aligned to the right margin. Figure c is a window titled, Exercise 15, underscore, 28, containing a circle with equally-spaced, shaded arcs, representing fan blades. Below the fan, a row of buttons reads, pause, resume, and, reverse.

In figure ay, two windows titled, Exercise 15, underscore, 29, display a miniature version of the car image in figure b. In the first window, the car is in the pane’s bottom left corner. In the second window, the car has moved closer to the middle of the bottom of the pane. In figure b, a simple drawing of a car is generated on an x y plane. Moving to the right from the origin, x, values are marked at x + 10, x + 20, x + 30, x + 40, and x + 50. Moving upward from the origin, y, values are marked at y minus 10, y minus 20, y minus 30, and y minus 40. The marked values along the axes define a grid with 4 rows and 5 columns. In the bottom row, between y and y minus 10, the second and fourth squares, respectively between x = 10 and x = 20, and between x = 30 and x = 40, are shaded identically, with a black circle whose edges extend to the sides of the containing squares. In the middle row, all five squares are shaded light blue. In the top row, the third square is shaded in darker blue, and adjacent right triangles are shaded in the second and fourth squares.

Figures ay through d are windows containing a sixteen by sixteen grid of squares. A path overlays the lines of the grid, moving only up, down, left, or right. Figures ay and b are titled, Exercise 15, underscore, 34. In ay, the path starts in the center and eventually moves up, to run into the northern boundary of the grid. In b, the path starts in the center, and eventually surrounds itself, resulting in a dead end. Figures c and d are titled, Exercise 15, underscore, 35. These windows show a path moving up and to the right in a staircase pattern. Figure d’s path contains one further step than figure c’s.

The media view, image view, and parent inherit node. Control inherits parent, as covered in Chapter 14. Labeled, scroll bar, slider, text input control, list view, and combo box base inherit control. Combo box inherits combo box base. Text area and text field inherit Password field, which in turn inherits text input control. Button, check box, and toggle button inherit radio button, which in turn inherits button base.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram reads as follows, with notes after each line. Line 1: minus, alignment, colon, Object Property, <, P o s, >. Specifies the alignment of the text and node in the labeled. Line 2: minus, content Display, colon, Object Property, <, Content Display, >. Specifies the position of the node relative to the text using the constants TOP, BOTTOM, LEFT, and RIGHT, defined in, Content Display. Line 3: minus, graphic, colon, Object Property, <, Node, >. A graphic for the label. Line 4: minus, graphic Text Gap, colon, Double Property. The gap between the graphic and the text. Line 5: minus, text Fill, colon, Object Property, <, Paint, >. The paint used to fill the text. Line 6: minus, text, colon, String Property. A text for the label. Line 7: minus, underline, colon, Boolean Property. Whether text should be underlined. Line 8: minus, wrap Text, colon, Boolean Property. Whether text should be wrapped if the text exceeds the width.

The first diagram is titled, java f x dot scene dot control dot Label. It reads as follows, with notes after each line. Line 1: +, Label, opening parenthesis, closing parenthesis. Creates an empty label. Line 2: +, Label, opening parenthesis, text, colon, String, closing parenthesis. Creates a label with the specified text. Line 3: +, Label, opening parenthesis, text, colon, String, comma, graphic, colon, Node, closing parenthesis. Creates a label with the specified text and graphic. A hollow triangle and a solid line point from the first diagram to the second diagram¸ with the italicized title, java f x dot scene dot control dot Labeled.

Hollow arrows and solid lines extend from the first diagram to the second diagram, then the third diagram. The first diagram is titled, java f x dot scene dot control dot button. It reads as follows, with notes after each line. Line 1: +, Button, opening parenthesis, closing parenthesis. Creates an empty button. Line 2: +, Button, opening parenthesis, text, colon, String, closing parenthesis. Creates a button with the specified text. Line 3: +, Button, opening parenthesis, text, colon, String, comma, graphic, colon, Node, closing parenthesis. Creates a button with the specified text and graphic. The second diagram is titled, begin italics, java f x dot scene dot control dot Button Base, end italics. The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The diagram reads as follows, with notes after each line. Line 1: minus, on Action, colon, Object Property, <, Event Handler, <, Action Event, >, >. Defines a handler for handling a button’s action. The third diagram has the italicized title, java f x dot scene dot control dot Labeled.

Hollow arrows and solid lines extend from the first diagram to the second diagram, then the third diagram. The following note applies to the first and second diagrams: The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The first diagram is titled, java f x dot scene dot control dot Check Box. The top section reads as follows, with notes after each line. Line 1: minus, selected, colon, Boolean Property. Indicates whether this check box is checked. The bottom section reads as follows, with notes after each line. Line 1: +, Check Box, opening parenthesis, closing parenthesis. Creates an empty check box. Line 2: +, Check Box, opening parenthesis, text, colon, String, closing parenthesis. Creates a check box with the specified text.
The second diagram is titled, begin italics, java f x dot scene dot control dot Button Base, end italics. It reads as follows, with notes after each line. Line 1: minus, on Action, colon, Object Property, <, Event Handler, <, Action Event, >, >. Defines a handler for handling a button’s action. The third diagram has the italicized title, java f x dot scene dot control dot Labeled.

A hollow triangle and solid line extend from the first diagram to the second diagram. The first diagram is titled, java f x dot scene dot control dot Radio Button. It reads as follows, with notes after each line. Line 1: +, Radio Button, opening parenthesis, closing parenthesis. Creates an empty radio button. Line 2: +, Radio Button, opening parenthesis, text, colon, String, closing parenthesis. Creates a radio button with the specified text. The second diagram is titled, java f x dot scene dot control dot Toggle Button. The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The top section reads as follows, with notes after each line. Line 1: minus, selected, colon, Boolean Property. Indicates whether the button is selected. Line 2: minus, toggle Group, colon, Object Property, <, Toggle Group, >. Specifies the button group to which the button belongs. The bottom section reads as follows, with notes after each line. Line 1: +, Toggle Button, opening parenthesis, closing parenthesis. Creates an empty toggle button. Line 2: +, Toggle Button, opening parenthesis, text, colon, String, closing parenthesis. Creates a toggle button with the specified text. Line 3: +, Toggle Button, opening parenthesis, text, colon, String, comma, graphic, colon, Node, closing parenthesis. Creates a toggle button with the specified text and graphic.

A hollow triangle and solid line extend from the first diagram to the second diagram. The following note applies to both diagrams: The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The first diagram is titled, java f x dot scene dot control dot Text Field. The top section reads as follows, with notes after each line. Line 1: minus, alignment, colon, Object Property, <, P o s, >. Specifies how the text should be aligned in the text field. Line 2: minus, p r e f Column Count, colon, Integer Property. Specifies the preferred number of columns in the text field. Line 3: minus, on Action, colon, Object Property, <, Event Handler, <, Action Event, >, >. Specifies the handler for processing the action event on the text field. The bottom section reads as follows, with notes after each line. Line 1: +, Text Field, opening parenthesis, closing parenthesis. Creates an empty text field. Line 2: +, Text Field, opening parenthesis, text, colon, String, closing parenthesis. Creates a text field with the specified text. The second diagram is titled, begin italics, java f x dot scene dot control dot Text Input Control, end italics. It reads as follows, with notes after each line. Line 1: minus, text, colon, String Property. The text content of this control. Line 2: minus, editable, colon, Boolean Property. Indicates whether the text can be edited by the user.

Below the window’s title bar, an input field labeled, enter a new message, contains the text, Programming is fun. This text now appears in the window’s lower central pane. The radio buttons in the left-aligned V box are as follows: red; green; blue, selected. The check boxes in the right-aligned V box are as follows: bold, marked; italic, marked. The buttons labeled left and right remain centered in the H box, below the new message text.

A hollow triangle and solid line extend from the first diagram to the second diagram. The following note applies to both diagrams: The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The first diagram is titled, java f x dot scene dot control dot Text Area. The top section reads as follows, with notes after each line. Line 1: minus, p r e f Column Count, colon, Integer Property. Specifies the preferred number of text columns. Line 2: minus, p r e f Row Count, colon, Integer Property. Specifies the preferred number of text rows. Line 3: minus, wrap Text, colon, Boolean Property. Specifies whether the text is wrapped to the next line. The bottom section reads as follows, with notes after each line. Line 1: +, Text Area, opening parenthesis, closing parenthesis. Creates an empty text area. Line 2: +, Text Area, opening parenthesis, text, colon, String, closing parenthesis. Creates a text area with the specified text. The second diagram is titled, begin italics, java f x dot scene dot control dot Text Input Control, end italics. It reads as follows, with notes after each line. Line 1: minus, text, colon, String Property. The text content of this control. Line 2: minus, editable, colon, Boolean Property. Indicates whether the text can be edited by the user.

The main diagram is titled, Description Pane. Its top area reads as follows: Line 1: minus, l b l Image Title, colon, Label. Line 2: minus, t ay Description, colon, TextArea. The bottom area reads as follows: Line 1: +, set Image View, opening parenthesis, i m, colon, Image View, closing parenthesis, colon, void. Line 2: +, set Description, opening parenthesis, text, colon, String, closing parenthesis, colon, void. Line 3: +, set Title, opening parenthesis, title, colon, String, closing parenthesis, colon, void. A hollow triangle and solid line extend from the first diagram to a second diagram titled, java f x dot scene dot layout dot Border Pane. A filled diamond and solid line extend from the first diagram to a third diagram titled, Text Area Demo. A hollow triangle and solid line extend from the third diagram to a fourth diagram titled, begin italics, java f x dot application dot Application, end italics.

A hollow triangle and solid line extend from the first diagram to the second diagram. The following note applies to both diagrams: The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The first diagram is titled, java f x dot scene dot control dot Combo Box, <, T, >. The top section reads as follows, with notes after each line. Line 1: minus, items, colon, Object Property, <, Observable List, <, T, >, >. The items in the combo box popup. Line 2: minus, visible Row Count, colon, Integer Property. The maximum number of visible rows of the items in the combo box popup. The bottom section reads as follows, with notes after each line. Line 1: +, Combo Box, opening parenthesis, closing parenthesis. Creates an empty combo box. Line 2: +, Combo Box, opening parenthesis, items, colon, Observable List, <, T, >, closing parenthesis. Creates a combo box with the specified items. The second diagram is titled, begin italics, java f x dot scene dot control dot Combo Box Base, <, T, >, end italics. It reads as follows, with notes after each line. Line 1: minus, value, colon, Object Property, <, T, >. The value selected in the combo box. Line 2: minus, editable, colon, Boolean Property. Specifies whether the combo box allows user input. Line 3: minus, on Action, colon, Object Property, <, Event Handler, <, Action Event, >, >. Specifies the handler for processing the action event.

The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The top section reads as follows, with notes after each line. Line 1: minus, items, colon, Object Property, <, Observable List, <, T, >, >. The item in the list view. Line 2: minus, orientation, colon, Boolean Property. Indicates whether the items are displayed horizontally or vertically in the list view. Line 3: minus, selection Model, colon, Object Property, <, Multiple Selection Model, <, T, >, >. Specifies how items are selected. The, Selection Model, is also used to obtain the selected items. The bottom section reads as follows, with notes after each line. Line 1: +, List View, opening parenthesis, closing parenthesis. Creates an empty list view. Line 2: +, List View, opening parenthesis, items, colon, Observable List, <, T, >, closing parenthesis. Creates a list view with the specified items.

Figures ay through c show a list of seven countries: Canada, China, Denmark, France, Germany, India, and Norway. Figure ay is a single selection, since only France is selected. Figures b and c are multiple selections, since more than one selection is highlighted. In b, three countries are selected in a row: China, Denmark, and France. In figure c, China, Denmark, and Germany are selected, but France, which is between Denmark and Germany, is not selected.

The window contains a, List View, inside a scroll pane on the left side of the window, and a, Flow Pane, on the right side, where, Image View, is displayed. Canada and Germany are selected in the list, and their flags appear to the right.

The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The top section reads as follows, with notes after each line. Line 1: minus, block Increment, colon, Double Property. The amount to adjust the scroll bar if the track of the bar is clicked. Default is 10. Line 2: minus, max, colon, Double Property. The maximum value represented by this scroll bar. Default is 100. Line 3: minus, min, colon, Double Property. The minimum value represented by this scroll bar. Default is 0. Line 4: minus, unit Increment, colon, Double Property.
The amount to adjust the scroll bar when the, increment, opening parenthesis, closing parenthesis, and, decrement, opening parenthesis, closing parenthesis, methods are called. Default is 1. Line 5: minus, value, colon, Double Property. Current value of the scroll bar. Default is 0. Line 6: minus, visible Amount, colon, Double Property. The width of the scroll bar. Default is 15. Line 7: minus, orientation, colon, Object Property, <, Orientation, >. Specifies the orientation of the scroll bar. Default is HORIZONTAL. The bottom section reads as follows, with notes after each line. Line 1: +, Scroll Bar, opening parenthesis, closing parenthesis. Creates a default horizontal scroll bar. Line 2: +, increment, opening parenthesis, closing parenthesis. Increments the value of the scroll bar by, unit Increment. Line 3: +, decrement, opening parenthesis, closing parenthesis. Decrements the value of the scroll bar by, unit Increment.

The window contains the text, Java F X Programming, left of center in the pane. The vertical and horizontal sliders are marked with number lines from 1 to 100. The horizontal slider is set between 22 and 25, and the vertical slider is set between 25 and 50.

The getter and setter methods for property values, and a getter for property itself, are provided in the class, but omitted in the U M L diagram for brevity. The top section reads as follows, with notes after each line. Line 1: minus, block Increment, colon, Double Property. The amount to adjust the slider if the track of the bar is clicked. Default is 10. Line 2: minus, max, colon, Double Property. The maximum value represented by this slider. Default is 100. Line 3: minus, min, colon, Double Property. The minimum value represented by this slider. Default is 0. Line 4: minus, value, colon, Double Property. Current value of the slider. Default is 0. Line 5: minus, orientation, colon, Object Property, <, Orientation, >. Specifies the orientation of the slider. Default is HORIZONTAL.
Line 6: minus, major Tick Unit, colon, Double Property. The unit distance between major tick marks. Line 7: minus, minor Tick Count, colon, Integer Property. The number of minor ticks to place between two major ticks. Line 8: minus, show Tick Labels, colon, Boolean Property. Specifies whether the labels for tick marks are shown. Line 9: minus, show Tick Marks, colon, Boolean Property. Specifies whether the tick marks are shown. The bottom section reads as follows, with notes after each line. Line 1: +, Slider, opening parenthesis, closing parenthesis. Creates a default horizontal slider. Line 2: +, Slider, opening parenthesis, min, colon, double, comma, max, colon, double, comma, value, colon, double, closing parenthesis. Creates a slider with the specified min, max, and value.

Two windows titled, Bounce Ball Slider, contain a shaded circle in an otherwise blank pane, above a horizontal slider. In the first window, the circle is in the pane’s top left corner, and the horizontal slider is positioned all the way to the left. In the second window, the circle and ball have respectively moved approximately one-half and one-third of the distance across the pane.

In figure ay, X won by placing three marks in a diagonal from upper left to lower right. In figure b, there are no winners because all nine squares are filled, but neither player can connect three of their marks. In figure c, O won by placing three marks in a diagonal from lower left to upper right.

The first diagram is titled, Cell. Its top section reads as follows, with notes after each line. Line 1: minus, token, colon, c h ay r. Token used in the cell. Default is, ' '. The bottom section reads as follows, with notes following each line. Line 1: +, get Token, opening parenthesis, closing parenthesis, colon, c h ay r. Returns the token in the cell. Line 2: +, set Token, opening parenthesis, token, colon, c h ay r, closing parenthesis, colon, void. Sets a new token in the cell. Line 3: minus, handle Mouse Click, opening parenthesis, closing parenthesis, colon, void. Handles a mouse-click event. A hollow triangle and solid line extend from the first diagram to the second diagram, which is titled, java f x dot scene dot layout dot Pane.

The first diagram is titled, Tic Tac Toe. Its top section reads as follows, with notes after each line. Line 1: minus, whose Turn, colon, c h ay r. Indicates which player has the turn, initially X. Line 2: minus, cell, colon, Cell, opening bracket, closing bracket, opening bracket, closing bracket. A 3 by 3, two-dimensional grid for cells. Line 3: minus, l b l Status, colon, Label. A label to display game status. The bottom section reads as follows, with notes after each line. Line 1: +, Tic Tac Toe, opening parenthesis, closing parenthesis. Constructs the, Tic Tac Toe, user interface. Line 2: +, is Full, opening parenthesis, closing parenthesis, colon, boolean. Returns true if all cells are filled. Line 3: +, is Won, opening parenthesis, token, colon, c h ay r, closing parenthesis, colon, boolean. Returns true if a player with the specified token has won. Additional diagram elements are labeled, Cell, and, begin italics, java f x dot application dot Application, end italics.

The getter methods for property values are provided in the class, but omitted in the UML diagram for brevity. The diagram’s top section reads as follows, with notes after each line. Line 1: minus, duration, colon, Read Only Object Property, <, Duration, >. The duration in seconds of the source media. Line 2: minus, width, colon, Read Only Integer Property. The width in pixels of the source video. Line 3: minus, height, colon, Read Only Integer Property. The height in pixels of the source video. The bottom section reads as follows, with notes after each line. Line 1: +, Media, opening parenthesis, source, colon, String, closing parenthesis. Creates a Media from a U R L source.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top section reads as follows, with notes after each line. Line 1: minus, auto Play, colon, Boolean Property. Specifies whether the playing should start automatically. Line 2: minus, current Count, colon, Read Only Integer Property. The number of completed playback cycles. Line 3: minus, cycle Count, colon, Integer Property. Specifies the number of times the media will be played. Line 4: minus, mute, colon, Boolean Property.
Specifies whether the audio is muted. Line 5: minus, volume, colon, Double Property. The volume for the audio. Line 6: minus, total Duration, colon, Read Only Object Property, <, Duration, >. The amount of time to play the media from start to finish. The bottom section reads as follows, with notes after each line. Line 1: +, Media Player, opening parenthesis, media, colon, Media, closing parenthesis. Creates a player for a specified media. Line 2: +, play, opening parenthesis, closing parenthesis, colon, void. Plays the media. Line 3: +, pause, opening parenthesis, closing parenthesis, colon, void. Pauses the media. Line 4: +, seek, opening parenthesis, closing parenthesis, colon, void. Seeks the player to a new playback time.

The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the U M L diagram for brevity. The diagram’s top section reads as follows, with notes after each line. Line 1: minus, x, colon, Double Property. Specifies the current x-coordinate of the media view. Line 2: minus, y, colon, Double Property. Specifies the current y-coordinate of the media view. Line 3: minus, media Player, colon, Object Property, <, Media Player, >. Specifies a media player for the media view. Line 4: minus, fit Width, colon, Double Property. Specifies the width of the view for the media to fit. Line 5: minus, fit Height, colon, Double Property. Specifies the height of the view for the media to fit.
The diagram’s bottom section reads as follows, with notes after each line. Line 1: +, MediaView, opening parenthesis, closing parenthesis. Creates an empty, media view. Line 2: +, MediaView, opening parenthesis, media Player, colon, Media Player, closing parenthesis. Creates a, media view, with the specified media player.

Both windows contain a large image of a flag, with a horizontal pane at the bottom of the window containing a pause button and a drop down labeled, Select a nation, colon. The flag image changes based on the selection made in the drop down. The nations selected on the left and right are the U K and the U S, respectively.

Figure ay has elements from top to bottom as follows: a row of radio buttons labeled, red, yellow, black, which is selected, orange, and green; a pane with the text, Programming is fun, aligned left of center; a row of two buttons for moving the text left to right. Figure b has elements top to bottom labeled as follows: Stack Pane, H Box. The larger, upper pane contains a centered image of a rectangle. The lower pane contains a row of radio buttons labeled, circle, rectangle, which is selected, and ellipse, followed by an unmarked checkbox labeled, Fill.

Figure ay has elements from top to bottom as follows: a traffic light represented by three circles stacked inside a tall rectangle; a row of radio buttons labeled, red, which is selected, yellow, and green. Figure b has elements from top to bottom as follows: a text field labeled, mile, containing value, 1; a text field labeled, kilometer, containing value, 1.606307322544464. Figure c has elements from top to bottom as follows: a text field labeled, decimal, containing value, 15; a text field labeled, hex, containing value, f; a text field labeled, binary, containing value, 1111.

Figure ay has elements from top to bottom as follows: a centered text field labeled, text field, containing the centered text, Java F X; a row of 3 radio buttons labeled, left, center, which is selected, and right, followed by a text field labeled, column size, containing the value, 12. Figure b displays an analog clock face above three text fields labeled, hour, minute, and second, containing numbers corresponding to the respective hands on the clock face. In this case, the values are, hour, 4, minute, 30, second, 45.

Figure ay has elements from top to bottom as follows: a label reading, two circles intersect, question mark, no; a pane containing two non-overlapping circles; side by side tables of values corresponding to the shapes shown above; a centered button labeled, redraw circles. The table to the left reads as follows by row: enter circle 1 info; center x, 52.0; center y, 60.0; radius, 30. The table to the right reads as follows by row: enter circle 2 info; center x, 180.0; center y, 56.0; radius, 40. Figure b has elements from top to bottom as follows: a label reading, two rectangles intersect, question mark, yes; a pane containing two intersecting rectangles; side by side tables of values corresponding to the shapes shown above; a centered button labeled, redraw rectangles. The table to the left reads as follows by row: enter rectangle 1 info; x, 79.0; y, 20.0; width, 40.0; height, 50.0. The table to the right reads as follows by row: enter rectangle 2 info; x, 110.0; y, 33.0; width, 50.0; height, 20.0.

Figure ay contains a scrolling text area above a text box labeled, file name, with a button labeled, view. The file being viewed is named, c, colon, backslash, book, backslash, Welcome dot java. The code displayed in the upper pane reads as follows. Line 1: double forward slashes, this program prints, Welcome to Java, exclamation point. Line 2: public, class, Welcome, opening brace. Line 3, 1 indent: public, static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 4, 2 indents: System dot out dot print l n, opening parenthesis, quote Welcome to Java, exclamation point quote, closing parenthesis, semicolon. Line 5, 1 indent: closing brace. Line 6: closing brace. Figure b is configured similarly to figure ay, and is set to view the same file. However, the scrolling text box is replaced by a bar graph, with plots for each letter of the alphabet.

Figure ay contains a scrolling text area above centered check boxes labeled, editable, and, wrap, both of which are marked. The text displayed is the Gettysburg Address. The window in figure b has elements from top to bottom as follows: a text box labeled, loan amount, containing value, 10,000, then a text box labeled, number of years, containing value, 5, then a button labeled, show table; a scrolling text box, containing a 3-column table with column headers as follows: interest rate; monthly payment; total payment.

Figure ay has elements from top to bottom as follows: a drop down labeled, Font Name, set to, Book Antiqua, then a drop down labeled, Font Size, set to, 48; the text, Programming is fun; marked check boxes labeled, Bold, and, Italic. The text in the middle of the window is formatted per the controls above and below it.
Figure b has elements from top to bottom as follows: a drop down labeled, content Display, set to, LEFT, then a text box labeled, graphic Text Gap, containing value, 40; an image of a bunch of grapes, and a label reading, Grapes.

Figure ay has elements from top to bottom as follows. A drop-down labeled, choose selection mode, which is set to, MULTIPLE. A scrolling list of countries, as follows: China; Japan, selected; Korea, selected; India; Malaysia; Vietnam. Text reading, Selected items are Japan, Korea, Vietnam. Figure b has the centered text, Show Colors, above a centered list of 4 horizontal sliders, labeled, Red, Green, Blue, Opacity. Figure c has elements from top to bottom as follows: a row of buttons labeled, pause, resume, and, reverse; an image of a fan blade; an unlabeled horizontal slider.

In figures ay, b, and c, the window displays a digital time readout above 2 buttons. Figure ay displays time, 0 0 colon 0 0 colon 0 0, above buttons labeled, Start, and, Clear. Figure b displays time, 0 0 colon 0 0 colon 0 6, above buttons labeled, Pause, and, Clear. Figure c displays time, 0 0 colon 0 0 colon 15, above buttons labeled, Resume, and, Clear. In figure d, a stack of 3 windows show numbers decreasing by one, starting at 30 and ending at 28, top to bottom.

Figure ay contains a row of 3 buttons labeled Play, Loop, and Stop. Figure b contains an image of the text, Learning Java, rendered textured and embossed. A button labeled, Start Animation, sits in the top right of the window. Below the image, the window contains elements as follows: text reading, Enter information for animation; 4 text fields. These fields have labels and values as follows: Animation speed in milliseconds, 200; Image file prefix, L; Number of images, 24; Audio file for U R L, h t t p, colon, forward slash, forward slash, w w w, dot, c s, dot, armstrong, dot, e d u, forward slash, l i a n g, forward slash, common, forward slash, anthem, forward slash, anthem 2, dot, m p 3.

Figure ay is composed almost entirely of the video frame, which shows a woman seated at a piano. A horizontal bottom pane contains a pause button, sliders for time and volume, and a display which shows that 3 minutes and 58 seconds have elapsed out of 5 minutes and 3 seconds. Figure b has a row of text fields, followed by 4 rows containing images of cars, at different positions from left to right along the rows. The text fields have labels and values as follows: Car 1, 2; Car 2, 5; Car 3, 10; Car 4, 15.

Figures ay and b have elements from top to bottom as follows: text reading, A consecutive four found; a 6 by 7 grid of cells, each containing values from 0 to 9; a button reading, Solve. In figure ay, a horizontal set of 4 cells containing ones is highlighted. In figure b, a diagonal set of 4 cells containing threes is highlighted. Figure c is a 6 by 7 grid of circles over a dark gray background. The circles vary in shade, from white through increasingly darker shades of gray.

In figure ay, the Unicode of the character is encoded and decoded in a text input and output program, and then stored in the file. For example, the value 199 in the program is stored as 0 0 1 1 0 0 0 1, or 0 x 31; 0 0 1 1 1 0 0 1, or 0 x 39; 0 0 1 1 1 0 0 1, or 0 x 39. In figure b, a byte is read or written in a binary input and output program, and the byte is the same in the file. For example, the value 199 in this program is 1 1 0 0 0 1 1 1, or 0 x c 7, in the file.

Input stream and output stream inherit object. File input stream, filter input stream, and object input stream inherit Input stream. Data input stream and buffer input stream inherit filter input stream. File output stream, filter output stream, and object output stream inherit output stream. Data output stream and buffer output stream inherit Filter output stream.

The diagram reads as follows, with notes after each line. Line 1: +, read, opening parenthesis, closing parenthesis, colon, i n t. Reads the next byte of data from the input stream. The value byte is returned as an, i n t, value in the range 0 to 255. If no byte is available because the end of the stream has been reached, the value, negative 1 is returned. Line 2: +, read, opening parenthesis, b, colon, byte, opening bracket, closing bracket, closing parenthesis, colon, i n t. Reads up to, b dot length, bytes into array b from the input stream and returns the actual number of bytes read. Returns, negative 1, at the end of the stream. Line 3: +, read, opening parenthesis, b, colon, byte, opening bracket, closing bracket, comma, off, colon, i n t, comma, l e n, colon, i n t, closing parenthesis, colon, i n t. Reads bytes from the input stream and stores them in b, opening bracket, off, closing bracket, b, opening bracket, off +, 1, closing bracket, and so on until, b, opening bracket, off, +, l e n, minus, 1, closing bracket. The actual number of bytes read is returned. Returns, negative 1, at the end of the stream. Line 4: +, close, opening parenthesis, closing parenthesis, colon, void. Closes this input stream and releases any system resources occupied by it. Line 5: +, skip, opening parenthesis, n, colon, long, closing parenthesis, colon, long. Skips over and discards n bytes of data from this input stream. The actual number of bytes skipped is returned.

The diagram reads as follows, with notes after each line. Line 1: +, write, opening parenthesis, i n t, b, closing parenthesis, colon, void. Writes the specified byte to this output stream. The parameter b is an i n t, value, and, opening parenthesis, byte, closing parenthesis, b is written to the output stream. Line 2: +, write, opening parenthesis, b, colon, byte, opening bracket, closing bracket, closing parenthesis, colon, void. Writes all the bytes in array b to the output stream. Line 3: +, write, opening parenthesis, b, colon, byte, opening bracket, closing bracket, comma, off, colon, i n t, comma, l e n, colon, i n t, closing parenthesis, colon, void. Writes, b, opening bracket, off, closing bracket, comma, b, opening bracket, off, +, 1, closing bracket, comma, code truncated, comma, b, opening bracket, off, +, l e n, minus, 1, closing bracket into the output stream. Line 4: +, close, opening parenthesis, closing parenthesis, colon, void. Closes this output stream and releases any system resources occupied by it. Line 5: +, flush, opening parenthesis, closing parenthesis, colon, void. Flushes this output stream and forces any buffered output bytes to be written out.

A hollow arrow and solid line extend from the first diagram to the second diagram. The first diagram has the name, java dot i o dot File Input Stream. It reads as follows, with notes after each line. Line 1: +, File Input Stream, opening parenthesis, file, colon, File, closing parenthesis. Creates a, File Input Stream, from a File object. Line 2: +, File Input Stream, opening parenthesis, file name, colon, String, closing parenthesis. Creates a, File Input Stream, from a file name. The second diagram has the italicized name, java dot i o dot Input Stream.

A hollow arrow and solid line extend from the first diagram to the second diagram. The first diagram has the name, java dot i o dot File Output Stream. It reads as follows, with notes after each line. Line 1: +, File Output Stream, opening parenthesis, file, colon, File, closing parenthesis. Creates a, File Output Stream, from a File object. Line 2: +, File Output Stream, opening parenthesis, file name, colon, String, closing parenthesis. Creates a, File Output Stream, from a file name. Line 3: +, File Output Stream, opening parenthesis, file, colon, File, append, colon, boolean, closing parenthesis. If append is true, data are appended to the existing file. Line 4: +, File Output Stream, opening parenthesis, file name, colon, String, append, colon, boolean, closing parenthesis. If append is true, data are appended to the existing file. The second diagram has the italicized name, java dot i o dot Output Stream.

The console reads as follows. Line 1: c, colon, backslash, book, >, java, Test File Stream. Line 2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Line 3: c, colon, backslash, book, >, type, t e m p dot d ay t. Line 4, labeled, binary data: Unshaded smiley face, shaded smiley face, heart symbol, diamond symbol.

The main part of the diagram has the title, «, interface, », begin italics, java dot i o dot Data Input, end italics. It reads as follows, with notes after each line. Line 1: +, read Boolean, opening parenthesis, closing parenthesis, colon, boolean. Reads a Boolean from the input stream. Line 2: +, read Byte, opening parenthesis, closing parenthesis, colon, byte. Reads a byte from the input stream. Line 3: +, read C h ay r, opening parenthesis, closing parenthesis, colon, c h ay r. Reads a character from the input stream. Line 4: +, read Float, opening parenthesis, closing parenthesis, colon, float. Reads a float from the input stream. Line 5: +, read Double, opening parenthesis, closing parenthesis, colon, double. Reads a double from the input stream. Line 6: +, read I n t, opening parenthesis, closing parenthesis, colon, i n t. Reads an, i n t, from the input stream. Line 7: +, read Long, opening parenthesis, closing parenthesis, colon, long. Reads a long from the input stream. Line 9: +, read Short, opening parenthesis, closing parenthesis, colon, short. Reads a short from the input stream. Line 10: +, read Line, opening parenthesis, closing parenthesis, colon, string. Reads a line of characters from input. Line 11: +, read U T F, opening parenthesis, closing parenthesis, colon, string. Reads a string in U T F format.

The main part of the diagram has the title, «, interface, », begin italics, java dot i o dot Data Output, end italics. It reads as follows, with notes after each line. Line 1: +, write Boolean, opening parenthesis, b, colon, boolean, closing parenthesis, colon, void. Writes a Boolean to the output stream. Line 2: +, write Byte, opening parenthesis, v, colon, i n t, closing parenthesis, colon, void. Writes the eight low-order bits of the argument v to the output stream. Line 3: +, write Bytes, opening parenthesis, s, colon, String, closing parenthesis, colon, void. Writes the lower byte of the characters in a string to the output stream. Line 4: +, write C h ay r, opening parenthesis, c, colon, c h ay r, closing parenthesis, colon, void. Writes a character, composed of 2 bytes, to the output stream. Line 5: +, write C h ay r s, opening parenthesis, s, colon, String, closing parenthesis, colon, void. Writes every character in the string s to the output stream, in order, 2 bytes per character. Line 6: +, write Float, opening parenthesis, v, colon, float, closing parenthesis, colon, void. Writes a float value to the output stream. Line 7: +, write Double, opening parenthesis, v, colon, double, closing parenthesis, colon, void. Writes a double value to the output stream. Line 8: +, write I n t, opening parenthesis, v, colon, i n t, closing parenthesis, colon, void. Writes an, i n t, value to the output stream. Line 9: +, write Long, opening parenthesis, v, colon, long, closing parenthesis, colon, void. Writes a long value to the output stream. Line 10: +, write Short, opening parenthesis, v, colon, short, closing parenthesis, colon, void. Writes a short value to the output stream. Line 11: +, write U T F, opening parenthesis, String s, closing parenthesis, colon, void. Writes s string in U T F format.

In the first diagram, the pipe line flows from the external file to, File Input Stream, as binary data, and then to, Data Input Stream, as syntax such as, i n t, double, string, and so on. In the second diagram, the pipe line flows from, Data Output Stream, as syntax, to, File Output Stream, in binary, to, the external file.

In figure ay, a block of data is loaded into the, Buffered Input Stream, and from that buffer, the program reads individual data. In figure b, a program writes individual data into the, Buffered Output Stream, and from that buffer, the data is then written in a block.

A hollow arrow and solid line extend from the first diagram to the second diagram, and then to the third diagram. The first diagram is titled, java dot i o dot Buffered Input Stream. It reads as follows, with notes after each line. Line 1: +, Buffered Input Stream, opening parenthesis, in, colon, Input Stream, closing parenthesis. Creates a, Buffered Input Stream, from an, Input Stream, object. Line 2: +, Buffered Input Stream, opening parenthesis, in, colon, Input Stream, comma, buffer Size, colon, i n t, closing parenthesis. Creates a, Buffered Input Stream, from an, Input Stream, object with specified buffer size. The second diagram is titled, java dot i o dot Filter Input Stream. The third diagram is titled, begin italics, java dot i o dot Input Stream, end italics.

A hollow arrow and solid line extend from the first diagram to the second diagram, and then to the third diagram. The first diagram is titled, java dot i o dot Buffered Output Stream. It reads as follows, with notes after each line. Line 1: +, Buffered Output Stream, opening parenthesis, out, colon, Output Stream, closing parenthesis. Creates a, Buffered Output Stream, from an, Output Stream, object. Line 2: +, Buffered Output Stream, opening parenthesis, out, colon, Output Stream, comma, buffer Size, colon, i n t, closing parenthesis. Creates a, Buffered Output Stream, from an, Output Stream, object with specified size. The second diagram is titled, java dot i o dot Filter Output Stream. The third diagram is titled, begin italics, java dot i o dot Output Stream, end italics.

The console reads as follows: Line 1, labeled, file exists: c, colon, backslash, book, >, java, Copy Welcome dot java, Temp dot java. Line 2: Target file, T e m p dot java, already exists. Line 3: blank. Line 4, labeled, delete file, colon, c, colon, backslash, book, >, d e l, T e m p dot java. Line 5: blank. Line 6, labeled, copy: c, colon, backslash, book, >, java, Copy Welcome dot java, T e m p dot java. Line 7: 179 bytes copied. Line 8: blank. Line 9, labeled, source does not exist: c, colon, backslash, book, >, java, Copy, T T T dot java, Temp dot java. Line 10: Source file, T T T dot java, does not exist.

The first diagram is titled, java dot i o dot Object Input Stream. It contains syntax reading, +, Object Input Stream, opening parenthesis, in, colon, Input Stream, closing parenthesis. A solid line and hollow triangle extends from the first diagram to the second diagram, titled, begin italics, java dot i o dot Input Stream. Dashed lines and hollow triangles extend from the first diagram to the third and fourth diagrams, respectively titled, interface, begin italics, Object Stream Constants, end italics, and interface, begin italics, java dot i o dot Object Input, end italics. The fourth diagram contains syntax reading, +, read Object, opening parenthesis, closing parenthesis, colon, Object. Note, this syntax reads an object. A dashed line and hollow triangle extend from the fourth diagram to the fifth, titled, interface, begin italics, java dot i o dot Data Input.

The first diagram is titled, java dot i o dot Object Output Stream. It contains syntax reading, +, Object Output Stream, opening parenthesis, out, colon, output Stream, closing parenthesis. A solid line and hollow triangle extends from the first diagram to the second diagram, titled, begin italics, java dot i o dot Output Stream. Dashed lines and hollow triangles extend from the first diagram to the third and fourth diagrams, respectively titled, interface, begin italics, Object Stream Constants, end italics, and interface, begin italics, java dot i o dot Object Output, end italics. The fourth diagram contains syntax reading, +, write Object, opening parenthesis, o, colon, Object, closing parenthesis, colon, void. Note, this syntax writes an object. A dashed line and hollow triangle extend from the fourth diagram to the fifth, titled, interface, begin italics, java dot i o dot Data Input.

The main part of the diagram is titled, java dot i o dot Random Access File. It reads as follows, with notes after each line. Line 1: +, Random Access File, opening parenthesis, file, colon, File, mode: String, closing parenthesis. Creates a, Random Access File, stream with the specified File object and mode. Line 2: +, Random Access File, opening parenthesis, name: String, mode: String, closing parenthesis. Creates a, Random Access File, stream with the specified file name string and mode. Line 3: +, close, opening parenthesis, closing parenthesis, colon, void. Closes the stream and releases the resource associated with it. Line 4: +, get File Pointer, opening parenthesis, closing parenthesis, colon, long. Returns the offset, in bytes, from the beginning of the file to where the next read or write occurs. Line 5: +, length, opening parenthesis, closing parenthesis, colon, long. Returns the length for this file. Line 6: +, read, opening parenthesis, closing parenthesis, colon, i n t. Reads a byte of data from this file and returns negative 1 at the end of stream. Line 7: +, read, opening parenthesis, b, colon, byte, opening bracket, closing bracket, closing parenthesis, colon, i n t. Reads up to b dot length bytes of data from this file into an array of bytes. Line 8: +, read, opening parenthesis, b, colon, byte, opening bracket, closing bracket, off, colon, i n t, l e n, colon, i n t, closing parenthesis, colon, i n t. Reads up to, l e n, bytes of data from this file into an array of bytes. Line 9: +, seek, opening parenthesis, p o s, colon, long, closing parenthesis, colon, void. Sets the, off set, in bytes specified in p o s, from the beginning of the stream to where the next read or write occurs. Line 10: +, set Length, opening parenthesis, new Length, colon, long, closing parenthesis, colon, void. Sets a new length for this file. Line 11: +, skip Bytes, opening parenthesis, i n t, n, closing parenthesis, colon, i n t. Skips over n bytes of input. Line 12: +, write, opening parenthesis, b, colon, byte, opening bracket, closing bracket, closing parenthesis, colon, void. Writes b dot length bytes from the specified byte array to this file, starting at the current file pointer. Line 13: +, write, opening parenthesis, b, colon, byte, opening bracket, closing bracket, off, colon, i n t, l e n, colon, i n t, closing parenthesis, colon, void. Writes, l e n, bytes from the specified byte array, starting at offset off, to this file. Dashed lines and hollow triangles extend from the first diagram to the second and third diagrams, which are respectively labeled, interface, java dot i o dot Data Input, and, interface, java dot i o dot Data Output.

A window titled, Exercise 17, underscore, 09, contains test fields with labels and input as follows. Name, John Smith. Street, 100 Main Street. City, Savannah. State, G Ay. Zip, 3 1 4 1 1. Buttons are labeled, add, first, next, previous last, and, update.

Each window has a different instruction, above identically labeled and configured text fields. The instructions in figure ay read as follows: If you split a file named, temp dot t x t, into 3 smaller files, the three smaller files are, temp dot t x t dot 1, temp dot t x t dot 2, and, temp dot t x t dot 3. The instructions in figure b read as follows: If the base file is named, temp dot t x t with three pieces, temp dot t x t dot 1, temp dot t x t dot 2, and, temp dot t x t dot 3, are combined into, temp dot t x t. Below these instructions, bot windows contain text fields with labels and input as follows. Enter a file, temp dot t x t. Specify the number of smaller files, 3. There is a button labeled, Start, below the text fields.

The diagram reads as follows, with notes after each line. Line 1: +, Bit Output Stream, opening parenthesis, file, colon, File, closing parenthesis. Creates a Bit Output Stream to write bits to the file. Line 2: +, write Bit, opening parenthesis, c h ay r bit, closing parenthesis, colon, void. Writes a bit '0' or '1' to the output stream. Line 3: +, write Bit, opening parenthesis, String bit, closing parenthesis, colon, void. Writes a string of bits to the output stream. Line 4: +, close, opening parenthesis, closing parenthesis, colon, void. This method must be invoked to close the stream.

Figures ay and b are windows titled, Exercise 17, underscore, 20, and, underscore, 21. Both windows have an input field, labeled, Enter a file, with the input, c, colon, backslash, book, backslash, Welcome dot java. The first window displays the file as ones and zeroes. The second window displays the file as letters Ay through F, and numbers.

The figures show a window titled, Exercise 18, underscore, 35. A text field at the bottom of each window is labeled, Enter an order. In ay, the order is 0, and it increases to 1 in b, 2 in c, and 3 in d. Figure ay shows a single large, capital H symbol. In figure b, each of the 4 exterior points of the original H now marks the center of the cross bar of a new, smaller H. This repeats in figures c and d, with each greater order corresponding to another layer of H symbols being added to the outermost points of the previously outermost symbols.

Step 1 executes factorial 4. Step 1 executes factorial 3. Step 2 executes factorial 2. Step 3 executes factorial 1. Step 4 executes factorial 0. Step 5 is return 1 to factorial 0. Step 6 is return 1 to factorial 1. Step 7 is return 2 to factorial 2. Step 8 is return 8 to factorial 3. Step 9 is return 24 to factorial 4.

During steps 1 to 5, the stack builds from one layer for factorial 4, n colon 4, to four layers for factorial 0, n colon 0, to factorial 4, n colon 4. The stack then loses one layer from the top per step for steps 6 to 9.

The following list provides the call for each step number, from 0 to 17: 0, call fib 4; 1, call fib 3; 2, call fib 2; 3, call fib 1; 4, return fib 1; 5, call fib 0; 6, return fib 0; 7, return fib 2; 8, call fib 1; 9, return fib 1; 10, return fib 3; 11, call fib 2; 12, call fib 1; 13, return fib 1; 14, return fib 0; 15, return fib 0; 16, return fib 2; 17, return fib 4.

Box 0 shows the original positioning, with disks stacked above Ay. Box 1 step 1: move the first, n minus 1, discs from Ay to C, recursively. This leaves the widest disk at Ay, with the others stacked at C. Box 2, step 2: move disk n, the widest disk, from Ay to B. Box 3, step 3: move, n minus 1, disks from C to B, recursively.

The diagram for tracing the recursions in the move disk sequence has three levels. Each box in the top and middle levels has three operations, and each level 2 box branches to two additional boxes with single operations.

Figure ay shows order 0, which is a triangle with one upward-pointing vertex, referred to here as an, upward, triangle. Figure b shows order 1, in which the upward triangle is subdivided into three smaller upward triangles, surrounding a single downward triangle of the same size. In figure c, order 2, all upward triangles are subdivided by downward triangles, and the process is repeated in figure d, order 3.

Figure ay. The call display triangles (order comma p 1 comma p 2 comma p 3) yields a triangle with the following vertices counterclockwise from the top: p 1, p 2, p 3. Side p 1 p 2 has midpoint p 1 2. Side p 3 p 1 has midpoint p 3 1. Side p 2 p 3 has midpoint p 2 3. Connecting the midpoints divides triangle p 1 p 2 p 3 into 4 recursively drawn smaller triangles.

Figure ay shows a correct path through the maze. Beginning from the top left, move toward the bottom right as follows: to the right 3 times; downward 3 times; to the right 2 times; downward 4 times; to the right 2 times. Figure b shows an illegal path. Beginning from the top left, move toward the bottom right as follows downward 7 times; to the right 1 time; upward 4 times; to the right 2 times; upward 1 time; to the right 1 time; upward 2 times; to the right 2 times; downward 7 times; to the right 1 time.

Figure ay shows a solution for the knight’s tour problem, tracing a single, segmented arrow through all squares on a chessboard per the knight piece’s movement rules. In figure b, the 8 by 8 chessboard is labeled with rows 0 to 7, top to bottom, and columns 0 to 7, left to right. To indicate the possible moves for a knight piece, eight arrows extend from row 3, column 2, to the following spaces: row 1, columns 1 and 3; row 2, columns 0 and 4; row 4, columns 0 and 4; row 5, columns 1 and 3. Figure c is a window titled, Exercise 18, underscore, 32, showing a chessboard above a button labeled, solve, which displays a solution to the knight’s tour on the board.

The window shows an 8 by 8 chessboard, with 8 queens positioned top to bottom and left to right as follows: row 1, column 1; row 2, column 5; row 3, column 8; row 4, column 6; row 5, column 3; row 6, column 7; row 7, column 2; row 8, column 4.

At order 1, a line extends downward, then to the right, then upward, forming 3 sides of a square. At order 2, the line extends to the right, downward, to the left, downward, to the right, upward, to the right, downward, to the right, upward, to the left, upward, and to the right, such that each of the original figure’s 3 sides now has an inward projection that itself resembles a square. This pattern repeats in orders 3 and 4.

Figure ay is labeled, Array List before J D K 1.5. This diagram is titled, java dot u t i l dot Array List. It reads as follows. Line 1: +, Array List, opening parenthesis, closing parenthesis, . Line 2: +, add, opening parenthesis, o, colon, Object, closing parenthesis, colon, void. Line 3: +, add, opening parenthesis, index, colon, i n t, o, colon, Object, closing parenthesis, colon, void. Line 4: +, clear, opening parenthesis, closing parenthesis, colon, void. Line 5: +, contains, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Line 6: +, get, opening parenthesis, index, colon, i n t, closing parenthesis, colon, Object. Line 7: +, index Of, opening parenthesis, o, colon, Object, closing parenthesis, colon, i n t. Line 8: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Line 9: +, last Index Of, opening parenthesis, o, colon, Object, closing parenthesis, colon, i n t. Line 10: +, remove, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Line 11: +, size, opening parenthesis, closing parenthesis, colon, i n t. Line 12: +, remove, opening parenthesis, index, colon, i n t, closing parenthesis, colon, boolean. Line 13: +, set, opening parenthesis, index, colon, i n t, o, colon, Object, closing parenthesis, colon, Object. Figure b is labeled, Array List since J D K 1.5. This diagram is titled, java dot u t i l dot Array List, <, E, >, . It reads as follows. Line 1: +, Array List, opening parenthesis, closing parenthesis, . Line 2: +, add, opening parenthesis, o, colon, E, closing parenthesis, colon, void. Line 3: +, add, opening parenthesis, index, colon, i n t, o, colon, E, closing parenthesis, colon, void. Line 4: +, clear, opening parenthesis, closing parenthesis, colon, void. Line 5: +, contains, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Line 6: +, get, opening parenthesis, index, colon, i n t, closing parenthesis, colon, E. Line 7: +, index Of, opening parenthesis, o, colon, Object, closing parenthesis, colon, i n t. Line 8: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Line 9: +, last Index Of, opening parenthesis, o, colon, Object, closing parenthesis, colon, i n t. Line 10: +, remove, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Line 11: +, size, opening parenthesis, closing parenthesis, colon, i n t. Line 12: +, remove, opening parenthesis, index, colon, i n t, closing parenthesis, colon, boolean. Line 13: +, set, opening parenthesis, index, colon, i n t, o, colon, E, closing parenthesis, colon, E

The diagram’s top area reads as follows, with notes after each line. Line 1: minus, comma, list, comma, colon, comma, java dot u t i l dot Array List, <, E, >, . An array list to store elements. The bottom area reads as follows, with notes after each line. Line 1: +, Generic Stack, opening parenthesis, closing parenthesis, . Creates an empty stack. Line 2: +, get Size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of elements in this stack. Line 3: +, peek, opening parenthesis, closing parenthesis, colon, E. Returns the top element in this stack. Line 4: +, pop, opening parenthesis, closing parenthesis, colon, E. Returns and removes the top element in this stack. Line 5: +, push, opening parenthesis, o, colon, E, closing parenthesis, colon, void. Adds a new element to the top of this stack. Line 6: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the stack is empty.

The console reads as follows. Line 1: c, colon, backslash, book, >, java c, minus, X l i n t, colon, unchecked, Max dot java. Line 2: Max dot java, colon, 4, colon, warning, colon, opening bracket, unchecked, closing bracket, unchecked call to, compare To, opening parenthesis, T, closing parenthesis, as a member l e. Line 3: blank. Line 4, 2 indents: if, opening parenthesis, o 1 dot compare To, indicated error, opening parenthesis, o 2, closing parenthesis, >, 0, closing parenthesis, . Line 5: blank. Line 7, 1 indent: where T is a type-variable, colon. Line 8, 2 indents: T, extends, Object declared in interface, Comparable. Line 9: blank. Line 11: 1 warning. Line 12: c, colon, backslash, book, >, .

First diagram. Unknown, unknown super E, and E’s superclass inherit object. E inherits unknown super E, and E’s superclass, and E’s subclass and unknown extends E inherit E. Second diagram. Ay of the unknown inherits object. Ay of unknown extends B, and Ay of unknown super B inherit Ay of the unknown. Ay of B’s subclass and Ay of B inherits Ay of unknown extends B. Ay of B and Ay of B’s superclass inherit Ay of unknown super B.

The main diagram is titled, Generic Matrix, <, E, extends, Number, >, . It reads as follows. Line 1, italicized: number sign, add, opening parenthesis, element 1, colon, E, element 2, colon, E, closing parenthesis, colon, E. Line 2, italicized: number sign, multiply, opening parenthesis, element 1, colon, E, element 2, colon, E, closing parenthesis, colon, E. Line 3, italicized: number sign, zero, opening parenthesis, closing parenthesis, colon, E. Line 4: +, add Matrix, opening parenthesis, matrix 1 opening bracket, closing bracket, opening bracket, closing bracket, matrix 2, colon, E, opening bracket, closing bracket, opening bracket, closing bracket, closing parenthesis, colon, E, opening bracket, closing bracket, opening bracket, closing bracket, . Line 5: +, multiply Matrix, opening parenthesis, matrix 1, colon, E, opening bracket, closing bracket, opening bracket, closing bracket, matrix 2, colon, E, opening bracket, closing bracket, opening bracket, closing bracket, closing parenthesis, colon, E, opening bracket, closing bracket, opening bracket, closing bracket, . Line 6, underlined: +, print Result, opening parenthesis, m 1, colon, Number, opening bracket, closing bracket, opening bracket, closing bracket, m 2, colon, Number, opening bracket, closing bracket, opening bracket, closing bracket, m 3, colon, Number, opening bracket, closing bracket, opening bracket, closing bracket, o p, colon char, closing parenthesis, colon, void. Solid lines and a hollow triangle extend to this diagram from secondary ones titled, Integer Matrix, and, Rational Matrix.

The diagram shows the following relationships between classes. Among the interfaces, set, list, and queue implement collection. Sorted set implements set, before being inherited by navigable set, and deque implements queue. Among the abstract classes, abstract collection inherits collection, and it is inherited by abstract set and abstract list. In addition, abstract set implements set. Abstract list implements list. Abstract sequential list inherits abstract list, and abstract queue inherits queue. Among the concrete classes, tree set inherits abstract set and implements navigable set. Hash set inherits abstract set, before being inherited by linked hash set. Array list and vector inherit abstract list, and stack inherits vector. Linked list inherits abstract sequential list and deque, and priority queue inherits abstract queue.

The first diagram is titled, interface, java dot u t i l dot Iterator, <, E, >. It reads as follows, with notes after each line. Line 1: +, has Next, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this iterator has more elements to traverse. Line 2: +, next, opening parenthesis, closing parenthesis, colon, E. Returns the next element from this iterator. Line 3: +, remove, opening parenthesis, closing parenthesis, colon, void. Removes the last element obtained using the next method. The second diagram is titled, interface, java dot u t i l dot Collection, <, E, >. It reads as follows, with notes after each line. Line 1: +, add, opening parenthesis, e, colon, E, closing parenthesis, colon, boolean. Adds a new element e to this collection. Line 2: +, add All, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis, colon, boolean. Adds all the elements in the collection c to this collection. Line 3: +, clear, opening parenthesis, closing parenthesis, colon, void. Removes all the elements from this collection. Line 4: +, contains, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Returns true if this collection contains the element o. Line 5: +, contains All, opening parenthesis, c, colon, Collection, <, question mark, >, closing parenthesis, colon, boolean. Returns true if this collection contains all the elements in c. Line 6: +, equals, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Returns true if this collection contains no elements. Line 7: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. No note. Line 8: +, remove, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Removes the element o from this collection. Line 9: +, remove All, opening parenthesis, c, colon, Collection, <, question mark, >, closing parenthesis, colon, boolean. Removes all the elements in c from this collection. Line 10: +, retain All, opening parenthesis, c, colon, Collection, <, question mark, >, closing parenthesis, colon, boolean. Retains the elements that are both in c and in this collection. Line 11: +, size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of elements in this collection. Line 12: +, to Array, opening parenthesis, closing parenthesis, colon, Object, opening bracket, closing bracket. Returns an array of Object for the elements in this collection. Line 13: +, to Array, opening parenthesis, ay, colon, T, opening bracket, closing bracket, closing parenthesis, colon, T, opening bracket, closing bracket. Returns an array of the T, opening bracket, closing bracket, type. The third diagram is titled, interface, java dot l ay n g dot Iterable, <, E, >. It reads as follows, with notes after each line. Line 1: +, iterator, opening parenthesis, closing parenthesis, colon, Iterator, <, E, >. Returns an iterator for the elements in this collection. Line 2: +, for Each, opening parenthesis, action, colon, Consumer, <, question mark, super E, >, closing parenthesis, colon, default void. Performs an action for each element in this iterator. A solid line and a filled diamond extend from the first diagram to the second diagram. A solid line and a hollow triangle extend from the second diagram to the third diagram.

The first diagram is titled, interface, java dot u t i l dot List, <, E, >. It reads as follows, with notes after each line. Line 1: +, add, opening parenthesis, index, colon, i n t, element, colon, E, closing parenthesis, colon, void. Adds a new element at the specified index. Line 2: +, add All, opening parenthesis, index, colon, i n t, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis, colon, boolean. Adds all the elements in c to this list at the specified index. Line 3: +, get, opening parenthesis, index, colon, i n t, closing parenthesis, colon, E. Returns the element in this list at the specified index. Line 4: +, index Of, opening parenthesis, element, colon, Object, closing parenthesis, colon, i n t. Returns the index of the first matching element. Line 5: +, last Index Of, opening parenthesis, element, colon, Object, closing parenthesis, colon, i n t. Returns the index of the last matching element. Line 6: +, list Iterator, opening parenthesis, closing parenthesis, colon, List Iterator, <, E, >. Returns the list iterator for the elements in this list. Line 7: +, list Iterator, opening parenthesis, start Index, colon, i n t, closing parenthesis, colon, List Iterator, <, E, >. Returns the iterator for the elements from start Index. Line 8: +, remove, opening parenthesis, index, colon, i n t, closing parenthesis, colon, E. Removes the element at the specified index and returns the removed element. Line 9: +, set, opening parenthesis, index, colon, i n t, element, colon, E, closing parenthesis, colon, E. Sets the element at the specified index and returns the old element. Line 10: +, sub List, opening parenthesis, from Index, colon, i n t, to Index, colon, i n t, closing parenthesis, colon, List, <, E, >. Returns a, sub list, from, from Index, to, to Index minus 1. The second diagram is titled, interface, java dot u t i l dot Collection, <, E, >. A solid line and hollow triangle extend from the first diagram to the second diagram.

The first diagram is titled, interface, java dot u t i l dot List Iterator, <, E, >. It reads as follows, with notes after each line. Line 1: +, add, opening parenthesis, o, colon, E, closing parenthesis, colon, void. Adds the specified object to the list. Line 2: +, has Previous, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this list iterator has more elements when traversing backward. Line 3: +, next Index, opening parenthesis, closing parenthesis, colon, i n t. Returns the index of the next element. Line 4: +, previous, opening parenthesis, closing parenthesis, colon, E. Returns the previous element in this list iterator. Line 5: +, previous Index, opening parenthesis, closing parenthesis, colon, i n t. Returns the index of the previous element. Line 6: +, set, opening parenthesis, o, colon, E, closing parenthesis, colon, void. Replaces the last element returned by the previous or next method with the specified element. The second diagram is titled, interface, java dot u t i l dot Iterator, <, E, >. A dashed line and hollow triangle extend from the first diagram to the second diagram.

The first diagram is titled, java dot u t i l dot Array List, <, E, >. It reads as follows, with notes after each line. Line 1: +, Array List, opening parenthesis, closing parenthesis. Creates an empty list with the default initial capacity. Line 2: +, Array List, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Creates an array list from an existing collection. Line 3: +, Array List, opening parenthesis, initial Capacity, colon, i n t, closing parenthesis. Creates an empty list with the specified initial capacity. Line 4: +, trim To Size, opening parenthesis, closing parenthesis, colon, void. Trims the capacity of this, Array List, instance to be the list’s current size. The second diagram is titled, java dot u t i l dot Abstract List, <, E, >. A solid line and hollow triangle extend from the first diagram to the second diagram.

The first diagram is titled, java dot u t i l dot Linked List, <, E, >. It reads as follows, with notes after each line. Line 1: +, Linked List, opening parenthesis, closing parenthesis. Creates a default empty linked list. Line 2: +, Linked List, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Creates a linked list from an existing collection. Line 3: +, add First, opening parenthesis, element, colon, E, closing parenthesis, colon, void. Adds the element to the head of this list. Line 4: +, add Last, opening parenthesis, element, colon, E, closing parenthesis, colon, void. Adds the element to the tail of this list. Line 5: +, get First, opening parenthesis, closing parenthesis, colon, E. Returns the first element from this list. Line 6: +, get Last, opening parenthesis, closing parenthesis, colon, E. Returns the last element from this list. Line 7: +, remove First, opening parenthesis, closing parenthesis, colon, E. Returns and removes the first element from this list. Line 8: +, remove Last, opening parenthesis, closing parenthesis, colon, E. Returns and removes the last element from this list. The second diagram is titled, java dot u t i l dot Abstract Sequential List, <, E, >. A solid line and hollow triangle extend from the first diagram to the second diagram.

The first 11 lines are labeled, list. They read as follows, with notes following each line. Line 1: +, sort, opening parenthesis, list, colon, List, closing parenthesis, colon, void. Sorts the specified list. Line 2: +, sort, opening parenthesis, list, colon, List, comma, c, colon, Comparator, closing parenthesis, colon, void. Line 3: +, binary Search, opening parenthesis, list, colon, List, comma, key, colon, Object, closing parenthesis, colon, i n t. Line 4: +, binary Search, opening parenthesis, list, colon, List, comma, key, colon, Object, c, colon, Comparator, closing parenthesis, colon, i n t. Line 5: +, reverse, opening parenthesis, list, colon, List, closing parenthesis, colon, void. Line 6: +, reverse Order, opening parenthesis, closing parenthesis, colon, Comparator. Line 7: +, shuffle, opening parenthesis, list, colon, List, closing parenthesis, colon, void. Line 8: +, shuffle, opening parenthesis, list, colon, List, comma, r m d, colon, Random, closing parenthesis, colon, void. Line 9: +, copy, opening parenthesis, d e s, colon, List, comma, s r c, colon, List, closing parenthesis, colon, void. Line 10: +, n Copies, opening parenthesis, n, colon, i n t, o, colon, Object, closing parenthesis, colon, List. Line 11: +, fill, opening parenthesis, list, colon, List, comma, o, colon, Object, closing parenthesis, colon, void. The last 6 lines are labeled, collection. They read as follows, with notes following each line. Line 17: +, max, opening parenthesis, c, colon, Collection, closing parenthesis, colon, Object. Line 18: +, max, opening parenthesis, c, colon, Collection, comma, c, colon, Comparator, closing parenthesis, colon, Object. Line 19: +, min, opening parenthesis, c, colon, Collection, closing parenthesis, colon, Object. Line 20: +, min, opening parenthesis, c, colon, Collection, comma, c, colon, Comparator, closing parenthesis, colon, Object. Line 21: +, disjoint, opening parenthesis, c 1, colon, Collection, comma, c 2, colon, Collection, closing parenthesis, colon, boolean. Line 22: +, frequency, opening parenthesis, c, colon, Collection, comma, o, colon, Object, closing parenthesis, colon, i n t.

The first diagram is titled, Ball. Its top section reads as follows. Line 1: d x, colon, double. Line 2: d y, colon, double. The bottom section is italicized and reads as follows. Line 1: +, Ball, opening parenthesis, x, colon, double, comma, y, colon, double radius, colon, double, comma, color, colon, Color, closing parenthesis. A solid line and hollow triangle extend from the first diagram to the second diagram, titled, java f x dot scene dot shape dot Circle. A solid line and filled diamond labeled m, and, 1, from left to right, also extend from the first diagram to the third diagram, titled, Multiple Ball Pane. This diagram’s top section is italicized and reads as follows. Line 1, italicized: minus, animation, colon, Timeline. The bottom section is italicized and reads as follows. Line 1: +, Multiple Ball Pane, opening parenthesis, closing parenthesis. Line 2: +, play, opening parenthesis, closing parenthesis, colon, void. Line 3: +, pause, opening parenthesis, closing parenthesis, colon, void. Line 4: +, increase Speed, opening parenthesis, closing parenthesis, colon, void. Line 5: +, decrease Speed, opening parenthesis, closing parenthesis, colon, void. Line 6: +, rate Property, opening parenthesis, closing parenthesis, colon, Double Property. Line 7: +, move Ball, opening parenthesis, closing parenthesis, colon, void. A solid line and hollow triangle extend from the third diagram to the fourth diagram, titled, java f x dot scene dot layout dot Pane. A solid line and filled diamond labeled 1, and, 1, from left to right, also extends from the third diagram to the fifth diagram, titled, Multiple Bounce Ball. A solid line and hollow triangle extend from the fifth diagram to the sixth diagram, with the italicized title, java f x dot application dot Application.

The first diagram is titled, java dot u t i l dot Vector, <, E, >. Its text is italicized and reads as follows, with notes after each line. Line 1: +, Vector, opening parenthesis, closing parenthesis. Creates a default empty vector with initial capacity 10. Line 2: +, Vector, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Creates a vector from an existing collection. Line 3: +, Vector, opening parenthesis, initial Capacity, colon, i n t, closing parenthesis. Creates a vector with the specified initial capacity. Line 4: +, Vector, opening parenthesis, i n i t Capacity, colon, i n t, comma, capacity I n c r, colon, i n t, closing parenthesis. Creates a vector with the specified initial capacity and increment. Line 5: +, add Element, opening parenthesis, o, colon, E, closing parenthesis, colon, void. Appends the element to the end of this vector. Line 6: +, capacity, opening parenthesis, closing parenthesis, colon, i n t. Returns the current capacity of this vector. Line 7: +, copy Into, opening parenthesis, an Array, colon, Object, opening bracket, closing bracket, closing parenthesis, colon, void. Copies the elements in this vector to the array. Line 8: +, element At, opening parenthesis, index, colon, i n t, closing parenthesis, colon, E. Returns the object at the specified index. Line 9: +, elements, opening parenthesis, closing parenthesis, colon, Enumeration, <, E, >. Returns an enumeration of this vector. Line 10: +, ensure Capacity, opening parenthesis, closing parenthesis, colon, void. Increases the capacity of this vector. Line 11: +, first Element, opening parenthesis, closing parenthesis, colon, E. Returns the first element in this vector. Line 12: +, insert Element At, opening parenthesis, o, colon, E, comma, index, colon, i n t, closing parenthesis, colon, void. Inserts o into this vector at the specified index. Line 13: +, last Element, opening parenthesis, closing parenthesis, colon, E. Returns the last element in this vector. Line 14: +, remove All Elements, opening parenthesis, closing parenthesis, colon, void. Removes all the elements in this vector. Line 15: +, remove Element, opening parenthesis, o, colon, Object, closing parenthesis, colon, boolean. Removes the first matching element in this vector. Line 16: +, remove Element At, opening parenthesis, index, colon, i n t, closing parenthesis, colon, void. Removes the element at the specified index. Line 17: +, set Element At, opening parenthesis, o, colon, E, comma, index, colon, i n t, closing parenthesis, colon, void. Sets a new element at the specified index. Line 18: +, set Size, opening parenthesis, new Size, colon, i n t, closing parenthesis, colon, void. Sets a new size in this vector. Line 19: +, trim To Size, opening parenthesis, closing parenthesis, colon, void. Trims the capacity of this vector to its size. A solid line and hollow triangle extend from the first diagram to the second diagram, with the italicized title, java dot u t i l dot Abstract List, <, E, >.

The first diagram is titled, java dot u t i l dot Stack, <, E, >. Its text is italicized and reads as follows, with notes after each line. Line 1: +, Stack, opening parenthesis, closing parenthesis. Creates an empty stack. Line 2: +, empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this stack is empty. Line 3: +, peek, opening parenthesis, closing parenthesis, colon, E. Returns the top element in this stack. Line 4: +, pop, opening parenthesis, closing parenthesis, colon, E. Returns and removes the top element in this stack. Line 5: +, push, opening parenthesis, o, colon, E, closing parenthesis, colon, E. Adds a new element to the top of this stack. Line 6: +, search, opening parenthesis, o, colon, Object, closing parenthesis, colon, i n t. Returns the position of the specified element in this stack. A solid line and hollow triangle extend from the first diagram to the second diagram, with the title, java dot u t i l dot Vector, <, E, >.

The first diagram is titled, interface, begin italics, java dot u t i l dot Queue, <, E, >, end italics. It reads as follows, with notes after each line. Line 1: +, offer, opening parenthesis, element, colon, E, closing parenthesis, colon, boolean. Inserts an element into the queue. Line 2: +, poll, opening parenthesis, closing parenthesis, colon, E. Retrieves and removes the head of this queue, or null if this queue is empty. Line 3: +, remove, opening parenthesis, closing parenthesis, colon, E. Retrieves and removes the head of this queue and throws an exception if this queue is empty. Line 4: +, peek, opening parenthesis, closing parenthesis, colon, E. Retrieves, but does not remove, the head of this queue, returning null if this queue is empty. Line 5: +, element, opening parenthesis, closing parenthesis, colon, E. Retrieves, but does not remove, the head of this queue, throws an exception if this queue is empty. A dashed line and hollow arrow extend from the first diagram to the second diagram, with the title, interface, begin italics, java dot u t i l dot Collection, <, E, >, end italics.

The first diagram is titled, java dot u t i l dot Priority Queue, <, E, >. Its text is italicized and reads as follows, with notes after each line. Line 1: +, Priority Queue, opening parenthesis, closing parenthesis. Creates a default priority queue with initial capacity 11. Line 2: +, Priority Queue, opening parenthesis, initial Capacity, colon, i n t, closing parenthesis. Creates a default priority queue with the specified initial capacity. Line 3: +, Priority Queue, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Creates a priority queue with the specified collection. Line 4: +, Priority Queue, opening parenthesis, initial Capacity, colon, i n t, comparator, colon, Comparator, <, question mark, super E, >, closing parenthesis. Creates a priority queue with the specified initial capacity and the comparator. A solid line and hollow triangle extend from the first diagram to the second diagram, with the title, interface, begin italics, java dot u t i l dot Queue, <, E, >, end italics.

The console reads as follows. Line 1: c, colon, backslash, book, >, java, Evaluate Expression, quote, opening parenthesis, 1, +, 3, asterisk, 3, minus, 2, closing parenthesis, asterisk, opening parenthesis, 12, forward slash ,6, asterisk, 5, closing parenthesis, quote . Line 2: 80. Line 3: blank. Line 4: c, colon, backslash, book, >, java, Evaluate Expression, quote, opening parenthesis, 1, +, 3, asterisk, 3, minus, 2, closing parenthesis, asterisk, opening parenthesis, 12, forward slash ,6, asterisk, 5, closing parenthesis, +quote . Line 5: Wrong expression, colon, opening parenthesis, 1, +, 3, asterisk, 3, minus, 2, closing parenthesis, asterisk, opening parenthesis, 12, forward slash ,6, asterisk, 5, closing parenthesis, +. Line 6: blank. Line 7: c, colon, backslash, book, >, java, Evaluate Expression, quote, opening parenthesis, 1, +, 2, closing parenthesis, asterisk, 4, minus, 3quote . Line 8: 9.

Figure ay is a window titled, Exercise 20, underscore, 0 2. Top to bottom, the window has elements as follows: a text field labeled, enter number, containing the value, 2; a scrolling text box reading, 5, 4, 44, 35, 3, 2; a row of 3 button, labeled, sort, shuffle, reverse. Figure b is a window titled, Exercise 20, underscore, 0 5. Top to bottom, the window has elements as follows: a horizontal scroll bar; a large rectangular pane containing circles of different sizes and opacities; a row of 4 buttons labeled, suspend, resume, +, minus.

Top to bottom, the window has elements as follows: a right-aligned message space and a button labeled, shuffle; a row of 4 playing cards; an input box labeled, enter an expression, followed by a button labeled, verify. The same playing cards are shown in all 3 windows, left to right, as follows: jack of hearts, jack of diamonds, 2 of spades, 8 of clubs. In the first window, the message reads, the numbers in the expression don’t match the numbers in the set. The expression entered in the input box reads, 3, +, 4, +, 5, +, 5. In the second window, the message reads, incorrect result. The expression entered reads, opening parenthesis, 11, forward slash, 11, +, 2, closing parenthesis, +, 8. In the third window, the message reads, correct. The expression entered reads, opening parenthesis, 11, forward slash, 11, +, 2, closing parenthesis, asterisk, 8.

The postfix notation in question is as follows: 1, 2, +, 3, asterisk. Each character in the expression changes the stack as it is scanned, left to right. Note that the stack’s contents are listed from bottom to top. In step 1, the 1 is scanned, so the stack reads, 1. In step 2, the 2 is scanned, so the stack reads, 1, 2. In step 3, the plus sign is scanned, so the stack reads, 3. In step 4, the 3 is scanned, so the stack reads, 3, 3. In step 5, the asterisk is scanned, so the stack reads, 9.

The window has elements from top to bottom as follows: a button labeled, find solution, followed by an input field, then a button labeled, shuffle; a row of 4 playing cards; an input box labeled, enter an expression, followed by a button labeled, verify. The top left window is as follows: find solution reads, opening parenthesis, 12, minus, opening parenthesis, 2, +, 7, closing parenthesis, closing parenthesis, asterisk, 8; cards are, 7 of clubs, 8 of spades, 2 of diamonds, queen of spades; . enter an expression fields is blank. The top right window is as follows: find solution reads, no solution; cards are, ace of clubs, 9 of diamonds, ace of spades, 9 of spades; . enter an expression field is blank. The bottom left window is as follows: find solution field is blank; cards are, king of diamonds, 5 of clubs, 10 of hearts, 5 of diamonds; . enter an expression field reads, 10, +, 13, +, 5, forward slash, 5, followed by message, correct. The bottom right window is as follows: find solution field is blank; cards are, king of diamonds, 5 of clubs, 10 of hearts, 5 of diamonds; enter an expression field reads, 10, +, 13, +, 5, +, 5, followed by message, incorrect result.

The window has elements from top to bottom as follows: an input box and a button labeled, solve; a row of 4 buttons, labeled with different numbers. In the first window, left to right, the input box reads, 8, +, opening parenthesis, 5, minus, 1, closing parenthesis, asterisk, 4, and the row of buttons are labeled, 1, 4, 5, 8. In the second window, the input box reads, opening parenthesis, 3, +, 8, minus, 5, closing parenthesis, asterisk, 4, and the buttons are labeled, 3, 4, 5, 8. In the third window, the input box reads, no solution, and the row of buttons are labeled, 10, 9, 5, 8.

The first diagram is titled, java dot u t i l dot Tree Set, <, E, >. Its text is italicized, and reads as follows. Line 1: +, Tree Set, opening parenthesis, closing parenthesis. Line 2: +, Tree Set, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Line 3: +, Tree Set, opening parenthesis, comparator, colon, Comparator, <, question mark, super, E, >, closing parenthesis. Line 4: +, Tree Set, opening parenthesis, s, colon, Sorted Set, <, E, >, closing parenthesis. The second diagram is titled, interface, begin italics, java dot u t i l dot Navigable Set, <, E, >, end italics. Its text is italicized, and reads as follows. Line 1: +, poll First, opening parenthesis, closing parenthesis, colon, E. Line 2: +, poll Last, opening parenthesis, closing parenthesis, colon, E. Line 3: +, lower, opening parenthesis, e, colon, E, closing parenthesis, colon, E. Line 4: +, higher, opening parenthesis, e, colon, E, closing parenthesis, colon, E. Line 5: +, floor, opening parenthesis, e, colon, E, closing parenthesis, colon, E. Line 6: +, ceiling, opening parenthesis, e, colon, E, closing parenthesis, colon, E. The third diagram is titled, interface, begin italics, java dot u t i l dot Sorted Set, <, E, >, end italics. Its text is italicized, and reads as follows. Line 1: +, first, opening parenthesis, closing parenthesis, colon, E. Line 2: +, last, opening parenthesis, closing parenthesis, colon, E. Line 3: +, head Set, opening parenthesis, to Element, colon, E, closing parenthesis, colon, Sorted Set, <, E, >. Line 4: +, tail Set, opening parenthesis, from Element, colon, E, closing parenthesis, colon, Sorted Set, <, E, >. The fourth diagram is titled, java dot u t i l dot Linked Hash Set, <, E, >. Its text is italicized, and reads as follows. Line 1: +, Linked Hash Set, opening parenthesis, closing parenthesis. Line 2: +, Linked Hash Set, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Line 3: +, Linked Hash Set, opening parenthesis, initial Capacity, colon, i n t, closing parenthesis. Line 4: +, Linked Hash Set, opening parenthesis, initial Capacity, colon, i n t, load Factor, colon, float, closing parenthesis. The fifth diagram is titled, java dot u t i l dot Hash Set, <, E, >. Its text is italicized, and reads as follows. Line 1: +, Hash Set, opening parenthesis, closing parenthesis. Line 2: +, Hash Set, opening parenthesis, c, colon, Collection, <, question mark, extends, E, >, closing parenthesis. Line 3: +, Hash Set, opening parenthesis, initial Capacity, colon, i n t, closing parenthesis. Line 4: +, Hash Set, opening parenthesis, initial Capacity, colon, i n t, load Factor, colon, float, closing parenthesis. The sixth diagram has the italicized title, java dot u t i l dot Abstract Set, <, E, >. The seventh diagram is titled, interface, begin italics, java dot u t i l dot Set, <, E, >, end italics. The eighth diagram is titled, interface, begin italics, java dot u t i l dot Collection, <, E, >, end italics. Dashed lines and hollow triangles extend from the first diagram to the second; from the second to the third; from the third and the sixth to the seventh; and from the seventh to the eighth. Solid line and hollow triangles extend from the fourth diagram to the fifth; and from the first and fifth to the sixth.

Figure ay is a map, which stores entries. Each entry consists of a search key, then a corresponding element value. Figure b shows two example entries in a map. For each entry, the following list provides the search key, then the corresponding value. Entry 1: 1 1 1 dash 3 4 dash 3 4 3 4, John. Entry 2: 1 3 2 dash 5 6 dash 6 2 9 0, Peter.

Interface navigable map inherits Interface sorted map, which inherits interface map. Map is also inherited by abstract map from the abstract classes. Tree map from the concrete classes inherits navigable map. Tree map and hash map from the concrete classes inherits Abstract map, and linked hash map inherits hash map.

The diagram’s text is italicized and reads as follows, with notes after each line
Line 1: +, clear, opening parenthesis, closing parenthesis, colon, void. Removes all entries from this map. Line 2: +, contains Key, opening parenthesis, key, colon, Object, closing parenthesis, colon, boolean. Returns true if this map contains an entry for the specified key. Line 3: +, contains Value, opening parenthesis, value, colon, Object, closing parenthesis, colon, boolean. Returns true if this map maps one or more keys to the specified value. Line 4: +, entry Set, opening parenthesis, closing parenthesis, colon, Set, <, Map dot Entry, <, K, comma, V, >, >. Returns a set consisting of the entries in this map. Line 5: +, get, opening parenthesis, key, colon, Object, closing parenthesis, colon, V. Returns the value for the specified key in this map. Line 6: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this map contains no entries. Line 7: +, key Set, opening parenthesis, closing parenthesis, colon, Set, <, K, >. Returns a set consisting of the keys in this map. Line 8: +, put, opening parenthesis, key, colon, K, comma, value, colon, V, closing parenthesis, colon, V. Puts an entry into this map. Line 9: +, put All, opening parenthesis, m, colon, Map, <, question mark, extends, K, comma, question mark, extends, V, >, closing parenthesis, colon, void. Adds all the entries from m to this map. Line 10: +, remove, opening parenthesis, key, colon, Object, closing parenthesis, colon, V. Removes the entries for the specified key. Line 11: +, size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of entries in this map. Line 12: +, values, opening parenthesis, closing parenthesis, colon, Collection, <, V, >. Returns a collection consisting of the values in this map. Line 13: +, for Each, opening parenthesis, action, colon, Consumer, <, question mark, Super K, comma, question mark, super V, closing parenthesis, colon, default void. Performs an action for each entry in this map.

The diagram’s text is italicized and reads as follows, with notes after each line. Line 1: +, get Key, opening parenthesis, closing parenthesis, colon, K. Returns the key from this entry. Line 2: +, get Value, opening parenthesis, closing parenthesis, colon, V. Returns the value from this entry. Line 3: +, set Value, opening parenthesis, value, colon, V, closing parenthesis, colon, void. Replaces the value in this entry with a new value.

The first diagram is titled, begin italics, java dot u t i l dot Tree Map, <, K, comma, V, >, end italics. Its text is italicized, and reads as follows. Line 1: +, Tree Map, opening parenthesis, closing parenthesis. Line 2: +, Tree Map, opening parenthesis, m, colon, Map, <, question mark, extends, K, comma, question mark, extends, V, >, closing parenthesis. Line 3: +, Tree Map, opening parenthesis, c, colon, Comparator, <, question mark, super K, >, closing parenthesis. The second diagram is titled, interface, begin italics, java dot u t i l dot Navigable Map, <, K, comma, V, >, end italics. Its text is italicized, and reads as follows. Line 1: +, floor Key, opening parenthesis, key, colon, K, closing parenthesis, colon, K. Line 2: +, ceiling Key, opening parenthesis, key, colon, K, closing parenthesis, colon, K. Line 3: +, lower Key, opening parenthesis, key, colon, K, closing parenthesis, colon, K. Line 4: +, higher Key, opening parenthesis, key, colon, K, closing parenthesis, colon, K. Line 5: +, poll First Entry, opening parenthesis, closing parenthesis, colon, Map dot Entry Set, <, K, comma, V, >. Line 6: +, poll Last Entry, opening parenthesis, closing parenthesis, colon, Map dot Entry Set, <, K, comma, V, >. The third diagram is titled, interface, begin italics, java dot u t i l dot Sorted Map, <, K, comma, V, >, end italics. Its text is italicized, and reads as follows. Line 1: +, first Key, opening parenthesis, closing parenthesis, colon, K. Line 2: +, last Key, opening parenthesis, closing parenthesis, colon, K. Line 3: +, comparator, opening parenthesis, closing parenthesis, colon, Comparator, <, question mark, super K>, closing parenthesis. Line 4: +, head Map, opening parenthesis, to Key, colon, K, closing parenthesis, colon, Sorted Map, <, K, comma, V, >. Line 5: +, tail Map, opening parenthesis, from Key, colon, K, closing parenthesis, colon, Sorted Map, <, K, comma, V, >. The fourth diagram is titled, begin italics, java dot u t i l dot Linked Hash Map, <, K, comma, V, >, end italics. Its text is italicized, and reads as follows. Line 1: +, Linked Hash Map, opening parenthesis, closing parenthesis. Line 2: +, Linked Hash Map, opening parenthesis, m, colon, Map, <, question mark, extends, K, comma, question mark extends, V, >, closing parenthesis. Line 3: +, Linked Hash Map, opening parenthesis, initial Capacity, colon, i n t, load Factor, colon, float, access Order, colon, boolean, closing parenthesis. The fifth diagram is titled, begin italics, java dot u t i l dot Hash Map, <, K, comma, V, >, end italics. Its text is italicized, and reads as follows. Line 1: +, Hash Map, opening parenthesis, closing parenthesis. Line 2: +, Hash Map, opening parenthesis, initial Capacity: i n t, load Factor, colon, float, closing parenthesis. Line 3: +, Hash Map, opening parenthesis, m, colon, Map, <, question mark, extends, K, comma, question mark extends, V, >, closing parenthesis. The sixth diagram is titled, begin italics, java dot u t i l dot Abstract Map, <, K, comma, V, >, end italics. The seventh diagram is titled, interface, begin italics, java dot u t i l dot Map, <, K, comma, V, >, end italics. Dashed lines and hollow triangles extend from the first diagram to the second; from the second to the third; and from the third and sixth to the seventh. Solid lines and hollow triangles extend from the fourth diagram to the fifth; and from the first and fifth to the sixth.

The diagram’s text is italicized and reads as follows, with notes after each line. Line 1: +, singleton, opening parenthesis, o, colon, Object, closing parenthesis, colon, Set. Returns an immutable set containing the specified object. Line 2: +, singleton List, opening parenthesis, o, colon, Object, closing parenthesis, colon, List. Returns an immutable list containing the specified object. Line 3: +, singleton Map, opening parenthesis, key, colon, Object, comma, value, colon, Object, closing parenthesis, colon, Map. Returns an immutable map with the key and value pair. Line 4: +, unmodifiable Collection, opening parenthesis, c, colon, Collection, closing parenthesis, colon, Collection. Returns a read-only view of the collection. Line 5: +, unmodifiable List, opening parenthesis, list, colon, List, closing parenthesis, colon, List. Returns a read-only view of the list. Line 6: +, unmodifiable Map, opening parenthesis, m, colon, Map, closing parenthesis, colon, Map. Returns a read-only view of the map. Line 7: +, unmodifiable Set, opening parenthesis, s, colon, Set, closing parenthesis, colon, Set. Returns a read-only view of the set. Line 8: +, unmodifiable Sorted Map, opening parenthesis, s, colon, Sorted Map, closing parenthesis, colon, Sorted Map. Returns a read-only view of the sorted map. Line 9: +, unmodifiable Sorted Set, opening parenthesis, s, colon, Sorted Set, closing parenthesis, colon, Sorted Set. Returns a read-only view of the sorted set.

Figure ay is a window titled, Welcome dot java, dash, Notepad, containing text as follows. Line 1: double forward slashes, This application displays, Welcome to Java, exclamation point. Line 2: public, class, Welcome, opening brace. Line 3, 1 indent: public, static, void, main, opening parenthesis, String, opening bracket, closing bracket, ay r g s, closing parenthesis, opening brace. Line 4, 2 indents: System dot out dot print l n, opening parenthesis, quote Welcome to Java, exclamation point quote, closing parenthesis, semicolon. Line 5, 1 indent: closing brace. Line 6: closing brace. Figure ay is a Firefox browser window directed to the following address: file, colon, three forward slashes, c, colon, forward slash, exercise, forward slash, Welcome dot h t m l. The tab displays the same text as figure ay.

The window has elements from top to bottom as follows: a drop down labeled, select a year; a drop down labeled, boy or girl, question mark; a text field labeled, enter a name; a button labeled, find ranking; area for result label text. The first window’s configuration has the result, boy name Michael is ranked number 2 in year 2004. The second window’s configuration has the result, girl name Michelle is ranked number 94 in year 2007. The third window’s configuration has the result, girl name Samantha is ranked number 7 in 2001.

The table has rows for n values. The table has columns for the following values of f of n, from left to right: n, n over 2, 100 n. The row entries are as follows: row 1, 100, 50, 10000; row 2, 200, 100, 20000. The value 2 is placed at the bottom of each column. These 2 values indicate f of 200 over f of 100.

The graph shows n, versus, f of n. The plot for, order of 1, extends horizontally from (1, 0) to (10, 1). The plot for, order of log n, rises with decreasing steepness from (1, 0) through (3.3, 1.75) to (10, 2.75). The plot for, order of n, rises from (0, 0) through (3, 1.5) to (10, 5.25). The plot for, order of n, log, n, rises with decreasing steepness from (1, 0) through (5.25, 4.5) to (9, 6.6). The plot for, order of n squared, rises with increasing steepness from (1, 0) through (3.3, 1.75) to (8.25, 8.5). The plot for, order of n cubed, rises with increasing steepness from (1, 0) through (2.5, 2) to (5, 9). The plot for, order of 2 to the power of n, rises with increasing steepness from (1, 0) through (2, 5) to (2.5, 9). All values estimated.

On the pane’s left side, a bounding rectangle contains text as follows. Line 1: INSTRUCTION. Line 2: Add, colon, Left Click. Line 3: Remove, colon, Right Click. On the pane’s right side, 13 filled circles are arranged in a loose cloud. A line segment extends between two of the points, near the center of the group.

Part ay: A vertical line extends through the midpoint of the distribution, dividing it into sets S sub 1 and S sub 2 on the left and right. To the immediate left and right of the dividing line, the regions of width d are labeled strip L and strip R. Two points in S sub 1 are separated by distance d sub 1. Two points in S sub 2 are separated by distance d sub 2. Part b: P is in strip L. On the left and right boundaries of strip R, points occur at intervals of length d. Horizontal line segments connect the boundary points, dividing strip R into parts. Part c: Point p is in strip L, and point q of r is in one part of strip R.

Figure ay is an array list containing eight elements with index numbers, queens 0, through, queens 7. The following list provides the index for each element, followed by its value: queens 0, 0; queens 1, 4; queens 2, 7; queens 3, 5; queens 4, 2; queens 5, 6; queens 6, 1; queens 7, 3. Figure b is an 8 by 8 chessboard, with 8 queens positioned on the board as follows: row 1, column 1; row 2, column 5; row 3, column 8; row 4, column 6; row 5, column 3; row 6, column 7; row 7, column 2; row 8, column 4.

An 8 by 8 grid has rows and columns labeled numbered 0 to 7. Four vectors extend from cell (3, 2). The up left vector extends to (1, 0). The column vector extends to (0, 2). The up right diagonal vector extends to (0, 5). The (row, column) vector extends rightward.

Part ay: A convex bull is a6-sided polygon surrounding data points. The polygon has vertices v 0 to v 5. part b: A non-convex polygon has an exterior angle less than pi at vertex v 2. Part c: The display for Exercise 22 13 has the following instruction: add, left click; remove, right click. A 6-sided convex hull surrounds data points.

Part ay: step 1. h sub 0 is a point in a cluster. Part b: step 2. A vector extends from h sub 0 at t sub 0 to an adjacent point at t sub 1. Part c: Step 2 is repeated, starting at the second point. part d: The process is repeated until the figure is closed, t sub 1 = h sub 0, and H is found.

Part ay: step 1. p sub 0 is one point in the cluster. Part b: step 2. The x-axis extends rightward from p sub 0. Line segments extend upward and rightward from the origin to points p sub 1 and p sub 2, forming different angles with the axis, so that the angle for p sub 2 is greater. Part c: p sub 3 into H. A dashed vector extends upward from p sub 1 to p sub 2, forming an obtuse angle at p sub 1. Part d: p sub 2 off H. p sub 1 is shifted up and right of p sub 2, forming an acute angle at p sub 1.

In each graph, the bars represent indices 0 to 19 from left to right. Left graph: The key in double is 8, and the bar height for index 6 is 8. So, the key is found in the array at index 6. Right graph: The key in double = 4.5. The bar height at index 19 has height 11. The key is not in the array.

Each animation shows bars 1 to 20 with increasing height from left to right. In the first diagram, bara 1 to 9 and 11 to 20 are lightly shaded, and bar 10 is darkly shaded. In the second diagram. Bars 1 to 4 and 6 to 9 are lightly shaded, and bar 5 is darkly shaded.

Part ay. The row entries for the array are as follows: row 1, 1 1 1 1 1 0 1 0 0 0; row 2, 0 1 1 1 1 0 1 0 1 0; row 3, 0 1 1 0 0 1 1 0 0 0; row 4, 0 0 0 0 0 0 0 1 1 1; row 5, 0 0 0 1 0 0 1 0 1 1; row 6, 1 1 1 0 1 1 0 1 1 1; row 7,1 1 0 1 1 0 1 0 0 0; row 8, 1 1 1 0 1 0 0 1 0 0; row 9, 1 1 0 0 0 0 0 1 0 1; row 10, 0 0 1 0 0 1 1 0 1 0. Part b: In the array from part ay, the first 2 ones in rows 8 and 9 are shaded.

Part ay: The puzzle is partially completed. For each row, the following lists provides the column number and value for the completed squares. Row 1: 1, 5; 2, 3; 5, 7. Row 2: 1, 6; 4, 1; 5, 9; 6, 5. Row 3: 2, 9; 3, 8; 7, 6. Row 4: 1, 8; 5, 6; 9, 3. Row 5: 1, 4; 4, 8; 9, 1. Row 6: 1, 7; 5, 2; 9, 6. Row 8: 2, 5; 6, 9; 9, 7. Part b: The row entries of the completed puzzle are as follows: row 1, 5 3 2 6 7 8 1 4 9; row 2, 6 4 7 1 9 5 2 3 8; row 3, 1 9 8 2 3 4 6 7 5; row 4, 8 2 9 4 6 1 7 5 3; row 5, 4 6 3 8 5 7 9 2 1; row 6, 7 1 5 9 2 3 4 8 6; row 7, 3 8 1 7 4 6 5 9 2; row 8, 2 5 4 3 1 9 8 6 7; row 9, 9 7 6 5 8 2 3 1 4. Part c: The puzzle only has ones in columns 1 and 5 of row 6, and it returns invalid input.

For each solution, the list provides the row and column for each queen. Solution 1: 1, 1; 2, 5; 3, 8; 4, 6; 5, 3; 6, 7; 7, 2; 8, 4. Solution 2: 2, 6; 3, 8; 4, 3; 5, 7; 6, 3; 7, 2; 8, 5. Solution 3: 1, 1; 2, 7; 3, 4; 4, 6; 5, 8; 6, 2; 7, 5; 8, 3.

Step 1: Initially, the sorted sub list contains the first element in the list. Insert 9 into the sub list, so that it reads, 2 9 5 4 8 1 6. Step 2: the sorted sub lit is 2, 9. Insert 5 into the sub list. The result is 1 5 9 4 8 1 6. Step 3: The sorted sub list is 2, 5, 9. Insert 5 into the sub list. The result is 2 4 5 9 8 1 6. Step 4: the sorted sub list is 2, 4, 5, 9. Insert 8 into the sub list. the result is 2 4 5 8 9. Step 5: The sorted sub list is 2, 4, 5, 8, 9. Insert 1 into the sub list. The result is 1 2 4 5 8 9. Step 6: The sorted sub list is 1, 2, 4, 5, 8, 9. Insert 6 into the sub list. The result is 1 2 4 5 6 8 9. Step 9: The entire list is now sorted: 1 2 4 5 6 8 9.

In the following steps, the list entries are identified by address and value, for a list with addresses 0 to 6. Step 1: Save 4 to aa temporary variable current Element = 4. List: 0, 2; 1, 5; 2, 9; 3, 4. Step 2: move list 2 to list 3. List: 0, 2; 1, 5; 3, 9. Step 3: Move list 1 to list 2. List: 0, 2; 2, 5; 3, 9. Step 4: Assign current Element to list 1. List: 0, 2; 1, 4; 2, 5; 3, 9.

Part ay: first pass. The initial list is 2 9 5 4 8 1. Starting with 2 9, each successive pair of values in the list is compared and then ordered as needed. The following list provides each pair of compared values, followed by the reordered list: 2 9, 2 5 9 4 8 1; 5 9, 2 5 4 9 8 1; 4 9, 2 5 4 8 9 1; 8 9, 2 5 4 8 1 9. Part b: second pass. The initial list is 2 5 4 8 1 9. The following list provides each pair of compared values, followed by the reordered list: 2 5, 2 4 5 8 1 9; 4 5, 2 4 5 8 1 9; 5 8, 2 4 5 1 8 9; 1 8, 2 4 5 1 8 9. Part c: third pass. The initial list is 2 4 5 1 8 9. The following list provides each pair of compared values, followed by the reordered list: 2 4, 2 4 5 1 8 9; 4 5, 2 4 1 5 8 9; 1 5, 2 4 1 5 8 9. Part d: fourth pass. The initial list is 2 4 1 5 8 9. The following list provides each pair of compared values, followed by the reordered list: 2 4, 2 1 4 5 8 9; 1 4, 2 1 4 5 8 9. Part e: fifth pass. The initial list is 1 2 4 5 8 9. 1 and 4 are compared, leading to 1 2 4 5 8 9.

The initial list is 2 9 5 4 8 1 6 7. The first part of the process involves dividing the list. First split: 2 9 5 4, and 8 1 6 7. Second split: 2 9 5 4 becomes 2 9 and 5 4, and 8 1 6 7 becomes 8 1 and 6 7. Third split: 2 9 to 22 and 9, 5 4 to 5 and 4, 8 1 to 8 and 1, 6 7 to 6 and 7. The second conquer phase of the process involves sorting and then merging each pair. First merge: 2 and 9 to 2 9, 5 and 4 to 4 5, 8 and 1 to 1 8, and 6 and 7 to 6 7. Second merge: 2 9 and 4 5 to 2 4 5 9, 1 8 and 6 7 to 1 6 7 8. Third merge: 2 4 5 9 and 1 6 7 8 to 1 2 4 5 6 7 8 9.

Each part shows two sets: 2 4 5 9, and 1 6 7 8. Part ay: after moving 1 to temp. Current 1 is 2 in the first set. Current 2 is 6 in the second set. 1 from the second set moves to the first position in the third set, and current 3 is the second entry in the third list. Part b: after moving all the elements in list 2 to temp. The first three entries of the first list move to the second, third, and fourth entries in the third list, and current 1 is 9 in the first list. The second to fourth entries of the second list move to the fifth, sixth, and seventh entries in the third list, and current 2 is to the right of the second list. As a result, the third lists is 1 2 4 5 6 7 8 blank, with the blank being current 3. part c: after moving 9 to temp. The last entry in the first list moves to the last entry in the third list, with current 1 at the end of the first list. Current 2 is at the end of the second list. The third list reads 1 2 4 5 6 7 8 9, and current 3 is at the end of the third list.

Part ay: The first and second halves of the original list are copied into the first half and second half temporary arrays. the temporary arrays undergo a recursive sort, and then they are merged to form a new sorted list. Part b: The original list is divided into first and second halves. Each half or the original array is individually sorted, and the halves undergo a recursive sort. The sorted halves are then merged, forming a new sorted temporary list that is copied to the original list.

Part ay, the original array: 5 2 9 3 8 4 0 1 6 7, with a pivot at 5. Part b, the original array is partitioned: 4 2 1 3 0 5 8 9 6 7. There is a pivot at 4, 5 is highlighted, and there is a pivot at 8. Part c, the subarray 4 2 1 3 0 is partitioned: 0 2 1 3 4, with a pivot at 0 and 4 highlighted. Part d, the subarray 0 2 1 3 is partitioned: 0 2 1 3, with 0 shaded and a pivot at 2. Part e, the subarray 2 1 3 is partitioned: 1 2 3, with 2 highlighted.

Part ay, initialize pivot, low, and high: 5 pivot, 2 low, 9, 3, 8, 4, 0, 1, 6, 7 high. Part b, search forward and backward: 5 pivot, 2, 9 low, 3, 8, 4, 0, 1 high, 6, 7. Part c, 9 is sapped with 1: 5 pivot, 2, 1 low, 3, 8, 4, 0, 9 high, 6, 7. Part d, continued search: 5 pivot, 2, 1, 3, 8 low, 4, 0 high, 9, 6, 7. Part e, 8 is swapped with 0: 5 pivot, 2, 1, 3, 0 low, 4, 8 high, 9, 6, 7. Part f, when high less than low, search is over: 5 pivot, 2, 1, 3, 0, 4 high, 8 low, 9, 6, 7. Part g, pivot is in the right place: 4, 2, 1, 3, 0, 5 pivot, 8, 9, 6, 7. The index of the pivot is returned.

Part ay, a heap: 42 branches to 32 and 39. 32 branches to 22 and 29. 39 branches to 14 and 33. part b: 30 to 322 and 42. 32 to 22 and 29. 42 to 14. {art c: 42 to 32 and 29. 32 to 22. 39 to 14 and 33. Part d: 42 to 32. 32 to 22 and 29.

Part ay, a heap represented by a binary tree: 62 to 42 and 59. 42 to 32 and 39. 32 to 22 and 29. 39 to 14 and 33. 59 to 44 and 13. 44 to 30 and 17. 13 to 9. Part b, a heap sorted in an array. The heap is represented by the following list with entries identified by location and value: 0, 62; 1, 42; 2, 59; 3, 32; 4, 39; 5, 44; 6, 13; 7, 22; 8, 29; 9, 14; 10, 33; 11, 30; 12, 17; 13, 9.The parent goes from 39 to 42. Left goes from 39 to 14, and right goes from 39 to 33.

Part ay, after adding 3: single node 3. Part b, after adding 5: 5 branches to 3. Part c, after adding 1: 5 branches to 3 and 1. Part d, after adding 19: 19 branches to 5 and 1. 5 branches to 3. Part e, after adding 11: 19 branches to 11 and 1. 11 branches to 3 and 5. Part f, after adding 22: 22 branches to 11 and 19. 11 branches to 3 and 5. 19 branches to 1.

Part ay: add 88 to a heap. The tree is as follows: 22 to 11 and 19. 11 to 3 and 5. 19 to 1 and 88. Part b: after swapping 88 with 19. The tree is as follows: 22 branches to 11 and 88. 11 branches to 3 and 5. 88 branches to 1 and 19. Part c: after swapping 88 with 22. The tree is as follows: 88 to 11 and 22. 11 to 3 and 5. 22 to 1 and 19.

Part ay: after moving 9 to the root. Tree: 9 to 42 and 59. 42 to 32 and 39. 332 to 22 and 29. 39 to 14 and 33. 59 to 44 and 15. 44 to 30 and 17. Part b: the tree after swapping 9 with 59. Part c: the tree after swapping 9 with 44. Part d: tree after swapping 9 with 30.

Part ay: after moving 17 to the root. Tree: 17 to 42 and 44. 42 to 32 and 39. 32 to 22 and 29. 39 to 14 and 33. 44 to 30 and 115. 30 to 9. Part b: tree after swapping 17 with 44. Part c: the tree after swapping 17 with 30.

The top section reads as follows. Line 1: minus, list, colon, java dot u t i l dot Array List, <, E, >. The bottom section reads as follows, with notes after each line. Line 1: +, Heap, opening parenthesis, closing parenthesis. Creates a default empty Heap. Line 2: +, Heap, opening parenthesis, objects, colon, E, opening bracket, closing bracket, closing parenthesis. Creates a Heap with the specified objects. Line 3: +, add, opening parenthesis, new Object, colon, E, closing parenthesis, colon, void. Adds a new object to the heap. Line 4: +, remove, opening parenthesis, closing parenthesis, colon, E. Removes the root from the heap and returns it. Line 5: +, get Size, opening parenthesis, closing parenthesis, colon, i n t. Returns the size of the heap. Line 6: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if the heap is empty.

The original set f 1 dot d ay t contains segments S sub 1 to S sub 8. Segments S sub 1 to S sub 4 are copied to form f 2 dot d ay t. Set f 3 dot d ay t consists of the following four segments: S sub 1 S sub 5 merged, S sub 2 S sub 6 merged, S sub 3 S sub 7 merged, S sub 4 S sub 8 merged.

The top list contains the following entries: 1 0 0, 5 0 0, 2 0 0, 3 1 0, 8 1 3, 2 1 5, 2 2 1, 5 2 7, 9 3 1, 1 3 1, 4 4, 7 5 9, 6 6 3, 3 7 2, 9 7 3, 3 8 3, 8 8 3, 6 8 7, 5 8 9, 2 9 4. Buckets 0 to 9 contain the following values: bucket 0, 4 4; bucket 1, 1 0 0, 1 3 1; bucket 2, 2 0 0, 2 1 5, 2 2 1; bucket 3, 3 1 0; bucket 4, empty; bucket 5, 5 0 0, 5 2 7; bucket 6, empty; bucket 7, 7 5 9; bucket 8, 8 1 3; bucket 9, 9 3 1.

Part ay: merged two sorted lists. List 1: 9 5, 1 7 3, 4 3 0, 6 7 7, 7 8 1, 8 1 1, 9 0 1, 9 1 0, with current 1 at 4 3 0. List 2: 4 9, 1 2 1, 2 9 1, 3 1 5, 3 8 0, 8 0 3, 9 1 2, 9 1 6, with current 2 at 3 8 0. Temp has 16 locations. First six entries: 4 9, 9 5, 1 2 1, 1 7 3, 2 9 1, 3 1 5, with current 3 at the eighth location. Part b: partition of list for quick sort. The list reads as follows: 2 9 6 pivot, 1 1 2, 1 3 8, 1 0, 1 0 3, 4 2 5 low, 7 0, 8 9 6, 4 4 5, 8 5 4, 5 5 8 high, 4 3 8, 5 8 6, 6 0 1, 7 9 6, 4 5 6, 5 2 9, 5 3 4, 4 7 9, 6 6 7.

Part ay: The root branches to the left and right subtrees. part b: 60 branches to 55 and 100. 55 branches to 45 and 57. 100 branches to 67 and 107. Part c: G branches to F and R. F branches to Ay. R branches to M and T.

Java dot u t i l dot Iterable is inherited by java dot u t i l dot Collection, which is inherited by My List. My List is inherited by My Array List and My Linked List.

Interface java dot u t i l Iterable < E > is inherited by interface java dot u t i l dot Collection < e >, which is inherited by interface My List < E >. The final interface is represented by the following code. Each line of code is followed by the corresponding action. Line 1: + add left parenthesis index colon i n t comma e colon E right parenthesis colon void. Action: Inserts a new element at the s p e c i underscore e d index in this list. Line 2: + get left parenthesis index colon i n t right parenthesis colon E. Action: Returns the element from this list at the s p e c i underscore e d index. Line 3: + index Of left parenthesis e colon Object right parenthesis colon i n t. Action: Returns the index of the underscore r s t matching element in this list. Line 4: + last Index Of left parenthesis e colon E right parenthesis colon i n t. Action: Returns the index of the last matching element in this list. Line 5: + remove left parenthesis index colon i n t right parenthesis colon E. Action: Removes the element at the s p e c i underscore e d index and returns the removed element. Line 6: + set left parenthesis index colon i n t comma e colon E right parenthesis colon E. Action: Sets the element at the s p e c i underscore e d index and returns the element being replaced. Override the add, is Empty, remove, contains All, add All, remove All, retain All, to Array left parenthesis right parenthesis comma and to Array left parenthesis T left bracket right bracket right parenthesis methods d e underscore n e d in Collection using default methods.

Before inserting e at insertion point i, the array consists of elements e sub 0 to e sub k at positions 0 to k. The length of the array is defined by data dot length minus 1. e is inserted at position i. after inserting e at insertion point i, the list size is incremented by 1, shifting s sub i to position i + 1, and so on.

Before deleting the element at index i, the array has elements e sub 0 to e sub k at positions 0 to k. Element e sub i is deleted. after deleting the element, the list size is decremented by 1, so that e sub i + 1 shifts from position i + 1 to position i.

The first diagram is titled, My Array List, <, E, >. Its top section reads as follows, with notes after each line. Line 1: minus, data, colon, E, opening bracket, closing bracket. Array for storing elements in this array list. Line 2: minus, size, colon, i n t. The number of elements in the array list. The bottom section reads as follows, with notes after each line. Line 1: +, My Array List, opening parenthesis, closing parenthesis. Creates a default array list. Line 2: +, My Array List, opening parenthesis, objects, colon, E, opening bracket, closing bracket, closing parenthesis. Creates an array list from an array of objects. Line 3: +, trim To Size, opening parenthesis, closing parenthesis, colon, void. Trims the capacity of this array list to the list’s current size. Line 4: minus, ensure Capacity, opening parenthesis, closing parenthesis, colon, void. Doubles the current array size if needed. Line 5: minus, check Index, opening parenthesis, index, colon, i n t, closing parenthesis, colon, void. Throws an exception if the index is out of bounds in the list. A solid line and hollow triangle extend from the first diagram to the second diagram, titled, interface, begin italics, My List, <, E, >, end italics.

Part ay: tail dot next = new Node < > left parenthesis quote Denver quote right parenthesis. The list reads as follows: head = tail = Chicago, next to Denver, next null. Part b: tail = tail dot next. The list reads as follows: head, Chicago, next to tail = Denver, next null.

Part ay: tail dot next = new Node < > left parenthesis quote Dallas quote right parenthesis. The list reads as follows: head, Chicago, next to tail = Denver, next to Dallas, next null. part b: tail = tail dot next. The list reads as follows: head, Chicago, next to Denver, next to tail = Dallas, next null.

Node < E > is defined as follows. line 1: element colon E. Line 2: next colon Node < E >. The node has a 1 to 1 link to itself and a many to 1 link to My Linked List < E >, which inherits interface My List < E >. The top segment of My Linked List contains the following lines of code, listed with their definitions. Line 1: minus head colon Node < E >. Definition: The head of the list. Line 2: minus tail colon Node < E >. Definition: The tail of the list. Line 3: minus size colon i n t. Definition: The number of elements in the list. The bottom segment of the My Linked List box contains the following lines of code, listed with the corresponding actions. Line 1: + My Linked List left parenthesis right parenthesis. Action: Creates a default linked list. Line 2: + My Linked List left parenthesis elements colon E left bracket right bracket right parenthesis. Action: Creates a linked list from an array of elements. Line 3: + add First left parenthesis e colon E right parenthesis colon void. Action: Adds an element to the head of the list. Line 4: + add Last left parenthesis e colon E right parenthesis colon void. Action: Adds an element to the tail of the list. Line 5: + get First left parenthesis right parenthesis colon E. Action: Returns the underscore r s t element in the list. Line 6: + get Last left parenthesis right parenthesis colon E. Action: Returns the last element in the list. Line 7: + remove First left parenthesis right parenthesis colon E. Action: Removes the underscore r s t element from the list. Line 8: + remove Last left parenthesis right parenthesis colon E. Action: Removes the last element from the list.

Part ay: before a new node is inserted. The list reads as follows: head, e sub 0, next, and so on, to e sub i, next to e sub i + 1, next, and so on, to tail e sub k, null. element e is inserted in front of e sub 0. Part b: after a new node is inserted. Element e becomes the head of the list.

Part ay: before a new node is inserted. The list extends from head e sub 0 to tail e sub k, and element e, null, is inserted at the end of the list. Part b: after a new node is inserted. Once inserted, e becomes the tail.

Part ay: circular linked list. Each node and corresponding element proceeds to the next, with the final node n proceeding to the head at node 1. Part b: doubly linked list. Each pair of consecutive nodes is linked forward and backward. Part c: Each pair of consecutive nodes is linked forward and backward, with node 1 leading directly to node n and node n leading directly to node 1.

The top section reads as follows. Line 1: minus, list, colon, java dot u t i l dot Linked List, <, E, >. The bottom section reads as follows, with notes after each line. Line 2: +, enqueue, opening parenthesis, e, colon, E, closing parenthesis, colon, void. Adds an element to this queue. Line 3: +, dequeue, opening parenthesis, closing parenthesis, colon, E. Removes an element from this queue. Line 4: +, get Size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of elements in this queue.

MY priority Queue < E extends Comparable < E > >. Top section. Line 1: minus heap colon Head < E >. Bottom sections. Line 1: + e n queue left parenthesis element colon E right parenthesis colon void. Action: Adds an element to this queue. Line 2: + de queue left parenthesis right parenthesis colon E. Action: Removes an element from this queue. Line 3: + get Size left parenthesis right parenthesis colon i n t. Action: Returns the number of elements in this queue.

The list reads as follows: head, 5 next previous, 5 3 next previous, 1 3 next previous, 1 next previous, 4 5 next previous, 4 next previous, tail. Backward traversal: 4, 4 5, 1, 1 3, 4 3, 5.

Part ay: The root branches to the left and right subtrees. part b: 60 branches to 55 and 100. 55 branches to 45 and 57. 100 branches to 67 and 107. Part c: G branches to F and R. F branches to Ay. R branches to M and T.

Part ay: inserting 101. Root 60 to 55 and 100. 55 to 45 and 57. 100 to 67 and parent 107. 107 to 101. Part b: inserting 59. Root 60 to 55 and 100. 55 to 45 and parent 57. 57 to 59. 100 to 67 and 107. 107 to 101.

Interface java dot lang dot Collection < E > inherits interface tree < E >. The interface tree is represented by the following code, with corresponding actions. Line 1: + search left parenthesis e colon upper E right parenthesis colon boolean. Action: Returns true if the spec i underscore ed element is in the tree. Line 2: + insert left parenthesis e colon upper E right parenthesis colon boolean. Action: Returns true if the element is added successfully. Line 3: + delete left parenthesis e colon upper E right parenthesis colon boolean. Action: Returns true if the element is removed from the tree successfully. Line 4: + in order left parenthesis right parenthesis colon void. Action: Prints the nodes in inorder traversal. Line 5: + pre order left parenthesis right parenthesis colon void. Action: Prints the nodes in preorder traversal. Line 6: + post order left parenthesis right parenthesis colon void. Action: Prints the nodes in postorder traversal. Line 7: + get size left parenthesis right parenthesis colon i n t. Action: Returns the number of elements in the tree. Line 8: + is Empty left parenthesis right parenthesis colon boolean. Action: Returns true if the tree is empty. Line 9: + clear left parenthesis right parenthesis colon void. Action: Removes all elements from the tree. Override the add, is empty, remove, contains all, add all, remove all, retain all, to array left parenthesis right parenthesis, and to array left parenthesis T left bracket right bracket right parenthesis methods defined in Collection using default methods.

The first diagram is titled, B S T, <, E, extends, Comparable, <, E, >, >.Its top section reads as follows, with notes after each line.Line 1: number sign, root, colon, Tree Node, <, E, >.The root of the tree.Line 2: number sign, size, colon, i n t.The number of nodes in the tree.The bottom section reads as follows, with notes after each line.Line 1: +, BST, opening parenthesis, closing parenthesis.Creates a default B S T.Line 2: +, BST, opening parenthesis, objects, colon, E, opening bracket, closing bracket, closing parenthesis.Creates a B S T from an array of elements.Line3: +, path, opening parenthesis, e, colon, E, closing parenthesis, colon,java dot u t i l dot List, <, Tree Node, <, E, >, >.Returns the path of nodes from the root leading to the node for the specified element. The element may not be in the tree.The second diagram is titled, Tree Node, <, E, >. It reads as follows.Line 1: number sign, element, colon, E.Line 2: number sign, left, colon,Tree Node, <, E, >.Line 3: number sign, right, colon,Tree Node, <, E, >.The third diagram is titled, interface, begin italics, Tree, <, E, >, end italics.

Part ay: Parent branches to current, which may be a left or a right child of parent. Current points to the node to be deleted. Current branches right to a subtree. Part b: Parent branches to a single subtree. The subtree may be a left or a right subtree of parent.

For each tree, the description lists the branches from left to right, unless stated otherwise. Part ay: Root 20 to 10 and 40. 10 right to 16. 40 to 30 and 80. 30 to 27. 80 to 50. Part b: root 20 to 16 and 40. 40 to 30 and 80, level with 16. 30 to 27. 80 to 50.

Part ay: The current node branches to a right subtree and a left child. Branches lead from the left child to parent of right most, which branches right to right most. Right most branches left to left child of right most. part b: The tree has the same top three levels as the tree in part ay. The node for content copied to current and the node is deleted. So, parent of right most branches directly to left child of right most.

Part ay: Root 20 branches to 10 and 40. 10 branches to right most 16, which branches left to 14. 40 branches to 30 and 80. 30 branches left to 27. 80 branches left to 50. Part b: Root 16 branches to 10 and 40. 10 branches to 14 on the bottom level. 40 branches to 30 and 80. 30 branches left to 27. 80 branches left to 50.

Part ay: deleting George. Root George to Adam and Michael. Adam right to Daniel. Michael to Jones and Tom. Tom left to Peter. part b: after George is deleted. Root Daniel to Adam and Michael. Michael to Jones and Tom. Tom left to Peter.

Part ay: deleting Adam. Root Daniel to Adam and Michael. Michael to Jones and Tom. Tom left to Peter. Part b: after Adam is deleted. The tree is the same as the tree in part ay, with Adam removed.

The diagram reads as follows, with notes after each line.Line 1: +, has Next, opening parenthesis, closing parenthesis, colon, boolean.Returns true if the iterator has more elements.Line 2: +, next, opening parenthesis, closing parenthesis, colon, E.Returns the next element in the iterator.Line 3: +, remove, opening parenthesis, closing parenthesis, colon, void.Removes from the underlying container the last element returned by the iterator, an optional operation.

Part ay: Huffman coding tree. In the tree, the branches are numbered 0 or 1. The tree branches as follows: 0 to level 2 node and 1 to node i. 0 to level 3 node and 1 to s. 0 to level 4 node M and 1 to level 4 node P. Part b: character code table. The table has the following headings from left to right: character, code, frequency. The row entries are as follows: row 1, M, 0 0 0, 1; row 2, P, 0 0 , 2; row 3, s, 0 1, 4; row 4, i, 1, 4.

Part ay: The the following list provides the nodes and their weights: M, 1; s, 4; i, 4; p, 2. Part b: A node with weight 3 branches to M and p. Node s and i remain unattached. Part c: A node of weight 7 branches to a node of weight 3 and x. The node of weight 3 branches to M and p. Node i is unattached. Part d: A node of weight 11 branches left to the tree from part c, and it branches right to i. Every left branch is coded 0, and every right branch is coded 1.

In both trees, all left branches are coded 0 and all right branches are coded 1. 7.0 to 3.0 and 4.0. 3.0 to 1.0 and 2.0. 2.0 to 1.0 m and 1.0 l. 4.0 to 2.0 e and 2.0. 2.0 to 1.0 w and 1.0 c. Welcome is encoded to 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0. Part b: The animation shows the tree from part ay, with the following bit string entered: 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1. As a result, 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 is decoded to o m l e W c.

Part ay: first tree. 60 branches to 55 and 100. 55 branches 45. 100 branches to 67 and 107. 67 branches to 87. Part b: The tree from part ay, with 107 branching to 105 and 187.

The tool shows a partial tree on the main field of thee window, below the instructions: usage, enter an integer key and click the search button to search the key in the tree. Click the insert button to inert the key into the tree. Click the remove button to remove the key from the tree. For the best display, use integers between 0 and 99.

Part ay: Node Ay at negative 2 branches to B at negative 1 or 0 and to T 3 with height h. B branches to T 1 with height h + 1 and to T 2 with height h or h + 1. Part b: Node B at 0 or 1 branches to T 1 with height h + 1 and to Ay at 0 or negative 1. Ay branches to T 2 with height h and to T 3 with height h.

Part ay: Ay at positive 2 branches to T 3 with height h and to B at positive 1 or 0. B branches to T 2 with height h and to T 1 with height h + 1. Part b: B at 0 over negative 1 branches to T1 at height h + 1 and to Ay at 0 or positive 1. Ay branches to T 2 and T 3, each with height h.

Part ay: Ay at negative 2 branches to T 4 with height h and to B at positive 1. B branches to T 1 with height h and to C at negative 1, 0, or 1. C branches to T 2 and T 3. T 2 and T 3 may have different heights, but at least one has a height of h. Part b: C at 0 branches to B at 0 over negative 1 and to Ay at 0 over 1. B branches to T 2 and to T 2 of height h. Ay branches to T 3 and to T 4 with height h.

Part ay: Ay at positive 2 branches to T 1 with height h and to Bat negative 1. B branches to T 4 with height h, and to C at 0, negative 1, or 1. C branches to T 2 and T 3. T 2 and T 3 may have different heights, but at least one has a height of h. Part b: C at o branches to Ay at 0 over negative1, and to B at 0 over 1. Ay branches to T 1 and T 2, each with height h. B branches to T 3 and T 4, each with height h.

The first diagram is titled, AY V L Tree Node, <, E, >. It reads as follows. Line 1: height, colon, i n t. A solid line labeled, Link, 1, connects the first diagram to itself. A solid line and hollow triangle extend from the first diagram to the second, titled, Tree Note, <, E, >. A solid line and filled diamond labeled, m, 0, extend from the first diagram to the third diagram, titled, Ay V L Tree, <, E, extends, Comparable, <, E, >, >. It reads as follows, with notes after each line. Line 1: +, Ay V L Tree, opening parenthesis, closing parenthesis. Creates an empty Ay V L tree. Line 2: +, Ay V L Tree, opening parenthesis, objects, colon, E, opening bracket, closing bracket, closing parenthesis. Creates an Ay V L tree from an array of objects. Line 3: number sign, create New Node, opening parenthesis, closing parenthesis, colon, Ay V L Tree Node, <, E, >. Overrides this method to create an Ay V L Tree Node. Line 4: +, insert, opening parenthesis, e, colon, E, closing parenthesis, colon, boolean. Returns true if the element is added successfully. Line 5: +, delete, opening parenthesis, e, colon, E, closing parenthesis, colon, boolean. Returns true if the element is removed from the tree successfully. Line 6: minus, update Height, opening parenthesis, node, colon, Ay V L Tree Node, <, E, >, closing parenthesis, colon, void. Update the height of the specified node. Line 7: minus, balance Path, opening parenthesis, e, colon, E, closing parenthesis, colon, void. Balances the nodes in the path from the node for the element to the root if needed. Line 8: minus, balance Factor, opening parenthesis, node, colon, Ay V L Tree Node, <, E, >, closing parenthesis, colon, i n t. Returns the balance factor of the node. Line 9: minus, balance L L, opening parenthesis, Ay, colon, Tree Node, comma, parent Of Ay, colon, Tree Node, <, E, >, closing parenthesis, colon, void. Performs L L balance. Line 10: minus, balance L R, opening parenthesis, Ay, colon, Tree Node, <, E, >, comma, parent Of Ay, colon, Tree Node, <, E, >, closing parenthesis, colon, void. Performs L R balance. Line 11: minus, balance R R, opening parenthesis, Ay, colon, Tree Node, <, E, >, comma, parent Of Ay, colon, Tree Node, <, E, >, closing parenthesis, colon, void. Performs R R balance. Line 12: minus, balance R L, opening parenthesis, Ay, colon, Tree Node, <, E, >, comma, parent Of Ay, colon, Tree Node, <, E, >, closing parenthesis, colon, void. Performs R L balance. A solid line and hollow triangle extend from the third diagram to the fourth, titled, B S T, <, E, extends, Comparable, <, E, >, >.

Notes follow each line. Line 1: number sign, element, colon, E. The element stored in this node. Line 2: number sign, height, colon, i n t. The height of this node. Line 3: number sign, left, colon, Tree Node, <, E, >. The left child of this node. Line 4: number sign, right, colon, Tree Node, <, E, >. The right child of this node.

Part ay: Insert 25, 20. Tree: 25 branches to 20. Part b: insert 5. Need L L rotation at node 25. Tree: 25 branches 50 20, and 20 branches to 5. part c: balanced. Tree: 20 branches to 5 and to 25. Part f: insert 34. Tree:20 branches to 5 and to 25, and 25 branches to 34. Part e: insert 50. Need R R rotation at node 25. Tree: 20 branches to 5 and 25. 25 branches to 34, and 34 branches to 50. Part f: balanced. Tree: 20 branches to 5 and 34, and 34 branches to 25 and 50. Part g: insert 30. R L rotation at node 20. Tree: 20 branches to 5 and 34. 34 branches to 25 and 50. 25 branches to 30. Part h: balanced. Tree: 25 branches to 20 and 34. 20 branches to 5. 34 branches to 30 and 50. part i: insert 10. L R rotation at node 20. Tree: 25 branches to 20 and 34. 20 branches to 5, which then branches to 10. 34 branches to 30 and 50. Pat j: balanced. Tree: 25 branches to 10 and 34. 10 branches to 5 and 20. 34 branches to 30 and 50.

Part ay: delete 34, 30, and 50. Tree: 25 branches to 10 and 34. 10 branches to 5 and 20. 34 branches to 30 and 50. Part b: after 34, 30, 50 are deleted. L L rotation at node 25. Tree: 25 branches to 10. 10 branches to 5 and 20. Part c: balanced. 10 branches to 5 and 25. 25 branches to 20. Part d: after 5 is deleted. R L rotation at 10. 10 branches to 25. 25 branches to 20. Part e: balanced. 20 branches to 10 and to 25.

For this hash function, N = 11, and i = the key percentage of N. For occupied addresses in the function, the following list provides the hash and the key portion of the entry: 0, 44; 4, 4; 5, 16; 6, 28; 10, 21. The new element with key 26 is moved to i = 4. The system then probes 3 times before finding an empty cell at i = 7.

The initial hash function contains the following entries, listed according to i value and key: 1, 45; 3, 58; 4, 4; 6, 228; 10, 21. h of 12 goes to i = 1, which is occupied. h of 12 + h prime of 12 then goes to i = 3, which is occupied. Finally, h of 12 + 2 * h prime of 12 goes to i = 5, which is empty.

The first diagram is titled, My Map dot Entry, <, K, comma, V, >. Its top section reads as follows. Line 1: minus, key, colon, K. Line 2: minus, value, colon, V. The bottom section reads as follows, with notes after each line. Line 1: +, Entry, opening parenthesis, key, colon, K, comma, value, colon, V, closing parenthesis. Constructs an entry with the specified key and value. Line 2: +, get key, opening parenthesis, closing parenthesis, colon, K. Returns the key in the entry. Line 3: +, get Value, opening parenthesis, closing parenthesis, colon, V. Returns the value in the entry. The second diagram is titled, My Hash Map, <, K, comma, V, >. It reads as follows, with notes after each line. Line 1: +, My Hash Map, opening parenthesis, closing parenthesis. Creates an empty map with default capacity 4 and default load-factor threshold 0.75 f. Line 2: +, My Hash Map, opening parenthesis, capacity, colon, i n t, closing parenthesis. Creates a map with a specified capacity and default load-factor threshold 0.75 f. Line 3: +, My Hash Map, opening parenthesis, capacity, colon, i n t, comma, load Factor Threshold, colon, float, closing parenthesis. Creates a map with a specified capacity and load-factor threshold. A solid line and hollow diamond extend from the first diagram to the third diagram. A dashed line and hollow triangle extend from the second diagram to the third diagram. Its title is, interface, begin italics, My Map, <, K, comma, V, >, end italics. This diagram’s text is italicized and reads as follows, with notes after each line. Line 1: +, clear, opening parenthesis, closing parenthesis, colon, void. Removes all entries from this map. Line 2: +, contains Key, opening parenthesis, key, colon, K, closing parenthesis, colon, boolean. Returns true if this map contains an entry for the specified key. Line 3: +, contains Value, opening parenthesis, value, colon, V, closing parenthesis, colon, boolean. Returns true if this map maps one or more keys to the specified value. Line 4: +, entry Set, opening parenthesis, closing parenthesis, colon, Set, <, Entry, <, K, comma, V, >, >. Returns a set consisting of the entries in this map. Line 5: +, get, opening parenthesis, key, colon, K, closing parenthesis, colon, V. Returns a value for the specified key in this map. Line 6: +, is Empty, opening parenthesis, closing parenthesis, colon, boolean. Returns true if this map contains no mappings. Line 7: +, key Set, opening parenthesis, closing parenthesis, colon, Set, <, K, >. Returns a set consisting of the keys in this map. Line 8: +, put, opening parenthesis, key, colon, K, comma, value, colon, V, closing parenthesis, colon, V. Puts a mapping in this map. Line 9: +, remove, opening parenthesis, key, colon, K, closing parenthesis, colon, void. Removes the entries for the specified key. Line 10: +, size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of mappings in this map. Line 11: +, values, opening parenthesis, closing parenthesis, colon, Set, <, V, >. Returns asset consisting of the values in this map.

The first diagram is titled, My Hash Set, <, E, >. It reads as follows, with notes after each line. Line 1: +, My Hash Set, opening parenthesis, closing parenthesis. Creates an empty set with default capacity 4 and default load-factor threshold 0.75 f. Line 2: +, My Hash Map, opening parenthesis, capacity, colon, i n t, closing parenthesis. Creates a set with a specified capacity and default load-factor threshold 0.75 f. Line 3: +, My Hash Map, opening parenthesis, capacity, colon, i n t, comma, load Factor Threshold, colon, float, closing parenthesis. Creates a set with a specified capacity and load-factor threshold. A solid line and hollow arrow extend from the first diagram to the second, titled, interface, begin italics, java dot l ay n g dot Collection, <, E, >, end italics.

Part ay: Island 1 at C is connected to shore Ay by 2 bridges and to shore B by 2 bridges. Island 2 at D is connected to shore Ay by 1 bridge and to shore B by 1 bridge. Part b: graph model. Vertex c is connected to vertex Ay by two edges, and to vertex B by two edges. Vertices Ay, B, and C are each connected to vertex D by one edge.

Part ay: a directed graph with vertices Peter 0, jane 1, mark 2, Cindy 3, Wendy 4. The edges are as follows: Peter to mark, Jane to Mark, mark to Wendy, Cindy to Wendy. Part b: a complete graph with vertices Ay to E. Edges connect each vertex to all other vertices. part c: a subgraph of the graph in b includes all edges connecting Ay to the other vertices.

The array list contains 12 elements with index numbers and values as follows: vertices 0, Seattle; vertices 1, San Francisco; vertices 2, Los Angeles; vertices 3, Denver; vertices 4, Kansas City; vertices 5, Chicago; vertices 6, Boston; vertices 7, New York; vertices 8, Atlanta; vertices 9, Miami; vertices 10, Dallas; vertices 11, Houston.

Seattle: neighbors 0, 1, 3, 5. San Francisco: neighbors 1, 0, 2, 3. Los Angeles: neighbors 2, 1, 3, 4, 10. Denver: neighbors 3, 0, 1, 2, 4, 5. Kansas City: neighbors 4, 2, 3, 5, 7, 8, 10. Chicago: neighbors 5, 0, 3, 4, 6, 7. Boston: neighbors 6, 5, 7. New York: neighbors 7, 4, 5, 6, 8. Atlanta: neighbors 8, 4, 7, 9, 10, 11. Miami: neighbors 9, 8, 11. Dallas: neighbors 10, 2, 4, 8, 11. Houston: neighbors 11, 8, 9, 10.

Note that the generic type, V, is the type for vertices. The first diagram is titled, Unweighted Graph, <, V, >. Its top section reads as follows, with notes after each line. Line 1: number sign, vertices, colon, List, <, V, >. Vertices in the graph. Line 2: number sign, neighbors, colon, List, <, List, <, Edge, >, >. Neighbors for each vertex in the graph. The bottom section reads as follows, with notes after each line. Line 1: +, Unweighted Graph, opening parenthesis, closing parenthesis. Constructs an empty graph. Line 2: +, Unweighted Graph, opening parenthesis, vertices, colon, V, opening bracket, closing bracket, comma, edges, colon, i n t, opening bracket, closing bracket, opening bracket, closing bracket, closing parenthesis. Constructs a graph with the specified edges and vertices stored in arrays. Line 3: +, Unweighted Graph, opening parenthesis, vertices, colon, List, <, V, >, comma, edges, colon, List, <, Edge, >, closing parenthesis. Constructs a graph with the specified edges and vertices stored in lists. Line 4: +, Unweighted Graph, opening parenthesis, edges, colon, i n t, opening bracket, closing bracket, opening bracket, closing bracket, comma, number Of Vertices, colon, i n t, closing parenthesis. Constructs a graph with the specified edges in an array and the integer vectors 1, 2, and so on. Line 5: +, Unweighted Graph, opening parenthesis, edges, colon, List, <, Edge, >, comma, number Of Vertices, colon, i n t, closing parenthesis. Constructs a graph with the specified edges in a list and the integer vectors 1, 2, and so on. A dashed line and hollow triangle extend from the first diagram to the second, titled, interface, begin italics, Graph, <, V, >, end italics. Its text is italicized and reads as follows, with notes after each line. Line 1: +, get Size, opening parenthesis, closing parenthesis, colon, i n t. Returns the number of vertices in the graph. Line 2: +, get Vertices, opening parenthesis, closing parenthesis, colon, List, <, V, >. Returns the vertices in the graph. Line 3: +, get Vertex, opening parenthesis, index, colon, i n t, closing parenthesis, colon, V. Returns the vertex object for the specified vertex index. Line 4: +, get Index, opening parenthesis, v, colon, V, closing parenthesis, colon, i n t. Returns the index for the specified vertex and return negative 1 if v is not in the graph. Line 5: +, get Neighbors, opening parenthesis, index, colon, i n t, closing parenthesis, colon, List, <, Integer, >. Returns the neighbors of vertex with the specified index. Line 6: +, get Degree, opening parenthesis, index, colon, i n t, closing parenthesis, colon, i n t. Returns the degree for a specified vertex index. Line 7: +, print Edges, opening parenthesis, closing parenthesis, colon, void. Prints the edges. Line 8: +, clear, opening parenthesis, closing parenthesis, colon, void. Clears the graph. Line 9: +, add Vertex, opening parenthesis, v, colon, V, closing parenthesis, colon, boolean. Returns true if, v, is added to the graph. Returns false if, v, is already in the graph. Line 10: +, add Edge, opening parenthesis, u, colon, i n t, comma, v, colon, i n t, closing parenthesis, colon, boolean. Adds an edge from, u, to, v, to the graph. Throws, Illegal Argument Exception, if, u, or, v, is invalid. Returns true if the edge is added and false if, opening parenthesis, u, comma, v, closing parenthesis, is already in the graph. Line 11: +, add Edge, opening parenthesis, e, colon, Edge, closing parenthesis, colon, boolean. Adds an edge into the adjacency edge list. Line 12: +, remove, opening parenthesis, v, colon, V, closing parenthesis, colon, boolean. Removes a vertex from the graph. Line 13: +, remove, opening parenthesis, u, colon, i n t, comma, v, colon, i n t, closing parenthesis, colon, boolean. Removes an edge from the graph. Line 14: +, d f s, opening parenthesis, v, colon, i n t, closing parenthesis, colon, Un Weighted Graph, <, V, > dot Search Tree. Obtains a depth-first search tree starting from, v. Line 15: +, b f s, opening parenthesis, v, colon, i n t, closing parenthesis, colon, Un Weighted Graph, <, V, > dot Search Tree. Obtains a breadth-first search tree starting from, v.

The diagram represents unweighted graph < v dot Search Tree. The top segment contains the following three lines with accompanying definitions. Line 1: minus root colon i n t. Definition: The root of the tree. Line 2: minus parent colon i n t left bracket right bracket. Definition: The parents of the vertices. Line 3: minus search Order colon List < Integer >. Definition: The orders for traversing the vertices. The bottom section contains the following eight lines, along with the corresponding actions. Line 1: + Search Tree left parenthesis root colon i n t comma parent colon i n t left bracket right bracket comma search Order colon List < Integer > right parenthesis. Action: Constructs a tree with the s p e c i underscore e d root, parent, and search Order. Line 2: + get Root left parenthesis right parenthesis colon i n t. Action: Returns the root of the tree. Line 3: + get Search Order left parenthesis right parenthesis colon List < Integer >. Action: Returns the order of vertices searched. Line 4: + get Parent left parenthesis index colon i n t right parenthesis: i n t. Action: Returns the parent for the s p e c i underscore e d vertex index. Line 5: + get Number Of Vertices Found left parenthesis right parenthesis colon i n t. Action: Returns the number of vertices searched. Line 6: + get Path left parenthesis index colon i n t right parenthesis: List < V >. Action: Returns a list of vertices from the s p e c i underscore e d vertex index to the root. Line 7: + print Path left parenthesis index colon i n t right parenthesis: void. Action: Displays a path from the root to the s p e c i underscore e d vertex. Line 8: + print Tree left parenthesis right parenthesis colon void. Action: Displays tree with the root and all edges.

Part ay: The edges in the graph are as follows: 0 1, 0 2, 0 3, 1 2, 1 4, 2 3. Parts b to e show the graph from part ay. Part b: The path goes from 0 to 1. Part c: The path goes from 0 through 1 to 2. Part d: The path is 0, 1, 2, 3. Part e: The path 1 to 4 is added to the path from part d.

Part ay: The graph has the following edges: 0 1, 0 2, 0 3, 1 2, 1 4, 2 3, 3 4. Parts b and c show the graph from part ay. Part b: The search paths are as follows: 0 to 1, 0 to 2, 0 to 3. Part c: Path 1 of 4 is added to the paths from part b.

The graph shows the following paths. Chicago 5 to Seattle 0, Denver 3, Kansas City 4, New York 7, and Boston 6. Seattle 0 to San Francisco 1. Denver 3 to Los Angeles 2. Kansas City 4 to Dallas 10 and Atlanta 8. Atlanta 8 to Houston 11 and Miami 9.

Part ay: row 1, H H H; row 2, T T T; row 3, H H H. The middle H in row 3 is shaded. Part b: row 1, H H H; row 2, T H T; row 3, T T T. The middle H in row 1 is shaded. Part c: row 1, T T T; row 2, T T T; row 3, T T T.

Array 0 contains only zeroes. Array 1 contains the following entries in row 3: 0 0 1. Array 2 contains the following values in row 3: 0 1 0. Array 3 contains the following values in row 3: 0 1 1. This process continues until array 5 1 1 contains only ones.

The top section contains two lines. Line 1: hash tree colon Unweighted graph < Integer > period. Line 2: Search Tree. Definition: A tree rooted at node 5 1 1. The bottom section contains the following 8 lines. Line 1: + nine tail model left parenthesis right parenthesis. Action: Constructs a model for the nine tails problem and obtains the tree. Line 2: + get Shortest Path left parenthesis node Index colon i n t right parenthesis colon List < Integer >. Action: Returns a path from the s p e c i underscore e d node to the root. The path returned consists of the node labels in a list. Line 3: minus get Edges left parenthesis right parenthesis colon List < Edge >. Action: Returns a list of Edge objects for the graph. Line 4: + get Node left parenthesis index colon i n t right parenthesis colon c h ay r left bracket right bracket. Action: Returns a node consisting of nine characters of H’s and T’s. Line 5: + get Index left parenthesis node colon c h ay r left bracket right bracket right parenthesis colon i n t. Action: Returns the index of the specified node. Line 6: + get Flipped Node left parenthesis node colon c h ay r left bracket right bracket comma position colon i n t right parenthesis colon i n t. Action: Flips the node at the specified position and returns the index of the underscore flipped node. Line 7: + flip Ay cell left parenthesis node colon c h ay r left bracket right bracket comma row colon i n t comma column colon i n t right parenthesis colon void. Action: Flips the node at the s p e c i underscore e d row and column. Line 8: + print Node left parenthesis node colon c h ay r left bracket right bracket right parenthesis colon void. Action: Displays the node on the console.

The first two arrays are 3 by 3. First array: row 1, 0 0 0; row 2, 1 1 1; row 3, 0 0 0. Second array: row 1, H H H; row 2, T T T; row 3, H H H. The third array is one row: H H H T T T H H H. The third array represents a node as an array of nine characters from positions 0 to 8 from left to right.

First example, get index for a node: index = 3, node = H H H H H H H T T. The node is broken into consecutive groups of 3 arranged in a 3—by-3 array. Second example, get node for an index: node = T H H H H H H T T, index = 2 5 9. The node is arranged in a 3-by-3 array, as in the first example.

The graph has the following edges: 0 1, 0 2, 1 3, 2 3, 2 4, 3 4, 3 5, 4 5. The first file listing has the following row entries from top to bottom: 6, 0 1 2, 1 0 3, 2 0 3 4, 3 1 2 4 5, 4 2 3 5, 5 3 4. The second file listing has the following row entries from top to bottom: 6, 0 1 2 3, 1 0 3, 2 0 3, 3 0 1 2, 4 5, 5 4.

Part ay: The file listing has the following row entries: row 1, 7; row 2, 0 30 30 1 2; row 3, 90 30 0 3 6; row 4, 2 30 90 0 3 4; row 5, 3 90 90 1 2 4 5; row 6, 4 30 150 2 3 5; row 7, 5 90 150 3 4 6; row 8, 6 130 90 1 5. The graph has the following edges: 0 1, 0 2, 1 3, 1 6, 2 3, 2 4, 3 4, 3 5, 4 5, 5 6. Part b: The animation recreates the graph.

The graph has the following edges listed with their weights: 0 1, 2; 0 3, 8; 1 2, 7; 1 3, 3; 2 3, 4; 2 4, 5; 3 4, 6. The i n t left bracket right bracket left bracket right bracket edges function lists the edges as 3-value subsets in braces. Each subset consists of the two vertices and then the weight.

Unweighted graph < V > is defined in Figure 28.9, and weighted graph < V > extends the unweighted graph. The weighted graph is defined by the following lines of code, listed with the corresponding actions. Line 1: + Weighted Graph left parenthesis right parenthesis. Action: Constructs an empty graph. Line 2: + Weighted Graph left parenthesis vertices colon V left bracket right bracket comma edges colon int left bracket right bracket left bracket right bracket right parenthesis. Action: Constructs a weighted graph with the specified edges and the vertices in arrays. Line 3: + Weighted Graph left parenthesis vertices colon List < V > comma edges colon List < Weighted Edge > right parenthesis. Action: Constructs a weighted graph with the specified edges and the number of vertices. Line 4: + Weighted Graph left parenthesis edges colon int left bracket right bracket left bracket right bracket comma number Of Vertices colon i n t right parenthesis. Action: Constructs a weighted graph with the specified edges in an array and the number of vertices. Line 5: + Weighted Graph left parenthesis edges colon List < Weighted Edge > comma number Of Vertices colon i n t right parenthesis. Action: Constructs a weighted graph with the specified edges in a list and the number of vertices. Line 6: + print Weighted Edges left parenthesis right parenthesis colon void. Action: Displays all edges and weights. Line 7: + get Weight left parenthesis i n t u comma i n t v right parenthesis colon double. Action: Returns the weight on the edge from u to v. Throw an exception if the edge does not exist. Line 8: + add Edges left parenthesis u colon i n t comma v colon i n t comma weight colon double right parenthesis colon void. Action: Adds a weighted edge to the graph and throws an Illegal Argument Exception if u, v, or w is invalid. If left parenthesis u, v right parenthesis is already in the graph, the new weight is set. Line 9: + get Minimum Spanning Tree left parenthesis right parenthesis colon M S T. Action: Returns a minimum spanning tree starting from vertex 0. Line 10: + get Minimum Spanning Tree left parenthesis index colon i n t right parenthesis colon M S T. Action: Returns a minimum spanning tree starting from vertex v. Line 11: + get Shortest Path left parenthesis index colon i n t right parenthesis colon Shortest Path Tree. Action: Returns all single-source shortest paths.

Part ay: The edges of the first graph have the following weights: 5, 6, 8, 10, 7, 5, 7, 7, 12, 10, 8, 8. Part b: total weight is 42. The edges have the following weights: 5, 7, 5, 10, 7, 8. Part c: total weight is 38. The edges have the following weights: 5, 6, 7, 5, 7, 8. Part d: total weight is 38. The edges have the following weights: 6, 5, 7, 5, 7, 8.

The edges of the graph are as follows: 0 1, 6; 0 5, 5; 1 2, 10; 1 5, 8; 1 6, 7; 2 3, 8; 2 4, 10; 2 6, 5; 3 4, 8; 4 5, 12; 4 6, 7; 5 6, 7. Part ay: 0 5, 5. Part b: 0 1, 6; 0 5, 5. Part c: 0 1, 6; 0 5, 5; 1 6, 7. Part d: 0 5, 5; 0 1, 6; 1 6, 7; 6 2, 5. Part e: 0 5, 5; 0 1, 6; 1 6, 7; 6 2, 5; 6 4, 7. Part f: 0 5, 5; 0 1, 6; 1 6, 7; 6 2, 5; 6 4, 7; 2 3, 8.

The weighted graph < V > dot M S T expands the unweighted graph < V > dot Search Tree. In the weighted graph, the top section contains 1 line: minus total weight colon double. Definition: total weight of the tree. The bottom section contains 2 lines, listed with definitions. Line 1: + M S T left parenthesis root colon i n t comma parent colon i n t left bracket right bracket comma search order colon List < Integer > total weight colon double right parenthesis. Definition: Constructs an M S T with the specified root, parent array, search order, and total weight for the tree. Line 2: + get total weight left parenthesis right parenthesis colon double. Definition: Returns the total weight of the tree.

The following list provides the ordered paths between cities, along with their weights: Seattle to San Francisco, 807; San Francisco to Los Angeles, 381; Los Angeles to Denver, 1015; Denver to Kansas City, 599; Kansas City to Dallas, 496; Dallas to Houston, 239; Kansas City to Chicago, 533; Dallas to Atlanta, 781; Atlanta to Miami, 661; Chicago to New York, 787; New York to Boston, 214.

Part ay: before moving u to T. T contains vertices whose shortest path to s is known. V minus T contains vertices whose shortest path to s is not known yet/ One region contains T and s. The other region contains V minus T, u, v 1, v 2, and v 3. T connects to V minus T and v 2. A separate point in the first region connects to u and v 3. u connects to v 1, v 2, and v 3. part b: after moving u to T. u shifts from the second region to the first region, but the connections are maintained.

Part ay: graph. The edges and their weights are as follows: 0 2, 1; 0 5, 4; 1 2, 5; 1 3, 10; 1 6, 9; 3 4, 8; 3 5, 8; 3 6, 5; 4 5, 5; 5 6, 7. Part b: Two arrays have positions 0 to 6. The first cost array has 0 at 1, with the remaining entries being infinity. the parent array has negative 1 at 1, with the remaining positions being empty.

Weighted graph < V > dot shortest path tree extends unweighted graph < V > dot search tree. The top section of the weight graph has one line: minus cost colon double left bracket right bracket. Definition: cost left bracket v right bracket stores the cost for the path from the source to v. The bottom section has 3 lines. Line 1: + shortest path three left parenthesis source colon i n t comma parent colon i n t left bracket right bracket comma search order colon list < Integer > comma cost colon double left bracket right bracket right parenthesis. Action: Constructs a shortest-path tree with the specified source, parent array, search order, and cost array. Line 2: + get cost left parenthesis v colon i n t right parenthesis colon double. Action: Returns the cost for the path from the source to vertex v. Line 3: + print all paths left parenthesis right parenthesis colon void. Action: Displays all paths from the source.

The order paths with weights are as follows: Chicago to Kansas City, 533; Chicago to New York, 787; Chicago to Boston, 983; Chicago to Denver, 1003; Kansas City to Dallas, 496; Dallas to Houston, 239; Kansas City to Atlanta, 864; Denver to Los Angeles, 1015; Atlanta to Miami, 661; Chicago to Seattle, 2097; Denver to San Francisco, 1267.

Part ay: row 1, H H H; row 2, T T T; row 3, H H H. The first 2 entries in row 1 and the first entry in row 2 are shaded. Part b: row 1, T T H; row 2, H T T; row 3, H H H. The first two entries in row 1 and the first entry in row 2 are shaded. Part c: row 1, T T H; row 2, H H T; row 3, H H H. The second entry in row 1, all entries in row 2, and the second entry in row 3 are shaded. Part d: row 1, T H H; row 2, T T H; row 3, H T H. The second entry in row 1, all entries in row 2,and the second entry in row 3 are shaded.

Part ay: The graph has the following edges, listed with weights: 0 1, 100; 0 2, 3; 1 3, 20; 2 3, 40; 2 4, 2; 3 4, 5; 3 5, 5; 4 5, 9. Part b: The file listing has the following row entries: row 1, 6; row 2, 0 1 100 vertical bar 0 2 3; row 3, 1 3 20; row 4, 2 3 40 vertical bar 2 4 2; row 5, 3 4 5 vertical bar 3 5 5; row 6, 4 5 9.

The first interface is java dot u t i l dot stream dot Base Stream < T comma S extends Base Stream < T comma S > >. It contains the following lines of code. Each line of code is followed by the action it initiates. Line 1: + close left parenthesis right parenthesis colon S. Action: Closes this stream. Line 2: + parallel left parenthesis right parenthesis colon S. Action: Returns an equivalent stream that is executed in parallel. Line 3: + sequential left parenthesis right parenthesis colon S. Action: Returns an equivalent stream that is executed in sequential. Line 4: + is Parallel left parenthesis right parenthesis colon boolean. Action: Returns true if this stream is parallel. The first interface is inherited by the second interface: java dot u t i l dot stream dot Stream < T >. The second interface contains the following lines of code. Each line of code is followed by the action it initiates. Lines 1 to 10 handle intermediate operations. Line 1: + distinct left parenthesis right parenthesis colon Stream < T >. Action: Returns a stream consisting of distinct elements from this stream. Line 2: + filter left parenthesis p colon Predicate < question mark super T right parenthesis colon Stream < T >. Action: Returns a stream consisting of the elements matching the predicate. Line 3: + limit left parenthesis n colon long right parenthesis colon Stream < T >. Action: Returns a stream consisting of the underscore r s t n elements from this stream. Line 4: + skip left parenthesis n colon long right parenthesis colon Stream < T >. Action: Returns a stream consisting of the remaining elements in this stream after discarding the underscore r s t n elements. Line 5: + sorted left parenthesis right parenthesis colon Stream < T >. Action: Returns a stream consisting of the elements of this stream sorted in a natural order. Line 6: + sorted left parenthesis comparator colon Comparator < question mark super T > right parenthesis colon Stream < T >. Action: Returns a stream consisting of the elements of this stream sorted using the comparator. Line 7: + map left parenthesis mapper colon Function < question mark super T comma question mark extends R > colon Stream < R >. Action: Returns a stream consisting of the results of applying the function to the elements of this stream. Line 8: + map To I n t left parenthesis mapper colon To I n t Function < question mark super T > right parenthesis colon I n t Stream. Action: Returns an I n t Stream consisting of the results of applying the function to the elements of this stream. Line 9: + map To Long left parenthesis mapper colon To Long Function < question mark super T > right parenthesis colon Long Stream. Action: Returns a Long Stream consisting of the results of applying the function to the elements of this stream. Line 10: + map To Double left parenthesis mapper colon To Double Function < question mark super T > right parenthesis colon Double Stream. Action: Returns a Double Stream consisting of the results of applying the function to the elements of this stream. Lines 11 to 23 handle terminal operations. Line 11: + count left parenthesis right parenthesis colon long. Action: Returns the number of elements in this stream. Line 12: + max left parenthesis c colon Comparator < question mark super T > right parenthesis colon Optional < T >. Action: Returns the maximum element in this stream based on the comparator. Line 13: + min left parenthesis c colon Comparator < question mark super T > right parenthesis colon Optional < T >. Action: Returns the minimum element in this stream based on the comparator. Line 14: + f i n d First left parenthesis right parenthesis colon Optional < T >. Action: Returns the underscore r s t element from this stream. Line 15: + f i n d Any left parenthesis right parenthesis colon Optional < T >. Action: Returns any element from this stream. Line 16: + all Match left parenthesis p colon Predicate < question mark super T right parenthesis colon boolean. Action: Returns true if all the elements in this stream match the predicate. Line 17: + any Match left parenthesis p colon Predicate < question mark super T right parenthesis colon boolean. Action: Returns true if one element in this stream matches the predicate. Line 18: + none Match left parenthesis p colon Predicate < question mark super T right parenthesis colon boolean. Action: Returns true if no element in this stream matches the predicate. Line 19: + for Each left parenthesis action colon Consumer < question mark super T > right parenthesis colon void. Action: Performs an action for each element of this stream. Line 20: + reduce left parenthesis accumulator colon Binary Operator < T > right parenthesis colon < T >. Action: Reduces the elements in the stream to a value using the identity and an associative accumulation function. Return an Optional describing the reduced value. Line 21: + reduce left parenthesis identity colon T, accumulator colon Binary Operator < T > right parenthesis colon T. Action: Reduces the elements in the stream to a value using the identity and an associative accumulation function. Return the reduced value. Line 22: + collect left parenthesis collector colon < question mark super < T comma Ay comma R > > right parenthesis colon R. Action: Performs a mutable reduction operation on the elements of this stream using a Collector. Line 23: + to Array left parenthesis right parenthesis colon Object left bracket right bracket. Action: Returns an array consisting of the elements in this stream. Lines 24 to 27 handle static methods. Line 24: + empty left parenthesis right parenthesis colon Stream < T >. Action: Returns an empty sequential stream. (static method). Line 25: + of left parenthesis values colon T dot dot dot right parenthesis colon Stream < T >. Action: Returns a stream consisting of the s p e c i underscore ed values (static method). Line 26: + of left parenthesis values colon T right parenthesis colon Stream < T >. Action: Returns a stream consisting of a single value (static method). Line 27: + c o n c a t left parenthesis ay 1 colon Stream < question mark extends T > comma ay 2 colon Stream < question mark extends T > right parenthesis colon Stream < T >. Action: Returns a lazily concatenated stream consisting of the elements in ay 1 followed by the elements in ay 2 (static method).

The code reads as follows: set dot stream left parenthesis right parenthesis dot limit left parenthesis 50 right parenthesis dot distinct left parenthesis right parenthesis dot count left parenthesis right parenthesis. In the code, the parts are defined as follows. Set: source. Stream left parenthesis right parenthesis: create a stream. Limit left parenthesis 50 right parenthesis dot distinct left parenthesis right parenthesis: zero or more intermediate methods. Count left parenthesis right parenthesis: one terminal method.

Program code. In the code, the words in the variable names are merged. Line 1, indented once: j ay v ay f x, period, scene, period, shape, period, quad curve. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the u m l diagram for brevity. Line 2: minus, start x, colon, double property. Note: The x-coordinate of the start point, default 0. Line 3: minus, start y, colon, double property. Note: The y-coordinate of the start point, default 0. Line 4: minus, end x, colon, double property. Note: The x-coordinate of the end point, default 0. Line 5: minus, end y, colon, double property. Note: The y-coordinate of the end point, default 0. Line 6: minus, control x, colon, double property. Note: The x-coordinate of the control point, default 0. Line 7: minus, control y, colon, double property. Note: The y-coordinate of the control point, default 0. Line 8: + quad curve, left parenthesis, right parenthesis. Note: It creates an empty quad curve. Line 9: + quad curve, left parenthesis, start x, colon, double, comma. Line 10, indented twice: start y, colon, double, control x, colon, comma. Line 11, indented twice: double, control y, colon, double, comma. Line 12, indented twice: end x, colon, double, end y, colon, double, right parenthesis. Note: It creates a quad curve with the specified arguments.

Program code. In the code, the words in the variable names are merged. Line 1: j ay v ay f x, period, scene, period, shape, period, cubic curve. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the u m l diagram for brevity. Line 2: minus, start x, colon, double property. Note: The x-coordinate of the start point, default 0. Line 3: minus, start y, colon, double property. Note: the y, minus, coordinate of the start point, default 0. Line 4: minus, end x, colon, double property. Note: The x-coordinate of the end point, default 0. Line 5: minus, end y, colon, double property. Note: The y-coordinate of the end point, default 0. Line 6: minus, control x 1, colon, double property. Note: The x-coordinate of the first control point, default 0. Line 7: minus, control y 1, colon, double property. Note: The y-coordinate of the first control point, default 0. Line 8: minus, control x 2, colon, double property. Note: The x-coordinate of the second control point, default 0. Line 9: minus, control y 2, colon, double property. Note: The y-coordinate of the second control point, default 0. Line 10: + cubic curve, left parenthesis, right parenthesis. Note: It creates an empty cubic curve. Line 11: + cubic curve, left parenthesis, start x, colon, double, comma. Line 12, indented once: start y, colon, double, control x 1, colon. Line 13, indented once: double, control y 1, colon, double, comma. Line 14, indented once: control x 2, colon, double, comma. Line 15, indented once: control y 2, colon, double, end x, colon. Line 16, indented once: double, end y, colon, double, right parenthesis. Note: It creates a cubic curve with the specified arguments.

Program code. In the code, the words in the variable names are merged. Line 1: j ay v ay, period, lang, period, object. Line 2: j ay v ay f x, period, scene, period, control, period, table column < s, comma, t >. Note: The getter and setter methods for property values and a getter for property itself are provided in the class, but omitted in the u m l diagram for brevity. Line 3: minus, editable, colon, boolean property. Note: It specifies whether this table column allows editing. Line 4: minus, cell value factory, colon. Line 5, indented once: object property < call back, < table column, point. Line 6, indented once: cell data features < s, comma, t >, comma, observable value. Line 7, indented once: < t > > >. Note: The cell value factory to specify how to populate all cells within a single column. Line 8: minus, graphic, colon, object property, < node >. Note: The graphic for this table column. Line 9: minus, i d, colon, string property. Note: The i d for this table column. Line 10: minus, resizable, colon, boolean property. Note: It indicates whether the column is resizable. Line 11: minus, sort able, colon, boolean property. Note: It indicates whether the column is sortable. Line 12: minus, text, colon, string property. Note: The text in the table column header. Line 13: minus, style, colon, string property. Note: It specifies the c s s style for the column. Line 14: minus, visible, colon, boolean property. Note: It specifies whether the column is visible, default, true. Line 15: + table column, left parenthesis, right parenthesis. Note: It creates a default table column. Line 16: + table column, left parenthesis, text, colon, string, right parenthesis. Note: It creates a table view with the specified header text.

Program code. In the code, the words in the variable names are merged. ay. Line 1: forward slash, forward slash, custom task class. Line 2: public class task class, implements runnable, left brace. Line 3, indented once: point, point, point. Line 4, indented once: public task class, left parenthesis, point, point, point, right parenthesis, right brace. Line 5, indented twice: point, point, point. Line 6, indented once: right brace. Line 7, indented once: forward slash, forward slash, implement the run method in runnable. Line 8, indented once: public void run, left parenthesis, right parenthesis, right brace. Line 9, indented twice: forward slash, forward slash, tell system how to run custom thread. Line 10, indented twice: point, point, point. Line 11, indented once: right brace. Line 12, indented once: point, point, point. Line 13: right brace.b.Line 1: forward slash, forward slash, client class. Line 2: public class client, left brace. Line 3, indented once: point, point, point. Line 4, indented once: public void some method, left parenthesis, right parenthesis, left brace. Line 5, indented twice: point, point, point. Line 6, indented twice: forward slash, forward slash, create an instance of task class. Line 7, indented twice: task class, task = new task class, left parenthesis, point, point, point, right parenthesis, semicolon. Line 8, indented twice: forward slash, forward slash, create a thread. Line 9, indented twice: thread thread = new thread, left parenthesis, task, right parenthesis, semicolon. Line 10, indented twice: forward slash, forward slash, start a thread. Line 11, indented twice: thread, period, start, left parenthesis, right parenthesis, semicolon. Line 12, indented twice: point, point, point. Line 13, indented once: right brace. Line 14, indented once: point, point, point. Line 15: right brace.

Program code. In the code, the words in the variable names are merged. ay. Line 1: public class test implements runnable, left brace. Line 2, indented once: public static void main, left parenthesis, string, open bracket, close bracket, ay r g s, right parenthesis, left brace. Line 3, indented twice: new test, left parenthesis, right parenthesis, semicolon. Line 4, indented once: right brace. Line 5, indented once: public test, left parenthesis, right parenthesis, left brace. Line 6, indented twice: test task = new test, left parenthesis, right parenthesis, semicolon. Line 7, indented twice: new thread, left parenthesis, task, right parenthesis, period, start, left parenthesis, right parenthesis, semicolon. Line 8, indented once: right brace. Line 9, indented once: public void run, left parenthesis, right parenthesis, left brace. Line 10, indented twice: system, period, out, period, print ln, left parenthesis, open quotes, test, close quotes, right parenthesis, semicolon. Line 11, indented once: right brace. Line 12: right brace. b. Line 1: public class test implements runnable, left brace. Line 2, indented once: public static void main, left parenthesis, string, open bracket, close bracket, ay r g s, right parenthesis, left brace. Line 3, indented twice: new test, left parenthesis, right parenthesis, semicolon. Line 4, indented once: right brace. Line 5, indented once: public test, left parenthesis, right parenthesis, left brace. Line 6, indented twice: thread t = new thread, left parenthesis, this, right parenthesis, semi close. Line 7, indented twice: t, period, start left parenthesis, right parenthesis, semicolon. Line 8, indented twice: t, period, start left parenthesis, right parenthesis, semicolon. Line 9: right brace. Line 10, indented once: public void run, left parenthesis, right parenthesis, left brace. Line 11, indented twice: system, period, out, period, print ln, left parenthesis, open quotes, test, close quotes, right parenthesis, semicolon. Line 12, indented once: right brace. Line 13: right brace.

Program code. In the code, the words in the variable names are merged. ay. Line 1: forward slash, forward slash, custom thread class. Line 2: public class custom thread, extends thread left brace. Line 3, indented once: point, point, point. Line 4, indented once: public custom thread, left parenthesis, point, point, point, right parenthesis, left brace. Line 5, indented twice: point, point, point. Line 6, indented once: right brace. Line 7: blank. Line 8, indented once: override the run method in runnable. Line 9, indented once: public void run, left parenthesis, right parenthesis, left brace. b. Line 1: forward slash, forward slash, client class. Line 2: public class client, left brace. Line 3, indented once: point, point, point. Line 4, indented once: public void some method, left parenthesis, right parenthesis, left brace. Line 5, indented twice: point, point, point. Line 6, indented twice: forward slash, forward slash, create a thread. Line 7, indented twice: custom thread, thread 1 = new custom thread, left parenthesis, point, point, point, right parenthesis, semicolon. Line 8: blank. Line 9, indented twice: forward slash, forward slash, start a thread. Line 10, indented twice: thread 1, period, start, left parenthesis, right parenthesis, semicolon. Line 11: blank. Line 12, indented twice: forward slash, forward slash, create another thread. Line 13, indented twice: custom thread, thread 2 = new custom thread, left parenthesis, point, point, point, right parenthesis, semicolon. Line 14: blank. Line 15, indented twice: forward slash, forward slash, start a thread. Line 16, indented twice: thread 2, period, start, left parenthesis, right parenthesis, semicolon. Line 17, indented once: right brace. Line 18, indented once: point, point, point. Line 19: right brace.

Program code. In the code, the words in the variable names are merged. Line 1, indented twice: << interface >>. Line 2, indented once: java, period, u t i l, period, concurrent, period, future < v > . Line 3: + cancel, left parenthesis, interrupt, colon, boolean, right parenthesis, colon, boolean. Note: It attempts to cancel this task. Line 4: + get, left parenthesis, right parenthesis, colon, v. Note: It waits if needed for the computation to complete and returns the result. Line 5: blank. Line 6: + is done, left parenthesis, right parenthesis, colon, boolean. Note: It returns true if this task is completed. Line 7, indented once: java, period, u t i l, period, concurrent, period, fork join task < v > . Line 8: + adapt, left parenthesis, runnable task, right parenthesis, colon, fork join task, < v > . Note: It returns a fork join task from a runnable task. Line 9: + fork, left parenthesis, right parenthesis, colon, fork join task, < v > . Note: It arranges asynchronous execution of the task. Line 10: + join, left parenthesis, right parenthesis, colon, v. Note: It returns the result of computations when it is done. Line 11: + invoke, left parenthesis, right parenthesis, colon, v. Note: It performs the task and waits for its completion, and returns its result. Line 12: blank. Line 13: + invoke all, left parenthesis, tasks fork join task, < ? > …, right parenthesis, colon, void. Note: It forks the given tasks and returns when all tasks are completed. Line 14, indented once: java, period, u t i l, period, concurrent, period, recursive action, < v >. Line 15: hash, compute, left parenthesis, right parenthesis, colon, void. Note: It defines how task is performed. Line 16, indented once: java, period, u t i l, period, concurrent, period, recursive task, < v > . Line 17: hash, compute, left parenthesis, right parenthesis, colon, v. Note: It defines how task is performed. It returns the value after the task is completed.

Program code. In the code, the words in the variable names are merged. Server: Line 1: i n t, port = 8000, semicolon. Line 2: data input stream, in, semicolon. Line 3: data output stream, out, semicolon. Line 4: server socket, server, semicolon. Line 5: socket socket, semicolon. Line 6: server = new server socket, left parenthesis, port, right parenthesis, semicolon. Line 7: socket = server, period, accept, left parenthesis, right parenthesis, semicolon. Line 8: in = new data input stream. Line 9, indented once: left parenthesis, socket, period, get input stream, left parenthesis, right parenthesis, right parenthesis, semicolon. Line 10: out = new data output stream. Line 11, indented once: left parenthesis, socket, period, get output stream, left parenthesis, right parenthesis, right parenthesis, semicolon. Line 12: system, period, out, period, print l n, left parenthesis, in, period, read double, left parenthesis, right parenthesis, right parenthesis, semicolon. Line 13: out, period, write double, left parenthesis, a number, right parenthesis, semicolon. Client: Line 1: i n t, port = 8000, semicolon. Line 2: string host =, open quotes, local host, close quotes. Line 3: data input stream, in, semicolon. Line 4: data output stream, out, semicolon. Line 5: socket socket, semicolon. Line 6: socket = new socket, left parenthesis, host, comma, port, right parenthesis, semicolon. Line 7: in = new data input stream. Line 8, indented once: left parenthesis, socket, period, get input stream, left parenthesis, right parenthesis, right parenthesis, semicolon. Line 9: out = new data output stream. Line 10, indented once: left parenthesis, socket, period, get output stream, left parenthesis, right parenthesis, right parenthesis, semicolon. Line 11: out, period, write double, left parenthesis, a number, right parenthesis, semicolon. Line 12: system, period, out, period, print l n, left parenthesis, in, period, read double, left parenthesis, right parenthesis, right parenthesis, semicolon. Connection request: client line 6 to server line 7; i o streams: client line 11 to server line 12, server line 13 to client line 12.

Player 1 steps: 1. Initialize user interface. 2. Request connection to the server and learn which token to use from the server. It leads to server step 2. 3. Get the start signal from the server. 4. Wait for the player to mark a cell, send the cell's row and column index to the server. It leads to handle a session step 2. 5. Receive status from the server. 6. If win, display the winner; if player 2 wins, receive the last move from player 2. Break the loop. 7. If draw, display game is over; break the loop. 8. If continue, receive player 2's selected row and column index and mark the cell for player 2. It leads to step 4. Server steps: 1. Create a server socket. 2. Accept connection from the first player and notify the player who is player 1 with token x. It leads to player 1 step 2. 3. Accept connection from the second player and notify the player who is player 2 with token o. Start a thread for the session. It leads to step 2 and player 2 step 2. Handle a session: 1. Tell player 1 to start. It leads to player 1 step 3. 2. Receive row and column of the selected cell from player 1. 3. Determine the game status, win, draw, continue. If player 1 wins, or draws, send the status, player 1 won or draw, to both players and send player 1's move to player 2. Exit. It leads to player 1 step 5 and player 2 step 3. 4. If continue, notify player 2 to take the turn, and send player 1's newly selected row and column index to player 2. It leads to player 2 step 6. 5. Receive row and column of the selected cell from player 2. 6. If player 2 wins, send the status, player 2 won, to both players, and send player 2's move to player 1. Exit. It leads to step 2 and player 1 step 6. 7. If continue, send the status, and send player 2's newly selected row and column index to player 1. It leads to step 1 and player 1 step 8. Player 2 steps: 1. Initialize user interface. 2. Request connection to the server and learn which token to use from the server. It leads to server step 3. 3. Receive status from the server. 4. If win, display the winner. If player 1 wins, receive player 1's last move, and break the loop. 5. If draw, display game is over, and receive player 1's last move, and break the loop. 6. If continue, receive player 1's selected row and index and mark the cell for player 1. 7. Wait for the player to move, and send the selected row and column to the server. It leads to step 3 and server step 5.

Program code. In the code, the words in the variable names are merged. Line 1: + locale, left parenthesis, language, colon, string, right parenthesis. Note: Constructs a locale from a language code. Line 2: + locale, left parenthesis, language, colon, string, comma, country, colon, string, right parenthesis. Note: Constructs a locale from language and country codes. Line 3: + locale, left parenthesis, language, colon, string, comma, country, colon, string, comma. Line 4, indented once: variant, colon, string, right parenthesis. Note: Constructs a locale from language, country, and variant codes. Line 5: + get country, left parenthesis, right parenthesis, colon, string. Note: Returns the country/region code for this locale. Line 6: + get language, left parenthesis, right parenthesis, colon, string. Note: Returns the language code for this locale. Line 7: + get variant, left parenthesis, right parenthesis, colon, string. Note: Returns the variant code for this locale. Line 8: + get default, left parenthesis, right parenthesis, colon, locale. Note: Gets the default locale on the machine. Line 9: + get display country, left parenthesis, right parenthesis, colon, string. Note: Returns the name of the country as expressed in the current locale. Line 10: + get display language, left parenthesis, right parenthesis, colon, string. Note: Returns the name of the language as expressed in the current locale. Line 11: + get display name, left parenthesis, right parenthesis, colon, string. Note: Returns the name for the locale. For example, the name is Chinese, China, for the locale locale, period, china. Line 12: + get display variant, left parenthesis, right parenthesis, colon, string. Note: Returns the name for the locale's variant if it exists. Line 13: + get available locales, left parenthesis, right parenthesis, colon, locale, open bracket, close bracket. Note: Returns the available locales in an array.

Program code. In the code, the words in the variable names are merged. Line 1: + format, left parenthesis, date, colon, date, right parenthesis, colon, string. Note: Formats a date into a date/time string. Line 2: + get date instance, left parenthesis, right parenthesis, colon, date format. Note: Gets the date formatter with the default formatting style for the default locale. Line 3: + get date instance, left parenthesis, date style, colon, i n t, right parenthesis, colon, date format. Note: Gets the date formatter with the given formatting style for the default locale. Line 4: + get date instance, left parenthesis, date style, colon, i n t, comma, a locale, colon. Line 5, indented once: locale, right parenthesis, colon, date format. Note: Gets the date formatter with the given formatting style for the given locale. Line 6: + get date time instance, left parenthesis, right parenthesis, colon, date format. Note: Gets the date and time formatter with the default formatting style for the default locale. Line 7: + get date time instance, left parenthesis, date style, colon, i n t, period. Line 8, indented once: time style, colon, i n t, right parenthesis, colon, date format. Note: Gets the date and time formatter with the given date and time formatting styles for the default locale. Line 9: + get date time instance, left parenthesis, date style, colon, i n t, period, time. Line 10, indented once: style, colon, i n t, period, ay locale, colon, locale, right parenthesis, colon, date format. Note: Gets the date and time formatter with the given formatting styles for the given locale. Line 11: + get instance, left parenthesis, right parenthesis, colon, date format. Note: Gets a default date and time formatter that uses the SHORT style for both the date and the time.

Program code. In the code, the words in the variable names are merged. Line 1: + date format symbols, left parenthesis, right parenthesis. Note: Constructs a date format symbols object for the default locale. Line 2: + date format symbols, left parenthesis, locale 1ocale, right parenthesis. Note: Constructs a date format symbols object by for the given locale. Line 3: + get ay m p m strings, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Note: Gets ay m or p m strings. For example: ay m and p m. Line 4: + get eras, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Note: Gets era strings. For example: ay d and b c. Line 5: + get months, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Note: Gets month strings. For example: January, February, et cetera. Line 6: + set months, left parenthesis, new months, colon, string, open bracket, close bracket, right parenthesis, colon, void. Note: Sets month strings for this locale. Line 7: + get short months, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Note: Gets short month strings. For example: Jan, Feb, et cetera. Line 8: + set short months, left parenthesis, new short months, colon, string, open bracket, close bracket, right parenthesis, colon. Line 9, indented once: void. Note: Sets short month strings for this locale. Line 10: + get week days, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Note: Gets weekday strings. For example: Sunday, Monday, et cetera. Line 11: + set week days, left parenthesis, new weekdays, colon, string, open bracket, close bracket, right parenthesis, colon, void. Note: Sets weekday strings. Line 12: + get shot week days, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Gets short weekday strings. For example: Sun, Mon, et cetera. Line 13: + set short week days, left parenthesis, new week days, colon, string, open bracket, close bracket, right parenthesis, colon. Line 14, indented once: void. Note: Sets short weekday strings. For example: Sun, Mon, et cetera.

Program code. In the code, the words in the variable names are merged. Line 1: java f x, period, scene, period, layout, period, border pane. Line 2, indented twice: world clock. Line 3: negative time zone, colon, time zone. Line 4: negative locale, colon, locale. Line 5: negative clock, colon, clock pane. Line 6: negative i b l digit time, colon, label. Line 7: + world clock, left parenthesis, right parenthesis. Line 8: + set time zone, left parenthesis, time zone, colon. Line 9, indented once: time zone, right parenthesis, colon, void. Line 10: + set locale, left parenthesis, locale, colon, locale, right parenthesis, colon, void. Line 11: negative set current Time, left parenthesis, right parenthesis, colon, void. Line 12: java f x, period, scene, period, layout, period, border pane. Line 13, indented twice: world clock control. Line 14: negative clock, colon, world clock. Line 15: negative c b o locales, colon, combo box < string >. Line 16: negative c b o time zones, colon, combo box < string >. Line 17: negative available locales, colon, locale, open bracket, close bracket. Line 18: negative available time zones, colon, string, open bracket, close bracket. Line 19: + world clock control, left parenthesis, right parenthesis. Line 20: negative set available locales, left parenthesis, right parenthesis, colon, void. Line 21: negative set available time zones, left parenthesis, right parenthesis, colon, void. Line 22: java f x, period, application, period, application. Line 23, indented twice: world clock ay p p. Line 24: + start, left parenthesis, primary stage, colon, stage, right parenthesis, colon, void. Line 25: + main, left parenthesis, ay r g s, colon, string, open bracket, close bracket, right parenthesis, colon, void.

Program code. In the code, the words in the variable names are merged. Line 1: java f x, period, scene, period, layout, period, border pane. Line 2, indented twice: calendar pane. Line 3: negative month, colon, i n t. Line 4: negative year, colon, i n t . Line 5: negative calendar, colon, java, period, u t i l, period, calendar. Line 6: negative locale, colon, locale. Line 7: + get month, left parenthesis, right parenthesis, colon, i n t. Line 8: + set month, left parenthesis, new month, colon, i n t, right parenthesis, colon, void. Line 9: + get year, left parenthesis, right parenthesis, colon, i n t. Line 10: + set year, left parenthesis, new year, colon, i n t, right parenthesis, colon, void. Line 11: + set locale, left parenthesis, new locale, colon, locale, right parenthesis, colon, void. Line 12: + show header, left parenthesis, right parenthesis, colon, void. Line 13: + show day names, left parenthesis, right parenthesis, colon, void. Line 14: + show days, left parenthesis, right parenthesis, colon, void. Line 15: java f x, period, application, period, application. Line 16, indented twice: calendar app. Line 17: negative calendar pane, colon, calendar pane. Line 18: negative c b o locale, colon, combo box < string >. Line 19: negative b t prior, colon, button. Line 20: negative b t next, colon, button. Line 21: negative locales, colon, java, period, u t i l locale, open bracket, close bracket. Line 22: + start, left parenthesis, primary stage, colon, stage, right parenthesis, colon, void. Line 23: + main, left parenthesis, ay r g s, colon, string, open bracket, close bracket, right parenthesis, colon, void.

Program code. In the code, the words in the variable names are merged. Line 1: java, period, text, period, number format. Line 2: + get instance, left parenthesis, right parenthesis, colon, number format. Note: Returns a default number format for the default locale. Line 3: + get instance, left parenthesis, locale, colon, locale, right parenthesis, colon, number format. Note: Returns a default number format for the specified locale. Line 4: + get integer instance, left parenthesis, right parenthesis, colon, number format. Note: Returns an integer number format for the default locale. Line 5: + get integer instance, left parenthesis, locale, semicolon, locale, right parenthesis, semicolon. Line 6, indented once: number format. Note: Returns an integer number format for the specified locale. Line 7: + get currency instance, left parenthesis, right parenthesis, colon, number format. Note: Returns a currency format for the current default locale. Line 8: + get number instance, left parenthesis, right parenthesis, colon, number format. Note: Same as get instance. Line 9: + get number instance, left parenthesis, 1oca1e, colon, locale, right parenthesis, colon. Line 10, indented once: number format. Note: Same as get instance, locale. Line 11: + get percent instance, left parenthesis, right parenthesis, colon, number format. Note: Returns a percentage format for the default locale. Line 12: + get percent instance, left parenthesis, 1ocale, colon, locale, right parenthesis, colon. Line 13, indented once: number format. Note: Returns a percentage format for the specified locale. Line 14: + format, left parenthesis, number, colon, double, right parenthesis, colon, string. Note: Formats a floating-point number. Line 15: + format, left parenthesis, number, colon, long, right parenthesis, colon, string. Note: Formats an integer. Line 16: + get maximum fraction digits, left parenthesis, right parenthesis, colon, i n t. Note: Returns the maximum number of allowed fraction digits. Line 17: + set maximum fraction digits, left parenthesis, new value, colon, i n t, right parenthesis, colon, void. Note: Sets the maximum number of allowed fraction digits. Line 18: + get minimum fraction digits, left parenthesis, right parenthesis, colon, i n t. Note: Returns the minimum number of allowed fraction digits. Line 19: + set minimum fraction digits, left parenthesis, new value, colon, i n t, right parenthesis, colon, void. Note: Sets the minimum number of allowed fraction digits. Line 20: + get maximum integer digits, left parenthesis, right parenthesis, colon, i n t. Note: Returns the maximum number of allowed integer digits in a fraction number. Line 21: + set maximum integer digits, left parenthesis, new value, colon, i n t, right parenthesis, colon. Line 22, indented once: void. Note: Sets the maximum number of allowed integer digits in a fraction number. Line 23: + get minimum integer digits, left parenthesis, right parenthesis, colon, i n t. Note: Returns the minimum number of allowed integer digits in a fraction number. Line 24: + set minimum integer digits, left parenthesis, new value, colon, i n t, right parenthesis, colon. Line 25, indented once: void. Note: Sets the minimum number of allowed integer digits in a fraction number. Line 26: + is grouping used, left parenthesis, right parenthesis, colon, Boolean. Note: Returns true if grouping is used in this format. For example, in the English locale, with grouping on, the number 1234567 is formatted as 1,234,567. Line 27: + set grouping used, left parenthesis, new value, colon, Boolean, right parenthesis, colon, void. Note: Sets whether or not grouping will be used in this format. Line 28: + parse, left parenthesis, source, colon, string, right parenthesis, colon, number. Note: Parses string into a number. Line 29: + get availab1e loca1e, left parenthesis, right parenthesis, colon, locale, open bracket, close bracket. Note: Gets the set of locales for which number formats are installed.

Program code. In the code, the words in the variable names are merged. Line 1, indented twice: < < interface > >. Line 2, indented once: java x, period, servlet, period, servlet. Line 3: + i n i t, left parenthesis, c o n f i g, colon, servlet c o n f i g, right parenthesis, colon, void. Line 4: + service, left parenthesis, r e q, colon, servlet request, comma, r e s p, colon. Line 5, indented once: servlet response, right parenthesis, colon, void. Line 6: + destroy, left parenthesis, right parenthesis, colon, void. Line 7: + get servlet info, left parenthesis, right parenthesis, colon, string. Line 8: blank. Line 9, indented twice: < < interface > >. Line 10, indented once: java x, period, servlet, period, servlet c o n f i g. Line 11: + get i n i t parameter, left parenthesis, name, colon, string, right parenthesis, colon. Line 12, indented once: string. Line 13: + get i n i t parameter names, left parenthesis, right parenthesis, colon. Line 14, indented once: enumeration. Line 15: + get servlet context, left parenthesis, right parenthesis, colon, servlet context. Line 16: + get servlet name, left parenthesis, right parenthesis, colon, string. Line 17: java x, period, servlet, period, generic servlet. Line 18, indented once: java x, period, servlet, period, h t t p, period, h t t p servlet. Line 19: + do get, left parenthesis, r e q, colon, h t t p servlet, request, comma. Line 20, indented once: r e s p, colon, h t t p servlet, response, right parenthesis, colon, void. Line 21: + do post, left parenthesis, r e q, colon, h t t p servlet, request, comma. Line 22, indented once: r e s p, colon, h t t p servlet, response, right parenthesis, colon, void. Line 23: + do delete, left parenthesis, r e q, colon, h t t p servlet, request, comma. Line 24, indented once: r e s p, colon, h t t p servlet, response, right parenthesis, colon, void. Line 25: + do put, left parenthesis, r e q, colon, h t t p servlet, request, comma. Line 26, indented once: r e s p, colon, h t t p servlet, response, right parenthesis, colon, void. Line 27: + do options, left parenthesis, r e q, colon, h t t p servlet, request, comma. Line 28, indented once: r e s p, colon, h t t p servlet, response, right parenthesis, colon, void. Line 29: + dot race, left parenthesis, r e q, colon, h t t p servlet, request, comma. Line 30, indented once: r e s p, colon, h t t p servlet, response, right parenthesis, colon, void.

Program code. In the code, the words in the variable names are merged. Line 1: < < interface > >. Line 2: java x, period, servlet, period, servlet request. Line 3: + get parameter, left parenthesis, name, colon, string, right parenthesis, colon, string. Line 4: + get parameter values, left parenthesis, right parenthesis, colon, string, open bracket, close bracket. Note: Returns the value of a request parameter as a string, or null if the parameter does not exist. Request parameters are extra information sent with the request. For h t t p servlets, parameters are contained in the query string or posted from data. Only use this method when you are sure that the parameter has only one value. If it has more than one value, use get parameter values. Line 5: + get remote ay d d r, left parenthesis, right parenthesis, colon, string. Note: Returns the internet protocol, i p, address of the client that sent the request. Line 6: + get remote host, left parenthesis, right parenthesis, colon, string. Note: Returns the fully qualified name of the client that sent the request, or the i p address of the client if the name cannot be determined. Line 7: < < interface > >. Line 8: java x, period, servlet, period, h t t p, period, h t t p servlet request. Line 9: + get header, left parenthesis, name, colon, string, right parenthesis, colon, string. Note: Returns the value of the specified request header as a string. If the request did not include a header of the specified name, this method returns null. Since the header name is case insensitive, you can use this method with any request header. Line 10: + get method, left parenthesis, right parenthesis, colon, string. Note: Returns the name of the h t t p method with which this request was made; for example, get, post, delete, put, options, or trace. Line 11: + get query string, left parenthesis, right parenthesis, colon, string. Note: Returns the query string that is contained in the request u r l after the path. This method returns null if the u r l does not have a query string. Line 12: + get cookies, left parenthesis, right parenthesis, colon. Line 13: java x, period, servlet, period, h t t p, period, cookies, open bracket, close bracket. Note: Returns an array containing all of the cookie objects the client sent with the request. This method returns null if no cookies were sent. Using cookies is introduced in section 37.8.2, session tracking using cookies. Line 14: + get session, left parenthesis, create, colon, boolean, right parenthesis, colon. Line 15: h t t p session. Note: get session, true, returns the current session associated with this request. If the request does not have a session, it creates one. Get session, false, returns the current session associated with the request. If the request does not have a session, it returns null. The get session method is used in session tracking, which is introduced in section 37.8.3, session tracking using the servlet ay p i.

Program code. In the code, the words in the variable names are merged. Line 1, indented once: java x, period, servlet, period, h t t p, period, cookie. Line 2: + cookie, left parenthesis, name, colon, string, comma, value, colon, string, right parenthesis. Note: Creates a cookie with the specified name-value pair. Line 3: + get name, left parenthesis, right parenthesis, colon, string. Note: Returns the name of the cookie. Line 4: + get value, left parenthesis, right parenthesis, colon, string. Note: Returns the value of the cookie. Line 5: + set value, left parenthesis, new value, colon, string, right parenthesis, colon, void. Note: Assigns a new value to a cookie after the cookie is created. Line 6: + get max age, left parenthesis, right parenthesis, colon, i n t. Note: Returns the maximum age of the cookie, specified in seconds. Line 7: + set max age, left parenthesis, expiration, colon, i n t, right parenthesis, colon, void. Note: Specifies the maximum age of the cookie. By default, this value is negative 1, which implies that the cookie persists until the browser exits. If you set this value to 0, the cookie is deleted. Line 8: + get secure, left parenthesis, right parenthesis, colon, boolean. Note: Returns true if the browser is sending cookies only over a secure protocol. Line 9: + set secure, left parenthesis, flag, colon, boolean, right parenthesis, colon, void. Note: Indicates to the browser whether the cookie should only be sent using a secure protocol, such as h t t p s or s s l. Line 10: + get comment, left parenthesis, right parenthesis, colon, string. Note: Returns the comment describing the purpose of this cookie, or null if the cookie has no comment. Line 11: + set comment, left parenthesis, purpose, colon, string, right parenthesis, colon, void. Note: Sets the comment for this cookie.

Program code. In the code, the words in the variable names are merged. Line 1: < < interface > >. Line 2: java x, period, servlet, period, h t t p, period, h t t p session. Line 3: + get attribute, left parenthesis, name, colon, string, right parenthesis, colon, object. Note: Returns the object bound with the specified name in this session, or null if no object is bound under the name. Line 4: + set attribute, left parenthesis, name, colon, string, comma, value, colon, object, right parenthesis, colon. Line 5: void. Note: Binds an object to this session, using the specified name. If an object of the same name is already bound to the session, the object is replaced. Line 6: + get i d, left parenthesis, right parenthesis, colon, string. Note: Returns a string containing the unique identifier assigned to this session. The identifier is assigned by the servlet container and is implementation dependent. Line 7: + get last accessed time, left parenthesis, right parenthesis, colon, long. Note: Returns the last time the client sent a request associated with this session, as the number of milliseconds since midnight January 1, 1970 g m t, and marked by the time the container received the request. Line 8: + invalidate, left parenthesis, right parenthesis, colon, void. Note: Invalidates this session, then unbinds any objects bound to it. Line 9: + is new, left parenthesis, right parenthesis, colon, boolean. Note: Returns true if the session was just created in the current request. Line 10: + remove attribute, left parenthesis, name, colon, string, right parenthesis, colon, void. Note: Removes the object bound with the specified name from this session. If the session does not have an object bound with the specified name, this method does nothing. Line 11: + set max inactive interval, left parenthesis, interval, colon, i n t, right parenthesis, colon, void. Note: Returns the time, in seconds, between client requests before the servlet container will invalidate this session. A negative time indicates that the session will never time-out. Use set max inactive interval to specify this value.

Program code. In the code, the words in the variable names are merged. Line 1: ‹ question mark, x m l, version =, open single quote, 1, period, 0, close single quote, encoding =, open single quote, u t f-8, close single quote, question mark, ›. Line 2: ‹ exclamation mark, d o c type, h t m l, public, open quotes, minus, forward slash, forward slash, w 3 c, forward slash, forward slash, d t d, x h t m l, 1, period, 0 transitional, forward slash, forward slash, e n, close quotes. Line 3, indented once: open quotes, h t t p, colon, forward slash, forward slash, w w w, period, w 3, period, o r g, forward slash, t r, forward slash, x h t m l 1, forward slash, d t d, forward slash, x h t m l 1 - transitional, period, d t d, close quotes, ›. Line 4: ‹ h t m l, x m l n s =, open quotes, h t t p, colon, forward slash, forward slash, w w w, period, w 3, period, o r g, forward slash, 1999, forward slash, x h t m l, close quotes. Line 5, indented 3 times: x m l n s, colon, h =, open quotes, h t t p, colon, forward slash, forward slash, x m l n s, period, j c p, period, org, forward slash, j s f, forward slash, h t m l, close quotes, ›. Line 6, indented once: ‹ h, colon, head ›. Line 7, indented twice: ‹ title › face let title ‹ forward slash, title ›. Line 8, indented once: ‹ forward slash, h, colon, head ›. Line 9, indented once: ‹ h, colon, body ›. Line 10, indented twice: hello from face lets. Line 11, indented once: ‹ forward slash, h, colon, body ›. Line 12: ‹ forward slash, h t m l ›

Program code. In the code, the words in the variable names are merged. Line 1: ‹ question mark, x m l version =, open single quote, 1, period, 0, close single quote, encoding =, open single quote, u t f-8, close single quote, question mark,›. Line 2: ‹ exclamation mark, d o c type, h t m l public, open quotes, minus, forward slash, forward slash, w 3 c, forward slash, forward slash, d t d, x h t m l 1, period, 0 transitional, forward slash, forward slash, e n, close quotes. Line 3, indented once: open quotes, h t t p, colon, forward slash, forward slash, w w w, period, w 3, period, o r g, forward slash, t r, forward slash, x h t m l 1, forward slash, d t d, forward slash, x h t m l 1-transitional, period, d t d, close quotes ›. Line 4: ‹ h t m l, x m l n s, =, open quotes, h t t p, colon, forward slash, forward slash, w w w, period, w 3, period, o r g, forward slash, 1999, forward slash, x h t m l, close quotes. Line 5, indented 3 times: x m l ns, colon, h =, open quotes, h t t p, colon, forward slash, forward slash, x m l n s, period, j c p, period, o r g, forward slash, j s f, forward slash, h t m l, close quotes ›. Line 6, indented once: ‹ h, colon, head ›. Line 7, indented twice: ‹ title ›, display current time ‹ forward slash, title ›. Line 8, indented twice: ‹ meta, h t t p -e q u i v, =, open quotes, refresh, close quotes, content =, open quotes, 60, close quotes, forward slash, ›. Line 9, indented once: ‹ forward slash, h, colon, head ›. Line 10, indented once: ‹ h, colon, body ›. Line 11, indented twice: the current time is #, left brace, time bean, period, time, right brace. Line 12, indented once: ‹ forward slash, h, colon, body ›. Line 13: ‹ forward slash, h t m l ›.

Program code. In the code, the words in the variable names are merged. Line 1: soap request. Line 2: < question mark, x m l version =, open quotes, 1, period, 0, close quotes, encoding =, open quotes, u t f-8, close quotes, question mark, >. Line 3: < s, colon, envelope x m l n s, colon, s =, open quotes, h t t p, colon, forward slash, forward slash, schemas, period, x m l soap, period, o r g, forward slash, soap, forward slash, envelope, forward slash, close quotes, >. Line 4, indented once: < s, colon, header, forward slash, >. Line 5, indented once: < s, colon, body >. Line 6, indented twice: < n s 2, colon, find score x m l n s, colon, n s 2 =, open quotes, h t t p, colon, forward slash, forward slash, chapter 45, forward slash, close quotes, >. Line 7, indented 3 times: < ay r g 0 > Michael <, forward slash, ay r g, 0 >. Line 8, indented twice: <, forward slash, n s 2, colon, find score >. Line 9, indented once: <, forward slash, s, colon, body >. Line 10: <, forward slash, s, colon, envelope >. Line 11: soap response. Line 12: < question mark, x m l version =, open quotes, 1, period, 0, close quotes, encoding =, open quotes, u t f-8, close quotes, question mark, >. Line 13: < s, colon, envelope x m l n s, colon, s =, open quotes, h t t p, colon, forward slash, forward slash, schemas, period, x m l soap, period, o r g, forward slash, soap, forward slash, envelope, forward slash, close quotes, >. Line 14, indented once: < s, colon, body >. Line 15, indented twice: < n s 2, colon, find score response x m l n s, colon, n s 2 =, open quotes, h t t p, colon, forward slash, forward slash, chapter 45, forward slash, close quotes, >. Line 16, indented 3 times: < return > 100, period, 0 <, forward slash, return >. Line 17, indented twice: <, forward slash, n s 2, colon, find score response >. Line 18, indented once: <, forward slash, s, colon, body >. Line 19: <, forward slash, s, colon, envelope >.

Program code. In the code, the words in the variable names are merged. Line 1, indented once: tree < e >. Line 2, indented once: tree 24, < e >. Line 3: minus root, colon, tree 24 node, < e >. Note: The root of the tree. Line 4: + size, colon, i n t. Note: The size of the tree. Line 5: + tree 24, left parenthesis, right parenthesis. Note: Creates a default 2-4 tree. Line 6: + tree 24, left parenthesis, objects, colon, e, open bracket, close bracket, right parenthesis. Note: Creates a 2-4 tree from an array of objects. Line 7: + search, left parenthesis, e, colon, e, right parenthesis, colon, boolean. Note: Returns true if the element is in the tree. Line 8: + insert, left parenthesis, e, colon, e, right parenthesis, colon, boolean. Note: Returns true if the element is added successfully. Line 9: + delete, left parenthesis, e, colon, e, right parenthesis, colon, boolean. Note: Returns true if the element is removed from the tree successfully. Line 10: minus, matched, left parenthesis, e, colon, e, comma, node, colon, tree node, < e >, right parenthesis, colon, boolean. Note: Returns true if element e is in the specified node. Line 11: minus, get child node, left parenthesis, e, colon, e, comma, node, colon, tree node, < e >, right parenthesis, colon. Line 12: tree 24 node, < e >. Note: Returns the next child node to search for e. Line 13: minus, insert23, left parenthesis, e, colon, e, comma, right child of e, colon, tree 24 node, < e >, comma, node, colon. Line 14: tree 24 node, < e >, right parenthesis, colon, void. Note: Inserts element along with the reference to its right child to a 2 or 3-node. Line 15: minus, split, left parenthesis, e, colon, e, comma, right child of e, colon, tree 24 node, < e >, comma, u, colon. Line 16: tree 24 node, < e >, comma, v, colon, tree 24 node, < e >, right parenthesis, colon, e. Note: Splits a 4-node u into u and v, inserts e to u or v, and returns the median element. Line 17: minus, locate, left parenthesis, e, colon, e, comma, node, colon, tree 24 node, < e >, right parenthesis, colon, i n t. Note: Locates the insertion point of the element in the node. Line 18: minus, delete, left parenthesis, e, colon, e, comma, node, colon, tree 24 node, < e >, right parenthesis, colon, void. Note: Deletes the specified element from the node. Line 19: minus, validate, left parenthesis, e, colon, e, comma, u, colon, tree 24 node, < e >, comma, path, colon. Line 20: array list, < tree 24 node, < e > >, right parenthesis, colon, void. Note: Performs a transfer and fusion operation if node u is empty. Line 21: - path, left parenthesis, e, colon, e, right parenthesis, colon, array list, < e >. Note: Returns a search path that leads to element e. Line 22: tree 24 node, < e >. Line 23: elements, colon, array list, < e >. Note: An array list for storing the elements. Line 24: child, colon, array list, < tree 24 node, < e > >. Note: An array list for storing the links to the child nodes. Line 25: + tree 24, left parenthesis, right parenthesis. Note: Creates an empty tree node. Line 26: + tree 24, left parenthesis, o, colon, e, right parenthesis. Note: Creates a tree node with an initial element.

Program code. In the code, the words in the variable names are merged. Line 1, indented once: tree node < e >. Line 2, indented once: r b tree node < e >. Line 3: minus, red, colon, boolean. Line 4: + r b tree node, left parenthesis, right parenthesis. Line 5: + r b tree node, left parenthesis, e, colon, e, right parenthesis. Line 6: + is red, left parenthesis, right parenthesis, colon, boolean. Line 7: + is black, left parenthesis, right parenthesis, colon, boolean. Line 8: + set red, left parenthesis, right parenthesis, colon, void. Line 9: + set black, left parenthesis, right parenthesis, colon, void. Line 10, indented once: b s t < e >. Line 11, indented once: r b tree < e >. Line 12: + r b tree, left parenthesis, right parenthesis. Note: Creates a default red-black tree. Line 13: + r b tree, left parenthesis, objects, colon, e, open bracket, close bracket, right parenthesis. Note: Creates an r b tree from an array of objects. Line 14: hash, create new node, left parenthesis, right parenthesis, colon, r b tree node < e >. Note: Override this method to create an r b tree node. Line 15: + insert, left parenthesis, o, colon, e, right parenthesis, colon, boolean. Note: Returns true if the element is added successfully. Line 16: + delete, left parenthesis, o, colon, e, right parenthesis, colon, boolean. Note: Returns true if the element is removed from the tree successfully.

Program code. In the code, the words in the variable names are merged. Line 1: package my test, semicolon. Line 2: blank. Line 3: public class loan, left brace. Line 4, indented once: private double annual interest rate, semicolon. Line 5, indented once: private i n t number of years, semicolon. Line 6, indented once: private double loan amount, semicolon. Line 7, indented once: private java, period, u t i l, period, date loan date, semicolon. Line 8: blank. Line 9, indented once: forward slash, asterisk, asterisk, default constructor, asterisk, forward slash. Line 10, indented once: public loan, left parenthesis, right parenthesis, left brace. Line 11, indented twice: this, left parenthesis, 2, period, 5, comma, 1, comma, 1000, right parenthesis, semicolon. Line 12, indented once: right brace. Line 13: blank. Line 14, indented once: forward slash, asterisk, asterisk, construct a loan with specified annual interest rate, comma. Line 15, indented 3 times: number of years, comma, and loan amount. Line 16, indented twice: asterisk, forward slash. Line 17, indented once: public loan, left parenthesis, double annual interest rate, comma, i n t number of years, comma. Line 18, indented 3 times: double loan amount, right parenthesis, left brace. Line 19, indented twice: this, period, annual interest rate, = annual interest rate, semicolon. Line 20, indented twice: this, period, number of years, a number of years, semicolon. Line 21, indented twice: this, period, loan amount, = loan amount, semicolon. Line 22, indented twice: loan date = new java, period, u t i l, period, date, left parenthesis, right parenthesis, semicolon. Line 23, indented once: right brace. Line 24: blank. Line 25, indented twice: forward slash, asterisk, asterisk, return annual interest rate, asterisk, forward slash. Line 26, indented twice: public double get annual interest rate, left parenthesis, right parenthesis, left brace.

OPS/images/Fig43-11.png

OPS/images/altmath_190.png
i 1 1 _, 1
14\2 \2+\3 \B+y& T 624 +\625

OPS/images/altmath_271.png

OPS/images/ASSET43211.png
Steps Choose File Type

;. Choose File Type project: | &) jsfademo

Categories:

i

Swing GUI Forms
JavaBeans Objects
AWT GUI Forms
Unit

Persistence
Hibernate

Web Services

M

GlassFish

Weblogic

Other

HTML File
XHTML File
JavaScriptFile
JSON File

INLP File
Properties File
Ant Buid Script
'YAML File
Custom Ant Task
Empty File
Folder

)
=@
=@
=@
=@
=@

@

@

@

@

@

SRR CE O R

Description:

Creates an empty cascading style sheet (CSS) docment. Use a CSS to format the
information contained in your XML document.

OPS/images/ASSET41343.png
electa county: [Canada ~ J<—— ComboBox

The Canadian national flag ...

—=)

~—— DescriptionPane

Canada v

OPS/images/AAKNHHT0.png
+getkey(): K Returns the key from this entry
+getvalue(): V Returns the value from this entry.
+setValue(value: V): void Replaces the value in this entry with a new value.

OPS/images/AAKNJHG0.png
@ Need LL rotation
atnode 25

(a) Insert 25,20 (b) Insert 5 () Balanced (d) Insert 34

() Insert 50 () Balanced (2) Insert 30

LR rotation at

(h) Balanced (i) Insert 10 (j) Balanced

OPS/images/Fig31-41.png
rag Library items h

Fie &t View
Lo
3 Accordon (empty)

DAncharane
Borderpane
FlowPane
GridPane
Pane

3ScrolPane

nsert

Modiy

FXMLDocument.fxml

Arange Preview

Window

Help

2 nspector

tayout

OPS/images/AAKNKTW0.png
Relation/Table Name

|

Course Table

Tuples/
Rows

Columns/Attributes

S—

7

courseld subjectId courseNumber title numOfCredits
11111 csCI 1301 Introduction to Java I 4
11112 CsCI 1302 Introduction to Java II 3
11113 csCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

OPS/images/AAKMKCX0.png
for (int i = 0; i < myList.length — 1; i++) { myList

/1 Generate an index j randomly i— (0]
int j = (int) (Math.random() il
* myList.length): .
Ll
/1 Swap myList[i] with myList[j]
double temp = myList[i]; wap
myList([i] = myList[j]; A random index [j]

myList(j] = temp;
}

OPS/images/ASSET40035.png
Seattie

OPS/images/altmath_336.png
+/2

OPS/images/pg1178.png
for (int i = 0; i < days.length; i++)
System.out.printin(days(i]);

Equivalent

for (Day day: days)
Systen.out.printin(day);

(a)

(b)

OPS/images/AAKNFKU0.png
«interface»
Jjava.util.Iterator<e>

e

+add(o: E): void
+hasPrevious(): boolean

+nextIndex(): int
+previous(): E
+previousIndex(): int
+set(o: E): void

Adds the specified object to the list.

Returns true if this list iterator has more elements
when traversing backward.

Returns the index of the next element.

Returns the previ

Returns the index of the previous element.

Replaces the last clement returned by the previous.
or next method with the specified element.

us element in this list iterator,

OPS/images/altmath_611.png

OPS/images/Fig39-33.png
[Guess Birthday
€ - € | [localhost:8080/chapter39jsfexercise/faces/Exercise39_07.xhtml ¥y O @ oaQ=

Check the boxes if your birthday is in these sets

010305 07| [0203 06 07| [04 05 06 07| 08 09 10 11] [16 17 18 19
091113 15| [101114 15| [1213 14 15| [1213 14 15| [20212223
17192123 {18 192223 (20212223 | |24 252627 |24 252627
25272931| [26273031| [28293031| [28293031| 28293031
=] =] a a a

Guessithday|]

[Guess Birthday
€ > € [localhost:8080/chapter39jsfexercise/faces/Exercise39_07xhtml 7| O @ @ @

Check the boxes if your birthday is in these sets

010305 07| (020306 07| 040506 07| 0809 10 11| [16 17 18 19
091113 15| [10111415| [1213 14 15| [1213 14 15| [2021 2223
17192123 [18192223 (20212223 [242526 27| 24252627
25272931| [26273031| 28293031 28293031 28293031
=]] =]] =]

[Guessithday [t |

OPS/images/altmath_21.png

OPS/images/altmath_514.png
o n2)

OPS/images/ASSET41327.png

OPS/images/altmath_239.png

OPS/images/ASSET43193.png
web Applcatior

New Web Appication

Stops R Steps Server and Settings
1. choose project Projecttame: [st2demo
2. Wame and Location 1. Choose Project id to Enterprise Application: [</ione. | -
> s seunss” proetocton ook _soae 2. ame and Location = prise for
3 P 5. Server and settings
Project foder: ~ [CbooRjsfzdemo 4 Framevorks 9% server: Al

2ava EE Version: [yava £ 7 vieb
™ Use Dedicated Folder for Soring Ubraries

[— Context path: [/jsf2demo

7= == <nock |[oi> | _pish | _cancel | ey
(a) (b)

OPS/images/Fig37-05.png
(@ liangweb - NetBeans IDE 8.0.2

- [m} X
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help [a- Search (Curi+1)
G]

=]

5

<!DOCTYPE html>

<t--

To change this license header, choose License Heade
To change this template file, choose Tools | Templa
and open the template in the editor.

>
<html>
<head>
<title>TODO supply a title</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device
</head>
<body>
<div>TODO write content</div>
</body>

= % Output

OPS/images/altmath_111.png
(400,000 - 372,950)

OPS/images/altmath_417.png
T(n) =T(n-1)+1+T(n-1)
=2T(n-1)+1
=22T(n-2)+1)+1
=22(2T(n- 3)+ 1) +1)+1
=27+ 2 L+ 241
=274 2y 4 2+41=(2"-1)=0(2"

OPS/images/Fig37-21.png
FiretoR”

[Using Hidden Datafor Session Tracking | o |

€)| [[E nttp/iocathost084 angweb Registration htm! 77 -le)(3

Please register to your instructor's student address book.
Last Name * Johnson First Name * Pete
Telephone 9124541021 Email

Street 4543 River Run Trail

City Savannah State Georgia-GA ~ Zip 31419

* required fields

OPS/images/AAKMNDG0.png
channel: int ‘The current channel (1-120) of this TV.
volumeLevel: int ‘The current volume level (1-7) of this TV.
on: boolean Indicates whether this TV is on/off.

‘The + sign indicates

public modifier ——» +TV() Constructs a default TV object.
+turnOn(): void “Turns on this TV.
+turnOff(): void Turns off this TV.
+setChannel (newChannel: int): void Sets a new channel for this TV.
+setVolume (newVolumeLevel: int): void | | Setsanew volume level for this TV.
+channelUp(): void Increases the channel number by 1.
+channelDown () : void Decreases the channel number by 1.
+volumeUp(): void Increases the volume level by 1.
+volumeDown () : void Decreases the volume level by 1.

OPS/images/unfig10-01.png
& Administrator: Command Prompt

ci\exercise>java Exercisel® 26 "4+5"
4e5 =9

ghyexercisedjava Exercisel0 26 4 + §*

gi\exercisedjava Exercise10.26 "4 + 5"
4+5 =9

ci\exercise>java Exercise1 26 "4 » 5"
x5 =20

5

\exercised

OPS/images/AAKNIWX0.png
#element: E
#left: TreeNode<E>
#right: TreeNode<E>

Link

#root: TreeNode<E>
#size: int

+BST()
+BST(objects: E[])
+path(e: E):

java.util.List<TreeNode<E>>

The root of the tree.
The number of nodes in the tree.

Creates a default BST.
Creates a BST from an array of elements.

Returns the path of nodes from the root leading to
the node for the specified element. The element
may not be in the tree.

OPS/images/AAKNIIW0.png
+remove (inde;

+set (index:

Override the add, isEmpty. remove,
containsAl1,addAl 1. removeAll,
retainAll, toArray().and
toArray (T[]) methods defined in
Collection using default methods.

Inserts a new element at the specified index in this list.
Returns the element from this list at the specified index.
Returns the index of the first matching element in this list.
Returns the index of the last matching element in thi
Removes the element at the specified index and returns the removed element
Sets the element at the specified index and returns the element being replaced.

OPS/images/AAKMVAD0.png
The # sign indicates
protected modifier

Abstract methods
are italicized

~color
~filled: boolean
~dateCreated: java.util.Date

string

#GeometricObject ()

#GeometricObject (color: string,
filled: boolean)

+getColor(): String

+setColor (color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

+getArea(): double

+getPerimeter(): double

7z

Methods getArea and getPerimeter are
overridden in Circle and Rectangle.
Superclass methods are generally omitted

n the UML diagram for subclasses.

—radius: double -widtl double
-height: double

+Circle()

+Circle(radius: double) LG

+Circle(radius: double, color: string,
filled: boolean)

+getRadius(): double
+setRadius (radius: double): void
+getDiameter(): double

+Rectangle (width: double, height: double)

+Rectangle(width: double, height: double,
color: string, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight () : double

+setHeight (height: double): void

OPS/images/altmath_9.png
perimeter = 2 x radius x 1
area = radius x radius x 1T

OPS/images/altmath_665.png
(k+2 = h'(key)) % N,

OPS/images/altmath_690.png

OPS/images/AAKMNUC0.png
String s1 = "Welcome to Java"; st

String s2 = new String("Welcone to Java'); Interned string object for
“Welcome to Java'

s2)); 2 =— NSt

s3)); A string object for
"Welcome to Java"

String s3 = "Welcome to Java";

System.out.printin("s1
System.out printin("s1

52 is "+ (st
s3is o+ (st

OPS/images/ASSET40429.png
| N cxcrcisclARRRRN =TE]) I xcrcisc14 23 NN = 3| [N cxrcisc14 23NN =TE 51

The rectangles overlap One rectangle is contained in another ‘The rectangles do not overlap

(a) (b) (©

OPS/images/Fig42-16.png
18 43

8 13 28 33 48 53 65

36| 9 10| 1516| 20 26 27| 31 32 | 3536 37| 45 46 47| 49 50| 59 60| 75 76 777879

OPS/images/altmath_746.png

OPS/images/altmath_771.png
1527 +0x2°4+1x2°+0x 2% +1x2+0x 22 +1x 2t +1x 2°

OPS/images/altmath_68.png
0.05/12=0.00417.

OPS/images/altmath_496.png

OPS/images/altmath_584.png

OPS/images/AAKMUFU0.png
Client

Server

E-

Local files

OPS/images/altmath_827.png

OPS/images/altmath_836.png

OPS/images/AAKMMMR0.png
grid[0][0]—}

@

erid[6](3]

Forany grid[4] (3] in this 3 by 3 box,

its starting cell is grid [3X (1/3)]

[3X(j/3)](ie.. grid[6] [3]). For

example, for grid[8][5], 1=8 and
j=5, 3X(1/3)=6and 3x(j/3)=3.

grid(0](6]

[“~ Forany grid[1][j] in this 3 by 3 box, its starting
cellisgrid[3x (1/3)1[3%(373)1

.grid[0][6]). For example, for grid[2] [8].
and j=8, 3X(1/3)=0and 3% (j/3)=6

OPS/images/Fig37-30.png
@ locabost: 08O chapter7servetexeice Ferches?_Oa heml <7 cun “p

Compute Tax
Taxable Income[fo00

7 —
ot To | ot |

OPS/images/altmath_530.png

OPS/images/ASSET37775.png
Step I: Initially. the sorted sublist contains the

first element in the list. Insert 9 into the sublist.

Step 2:The sorted sublist is {2, 9). Insert S into
the sublist.

Step 3:The sorted sublist is (2.5, 9). Insert 4
into the sublist.

Step 4: The sorted sublistis (2.4,5,9). Insert 8
into the sublist.

Step 5: The sorted sublist is (2.4,5.8.9).
Insert 1 into the sublist.

Step 6: The sorted sublist is {1,2,4,5,8,9).
Insert 6 into the sublist.

Step 7: The entire list is now sorted.

e

i

2 S04 8 1 6
245 98 1 6

= = E S I

12 45 506

OPS/images/altmath_255.png
@y ayp a3 [Pu Diz Dis €11 €1z 613
@1 @3 Gs|x|byy byy bys| =|Ca1 €22 s
31 32 A33) \by, bsyy bss C31 C32 C3

OPS/images/Fig34-23.png
=ofx]

SSN 444111110 | Course ID | 13111 SSN | 444111119 | Course ID | 17111

Smith R Jacob's grade on course Intro to Java Iis A Not found

OPS/images/altmath_174.png
+h, x16°+h, x 16 + hy x 16°

OPS/images/Fig1125-01.png
Createa Zero or more One terminal
Source stream Intermediate methods method

o y v

set.stream().Timit(50).distinct().count()

OPS/images/altmath_262.png
(171, 550- 82, 550)

OPS/images/ASSET40026.png
T contains. V- T contains vertices whose shortest T contains V- T contains vertices whose shortest
vertices whose path o5 are not known yet. vertices whose path to's are not known yet.

shortest path to s shortest path to s

are known are known

) Before moving U to T (b) After moving uto T

OPS/images/Fig31-50.png
Scale factor for x: 3 y: m

OPS/images/C09-pg346_001.png
public class C {
private boolean x;

public class Test {
public static void main(string(] args) {
Cc = newC();
system.out.printin(c.x);
system.out.printin(gfconvert());

}

public static void main(string[] args) {
Cc=newC():
system.out.printin(c.x);
system.out.printin(c.convert()) ; }

}

private int convert() {
return x 7 1 : -1;
}

}

(b) This is wrong bécause x and convert are private in class C.

(a) This is okay because object i

OPS/images/Fig07-12.png
B Command Prompt = & =]

Add > c:\book>java Calculator 45 + 56 N
45 + 56 = 101

Subtract > c:\book>java Calculator 45 - 56
45 - 56 = -11

Multiply > ¢:\book>java Calculator 45 . 56
45 . 56 = 2520

Divide > c:\book>java Calculator 45 / 56
45 /56 = 0

:\book>o
< >

OPS/images/Braces12.png

OPS/images/altmath_149.png
apy

OPS/images/ASSET41352.png
=lalx| =lalx|

OPS/images/altmath_424.png
Tin)=T{n/2)+0(1)

OPS/images/Fig43-02.png
2-3-4 Tree Equivalent red-black tree

(a) Converting
a2-node
Co €

e €
(b) Converting - @
a3-node

(] “
(¢) Converting -
ad-node

OPS/images/altmath_120.png

OPS/images/ASSET41318.png
Lsan) Lot [son) Lsan)
(a) (b) (c) (d)

OPS/images/ASSET41336.png
=8Ix|

Enter a new message: Programming s fun
~red
® Green Programming is fun @ ke
o Bue

<t Rg

OPS/images/altmath_408.png
k=logn

OPS/images/AAKNJHN0.png
vertices[0]
vertices[1]
vertices([2]
vertices([3]
vertices[4]
vertices(5]
vertices[6]
vertices[7]
vertices([8]
vertices[9]
vertices[10]

vertices[11]

Seattle

San Francisco

Los Angeles

Denver

Kansas City

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

OPS/images/altmath_30.png

OPS/images/Fig31-16.png
L

(a) MITER (b) BEVEL (¢) ROUND

OPS/images/altmath_345.png

OPS/images/Fig40-06.png
l«——— RMI registry

[C:\book>start rmiregistry

(C:\book>java Registerli thRMISeruer =
[Student server StudentServerInterfacelnpl[UnicastServerRef [1iveRef: [endpoint:[

192.168.0.101:2593] (ocal) ,obj ID: [6£676902: 1130653701 : - TF¢F, 109826793656013153
1111 registered

book>java StudentServerInterfaceClient
erver object Proxy[StudentServerInterface,RemoteObjectInvocationHandler [Unicast:

of [liveRef: [endpoint:([192.168.0.101:2593](remote), objID: [6F870902:113db653701
:-7FFF, 109828793656013183]111] found

l&«———— Start RMI registry
[«———— Start RMI server

{«—— Run RMI client

OPS/images/altmath_14.png
3.4x+50.2y = 44.5
2.1x+.55y="5.9

OPS/images/altmath_91.png

OPS/images/altmath_167.png
System.out.printin(” Welcome to Javal');
100 times{Systemoutprintln("Welcome to Java!");

System.out.println("Welcome to Java!")

OPS/images/altmath_442.png
o n2)

OPS/images/AAKNJRU0.png
«interface»
java.lang.Runnable

—_—————

javalang.Thread

+Thread()

+Thread(task: Runnable)
+start(): void

+isAlive(): boolean
+setPriority(p: int): void
+join(): void
+sleep(millis: long): void
+yield(): void

+interrupt(): void

Creates an empty Thread.
Creates a Thread for a specified task.

Starts the thread that causes the run () method to be invoked by the JVM
Tests whether the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts a thread to sleep for a specified time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.
Interrupts this thread.

OPS/images/Fig01-16.png
@ demo - NetBeans IDE Dev 201304132301

Fie Edt View Nawgate Source Refactor Run Debug Profile Team Tools Window Help Q- -

|7 % [@ |Foerrcoma> =1 G 8 D - ER-(- w0 ko

=lolx|

v x[[pies | somv G s weicome oo x| SrtPage 5]
=& dmo
= & Source paciager

Souce Histoy |9 G-0-QAVHSBLIFE L AU O U W

AOEE|

& m;a.mumio

(3l Ubrares

public class Welcome {

System.out.println("Welcome ©

e e 1@
- & Wekorie

B public static void main(String(] args)

i

): Edit pane

® man(stringlargs)

{—— Output pane

OPS/images/altmath_280.png
ax:+ bx+

OPS/images/AAKMNDU0.png
‘The - sign indicates
a private modifier

>

-radius: double
rOf t: nt
+Circle()

+Circle(radius: double)
+getRadius(): double
+setRadius(radius: double): void
+getNunber0fobjects(): int
+getArea(): double

“The radius of this circle (default: 10).
The number of circle objects created.

Constructs a default circle object.

Constructs acircle object with the specified radius.
Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.
Returns the area of thi

circle.

OPS/images/altmath_521.png
o n2)

OPS/images/AAKNJSM0.png
while (balance < amount)

Replaced by

if (balance < amount)

OPS/images/AAKMKCJ0.png
printMonthBody
printhonthTitle |

¥ ! ¥

getHonthName | getStartbay | getNumber0fDaysInttonth|

(a) (b)

OPS/images/altmath_246.png

OPS/images/altmath_183.png

OPS/images/altmath_399.png

OPS/images/AAKNJGH0.png
o — For simplicity, only the keys are

New element with — shown, and ot the values. Here
key 26 to be inserted 1 | Nis 11 and index = key % N.

2

3

i

5. —t>fkey:16

—

7.

8

9

10 ——keyat

OPS/images/altmath_674.png

OPS/images/Fig05-02.png
Q

Statement(s)
Before loop

True

Statement(s)
(loop body)

System.out.printin
count++;

("Welcome to Javal®);

false

()

(count
true

< 100)2,

false

(b)

OPS/images/ASSET37768.png
Exerdise22_17

INSTRUCTION
Add: Left Click .
Remove: Right Click |~ @

OPS/images/altmath_568.png
0(2")

OPS/images/altmath_843.png
log,

OPS/images/Fig01-09.png
Compil
Show files

Run

= Command Prompt - O B

> c:\bookoja

c bolcons. jat

> c:\book>dir Uelcome.x
Uoluse in drive C is BOOTCANP
Uolume Serial Number io 82C4-06ES

Directory of c:\book

03/02/2015 08:33 AN 424 Welcons. clase
08/05/2014 02:08 PN 178 Welcone java
2 File(s) 603 bytes

0 Dir(s) 76,185,223.168 bytes froc

> c:\book>java Uelcone
Helcone to Javat

e:\book>
<

OPS/images/altmath_737.png

OPS/images/AAKMOAB0.png
(a)

(b)

(c)

OPS/images/Fig35-02.png
yFleToTabh
e Tex e
erame c pookatiest | viewrle |

o) x|

Target Database Tabee
10BC Drver | Jdbcmysal/localhostjavabook -
foatabase .| com.mysql b Orver =

fusername | scott

lPassword | o
[Table Name | Person

[Ey—

OPS/images/altmath_753.png

OPS/images/AAKMNZQ0.png
Person

m

Supervisor

public class Person {

private Person[] supervisors;

}

(a)

(b)

OPS/images/altmath_478.png

OPS/images/altmath_658.png
(k+9) % N,

OPS/images/Fig37-12.png
«interface»
javax.serviet.Serviet

(]---..-{ javas.servie GenerieServier(|—
T

Jjavax.serviethup HupServiet

+init(config: ServieiConfig): void

+service(req: ServletRequest, resp:
ServietResponse): void

+destroy(): void
+getServietlnfa): String

dnterfacer
javax.servietServieiConfig

+getlnitParameter(name: String):
String

+getlnitParameterNames():
Enumeration

+getServietContext(): ServietContext
+getServietName(): String

+doGet(req: HitpServletRequest,
resp: HitpServetResponse): void
+doPost(req: HitpServietRequest,
resp: HitpServietResponse): void
+doDelete(req: HitpServietRequest,
resp: HitpServletResponse): void
+doPut(req: HitpServletRequest,
resp: HitpServletResponse): void
+doOptions(req: HttpServletRequest,
resp: HitpServletResponse): void
+doTrace(req: HitpServietRequest,
resp: HitpServletResponse): void

OPS/images/altmath_681.png

OPS/images/tab_pg31a.png
java.lang.Object

javafx.scene.control.TableColumn<S,T>

-editable: BooleanProperty

-cel1ValueFactory:
ObjectProperty<Callback<TableColumn.
CellDataFeatures<S,T>,0bservableValue
<T>>>

-graphic: ObjectProperty<Node>

-id: StringProperty

-resizable: BooleanProperty

-sortable: BooleanProperty

-text: StringProperty

-style: StringProperty

-visible: BooleanProperty

+TableColumn ()
+TableColumn (text: String)

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

Specifies whether this Tab1eColumn allows editing.

The cell value factory to specify how to populate all cells within a
single column.

‘The graphic for this Tab1eCo1umn.
The id for this TableColumn.
Indicates whether the column is resizable.

Indicates whether the column is sortable.
The text in the table column header.

Specifies the CSS style for the column.

Specifies whether the column is visible (default: true).

Creates a default TableCoTumn.

Creates a TableView with the specified header text.

OPS/images/Check_Point_Icon.png
fCneck
Point

OPS/images/Fig39-26.png
€ c D liang.armstrong.edu:8080/jsf2demo/faces/DisplayCountxhtml| Qi}\ (%]

Count summary is {73.182.3.134=4, 130.254.204.35=2, 0:0:0:0:0:0:0:1=7}.

OPS/images/altmath_102.png

OPS/images/Fig36-19.png
[Exercise3

1Reader

Enterafle: percsess 11.gb ENer the encoding scheme:

—TS5€LT/ FXZELFIFR5®
BEICAZWUER LN 52 RE
Ll 7 ﬁﬁ“]ﬁ“lllTY4¢¥l
EYTF YN

=olx]

OPS/images/altmath_329.png

OPS/images/altmath_591.png

OPS/images/altmath_489.png

OPS/images/ASSET43202.png
Fle Edt View Hitory Bookmarks Tools Help
Student Regstration Form

=lolx|

€ @ localhost:8080/jsf2demojfaces/StudentRegistrationForm.xhtm ¢ ||B- Googe

Ple

Student Registration Form =

Last Name [First Name [Ml

Gender © Male © Female

Computer Science =

Major | Computer Science ¥ | Minor [Mathematics

English =
Hobby: ™ Tennis [T Golf " Ping Pong

Remarks:

Register

OPS/images/altmath_604.png
2"-1<ns2™ -1
2i<n+1<2™p
<log(nt+1)<h+1

OPS/images/AAKMFLX0.png
vl
a (1,51)

(a) (b)

OPS/images/AAKNJST0.png
Step Thread 1 ‘Thread 2

1] [synchronized (object1) {
2 synchronized (object2) {
3 /1 do something here
4 /1 do something here
5| = synchronized (object2) {
6 > synchronized (object1) {

/1 do something here /1 do something here

}
} }

Wait for Thread 2 to Wait for Thread 1 to

release the lock on object2 release the lock on object1

OPS/images/AAKNIHC0.png
/ ' / S\

3 3 1

(a) Afteradding3 (b) Afteradding5 (c) After adding 1
1

(d) After adding 19 (e)Aﬂer;\ddmgll H)AhernddngZ

OPS/images/Fig31-09.png
NouawW=mo

01
T

o

345678 91011121314
L L L

Before rotate

@ Rectangle.rotate(45)
~Z

After rotate

OPS/images/Fig14-19.png
=lolx|
o
-
/Add Name

s e
i
st ome:

Asaname

OPS/images/Fig42-09.png
- D@ DB ® @ &

(a) (b) ©

zzw. gz':;

OPS/images/altmath_237.png

OPS/images/Fig34-25.png
=1olx|

+\book> java -cp
river loaded
atabase connected

ser tables: account address babyname college country course cscil301 cscil302 ¢
14990 department enrollment faculty person poll quiz scores staff statecapital
student student! student2 subject taughtby temp templ temp2 tempS
:\book>,,

1ib/mysql-connector-java-5.1.26-bin. jar FindUserTables

OPS/images/altmath_113.png
x- 5> 4.5.

OPS/images/altmath_415.png

OPS/images/WM_MYProgrammingLAB_green_Cformula.png
MyFrogramminglLab

OPS/images/altmath_156.png

OPS/images/AAKNJSF0.png
Task 1 Task 2

Acquire a lock on the object account

Execute the deposit method

Wait to acquire the lock

Release the lock l

Acquire a lock on the object account

Execute the deposit method

Release the lock

OPS/images/ASSET41361.png

OPS/images/AAKMKCA0.png
pass the value 1

Y Y
main(String[] args) { |, public static int max(int numi, int num2)

public static voi

int i - int result;
int j
int k

if (num1 > num2)

result = numi;
System.out..printin(. else

“The maximum of " + i + result

Tand "+ g o+t s T+ k)G

) ~return result;

}

num2;

OPS/images/altmath_318.png

OPS/images/altmath_172.png

OPS/images/Fig31-07.png
A

23456789101112131
T T T

MeauNnEo

LI

%\prcvinus position

D translation of (-6, 4)
~—

current position

OPS/images/ASSET43213.png
udent Registr: Form - Mozilla Firefox -|olx]
Fe Edt Vew Hstory Bookmarks Toos Help
} Student Registration Form [+]

4 @ localhost:8080/jsf2demojfaces/AddressRegistration.xhtm| c][B- cooge sle A

Student Registration Form

Please register to your instructor's student address book.

Last Name [Smith First Name [John MIfc
Telephone [213549989 ‘Email[smith@gmail. com

Street [100 Main Street |

City [Atanta State [Georgia-GA ¥] Zip [34313

Register

Last Name and First Name are required

OPS/images/Fig37-07.png
O New Servlet X
Steps Configure Serviet Deployment
1. Choose File Register the Serviet with the application by giving the Serviet an internal name (Serviet Name).
Type Then specify patterns that identify the URLs that invoke the Servlet. Separate multiple patterns
2. Name and with commas.
Location Add information to deployment descriptor (web.xml)
3. Confi
S:rvlgtme Class Name: chapter37.FirstServiet
Deployment Servlet Name: FirstServlet

URL Pattern(s): /FirstServlet
Initialization Parameters:

Name Value New
Edit...

< Back | [Next> Cancel || Help

OPS/images/ch03_pg86.png
boolean even
= number % 2

if (number % 2
even = true;

Equivalent

else
even = false;

(@) (b)

OPS/images/ASSET37685.png
=lolx|

foung path found

(Fndpath) _ear putr [Fndpath | _Gex ratn

(a) Correct path (b) Tllegal path

OPS/images/ASSET37766.png
=lolx| =lolx|

Selecta year: | 2004, ¥ Selecta year: | 2007, . Selectayear: | 2001 7
Boyorgi? | Male | 7. Boyorg? | Female . Boyorgi? | Female|

Entera name: Michael Enter 2 name: Michelle Entera name: Samantha

=)

Boy name Michael is ranked #2 in year 2004 | Girl name Michelle is ranked #94 in year 2007| Girl name Samantha is ranked #7 in year 2001

OPS/images/altmath_710.png

OPS/images/Fig43-13.png
root

If path.get (i) isu.path.get(i - 1) is
vand path.get (i - 2) isw.

OPS/images/AAKMNZZ0.png
(c)

(b)

(a)

OPS/images/AAKNDKT0.png
OutputStream

FilterOutputStream

+DatalutputStream
(out: OutputStream)

+writeBoolean(b: boolean): void
+writeByte(v: int): void

+writeBytes(s: String): void
+writeChar(c: char): void
+writeChars(s: String): void

+writeFloat(v: float): void
+writeDouble(v: double): void
+writeInt(v: int): void
+writeLong(v: long): void
+writeShort(v: short): void
+writeUTF(String s): void

Writes a Boolean to the output stream

‘Writes the cight low-order bits of the argument v to
the output stream.

‘Writes the lower byte of the characters in a string
10 the output stream.

Writes a character (composed of 2 bytes) to the
output stream.

Writes every character in the string s to the
output stream, in order, 2 bytes per character.

Writes a f10at value to the output stream.
Writes a double value to the output stream.
Writes an 1nt value to the output stream.
Writes a Tong value to the output stream.
Writes a short value to the output stream.
Writes s string in UTF format

OPS/images/altmath_338.png

OPS/images/ASSET41329.png
Application

ButtonDemo
CheckBoxDemo

OPS/images/AAKNIJO0.png
ArrayList [f—— Genericstack | LinkedList [{—— Genericaueue |

(a) Using inheritance

GenericStack [—— ArrayList | GenericQueue [)—— LinkedList |

(b) Using composition

OPS/images/altmath_559.png

OPS/images/AAKNJSD0.png
:\book>java AccountWithoutSync
hat is balance? 4

iNbookojava AogountithoutSync

hat is balance?

\book>.

OPS/images/altmath_516.png
Jn

OPS/images/AAKNDNA0.png
moveDisks (3

moveDisks(2,'A','C",'B')
move disk 3 from A to B
moveDisks(2,'C", ‘B, 'A")

o

[moveDisks (2, "A",

c.'B")

[moveDisks(2,'c". 8", "A’

moveDisks(1,'A",'B","C")
move disk 2 from A to C
moveDisks(1,'B",'C",'A")

moveDisks(1,'C"',"A",'B')
move disk 2 from C to B
moveDisks(1,'A",'B",'C")

VAN

VAN

[moveDisks (1,"a", 8", ")

[moveDisks(1, B’ LA

[moveDisks (1, 'C"

'B')| [moveDisks (1, A"

0)

[move disk 1 from A to B

[move disk 1 from B to C

[move disk 1 from C to A

[move disk 1 from A to B

OPS/images/AAKMORZ0.png
-list: ArraylList<Object>

+isEmpty(): boolean
+getSize(): int
+peek(): Object
+pop(): Object
+push(o: Object): void

Alist to store elements.

Returns true if this stack is empty
Returns the number of elements in this stack.

Returns the top element in this stack without removing it.
Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

OPS/images/AAKNFLD0.png
«interface»
Jjava.util.Collection<E>

e

+offer (element: E): boolean
+poll(): E

+remove(): E
+peek(): E

+element (): E

Inserts an element into the queue.
Retrieves and removes the head of this queue, or nu11
if this queue is empty.

Retrieves and removes the head of this queue and
throws an exception if this queue is empty.

Retrieves, but does not remove, the head of this queue,
returning nu17 if this queue is empty.

Retrieves, but does not remove, the head of this queue,
throws an exception if this queue is empty.

OPS/images/Fig38-02.png
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Cirl+1)
PEESDE T TEIBR-G
i Pro.. 4@ % |;Files |: services | [[] currentTime.jsp |

7@ tngueb PER-8-AtFEFee/aued

&[5 WebPages po—
Low-) veTane g <

CurrentTime.jsp -—>

@ wes-INF 2[F <ntml>
[)\ resources 3 <head>

e <title>
CurrentTime
</title>
</head>
<body>
Current time is <%= new java.util.Date() %>
</body>
11| - </html>
12

OPS/images/altmath_850.png

OPS/images/altmath_257.png

OPS/images/page32.png
Alabama Montgomery
Alaska Juneau

Arizona Phoenix

OPS/images/altmath_451.png

OPS/images/altmath_494.png

OPS/images/altmath_667.png

OPS/images/ch4-1.png
=

OPS/images/ASSET40427.png
EE=soens -lolx| =lolx|

v

/.

(a) (b)

7 Exercise14_19 — B
1%

OPS/images/altmath_370.png

OPS/images/altmath_66.png
length = %

OPS/images/altmath_7.png
o
I~
—hn

4x(1-

OPS/images/AAKMKCC0.png
‘The values for n1 and n2 are

The values of num1 and num2 are swapped, but it does not affect
passed to n1 and n2. numt and num2.
/
Space required for the Space required for the
swap method swap method
temp: temp:
n2: 2 n2: 1
nt: 1 nt: 2
Space required for the | | Space required for the Space required for the | | Space required for the
main method main method main method main method Stack is empty
num2: 2 num2: 2 num2: 2 num2: 2
numt: 1 numi: 1 numt: 1 numi: 1
The main method The swap method The swap method The swap method ‘The main method

is invoked. is invoked. is executed. is finished. is finished.

OPS/images/ASSET39947.png
=lalx|

Inorder: (10, 12, 13, 23, 45, 47, 56]

®
(2 @
€] €) ®
®

Enterakey: 56 Insett | Delete | ShowInorder | Show Prectder | Show Postorder

56 s Inserted i the tree.

OPS/images/Fig41-10.png
SOAP Request
Web
service

SOAP Response

OPS/images/AAKNKFA0.png
fyHostNameIP_uwy.whitehouse.gov 130
96.135

:\hook>java Iden
P address: 96.7.1

ost name: www.whitehouse.gou
ost name: panda.Armstrong.EDU IP address: 130.254.204.34

:\hook>

OPS/images/altmath_744.png

OPS/images/ASSET41341.png
~value: ObjectProperty<T>
—editable: BooleanProperty

—onAction: |
ObjectProperty<EventHandler<ActionEvent>>

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

‘The value selected in the combo box.
Specifies whether the combo box allows user input.
s the handler for processing the action event.

Spe

—items: ObjectProperty<ObservablelList<T>>
~visibleRowCount: IntegerProperty

‘The items in the combo box popup.
“The maximum number of visible rows of the items in the
combo box popup.

+ComboBox ()
+ComboBox (items: ObservableList<T>)

Creates an empty combo box.
Creates a combo box with the spe

OPS/images/altmath_701.png
(Weighted 4 x 4 16 tails model)

OPS/images/altmath_586.png
T(n)=T(2)+ T(2)+2n-1=0(nlog)

OPS/images/altmath_825.png

OPS/images/Fig39-31.png
[Exercise39.05.
€ > | [) localhost8080/chapter39jsfexercise/faces/Exercise39_05xhtml ¥¢| O @ @ @ =

22+7=29

18+2= 20

16 +4= 20

T R—
14+6= 45

O
13+6= 45

25+3=45

14+1=45

I —
[Submit | Generate New Questions |

[Addition Quiz
€ > € [localhost8080/chapter39jsfexercise/faces/Exercise39_05.xhtml v¢| O @ @ @ =

22+ 7=29 Correct
18+2 =20 Correct
16+ 4 =20 Correct
17+ 1 =18 Correct
14+ 6 = 45 Wrong
29+ 5 =45 Wrong
13+ 6= 45 Wrong
25+3 =45 Wrong
14+ 1 =45 Wrong
29+ 8= 37 Correct
There are 5 correct guesses

OPS/images/altmath_838.png

OPS/images/Fig31-27.png
=lojx| =lalx|

Line x | Rectangle | arde | Elipse Line | Rectangle | Grde x | Elipse

OPS/images/altmath_23.png

OPS/images/AAKMNZS0.png
Datal-——— Data2 Data3 -,
X X
Data3
Data2 Data2
Datal Datat Datal
Data3 <—— Data2 <— Datal<——
Data2
Datal Datat

OPS/images/altmath_780.png
15x16°+15%x16%+15x 16+ 15 x 16°

OPS/images/ASSET41298.png
=lolx| =lolx|

4

(a) (b)

OPS/images/altmath_309.png

OPS/images/altmath_122.png
(dy x1+dyx 2+d;x3+dyx4+dg*xd+
d.x6+d, x7+d, x8+dyx %11

OPS/images/Fig31-34.png
[AddNewRowDemo =lo|x
Country Capital Population... Is Demor.

usa Washington DC 280.0 e

Ganada ottawa 320 true

Urited Kingdom London 00 true

Gemany Berlin 80 true

France paris 00 true

@untry: | Noway |Capital| Oslo | poputation| 4.9

(@)

-l
Country Capital Population (million) I Democratic?

[Washington D 280.0 e

Canada ottawa 320 true

Urited Kingdom London 0.0 true

Germany Bertin 8.0 true

France Paris 600 e

untry: (| |capial Population /] s democratic?| Add new row

(b)

OPS/images/Fig40-04.png
1 Define Server
Object Interface

4 Develop Client 2 Define Server 3 Create and Register
Program Implementation Class Server Object

OPS/images/altmath_422.png
T(n)=T(2)+¢, T(n)=T(n-1)+0(n),

OPS/images/altmath_201.png
1{3117 1)/ 2

OPS/images/AAKNJGJ0.png
+clear(): void
+containskey (key: K): boolean

+containsValue(value: V): boolean

_(> +entrySet(): Set<Entry<K, V>>
+get (key: K): V
+isEmpty(): boolean
+keySet () : Set<K>
+put (key: K, value: V): V.
+remove (key: K): void
+size(): int
+values(): Set<V>

Removes all entries from this map.
Returns true if this map contains an entry for the
specified key.

Returns true if this map maps one or more keys to the
specified value.

Returns a set consisting of the entries in this map.
Returns a value for the specified key in this map.
Returns true if this map contains no mappings.
Returns a set consisting of the keys in this map.
Puts a mapping in this map.

Removes the entries for the specified key
Returns the number of mappings in this map.
Returns a set consisting of the values in this map.

T
+MyHashMap ()

+MyHashMap (capacity: int)

+MyHashMap (capacity: int,
ToadFactorThreshold: float)

Creates an empty map with default capacity 4 and
default load~factor threshold 0. 75F.

Creates a map with a specified capacity and
default load-factor threshold 0. 75.

Creates a map with a specified capacity and
Toad-factor threshold.

-key: K
-value: V

+Entry(key: K, value: V)
+getkey(): K
+getValue(): V

Constructs an entry with the specified key and value.
Returns the key in the entry.
Returns the value in the entry.

OPS/images/AAKMKCH0.png
Optional arguments ~ Optional return
for input value
A

Method Header

~——— Black box.
Method Body

OPS/images/AAKNKVL0.png

OPS/images/altmath_602.png

OPS/images/altmath_244.png
n>

OPS/images/AAKNFLF0.png
«interface»
Jjava.util.Queve<e>

=~

+PriorityQueue ()
+PriorityQueue (initialCapacity: int)

+PriorityQueue(c: Collection<? extends
E>)

+PriorityQueue(initialCapacity: int,
comparator: Comparator<? super E>)

Creates a default priority queue with initial capacity 11.

Creates a default priority queue with the specified initial
capacity.

Creates a priority queue with the specified collection.

Creates a priority queue with the specified initial
capacity and the comparator.

OPS/images/Fig43-20.png
childOfu is
double black

parent

childOfu

OPS/images/AAKMORU0.png
o Ko = e e]
If o is an instance of C. 0.
java.lang.Object instance of C5, Ca,

OPS/images/altmath_773.png

OPS/images/Fig34-30.png
Table Name Enrollment Table Name enrollment ~

ssn courseld dateRegistered grade ssn courseld dateRegistered grade
444111110 11111 2014-05-07 A 444111110 11111 20140507 A
444111110 11112 2014-05-07 444111110 11112 2014-05-07
444111110 11113 2014-05-07 444111110 11113 2014-05-07
444111111 11111 2014-05-07 444111111 11111 2014-05-07
444111111 11112 2014-05-07 444111111 11112 2014-05-07

< K Pe—

OPS/images/pg79_1.png
if i>0 { if (i >0) {
System.out.printin(*i is positive"); System.out.printin(“i is positive");

} }

(a) Wrong (b) Correct

OPS/images/altmath_264.png
(400,000 - 372,950)

OPS/images/Fig44-17.png
@ Java - chapterdd/sic/mytest/LoanTestjava - Eclipse o X
Edit Source Refactor Nvigate Search Project Run Window Help

(LoanTestjava * ™

2RBTreejava Eloanjava Loanjava
1 package mytest;
2

Runs: 1/1 *Errors: O sFailures 0 | 3 import org.junit.*;
| import static org.junit.Assert.*;

~EmytestLoanTest [Runner: JUnit 4] (0! Luy1sc class LoanTest (

#itestPaymentMethods (0.000 5) 7% @Before
2 public void setUp() throws Exception [
9)
10
11- @Test
12 public void testPaymentMethods() (
13 double annuallnterestRate = 2.57
14 int numberOfYears = 5;
15 double loanAmount = 1000;
16 Loan loan = new Loan(annuallnterestRate, numberof
17 LoanAmount) 7
18
19 assertTrue(loan.getMonthlyPayment N

OPS/images/ASSET41334.png
~text: StringProperty
—editable: BooleanProperty

The getter and setter methods for property values
and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

“The text content of this control.

tes whether the text can be edited by the user.

—alignment: ObjectProperty<Pos> I3

—~prefColumnCount: IntegerProperty

—onAction:
ObjectProperty<EventHandler<ActionEvent>>

+TextField()
+TextField(text: String)

Specifies how the text should be aligned in the text field.
Specifies the preferred number of columns in the text field.

Specifies the handler for processing the action event on the
toxt field.

Creates an empty text field.
Creates a text field with the specified text.

OPS/images/altmath_852.png

OPS/images/altmath_300.png
TIR.

OPS/images/AAKMOSD0.png
The get and set methods for these data
_~ fields are provided in the class, but omitted in the UML

-date: java.util.Date — ‘The date of this transaction.
-type: char B The type of the transaction, such as "W" for withdrawal,
"D for deposit.

-amount: double ‘The amount of the transaction

-balance: double “The new balance after this transaction.

-description: String ‘The description of this transaction.

+Transaction(type: char, Construct a Transaction with the specificd date. type,
amount : double, balance: balance, and description.

double, description: String)

OPS/images/altmath_343.png

OPS/images/AAKNKFH0.png
Player 1

1. Initialize user interface.

2. Request connection to the server

Server
Create a server socket.

3= Accept connection from the first player and notify

and learn which token to use from the

server.

3. Get the start signal from the server.

4.Wait for the player to mark a cell,
send the cell's row and column inde¥ 1o
the server.

5. Receive status from the server. <]

6.1 WIN, display the winner: if Player 2
wins, receive the last move from

Player 2. Break the loop. \

71f DRAW, display game is over;
break the loop.

8.1f CONTINUE, receive Player 2's
selected row and column index and g
mark the cell for Player 2.

the player who is Player 1 with token X,
Accept connection from the second player and
notify the player who is Player 2 with token O.
Start a thread for the session.

Player 2

1. Initialize user interface.

2. Request connection to the server and

learn which token to use from the server.

Handle a session:
b| 1.Tell Player 1 tostart.

L 2. Receive row and column of the selected cell from
Player 1.

3. Determine the game status (WIN, DRAW,
CONTINUE). If Player 1 wins, or draws, send the status
(PLAYERI_WON, DRAW) to both players and send
Player 1's move to Player 2. Exit.

4.1f CONTINUE, notify Player 2 to take the turn, and
send Player 1's newly selected row and column index to
Player 2.

5. Receive row and column of the selected cell from
Player2.

6.1f Player 2 wins, send the status (PLAYER2_WON) to
both players, and send Player 2's move to Player 1. Exit

71f CONTINUE, send the status,and send Player 2's
newly selected row and column index to Player 1.

3. Receive status from the server.

4.1 WIN, display the winner. If Player |
wins, receive Player 1's last move, and
break the loop.

5.1{ DRAW, display game s over, and
receive Player 1's last move, and break
the loop.

6.1 CONTINUE, receive Player 1's
selected row and index and mark the cell
for Player 1.

7 Wit for the player to move, and send
the selected row and column to the
server.

OPS/images/altmath_593.png

OPS/images/altmath_100.png

OPS/images/altmath_818.png
€ < e

OPS/images/altmath_93.png
1077

OPS/images/altmath_444.png
0(2")

OPS/images/ASSET37687.png
=1o]x|

-lolx||

=13

[sawe.

e

OPS/images/altmath_487.png
2<k<p.

OPS/images/altmath_16.png

OPS/images/Fig01-18.png
=10l
&mm.ummwnwmmmww
.- BTOTRYHEC TSIV

1 Package €. 11| 7 B [0 Serverjava & »

1 anmaton

1 book

=

1 myavaprograms
1 pybook © Console & ‘@-sv=o

1 pybookt o consoks to dspay at th tme.
i pyexercse

ol m—

demo.

OPS/images/altmath_59.png
4.5/1200=0.00375.

OPS/images/AAKNHIZ0.png
(b) Step 2

(c) Repeat Step 2

P J
ty 1

(d) H is found

Iy

OPS/images/Fig35-04.png
[H StoreAndRetrieveImage
‘Slecta COUNY: | Canada

Atext to describe Canadian flag is ol

Canada < 5

OPS/images/ASSET43200.png
® New JSF Page

steps Mame and Location
[eorentrimel

project: [jsf2demo

Location: [WebPages =]

Flde: [Browse..

Created File: [C:\book\jsf2demo\web)\CurrentTime xhtml

1. Choose File Type File Name:
2. Name and Location

Options:

© Facelets

€ ISP File (Standard Syntax) [~ Create 2
Description:
Facelets syntax

<gack | 1iexi> |[gnish Ccancel Help

OPS/images/altmath_566.png
0 n2)

OPS/images/altmath_739.png

OPS/images/altmath_845.png
log, .

OPS/images/altmath_672.png

OPS/images/Fig42-07.png
Right child
of e,

(a) The parent is a 4-node (b) Inserting €, into the parent

OPS/images/altmath_86.png

OPS/images/altmath_192.png
+X,

deviation=

OPS/images/altmath_523.png
d=minld,, d.)

OPS/images/Fig15-14.png
" ResizableCircleRectangle = ©

OPS/images/altmath_751.png

OPS/images/altmath_158.png

OPS/images/AAKNJSK0.png
Withdraw
Withdray
Vaie For

Vait for

Withdray 1

Vait Fon
Withdrau

2 deposic

a deposic

o
a deposit
6

OPS/images/AAKCNTA0.png

OPS/images/Fig37-14.png
«nterface»
javax.servlet.ServietResponse

+getWriter(): java.io.PrintWriter
+setContentType(type: String): void

zZ=

dnterface
\javax.serviethitp. HitpServietResponse]

+addCookie(Cookie cookie): void

Returns a PrintWriter object that can send character text to the client.

Sets the content type of the response being sent to the client before writing response
to the client. When you are writing HTML to the client, the type should be set to
“text/html.” For plain text, use “text/plain.” For sending a gif image to the
browser, use “image/gif.”

Adds the specified cookie to the response. This method can be called multiple times
to set more than one cookie.

OPS/images/Fig44-01.png
Test Class File

2., ATest class
‘Acclass

Test Report

OPS/images/altmath_80.png

OPS/images/AAKNJSR0.png
A thread accessing a shared resource.

Acquire a permit from a semaphore. semaphore.acquire() ;
Wait if the permit is not available.

Access the resource
Release the permit to the semaphore. ~ semaphore.release() ;

OPS/images/Fig41-03.png
) ScoreWebService Web Service Tester

&) [it ocahstoten ebsenvcebrogcScoreebsenceTTster - - | £~ Guadl log

ScoreWebService Web Service Tester

This form will allow you to test your web service implementation (WSDL File)

To invoke an operation, fill the method parameter(s) input boxes and click on the
button labeled with the method name.

Methods :

public abstract double chapter45.ScoreService.findScore(java.lang.String)

findScore | (Michael|)

OPS/images/AAKNHIX0.png
e

il

01

2

34567

chick

[eofuma]

prisht diagonal

Frupler?

F=t > (row.column)

OPS/images/Caution_Icon.png

OPS/images/ASSET41300.png

OPS/images/AAKNDLA0.png
«interface» «interface»
java. io. Datalnput java.io.Datadutput
+RandomAccessFile(file: File, mode: Creates a RandomAccessFi e stream with the specified Fi Te object
String) and mode.
+RandomAccessFile(name: String, Creates a RandomAccessFi e stream with the specified file name
mode: String) string and mode.
+close(): void Closes the stream and releases the resource associated with it.
+getFilePointer(): long Returns the offsct, in bytes, from the beginning of the file to where the
next read or wri te oceurs.
+length(): long Returns the length for this file
+read(): int Reads a byte of data from this file and returns -1 at the end of stream.
+read(b: byte[]): int Reads up to b. Tength bytes of data from this file into an array of bytes.
+read(b: byte[], off: int, len: int): int | | Readsupto len bytes of data from this file into an array of bytes
+seek(pos: long): void Sets the offset (in bytes specified in pos) from the beginning of the
stream to where the next read or wri te occurs.
+setLength(newLength: long): void Sets a new length for this fle.
+skipBytes(int n): int Skips over n bytes of input
+write(b: byte[]): void Writes b. 1ength bytes from the specified byte array to this file,
starting at the current file pointer.
+write(b: byte[], off: int, len: int): Writes 1en bytes from the specified byte array, starting at offset off,
void o this file.

OPS/images/AAKNDMR0.png
factorial (4)

Step 0: exccutes factorial (4)

Step 9 return 24 _—
rewm4 * factorial(3)

Step I: exceutes factorial (3)
Step 8:return 6 e S
rewn3 * factorial (2)

Step 2: exceutes factorial (2)
Step 7: return 2

retum2 * factorial(1)

Step 3: executes factorial (1)
Step 6:return 1 —_—

return 1 * factorial(0)

Step 4:exceutes factorial (0)
Step S:return |

return 1

OPS/images/Fig42-21.png
root

(a) Key is in u (b) Replace key k with key i

OPS/images/altmath_863.png

OPS/images/ASSET37764.png
g I A A

12+3* 12+3* 12+3* to12+3°
N A A A T

scanned scanned scanned scanned scanned

OPS/images/altmath_588.png
(n-1)+(n-2)+..+2+1=0(n2)

OPS/images/AAKNJGC0.png
0key: 44
New clement with

key 26 10 be inserted 1
2
3
4 key: 4
Probe 3 times before <5 key: 16
finding an empty ey 28

cell <:

° =

10 [key: 21

For simplicity, only the keys are
shown and the values are not
shown. Here Nis 11 and

index = key % N.

OPS/images/AAKMUFL0.png
Command Prompt
[C:\book>java TestException <]
[java. 1ang. ArraylndexOutOfBoundsException: 5 | I
at TestException.sun(TestException. java:
at TestException.main(TestException. jau

printStackTrace ()

5 [— getMessage()
ljava. lang. ArrayIndexOut0fBoundsException: 5 ‘| toString()
[Trace Info Obtained from getstackTrace <} Using

method sun(TestException:24) getStackTrace ()

imethod main(TestException:4)

IC: \book >
<

OPS/images/altmath_235.png

OPS/images/AAKNIHH0.png
T
NN\
NAN/

OPS/images/altmath_332.png

OPS/images/altmath_832.png

OPS/images/Fig14-08.png
/

€

OPS/images/Fig15-34.png

OPS/images/altmath_735.png

OPS/images/AAKNIIY0.png
Before deletingthe 01
clementatindexi [, ;] -

Delete this element

After deletingthe 0 1
clement listsizeis [T
decremented by 1 [0 11|

data.length - 1

OPS/images/Fig32-31.png
Selection Sort

Selection Sort

Exercise32_19

Insertion Sort

Exercise32_19

Insertion Sort

= =] « |

Bubble Sort

- oEN

Bubble Sort

OPS/images/ASSET37779.png
=Ialx|

£
s 19

i)

[step | Reset step | Reset

(a) (b)

OPS/images/AAKNJHI0.png

OPS/images/altmath_638.png

OPS/images/AAKNIIN0.png
pivot

Tist1

Tist2

OPS/images/Fig33-10.png
[studentcient S =[]

Name John Smith
Street 100 Main Street
aty | Savannah

OPS/images/ASSET41347.png
Minimal value Maximal value

Eig

Thumb
Left button Right button

OPS/images/altmath_719.png

OPS/images/altmath_847.png
log,

OPS/images/altmath_178.png

OPS/images/altmath_25.png

OPS/images/AAKMUFP0.png
+PrintWriter(file: File)
+PrintWriter (filename: String)
+print(s: String): void
+print(c: char): void
+print(cArray: char[]): void

+print(i: int): void
+print(1: Tong): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
printIn methods.

Also contains the overloaded
printf methods.

Creates a PrintWri ter object for the specified file object.

Creates a PrintWr i ter object for the specified file name string.

Writes a string to the file.

‘Writes a character to the file.

Wites an array of characters to the file

Wites an 1nt value to the file.

Wites a Tong value 1o the file.

Writes a f1oat value to the file.

Writes a doubTe value to the file.

Wites a boo ean value to the file.

A print1n method acts like a print method: additionally.it
prints a line separator. The line-separator string is defined
by the system. Itis \F\n on Windows and \ on Unix.

‘The printf method was introduced in §4.6, “Formatting
Console Output.

OPS/images/altmath_789.png

OPS/images/AAKNJHE0.png
#element: E

#height: int
#left: TreeNode<E>
#right: TreeNode<E>

The element stored in this node.
The height of this node.

‘The left child of this node.

The right child of this node.

OPS/images/pg06.png
Subclass Superclass

public class Rectangle extends GeometricObject

OPS/images/altmath_372.png

OPS/images/altmath_703.png

OPS/images/altmath_437.png
T{n)=0(2")

OPS/images/altmath_460.png
m2n,

OPS/images/AAKNJSV0.png
java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList (1ist: List): List
+synchronizedMap(m: Map): Map
+synchronizedSet(s: Set): Set
+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet (s: SortedSet): SortedSet

Returns a synchronized collection
Returns a synchronized list from the specified list.
Returns a synchronized map from the specified map.
Returns a synchronized set from the specified set.

Returns a synchronized sorted map from the specified
sorted map.
Returns a synchronized sorted set.

OPS/images/ASSET41332.png
[l ButtonDemo

VBox —»{ @ Red

Somainine JavaFX Programmin,
three radio Green '8! g
buttons
Blue

< left > Right

OPS/images/AAKNIJA0.png
tail
Node 1 Node 2 “. Noden
head ——> clement 1) > element2 > clement n
next next (" o

OPS/images/altmath_509.png
3<i<n/3.

OPS/images/altmath_291.png

OPS/images/AAKMFLZ0.png
Q

Statement
Before loop count = 0;

false

Toop- .
continuation- _false (count < 100)?
condition?
true true
Statement(s) System.out.printin("Welcome to Javal");
(loop body) count++;

£ &

(a) (b)

OPS/images/altmath_518.png
Jn

OPS/images/ASSET40393.png
—fitHeight: DoubleProperty
~fitWidth: DoubleProperty
~x: DoubleProperty

~y: DoubleProperty

—~image: ObjectProperty<Image>

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+ImageView()
+ImageView(image: Image)
+ImageView(filenameOrURL: String)

‘The height of the bounding box within which the image is resized to fit.
“The width of the bounding box within which the image is resized to fit.
‘The x-coordinate of the InageVi ew origin.

‘The y-coordinate of the TmageVi ew origin.

“The image to be displayed in the image view.

Creates an ImageVi ew.
Creates an ImageVi ew with the specified image.
Creates an ImageView with image loaded from the specified file or URL.

OPS/images/AAKNELI0.png
+ArrayList ()
+add(o: Object): void

+add(index: int, o: Object): void
+clear(): void

+contains (o: Object): boolean
+get (index:int) : Object

+indexOf (o: Object): int
+isEmpty () : boolean
+lastIndex0f (o: Object): int
+remove(o: Object): boolean
+size(): int

+remove (index: int): boolean

+set (index: int, o: Object): Object

+ArrayList()
+add(o: E): void

+add(index: int, o: E): void
+clear(): void

+contains (o: Object): boolean
+get (index: int): E
+index0f (o Object): int
+isEmpty(): boolean
+lastIndexOf (o: Object): int
+remove(o: Object): boolean
+size(): int

+remove (index: int): boolean
+set(index: int, o: E): E

(a) ArrayList before JDK 1.5

(b) ArrayList since JDK 1.5

OPS/images/altmath_379.png

OPS/images/Fig14-24.png
W1 ShowHBorVBox

=

Coures
csainon
a0

a0

OPS/images/altmath_492.png

OPS/images/altmath_573.png
0 n2)

OPS/images/altmath_219.png
/C++

OPS/images/altmath_10.png
area=widthx height

OPS/images/altmath_678.png

OPS/images/altmath_622.png

OPS/images/altmath_131.png
>0 p2is on the lett side of the line
(x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0){=0p2is on the same line
<0 p2is on the right side of the line

OPS/images/altmath_775.png

OPS/images/altmath_39.png
ab(23)

OPS/images/ASSET37690.png
EEEEET - lolx| EEEESTY -lofx|| EIEEESTS -lofx|| CIEEESTS —lolx|

enteranoer; [1) | | emeranorver: [2) | | emeranonter [3] | | eneranower 4]

(a) (b) (c) (d)

OPS/images/AAKNJHB0.png
()

' T2 and T3 may have
1 different heights, but
T3
| atleast one
_ 1 has a height of 1

(b)

OPS/images/altmath_106.png

OPS/images/ASSET41370.png
I Exercise16_19.

OPS/images/altmath_791.png
is encoded to

=>000101011010110010011 =

is decoded to

= > Mississippi

OPS/images/Fig37-34.png
[deptid [name |chairld

ACCT [Accounting [333115555[BUSS

[BIOL_[Biology _[111225555SC
[CHEM [Chemistry [111225555 [SC

s [C"““’“"" ‘mmus
Science

sc

[EDUC [Education [333114444

EDUC

[MATH Mathematics 111221116 [SC

(a)

(b)

OPS/images/AAKNJSY0.png
«interface»

32
Jjava.util.concurrent.ExecutorService See Figure 328

java.util.concurrent.ForkJoinPool

+ForkJoinPooT () Creates a ForkJoinPoo with all available processors.
+ForkJoinPoo] (parallelism: int) Creates a ForkJoinPoo1 with the specified number of processors.
+invoke (ForkJoinTask<T>): T Performs the task and returns its result upon completion.

OPS/images/altmath_163.png
Area =125 e
4 x tan(Z)

OPS/images/ASSET37773.png

OPS/images/Fig37-16.png
[student Regstrarion Form

€)| [[E g ocahost 8084 langweb/stcentieistationformbir

Student Registration Form
Last Name Smith First Name John

Gender: ® Male © Female

Major Mathematios
Hobby: © Temnis © Golf @ Ping Pong

Remarks:

Ml D

This is an example of an HIML form that contains text
fields, radio buttons, combo boxes, lists, check boxes,
text areas, and buttons.

OPS/images/small_box_001.png

OPS/images/altmath_388.png

OPS/images/AAKNJHL0.png
Peter (0) Jane (1)

>

Cindy (3) Mark (2) '

Wendy (4) c c

(a) A directed graph (b) A complete graph (c) A subgraph of the graph in (b)

OPS/images/altmath_404.png

OPS/images/Fig31-36.png
(8} New JavaFX Application

Steps Name and Location
1. Choose Project Project Name: Calculator
2.Name and

Location Project Location: |C:\temp Browse...

Project Folder: C:\temp\Calculator

JavaPX Platform: IDK 1.8 (Default) V|| Manage Platforms...
[Create Custom Preloader
Project Name: (Calculator-Preloader

BXMLname: FXMLDocument

[Juse Dedicated Folder for Storing Libraries
Libraries Folder: Broyse..

Different users and projects can share the same compilation libraries (see Help for detals).

[V]Create Application Class calculator.Calculator

<Back | Next> | Finish || Cancel || Help

OPS/images/altmath_692.png
4 x4 16 talls

OPS/images/altmath_57.png
loanAmount x monthl yInterestRate
monthlyPayment = B ———

Do Ters i

(1+monthlyInterestRate)

OPS/images/altmath_307.png
(v =ax2+bx+c)

OPS/images/Fig44-10.png
Q) chapterd4 - NetBeans IDE 802
Ele £dit View Navigate Source Refactor Run Debug Profle Team Tools Window Help
AEAS DO <deokc. VO T D B-G-

Projects - Files |Services | = % Search Resuks - Start

tiove
zealres|an|

eI

2 * To change this license header, choose l.\ccn:l

3 | * To change this template file, choose Tools | |

= LonTestiova 4 * and open the template in the editor.

s e |
+1a Test Ubeories 5 */

6 package chapterdd;

7

8 [import java.util.Date; |

9 | import org.junit.After; |
10 | import org.junit.AfterClass;

11 | import org.junit.Before;

12 | import org.junit.BeforeClass; |
13 | import org.junit.Test;

14 " import static org.junit.Assert.*;

OPS/images/altmath_203.png
(= 2+3+4)

OPS/images/altmath_289.png
ne.

OPS/images/AAKNDMY0.png
<)
8 2
1< 19
£ £
g :
] 5
3 3
= =
? 7

Step 7: Move disk 1 from A to B

Kk 1fromAtoB

Step 2: Move disk 2 from A to C

Step 1: Move,

OPS/images/AAKMEDK0.png
344 445*% (4+3) -1

(1) inside parentheses first
344445 T o1
b ()muiiplication
3+16+5%7 -1

|

3416 +35 -1

(4) addition
19 + 35 - 1
S
54 -1

OPS/images/altmath_564.png

OPS/images/altmath_631.png

OPS/images/ASSET43206.png
%) Guess a number - Mozilla Firefox

Fle Edt View History Bookmarks Tools Help

=lalx]

9 | @ locahost:8080/jsf2demo) faces/GuessNumber.xhtml ¢|[B- Googe

,le a

Enter you guess: Guess

%) Guess a number - Mozilla Firefox
He Edt Vew Hstory Bookmarks Took Help
} Guess a number

(€ @ localhost: 8080/ jsf2demo/faces/Guesshumber.xhtm e [B- cooge
Enter you guess: 50 Guess
Too low

%) Guess a number - Mozilla Firefox

Fe Edt Vew History Bookmarks Tooks Help
| Guess a number

€ @ localhost:8080/jsf2demo/faces/GuessNumber.xhtm - Googee £l w
Enter you guess: 75 Guess j
Too high Bl

) Guess a number - Mozilla Firefox

Fe Edt View Hstory Bookmarks Took Help
’ Guess a number [

€ @ localhost:3080/jsf2demo/faces/GuessNumber.xhtm e[~ cooge
Enter you guess: 64 Guess
You got it

OPS/images/altmath_503.png
22 a3 N4 25 e AT 28 2 2nn

logZ log3 log4— logS log6 log7 log8 logn Togn

OPS/images/ASSET41314.png
=lalx|

-lalx] -Isix]

Programming is fun Programming is fun

Pause [Resume) Reverse

(@) (b) (©)

OPS/images/AAKNKVJ0.png
Decimal Binary

Edt Yew| Hep

Torion0

Hex o Towe 00a Lon @owd Cowd Owerd Obee

OPS/images/Fig39-37.png
[24-Point Game
€ & € [localhost:8080/chapter39jsfexercise/faces/Exercise39_11xhtml v<| O @ @ @ =

24-Point Game

14(8-T)*13 is 24

[24-point Game

'o‘o
X
v

OPS/images/AAKMNZL0.png
-annuallnterestRate: double
-numberOfYears: int
~loanAmount : double
~loanDate: java.util.Date

+Loan()
+Loan (annual InterestRate: double,

number0fYears: int, loanAmount:
double)
+getAnnualInterestRate(): double
+getNumberOfYears(): int
+getLoanAmount () : double

+getloanDate(): java.util.Date

+setAnnual InterestRate
annual InterestRate: double): void

+setNunber0fYears (
nunber0OfYears: int): void
+setLoanAmount (
ToanAmount : double): void

+getMonthlyPayment () : double
+getTotalPayment (): double

‘The annual interest rate of the loan (default: 2.5).
‘The number of years for the loan (default: 1)
‘The loan amount (default: 1000).

‘The date this loan was created,

Constructs a default Loan object

Constructs a loan with specified interest rate,
and loan amount.

Returns the annual interest rate of this loan.
Returns the number of years of this loan.
Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate for this loan

Sets a new number of years for this loan
Sets a new amount for this loan.

Returns the monthly payment for this loan.
Returns the total payment for this loan.

OPS/images/Fig31-54.png

OPS/images/altmath_809.png

OPS/images/AAKMUFE0.png
Objectki— Throwable

Exception

Error

ClassNotFoundException
0Exception

Runt imeException

Many more classes

LinkageError

L

VirtualMachineError |

Many more classes

ArithmeticException

NullPointerException
IndexOut0fBoundsException

I11egalArgumentException

Il

Many more classes

OPS/images/AAKMNUH0.png
Indicess 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
message

message.substring(0, 11) message.substring(11)

OPS/images/altmath_446.png
1.27 x 101°

OPS/images/box_1.png

OPS/images/ASSET37689.png
| crcisclBRSRUN =] [O xercise1 RSN =T3| B O cxcrcici SRSRUN o .3 O xercisc18R8RUM =131

A A

A | L
AAAA&‘:“&

Enter an order: Enter an order: Enter an order: Enter an order:

OPS/images/AAKMNDI0.png
Primitive type assignment 1

OPS/images/Fig31-21.png
[MenuDemo M[=IEY
- g |
Menuemo;
[N Help -
Hardvare »
Software > heckit
Hardvare Bue
v Check it v Yellow
Red

I Mer

Demo

i Help
) vew
@ oven

print

N

=1aIx]

(@ (b)

(c)

OPS/images/altmath_721.png

OPS/images/altmath_95.png

OPS/images/AAKNDKY0.png
java. io. InputStream

+ObjectInputStream(in: InputStream)

«interface»
ObjectStreanConstants

«interface»
java. io.Datalnput

+readobject(): Object

Reads an object.

OPS/images/altmath_579.png

OPS/images/altmath_273.png

OPS/images/altmath_420.png
264 /(365 » 24 » 60 * 60)=585

OPS/images/Fig43-06.png
B - o x
) e lck e it

<

C O Iveerampie pearsoncmg com/dianimation/ReTectiml @ % | O O O an

RBIree Animation by Y. Daniel Liang

Search bton 1 sarch the ey i the e Clck the Insetbuton 0 fnsert the
e the key rom the tree. Fo he best diplay. e inegers

Enter anineger ey and click
Key int the tee. Clck the Remove buton
between 0 and 9.

Enerakey: | 1] Searc [inset | Remore

OPS/images/altmath_647.png
h<1.4405 log(n+2)-1.3277

OPS/images/altmath_145.png
J10.5

OPS/images/AAKNIHO0.png
s | s | s | s
s, 5, s | s
5y, Ssmerged $y, Sgmerged S5, 8;merged Sy, Symerged

fLdat

f2dat

B.dat

OPS/images/AAKNIXN0.png
oot ———>= 60

/I

55

parent

[parent I

45

}

!

57 67

(a) Inserting 101

59 101

I I

(b) Inserting 59

OPS/images/AAKNIJH0.png
head

current temp tail

v

v v

e | = - | e |- - _a
next J Tnext next J Tt

A new node T

to be inserted

here e

Tt |
(a) Before a new node is inserted.

head current temp tail
@ |~ e ey r r»
next |/ J Tmext} > mext nuTT

A new node

is inserted in t £ ‘

the list > ext

(b) After a new node is inserted.

OPS/images/AAKMTDN0.png
Y axis

y)

Java Coordinate
System

(a)

¥ axis

0.0)
Conventional
Coordinate
System

(b)

OPS/images/altmath_41.png
mr2

OPS/images/Fig37-01.png
‘Web Server Host

Host Machine File System|
http://www.webserverhost.com/index.html|

/htdocs/index.html
‘Web Browser Web Server

HTML Page

OPS/images/ASSET40033.png
parent
laliTi]sTo o]
1 2 3 4 5 6

0

(@ (b)

OPS/images/Fig17-08.png
B Command Prompt — D_

c:\book>java TestFileStrean

12345678910 ~
c:\book>type temp.dat
Binary data ——> G0ve.

©:\book>.,
< >

OPS/images/altmath_334.png

OPS/images/altmath_431.png
T{n)=0[n logn)

OPS/images/Fig32-33.png

OPS/images/altmath_733.png

OPS/images/altmath_377.png
s, * 31 U4, x 31002

OPS/images/altmath_636.png
0(n) xlog(¥) = 0(nlog n)

OPS/images/altmath_474.png
n=y\n \n.

OPS/images/ASSET41345.png
Canada
China
Denmark

Germany
India
Norway

France

o

k

China
Denmark

France

T

>

(a) Single selection

(b) Multiple selection

(c) Multiple selection

OPS/images/altmath_849.png

OPS/images/altmath_490.png

OPS/images/ASSET41302.png
CE= -lolx|| CEET -lolx)| XS -loix|

OPS/images/altmath_82.png
area = \/s(s — side1)(s - side2)(s - side3)

OPS/images/AAKNIJD0.png
tail

tail.next = new Node<>("Dallas"); head — > "Chicago"| > 'Denver®| > "Dallas”
next | | " next | J Tnext: null
(@)
tail
tail = tail.next; head —» "Chicago”| > "Denver”| > *Dallas"
next | | _next | | Tnext: null

(b)

OPS/images/AAKNJGZ0.png
T2’s height is
horh+1

OPS/images/altmath_608.png
h=|log n|

OPS/images/Fig41-01.png
Web
Internet service

OPS/images/ASSET40037.png
Add a new vertex. Add a new edge.
Vertexname: 2 Vertexu (index): 1

xodrate: 30 Vertex v (index): 2

OPS/images/altmath_705.png
4 x4 16 tails problem.

OPS/images/Fig38-13.png
AmyuaCSmiorl 6 Yes € No AreyonaCmsiorr (49 O0No)
Doyoulive i Savamah? & Yes € No Dojyoulive ia Savas? (1 es) 0No)

@ ®

OPS/images/Fig31-23.png
& e
et

OPS/images/AAKNKUM0.png
Command Prompt - mysal =101 x{|
wealy geloce dictince TactNane. FivstNane, courseld
3 EronSgudenc“Envodinent”
=3 where Student sen = Enrollnent.ssn and
-> lastName = ’Smith’ und fn-uNaml = 'Jacob’;

courseld

i Smith i Jacob
i Smith i Jacob

B rous in st <B.06 s0c>

ysql> =
<]

OPS/images/Fig39-35.png
D) Exercise39_09

€ - € [localhost:8080/chapter39jsfexercise/faces/Exercise39_09xhtml v O @ @ @

Staff Information

:

Last Name | | First Name |
Address|]

City | | State|
s
[view] (inert]

[Exercise39 09
€ > € [0 localhost:8080/chapter3jsfexercise/faces/Exercise39_09xhtml 1| O @ @ @

Staff Information

:

Last Name Smith | First Name Peter
Address 100 Man St |

City Savamnah St GA |
Telephone 9214345665 |

Data retrieved

OPS/images/altmath_748.png

OPS/images/AAKMKDE0.png
Stack Heap Stack.

Activation record for the
swapFirstTwoInArray

Activation record for method
the swap method int[] array [reference |<ty
n2:2

nt:1
‘Activation record for
the main method

int[] a [reference

Activation record for the
main method

nt[] a

i
I

e EOR
' a[1]:2

Invoke swap(int n1, int n2). Thearraysare Invoke swapFirstTwoInArray (int[]

‘The primitive type values in stored in a array). The reference value in a is passed

a[0] anda[1] arepassed tothe heap. 10 the swapFirstTwoInArray method.
‘swap method.

OPS/images/altmath_435.png
T{n)=0(2")

OPS/images/altmath_233.png
X -
T deviation =

OPS/images/altmath_419.png
2°2/(365 » 24 « 60 * 60)=136

OPS/images/altmath_834.png

OPS/images/AAKNKUF0.png
(nmmand Promety mysal

rsthane
3 Eron Scudent

54

i ¢
| George IR i Heintz
i Jo. P nned:

P rous in set <8.16 sec)>

pysal>
<

OPS/images/Fig31-38.png
Number 1 3 kNumberZ 6 Result 05

ey

OPS/images/AAKMFLA0.png
score >= 90 false
true score >= 80_talse
grade is A|
true score >= 70 ke
is B
true score >= 60 false
grade is C
true
grade is D
grade i

OPS/images/AAKMKDI0.png
1 public class LinearSearch {

2 /** The method for finding a key in the list */

3 public static int linearSearch(int[] 1ist, int key) {

4 for (int i = 0; i < list.length; i++) {

5 if (key == list[i])

6 return i; 111112

7 } L I

8 return -

9 3 key Compare key with 1ist [1] for i =0,1, ..
10 }

OPS/images/ASSET41330.png
—

-selected: BooleanProperty #~

~toggleGroup:
ObjectProperty<ToggleGroup>

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+ToggleButton()
+ToggleButton(text: String)
+ToggleButton(text: String, graphic: Node)

Indicates whether the button is selected.
Specifies the button group to which the button belongs.

Creates an empty toggle button.
Creates a toggle button with the specified text
Creates a toggle button with the specified text and graphi

+RadioButton ()
+RadioButton(text: String)

Creates an empty radio button.
Creates a radio button with the specified text.

OPS/images/C05pg176_001.png
while (Toop-continuation-condition) {
/1 Loop body

for (; loop-continuation-condition;) {
/1 Loop body

Equivalent

) }

(a) (b)

OPS/images/pg458.png
1 mport java.util.”;
2
3 public class InputMismatchExceptionDemo {
4 public static void main(String[] args) {
create a Scanner 5 Scanner input = new Scanner(System.in);
6 boolean continuelnput = true;
7
8 do {
9 try {
0 System.out.print("Enter an integer: ");
11— 1int number = input.nextInt();
Ifan
12| 1nputMismatch
13 [Exception /1 Display the result
14|occurs System.out.printin(
15 "The number entered is " + number);

try block

17 continuelnput = false;
18 }
catch block 19 catch (InputMismatchException ex) {
20 System.out.printin("Try again. (" +
21 "Incorrect input: an integer is required)");
22 input.nextlLine(); // Discard input
23 }
24 } while (continuelnput);

OPS/images/altmath_532.png
oStep 2 otep 5
1 1

T(n)= 2T(n/2) + On)

OPS/images/AAKNDKK0.png
Text 1O program

“The encoding of the character

is stored in the file

‘The Unicode of Encoding/
the character Decoding
eg. 199"
(a)

Binary /O program

Abyte s read/written

eg. 19

11000111
A

T
0xC7

(b)

00110001 00111001 00111001

0x31 0x39 0x39

OPS/images/AAKMNUO0.png
+toString()
+capacity(): int
+charAt (index: int): char

String

+length(): int
+setLength(newLength: int): void
+substring(startIndex: int): String

+substring(startIndex: int, endIndex: int):
String

+trinToSize(): void

Returns a string object from the string builder.
Returns the capacity of this string builder.

Returns the character at the specified index.

Returns the number of characters in this builder.

Sets a new length in this builder.

Returns a substring starting at startIndex.
Returns a substring from startIndex to endIndex - 1.

Reduces the storage size used for the string builder.

OPS/images/altmath_575.png

OPS/images/altmath_133.png

OPS/images/altmath_176.png

OPS/images/ASSET40420.png
javafx.scene.layout.Pane

~hour: int e
-minute: int

second:_int

+ClockPane ()

+ClockPane (hour: int, minute:

int, second: int)
+setCurrentTime(): void
+setWidth(width: double): void

+setHeight (height: double):
void

The getter and setter methods for
these data fields are provided in the class.
but omitted in the UML diagram for brevity.

The second in the clock.

The hour in the clock.
The minute in the clock,

Constructs a default clock for the current time.
Constructs a clock with the specified time.

Sets hour, minute, and second for current time.
Sets clock pane’s width and repaint the clock.
Sets clock pane’s height and repaint the clock.

OPS/images/altmath_620.png

OPS/images/altmath_663.png

OPS/images/AAKNJSO0.png
=loix|
\book>java ConsumerProducer
roducer writes 1

Consumer reads 1
roducer writes 2
Consumer reads 2
Wait for notEmpty condition

roducer writes 3
Consumer reads 3 =
roducer writes 4

roducer writes 5

it for notFull condition

Consumer reads 4 -
»H

OPS/images/tab_pg31.png
javafx.scene.control.Control

javafx.scene.control.TableView<S>

/

-editable: BooleanProperty

-items:
ObjectProperty<ObservableList<s>>
-placeholder: ObjectProperty<Node>
-selectionModel: ObjectProperty<
TableViewSelect ionHodel<S>>
+TableView()

+TableView(items: ObservableList<S>)

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

Specifies whether this TableVA ew is editable. For a cell to be
TableView, TableColumn, and TableCel1 for
11 should all be true.

‘The data model for the TabeView.

“This Node s shown when table has no contents.
Specifies single or multiple selections.

Creates a default Tab1eVi ew with no content
Cr

ied content.

s a default Tab1eVi ew with the spe

OPS/images/altmath_633.png

OPS/images/AAKMKCL0.png
printCalendar
(main)

readInput | printhonth |
printMonthTitle| printMonthBody |
¥ ¥

getMonthName | getStartbay |

getTotalNunber0fDays

getNumber0fDaysInMonth

isLeapYear

OPS/images/altmath_861.png

OPS/images/AAKNELL0.png
~list: java.util.Arraylist<g>

+GenericStack ()
+getSize(): int
+peek(): E
+pop(): E

+push(o: E): void
+isEmpty () : boolean

An array list t0 store elements.

Creates an empty stack.

Returns the number of elements in this stack.
Returns the top element in this stack.

Returns and removes the top element i this stack.
Adds anew element to the top of this st
Returns true if the stack is empty.

OPS/images/Fig42-14b.png
¢ GO GO
G C 2y, 2

(¢) Perform a transfer (h) Delete 16

(i) Perform a fusion (j) Perform a fusion

(k) Delete 34 (1) Replace 34 with 16 (m) Perform a fusion

OPS/images/altmath_161.png
d = radius x arccos(sin () x sin(x;) + cos(x,) x cos(x;) x cos(_y1 - yzD

OPS/images/ASSET37762.png
=lolx| =lalx|
[[[

i ST lalx]

S o S
/\ /—‘\ Missed letters: /“‘\ Missed letters: ty
Il ol lalx]

/‘\ Missed letters: tyh /—‘\ Missed letters: tyhl /—‘\ Missed letters: tyhlk

ol i bezn 0 ol

‘Guessa word: recelre

N Mised ltters: ko

The wordi: receive

T Tocontinue the game, press ENTER

The word s receive

N To contiue the game, pess ENTER

OPS/images/altmath_507.png
2<i<n/2,

OPS/images/AAKNJRS0.png
print100.start();
printA.start();
printB.start();

Replaced by

print100.run();
printA.run();
printB.run();

OPS/images/altmath_462.png
m2n,

OPS/images/altmath_55.png
5.5x(r+2.5)

OPS/images/altmath_406.png
(nl < n2)

OPS/images/altmath_12.png

OPS/images/AAKMKDL0.png
Selcet 1 (the smallest) and swap it

with 2 (the first) in the list.

‘The number 1 is now in the
correet position, and thus no
longer needs to be considered

The number 2 is now in the
correct position, and thus no
longer needs to be considered.

The number 4 is now in the
correct position, and thus no
longer needs to be considered.

‘The number 5 is now in the
correct position, and thus no
Tonger necds to be considered.

‘The number 6 is now in the
correct position, and thus no
Tonger needs to be considered

‘The number § is now in the
correct position, and thus no
longer needs to be considered.

Select 2 (the smallest) and swap it
with 9 (the first) in the remaining
list

Select 4 (the smallest) and swap it
with 5 (the first) in the remaining.
list.

5 is the smallest and in the right
position. No swap is necessary.

Select 6 (the smallest) and swap it
with 8 (the first) in the remaining
Tist.

Select 8 (the smallest) and swap it
with 9 (the first) in the remaining
list

Since there is only one element
remaining in the list, the sort is
completed.

OPS/images/Fig37-32.png
on

Find your current score

coetacaey et 7 < | 8-)

ssN [T 2255 [resm— o= S T
Course [CSCI1301 §]

John F Smith 94.5
submi | Reset |

(a) (b)

OPS/images/AAKMFLV0.png
(0.100)

OPS/images/AAKNJOS0.png
Seattle

Chicago
[m
807

San Frangisco 1015

Kansas City

381 1663

Los Angeles

Houston

Miami

OPS/images/altmath_104.png

OPS/images/altmath_562.png

OPS/images/altmath_147.png
(long)Mathfloor{x+0.5)

OPS/images/altmath_777.png

OPS/images/altmath_548.png

OPS/images/Fig44-12.png
© New Java Project

Create a Java Project 2
Create a Java project n the workspace or in an exteral location

Project name chaptersd]

[Use default location

Locotion CAUsers\Y, Deriel Lingworkspacechapterdd [P |

JRE

© Use an execution environment JRE: JavaSE-1.8

Qe prjcspeci T —

O Use default JRE (currently jre1.80.91) nfigure JRES...
Project layout

O Use project folder as root for sources and cass files

(@ Create separate folders for sources and class files. Configure default..
Working sets

[JAdd project to working sets

o DT] P

OPS/images/AAKNIWQ0.png
Daniel Daniel

Delete this
hode NN

N\
/_Adam |\ Michael Michael
\ I RN

Jones Tom Jones Tom

[[
Peter Peter

(a) Deleting Adam (b) After Adam is deleted

OPS/images/ASSET43204.png
Form - Mozilla Firefox

=lolx|

€ @ locahost:8080/jsf2dero/faces/ProcessStudentRegistrationForm.xhtml e][B- ceoge

Ple a

Student Registration Form &

Last Name [Yao First Name [John MI[p

Gender © Male © Female

Major | Mathematics ~| Minor | Mathematics

Hobby: P Tennis I Golf M Ping Pong

Remarks:

[Pone

Register

You entered
Last Name: Yao

First Name: John

ML P

Gender: Male

Major: Mathematics

Minor: Computer Science English
Hobby: Tennis Ping Pong
Remarks: Done

OPS/images/altmath_505.png

OPS/images/altmath_676.png
capacity > size

OPS/images/ASSET41359.png

OPS/images/altmath_27.png
—-9223372036854775808

OPS/images/Fig31-52.png

OPS/images/ch36_pg16.png
java. text.NumberFormat

+getInstance(): NumberFormat
oI tars i coa e loce To RN e e FForea

+getIntegerInstance(): NumberForm:

NumberFormat
PercentInstan NumberForm:
*getPercentInstance(locale: Locale):

NumberForm:

+format (number: double): String
+format (number: long): String
+getMaximunFractionDigits(): int
+setMaxinunFractionDigits(newvalue: int): void
+getMinimunFractionDigits(): int
+setMininunFractionDigits(newvalue: int): void
+getMaximumIntegerDigits(): int

+setMaximunIntegerDigits(newValue: int):
void

+getMinimunIntegerDigits(): int

+setMinimumIntegerDigits (newVvalue: int):
void
+isGroupingUsed(): boolean

+setGroupingUsed (newValue: boolean): void
+parse(source: String): Number
+getAvailableLocales(): Locale[]

Returns a default number format for the default locale,
Returns a default number format for the specified locale.
Returns an integer number format for the default locale.

Returns an integer number format for the specified locale

Returns a currency format for the current default local.
Same as get Instance().

Same as get Instance (Tocale)

Returns a percentage forma for the default locale.
Returns a percentage forma for the specified locale.

Formats a floating-point number
Formats an ineger.

Returms the maximum number of allowed fraction digits.
Sets the maximum number of allowed fraction digits
Returns the minimum number of allowed fracton digis,
Sets the minimum number of allowed fraction digis.

Returns the maximum number of allowed integer digits in a
fraction number.

Sets the maximum number of allowed integer digits in a fraction
number.

Returns the minimum number of allowed integer digits in a
fraction number,

Sets the minimum number of allowed integer digits in a fraction
number.

Returns true if grouping is used in this format. For example. in
the English locale, with grouping on, the number 1234567 is
formatted as *1.234,567"

Sets whether or not grouping will be used in this forma.

Parses string into a number.

Gets the set of locales for which NumberFormats are installed.

OPS/images/AAKMKDB0.png
cardNumber / 13 =

Spades
Hearts
Diamonds

Clubs

cardNumber % 13 =

10

1

— Acc

— Jack
— Queen

— King

OPS/images/C09-pg359_001.png
private double radjus;
Refers to data
field radius in public void setRadius(double radius) {
this object. this.radius = radius;

}

OPS/images/9780134611037-2.png
=Iolx|

01 2 3 4567

(c)

(b)

(a)

OPS/images/altmath_577.png

OPS/images/altmath_661.png
(k+j = h'(key)) % N,

OPS/images/ASSET41316.png

OPS/images/Fig30-01.png
operations

Terminal
operations

Static
methods

+close(): S
+parallel(): S
+sequential(): S
+isParallel (): boolean

Closes this stream.
Rety
Returns an equivalent stream that is executed in sequential
Returns true if this stream is parallel.

ns an equivalent stream tha

is executed in parallel

+distinct(): Stream<T>
+filter(p: Predicate<? super T): Stream<T>

+Timit(n: long): Stream<T>
#skip(n: Tong): Stream<T>

+sorted(): Stream<T>

+sorted(comparator: Comparator<? super T>):
Strean<T>

+map (mapper: Function<? super T, ? extends
R>: Stream<R>

+mapToInt (mapper: ToIntFunction<? super
T>): IntStream

+mapToLong (mapper: ToLongFunction<? super
T>): LongStream

+mapToDouble(mapper: ToDoubleFunction<?
super T>): DoubleStream

+oount () Tong
+max(c: Comparator<? super T>): Optional<T>
+min(c: Comparator<? super T>): Optional<T>
+findFirst(): Optional<T>

+findAny(): Optional<T>

+allHatch(p: Predicate<? super T): boolean
+anyMatch(p: Predicate<? super T): boolean
+noneMatch(p: Predicate<? super T): boolean
+forEach(action: Consuner<? super T>): void

+reduce (accunulator: BinaryOperator<T):
Optional<T>

+reduce(identity: T, accunulator:
BinaryOperator<T>): T

+collect (collector: <? super <T, A, R>>): R

+toArray(): Object[]
+empty (): Strean<T>

+of (values: T.. Stream<T>
+of (values: T): Stream<T>

+concat (a1: Strean<? extends T>, a2:
Stream<? extends T>): Stream<l>

Returns a stream consisting of distinct elements from this stream.

Returns a stream consisting of the elements matching the predicate.

Returns a stream consisting of the first n clements from this stream.

Returns a stream consisting of the remaining elements in this stream after
discarding the first n elements.

Returns a stream consisting of the elements of this stream sorted in
natural order.

Returns a stream consisting of the elements of this stream sorted using the
comparator.

Returns a stream consi
lements of this stream.

12 of the results of applying the function t0 the

Returns an IntStream consisting of the results of applying the function
10 the elements of this stream.

Returns a LongStrean consisting of the results of applying the function
0 the clements of this stream.

Returns a DoubleStream consisting of the results of applying the
function to the elements of this stream.

Returns the number of elements in this stream.

Returns the maximum element in this stream based on the comparator.

Returns the minimum clement in this stream based on the comparator.

Returns the first element from this stream.

Returns any element from this stream.

Returns true if all the elements in this stream match the predicat

Returns true if one element in this stream matches the predicate.

Returns truc.

o element i this stream match

s the predicatc.
Performs an action for each element of this stream.

Reduces the clements in the stream o a value using the identity and an
‘associative accumulation function. Return an Optional describing the
reduced value

Reduces the elements in the stream to a value using the identity and an
associative accumulation function. Return the reduced value.

Performs a mutable reduction operation on the clements of this stream
using a Collector.

Returns an array consisting of the elements in this stream.
Returns an empty sequential stream. (static method)

Returns a stream consisting of the specificd values. (static method)
Returns a stream consisting of a single value. (static method)

Returns a lazily concatenated stream consisting of the elements in al
followed by the clements in a2. (static method)

OPS/images/Fig37-18.png
€13 v rahoczsirmgrtmtam - €[

Current time is venerdi 10 giugno 2011 4.09.40 GMT-12:00
Locale halian

Time Zone E/GMT+12

[(Submi] Reset

OPS/images/altmath_449.png
2 44logn, 10nlogn, 500, 217, 2¢, 3
7033 %4logn 10nlogn, 500, 212 4z, 3n

OPS/images/altmath_275.png
— Q10
Appdy ¢ — Ap1Qqp

OPS/images/Fig38-11.png
[BrowseTable

€) | ([mpsocainossstma/iangwebrow 77 |) (B8~ Googe

deptid [name [chairld [collegeld
[ACCT [Accounting (333115555 BUSS
[BIOL [Biology [111225555]sC
|CHEM [Chemistry [111225555]sC

[cs [Computer Science|[111221115[sC
[EDUC [Education (333114444 [EDUC
[MATH [Mathematics ~ [111221116SC

OPS/images/Unfig28-01a.png

OPS/images/altmath_534.png

OPS/images/altmath_606.png
h>logn+1)- 1.

OPS/images/altmath_305.png
a+ bl = \a? + b*

OPS/images/AAKNKEU0.png
Server Host

Client Host

Step 1: Create a server socket on a port, e.g.,
8000, using the following statement:

ServerSocket serverSocket =
ServerSocket (8000) ;

new

Step 2: Create a socket to connect to a client,
using the following statemen

<
Socket socket =
serverSocket.accept () ;

Network

7
1/0 Stream

Step 3: A client program uses the following
statement to connect to the server:

Socket socket = new
Socket (serverHost, 8000);

OPS/images/altmath_649.png
rootelement, if A is null and k is 1;
Belement, if A is null and k is 2
find(k, root)= find(k, A), if k <= Asize
rootelement, if k=Asize+1;
ind(k - Asize-1, B), if k>Asize+1;

OPS/images/Fig40-08.png
Client

An instance of
Cal1BackImpl
created

Server

Receive a stub
of CallBack

ient methods.
invoked by the
methods in
CallBackImpl

CallBackImpl

An instance of
Client created

Server invokes
remote object’s
methods

X

The remote
methods in
CallBack

OPS/images/AAKNDMU0.png
17: return fib (4

10: return fib (3)

——
return fib(3) + fib(2)

fib(4)

1 0:call fib(4)

11: call fib (2)

Tocall fib (3) 16: return fib (2)
[sr—
Tetrn fib (2) + fib (1) TR
T () Seallfib(1) 13rewmfib(1) 14: return ib (0)

2:call fib(2)

rewmn fib(1) +fib(0) % rewmfib(1)

4:return fib (1)

return 1

Stcall fib(0)
Srcall fib (1)

return 1 6:return fib (0)

Teturn 0

2:call fib (1)

15: return fib (ON_——

return 0

return 1

OPS/images/AAKMMMK0.png
(o1
83}
[2]
(31
(41

[01011[2](3](4] [0111[2](3][4] [ojr11121
ofofo]ofo o1/0fofo]o]o o1)1]2]3
ofofofofo t11/0fofofofo (11]4|5[e
ofofofofo 21/0[7[ofo]0 2|7 8o
ofofofofo 31/0[ofofo]o0 131 |10[11]12]
ofofofofo ta1/0fofofo]0 int[1[] array = {

{1, 2, 3),

matrix = new int[5][5]; matrix[2][1] = 7; {4, 5. 6},

(7, 8, 9},
{10, 11, 12}
I
(a) (b) (c)

OPS/images/Fig37-03.png
(Com) Com)

(b)

OPS/images/Fig01-07.png
Welcome - Notepad: - o

File Edit Format View Help
public class welcome { B
public static void main(String[] args) {
// Display message Welcome to Java! on the console
Systen.out.printin("Welcome to Java!®);
Y
}

OPS/images/altmath_248.png

OPS/images/altmath_205.png
23)

OPS/images/altmath_561.png

OPS/images/altmath_260.png
(33,950- 8, 350)

OPS/images/altmath_433.png
T(n) = 0(112)

OPS/images/ASSET41287.png
EEEET _olx| EEEEE -lolx|

O

Enarge | | shrink Enarge | | shrink

OPS/images/AAKNIGY0.png
pivot low high

[S[4[0[1]6]7] () mitialize pivot, low, and high

pivot low high

nnn (b) Search forward and backward
pivo low hx;,h
[5[2[1[3[s]4]o] ul (c) 9is swapped with 1
pivotlow high

(d) Continue search

pivot low high

is swapped with 0

pivot low high

(1) When high < low, search is over

pivot

[[3[o[s[s[o]

\
The index of the pivot is returned

(g) Pivot is in the right place

OPS/images/AAKNIJK0.png
head previous current current.next tail
v v v v v
@ R [t [N e
next) Text] mext] mext|l | i
T
Delete this node
(a) Before the node is deleted.
head previous current.next tail
v v v v
ol o] e o
next) Tmext|— next PARTA

(b) After the node is deleted.

OPS/images/altmath_807.png

OPS/images/altmath_476.png
Jn

OPS/images/ASSET40409.png
The getter and setter methods for property value \
and a getter for property itself are provided in the class,

— _ but omitted in the UML diagram for brevity.

=

-startX: DoubleProperty The x-coordinate of the start point.

-startY: DoubleProperty ‘The y-coordinate of the start point.

—~endX: DoubleProperty ‘The x-coordinate of the end point.

—endY: DoubleProperty The y-coordinate of the end point.

+Line() Creates an empty Line.

+Line(startX: double, startY: Creates a Line with the specified starting and ending points.
double, endX: double, endY:
double)

OPS/images/altmath_97.png

OPS/images/Fig43-04.png
TreeNode<E> BST<E>
4 4
! !
RBTreeNode<E> ‘“—“‘ RBTree<E>

-red: boolean

+RBTreeNode ()

+RBTreeNode (e: E)
+isRed(): boolean
+isBlack(): boolean
+setRed(): void

+setBlack(): void

Link

+RBTree()

+RBTree (objects: E[])
#createNewNode () : RBTreeNode<E>
+insert(o: E): boolean
+delete(o: E): boolean

Creates a default red-black tree.

Creates an RBTree from an array of objects.
Override this method to create an RBTreeNode.
Returns true if the element is added successfully.

Returns true if the element is removed from the
tree successfully.

OPS/images/AAKMFLO0.png
format specifier

field width | conversion code

precision

OPS/images/ASSET41372.png
Ener information for animation

‘Animaton speed in millseconds 200

Number of images 2
Audio file URL hitp:/ /s armstrong.eduiang/commory audic/antheryanthem2.mp3.

(a) (b)

OPS/images/AAKNIXD0.png
Character ~ Code Frequency

M 000 1
P w2
s 01 4
i 1 4

(a) Huffman coding tree (b) Character code table

OPS/images/p386_001.png
Integer intObject = new Integer(2); |—ae—ecl _|Integer intObject

@ 7 ®)

autoboxing.

OPS/images/altmath_731.png

OPS/images/altmath_642.png

OPS/images/ASSET40396.png
-alignment: ObjectProperty<Pos>
—orientation:
ObjectProperty<Orientation>

—~hgap: DoubleProperty
~vgap: DoubleProperty

+FlowPane()

+FlowPane (hgap: double, vgap:
double)

+FlowPane (orientation:
ObjectProperty<Orientation>)

+FlowPane (orientation:
ObjectProperty<Orientation>,
hgap: double, vgap: double)

The getter and setter methods for property
values and a getter for property itself are provided
/ in the class, but omitted in the UML diagram for brevity.

The overall alignment of the content in this pane (default: Pos LEFT).
The orientation in this pane (default: Orientation. HORIZONTAL).

‘The horizontal gap between the nodes (default:0).
‘The vertical gap between the nodes (default:0).

Creates a default FlowPane.
Creates a F1owPane with a specified horizontal and vertical gap.

Creates a FlowPane with a specified orientation.

Creates a F1owPane with a specified orientation, horizontal gap and
vertical gap.

OPS/images/altmath_553.png

OPS/images/Fig38-07.png
)3 [et rampees esbesopesp 71+ C)[88 G

Testing Bean Scope in JSP (Application)

‘Youare vsitor number 3

Youare visitor number 4
From host: 0:0:0:0:0:0:0:1 and session: ‘From host: 0:0:0:0:0:0:0:1 and session:
ASIDITBIFAG6S0359FOE32F277E09AT19

AS9DITBIFA650359FOE32F27TE09AT19

OPS/images/altmath_464.png
—
Rl

OPS/images/altmath_689.png

OPS/images/ch03_pg84b.png
if (even

true)

System.out.printin(

"It is even.

(a)

Equivalent

‘This is better

it _(even)
System.out..printin(
It is even.");

(b)

OPS/images/altmath_44.png
:3335335333553335

16 digits

1S5

OPS/images/AAKNJHR0.png
UnweightedGraph |<]— WeightedGraph

OPS/images/altmath_472.png

OPS/images/altmath_294.png

OPS/images/ASSET41320.png
Button
Node Parent |<— Control Labeled |<1—[ButtonBase
CheckBo;
Inageview | Covredin (= Sorol1gar Label e

Chapter 14

. ToggleButton ki— RadioButton
HediaView | _Slider |

TextArea

TextInputControl

TextField PasswordField |
ListView
ComboBoxBase |<— ComboBox

Ll

OPS/images/altmath_859.png

OPS/images/Fig09-01.png
Combo Box

| o

OK | | Cancel | EnterYourName: Type Name Here ¥ Boid (M) Italic @ Red () Yellow | reshman| v

OPS/images/AAKNIJC0.png
tail.next = new Node<>("Denver");

tail = tail.next;

tail

head

(@)

> "Chicago"| > "Denver"
next |) next: nuil
tail
N
head —> *Chicago”| ->_"Denver"
next |) Tnext: null

(b)

OPS/images/AAKNJSP0.png
«interface»
Jjava.util.Collection<k>

Lﬁ

«interface»
Jjava.util.Queue<E>

Lﬁ

«interface»
Jjava.util.concurrent.BlockingQueue<E>

+put (element: E): void

+take(): E

Inserts an element to the tail of the queue.
Waits if the queue is full.

Retrieves and removes the head of this
queue. Waits if the queue is empty.

OPS/images/altmath_723.png

OPS/images/Fig31-48.png
B Exercise31.01 — B o bercise31 02 — 2 BB g prercise31.03 - O

e % [

(a) (b) (c)

s e

OPS/images/altmath_448.png
0(1) < O{logn) < O(n) < O[n logn) < O(n2) < O(r3) < O(2")

OPS/images/Fig31-10.png
[H RotateDemo =lolx|

OPS/images/Fig44-05.png
lc:\book>javac mytest/LoanTest. java mytest/Loan. java

lc: \book>jaua org. junit.runner.JUnitCore mytest.LoanTest
WUnit version 4.10

OPS/images/altmath_529.png

OPS/images/AAKNJOO0.png
(@) (b) Total weight is 42

(c) Total weight is 38 (d) Total weight is 38

OPS/images/AAKMKCM0.png

OPS/images/Fig28-10.png

OPS/images/ASSET41382.png
=lolx|
Yo

e

aty Sawnnah Sate GA 2P 31411
i i G e

OPS/images/altmath_321.png
(199=12x16'+7)

OPS/images/Fig36-11.png
A character is converted
into Unicode

The Unicode of)

the character is i/

returned character store
ified enco

The Unicode of)

Lt R ——

sent out

Program

A character is converted into the
code for the specified encoding

OPS/images/pg804.png
Expression Scan Action operandStack operatorStack

(1+2)%4-3 (Phase 1.4 L L
(1+2)%4-3 1 Phase 1.1 L] L
(1 ;—2)*4—3 + Phase 1.2 Lt Iil
(1+2)%4-3 2 Phase 1.1 ? L
(1+2)%4-3) Phase 1.5 3] L
(1 +z§*4—3 * Phase 1.3 ILI m
(1+2)%4-3 4 Phase 1.1 g L*]
(1+2)%4-3 - Phase 1.2 12| L]
(1 +2)*4—; 3 Phase 1.1 3 L]
(1+2)%4-3 none Phase 2 L

OPS/images/altmath_127.png

OPS/images/Fig27-08.png
[Hashing Separate Chain X

<« C | @ liveexample.pearsoncmg.com/dsanimation/SeparateChainingeBookhtml @ ¥t O @ @ o ©

Usage: Enter the table size and press the Enter key to set the hash table size. Enter the load factor threshold factor and press the Enter
key to seta new load factor threshold. Enter an integer key and click the Search button to search the key in the hash set. Click the
Insert button to insert the key into the hash set. Click the Remove button to remove the key from the hash set. Click the Remove All
button to remove all entries in the hash set. For the best display, use integers between 0 and 9.

Current table size: 11. Number of keys: 3. Current load: 0.27. Load factor threshold: 0.5.

o
m 0]
@
&)
[@
5
6
m
@
© 3]
no) [—-2]

Enter Initial Table Size:| 11 Enter a Load Factor Threshold: | 05

OPS/images/altmath_312.png

OPS/images/altmath_240.png

OPS/images/altmath_223.png

OPS/images/altmath_142.png

OPS/images/altmath_208.png

OPS/images/Fig41-15.png
Firefc

R —

€)2 ([ntps/tocathosts0s0/QuiawebseniceClientProject/DisplayQuizjsp 7

Is Atlanta the capital of Georgia? ® True
Is Columbia the capital of South Carolina?

Is Fort Wayne the capital of Indiana?

Is New Orleans the capital of Louisiana?

Is Chicago the capital of Illinois?

OPS/images/ASSET41358.png
-x: DoubleProperty
~y: DoubleProperty

-mediaPlayer:
ObjectProperty<ediaPlayer>

—fitWidth: DoubleProperty
~fitHeight: DoubleProperty

‘The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+MediaView()
+MediaView(mediaPlayer: MediaPlayer)

Specifies the current x-coordinate of the media view.
Specifics the current y-coordinate of the media view.
Speci

ies a media player for the media view.

Specifies the width of the view for the media to fit.
Specifies the height of the view for the media to fit

Creates an empty media view.
Creates a media view with the specified media player.

OPS/images/altmath_231.png

OPS/images/Fig33-21.png
lient

i Susan, Howare you

A —]

OPS/images/AAKNHIV0.png
£ J .
E ©
5 e e M
~
— PR JH\}.\
g
i Y oz
= T
2
[BN x
e

OPS/images/tab_pg05.png
javafx.scene. shape .QuadCurv.

-startX: DoubleProperty
-startY: DoubleProperty
-endX: DoubleProperty
-endY: DoubleProperty
-controlX: DoubleProperty
-controlY: DoubleProperty
+QuadCurve ()
+QuadCurve(startX: double,
startY: double, controlX:
double, controlY: double,
endX: double, endY: double)

_The getter and setter methods for property values and a getter for prop-
ety itself are provided in the class, but omitted in the UML diagram for breviy

‘The x-coordinate of the start point (default 0).
‘The y-coordinate of the start point (default 0).
‘The x-coordinate of the end point (default 0).

‘The y-coordinate of the end point (default 0).

‘The x-coordinate of the control point (default 0).
‘The y-coordinate of the control point (default 0).
Creates an empty quad curve.

Creates a quad curve with the specified arguments.

OPS/images/ASSET41286.png
MouseEvent

KeyEvent

JavaFX event classes are in
WindowEvent| {c javafx.event package

EventObject ki Event InputEvent

OPS/images/altmath_2.png

OPS/images/altmath_189.png
numbers< 10, 000.

OPS/images/ASSET40414.png
—centerX: DoubleProperty
—~centerY: DoubleProperty
—radiusX: DoubleProperty
—radiusY: DoubleProperty

+E1lipse()
+E1ipse(x: double, y: double)

+Ellipse(x: double, y: double,
radiusX: double, radiusY:
double)

‘The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

‘The x-coordinate of the center of the ellipse (default 0).
The y-coordinate of the center of the ellipse (default 0).
The horizontal radius of the ellipse (default: 0).

‘The vertical radius of the ellipse (default: 0).

Creates an empty E111pse.
Creates an E111pse with the specified center.
Creates an E171pse with the specified center and radiuses.

OPS/images/ASSET41311.png
=Ialx|

01.93

4.53

o

=lalx|

5.3

()

OPS/images/ASSET41367.png
== LTEIE| ~lolx]
Four score and seven years ago our fathers brought forth on | Loan Amount 10000 Number of Years 5 | Show Table
ot s ar et) -
e e

v gt gt e gt =

‘nation so conceived and so dedicated, can long endure. We al. 189.85 1139159

e e =i

final resting place for those who here gave their lives thet tha | 191.01 11460.69 <
.t gt g and prer ot v o do s+ 19158 1149534

W Ediable \MaD
(a) (b)

OPS/images/altmath_383.png

OPS/images/AAKNHHP0.png
Jjava.util.AbstractSet<t>

«interface»
java.util.Collection<e>

—

«interface»
java.util.Set<g>

+HashSet ()
+HashSet (c: Collection<? extends E>)
+HashSet (initialCapacity: int)

+HashSet (initialCapacity: int, loadFactor: float)

+LinkedHashset ()
+LinkedHashSet (c: Collection<? extends E>)
+LinkedHashSet (initialCapacity: int)

+LinkedHashSet (initialCapacity: int, loadFactor: float)

+first(,
+last(): E

+headSet (toETement: E): SortedSet<E>
+tailSet (fromElement: E): SortedSet<E>

~

+polIFirst(): €
+pollLast(): E
+lower(e: E): E
+higher(e: E):
+floor (e: E): E

+ceiling(e: E): E

=~

 menmese |

+Treeset ()

+TreeSet (c: Collection<? extends E>)

+TreeSet (comparator: Comparator<?
super E>)

+TreeSet (s: SortedSet<E>)

OPS/images/AAGQAFN0.png
Bus

o

oo

]

!

Storage Communication Input Output
Devices | Memory| CPU Devices Devices Devices
e Disk, CD, ce.Modem. e Keyboard. c.g. Monitor,
and Tape and NIC Mouse Printer

OPS/images/altmath_812.png

OPS/images/altmath_618.png

OPS/images/Fig43-18.png
parent

parent

childOfu is -
doubleblack ——>> y

childOfu
voleft yyight

(b)

OPS/images/Fig31-01.png
[0 StyleSheetdemo

OPS/images/Fig31-57.png

OPS/images/ASSET40431.png
(@) (b) (©)

OPS/images/AAKNKUC0.png
e MySQL. mon.
our Hysal, connest ion 14 1o 2
s 5.1.35-connunity MySQL Community Server (GPL)

* or *\W for help. Type ’'\c’ to clear the current input statement.

ysql> create database javahooks
Query OK. 1 row affected <8.03 sec)

wsql> use javabooks
Database changed
wsql> source script.sq:

OPS/images/AAHGKFI0.png
fim)

n ni2 100n

100 100 50 10000

200 200 100 20000
2 2 2 f200) / f(100)
T T T T

OPS/images/altmath_708.png
+

OPS/images/AAKNJSA0.png
+execute(Runnable object): void Executes the runnable task.
P2AN
+shutdown(): void Shuts down the executor, but allows the tasks in the executor
to complete. Once shut down, it cannot accept new tasks.
+shutdownNow() : List<Runnable> Shuts down the executor immediately even though there are
unfinished threads in the pool. Returns a list of unfinished tasks.
+isShutdown(): boolean Returns true if the executor has been shut down.
+isTerminated(): boolean Returns true if all tasks in the pool are terminated.

OPS/images/altmath_805.png

OPS/images/AAKMNZN0a.png
public class Name {

}

public class Student {
private Name name;
private Address address;

public class Address

}

{

Aggregated class

Aggregating class

Ageregated class

OPS/images/altmath_716.png

OPS/images/AAKMEDM0.png
Requirements
Specification

Input, Process, Output

v PO

L -~ System Analysis

System
T Design _l

Implementation

Deployment

A

H I
B Maintenance

OPS/images/AAKMUFR0.png
+Scanner (source: File)
+Scanner (source: String)
+close()

+hasNext () : boolean
+next(): String
+nextLine(): String
+nextByte(): byte
+nextShort(): short
+nextInt(): int
+nextlong(): long
+nextFloat(): float
+nextDouble() : double

+useDelimiter (pattern: String):
Scanner

Creates a Scanner that produces values scanned from the specified file.
Creates a Scanner that produces values scanned from the specified string.
Closes this scanner.

Returns true if this scanner has more data to be read.

Returns next token as a string from this scanner.

Returns a line ending with the line separator from this scanner.

Returns next token as a byte from this scanner.

Returns next token as a short from this scanner.

Returns next token as an 1nt from this scanner.

Returns next token as a ong from this scanner.

Returns next token as a f10at from this
Returns next token as a doub e from this scanner.

Sets this scanner's delimiting pattern and returns this scanner.

scanner.,

OPS/images/altmath_29.png

OPS/images/altmath_481.png
ﬁ+ﬁ+ﬁ+...+ J;Sl n

OPS/images/AAKMMMN0.png
(1.3). (.3

o .42

*(2,05)

SRR o

OPS/images/AAKNIHN0.png
s | s | s | s

¥ '

S, 5, merged ‘ 55,8, merged

| ¥

S5, 5 merged

_;_l

1,5, 83, Sy merged

_‘_1

8555, 57, Sg merged

\—;—/

51,82, 53, 54,55, 56, S, Sy merged

Merge step

Merge step

Merge siep

Final sorted
segment

OPS/images/altmath_570.png
o n2)

OPS/images/Page255C07.png
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

public class AnalyzeNumbers {

1

public static void main(String[] args) {

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter the number of items: ");

int n = input.nextInt();

double[] numbers = new double[n];

double sum = 0;

System.out.print(“Enter the numbers:

for (int i i< it (
numbers[i] = input.nextDouble();
sum += numbers[i];

}

double average = sum / n;

int count = 0; // The number of elements above average
for (int i = 0; i < n; i++)
if (numbers[i] > average)
count++;

System.out.printin("Average is * + average);

System.out.printin("Number of elements above the average is

+ count);

numbers [0]:
numbers[1]:
numbers [2] :

numbers []:

numbers [n-3] :

numbers [n-2]

numbers[n-1] :

create array

store number in array

get average

above average?

OPS/images/ASSET40407.png
—text: StringProperty

-x: DoubleProperty

~y: DoubleProperty

—~underline: BooleanProperty
—strikethrough: BooleanProperty
~font: ObjectProperty

+Text ()
+Text (text: String)

+Text (x: double, y: double,
text: String)

The getter and setter methods for property wlue\
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

Defines the text to be displayed.
Defines the x-coordinate of text (default 0).

Defines the y-coordinate of text (default 0).

Defines if cach line has an underline below it (default falsc).
Defines if each line has a line through it (default false).
Defines the font for the text.

Creates an empty Text.
Creates a Text with the specified text

Creates a Text with the specified x-, y-coordinates and text.

OPS/images/altmath_198.png
10x16°+11x16%+8x16+12x16° = 43916

OPS/images/Fig43-27.png
()

or

childofu is
double black

childofu is
double black

OPS/images/ASSET41303.png
| souncenakContialiis =T 3] =[] R O ouncesatContEaiN =[]

OPS/images/AAKMNDJ0.png
Before el = ¢2

radius =

Object type assignment ¢1

9| radius =5

c2

After el = 2

5

OPS/images/altmath_277.png

OPS/images/altmath_374.png

OPS/images/AAKNFLI0.png
< >

_lix| c

Entera number: 2
54443532

Suspend | | Resume | | + | -
(b)

OPS/images/altmath_625.png
Ser O

OPS/images/altmath_779.png
7x161+15x16°

OPS/images/altmath_785.png

OPS/images/pg10.png
Faculty() {

D |
Performs Faculty's
tasks;

| >

Employee() {
this("(2)

Performs Employee's
tasks;

Employee(String s) {
ployes(String ¢) {

D —— |
Performs Employee's
tasks;

[

[Person() {

Performs Person's
tasks;

OPS/images/ASSET40423.png
E (]
=lojx] =

anf
a

(b) (©)

OPS/images/altmath_390.png
1+2+3 +...+(n—z)+(n—1):"("—2’1):o(n:)

OPS/images/Fig38-14.png
204103 Comset.
Bes -3 Comat
20410+ 55 iomg
2543 =28 Commet

28+9 =37 Comet
25410+ 34 omg
248 5 Viomg
2548 56 Voomg
205 <3 W
246 <4 Wiomg
e bl ot comti 4

S Clck e brovwser's Refesh buon t g e iz

@

OPS/images/altmath_546.png

OPS/images/altmath_410.png

OPS/images/altmath_118.png

OPS/images/altmath_821.png

OPS/images/ASSET41374.png
=lolx|

January, 2016

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
12

3 4 H 6 7 8 9

0 o1 12 13 14 1516

718 1 20 21 2 23

24 25 2 27 28 29 30

31
prior [Next

OPS/images/tab_pg13.png
javafx.scene.shape. Shape

+setStroke(paint: Paint): void
+setStrokeWidth(width: double): void
+setStrokeType(type: StrokeType): void

+setStrokelLineCap (type: StrokeLineCap): void
+setStrokeLineJoin(type: StrokeLineJoin): void
+getStrokeDashArray ()

ObservableList<Double>
+setStrokeDashOffset (distance: double): void

Sets a paint for the stroke.

Sets a width for the stroke (default 1).

Sets a type for the stroke to indicate whether the stroke is placed
inside, centered, or outside of the border (default: CENTERED).

Specifies the end cap style for the stroke (default: BUTT).

Specifies how two line segments are joined (default: MITER).

Returns a lst that specifies a dashed patiern for line segments.

‘Specifies the offset to the first segment in the dashed pattern.

OPS/images/AAKNHHQ0.png
Search key Search key

Corresponding Corresponding
clement value value

A may >|
P Entry

(@ (b)

OPS/images/altmath_134.png
n/Z

OPS/images/AAKNKUK0.png
wsql> select lastName, firstName, deptld 2
=> Fron Student

-3 where deptld = ’CS”

-5 order by lastName desc, firstNane asci

Kennedy 1 Joy e 1
Heintz_ | George cs

rows in set <8.62 sec>

wsql> o
<

OPS/images/Fig36-04.png
El=IE <laix
Locale Korean (South Korea) ko_KR Locale Chinese zh

Time Zone | Asia/Seoul - Time Zone [Asia/urumg

2013%8598 0285365234

OPS/images/Fig41-07.png
& ScoreWebServiceClientProject
=-lfa Source Packages

£ MeTA-INF

[META-INF.wsdllocahhost_8080.WebServiceProject

2 scorewebservicedientproject

&g
SRR mywebservice

- [#)®Findscore java

- [#®FindscoreResponse. java

- [#1@0bjectFactory.java

- [#®scoreservice.java

- [#18scorewebservice java
[@ package-info.java

[(5 Web Service References

[Scorewebservice

(@ Libraries

OPS/images/altmath_314.png

OPS/images/altmath_403.png
if test time+worst-case time (if clause, else clause)

— 0(n)+0() = O(n)

OPS/images/altmath_151.png
beb,bsb b, =b.0000+b,000+b,00+bH,0+b,,

OPS/images/ASSET41295.png
Wifaghsinginimeton — O X Wifaghsnganmaton ~ O X W FlagRsingAnimation —

OPS/images/Fig37-38.png
Mozita Firefox =|ofx|

) ttp:/focahost 8080. xercse/Exercse37_14|
€ @ boinost:808)/chapter37servietexerase/Exercsed?_L4 77 v & Y
Are you a CS major? ® Yes © Ne

T The current Yes countis 2

Lsubmit | | Roset | The current No count is 0
(a) (b)

OPS/images/Fig14-21.png
Top

Left Center Right

OPS/images/altmath_764.png
iafoli]=1x2"+1x22+0x2" +1x2°

2222 2°=8+4+0+1=13

OPS/images/Fig14-04.png

OPS/images/ch15_pg608.png
(1) When the button 1s clicked (2) This tunction 1s performed

—=

btRight.setOnAction (e —> move the text right):

OPS/images/AAKNJSB0.png
java.util.concurrent.Executors

+newFixedThreadPool (numberOfThreads:
int): ExecutorService

+newCachedThreadPool () :
ExecutorService

Creates a thread pool with a fixed number of threads executing
concurrently. A thread may be reused to execute another task
after its current task is finished.

Creates a thread pool that creates new threads as needed, but
will reuse previously constructed threads when they are
available.

OPS/images/altmath_52.png
Celsius =(£) (Fahrenheit - 32)

OPS/images/altmath_536.png

OPS/images/Fig44-14.png
@ Java - chapterd4/src/mytest/Loanjava - Eclpse.
File Edit Source Refactor Navigote Search Project Bun Window Help

1 package mytest;
2

3 public class Loan {
private double annuallnterestRate;
private int numberofYears;
private double loanAmount;

= JRE System Libray [JavaSE-1] private java.util.Date loanbate;

exercise
+# pybook /4% Default constructor +/
& pyexercse public Loan() (

this (2.5, 1, 1000);
)

/#++ Construct a loan with specified annual interest rate,
nunber of years, and loan amount
/
public Loan (double annuallnterestRate, int numberofYears,
double loanAmount) {
this.annuallnterestRate = annuallnterestRate;
this.nunberOfYears = numberOfYears;
this. loanAmount = loanAmount;
loanDate = new java.util.Date();
)

/** Return annuallnterestRate */
public double getAnnuallnterestRate() (

OPS/images/Unfig44-01.png
=lolx|

“\book\nytest>notepad ATest. java =

+\book\mytest>javac ATest.java
“\book\mytest>cd ..

+\book>java org. junit.runner.JUnitCore mytest.ATest
LUnit version 4.18

ime: .02

K (2 tests)

OPS/images/AAKMKDD0.png
Stack Heap

Activation record for
method m
int[] numbers:

! Arrays are
int number: | < An array of Soredina
Activation record for the ten int heap.

‘main method 1 values is
int() y: [rlorence] <[b+ stored here

int x: 1=

OPS/images/altmath_35.png

OPS/images/altmath_303.png

OPS/images/altmath_696.png
0 n3)

OPS/images/altmath_457.png
o n2)

OPS/images/Fig01-11.png
= Command Prompt - o I

Run > c:\book>java ShouRuntimeErrors N
Excoption in thread “main” java.lang.ArithmeticException: / by zero

at ShowRuntimeErrors.main(ShowRuntineErrors. java:4)

©:\book>n
<

OPS/images/Fig44-03.png
* Command Prompt

lc:\book>cd mytest

lc: \book\mytest>javac ArrayListTest.java

lc: \book\mytest>cd .. |

lc:\book>jaua org. junit.runner.JUnitCore mytest.ArraylistTest
Nunit version 4.10

Tine: 0.02

0K (2 tests)

OPS/images/altmath_466.png
k<2logn

OPS/images/altmath_644.png

OPS/images/altmath_385.png

OPS/images/altmath_725.png
Xty

OPS/images/altmath_792.png

OPS/images/altmath_768.png
b,x2"+b _,x2" +bh x2"24+ .+ b,x2%+b, x 2 +h,x 2°

OPS/images/AAKNIJQ0.png
~heap: Heap<E>

+enqueue (element: E): void | |Addsan clement to this queue.
+dequeue(): E Removes an clement from this queue.
+getSize(): int Returns the number of elements in this queue.

OPS/images/Fig42-11.png
parentOfu

(a) wis a 2-node (b) Move p; tow

OPS/images/image5.png
9
34 230
45
59

&
2

bucket(0] bucket[1] bucket[2] bucket[3] bucket{4] bucket[S] bucket[6] bucket[7] bucket[8] pucket[9

OPS/images/AAKNKUB0.png
Command Prompt - mysql -uscott -ptiger

\omysql -uscott -ptiger
lelcome to the MySOL monitor. Commands end with ; or \g.

jour HySQL connection id is 33

[server version: 5.6.37-community-nt MysOL Community Edition (GPL)

ype 'help;' or "\h' for help. Type ‘\c' to clear the buffer

ysql> create database javabook;:
Query OK, 1 row affected (0.02 sec)

yeal> chou datebases:
<

NN

OPS/images/Fig36-13.png
-Iolx|

Speafya Unicode | 4F20
Ry)

30 5 15 84 15 s 1
A0 {8 () 4E 1B 1 1 1B 4 4 4K 1 0 it 4 E 4
MO EERAEALER AR NG

%

4160

M\lﬂ(ﬁ ff o R {8 if5 4
9”‘15(5&1‘&%(‘@
b{ili)ﬁv‘(&ﬁﬁtma

= %5 -3
>ﬁﬁ$ii¥ﬂ
IWHFEERS

4
I3
®”

OPS/images/AAKNIWU0.png
+hasNext () : boolean
+next(): E
+remove(): void

Returns true if the iterator has more elemen
Returns the next element in the iterator.

Removes from the underlying container the last element
returned by the iterator (optional operation).

OPS/images/ASSET37770.png
Key (in double) 5 y Key (In double) 5

OPS/images/altmath_136.png
/180

OPS/images/Key_point_icon.png

OPS/images/altmath_551.png

OPS/images/altmath_179.png

OPS/images/Fig41-13.png
) Address Information

BEIE

€ [mapocanost0mn AdarsswesenviceCientProjec TeshddressiebSenice sp

Last Name * Pam First Name * Peter
Telephone 9124536554 Email pam@gmail.com
Street 100 Main Street

City Savannah State Georgia-GA ~ Zip 31419
* required fields

Peter Pam has been added to the database

OPS/images/Fig38-09.png
4) | [o ocanost084 iangmes/DBLogint 77 < |G| (8- Gosge

JDBC URL jdbc:mysql:/localhostjavabook -
Usemname scott

Password tiger

OPS/images/AAKNJIA0.png
T

H[H[H

H[H[H

(c)

(b)

(a)

OPS/images/ASSET41284.png
[Loancalcustor R =]

Annual Inerest Rate: s
Number o Years: 4
Loan Amourt: 5000
Monthiy Payment: e
Total Paymert: ssa264

Galajate

OPS/images/altmath_687.png
4 x4 16 tails problem.

OPS/images/altmath_42.png
- 231(-2147483648)

OPS/images/Fig31-12.png
[=]E3

OPS/images/Fig31-20.png
LTI ol EEETM——Iek] ek
el o
File Help e Fie S

Hardware »
Mac 05

(a) (b) ()

OPS/images/Fig43-16.png
parentOfu

uis black

childofu is
black or null

parentOfu

(b)

OPS/images/enter1.png

OPS/images/AAKMNDZ0.png
circleArray reference |—— circleArray[0] —— Circle object 0 |

circleArray[1] L
Circleobjeet 1

circleArray[9] — Circle object9 |

OPS/images/ASSET41348.png
~blockIncrement: DoubleProperty
—ma: DoubleProperty
—min: DoubleProperty
—unitIncrement: DoubleProperty

—value: DoubleProperty
~visibleAmount: DoubleProperty
—orientation: ObjectProperty<Orientation>

‘The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+Scrol1Bar ()
+increment ()
+decrement ()

The amount to adjust the scroll bar if the track of the bar is clicked (default: 10).
‘The maximum value represented by this scroll bar (default: 100).
‘The minimum value represented by this scroll bar (default: 0).

“The amount to adjust the scroll bar when the increment () and decrement ()
‘methods are called (default: 1).

Current value of the scroll bar (default: 0)
‘The width of the scroll bar (default: 15).
Specifies the orientation of the scroll bar (default: HORIZONTAL).

Creates a default horizontal scroll bar.
Increments the value of the scroll bar by uni tIncrement.
Decrements the value of the scroll bar by unitIncrement.

OPS/images/altmath_470.png
index< 2 logn

OPS/images/AAKNIIZ0.png
«interface»
MyList<e>

-

~data: E[]
int

-size

+MyArrayList ()
+MyArrayList (objects: E[])
+trinToSize(): void

—ensureCapacity(): void
~checkIndex (index: int): void

Array for storing elements in this array list.

The number of elements in the array

Creates a default array list.
Creates an array list from an array of objects.

“Trims the capacity of this array lst to the list's
current size.

Doubles the current array size if needed.
Throws an exception if the index is out of
bounds in the list.

OPS/images/C05pg187_001.png
public class lestlontinue {

int sum = 0;
int number = 0;

while (number < 20) {

number++;
if (number

continue;
10 C—- sum += number;
11 }

13 System.out.printin("The sum is

public static void main(String[] args) {

10 || number == 11)

+ sum);

continue

OPS/images/altmath_214.png
6+64+04+8+0+/4+48+3=3

OPS/images/ASSET40412.png
aw/2
(x>

an/z |

~height >

=lalx|

~——width—>
(a)Rectangle(x, y, w, h)

(b) Multiple rectangle:

are displayed.

OPS/images/ASSET41305.png
LY

W Q| ©
((Rotate)

(b)

OPS/images/altmath_810.png
Elc,) < e, < E(c,) < e; < E(c,) < e, < E[c,)

OPS/images/Fig31-55.png
Investment Amount:
Number of Years:

Annual Interest Rat

Future value: $11215.65 $10590.40

Calculate

OPS/images/ASSET43208.png
% validate Form - Mozilla Firefox

Fle Edt View History Bookmarks Tooks Help

£} Valdate Form x /alidate Form
€ @ locahost:8080/jsf2demoj faces/VaidateForm c|[B-coge Pl & A

Name: flobn
SSN: [iii223338
Age: ,347
Heightfi5

Submit_[You entered Name: John SSN: 111-22-3333 Age: 34 Height: 4.5

OPS/images/altmath_323.png

OPS/images/ASSET41384.png
=lolx];
Entera il | c\book\Welcome.Java

[Exerdise17_21
Enter a fle: | c\bookiwelcome java

=lolx|

0010111100101111001000000101010001 10100001 10100101 11001100/
‘011000010111000001 11000001 101 10001 10100101 1000110110000101
011010010110111011011 100010000001 11000001 11001001101 11101 |
01110010011000D1011011010010000001 11000001 11001001 10100101
1011101000111001 1001000000101011101 10010101 101 1000110001101
01101101011001010010000001 11010001101 111001000000100101001 <

Save the change

2F2F20546869732061 70706069636 174696F6E2070726F6772616D2. |
A732057656C636FED65207416F201A6 1766 12 10D0A7075626CE9632¢
2057656C63676065207B200D0A20207075626C69632073746 17463
1206D61696£28537472696E67585D206172677329207820000A202]
TG 2 O TICOE TSI CORS20TIE
12229330D0A20207DODOATDODOA

save the crange

(@)

(b)

OPS/images/altmath_616.png

OPS/images/altmath_787.png
interest = balance x (annuallnterestRate /1200)

OPS/images/altmath_108.png
(82, 250 - 33, 950)

OPS/images/ASSET40389.png
—red: double
~green: double
~blue: double
-opacity: double

‘The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

+Color (r: double, g: double, b:
double, opacity: double)

+brighter(): Color
+darker (): Color
+

Te): Color

+

double. opacity: double): Color

‘The red value of this color (between 0.0 and 1.0).
‘The green value of this color (between 0.0 and 1.0).
‘The blue value of this color (between 0.0 and 1.0).
‘The opacity of this color (between 0.0 and 1.0).

Creates a Color with the specified red, green, blue, and opacity values.

Creates a Color that is a brighter ver Color.
Creates a Color that is a darker version of this Color.
Creates an opaque Color with the specified red, green, and blue values.

on of thi

Creates a Color with the specified red, green, blue, and opacity values.

Creates a Color with the specified red. green, and blue values in the
range from 0 t0 255.

Creates a Color with the specified red, green, and blue values in the
range from 0 to 255 and a given opacity.

OPS/images/Fig33-15.png
] =lalx|
Wed Apr 17 20:59:25 EDT 2013: Server started at socket 8000 1
Wed Apr 17 20:59:25 EDT 2013: Wait for players to join session 1
Wed Apr 17 20:59:31 EDT 2013: Player 1 joined session 1

Player 1's IP address127.0.0.1

Wed Apr 17 20:59:40 EDT 2013: Player 2 joined session 1
Player 2's IP address127.0.0.1

40 EDT 2013: Start a thread for session 1
40 EDT 2013: Wait for players to join session 2

yD}

OPS/images/altmath_70.png

OPS/images/AAKMMMO0.png
1

6|3]s

9

9|s|3]4]s

1

3l4]o|7]8]o]1]2

5

6|7]2

1]o]s]3]«][2]5]6]7
s|s|of7]e]1]4]2]3
a|2]6[s[5[3]7]9

7]i]3]o]2[4]8]5]6
9le|r]s[3]7]2]8]4

2[8]7]4

3[4]s[2]s]6]1]7]9

Solution

9

(b) Solution

(a) Puzzle

OPS/images/ASSET41369.png
sl

Choose Selecton Mode: | MULTIPLE, ™

Japan
Korea

Red K@))T

=lolx]

ndo Green (<0008
farte Bue [(SC T)
et e e pan zea eam opaoty [XCC J»] o
@ (b) ©

OPS/images/page56.png
int 1 = 10; Same effect as

int newNum = 10 * (++1); =1+

int newNum = 10 * i;

System.out.print("i is " + i
+ " newNum is " + newNum):

OPS/images/ASSET41356.png
—duration: ReadOnlyObjectProperty
<Duration>

—width: ReadOnlyIntegerProperty
~height: ReadOnlyIntegerProperty

+Media(source: String)

‘The getter methods for property values are provided
in the class, but omitted in the UML diagram for brevi

“The duration in seconds of the source media.

The width in pixels of the source video.
The height in pixels of the source video.

Creates a Media from a URL source.

OPS/images/altmath_285.png
axtby=e od- _af-ec
cx+dy=f X"ad-bc Y~ ad-bc

OPS/images/altmath_242.png

OPS/images/Fig14-11.png

OPS/images/altmath_868.png

OPS/images/Fig25-05.png
+search(e: E): boolean
+insert(e: E): boolean
+delete(e: E): boolean
+inorder(): void
+preorder(): void
+postorder(): void
+getSize(): int
+isEmpty(): boolean
+clear(): void

Override the add, isEmpty, remove,
containsATl, addAll, removeAll,
retainAll, toArray(), and
toArray(T[]) methods defined in
Collection using default methods.

Returns true if the specified element is in the tree.

Returns true if the element is added successfully.

Returns true if the element is removed from the tree successfully.

Prints the nodes in inorder traversa

Prints the nodes in preorder traversal.
Prints the nodes in postorder traversal.
Returns the number of elements in the tree.
Returns tru if the tree is empty.

Removes all elements from the tree.

OPS/images/altmath_187.png
W X2x1,

OPS/images/AAKMFKW0.png
Decimal

19
Kl

Binary
00001

00010
00011

10011
1111

50000
bi00 0

10000

1000

10000 100

10 10

1o 1

10011 T
19 31

(a)

(b)

OPS/images/altmath_144.png

OPS/images/AAKMDSP0.png
Create/Modify Source Code

—

Source code (developed by the programmer)

public class Welcome { Saved on the disk
public static void main(String[] args) {
System.out.printin("Welcome to Java!"); Source Code
}

Bytecode (generated by the compiler for JVM
to read and interpret)

)

Compile Source Code.
cg.javac Welcome.java

Method Welcome ()
0 aload 0

1f compile errors oceur

Stored on the disk

Method void main(java.lang.String[]) —@
0 getstatic #2 ..

3 1dc #3 <String "Welcome to Java!">
5 invokevirtual #4 ..
8 return

Run Bytecode
g, java Welcome

“Welcome to Java”

displayed on the console

Welcome to Java! Resull)

If runtime errors or incorrect result

OPS/images/altmath_538.png

OPS/images/ASSET40425.png
== -bx -lolx|| EISESEEEE -lolx|

~10%
Final - 40% o

Midterm - 30%
©A© Project - 20% i
=l ™
(b)

(a)

(c)

OPS/images/altmath_279.png
Area=—5 =
4xtan(Z)

OPS/images/altmath_872.png

OPS/images/AAKMNDL0.png
+Date()
+Date (elapseTime: long)

+toString(): String
+getTime(): Tong

+setTime(elapseTime:

Tong): void

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1,1970, GMT.

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,
1970, GMT.

Sets anew elapse time in the object.

OPS/images/altmath_459.png
m2n,

OPS/images/altmath_831.png

OPS/images/altmath_287.png

OPS/images/altmath_651.png

OPS/images/altmath_866.png

OPS/images/altmath_694.png
degree > = K,

OPS/images/altmath_823.png

OPS/images/AAKMNZU0.png
elements [capacity — 1]

elements[size ~ 1]

elements[1]
elements[0]

top

bottom

size

I« capacity

OPS/images/Fig38-16.png
ras
5 mis1s
onn
3029
.

(Check the bores if your birtaday i nthese ses.

2367 4567 859100
01141s 2E1IS 2131IS
81902 NAN® UBBT
6273031 3293031 28293031
n 3 I3

16171819
nnan
2262627
529303
v

Py

OPS/images/altmath_501.png
1<n

OPS/images/AAKNJPM0.png
va. lan Runnab7e'<} m // Client class
public class Client {

/1 Custom task class public void someMethod() {
public class TaskClass implements Runnable {
. /| Create an instance of TaskClass
public TaskClass(...) { TaskClass task = new TaskClass(..

) // Create a thread
Thread thread = new Thread(task);
// Implement the run method in Runnable
public void run() { // Start a thread
/1 Tell system how to run custom thread thread.start();

(a) (b)

OPS/images/altmath_116.png
b - 4ac

OPS/images/Fig19-05.png
= Command Prompt

:\book> javac -XLint :unchecked Hax.jaua
Max. java:4: uarning: [unchecked] unchecked call to compareTo(T) as &

if (o .compareTo(o2) > 0)
where T 10 a type-varisble
T extends Object declared in interfoce Coparable
1 warning
©:\book>

OPS/images/altmath_803.png
na

OPS/images/altmath_392.png
aO+al+@+ad+.. +d"V+ar=

OPS/images/AAKNJRR0.png
=10l
\book»java TaskThreadDeno

eaaaacasaaacasab 1b 2b 3b 4b 5b 6b 7b & 9 10 11 12 13 14 15 16 17 18 19 20 21 2
23 24 25 2Gbababababababababa 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

4a 95a 96a 97 98 99 100aaaaassaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbasaaaaaaa
aacaasaasaa
\book>

OPS/images/altmath_221.png

OPS/images/altmath_718.png

OPS/images/AAKCNSM0.png
Charlotte (35.2270869, -80.8431267)

Atlanta
7489954, -84.3879824)

Savannah (32.0835407. ~81.0998342)

Orlando (28.5383:

55,-81.3792365)

OPS/images/Fig37-36.png
] Convert tan Java Source Coc o Syntax....

) syntax-onigheed Code.

@ beohort000/chopte e/ T_1z ! 7+ C|

@ b0 12 7 < C.

Convert Plain Java Source Code to Syntax-Highlighted HTML 1/ This application program prints Welcome to Java!
s Ppublic class Welcome {

Enter Java Source Code:

public static void main(String(] args) (

[/7 #his sppiication progean prints Welcoms ©o Javal
ibiic ciaee elcoma [
Pabiic ctatic void main(strinal) azas) (
Systen.cut printin ("Welcoms 5 Taval®) :)
B
0

Syatem.out.println("Welcome to Java!®)s

OPS/images/AAKNIJL0.png
|« tail

Node 1 Node 2 Node n
head _ > elementt | » element2 _»_element2
next | next - next
—rext |
(a) Circular linked list
Node 1 Node 2 Node n
head > element1 |, » element2 v _element2
next niext >\ nuTT
null previous previous
(b) Doubly linked list
Node | Node 2 Node n
head > elementt | element2 | - _»_element2
next next \ \ next
previous previous previous

(c) Circular doubly linked list

OPS/images/altmath_50.png
1.23456x 10

OPS/images/Fig37-29.png
37_03a - Mo:
Vew Hstory Bookmarks Toos Hep

fox

ercise37_03a E]

=lolx]

& @ localhost:8080/chapter37servietexercise/Exercise37_03a

el

£l a

You are visitor number 2
Host name: 0:0:0:0:0:0:0:1
IP address: 0:0:0:0:0:0:0:1

OPS/images/Fig44-16.png
@ ava - chapterdd/src/mytest/LoanTestjava - Eclpse
File Edit Source Refactor Navigate Search Project Run Window Help

1 package mytest;
2
Jeimport static org.junit.Assert.*;
6

7 public class LoanTest {
]

oTest
void test() (
fail("Not yet implemented®);

OPS/images/altmath_292.png

OPS/images/altmath_401.png
T(n)=20"c*n=0(n)

OPS/images/altmath_259.png

OPS/images/altmath_216.png
Area=

Sx s
4 xtan (%

=)

OPS/images/AAKNJHJ0.png
Seattle (0)

San Francisco (1) -
Los Angeles (2) <<

Dallas (10)

Boston (6)

Houston (11)

Miami (9)

OPS/images/altmath_623.png

OPS/images/ASSET39997.png
Seattle

San Francisco
Los Angeles
Denver
Kansas City
Chicago
Boston

New York
Atlanta
Miami
Dallas

Houston

neighbors[0]

neighbors(1]

neighbors(2]

neighbors(3]

neighbors (4]

neighbors(5]

neighbors[6]

neighbors(7]

neighbors (8]

neighbors (9]

neighbors[10]

[Edge©.1) | [Edge(0.3) | [Edge(0.5) |

[Edge(1,0) | [Edge(1.2) | [Edge(1.3) |

[(Edge@.1) | [Edge.3) | [Edge24) | [Edge.10) |

[Edge3.0) | [Edge(.1) | [Edge(3.2) | [Edge(3.4) | [Edee(3.5) |

[Edge@.2) | [Edge(®.3) | [Edged.5) | [Edge®7) | [Edge(®.8) | [Edged,10) |
I

[Edge(5.0) | [Edge(s.3) | [Edge(s.4)

Edge(6.5) | [Edge(6.7)

[Edge(7.4) | [Edge(7.5) | [Edge(7.6) | [Edge(7.8) |
[Edge®,4) | [Edee(3.7) | [Edge(s,9) | [Edge(3,10) | [Edge(s, 11) |

[[Edee(10.2) | [[Edge(10.4) | [Edge(10,8) | [Edge(10,11) |

Edge(5.6) | [Edge(5.7) |

neighbors(11]

[Edge11,8) | [Edge(11,9) | [[Edge(11,10) |

OPS/images/Fig43-08.png
“

v w
@ @ 20 30 40

LA Xy noon x
(b) (c)

OPS/images/altmath_438.png

OPS/images/ASSET40031.png
parent

Il T o o]
001 2 3 4 5 6

(b)

OPS/images/AAKMUFQ0_b.png
/1 Create a file

java.io.PrintWriter output = new java.io.PrintWriter(file);

// Write formatted output to the file
output.print("John T Smith
output.println(90);
output.print ("Eric K Jones
output.printin(8s);

/1 Close the file
output.close() ;

John T Smith 90
Eric K Jones 85

scores. txt

OPS/images/AAKNFKR0.png
Navigableset [¢-
~
- SortedSet

TreeSet

£ - Abstractset Hashset K LinkedHashset |

Collection

L

Vector Stack

ArrayList

= AbstractList

- List

3
I

AbstractSequentialList f—— LinkedList |

-_beque |

Deque

L- queue gt AbstractQueue PriorityQueue

Interfaces Abstract Classes Concrete Classes

strsctaisi (- —H

OPS/images/altmath_544.png

OPS/images/Fig39-39.png
D) Day of Week.
€ & € [localhost8080/chapter3sfexercise/faces/Exercise39_13xhtml ¢ O @ @ @ =

Day of Week Calculator

Day (1 v|Month [July v]Year 2016 || Get Day of Week |
Day of the Week Friday Time Future

) Day of Week
€ > C [D localhost:8080/chapter39jsfexercise/faces/Exercise39_13xhtml ¢ O @ @ @ =

Day of Week Calculator

Day [1 v Month [July v|Year 2015 |[Get Day of Week |
Day of the Week Wednesday | Time Past

OPS/images/Fig36-06.png
=laix| =lo|x|

Selectalocale Engish (Malta) en_MT Select alocale | Spanish (Cuba) es_CU -
December 2014 didembre 2014
Sunday Monday Tuesday Wednesday Thursday Friday Saturday domingo lunes martes miércoles jueves viemes sibado
1 2 3 4 5 6 12 3 4 s 6
7 8 9 10 u n 13 7 8 9 10 u 2 B
415 16 7 18 1 20 14 15 16 17 B 19 2
21 2 3 2 % 27 2 2 3 s 26 2
% 29 30 3 k] 29 30 3

Prior | Next Prior | Next

OPS/images/AAKNDKV0.png
Jjava.io. InputStream

=

java.io.FilterInputStrean

+BufferedInputStream(in: InputStream) Creates a BufferedInputStream from an
InputStream object.
+BufferedInputStream(in: InputStream, bufferSize: int) Creates a BufferedInputStream from an

InputStream object with specified buffer size.

OPS/images/altmath_316.png

OPS/images/altmath_794.png

OPS/images/altmath_37.png

OPS/images/altmath_766.png
7[4[2[3] = 7% 16* + 4 x 16> + 2 X 16' + 3 X 16"

16° 167 16' 16" = 28672 + 1024 + 32 + 3 = 29731

OPS/images/ASSET40003.png
(a) (b) (c)

OPS/images/altmath_572.png
T(n) =(2+c)+(2x2+c)+ ... +(2x(n- 1)+
=142+ .. +n-1)+dn-1)
72[Vr1]n

o)

+cn-c=m-n+cn-c

OPS/images/Fig41-05.png
| B FindscoreApp S [m[E]

Name | Michael

Score | 100.0

OPS/images/AAKMDSJ0.png
High-Level Source File

5 +'5 * 3.1415;

Output

[Interpreter }

(a)

Machine-Code File

High-Level Source File

55+ 3.1415

- Output
0101100011011100

1111100011000100

area

Executor

(b)

OPS/images/Fig36-15.png
=Ialx|

‘August 2013

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
i 2 3

4 5 6 v 8) 10

11 12 13 14 15 16 17

SR 1320 21 2 25 s

v-) 26 27 28 29 30 31

Aug 9, 2013 8:18:32 AM EST

OPS/images/altmath_72.png
5.74+0.6215¢t,—- 35.75v0-16+0,4275¢,v0-16

OPS/images/Fig33-17.png
Exercise33 1Server started o Fi Mar 11 1922:49 EST 2016
< toa client at Fri Mar 11 192312 EST 2016
Anvual Interest Rate: 3.5

Annual Interest Rate: 3.5

Number of ears: 3 Numberof ears: 3
Loan Amount: 50000 Losn Amount: 50000
monthiyPayment: 146 5103986345515 monthlyPayment 146.5103966345515
totalPayment: 5274 374350843855 totlPayment: 5274.374350843855
i —) 4

OPS/images/altmath_685.png

OPS/images/altmath_510.png
5<i<n/5.

OPS/images/Fig41-11.png
€)% [0 mtpsrocinost080/Address WebServiceChentProject TestAddressWebssenvice sp_ 77 -

Last Name * First Name *

Email

Street
City State Georgia-GA ~ Zip

Search | | Store

* required ficlds

OPS/images/altmath_468.png
index <1.44 logn,

OPS/images/Fig01-13.png
steps ame and Location
1 Choose project L T —
3. Wame and Lacation Eas
projecttocaon: [t _erause..

Propciroter: [Gcmendene

™ s Dedictad Fldr for St Ubrres

— e

<mt o | _ ey

OPS/images/altmath_557.png
Py P,

OPS/images/altmath_596.png

OPS/images/ASSET41363.png
16_04 —lolx| =lolx]
o ::ne‘ 15’

@ Red U Yellow O Green Kilometer 1.602307322544464 Binary —““]

Exel

(a) (b) (©

OPS/images/Fig34-27.png
Extrabxercise34 01— © SN

Record not found
D 121

LastName | smith First Name peger Ml ¢
Address 100 Main Street

City savannah State’ Ga

Telephone| 5714345665

View | Insert | Update | Clear

(a)

CHE

0L

Exercise34.02 - B -

BIOL

(b)

CHEM CS

OPS/images/altmath_840.png
log[ds2]

OPS/images/altmath_816.png

OPS/images/altmath_87.png

OPS/images/altmath_227.png

OPS/images/altmath_251.png

OPS/images/altmath_123.png
3510 <w< =1

55ifl<w< =3
™ =\g5 if3 <w< =10

10.5,if 10 < w < = 20

OPS/images/ASSET41297.png
—/

duration: ObjectProperty<Durat.
—node: ObjectProperty<Node>

orientation: ObjectProperty
<PathTransition.OrientationType>

—-path: ObjectType<Shape>

n>

+PathTransition()

+PathTransition(duration: Duration,
path: Shape)

+PathTransition(duration: Duration,
path: Shape, node: Node)

‘The getter and setter methods for property
- values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

‘The duration of this transition.
‘The target node of this transi
‘The orientation of the node along the path.

n.

The shape whose outline is used a

a path to animate the node move.

Creates an empty PathTransi tion.
Creates a PathTrans 1 tion with the specified duration and path.

Creates a PathTransition with the specified duration, path, and node.

OPS/images/Fig31-05.png
=lalx|
oConl point @Conol ot 1
oContra point 2 ool it 2

(a) (b)

OPS/images/Fig37-10.png
H]
2
g
£

OPS/images/ASSET37466.png
Starting URL

URL1
URL2
URL3
URLI1 URL2
URLIL URL21
URLI2 URL22

URL3

URL31
URL32
| URL33

URLA

OPS/images/tab_pg24.png
avafx.scene.control.Control

T

javax_scene.control . SplitPane

1

-orientation: ObjectProperty<Orientation>

+SplitPane()
+getItems():

ObservableList<Node>

The getter and setter methods for property values and
a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

Specifies the o

ntation of the pane.

Constructs a default split pane with horizontal orientation.
Returns a lst of items in the pane.

OPS/images/ASSET40418.png
+Polygon()
+Polygon(double. .. points)

+getPoints():
ObservableList<Double>

Creates an empty Polygon.
Creates a Polygon with the given points.
Returns a list of double values as x- and y-coordinates of the points.

OPS/images/AAKNFKW0.png
java.util.AbstractSequentiallist<E>

+LinkedList ()

+LinkedList(c: Collection<? extends E>)
+addFirst (element: E): void

+addLast (element: E): void
+getFirst(): E

+getlast(): E

+removeFirst(): E

+removelast(): E

Creates a default empty linked list.

Creates a linked list from an existing collection.
Adds the element to the head of this list.

Adds the clement to the tail of this list.

Returns the first element from this st

Returns the last element from this list

Returns and removes the first element from this list.
Returns and removes the last element from this list.

OPS/images/Fig35-05.png
Batch update completed
‘The elapsed time is 174981

Non-Batch update completed
The elapsed time s 374981

Batch Update | | Non-Batch Update

mysal:
‘com.mysal.jdbe.Driver

Database URL, jdbc:mysal://localhost/javabook

Username | soott

Password |

Gose Dilog |

(a)

(b)

OPS/images/altmath_170.png

OPS/images/altmath_581.png
(n)=T (g) +T (g) +mergetime

OPS/images/page360-01.png
public class Circle {
private double radius;
public Circle(double radius) {
this.radius = radius;
} (_/ The this keyword is used to reference the
data field radius of the object being constructed.
public Circle() {
this(1.0);

) (% Thethis keyword is used to invoke another
constructor.

OPS/images/ASSET40403.png
~alignment: ObjectProperty<Pos>
—fillHeight: BooleanProperty
~spacing: DoubleProperty

+HBox ()
+HBox (spacing: double)

+setMargin(node: Node, value:
Insets): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

‘The overall alignment of the children in the box (default: Pos TOP_LEFT)
Is resizable children fill the full height of the box (default: true).
‘The horizontal gap between two nodes (default: 0).

Creates a default HBox.
Creates an HBox with the specified horizontal gap between nodes.
Sets the margin for the node in the pane.

OPS/images/altmath_453.png
- - 14 q

2 + a,x'+a,
1+a _xm2+ .., »
=aqx"ta_x"l+a,_ .,

OPS/images/image3.png
230

343 454 45 59
453 34 345 9

1
1

bucket{0] bucket[1] bucket[2] bucket[3] bucket[4] bucket[5] bucket[6] bucket[7] bucket[8] bucket[9]

OPS/images/Fig12-12.png
o =19
o:\exercise>java Exercisel2_01 4 + 5
W+5:9

‘ommand Prompt

\exercise>java Exercise12_01 4 - §
-5 = -1

0

lc:\exercise>java Exercisel2_01 4x - 5
lurong Input: 4x

c: \exercis

A

OPS/images/altmath_614.png

OPS/images/ch37_pg35.png
<<interface>>
Jjavax.serviet.http.HttpSession

+getAttribute(name: String): Object

+setAttribute(name: String, value: Object):
void

+getId(): String

+getlastAccessedTime(): Tong

+invalidate(): void

+isNew() : boolean

+removeAttribute (nam

string): void

+getMaxInactivelnterval (): int
+setMaxInactivelnterval (interval: int): void

Returns the object bound with the specified name in this session, or
nullif 10 object s bound under the name.

Binds an object (o this session, using the specified name. If an
object of the same name is already bound to the session, the
objectis replaced.

Returns a string containing the unique identifier assigned o this
session. The identifier is assigned by the servlet container and
mplementation dependent

Returns the last time the client sent a request associated with this
session, as the number of milliseconds since midnight January
1, 1970 GMT, and marked by the time the container received
the request.

Invalidates this session, then unbinds any objects bound o it
Returns true if the session was just reated in the current request.

Removes the object bound with the specified name from this ses-
sion. If the session does not have an object bound with the
specified name, this method does nothing.

Returns the time, in seconds, between client requests before the
servlet container will invalidate this session. A negative ¢
indicates that the session will never time-out. Use setMaxInac-
tivelnterval to specify this value.

OPS/images/altmath_283.png

OPS/images/altmath_798.png

OPS/images/AAKNKTY0.png
Enrollment Table

ssn courseld dateRegistered grade
444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 ©
444111111 11111 2004-03-19)
444111111 11112 2004-03-19 F
444111111 11113 2004-03-19 A
444111112 11114 2004-03-19 B
444111112 11115 2004-03-19 €
444111112 11116 2004-03-19 D
444111113 11111 2004-03-19 A
444111113 11113 2004-03-19 A
444111114 11115 2004-03-19 B
444111115 11115 2004-03-19 F
444111115 11116 2004-03-19 F
444111116 11111 2004-03-19 D
444111117 11111 2004-03-19 D
444111118 11111 2004-03-19 A
444111118 11112 2004-03-19 D
444111118 11113 2004-03-19 B

OPS/images/altmath_266.png
(125+40)

OPS/images/ASSET39945.png
Controller

f

BSTAnimation

OPS/images/altmath_801.png
na

OPS/images/altmath_712.png

OPS/images/altmath_185.png

OPS/images/altmath_340.png

OPS/images/ASSET43214.png
Confirm Student Registration - Mozilla Firefox =|olx|
He Edt Vew Hstory Bookmarks Tooks Help
Confirm Student Registration |+

€ & localhost:8080/jsf2demo/faces/AddressRegstration.xhtmi ¢|[B- cooge rle

You entered

Last Name: Smith
First Name: John

ML C

Telephone: 213549989
Email: smith@gmail.com
Street: 100 Main Street
City: Atlanta

Street: 100 Main Street
City: Atlanta

State: GA

Zip: 34313

Confirm | _Go Back

OPS/images/altmath_629.png
=10

OPS/images/altmath_138.png
n/6

OPS/images/ASSET41324.png
Jjavafx.scene.control.Labeled

‘The getter and setter methods for property
values and a getter for property itself are provided
~in the class, but omitted in the UML diagram for brevity.

~onAction: ObjectProperty<EventHandler | | Defines a handier for handling a buttons action.
<ActionEvent>>

+Button() Creates an empty button.
+Button(text: String) Creates a button with the specified text.
+Button(text: String, graphic: Node) Creates a button with the specified text and graphic.

OPS/images/ASSET41354.png
javafx.scene.layout.Pane

~token: char

+getToken(): char

+setToken (token: char): void
~handleMouseClick(): void

Token used in the cell (default:").

Returns the token in the cell.
Sets a new token in the cell.
Handles a mouse-click event.

OPS/images/altmath_212.png

OPS/images/altmath_727.png

OPS/images/ASSET41339.png
W TextAreaDemo - o x

~<—— DescriptionPane
The Canadian national flag ..

Alabel >

showing an
mage and a ~——— Atextarea
text inside a

4 scroll pane

Canada

OPS/images/altmath_855.png

OPS/images/AAKNDLE0.png
+BitOutputStrean(file: File)
+writeBit (char bit): void
+writeBit(String bit): void
+close(): void

Creates a Bi tOutputStream to write bits to the file.
Writes a bit 0" or 1" to the output stream.

‘Writes a string of bits 1o the output stream.

‘This method must be invoked to close the stream.

OPS/images/AAKNHHV0.png
+singleton(o: Object): Set

+singletonList(o: Object): List
+singletonMlap(key: Object, value: Object): Map
+unmodi fiableCollection(c: Collection): Collection
+unmodifiableList (1ist: List): List

+unmodi fiableMap(m: Map):
+unmodi fiableSet (s: Set):
+unmodi fiableSortedMap(s:
+unmodifiableSortedSet (s:

Map
set

SortedHap) : SortedMap
SortedSet): SortedSet

Returns an immutable set containing the specified object.
Returns an immutable list containing the specified object.
Returns an immutable map with the key and value pair.
Returns a read-only view of the collection.

Returns a read-only view of the list.

Returns a read-only
Returns a read-only view of the set.
Returns a read-only view of the sorted map.
Returns a read-only view of the sorted set

ew of the map.

OPS/images/altmath_298.png

OPS/images/ASSET41307.png
(a) (b)

OPS/images/altmath_114.png
ax:+ bx+c =10

OPS/images/pg14.png
public class ClassName {

,

public class ClassName extends Object {

}

OPS/images/Fig31-14.png
(b) (d)

OPS/images/Fig31-44.png
(T FXMLDocument.fxml - o
Fle Edt Viw insen Modfy Amange Preview Window Help

Library & o | B BorderPane) o HBox) 0 Textrield Inspector. a o
v Containers > Properties : TextField
- Controls > Layout: Textfield
- o v Code: TextField
> Miscellaneous Identity
. shapes Number Number2 Result wid |
- Charts Main
. £ On Action
Document o
v Hierarchy

nsert RGHT DragDrop

On Drag Detected
- Controller

OPS/images/AAKMNZP0.png
Pers

1 Supervisor

OPS/images/Fig44-09.png
O Select JUnit Version X

Select JUnit version for which the created test
skeletons should be created:

OBUnit 3.%
(®JUnit 4.x

Cancel Help

OPS/images/altmath_394.png
T m3+100m2+n, 2"+ 45n, n2"+ n22"

OPS/images/altmath_4.png

OPS/images/altmath_63.png

OPS/images/Fig42-04.png
Tree<E>
!
o Tree24<E>
-root: Tree24Node<E> The root of the tree.
+size: int The size of the tree.
+Tree24() Creates a default 2-4 tree.
+Tree24 (objects: E[]) Creates a 2-4 tree from an array of objects.
+search(e: E): boolean Returns true if the element is in the tree.
+insert(e: E): boolean Returns true if the element is added successfully.
+delete(e: E): boolean Returns true if the element is removed from the tree
successfully.
-matched(e: E, node: TreeNode<E>): boolean Returns true if element e is in the specified node.
-getChildNode(e: E, node: TreeNode<E>): Returns the next child node to search for e.
Tree24Node<E>
-insert23(e: E, rightChildOfe: Tree24Node<E>, node: || Inserts element along with the reference to its right child
Tree24Node<E>): void to a 2- or 3-node.
-split(e: E, rightChildOfe: Tree24Node<E>, Splits a 4-node U into u and v, inserts € to U or v, and
Tree24Node<E>, v: Tree24Node<E>): E returns the median element.
-locate(e: E, node: Tree24Node<E>): int Locates the insertion point of the element in the node.
-delete(e: E, node: Tree24Node<E>): void Deletes the specified element from the node.
-validate(e: E, u: Tree24Node<E>, path: Performs a transfer and fusion operation if node u is
ArrayList<Tree24Node<E>>): void empty.
-path(e: E): ArrayList<E> Returns a search path that leads to element e.
—] Tree24Node<E>
elements: ArrayList<E> An array list for storing the elements.

child: ArraylList<Tree24Node<E>> | | An array list for storing the links to the child nodes.

+Tree24() Creates an empty tree node.
+Tree24(o: E) Creates a tree node with an initial element.

1

Link

OPS/images/AAKNJHA0.png
T2 and T3 may have

\
i

ferent heights, but

T3 1 atleast one has a

height of h.

(b)

OPS/images/altmath_155.png

OPS/images/ASSET37781.png
=lalx|

arentt

2

P E5 e b5 Ga b CVED)

tsof [i3 ss[a[s51E]

ow

2 5 5 3 o B O s o B s B 2 e)

e [55 [m[zi]38] |

N N I

arrents

oot

[sep]

Reset

[sep] Reset

(a)

(b)

OPS/images/AAKNIXI0.png
BST. TreeNode<E>

#element: E

#left: TreeNode<E>

#right: TreeNode<E>
#parent: TreeNode<E>

OPS/images/C05pg175_001.png
for (;

}

i) o
/1 Do something

(a)

Equivalent

for (:true;) {
/1 Do something

)

(b)

Equivalent

This is betér

while (true) {
/1 Do something

(©)

OPS/images/ASSET40001.png
[| =
MTTHH MTTHHTTHH[TTTT
UTTR MTTHTTTH[TTTT
[mEET T (RN (IRIRIET (IEIRIED
InlmhET IR R IR

Sdve || Sartover

(sdw) _smrowr

(a)

(b)

OPS/images/AAKMFLW0.png
Hl

wl wl
w2
w2
n| . . (xly1) n o1l y1)
(2.y2) IR
102.)2)
t
(a) (b)

OPS/images/ch36_pg5.png
java.text.DateFormat

+format (date: Date): String
+getDateInstance(): DateFormat
+getDatelnstance (dateStyle: int): DateFormat
“getbatelnstance (dateStyle: int. alocale:
Locale) : DateFormat
+getDateTinelnstance(): DateFormat

+getDateTimeInstance(dateStyle: int
timeStyle: int): DateFormat
+getDateTimeInstance(dateStyle: int. timeStyle:
int. alocale: Locale): DateFormat
+getInstance(): DateFormat

Formats a date into a date/time string.
Gets the date formatter with the default formatting style for the default Io
Gets the date formatter with the given formatting style for the default locale
Gets the date formatter with the given formatting style for the given locale.

Gets the date and time formatter with the default formatting style for the
default locale.

Gets the date and time formatter with the given date and time formatting
styles for the default locale.

Gets the date and time formatter with the given formatting styles for the
given locale,

Gets a default date and time formatter that uses the SHORT style for both the
date and the time.

OPS/images/Fig31-59.png
o Exercise31 22 - o

Delete Selected Row
Country Capital _Population (million) _Is Democratic?
Usa Washi... 2800 true
Canada Ottawa 320 true
London 600
Germany Berin 830 true
France Paris 600 true
Country: Capital Population

Is democratic? Add new row

OPS/images/altmath_129.png

OPS/images/altmath_485.png

OPS/images/Fig42-19.png
parentOfu [... i... parentOfu [... parentOfu | ... j..

N }
7/
g

wl)] [k Ju wl i] [k]u w7

(a) Before a transfer is performed (b) Key i moved to node u (¢) Key j moved to parentOfu

Ay

OPS/images/altmath_668.png

OPS/images/AAKCNSX0.png
[8 8> 8—>]
o 1234 010 Java 1o 5.6
1234 (IT0 Java (700 5., 6 (01T

OPS/images/AAKNIJI0.png
head tail
Al ¢
o | o | e | e |- e
next next | J next next ol
A
Delete this node
() Before the node is deleted.

head tail
Y ¢
R [(STl [t
/Elg next) next next |/ J a1l

This node is deleted

OPS/images/ASSET36400.png
(a)

x = rxcos(a) and y = rxsin(a)

e

(b)

0 oclock position

OPS/images/altmath_870.png

OPS/images/ASSET39999.png
$ad,

(a) Circles are connected

(b) Circles are not connected

OPS/images/altmath_742.png

OPS/images/AAKNKVK0.png
0 7 <—— Quotient

0 12
7 11 <~——— Remainder

hy hy

OPS/images/altmath_325.png
fof.

OPS/images/altmath_140.png
[ln(x) = loge(x]].

OPS/images/AAKMNUM0.png
+StringBuilder ()
+StringBuilder (capacity: int)
+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.
Constructs a string builder with the specified capacity.
Constructs a string builder with the specified string.

OPS/images/altmath_525.png

OPS/images/AAKNIWZ0.png
parent >

current >

No left chil

parent —»>

current may be a left or a

right child of parent

current points the node

to be deleted

Subtree may be a left or a
right subtree of parent

OPS/images/AAKMKCD0.png
7 ~—— Quotient

16) 7 16 123

0 12
7 11 < Remainder

| '

Iy hy

OPS/images/C09-pg358_001.png
public class Circle {

public class Circle {
private double radius;

private double radius;

public double getArea() { public double getArea() {
return this.radius * this.radius * Math.PI; Equivalent return radius * radius * Math.PI;

) E }
public String toString() {

return “radiu; + this.radius
+ "area: " + this.getArea();

public String toString() {
return "radius: " + radius
+ "area: " + getArea();

(a) (b)

OPS/images/altmath_429.png
T(n) = 0(11)

OPS/images/altmath_796.png
sin(x) < =1,

OPS/images/altmath_78.png

OPS/images/AAKNJGG0.png
0 0

0
h(12) —> 1| key: 45 1 key:d5 f
2 2 2
3 h(12) + h'(12) —> 3 key:58 | 3
4 4 key: 4 4
5 5 h(12) + 2*h'(12) —>5
6|key: 28 6 key:28
7. 7. 7.
8 8
9 9
10| key: 21 10 key:21

OPS/images/AAKNKUE0.png
o Edt Fomat e

Fresee CobTe courze
courseld char(5),

subject1d char () not null,
Zoutsenumber intager,

title varchar(50) not null,
Ruofcredits integer,
prinary key Ccourserd)

Command Prompt - mysql

wsq1> drop table Course;
Query OK, 8 rous affected <8.88 sec>

wsql> source c:\book\Test.sql -
Query OK, @ rows affected <9.08 sec)

wsal> o B
< 7

(a)

(b)

OPS/images/altmath_194.png
5

OPS/images/C05pg161_001.png
loop-continuation-conaition

int count = 0;/

while (count < 100) {
System.out.printin("Welcome to Java!" Toop body
count++;

}

OPS/images/Fig38-03.png
)2 |[[E wtp/ocainost8084 langweb/CurentTimejsp 77 - C | [- Google

Current time is Sat Jun 11 09:50:28 EDT 2011

OPS/images/Fig40-01.png
Client Host

Server Host

[Server Object (4) Data Server Object
Interface Communication Interface

Server
Skeleton

Server
Object

Client
Program

(3) Return
Server Stub RMI Registry Host (1) Register Server Object
RMI
Registry

(2) Look for Server Object

OPS/images/Fig20-15.png
(T
« - ¢ asseoal

Google stee-a2n

Web Shoppng Images News Maps More

About 991,000 results (022 seconds)

st Eea=

321

OPS/images/ASSET41291.png
+getButton(): MouseButton
+getClickCount () : int
+getX(): double

+getY(): double
+getSceneX(): double
+getSceneY(): double
+getScreenX() : double
+getScreenY() : double
+isATtDown(): boolean
+isControlDown(): boolean
+isMetaDown () : boolean
+isShiftDown(): boolean

Indicates which mouse button has been clicked.
ed with this event.

Returns the number of mouse clicks associ

Returns the x-coordinate of the mouse point in the event source node.
Returns the y-coordinate of the mouse point in the event source node.

Returns the x-coordinate of the mouse point in the scene.
Returns the y-coordinate of the mouse point in the scene.
Returns the x-coordinate of the mouse point in the screen,
Returns the y-coordinate of the mouse point in the sereen.
Returns true if the ATt key is pressed on U
Returns true if the Control key is pressed on this event.
Returns true if the mouse Meta button is pressed on this event.
Returns true if the Shit key is pressed on this event.

s event.

OPS/images/AAKMKDJ0.png
keyis 11

key < 50

key>7

Tow mid high
¥ v v
(0] (1] 121 B3] [4] (5] 16] [7) [8) [9F [10] [11][12]
list [2 47 10 11 45 50 59 60 66 69 70 79]
Tow mid high
v Y ¥
[0 (1 21 B3] [[5)
ist[2 4 7 10 1 45
Tow mid high
FRR A
Bl 141 151

list 10 11 45

OPS/images/AAKMVAE0.png
+byteValue(): byte
+shortValue(): short
+intvalue(): int
+longValue(): Tong
+floatValue(): float
+doubleValue(): double

Returns this number as a byte.
Returns this number as a short.
Returns this number as an int.
Returns this number as a long
Returns this number as a float.
Returns this number as a double.

Double |

[

Float

Long

=
I I

Integer | Short

Bye | Biginieger | BigDecimal |

OPS/images/altmath_781.png
4%x16%+3x16'+1x16°

OPS/images/Fig43-23.png
childOfu is

double black [———>

childOfu

(a) (b)

OPS/images/altmath_18.png

OPS/images/altmath_670.png

OPS/images/altmath_653.png
(k+ %) %N,

OPS/images/Fig17-15.png
File exists
Delete file
Copy
Source

does not
exist

>

—

B Command Prompt

:\book>java Copy Welcome jaua Tomp. jaua
Target ile Tewp.java already existe

©:\book>de1 Ter

jaus

:\book>java Copy Welcone. java Tomp. jaus
178 bytes copied

:\book>jaua Copy TTT_ java Temp. jau
Source File TTT.jaua doss not exist

e:\book>.

- o

OPS/images/AAKNDKM0.png
+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,
Ten: int): int

+close(): void
+skip(n: Tong): long

Reads the next byte of data from the input stream. The value byte is returned as
an int value in the range 0-255. If no byte is available because the end of
the stream has been reached, the value -1 is returned.

Reads up to b Tength bytes into array b from the input stream and returns the
actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores them in b[0ff], b[off+1], ..
b[off+1en—1].The actual number of bytes read is returned. Returns —1
at the end of the stream.

Closes this input stream and releases any system resources oceupied by it

Skips over and discards n bytes of data from this input stream. The actual
‘number of bytes skipped is returned.

OPS/images/altmath_414.png

OPS/images/AAKMORY0.png
+ArrayList()
+add(e: E): void
+add(index: int, e:
+clear(): void
+contains(o: Object): boolean
+get(index: int): E
+index0f (0: Object): int
+isEmpty(): boolean
+lastIndex0f (0: Object): int
+remove(o: Object): boolean

E): void

+size(): int
+remove(index: int): E

+set(index: int, e: E)

Creates an empty list.
Appends a new element e at the end of this list.

Adds a new element € at the specified index in this st
Removes all elements from this list

Returns true if this list contains the
Returns the element from this list at the specified index.
Returns the index of the first matehing element in this
Returns true if this lst contains no clements

ment o,

Returns the index of the last matching element in this list.
Removes the first element CDT from this list. Returns true
if an clement is removed.
Returns the number of elements in this list.
Removes the element at the specified index. Returns
the removed element.
Sets the element at the specified index.

OPS/images/altmath_542.png

OPS/images/Fig38-18.png
xercise38_19 - Mozilla Firefox = o]

Fe Edt Vew Hstory Bookmarks Took Hep

€ @ bcahost:8080/chapter38spexerce/Exercse38_19.5p c|[@-c0p] & A

ID: [12344
First Name: [John Middle Initial: [D Last Name: [Smith

Address: [100

City: [Savannah State: [Georgia

Telephone: [9123445656 Email: [smith@gmail.com

Staff Information E

_View | _insert | _Update | Rosot

OPS/images/altmath_598.png

OPS/images/ASSET40416.png
~centerX: DoubleProperty
—centerY: DoubleProperty
—radiusX: DoubleProperty
—radiusY: DoubleProperty
~startAngle: DoubleProperty
~length: DoubleProperty
~type: ObjectProperty<ArcType>

+Arc()

+Arc(x: double, y: double,
radiusX: double, radiusY:
double, startAngle: double,
Tength: double)

The getter and setter methods for property values
and a geter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

The x-coordinate of the center of the ellipse (default 0).
The y-coordinate of the center of the ellipse (default 0).
‘The horizontal radius of the ellipse (default: 0).

The vertical radius of the ellipse (default: 0).

The start angle of the arc in degrees.

‘The angular extent of the arc in degrees.

The closure type of the arc (ArcType . OPEN, ArcType . CHORD,
ArcType.ROUND).

Creates an empty Arc.
Creates an Arc with the specified arguments.

OPS/images/altmath_512.png

OPS/images/tab_pg26.png
avafx.scene.control.Control

javafx.scene.control . TabPane

-side: ObjectProperty<Side>

+TabPane ()
+getTabs(): ObservableList<Tab>

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

‘The position of the tab i the tab pane. Possible values are:
Side.TOP, Side.BOTTOM, Side. LEFT, and Side.RIGHT
(default: Side . TOP)

Creates a default Tab Pane.
Returns a list of tabs in this Tab Pane.

OPS/images/altmath_46.png
ax10%

OPS/images/altmath_89.png
‘xfy|<£,

OPS/images/AAKNKTV0.png
Application Users

!

Application Programs |

! I

DatnbascManagemenlSysleml - DalabaseManagememsystem

oL L

OPS/images/altmath_210.png

OPS/images/Fig36-17.png
=loix|

Enter Loan Amount, Number of Years, and AnnualInterest Rate | Dispiay Loan Schedule
Loan Amount 10000

Number of Years | 1

Aonual Interest Rate 7

Monthly Payment: $865.27
Tota! Payment: $10,383.21

Payment# Interest Principal Balance
$5833 $806.93 $9,193.07
$5363 SBILGH 83814
S4889 81638 $7,565.05
SHM13 SR1M $6,74391
$3931 $825.93 $5917.98 P

OPS/images/altmath_857.png

OPS/images/ch03_pg82.png
if (score >= 90)
System.out .print ("
else
if (score >= 80)
System.out.print("B");
else
if (score >= 70)

System.out.print ("C");
else
if (score >= 60)
System.out.print("D");
else
System.out.print ("F");

Equivalent

This is better

if (score >= 90)
System.out.print("A");
else if (score >= 80)
System.out.print ("B");
else if (score >= 70)
System.out.print("C");
else if (score >= 60)

System.out.print ("D");
else
System.out.print ("F");

()

OPS/images/ASSET41309.png
87

OPS/images/altmath_296.png
12,3, 1,5, 3 4 6.

OPS/images/altmath_814.png

OPS/images/Fig35-07.png
Exercise35_03

Table Name | Enrailment

Table Name | enrollment

ssn courseld dateRegistered grade ssn courseld dateRegistered
AHILNO Il 2013041 A 444111110 11111 2013-04-18 A
a0 12 20130418 8

484111110 11112 2013-04-18 8
4o s 20130448 c
i o (anes o aa111110 11113 2013-04-18 c
a2 |2030418 3 | |asunn 2013-04-18 o 1

(a) (b)

OPS/images/AAKNHIY0.png
v 2

|
v %0

(a) A convex hull

(b) A nonconvex polygon

Exercse22_13

INSTRUCTION
Add: Left Click
Remove: Right Click

=lolx]|

(c) Convex hull animation

OPS/images/altmath_31.png

OPS/images/altmath_74.png

OPS/images/altmath_281.png
b - 4ac.

OPS/images/Fig33-19.png
Exercise33 04Client =
Evercise33_04Server started at Fri Mar 11 19:47:36 EST 2016 E You are visitor 5

Starting thread 0

Client P /127.00:1 Exercise33_04Client —
Starting thread 1

Client 1P /127.00.1 You are visitor 6
e —

OPS/images/ASSET43198.png
New JSF Managed Bean

Steps Name and Location

1. Choose File Type

. Class Name
2. Name and Location

[TimeBean

Project: [isf2demo

Location: [source Packages =]

Package: [jsf2demo ~]

Created File: [C:\book\jsf2demo\src\java\jsf2demo\TimeBean.java

I™ /Add dato to configuration file

Configuration File: |

Name: [timeBean
Scope:

Bean Descriptio ﬁ‘

<Back | nexi- |[CEnish | cancel | help |

OPS/images/AAKMNDD0.png
class Circle {
/** The radius of this circle */

double radius = 1; <« Datafield

Construct a circle object *
Circle() {
}

~—————{— Constructors

Construct a circle object */
Circle(double newRadius) {
radius = newRadius;

}

Return the area of this circle */
double getArea() {
return radius * radius * Math.PI;

}

/** Return the perimeter of this circle */

double getPerimeter() { <]
return 2 * radius * Math.PI;

}

/** Set a new radius for this circle */
void setRadius (double newRadius) {
radius = newRadius;
}
Y

{— Method

OPS/images/AAKNJHU0.png
—-root: int
—parent: int[]
—searchOrder: List<Integer>

+SearchTree(root: int, parent: int[],
searchOrder: List<Integer>)

+getRoot () : int

+getSearchOrder (): List<Integer>

+getParent (index: int): int

+getNumberOfVerticesFound() : int

+getPath(index: int): List<v>

+printPath(index: int): void
+printTree(): void

“The root of the tree.
‘The parents of the vertices.
“The orders for traversing the vertices

Constructs a tree with the specified root, parent, and
searchOrder

Returns the root of the tree.

Returns the order of vertices searched.

Returns the parent for the specified vertex index.

Returns the number of vertices searched.

Returns a list of vertices from the specified vertex index
to the root.

Displays a path from the root to the specified vertex.

Displays tree with the root and all edges.

OPS/images/AAKNJPG0.png
#tree: UnweightedGraph<Integer>.SeachTree

+NineTai1Hodel ()

+getShortestPath (nodeIndex: int):
List<Integer>

-getEdges () :
List<AbstractGraph.Edge>

*getNode(index: int): char

+getIndex(node: char[]): int

+getFlippedNode (node: char[],
position: int): int

+f1ipACe11 (node: char[]. row: int
oI TRy

+printNode (node: char(]): void

A tree rooted at node 511,

Constructs a model for the nine tails problem and obtains the
tree.

¢ to the root. The path
in a list.

Returns a path from the specified nod
returned consists of the node labels

Returns a list of Edge objects for the graph.

Returns a node consisting of nine characters of Hs and Ts.
Returns the index of the specified node.

Flips the node at the specified position and returns the index
of the flipped node.
Flips the node at the specified row and column.

Displays the node to the console.

+WeightedNineTailModel ()

+getNumber0fF1ips (u: int): int

—getNumber0fFlips(u: int, v: int): int

~getEdges(): List<MeightedEdge>

Constructs a model for the weighted nine tails problem
and obtains a ShortestPathTree rooted from the target
node.

Returns the number of flips from node u to the target
node 511

Returns the number of different cells between the two
nodes.

Gets the weighted edges for the weighted nine tail
problem.

OPS/images/altmath_829.png
log, 1,000,000 = 20

OPS/images/AAKNJRX0.png
public void run() { Thread ‘Thread
Thread thread4 = new Thread(print100 thread4
new PrintChar('c', 40));
thread4.start();

try {
for (int i =1; i <=

astNum; i++) {

System.out.print (" " + i); thread
if (i == 50) thread4.join(); res
) Wait for thread4

to finish

catch (InterruptedException ex) {
threadd finished

OPS/images/AAKNIJF0.png
head tail
¢ Al
€ e il [
i (N s
A
A new node
to be inserted
here ¢
next
(a) Before anew node is inserted.
tail
Y
o | e e o
next) Tmext| Text]) Tmull

node next |

(b) After a new node is inserted.

OPS/images/AAKMNDO0.png
'UML Notation:
underline: static variables or methods

radius: double

numberOfObjects: int

instantiste
- __sirclet: Circle |

radius = 1

number0fObjects = 2

getNumber0fObjects(): int

getArea(): double

instantiate

radius = 5

number0fObjects = 2

Memory
'L, radius—After two Circle
.~ Objects were created,
e number0f0bjects
/ is2.

¥
2 | numberOfObjects

5 | radius

OPS/images/AAKNKVH0.png
Part I: Fundamer
P
Chapter 1 Introduction to
‘Computers, Programs, and
Java

e

Chapter2 Elementary
Programming

R S—
Chapter 3 Selections

Chapter 4 Mathematical
Functions, Characters,
and Strings

e, |

Chapter 5 Loops. |

Part II: Object-Oriented Part I1I: GUI Programming Part IV: Data Part V: Advanced Java
brogramming ‘Algorithms Gilig| Prozramming
[Chapter 9 Objects and Classes | Chapter 14 JavaFX Basics | ©h7 |- Chapter 18 Recursion | [, Chapter 32 Multithreading and.
12 13 Parallel Programming
Chapter 10 Thinking in Objects Chapter 15 Event-Driven Ch13}- Chapter 19 Generies ¥
Programming and Chapter 33 Networking
Chaptes T Inberiance and Anioisifooe] Chapter 20 Lists, Stacks, Queues|
Polymorphism] and Priority Queues Chapter 34 Java Database
T apter 16 JavaFX Controls) Programming
Chapter 12 Exception SN EalR [— Chapter 21 Sets and Maps.
Handling and Text UO. } Chapter 35 Advanced Database
Chapter 31 Advanced JavaFX Chay 5 Programming
ipter 22 Developping <
Chapter 13 Abstract Classes and FXML Efficient Algorithms —
‘and Interfuces T § | Chapter3e nternationalization
¥ Chapter 23 Sorting
Chapter 17 Binary 1O |

1}

Chapter 6 Methods

Chapter 7 Single-Dimensional | |

Arrays

]

Chapter 8 Multidimensional
Shm

Note: Chapters 1-18 are n the
brief version of this book.

Note: Chapters 1-30 are in the
comprehensive version.

Note: Chapters 3144 are bonus
chapters available from the
Companion Website.

Chapter 24 Implementing Lists,
[Stacks, Queues,and Priority
Queues

e

(Chapter 25 Binary Search Trees |—

Chapter 26 AVL Trees
- Chapter 27 Hashing

|, Chapter2s Graphs and
Applications

Chapter 29 Weighted Graphs
and Applicati

Chapter 30 Agaregate Operations
T d Collection Streams

|— Chapter 37 Serviets

|— Chapter 38 JavaServer Pages
|—> Chapter 39 JavaServer Faces
[——> Chapter 40 RMI

Chapter 422-4 Trees and B-
Trees

e B—

Chapter 43 Red-Black Trees

| Cho | Chapter 44 Testing Using JUni

L— Chapter 41 Web Services

OPS/images/AAKNELN0.png
Object Object

| 2 super E| E's superciass| A<?>

N

E A<? extends B> A<? super B>

E's subclass | ? extends E | A<B’s subclass> | A | A<B's superciass> |

OPS/images/Fig42-15a.png
(a) After inserting 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24, in this order

506070

(b) After inserting 23, 22, 60, and 70

() After deleting 34

(d) After deleting 25

(¢) After deleting 50

OPS/images/C07pg262_001.png
public static int[] reverse(int[] list) {
create array int[] result = new int[list.length];
for (int i = 0, j = result.length - 1;
i < list.length; i++, j--) {
result[j] = Tist[i];

} Tist
return result; result

1

return array

So®NDO AW

OPS/images/AAKNDMS0.png
5 | space required
for factorial (0)
n: 0
Space required Space required
for factorial (1) for factorial (1)
n: 1 n: 1
Space required Space required Space required
for factorial(2) for factorial(2) for factorial (2)
2 n: 2 n: 2
Space required Space required Space required Space required
for factorial (3) for factorial (3) for factorial (3) for factorial (3)
n: 3 n: 3 n: 3 n: 3
Space required Space required Space required Space required Space required
for factorial (4) for factorial (4) for factorial (4) for factorial (4) for factorial (4)
n: 4 n: 4 n: 4 n: 4 n: 4

Space required
for factorial (1)
n 1
Space required Space required
for factorial(2) for factorial(2)

n 2 n 2
Space required Space required Space required
for factorial (3) for factorial (3) for factorial (3)
) n 3 n 3
Space required Space required Space required Space required
for factorial (4) for factorial (4) for factorial (4) for factorial (4)

n 4 n 4 n 4 e 4

OPS/images/Fig01-15.png
steps.

Hame and Location

1
2

Choose Fle Type
Name and Location

Class fame

: freicome

project: [demo
P —
Groted : Ve WRTame

8, Viarning: 1t s highty recommended that you do O

<Beck

] o

OPS/images/ASSET41322.png
Jjavafx.scene.control.Labeled

+Label ()
+Label (text: String)
+Label (text: String, graphi

: Node)

Creates an empty label.
Creates a label with the spe
Creates a label with the spe

cified text.

fed text and graphic.

OPS/images/ASSET41365.png
=lolx| =lolx|

Two drcles intersect? No Two rectangles intersect? Yes

O O

-

] Enter rectangle 2 info]
[Enter cirde 1 infor| [Enter cirde 2 info] 1100
[Center x: 52.0 |(Center x: 180.0 20.0 g 3.0
fcentery: 60.0 |[centery: 56.0 dth: 400 dth: 500
Radus: 30 |Radus: 40 Height: 500 peight 20.0

Redraw Qrdes Redraw Redtangles

(@ (b)

OPS/images/altmath_729.png

OPS/images/altmath_125.png
(26m+1) ko Jj]

h=\q+—qg— +k+3+7+5j}7

OPS/images/AAKNIGW0.png
Original list

Original list

Copy first half Copy second half

firstHalf
(temporary array)

secondHalf Sort first half of
(temporary array) the original array

Sort second half of

Recursive sort the original array

Recursively sort

Merge Merge

New sorted list | Merge to list New sorted temporary I

(a) (b)

OPS/images/altmath_168.png

OPS/images/image1.png
recursive quick sort on partition time

wosu amwk(% 7(;) + !

OPS/images/Fig31-46.png
et i Naigate SouceReicor Bun Debug Eroie Tean TolsWindon Hep « Seorch (Co1o)

javafx.scene.shape.*?>
java.lang.*?>
java.util.*?>
javafx.scene.*?>
javafx.scene.control.*?>
javafx.scene.layout.*?>

200" maxWidt]

[<BorderPane maxHeigh "2,

"600" minHeight

jowfuscene” 1 o <bottom>
il 12 &) <HBox alignment="CENTER" prefHeight="100.0" prefH

Pty moerencrusng=Toe’ e 13)] <children>
<Button mnemonicParsing="false"
<Button mnemonicParsing:
<Button mnemonicParsing:
<Button mnemonicParsing="false"
</children>
</uBox>

onAction="fz

OPS/images/Fig44-07.png
© chapterss - NetBeans DE 802 - o x

5t o oyt S tictr o ot T Lok o oy [a Seorch Gute1)
[cdotook . ©-F B b-8-G-

e oAtes
package chapterdd;

1
2
3 public class Loan {

l private double annuallnterestRate;
5 private int numberOfYears;

6 private double loanAmount;

7 private java.util.Date loanDate;
8

cf

=} /** Default constructor */
10 public Loan() (
this (2.5, 1, 1000);

13
%@ 14 T /** Construct a loan with specified annual int |

number of years, and loan amount
e Y —

A= ———m—| T

OPS/images/altmath_310.png

OPS/images/altmath_714.png

OPS/images/AAKNIGT0.png
PBEEN|REERIP] | REEIE | REIEEE) | RSP
259481(245819(245189[214589
254981(245819(241589

254891(245189

254819

(a)Istpass (b)2ndpass (c)3rdpass (d)4thpass (e)Sth pass

OPS/images/ASSET41337.png
Application
ButtonDemo
CheckBoxDemo

RadioBut tonDemo
TextFieldDemo

OPS/images/ASSET37681.png
EE=ESTE _oix)| EEEESTE -olx)| [EEEESTE -lolx)| [EEEESTE -lolx|

H

enteranoder: [[enteran ader: i eneranader [2 eneranaer | 3
(a) (b) (c) (d)

OPS/images/altmath_396.png

OPS/images/altmath_225.png

OPS/images/altmath_268.png

OPS/images/altmath_842.png
log

OPS/images/AAKNDLB0.png
File pointer

File —> [byte] [byte] ... [byte][byte][byte][byte][byte] ... [byte][byte][byte][byte][byte] (a) Before readInt ()

File pointer

File —> [byte][byte] ... [byte][byte][byte][byte][byte] ... [byte][byte][byte][byte][byte] (b) After readInt ()

OPS/images/ASSET44491.png
[a[a[a[T[T]T[H[H]H}<— A nodeis an

3
=
=

array of nine

characters
Position s 2

here in a node

OPS/images/AAKMNZM0.png
The getter methods for these data fields
are provided in the class, but omitted in the
UML diagram for brevity

—name: String

—age: int “
—weight: double
~height: double

+BMI(name: String, age: int, weight:
double, height: double)

+BMI (name: String, weight: double,
height: double)

+getBMI(): double
+getStatus(): String

The name of the person.

The age of the person.

The weight of the person in pounds.
‘The height of the person in inches.

Creates a BMI object with the specified
name, age, weight, and height.

Creates a BMI object with the specified
name, weight, height, and a default age 20.
Returns the BMI

Returns the BMI status (e.g.. normal,
overweight, ctc.).

OPS/images/ASSET40401.png
~top: ObjectProperty<Node>
—right: ObjectProperty<Node>
~bottom: ObjectProperty<Node>
~left: ObjectProperty<Node>

—center: ObjectProperty<Node>

+BorderPane ()
+BorderPane (node: Node)

+sotAl ignment (child: Node. pos:

The getter and setter methods for property values
and a getter for property itself are provided in the class,

_ but omitted in the UML diagram for brevity.

‘The node placed in the top region (default: null).
The node placed in the right region (default: null).
‘The node placed in the bottom region (default: null).
‘The node placed in the left region (default: null).
The node placed in the center region (default: null).

Creates a BorderPane.

Creates a BorderPane with the node placed in the
center of the plane.

Sets the alignment of the node in the BorderPanc.

OPS/images/Fig15-25.png
UsMap.

OPS/images/altmath_627.png

OPS/images/AAKNJSX0.png
+cancel (interrupt: boolean): boolean
+get(): V

+isDone() : boolean

Attempts to cancel this task.

Waits if needed for the computation to complete and
returns the result.

Returns true if this task is completed.

PaN
+adapt (Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTasks<V>

+join(): V
+invoke(): V

+invokeAll (tasks ForkJoinTask<?>..): void

Returns a ForkJoinTask from a runnable task.

Arranges asynchronous execution of the task.

Returns the result of computations when it is done.

Performs the task and awaits for its completion, and returns its
result.

Forks the given tasks and returns when all tasks are completed.

=N PN

#compute(): void

Defines how task is performed.

#compute(): V.

Defines how task is performed. Returns the
value after the task is completed.

OPS/images/Fig14-17.png
VGap

hGap Topside

< Pane

Left side —|

Right side

Bottom side

Insets: top, right,

Left side

. bottom, left

<

Bottom side

Panc

Right side

OPS/images/altmath_483.png

OPS/images/altmath_440.png

OPS/images/ASSET37153.png
+Point2D(x: double, y: double)
+distance(x: double, y: double): double
+distance(p: Point2D): double

+getX(): double

+getY(): double

+midpoint (p: Point2D): Point2D
+toString(): String

Constructs a Point2D object with the specified x- and y-coordinates
Returns the distance between this point and the specified point (x.y).
Returns the distance between this point and the spe
Returns the x-coordinate from this point.

Returns the y-coordinate from this point.

Returns the midpoint between this point and point p.
Returns a string representation for the point.

d point p.

OPS/images/Fig13-09.png
'Command Prompt

15
22 23 24 25 26 27 28
29 30 31

:\exercise>

OPS/images/altmath_783.png

OPS/images/AAKMTDW0.png
ing angle -30° and (b) Negative starting angle -50°
and positive spanning angle 20°

(a) Negative sta
negative spanning angle -20°

OPS/images/altmath_740.png

OPS/images/altmath_327.png
size(d):size(fJ+size(f2)+ +size(fm]+size{d]J+size{d2]+ o 4 sizeld,)

OPS/images/Fig42-02.png

OPS/images/AAKNKUH0.png
mmand Prompt - mysal =10l x|

hysal> select title. redits as fnutes Por ook™ o]
e > fron Cour:
=3 Where subjectld = *CSCI'3

citle i Lecture Minutes Per Veek |

Intro to dava I
Intro to Java 11
Database Systens
Rapid Java fpplication

H vous in set <8.90 sec>

hysq1> 5=
<

OPS/images/altmath_181.png

OPS/images/altmath_61.png

OPS/images/altmath_412.png
T(n) =(n-1)+ct(n-2)+c+ ..+ 2+ctl+c
=) | - 1)=F - L +en-c

=0(n?)

OPS/images/Fig25-01.png
Left
sublree

A
@/&A/ f&
® 00 00

(b)

OPS/images/altmath_455.png
T(n)=T(n-1)+T(n-2)+c
<2T(n-D+c
<2T(n-2)+c)+c
=22T(n- 2)+2c+c

OPS/images/altmath_498.png

OPS/images/altmath_655.png

OPS/images/altmath_612.png

OPS/images/AAKMFLT0.png
y-axis

(6.4)
e |

(0.0) axis ©.0) wanis

(a) (b)

OPS/images/ASSET41350.png
SiderDemo

~— Vertical slider
Text ———> JavaFX Programming

Horizontal slider

OPS/images/altmath_196.png

OPS/images/Fig31-18.png
Dash offset is 5

[10.0,20.0, 30.0, 40.0]

OPS/images/ch36_pg3.png
java.util.Locale

+Locale(language:
+Locale(1anguage:
+Locale(language:
variant: String)
+getCountry(): String
+getLanguage(): String
+getVariant(): String
+getDefault(): Locale
+getDisplayCountry(): String
+getDisplayLanguage(): String
+getDisplayName(): String

String)
String, country: String)
String, country: String,

+getDisplayVariant(): String

+getAvailablelocales(): Locale[]

Constructs a locale from a language code.
Constructs a locale from language and country codes.
Constructs a locale from language, country, and variant codes.

Returns the country/region code for this locale.

Returns the language code for this locale.

Returns the variant code for this locale.

Gets the default locale on the machine.

Returns the name of the country as expressed in the current locale.

Returns the name of the language as expressed in the current locale.

Returns the name for the locale. For example, the name is Chinese
(China) for the locale Locale. CHINA.

Returns the name for the locale’s variant i it exists.

Returns the available locales in an array.

OPS/images/AAKNJSJ0.png
Withdraw Task
1

Y
Tock.Tock() ;

Deposit Task
|

Tock.Tock() ;]

while (balance < withdrawAmount)

newDeposit.await();

balance —= withdrawAmount

'

Tock.unlock() ;

balance += depositAmount

t————— newDeposit.signalAll();

Tock.unTock() ;

OPS/images/altmath_110.png
(372,950-171, 550)

OPS/images/ASSET43210.png
isplay Student - Mozilla Firefox

Fle Edt View History Bookmarks Tooks Help
| Display Student

=lolx|

€ @ locahost:3080/j52

faces/DsplayStudent.xhtm!

B - Google

sl a

Choose a Course: [Database Systems Display Students

444111110 Jacob R Smith 1985-04-09
444111111 John K Stevenson 9129219434

444111113 Frank E Jones 9125919434 1970-09-09
444111118 Toni R Peterson 9129229434 1964-04-29

BIOL
BIOL
BIOL
MATH

OPS/images/altmath_153.png

OPS/images/Fig14-02.png
Stage

Scene

Button
oK

=lolx|| CESFET _lolx]

New Stage

(a)

(b)

OPS/images/AAKNJID0.png
#tree: UnweightedGraph<Integer>.
SearchTree

+NineTaiTModel ()

+getShortestPath (nodeIndex: int):
List<Integer>

~getEdges(): List<Edge>

+getNode (index: int): char(]

+getIndex(node: char[]): int

+getFlippedNode (node: char(],
position: int): int

+flipACe11 (node: char[], row: int,

column:_int): void
+printNode(node: char[])

void

A tree rooted at node 511.

Constructs a model for the nine tails problem and obtains the tree.

Returns a path from the specified node to the root. The path
returned consists of the node labels in a list

Returns a list of Edge objects for the graph.
Returns a node consisting of nine characters of Hs and Ts.

Returns the index of the specified node,

Flips the node at the specified position and
returns the index of the flipped node,

Flips the node at the specified row and column.

Displays the node on the console.

OPS/images/AAKMUFG0.png
Catch exception ——>

invoke method2;

atch (Exception ex) {

i
ic
i Process exception;

i

try (A

=
method2 () {throws Exception{

if (an error occurs) {

hrow new Exception(); i<

}-— Declare exception

[~ Throw exception

OPS/images/1075_002.png
For example:
index: 3

node: HHHHHHHTT
HHH

HHH
HTT

For example:
node: THHHHHHTT
index: 259

THH
HHH
HTT

OPS/images/Fig41-09.png
() Method invocation trace.

€) | [[D). http/iocalhostB080 WebServiceProject/ScoreWebService?Tester

findScore Method invocation

Method parameter(s)

Type Value
java.lang.String | Michael

Method returned

double : "100.0"

SOAP Request

<?xml version="1.0" encoding="UTE-8"2>
<s:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header/>
<S:Body>
<ns2:findScore xmlns:ns2="http://chapterd5/">
<arg0>Michael</arg0>
</ns2:findscore>
</S:Body>
</s:Envelope>

SOAP Response

<2xml version="1.0" encoding="UTF-8"2>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:findScoreResponse xmlns:ns2="http://chapterdS/">
<return>100.0</return>
</ns2:findScoreResponse>
</S:Body>
</S:Envelope>

OPS/images/AAKMFMC0.png
loop-
continuation- __false

(1 < 100)7 e
condition?

true true

Statement(s) System.out .printin(
(loop body) "Welcome to Javal®);

action-after-each-iteration

i+

—

(a) (b)

OPS/images/ASSET41293.png
+getCharacter(): String
+getCode(): KeyCode
+getText(): String
+isATtDown () : boolean
+isControlDown() : boolean
+isMetaDown(): boolean
+isShiftDown() : boolean

Returns the character associated with the key in this event.
Returns the key code associated with the key in this event.
Returns a string describing the key code.

Returns true if the A1t key is pressed on this event

Returns true if the Contro key is pressed on this event
Returns true if the mouse Meta button is pressed on this event.
Returns true if the Shift key is pressed on this event.

OPS/images/Fig42-17.png
left subtree right subtree

OPS/images/Fig43-25.png
parent
childofu is
X _double black——>

» parent

childofu is
double black

OPS/images/altmath_76.png

OPS/images/Fig39-28.png
[) Display Multiplcation Tat: X

€ - C [} localhost:8080/chapter39jsfexercise/faces/Exercise39_02xhtml 73| @ @ @ @ =

Multiplication Table

2

[s

|3

2

[s

|3

&

|

2

Jls

s

s

s

Joo

Jpa

o

s

|[E0)

|

JBo

|23

e

Bs

o2

|3

o

Jjas

s

s

|

OPS/images/ASSET43196.png
Facelet Title - Mozilla Firefox -olx|

Fle Edt View History Bookma
 Facelet Tite

€ @ locahost:8080, (8- cooge R

Hello from Facelets

OPS/images/AAKMMMW0.png

OPS/images/altmath_33.png

OPS/images/AAKNJHD0.png
TreeNode<E>

BST<E extends Comparable<E>>

height: int

Link

+AVLTree ()
+AVLTree (objects: E[])

#oreateNewNode () : AVLTreeNode<E>

+insert(e: E): boolean

+delete(e: E): boolean

-updateHeight (node:
AVLTreeNode<E>): void

-balancePath(e: E): void

~balanceFactor (node:
AVLTreeNode<E>) : int

-balanceLL(A: TreeNode,
parentOfA: TreeNode<E>):

-balancelR(A: TreeNode<E>,
parentOfA: TreeNode<E>):

-balanceRR(A: TreeNode<E>,
parentOfA: TreeNode<E>):

-balanceRL(A: TreeNode<E>,
parentOfA: TreeNode<E>):

void

void

void

void

Creates an empty AVL tree.
Creates an AVL tree from an array of objects.
Overrides this method to create an AVLTreeNode.
Returns true if the element is added successfully.

Returns true if the element is removed from the
tree successfully.

Updates the height of the specified node.

Balances the nodes in the path from the node for
the element to the root if needed.

Returns the balance factor of the node.

Performs LL balance.

Performs LR balance.

Performs RR balance.

Performs RL balance.

OPS/images/altmath_583.png

OPS/images/Fig34-29.png
SSN 444111111 SSN 444111119

Stevenson K John's grade on course Intro to Java | is D

Stevenson K John's grade on course Intro to Java Il is F

Stevenson K John's grade on course Database Systems is A

K S > K S

courses found no courses found for this SSN

OPS/images/altmath_527.png

OPS/images/altmath_698.png

OPS/images/altmath_540.png

OPS/images/AAKNKFB0.png
Server

A server socket

A socket for a onaport

dient ———————— b C N C oo A socket for a

client

Client 1 e Client n

OPS/images/Fig38-05.png
€) | [ntpiocaivosts084/iangwebyFactoriajsp 7 - | |4 - Google

Factorial of 0 is 1
Factorial of 1is 1

y Factorial of 2 is 2
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120
Factorial of 6 is 720
Factorial of 7 is 5040
Factorial of 8 is 40320
Factorial of 9 is 362880
Factorial of 10 is 3628800

OPS/images/AAKNDKP0.png
java.io.OutputStream

+FileOutputStrean(file: File) Creates a Fi1eOutputStrean from a File object
+FileOutputStream(filename: String) Creates a FileOutputStream from a file name.
+FileOutputStream(file: File, append: boolean) 1f append is true, data are appended to the existing file.
+FileOutputStrean(filename: String, append: boolean) 1f append i true, data are appended to the existing file.

OPS/images/ASSET40029.png
parent

Il T Tolo]
01 2 3 4 5 6

(b)

OPS/images/AAKMKDG0.png
chars[0]
chars[1]

chars[98]
chars[99]

(a)

counts [0]
counts[1]

counts[24]
counts[25]

(b)

OPS/images/altmath_48.png
1.23456x 10

OPS/images/AAKMUFS0_a.png
import java.util.Scanner;

1
2
3 public class ReadData {
4 public static void main(String[] args) throws Exception {
5 /1 Create a File instance

6 java.io.File file = new java.io.File("scores.txt");

7
8
9

/I Create a Scanner for the file
Scanner input = new Scanner (file);

OPS/images/altmath_683.png

OPS/images/Fig43-10.png
20 30 40
Yioox N Y2 ¥3

(c)

OPS/images/AAKNIHF0.png
N
NN AN N
AAT TAAT

9 9 14 3B 9
(a) After moving 17 to the root (b) After swapping 17 with 44

42/44\
N N
AT

2 M 4 B9
(c) After swapping 17 with 30

OPS/images/altmath_427.png
T(n) = 0(11)

OPS/images/altmath_555.png

OPS/images/Fig43-03.png
(29) (19

(15) ©. () (39

() (39
& @@
K ES 00@@@ p

(a) (b) (c)

OPS/images/ASSET43203.png
i Projects @ % |; Files : Services

=@ jsfademo
&[5 WebPages
[METAING
b wes-INF
&) resources
&) image
E uslcon.git
-[@] currentTime xhtml
(@] studentRegistrationForm.xhtml
(@] index.xhtml
[Source Packages
(B Libraries
(8 Configuration Fies

OPS/images/altmath_182.png

OPS/images/ASSET41335.png
T-Storm

OPS/images/Fig31-17.png
10 20 30 40 10 20 30 40

VT TIT T T emnnnen
PTTTTITT 07T esesnens

OPS/images/AAKNKUN0.png
Java Programs |

JDBC API
MySQL JDBC Oracle JDBC DB2 JDBC
Driver Driver Driver
Local or remote Local or remote Local or remote

MySQL DB ORACLE DB DB2 DB

OPS/images/Fig39-25.png
(€ - ¢ [0 liangarmstrong.edu:8080/jsf2demo/faces/IncreaseCountxhtml @ 7| @ =

The current count is 4 and your IP address is 73.182.3.134.

OPS/images/C05pg177_001.png
Error

Empty body

for (int i = 0; i < 10; i++);

{
}

System.out.printin("i is " + i);

for (int i = 0; i < 10; i++) (‘);

{
}

System.out.printin("i is " + i);

(a)

(b)

OPS/images/ASSET40027.png
cost

[s ToTs]
2 6

0o

parent

MEINNEEN
o 12 6

(b)

OPS/images/altmath_13.png
ax+by=e ed-Dbf af -ec
ex+dy=fX"ad-bc Y~ ad- bc

OPS/images/page2.png
int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

Equivalent

int[][] array = new int[4][3];

array[0][0] = array[0][1] = 2; array[0][2] =
array[1][0] array[1][1] array[1][2]
array[2][0] array[2][1] = array[2][2] =
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;

OPS/images/AAKNIGZ0.png
AN AN AN
2/\”/\3“2/\29// / M/\z

(a) A heap (©)

OPS/images/Fig31-33.png
[TableViewDemo

Country Capital Population... Is Democr. atitude =
usa Washington DC 2800 true
Canada Ottawa 20 true
United Kingdom London 60.0 true
Germany. Berlin 830 true

France paris 0.0 true

OPS/images/AAKMKCB0.png
Activation record
for the mai n method

Activation record for
the max method

result:
nun2: 2 <=
nunt: 5 <=

Activation record for
the max method

result: 5
num2: 2
numi: 5

Activation record for
the main method

Activation record for
the main method

Activation record
for the main method

k k: 5= Stack is empty
2 ji2 - 2 j: 2
iP5 ii5 - 5 5
() The main (b) The max method (¢) The max method (d)The max methodis ~ (¢) The main
method is invoked. is invoked. is being executed. finished and the return method is finished.

value is sent to k.

OPS/images/altmath_103.png

OPS/images/altmath_425.png
T{n)=Ollogn)

OPS/images/altmath_700.png
0 n2)

OPS/images/altmath_522.png
o n2)

OPS/images/Note_icon.png

OPS/images/altmath_247.png

OPS/images/altmath_344.png

OPS/images/altmath_166.png

OPS/images/Braces11.png

OPS/images/AAKMKDH0.png
Stack

Activation record for the
createArray method
char[] chars: ref

Activation record for the
main method
char[] chars:ref

(a) Ex

Heap Stack Heap
Array of 100 Array of 100
characters [eharacters

Activation record for the
main method ,
char[] chars:ref

(b) After exiting

createArray in line 5 createArray in line 5

OPS/images/altmath_441.png

OPS/images/altmath_92.png

OPS/images/Fig40-05.png
StudentServerInterfac _lolx]

Name | Michael

Score | 100.0

OPS/images/altmath_263.png
(372, 550- 82, 250)

OPS/images/ASSET43169.png
=lolx| =lolx| =lolx|

Welcome ‘Welcome

OPS/images/ASSET41351.png
‘The getter and setter method for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

TockIncrement : !

DoubleProperty

—max: DoubleProperty

—min: DoubleProperty

~value: DoubleProperty

—orientation: ObjectProperty<Orientation>
—majorTickUnit: DoubleProperty
~minorTickCount: IntegerProperty
—~showTickLabels: BooleanProperty
—showTickMarks: BooleanProperty

+Sider ()

+Slider(min: double, max: double,
value: double)

‘The amount to adjust the slider if the track of the bar s clicked (default: 10)
The maximum value represented by this slider (default: 100).

The minimum value represented by this slider (default: 0).

Current value of the slider (default: 0),

Specifies the orientation of the slider (default: HORIZONTAL).

‘The unit distance between major tick marks.

‘The number of minor ticks o place between two major ticks

Specif
Specifies whether the tick marks are shown.

s whether the labels for tick marks are shown.

Creates a default horizontal slider.
Creates a slider with the specified min, max, and value.

OPS/images/altmath_657.png
(k+4) %n,

OPS/images/altmath_682.png

OPS/images/AAKNDKL0.png
FileInputStrean |
DatalnputStrean |

InputStream FilterInputStream N—[
BufferedInputStrean
ObjectInputstrean |

FileOutputStream |
DataOutputStream

OutputStream FilterOutputStream

BufferedOutputStream
ObjectOutputStrean |

Object

OPS/images/altmath_673.png

OPS/images/altmath_738.png

OPS/images/altmath_569.png

OPS/images/AAKMKDO0.png

OPS/images/altmath_398.png

OPS/images/Fig42-08.png
paren(Olu Po 1 P
uCor e @ TSI

I
D g C1 rightChildofe 2 %
(a) Before inserting e (b) After inserting e (e < e < e;)
Po €1 Py
Co % o rightChildOfe
¢ C2 rightChildofe ¢ Qo

(c) After inserting e (eq< e <e,) (d) After inserting e (e, <€)

OPS/images/AAKMEDJ0.png
1 <— Quotient

12 26 Divisor —> 13/ 20 <— Dividend

ﬁa

3 0 2 7 <— Remainder

OPS/images/altmath_592.png

OPS/images/altmath_819.png
€ < e

OPS/images/altmath_844.png
2

OPS/images/Fig01-17.png
=lolx

Create a Java Project 4
Create a Java project i the workspace or in an external ocaton. /A

projctrame: [Gemo

7 Use defouk ocation
RE
@ Use an exeauton envronment JRE: [05G/Mnmum-12 <]
€ Usea project spectic JRE: s -
€ Use defaut IRE (currenty 6k1.8.0) ‘Confgure JREs...
Project yout

& {se project foider as rootfor sources and dass fes
C Create separate foersfor sources and ciass fles Configure defauk...

Workng sets
™ Add project to working sets
7]

© The defat comper complance velfor the curtent workspace s 1.7. The
new project vl Use a project pectic compr complance Rvelof 1.4

o> e

OPS/images/AAKNIJG0.png
head tail
o | e | e e
rot]) mex| mest) mm 4
head
L [[l (S tail
ext) Text] mext] B
- e
Tt

(b) After a new node is inserted.

A new node
1o be inserted
here

A new node
is appended
in the list

OPS/images/altmath_603.png
1424+ +27len<1424 42140k

OPS/images/AAKMNZY0.png

OPS/images/altmath_328.png

OPS/images/Fig37-13.png
«nterface»
javax.serviet.ServietRequest

+getParamter(name: String): String
+getParameterValues(): String[]

+getRemoteAddr(): String
+getRemoteHost(): String

Returns the value of a request parameter as a String, or null if the parameter
does not exist. Request parameters are extra information sent with the request.
For HTTP servlets, parameters are contained in the query string or posted
from data. Only use this method when you are sure that the parameter has only
one value. If it has more than one value, use getParameterValues.

Returns the Internet Protocol (IP) address of the client that sent the request.

Returns the fully qualified name of the client that sent the request, or the IP
address of the client if the name cannot be determined.

T

dnterface»
javax.serviethitp. HitpServietRequest

+getHeader(name: String): String

+getMethod(): String
+getQueryString(): String

+getCookies():
javax.servlet.http.Cookies[]

+getSession(create: boolean):
HitpSession

Returns the value of the specified request header as a String. If the request did not include
a header of the specified name, this method returns null. Since the header name is case-
insensitive, you can use this method with any request header.

Returns the name of the HTTP method with which this request was made; for example,
GET, POST, DELETE, PUT, OPTIONS, or TRACE.

Returns the query string that is contained in the request URL after the path. This method
returns null if the URL does not have a query string.

Returns an array containing all of the Cookie objects the client sent with the request. This
method returns null if no cookies were sent. Using cookies is introduced in Section
37.8.2, “Session Tracking Using Cookies

getSession(true) returns the current session associated with this request. If the request does
not have a session, it creates one. getSession(false) returns the current session associated
with the request. If the request does not have a session, it returns null, The getSession
method is used in session tracking, which is introduced in Section 37.8.3, “Session
Tracking Using the Servlet APL™

OPS/images/altmath_409.png
T(n) =TE)+c=T(G)+c+e=T(F)+ke
=T(1)+c logn=1+(lognc
=0(logn)

OPS/images/AAKMKCI0.png
printCalendar

(main) printMonth

readInput | printMonth printhMonthTitle| printMonthBody

(a) (b)

OPS/images/AAKMOAA0.png

OPS/images/AAKNJOK0.png
vertex weight

vYoy

B int[][] edges = {{0, 1, 2}, {0, 3, 8},
| y (1, 0,2}, {1, 2, 7}, {1, 3, 3},

N 5 {2, 1, 7}, 42, 3, 4}, {2, 4, 5},
{3, 0, 8}, {3, 1, 3}, {3, 2, 4}, {3, 4, 6},
{4, 2, 5}, {4, 3, 6)

0 3 4 b
(a) (b)

OPS/images/altmath_763.png
1x231x2%,0%x2', and1x2°

OPS/images/altmath_157.png

OPS/images/Fig35-01.png
[5Q1Client
Enter Database Information E
[DBC Driver | jdbc:mysal:/flocalhost/javabook ~
Database URL com.mysal.jdbcDriver -

Username | scott

Password

[=] B3

nter an SQL Command

select * from Course;
select * from Student; ‘

Connected to jdbc:mysal://localhost/javabook._Connect to Database
QL Exeaution Result

courseld subjectid courseNumber title numOfCredits

11111 CSCI 1301 Introto Javal 4

11112 CSCI 1302 Intro to Java I 3

11113 (CSCI 4720 Database Systems 3

11114 (CSCI 4750 Rapid Java Application3

Qear Result

OPS/images/ASSET41360.png
media: Media |—(> mediaPlayer: MediaPlayer |—O mediaView: MediaView

OPS/images/altmath_432.png
T{n)= T{n- 1)+ 0[n)

OPS/images/AAKNKFG0.png
Player 1

Player 2 |

Session 1

Server

Session n

Player1| Player2 |

OPS/images/altmath_488.png

OPS/images/Fig36-18.png
=lolx]

Enter Dollar Amount

s Dolars 2000 | Convert
Dspiay Exchange

Exchange Rate Converted Amount
‘Ganadian Dollars 15 $3,000.00
e 14 =2.600,00
aitsh Pounds 05 £1,000.00

OPS/images/altmath_173.png
=h,x16"+h,_, x16™ +h _,x16™%+ ...

OPS/images/Fig39-32.png
[Factorials

€ 9 € | [localhost:8080/chapter39jsfexercise/faces/Exercise39_06.xhtml 7| O @ @ @

Display Large Factorials

[Number][Factorial

0 |[2432902008176640000

b1 [51090942171709440000

2 1124000727777607680000

23 [25852016738884976640000

4 [620448401733239439360000

[2s [15511210043330985984000000
[403291461126605635584000000

7 10888869450418352160768000000
28 [304888344611713860501504000000
29 |[841761993739701954543616000000
30 [265252859812191058636308480000000|

OPS/images/ASSET43212.png
() New Cascading

Name and Location

1. Choose Fie Type File Name: tablestyle
2. Name and Location N

Project: isf2demo

Folder: webesources

Created File: | C:\book\jsf2demo\webyesources\tablestyle.css

[Csacc] [next> Ensh | [Cancel |

OPS/images/AAKNKEX0.png
Server » Client) Server Client
radius radius area area
[pataInputstream || |[DataOutputstream || |[DataOutputStream || |[DatalnputStream |

[socket .getInputsStrean|

[socket . getoutputstrean|

[socket . getoutputstrean|

[socket . getInputStrean|

[socket |

[socket |

[socket]

[socket |

4

(b)

OPS/images/Fig43-12.png
T Insert to its parent

Insert a new 40

element
v x

v wy B (o)

(a) A 4-node (b) Splitting a 4-node (¢) Recoloring nodes

OPS/images/Fig31-08.png

OPS/images/Fig31-26.png
[spittPaneDemo

[spitPaneDemo.

OPS/images/AAKNHIR0.png
fin)

" our') o
- O(nlogn)

0(n)

O(logn)

o(1)

OPS/images/AAKNIHB0.png
% 2 (01 111 [2] [3] [4] 5] [6] [7] [8] [9] [1010111[12][13]
/\ /\\ [62]4259]32[39 44 13]22[29 14333017 9]
32 39 44 13 T T
/\ /\ /\ / parent left
22 29 14 33 30 17 9 right

(a) A heap (b) A heap store

an array

OPS/images/altmath_20.png
2’ -1(-128t0127

OPS/images/ASSET41326.png
javafx.scene.control.Labeled |

‘The getter and setter methods for property
values and a getter for property itself are provided
- in the class, but omitted in the UML diagram for brevity.

-onAction: ObjectProperty<EventHandler/| | Defines a handler for handling a button's action
<ActionEvent>>
7/
-selected: BooleanProperty Indicates whether this check box is checked.
+CheckBox () Creates an empty check box.
+CheckBox (text: String) Creates a check box with the specified text.

OPS/images/ASSET40034.png
Seattie

OPS/images/AAKNDMX0.png
directory

[
6 -])

OPS/images/altmath_112.png
x- 5§ <4.5.

OPS/images/AAKMNDV0.png
Stack Pass-by-value (here Heap
the vaue is 5)
Activation record for the
printAreas method

int times: 5=

Circle c: [reference|«

Pass-by-value

~ (here the value is
the reference for
the object)

Activation record for the
main method

ACircl
object

int n: s -

myCircle:

OPS/images/page342.png
An instance method —|

invoke

———» An instance method

access

[————> An instance data field

invoke
A static method

access

4% A static data field

A static method —

An instance method

[————>An instance data field

invoke

"> A static method

access

% A static data field

OPS/images/altmath_319.png

OPS/images/Fig31-42.png
FXMLDocument fml

OPS/images/Fig37-22.png
it/ ocalhost. 14198 Submit=Submit

€) [[E nttpe/localhost8084/langweb/RegistrationlastName=Johnson: 7

Google

You entered the following data

Last name: Johnson

First name: Pete

ML T

Telephone: 9124541021
Email:

Address: 4543 River Run Trail
City: Savannah

State: GA

Zip: 31419

OPS/images/pg1177.png
if (day.equals(Day.MONDAY)) { switch (day) {

11 process Monday case MONDAY:
) /1 process Monday
else if (day.equals(Day.TUESDAY)) { break;

11 process Tuesday i case TUESDAY:
) /1 process Tuesday
else break;

(a) (b)

OPS/images/AAKMFKS0.png
boolean- false

expression

true

statement(s)

(radius >=

true

area = radius * radius * PI;
System.out.printin("The area
" radius " + radius + " is

0y e

for the circle of” +
"+ area);

e}
(a)

(b)

OPS/images/Fig37-06.png
@ New Serviet X

Steps Name and Location

1. Choose File Class Name: FirstServiet J
Type

2.Nameand project: liangweb]
Location -

3. Configure Location: Source Packages o
Serviet Package: chapter37| v
Deployment

Created File: C:\temp\iangweb\src\java\chapter37\FirstServiet java]

| <Back |[Next> || Finish || Cancel | Help |

OPS/images/altmath_515.png

OPS/images/altmath_418.png
0(2")

OPS/images/AAKNDKZ0.png
_D «interface»
P ObjectStreanConstants

java. io. OutputStrean

«interface»
Jjava.io.DataOutput

o

+ObjectOutputStrean(out: OutputStream) +writeObject (o: Object): void

‘Writes an object.

OPS/images/altmath_479.png

OPS/images/ASSET40390.png
The getter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

ze: double ‘The size of this font

-name: String ‘The name of this font.

~family: String The family of this font.

+Font (size: double) Creates a Font with the specified size.

+Font (name: String, size: Creates a Font with the specified full font name and size.
double)

+font (name: String. size: Creates a Font with the specified name and size.
double)

+font (name: String. w Creates a Font with the specified name, weight, and size.
FontWeight. size: 1

+font(name: String, w: FontWeight Creates a Font with the specified name, weight, posture, and s

: FontPosture, size: double
+ : <String>

Returns a list of all font names installed on the user system.

OPS/images/AAKNIXA0.png
10

TOOL > 20 100t ——> 20
40 40
16 30 16 30
[I I I
27 50 27 50
I I I I
(a) (b)

OPS/images/altmath_585.png
n-1.

OPS/images/altmath_826.png

OPS/images/AAKMNZR0.png
~courseName: String
~students: String[]

-number0fStudents: int

+Course (courseName: String)
+getCourseName () : String
+addStudent (student: String): void
+dropStudent (student: String): void
+getStudents(): String[]
+getNumberOfStudents () : int

The name of the course.
An array to store the students for the course.
The number of students (default:0).

Creates a course with the specified name.
Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students for the course.

Returns the number of students for the course.

OPS/images/altmath_770.png
1x224+0x22+0x 2L +0x2°

OPS/images/altmath_664.png
(k+h'"(key)) % N,

OPS/images/ASSET40428.png
=lolx| ECESESET -lolx|

11.2778117183764

(@) () (©

OPS/images/altmath_747.png

OPS/images/altmath_495.png

OPS/images/altmath_389.png

OPS/images/AAKMNZK0.png
Class implementation | Class Contract

is like a black box @ (signatures of public

hidden from the clients ass constructors, methods,
and data fields)

Clients use the
«—— class through the
contract of the class

OPS/images/altmath_837.png

OPS/images/altmath_256.png
=@; X byj+agxby;+a;%bs;

OPS/images/altmath_531.png
Py Py

OPS/images/Fig42-14a.png
7
)
ol

(a) Delete 20

(¢) Perform a fusion

15
(e) Delete 15

o
¢

o
¢

(d) Perform a transfer

(f) Delete 3

OPS/images/Fig34-22.png
book>java -cp .
river loaded
atabase connected

[=1E3

+1ib/nysql-connector-java-5.1.26-bin. jar SimpleJdbc 4

=
Jacob R Smith
Jean K Smith
Josh R Smith

1\neok>_

—_— |

OPS/images/ch36_pg6.png
java. text.DateFormatSymbols

+DateFormatSymbols ()
+DateFormatSymbols (Locale locale)
+getAnPuStrings(): String[]

+getEras(): String[]

+getMonths(): String[]

+setMonths (newMonths: String[]): void
+getShortMonths(): String[]
+setShortMonths (newShortMonths: String[]):
void

+getWeekdays(): String[]

+setWeekdays (newkeekdays: String[]): void
+getShotWeekdays () : String[]

+setShortWeekdays (newWeekdays: String[]):
void

Constructs a DateFormatSymbo1s object for the default locale.
Constructs a DateFormatSymbo1s object by for the given locale.
Gets AM/PM strings. For example: "AM" and "PM".

Gets era strings. For example: "AD" and "BC".

Gets month strings. For example: "January", "February", etc.

Sets month strings for this locale.

Gets short month strings. For example: "Jan”, "Feb”, etc.

Sets short month strings for this locale,

Gets weekday strings. For example: "Sunday",
Sets weekday strings.

Gets short weekday strings. For example: "Sun", "Mon", etc.
Sets short weekday strings. For example: "Sun", "Mon", etc.

‘Monday”, etc.

OPS/images/AAKNDKS0.png
InputStream

+readBoolean(): boolean
+readByte(): byte
+readChar (): char
+readFloat(): float
+readDouble() : double
+readInt(): int

FilterInputStream

+DatalnputStrean(sraEellemg((): ey
in: InputStream) +readshort () : short
+readLine(): string

+readUTF(): string

Reads a Bool ean from the input stream.
Reads a byte from the input stream.
Reads a character from the input stream.
Reads a F1oat from the input stream.
Reads a doube from the input stream.
Reads an nt from the input stream.
Reads a 1ong from the input stream.
Reads a short from the input stream,
Reads a 1ine of characters from input
Reads a string in UTF format.

OPS/images/ASSET37774.png
=lolx|

8
:
o}

Qear
(c)

_save

=olx]|

1
2

1

7]3][2]9]8]e

714 6
4 6|8 53

5

1

(b)

1/4600 solutions

1

6 9|4 8 5

8 2

7

6|8 9 3

Solve | dear Next

5

=lolx]|

o
M
g
£
o)

(a)

Qear

Solve

OPS/images/ASSET43194.png
steps Frameworks

1. Choose Project Select the frameviorks you vant to use in your veeb application.

2. Name and Location

3. Server and Settings I _Spring Wb MVC S
4. Frameworks i Javaserver Faces

T Struts 1.3.10
I Hibernate 3.2.5

JavaServer Faces Configuration

Libraries | configuration| Components |

@ Server Library: psr2.2 ~
C Registered Libraries: 2

€ create New Library

,—4

<Back | [Camsh Cancel Help

OPS/images/altmath_8.png

OPS/images/altmath_610.png
oln+t)

OPS/images/altmath_335.png

OPS/images/altmath_67.png
(m/s?)

OPS/images/ASSET41342.png
Ttem 1 [N
Ttem 1
Item 2
Item 3
Item 4

OPS/images/AAKNJPC0.png
UnweightedGraph<V>.SearchTree

~totalWeigh

: double

+MST(root: int, parent: int[], searchOrder:
List<Integer> totalWeight: double)

+getTotalWeight (): double

Total weight of the tree.

Constructs an MST with the specified root, parent array,
searchOrder, and total weight for the tree.

Returns the totalWeight of the trec.

OPS/images/pg09.png
public ClassName() {
/| some statements

public ClassName() {
super() ;

uivalent
} Bavalent | T come statenents
}
public ClassName (parameters) { public ClassName (parameters) {
/1 some statements Equivalent super();

}

/1 some statements

OPS/images/altmath_860.png

OPS/images/AAKMKCY0.png
double temp = myList[0]: // Retain the first element

/1 Shift elements left myList
for (int i =1; i < myList.length; i++) {

}

/1 Move the first element to fill

in the last position
myList[myList.length - 1]

temp:

OPS/images/AAKMFLP0.png
int count = 5 items
double amount = 45.56;
System.out.printf(‘colnt is %d and amount is %f", count, amount);

t |

count is 5 and amount is 45.560000

display

OPS/images/AAKMUFM0.png
+Exception()

+Exception(message: String)

+Exception(message: String,
cause: Exception)

Constructs an exception with no message.
Constructs an exception with the specified message

Constructs an exception with the specified message
and a cause. This forms a chained exception.

OPS/images/altmath_202.png

OPS/images/altmath_245.png

OPS/images/altmath_601.png

OPS/images/AAKNIIX0.png
Beforeinserting 0 1 i+l

eatimerionpointi [To T T T 11111/
X
E / data.length - 1
Inserton point| | .. \ A
YN R

After inserting 01 iit1i+2

oo o e e T o] kf‘f«fiﬂ/m

incremented by 1

einserted here data.length — 1

OPS/images/altmath_121.png

OPS/images/altmath_229.png

OPS/images/Fig29-02.png
0 Gopnagontm i %

P R ey ————

raphlearningTocletookht % O © O @@ O
[T ...] x
This ot s o demonsing eightd rph g, Youcan

+ Ad a vete by clicking the primary buton i an apen arss.

- Renmove avere by clicking o he verte using the scondary buton

@ AG e between o verties by dagging rom o vt 1o the ot ertex. The weight s the
diance between the vertices

+ Move a verex by draggin the veriex whilepressng the CTRL, bto.

Diptay ST Dty S Tme
S Ve
e e e —
S Vot End Vern

[Tl Salesman Probem—

OPS/images/Fig37-15.png
tte/localhost..angweb CurrentTime |
gwe

€) [[http://localnost8084/langweb/ CumentTime 7 ~ '

The current time is Fri Jun 10 11:47:12 EDT 2011

OPS/images/altmath_342.png

OPS/images/Fig43-21.png
(b)

OPS/images/ch15_pg603.png
public void start(Stage primaryStage) {
/ Onitted

btEnlarge. setOnAct ion(
new EnlargeHandler()):

} VB
class EnlargeHandler

implements EventHandler<ActionEvent> {
public void handle(ActionEvent e) {
circlepane.enlarge() ;

}

}

public void start(Stage primaryStage) {
omitted

btEnlarge. setonAction(
e
4mptements EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {
circlepane.enlarge()
}
ni

(a) Inner class EnlargeListener

(5) Anonymous inner ¢lass

OPS/images/altmath_164.png

OPS/images/AAKNJHH0.png
(a) Delete 34, 30, 50 (b) After 34, 30, 50 are deleted () Balanced

RL rotation at 10 e ! !

LL rotation
atnode 25

(d) After 5 is deleted (e) Balanced

OPS/images/ASSET41299.png
‘The getter and setter methods for property
__~ values and a getter for property itself are provided

— in the class, but omitted in the UML diagram for brevity.

&
—~duration: ObjectProperty<Duration>

—node: ObjectProperty<Node>
~fromValue: DoubleProperty
—~toValue: DoubleProperty
—~byValue: DoubleProperty

+FadeTransition()
+FadeTransition(duration: Duration)

+FadeTransition(duration: Duration,
node: Node)

‘The duration of this transition.

“The target node of this transition.

“The start opacity for this animation.

The stop opacity for this animation.

“The incremental value on the opacity for this animation.

Creates an empty FadeTransition.
Creates a FadeTransi tion with the specified duration.
Creates a FadeTransi tion with the specified duration and node.

OPS/images/ASSET41353.png
—lofx

>

icTactoe

_HiE
[—

(-
>

(-
>

N0
XXOI
010k

> ><<
> |
(-

X won! The game s over

Draw! The game is over

Owon! The game is over

(a) The X player won the game

(b) Draw—no winners

(c) The O player won the game.

OPS/images/Fig15-08.png
AnonymousHandlerDemo = o

Programming s fun

Up Down Left | Rignt

OPS/images/ASSET41333.png
Application
ButtonDemo

CheckBoxDemo
RadioBut tonDemo

OPS/images/AAKNHHU0.png
«interf:

ace»

java.util.Map<K, V>

java.util.AbstractMap<K, V>

|
+HashMap ()

+HashMap(initialCapacity: int,loadFactor: float)
+HashMap(m: Map<? extends K, ? extends V>)

+LinkedHashMap ()
+LinkedHashMap (m: Map<? extends K,? extends V>)

+LinkedHashMap (initialCapacity: int,
ToadFactor: float, accessOrder: boolean)

+irstKey (): K
+lastKey (): K

+comparator () : Comparator<? super K>)
+headMap (toKey: K): SortedMap<K,V>
+tailMap(fronKey: K): SortedMap<k,V>

=~
+floorKey (key: K): K
+ceilingKey(key: K): K
+TowerKey (key: K): K
+higherKey (key: K): K

+pol1FirstEntry(): Map.EntrySet<K, V>
+poliLastEntry(): Map.EntrySet<K, V>

~

[

+TreeMap ()
+TreeMap(m: Map<? extends K,? extends V>)
+TreeMap(c: Comparator<? super K>)

OPS/images/AAKNKTX0.png
Student Table

ssn firstName mi TastName phone birthDate street zipCode deptID

444111110 Jacob R Smith 9129219434 1985-04-09 99 Kingston Street 31435 BIOL
444111111 John K Stevenson 9129219434 null 100 Main Street 31411 BIOL
444111112 George K Smith 9129213454 1974-10-10 1200 Abercorn St. 31419 CS

444111113 Frank E Jones 9125919434 1970-09-09 100 Main Street 31411 BIOL
444111114 Jean K Smith 9129219434 1970-02-09 100 Main Street 31411 CHEM
444111115 Josh R Woo 7075989434 1970-02-09 555 Franklin St. 31411 CHEM
444111116 Josh R Smith 9129219434 1973-02-09 100 Main Street 31411 BIOL
444111117 Joy P Kennedy 9129229434 1974-03-19 103 Bay Street 31412 CS

444111118 Toni R Peterson 9129229434 1964-04-29 103 Bay Street 31412 MATH
444111119 Patrick R Stoneman 9129229434 1969-04-29 101 Washington St. 31435 MATH
444111120 Rick R Carter 9125919434 1986-04-09 19 West Ford St. 31411 BIOL

OPS/images/Fig43-01.png
@%
& G @2 (o

(a) A red-black tree (b) A 2-4 tree

OPS/images/altmath_680.png

OPS/images/altmath_184.png

OPS/images/Quiz_icon.png

OPS/images/altmath_772.png
bpb ., D

wD D o i, Dy by, Dy

»

OPS/images/Fig31-35.png
Q New Project -

Steps Choose Project
1. Choose Q Filter:
Project

2. . Categories: Projects:
0 Java ~ | [JavaFX Application
W JavaFX & JavaFX Preloader
¥ Java Web [£YJavaFX FXML Application
© Java EE & JavaFX in Swing Application
W HTMLS & JavaFX Project with Existing Sources
13 Tava ME Embedded

Description:

Creates a new JavaFX FXML-enabled application in a standard
IDE project. FXML is a scriptable, XML-based markup language for
crvsmbionm v alinck mnmman T memsirlan ~ mamsinminnt.

<Back | Next> | Finish | Cancel Help

OPS/images/AAKMDSK0.png
User
Application Programs

S

Operating System

e |

Hardware

OPS/images/AAKNFKT0.png
«interface»
java.util.Collection<E>

=

+add(index: int, element: E): void

+addAl1(index: int, c: Collection<? extends E>)
: boolean

+get (index: int): E

+index0Of (element: Object): int

+1astIndex0f (element: Object): int
+listIterator(): ListIterator<e>

+listIterator (startIndex: int): ListIterator<t>

+remove(index: int)
i E

+subList (fromIndex: int, tondex: int)
: List<E>

+set(index: int, element: E): E

Adds a new element at the specified index.

Adds all the elements in ¢ to this list at the specified
index.

Returns the element in this list at the specified index.
Returns the index of the first matching element.

Returns the index of the last matching clement.

Returns the st iterator for the elements in this list.
Returns the iterator for the elements from startIndex.

Removes the element at the specified index and returns

the removed element,

Sets the element at the specified index and returns the
old element.

Returns a sublist from fromIndex to toIndex-1.

OPS/images/altmath_58.png
totalPayment = monthlyPayment x numberQO fYears x 12

OPS/images/altmath_15.png
area = radius X radius * 1T

OPS/images/altmath_594.png
9(2x4+1),

OPS/images/altmath_423.png
Tin)=2T(n-1)+0(1),

OPS/images/Fig28-16.png
Seattle (0)

Boston (6)
Chicago (5)

Los Angles

Dillas (10) (
Houston .

i (9)

OPS/images/AAKNJSU0.png
yield().or Running

time out run() completed
Thread created start()
.—»M—» Ready run() Finished

join() |sleep()\ wait()
Target
finished

¥ X
Wait for target |~ Wait for time Wait to be
to finish out notified

Time out Signaled

Blocked

OPS/images/ASSET37688.png
=lolx|
h'd

L4

£

OPS/images/altmath_443.png
o(n3)

OPS/images/altmath_94.png

OPS/images/altmath_853.png

OPS/images/altmath_486.png

OPS/images/altmath_659.png

OPS/images/AAKMUFO0.png
Command Prompt
:\book>java TestFileClass

Does it exist? true

he file has 2998 bytes

an it be read? true

an it be written? true

Is it a directory? false

Is it a file? true

s it absolute? false

Is it hidden? false

Absolute path is C:\book\image\us.gif

ast modified on Tue Nov 02 08:20:4S EST 2004

=lolx| O| x

[B £ vew waon e
B mEeR A 0D

ast modified on Tus Hov 02 08:20145 22

off [

resctsce pach ,;,;w/,,,mmm/m e /un. it :|

:\book>., s
24| comeasdto pandasmstrong.edu 552~ ses12b-cbe -hmacmd |
(a) On Windows (b) On UNIX.

OPS/images/AAKNIIV0.png
MyArrayList

java.util.Iterable

=

java.util.Collection [¢

- MyLinkedList

OPS/images/altmath_752.png

OPS/images/altmath_159.png
Area=——7

OPS/images/Fig35-03.png
«nterface»
Jjava.sql.ResultSet

«nterface»
javax.sql.RowSet

«interface» «interface»
javax.sql.rowset.JdbcRowSet javax.sql.rowset.CachedRowSet

com.sun.rowset.JdbcRowSetImpl | [com.sun.rowset.CachedRowSetImpl

OPS/images/altmath_671.png

OPS/images/AAKMMML0.png
o x[0][0]|x[0][1]|x[0][2]|x[0][3]
x[0]
x[1] X[11007 | x (11017 | x[11[2]|x[1]1[3]
x[2]

x[2][0]|x[2][1]|x[2][2]|x[2][3]

x.lengthis3

x[0].Tengthis 4

x[1].Tengthis ¢

x[2].Tengthis

OPS/images/ASSET43201.png
&
x

® jsf2demo - NetBeans IDE 7.

Fle Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Cirl+1)

FEE®BE T AT E DB B

Proj.. x| Fies | sewi. [@ [[o] indexahtml x| 5] TimeBean.java x][o] CurrentTime.xhtmi x| “Dl=lg @
5 © jsf2demo a — = o B
5 G Web Pages Souce Histoy [[@ [B-61- QAT SEH|FER[@u0 D =
£ WEB-INF e - e "UTE-8 = <
(& currentTime.xhtml 1 3
[@ indexxhtml g 3 -3
2@ Source Packages 4 &
&6 jsf2demo 9 E
@ TimeBean.java =l g <hihead> B
o~ 7 <title>Display Curzent Time</title> 3
root - Navigator X o | e <meta & a
3] html] </h:head> 2
3 title 10 <h:body> 3
(3] meta 11 The current time is #{timeBean.time}
12 </h:body>
13 </html>
B .

| 313 |ms

OPS/images/AAKMDSR0.png
Welcomejava
(Java source-
code file)

compiled
by

Java

generates

Welcome.class

Compiler

(Java bytecode
exccutable file)

exceuted
by

(a)

Library Code

M

yava Bytecog,

(b)

OPS/images/AAKNJIE0.png
1
3
5

0
2
4

s<0
EETEEY
cooram
CoorNmew

ile

(b)

OPS/images/AAKNIWP0.png
Daniel

Adam Michacl Adam Michacl
[[[
Daniel Jones Tom Jones Tom
I [[[
Peter Peter

T

(a) Deleting George

T

(b) After George is deleted

OPS/images/altmath_191.png

OPS/images/Fig01-19.png
=lalx|

Java Class A
i The use of the defau package s dscouraged. S

Source foider: [demo Browse...

Neme: [Wecome
Modffiers: @ publc C defagt € c

I abstroct [ool [
Supercss: [Javalang.Object Brouse.

Interfaces: i

Which method stubs wouid you ke o create?
7 publc statc yod man(Strngl) rge)
I Constructors from supercss
™ Inherked abstract methods

0 you vant o add comments? (Confiure templstes and defaut vaue here)
I™ Generate comments

[oen] conee |

OPS/images/altmath_567.png

OPS/images/altmath_524.png

OPS/images/AAKNIWY0.png
root > George

Adam

Michael

Daniel

Jones

Tom

Peter

(a)

3 s
I I
s

6

(b)

OPS/images/altmath_272.png

OPS/images/tab_pg29.png
ava.lang.Object

javafx.scene.control.Tab

-content: ObjectProperty<Node>
-contextMenu:

ObjectProperty<ContextMenu>
-graphics: ObjectProperty<Node>
-id: StringProperty
~text: StringProperty
-tooltip: StringProperty

+Tab()
+Tab(text: String)

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

‘The content associated with the tab.

‘The context menu associated with the tab.

‘The graphics in the tab,
‘The id for the tab.
‘The text shown in the tab.

‘The tooltip associated with the tab.

Constructs a default tab.
Constructs a tab with the specified string,

OPS/images/altmath_101.png
MI< 30.0

OPS/images/AAKNHHS0.png
+clear(): void
+containsKey (key: Object): boolean

+containsValue(value: Object): boolean

+entrySet(): Set<Map.Entry<K,V>>
+get (key: Object): V

+isEmpty(): boolean

+keySet () : Set<K>

+put (key: K, value: V): V.
+putAll(m: Map<? extends K,? extends
V>): void

+remove (key: Object): V

+size(): int

+values(): Collection<V>
+forEach(action: Consumer<? super
K, ? super V): default void

Removes all entries from this map.

Returns true if this map contains an entry for the
specified key.

Returns true if this map maps one or more keys to the
specified value.

Returns a set consisting of the entries in this map.

Returns the value for the specified key in this map.

Returns true if this map contains no entries

Returns a set consisting of the keys in this map.

Puts an entry into this map.

Adds all the entries from m to this map.

Removes the entries for the specified key.

Returns the number of entries in this map.

Returns a collection consisting of the values in this map.
Performs an action for cach entry in this map.

OPS/images/altmath_270.png

OPS/images/Fig34-24.png
=1oIx|

~i1ib/mysql-connector-java-5.1.26-bin. jar TestDatabaseMetaData ~

lc:\book>java -cp
Driver loaded
Database connected

ldatabase URL: jdbc:mysql://localhost/jauabook

database username: scott@localhost

database product name: MySL

database product version: 5.5.27

DBC driver name: MysQL Connector Java

DBC driver version: mysql-connector-jaua-5.1.26 (Revision: $(bzr.revision-id)

DBC driver major version: 5
MDBC driver minor version: 1
Max_number of connections: @
MaxTableNameLength: 64
MaxColumnsInTable: 512

lc:\book>,,

OPS/images/Fig37-08.png
N L aiam mmama
1'blumpnbrNdﬂnmlDElhz X

Brofile Team Tools Window Help

- o

@ Search (Ctri+1)

+0 WEB-INF 1 /> ~
 apicasyurlll 2 | * To change this license header, choose License He
8 cheptecs? 3 * To change this template file, choose Tools | Tem
(+10 Libraries 4 * and open the template in the editor.
@ Configuration Files. 5 L o«
6 package chapter37;
7|
8 [import java.io.IOException;
9 import java.io.PrintWriter;
10 import javax.servlet.ServletException;
11 import javax.servlet.http.HttpServlet;
12 import javax.servlet.http.HttpServletRequest;
13 - import javax.servlet.http.HttpServletResponse;
14
15 [/**
i— >
= % Output | 11 NS

OPS/images/altmath_236.png

OPS/images/ASSET41328.png
B =[1.] R W curtonoemo N <L

. Bold v Bold
JavaFX Programming JavaFX Programming
Italic

Italic

two check
\ i

| i (o]

OPS/images/altmath_238.png

OPS/images/ASSET43192.png
Display Current Ti Mozilla Firefox o [=] P4
Fle Edt View Hstory Bookmarks Tooks Help

* Display Current Time [+l

€ @ localhost:8080/jsf2demojfaces/CurrentTme.xhtm ¢][B- cooge rle a

The current time is Mon Jun 17 17:09:02 EDT 2013

OPS/images/AAKMUFH0.png
main method {

try {

invoke methodt;
statement1;

catch (Exceptiont ex1) {
process ex1;

method? {

i ~

invoke method2;
statement3;

}
catch (Exception2 ex2) {
process ex2;

method2 {
E

try (-

. -
invoke method3;
statement5;

catch (Exception3 ex3)
process ex3;

An exception
is thrown in
|7 method3

statement2; statementd; itatemems:
b } }
Call stack
method3
method2 method2
method1 method1 method1

main method

main method

main method

main method

OPS/images/ch40_pg4.png
java.rmi.registry.Registry

+bind(name: String. obj: Remote): void
+rebind(name: String. obj: Remote): void

+unbind (name: String): void

+1ist(name: String): Strin

+1ookup (name: String): Remote

Binds the specified name with the remote object.

Binds the specified name with the remote object. Any
existing binding for the name is replaced.

Destroys the binding for the specified name that is
associated with a remote object.

Returns an array of the names bound in the registry.

Returns a reference, a stub, for the remote object associated

the specified name.

OPS/images/AAKMNUK0.png
+valueOf (c: char): String

+valueOf (data: char[]): String

+valueOf (d: double

String

+valueOf (f: float): String

+valueOf (i: int

String

+valueOf(1: long): String

+valueOf (b:_boolean)

String

Returns a string consisting of the character c.

Returns a string consisting of the characters in the array.
Returns a string representing the double value.
Returns a string representing the float value.

Returns a string representing the 1nt value.

Returns a string representing the 10ng value.

Returns a string representing the boolean value.

OPS/images/AAKNJOT0.png

OPS/images/altmath_6.png

OPS/images/altmath_65.png

OPS/images/altmath_416.png
T(1)=1.

OPS/images/ASSET41362.png
Exercise16_01
Red _ Yellow ® Black

Orange

=lolx|

Green

Programming is fun

| StackPanc

__ arde @ Rectangle _ Ellipse [_] Fill <{— HBox

(a)

(b)

OPS/images/AAKMMMX0.png
V2 (x2,y2)

V3 (3.3)
Vi (xlyl) (5

vy (xd, y4)

OPS/images/Fig31-06.png
HLineTo //"
VLineTo

LineTo

1

X

ArcTo QuadCurveTo CubicCurveTo

OPS/images/Fig13-10.png
-lo|x]|
:\exercise>java Exercise13_16 "3/4 + 1/5" =
B/4 + 1/5 = 19/20

:\exercise>jaua Exercisel3_16 "3/4 - 1/5"
B/ - 1/5 = 11/20

\exercise>java Exercisel3_16 "3/4 x 1/5"
B/4 % 175 = 3/20

\exercise> -

3.

(a)

(b)

xaxis

OPS/images/altmath_337.png

OPS/images/ASSET37765.png
[EE e

Enteran expression

Wi brciez0 15 -

il e olle e

L)
LC R
J J
t e e

Entron expression: | 117+8.2

L

Wlbcsez0 15 -
(Ema] (e

Wi bcise20.15 -

Find Sluton

e e ol le ol
) o
o6 o0
v e
T 10 o7 0 9

Enteran xprsson: | 11782

L H
[}
L)
»
H AR 4
Verty

o x
snutte

OPS/images/Fig43-14.png
0’\. : -
wotmn 3D ()
(¢ (e)

(a) (b))
<\. ‘/.i-\.
(0 (h)
(12) @ (s) @ () @
0 () 0 ©) OO,
©,
(k)

OPS/images/AAKNKUG0.png
weuly golece TactHane as ‘Last Nane', =1pCode as "Z1p Code
> from Student

-> uhere deptld = 'CS’;

Heintz
Kennedy

P rous in set <8.08 sec)

ysql>
<

OPS/images/altmath_846.png

OPS/images/altmath_171.png
Ny Ny, Ny s ey By Ny,

OPS/images/Fig42-06.png
P SRR New child link

(a) Before inserting & (b) After inserting

OPS/images/ASSET40419.png
~lolx|

(centerX, centerY)

(a)

T

xis centerX + radius X cos(2w/6)
is centerY — radius X sin(2m/6)

_radius

| sowealyg

(b)

=lolx]

OPS/images/AAKNJHO0.png
Seattle
San Francisco
Los Angeles
Denver
Kansas City
Chicago
Boston

New York
Atlanta
Miami

Dallas

Houston

neighbors[0]

neighbors[1]

neighbors[2]

neighbors[3]

neighbors [4]

neighbors[5]

neighbors[6]

neighbors(7]

neighbors [8]

neighbors[9]

neighbors[10]

neighbors[11]

OPS/images/ASSET40410.png
(0, 0) (getWidth(), 0) m N =1Ed]

(startX, startY)

(endX, endY)

(0, getHeight()) (getWidth(), getHeight())

(a) Line(startX, startY, endX, endY) (b) Two lines are displayed
across the pane.

OPS/images/altmath_639.png
si1ze>1

OPS/images/AAKNKEV0.png
Server Client

int port = 8000; int port = 8000;
DatalnputStream in; String host = "localhost"
DataOutputStream out; DatalnputStream in;
ServerSocket server; DataOutputStream out;
Socket socket; _ Socket socket;
Connection

server = new ServerSocket (port); Request
socket = server.accept(); <———— socket = new Socket (host, port);
in = new DatalnputStream in = new DatalnputStream

(socket .getInputStream()); (socket .getInputStream());
out = new DataOutputStream 10 out = new DataOutputStream

(socket.getOutputStream()); Streams (socket .getOutputStream());

System.out.printin(in.readDouble()); |«———— out.writeDouble(aNumber);
out.writeDouble(aNumber); ——+ . System.out.printin(in.readDouble());

OPS/images/altmath_817.png

OPS/images/ch03_pg85.png
int i

if (i > §)
if (i > k)

System.out.printin(“A");
else
System.out .printin("8");

Equivalent

This is better

with correet ———» System.out.printin("8");

indentation

int i

if (1>)
it (1> k)
System.out.printin("A");
else

(b)

OPS/images/ASSET37686.png
EEESSTE _jolx)| EEEESTED -olx| EEESSOE -lofx)| EEEESTED -lolx|

)

Enteranorder: [d] Enteranoder: [1 Enteranarder: [3 Enter an order: 3)

(a) (b) (c) (d)

OPS/images/AAKNIWR0.png
Daniel Danicl

NN NN

Delete this —» Michael Jones

node \ :l:

Jones Tom Tom

[I F

Peter Peter

T T

(a) Deleting Michael (b) After Michael is deleted

OPS/images/Fig31-40.png
L3 FXMLDocumentfxml =

Flo Edit View nset Modfy Amnge Preview Window Help
Library

oo Inspector
v L view os it v
Lz « View s Sections ton

Import AR/FXML il

5 Miscolina

. s
= o Clek Mt
Document ~
v Hracy

toyout

> Controter

OPS/images/AAKNJOR0.png
UnweightedGraph<V>.SearchTree

—cost :double[]

+ShortestPathTree(source: int, parent: int[],
searchOrder: List<Integer>, cost: double[])

+getCost (v: int): double

+printAl1Paths(): void

cost [v] stores the cost for the path from the source to v.

Constructs a shortest-path tree with the specified source,
parent array, searchOrder, and cost array.

Returns the cost for the path from the source to vertex v.

Displays all paths from the source.

OPS/images/Fig38-01.png
Steps

Name and Location

1. Choose File Type
2. Name and Location

-
Location:
o |]

Created File: |C:\bookViangweb\web\CurrentTime. jsp

Options: (@ JSP File (Standard Syntax) () JSP Document (XML Syntax)
[7] Create as a J5P Segment
Desaription:
‘Aliﬁﬁe\snglﬂ?sta\dad syntax.

<Back | [Next>][Einish] Cancel][Help

OPS/images/altmath_851.png

OPS/images/altmath_258.png
s (v, -y) 4y 2

OPS/images/Tip_Icon.png

OPS/images/altmath_666.png
(k+3 = h'(key)) % N,

OPS/images/altmath_517.png

OPS/images/altmath_371.png

OPS/images/ASSET41340.png
javafx.scene.layout .BorderPane javafx.application.Application |

1 1
TextAreaDemo

~1blImageTitle: Label
—taDescription: TextArea

+setInageView(im: ImageView): void
+setDescription(text: String): void
+setTitle(title: String): void

OPS/images/AAKMMMQ0.png

OPS/images/altmath_265.png
(75+125),

OPS/images/Fig37-20.png
[htpocalhost08../simpleRegistration

€) | [i ocabosss04 angweb/Sempiehiegsttion

John Smith is now registered in the database

OPS/images/ASSET37787.png
Doubly Linked List Animation =lolx|
Backward traversal: 445113535

ead tail
(o
] e] e]

Enteravalue: 4 Enteran index: Search Insert Delete | Foward Traversal | Badward Traversal

OPS/images/altmath_200.png
hnx 16"+ h, x16™ + h, 5 x 16"+ -+ +h; x 16"+ hy x 16°
=(..((h,x16+h _)x16+h_)x16+ - +h)x16+h,

OPS/images/altmath_824.png

OPS/images/altmath_587.png
0 n2)

OPS/images/AAKMKDA0.png
13 Spades ()

13 Hearts (v)

13 Diamonds (#)

13 Clubs (#)

5 S

deck

(0]

2]
03]

[25]
[26]

138
1391

1511

12
13

25
2

38
3

Random shufflc
—emes

deck
6 |——— Card number 6 is the

[0
[
21
B3l
[4]
1]

23]
126]

35)
1391

1]

48 7(6% 13 = 6) of
1l— | Spades (6/13is0)
24 Card number 48 i the

10 (48 % 13 =9) of
Clubs (48 /1315 3)

L—> Card number 11 is the
Queen (11 % 13=11) of
Spades (11/13 s 0)

Card number 24 is the
Queen (24 % 13 = 11) of
Hearts (24 /13is 1)

OPS/images/altmath_22.png
2> - 1(-327681032767)

OPS/images/altmath_493.png

OPS/images/tab_pg05a.png
javafx.scene. shape.CubicCurv

-startX: DoubleProperty
-startY: DoubleProperty
-endX: DoubleProperty
-endY: DoubleProperty
-controlX1: DoubleProperty
-control¥1: DoubleProperty
-controlX2: DoubleProperty
-controlY2: DoubleProperty
+CubicCurve ()

+CubicCurve (startX: double,
startY: double, controlXi:
double, controlY1: double,
controlX2: double,
controlY2: double, endX
double, endY: double)

he getter and setter methods for property values and a getter for property
itself are provided in the class, but omitted in the UML diagram for brevity.

The x-coordinate of the start
The y-coordinate of the start po
‘The x-coordinate of the end point (default 0).

The y-coordinate of the end point (default 0).

The x-coordinate of the first control point (default 0).
The y-coordinate of the first control point (default 0).
‘The x-coordinate of the second control point (default 0).
‘The y-coordinate of the second control point (default 0).
Creates an empty cubic curve.

Creates a cubic curve with the specified arguments.

OPS/images/Fig39-30.png
[Exercise39_04
€ - € |[) localhost:8080/chapter39jsfexercise/faces/Exercise39_04xhtml v O @ @ @ =

Compute Loan Payment

Loan Amount: 10000

Ammual Interest Rate 5.0

Numberof Years [15 |
Compute Loan Payment | Reset

[Exercise39_04 Result
€ - C [localhost:8080/chapter39jsfexercise/faces/Exercise39_04xhtml sﬁ}} o Q0=

Loan Amount: 10000.0

Annual Interest Rate: 5.0

Number of Years: 15

Monthly Payment: 79.07936267415464
Monthly Payme 14234.285281347835

OPS/images/altmath_450.png

OPS/images/ASSET40426.png
=lolx| ~lolx| —lalx]

(a) (b) ()

OPS/images/Fig42-13.png
root

parentOfu

u

OPS/images/AAKNIJE0.png
-head: Node<E>

~tail: Node<E>
—size: int
+MyLinkedList ()

+MyLinkedList (elements: E[])
+addFirst(e: E): void
+addLast (e: E): void
+getFirst(): E

+getlast(): E
+removeFirst(): E
+removelast(): E

The head of the list
The tail of the list.
‘The number of elements in the list.

Creates a default linked list.
Creates a linked list from an array of elements.
Adds an element 1o the head of the list.

Adds an element to the tail of the list.
Returns the first element in the list.
Returns the last element in the list.
Removes the first element from the
Removes the last element from the

OPS/images/altmath_702.png

OPS/images/AAKNJHV0.png
a)

0 1 0 1
3 43 4
(d) (e)

0 1 0 1 0 1
3 4 3 4 3 4
(: (b) (€)

OPS/images/altmath_745.png

OPS/images/Magnification_lens.png

OPS/images/ASSET39948.png
Animation
Enteratext: | Welcome

Enter a bt string:

[N Exercise25_1

(@)

Entera text: ‘Show Huffman Tree.

Entera bitstring: 0001001110101 Decode to Text

0001001101101 is decoded to omleWe.

(b)

OPS/images/AAKMDSD0.png
Memory address

'

2000
2001
2002
2003
2004

Memory content

'

01000011

01110010

01100101

01110111

00000011

Encoding for character ‘C*
Encoding for character 'r’
Encoding for character ‘¢”
Encoding for character ‘'
Decimal number 3

OPS/images/AAKNDKJ0.png
Program

Input object
created from an
input class

Output object
created from an
output class

Input stream

(] oo () B)
I 11001..1011 V| —
-

Output stream

OPS/images/C05pg186_001.png
1 public class lestBreak {
2 public static void main(String[] args) {
3 int sum = 0;
4 int number = 0;
5
6 while (number < 20) {
7 number++;
8 sum += number;
9 if (sum >= 100)
break 10 break;
1"
12
13 System.out.printin("The number is " + number):
14 System.out.printin("The sum is " + sum);
15}

16)

OPS/images/altmath_839.png

OPS/images/ASSET37772.png
o 5
£ 9 5
g gl ~
5 &
B olelolol =
M_437sz =
N[~ o|n o L
el =l]
~lo
B <o feln ol 2
B [0 ~ ~n[v @ w|2
g a=lel- =13
H CeER -
= o
M_
1 °
- 5
U)
RE R gl *
m : w

OPS/images/Fig37-17.png
jE———— e

[it/ localhost..buttons.e e
€)2 [http://localnost8084/liangweb/ GetParameterslast:

Last Name: Smith First Name: John MI: D
Gender: M

Major: Math Minor: Computer Science Mathematics

Tennis: on Golf: null PingPong: on

Remarks: This is an example of an HTML form that contains text fields,
| radio buttons, combo boxes, lsts, check boxes, text areas, and buttons.

OPS/images/altmath_56.png
(assume i= 1)

OPS/images/altmath_774.png
=b,x2"+b_,x2" +b x2"%+ .+ b,x 22+ b, x 21+ b, x 2°

OPS/images/altmath_204.png

OPS/images/altmath_421.png
0(2")

OPS/images/AAKNDKU0.png
Ablock
of data

BufferedInputStream

Program

Buffer

Read
individual
data

(a)

A block
of data.

BufferedOutputStrean| [Program
Buffer Write
individual
data

(b)

OPS/images/Fig36-07.png
javafx.scene.layout.BorderPane

javaf.application. Application

\

CalendarPane

CalendarApp

-month: int

~year: int

~calendar: java.util. Calendar
-locale: Locale

+getMonth(): int
+setMonth(newMonth: int): void
+getYear(): int

+setYear(newYear: int): void
+setLocale(newLocale: Locale): void
+showHeader(): void
+showDayNames(): void
+showDays(): void

~calendarPane: CalendarPane
~cboLocale: ComboBox<String>
-btPrior: Button

-btNext: Button

-locales: java.utilLocale[]

+start(primaryStage: Stage): void
+main(args: String[]): void

OPS/images/Fig37-33.png
New Password oassase
Confirm New Password [ressses
vkt |_Recet |

Hello, John F. Smith, your password has been updated!

(a) (b)

OPS/images/altmath_146.png
(int)Mathfloor{x+0.5)

OPS/images/altmath_107.png
(33,950 - 8, 350)

OPS/images/altmath_790.png
Ay X Dy j+ Ay X Dyt =4 @y, X Dy

OPS/images/altmath_693.png

OPS/images/box_2.png

OPS/images/altmath_565.png
0 n2)

OPS/images/altmath_301.png
area=(2+4/\2) * side « side

OPS/images/altmath_662.png

OPS/images/altmath_502.png

OPS/images/altmath_405.png
n=2k

OPS/images/altmath_220.png

OPS/images/altmath_308.png
(y=dx-h +k)

OPS/images/altmath_387.png

OPS/images/AAKNIXM0.png
45

oot —> 60

100

OPS/images/Fig31-53.png
' Exercise31.14 = © BNl sooecisesiis - © Bl s oercisesiis - © | > |

OPS/images/ASSET37691.png
| B xcrcici 8 SURY =T R xcrcisc16 SR =] -3/ Rl « i BN =T I O ¢ xcrcsc16 S =T 3|

1

Enter an order: b Enter an order: 1 Enter an order: El Enter an order: d

(a) (b) (c) (d)

OPS/images/Fig37-02.png
URL Example Web Server Host
http://www.server.com/cgi-bin/getBalance.cgi?

accountld=scott&password=tiger
Host Machine File System

Send a request URL

‘Web Browser Web Server /htdocs/index.html

HIML Page returned g e Generate !
Process Response !

i

Exceute CGI i

Program | _________ H

Get CGI Code

OPS/images/AAKMNUI0.png
+replace(oldChar: char,
newChar: char): String
+replaceFirst(oldString: String,
newString: String): String
+replaceAll (o1dString: String,
newString: String): String
+split(delimiter: String):
string(]

Returns a new string that replaces all matching characters in this
string with the new character.

Returns a new string that replaces the first matching substring in
this string with the new substring.

Returns a new string that replaces all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the
delimiter.

OPS/images/AAKMTDY0.png
(x[0]. y[0]) (x[0]. y[0])
[SUSN

(1] (1]}

(x[4], y141) (x[4]. yI41)

(<2, y12]) (21.y12])

(a) Polygon (b) Polyline

OPS/images/altmath_630.png

OPS/images/Web_Animation_Icon.png

OPS/images/Fig38-12.png
[Cd] - o

[Exrcize3s 10jsp x

« C | [localhost:8080/chapter38jspexercise/Exercise38_10jsp?country=us 7¢O @ @ @ =

US Flag Description is here

OPS/images/ASSET41315.png
~lolx)| EXSEEEET ool
y-20
y-10

x e x v
Sy

(a) (b)

OPS/images/AAKNIHD0.png
VANEEVAN AN
,/\ /\ /\ /\ VANWAN

305 1
(a) Add88toa he’\p (b) Aﬁer swapping 88 wun 19 (c) After swapping 88 with 22

OPS/images/altmath_274.png
QooX+ a1y =Dy . byay, - byag, __biage—byay,
a,ox+a, y=b, oy, — Ay ;g Y~ Tooly; — G514y,

OPS/images/AAKNFLC0.png
java.util.Vector<g>

+Stack ()

+empty(): boolean
+peek(): E

+pop(): E

+push(o: E): E
+search(o: Object): int

Creates an empty stack.

Returns true if this stack is empty.
Returns the top element in this stack.
Returns and remove

the top clement in this stack.
ack.
Returns the position of the specified element in this stack.

Adds a new element to the top of this s

OPS/images/altmath_607.png
logln+1)-1<h<log(n+1)

OPS/images/Fig43-07.png
20 30 40

N Y2 ¥3

(c)

OPS/images/AAKNJPH0.png
100

0

(b)

OPS/images/ASSET40032.png
parent
s laliTi]sTo o]
1 2 3 4 5 6

0

(@ (b)

OPS/images/ASSET43820.png
+matches (regex: String): boolean
+replaceAll (regex: String, replacement:

String): String

+replaceFirst(regex: String,
replacement: String): String

+split(regex: String): String[]

+split(regex: String, limit: int): String[]

Returns true if this string matches the pattern.
Returns a new string that replaces all matching substrings with
the replacement.

Returns a new string that replaces the first matching substring
with the replacement.

Returns an array of strings consisting of the substrings split by
the matches.

Same as the preceding split method except that the limit
parameter controls the number of times the pattern is applied.

OPS/images/altmath_646.png
Fli)=Fli- 1)+ Fli- 2

OPS/images/ASSET41371.png
=1oIx]
] 30
\ 29|

_lolx]

00:00:15

[Resume | gear

i
00:00:00

sart | (ear) ’ 28|

i
00:00:06

[Pause | Qear

() (b) (c) (d)

OPS/images/altmath_40.png

OPS/images/altmath_96.png

OPS/images/Fig26-02.png
[AVLTree Animation by ¥
< C @ liveexample pearsoncmg.com/dsanimation/AVLTreeeBookhtml @ % O @ @ o O

Usage: Enter an integer key and click the Search button to search the key in the tree. Click the Insert button to insert the key
into the tree. Click the Remove button to remove the key from the tree. For the best display. use integers between 0 and 99.

OPS/images/altmath_720.png

OPS/images/altmath_475.png
Jn.

OPS/images/Fig40-09.png
"' TicTacToe - © "' TicTacToe - ©

| won! | won!

MK
U0

AX
Ul

You are player X You are player X

OPS/images/altmath_445.png
3.36x 107

OPS/images/altmath_750.png

OPS/images/altmath_317.png

OPS/images/altmath_808.png

OPS/images/altmath_130.png

OPS/images/ASSET37763.png
W Erercie20.13 - o x

The numbers in the exressondont g
match the numbers i he st S

Qe ile el
L)
L]
4
He® e e

Enteron epresion: (3444545

Wiewse0 13 - o x

nconet reut [Shutte |
i ile el
[y
L)
0
L IR
[YT |

W Brercise20 13

OPS/images/altmath_491.png

OPS/images/altmath_848.png

OPS/images/altmath_430.png
Tin)=2T{n/2)+0(n)

OPS/images/Fig41-02.png
Fie £t View Novgate Source Refyctor Bun Debug Profle Team Tooks Window telp

[sexch criv)

PEES 9D TH OB

o @ wlrsen [iservees | [B scrsseviema |

[onje[o]

& @ sfiem sorce [B50)| BB 3 9o -|@ &[&

Scorewebsenvce

Qualy Of Sorvice =]
1 Optimize TransforOf Biary Dot (MTOM)

1 Retala Mossage Delhery

1 Secur Service

OPS/images/Unfig28-01.png

OPS/images/altmath_637.png
0 n2)

OPS/images/AAKNJOI0.png
Seattle (0)

Boston (6)

214

807 New York (7)
San Francisco (1)
381
Los Angeles (2)
Atlanta (8)

Dallas (10)
239

Houston (11)

Miami (9)

OPS/images/altmath_765.png
7x16% 4x16% 2x16%, and3x16°,

OPS/images/AAIJMCG0.png
Java Quick Reference

Frequently Used Static Constants/Methods Array/Length/Initializer
Math.P1 int[] Tist = new int[10];

Math. randon () Tist. length;

Math.pow(a, b) int[] list = {1, 2, 3, 4};

Math.abs (a)

Math.max(a, b) Multidimensional Array/Length/Initializer
Math.min(a, b)

Math.sqrt (a) int[][] Tist = new int[10][10];
Math.sin(radians) Tist. length;

Math.asin(a) 1ist[0]. Tength;

Math. toRad1ans (degrees) int[][] Tist = ({1, 2), (3, 4});

Math. toDegress (radians)

System.currentTimeMillis() Ragged Array

Integer.parselnt (string)

Integer.parselnt (string, radix) int{](] m= ({1, 2, 3, 4),

Double. parseDouble(string) {1. 2, 3),
Arrays.sort(type[] 1ist) {1, 2},
Arrays.binarySearch(type[] list, type key) mn

Text File Output File Class Object Class

PrintWriter output =

new PrintWriter (filename);
output.print(...);
output.printin(.
output.printf(..

Text File Input

Scanner input = new Scanner (
new File(filenane));

File file =
new File(filename);
file.exists()
file.renameTo(File)
file.delete()

Object o = new Object():
o.toString();
o.equals(ol);

Comparable Interface

c.compareTo (Comparable)
¢ is a Comparable object

String Class
String s = "Welcome";

String s = new String(char(]);
int length = s.length();

char ch = s.charAt (index);

int d = s.compareTo(s1);

boolean b = s.equals(s1);
boolean b = s.startsith(s1);
boolean b = s.endsWith(s1);
boolean b = s.contains(s);
String s1 = s.trim();

String s1 = s.toUpperCase() ;
String s1 = s.tolLowerCase();

int index = s.indexOf (ch);

int index = s.lastIndexOf (ch);
String s1 = s.substring(ch)
String s1 = s.substring(i,j);
char(] chs = s.toCharArray ()
boolean b = s.matches (regex);
String s1 = s.replaceAll(regex,repl);
String[] tokens = s.split(regex);

ArrayList Class

ArrayList<E> list =
Tist.add (object);
Tist.add(index, object);
Tist.clear();

Object o = list.get (index):
boolean b = Tlist.isEmpty();
boolean b = 1ist.contains (object) ;
int i = list.size();

Tist.remove (index);

Tist.set (index, object);

int i = list.index0f (object);
int i = list.lastIndex0f (object);

new ArrayList<>();

printf Method

System.out.printf("%b %c %d %f %e %s",
true, 'A', 45, 45.5, 45.5, "Welcome");
System.out.printf("%-5d %10.2f %10.2e %8s",

45, 45.5, 45.5, "Welcome");

Companion Website: www.pearsonhighered.con/1iang

OPS/images/ASSET41346.png
o x

k‘ 7‘ < FlowPane
L/ N An ImageView

is displayed

ListView
inside a
scroll pane

OPS/images/altmath_331.png

OPS/images/altmath_234.png
ax:+ bx+

OPS/images/altmath_833.png
k+ 1

OPS/images/Fig32-30.png
[H Concurrent Output =] 9

a 1b2b3b 4b 5 b6bbb 7
8bbbbbbbbbbbbbbbbbbbb 9bb10 16 11 12 13 14 1517 18 192021 22 23
242526 27 28 29 30 31 32 33 34 35 36 37 38 3940 41 42 43 44 4546 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
727374757677 78 7980 81 82 83 84 8586 87 88 89 90 91 92 93 94 95

96 97 98 99
100bbbbbbbabaabbabaabaa
‘333333333333 333 333333 33333333 332 33333333 aaaaaaaaabbbbbbbbb i

OPS/images/AAKNDKN0.png
+write(int b): void

+write(b: byte[]): void

+write(b: byte[], off: int,
Ten: int): void

+close(): void
+flush(): void

‘Writes the specified byte to this output stream. The parameter b is an int value.
(byte)b is written to the output stream.

‘Writes all the bytes in array b to the output stream.
Writes b[0ff], b[0ff+1], ..., b[off+en-1] into the output stream.

Closes this output stream and releases any system resources occupied by it.
Flushes this output stream and forces any buffered output bytes to be written out

OPS/images/ASSET40038.png
1ist[0] | [WeightedEdge(0, 1,2) | [WeightedEdge(0, 3, 8) |

[WeightedEdge(1, 0, 2) | [WeightedEdge(1, 3, 3) | [WeightedEdge(1,2,7) |

Tist[2]
Tist[3]
Tist[4]

[WeightedEdge(2, 3,4) | [WeightedEdge(2,4,5) | [WeightedEdge(, 1,7) |

[WeightedEdge(3, 1,3) | [WeightedEdge(3,2,4) | [WeightedEdge(3, 4, 6) | [WeightedEdge(3, 0, 8)

[WeightedEdge(, 2, 5) | [WeightedEdge(4, 3,6) |

OPS/images/AAKMFLK0.png
Compute tax for single filers | break |-

status s |

Compute tax for married jointly or qualifying widow(er) b~ break ||

status is 2
Compute tax for married filing separately | break |~

tatus is 3
S s Compute tax for head of houschold |- break ||

Default actions | —

OPS/images/Fig39-36.png
D Display Four Random Carc x

€ - € | [localhost:8080/chapter39jsfexercise/faces/Exercise39_t0xhtml 7| O @ @ @ =

Display Four Random Cards
Fe e X213
veol @

» af El

OPS/images/altmath_736.png

OPS/images/Fig31-22.png
=lolx|

Namber 17| Mumber2 (| Resu 15

[naa][swwoct_| [monoy][owae |

OPS/images/altmath_589.png
0 n2)

OPS/images/altmath_864.png

OPS/images/altmath_436.png
Tin)=T(n- 1)+ T(n-2)+0(1)

OPS/images/AAKNIGU0.png
divide

conquer

[2[4]5]9] [Te[7[8]

OPS/images/pg05.png
Subclass Superclass

public class Circle extends GeometricObject

OPS/images/page16a.png
ay Temperature ay Temperature

Hour Humidity Hl)ur Humidity
1 1 76.4 0.92 10 24 98.7 0.74
1 2 77.7 0.93 2 77.7 0.93
10 23 97.7 0.71 10 23 97.7 0.71
10 24 98.7 0.74 1 76.4 0.92

OPS/images/altmath_508.png
marked x 1n the figure.

OPS/images/AAKNJOP0.png
Vertices already in
the spanning tree

Verlices not currently in
the spanning tree

OPS/images/ASSET41331.png

OPS/images/ASSET43207.png
Validate Form - Mozila Firefox _lolx]

Fle Edt View History Bookmarks Toos Help
[2]

€ @ localhost:8080/j5’2demo/faces/ValdateForm.xhtmi

Name: [Nameis required
ssN: [SSNisrequired

Age: [Ageisrequired

Heihgt| Heihgtis required
Submit

(a) The required messages are displayed if input is required, but empty.

% Validate Form - Mozilla Firefox _olx]

Fle Edt Vew History Bookmarks Took Help

|

& & localhost:8080/jsf2demoffaces/VaidhteForm ¢|[B-cooge Pl & A

Name: ,W Name must have 1 to 10 chars

SSN: [34243 | Invalid SSN

Age: ,1297 Age must be between 16 and 120

Height: ,347 Height must be between 3.5 and 9.5
Submit

(b) Error messages are displayed if input is incorrect.

OPS/images/altmath_621.png
S5, O-

OPS/images/altmath_346.png

OPS/images/altmath_704.png
(Weighted 4 x 4 16 tails)

OPS/images/altmath_177.png

OPS/images/AAKMNUB0.png
After executing String s = "Java"; After executing s = "HTML";

_ s
String object for "Java

Contents cannot be changed

‘This string object is

e now unreferenced
String object for "Java” !

String object for "HTHL"

OPS/images/Fig31-37.png
e it e vt S Ractor o Db e T ok ol
EEAN 5 kv 0T

alees,

 Sech (CutoD)

I*

* To change this template file, choose Tools
* and open the template in the editor.

< s sge)

1
2

3

4

5| Lo/
6

7 package calculator;
8

9 [limport javafx.application.Application;
10 | import javafx.fxml.FXMLLoade:
11 | import javafx.scene.Parent;
import javafx.scene.Scene;

* To change this license header, choose License Header{

Templat

11

OPS/images/altmath_574.png

OPS/images/altmath_519.png

OPS/images/altmath_162.png

OPS/images/altmath_218.png
/C++

OPS/images/altmath_290.png

OPS/images/altmath_24.png
2% —1(-21474836481t02147483647)

OPS/images/AAKMKCW0.png
double[] myList = new double[10];

i f
myList [reference wyTst o] 5

A
myList(1] [4.5

Auray reference myList(2] 3.3
variable myList(3)] [13.2
myList[4] | 4.0

Array elementat __,ny) jst[5] [34.33 < Element value

index 5
myList(6] | 34.0

myList[7] | 45.45
myList[8] | 99.993
myList[9] | 11123

OPS/images/altmath_378.png

OPS/images/Fig43-003.png
node: RBTreeNode<E>

#element: E
-red: boolean
#left: TreeNode
#right: TreeNode

OPS/images/altmath_105.png

OPS/images/altmath_520.png
p<=\n

OPS/images/altmath_148.png

OPS/images/Fig44-11.png
© chapterd - NetBeans IDE 802

File Edit View Navigate Source Refactor Run
PHEY D C [<defoukc.v 0T B

Debug Profile Team Tools Window Help.

- o x

[a Search i+D)

7

7

12
13

Output - chapterd4 (test)

package chapterdd;

import org.junit.*;

import static org.junit.Assert.*;

public class LoanTest |
@Before

public void setUp() throws Exception (

b

@Test

public void testPaymentMethods () {
double annuallnterestRate

= 2.5;

test:

B

© Tostsuite: chapterdd.LoanTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.047 sec

ds)

Deleting: C:\Users\Y6930~1.DAN\AppData\Local\Temp\TEST-chapterd4.LoanTest . xnl
FUL (total time: 0 sec

OPS/images/altmath_563.png

OPS/images/altmath_776.png

OPS/images/altmath_504.png

OPS/images/altmath_547.png

OPS/images/altmath_407.png
n=2k

OPS/images/altmath_679.png

OPS/images/ASSET40408.png
(0. 0 (getwidtn(), 0) =lolx|

Programming is fun

Programming s fun

o et displayed Display text
Brogramming s fun.
(0, getHeight()) (getWidth(), getHeight())

(a) Text(x, y. text) (b) Three Text objects are displayed

OPS/images/altmath_660.png
h'(key)

OPS/images/altmath_806.png

OPS/images/AAKMNDF0.png
/1 File TestCircle.java
public class TestCircle {
}
class Circle {

.

compiled
by

gencrates | TestCircle.class

Java
Compiler

generates

S Circle.class

OPS/images/Fig31-51.png

OPS/images/altmath_261.png
(82, 250 - 33, 950)

OPS/images/AAKNJGB0.png
0

Hash function

| Aneniry

OPS/images/ASSET43205.png
\"hrefox |

R Calultor

&2

it/ /locolhost 8084 jst2demoffaces/Calculatoratmi - |

Number 1 3.0 Number 2 5.0 Result 8.0

[Add | [subtract | [Multiply | [Divide |

OPS/images/ASSET41317.png

OPS/images/altmath_632.png

OPS/images/AAKNJSS0.png
java.util.concurrent.Semaphore

+Semaphore (numberOfPermits: int)

+Semaphore (number0fPermits: int, fair:

boolean)
+acquire(): void

+release(): void

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

OPS/images/Fig37-19.png
jon without Confirmation | = |
€)| [rp/tocalnostates fanguet/SmpleRegiraiontiml 77 |G (8- Google

Please register to your instructor's student address book.

| Last Name * Smith First Name * John

Telephone 3222231212 Email smith@acm.org

Street 100 Main Street

City Savannah State Georgia-GA ~ Zip 31419

* required fields

OPS/images/altmath_675.png
O capacity + size)

OPS/images/Fig36-09.png
=lalx|

(hoose a Locale | German (Luxembourg) =

Enter Annual Interest Rate, Number of Years, and Loan Amount

InterestRate 675 6,53%
Number of Years 15 15
Loan Amount 107000 107.000,00 €
Payment

Monthly Payment 933,98 €

‘Total Payment 168.117,01 €

Compute

=lolx]
Choose a Locale | yrafian (Switzeriand) -
Enter Annual Interest Rate, Number of Years, and Loan Amount
Interest Rate 6.75 6.53%
Number of Years 15 15
Loan Amount 107000 SFr. 107'000.00
Payment
Monthly Payment SFr. 933.98
Total Payment SFr. 168'117.01

Compute

OPS/images/pg79.png
if (i > 0) {
System.out.printin(“i is positive");
}

if (i >0)
System.out.printin(“i is positive");

Equivalent

(a) (b)

OPS/images/altmath_691.png
(4 x 4 16 tails GUI)

OPS/images/AAKNJHF0.png
root

parent0fA

New node contains element e

OPS/images/altmath_276.png
Qpor Qgys Aygr Aqqs Dy

OPS/images/AAKMVAG0.png
Notation: The interface
and its methods are
italicized. The dashed
line and hollow iriangle
are used o point (o

the interface.

+howToEat () : String

~weight: double

+sound(): String

“The getter and setter methods
for weight are provided, but
omitted in the UML.

Tiger |

OPS/images/AAKMFLY0.png
0
(a)

0

(b)

0
(<)

e

OPS/images/altmath_578.png

OPS/images/altmath_535.png

OPS/images/altmath_306.png

OPS/images/altmath_434.png
Tin)=2T{n-1)+0(1)

OPS/images/altmath_477.png

OPS/images/Fig40-07.png
Client 1:

A client makes two kinds of calls:

1. Request to play the game.
2. Notify the server of the move.

Client 2:

A client makes two kinds of calls:

1. Request to play the game.
2. Notify the server of the move.

Server:
‘The server makes three kinds of calls:
1. Notify a client of the other

client’s move.
2. Notify the game status.
3. Coordinate the turn.

\V/i

OPS/images/AAKMMMU0.png
125

OPS/images/arrow.png

OPS/images/unfig04-01.png
012345678

s.substring(0, k) > Kim Jones |« s.substring(k + 1)
is Kin is Jones

Kk is 3

OPS/images/Fig24-01.png
e el - o x|

/[Arraytist Animation by Y. x
C | @ liveexample pearsoncmg.com/dsanimation/ArrayListeBookhtml @ % | O © O w ©

&

This is the animation for ArrayList implementation. Enter a value and click the Search, Insert, and Delete button to search,

insert, or delete the value from the list. Enter a value and an index and then click the Insert button to insert the value in the
nter an index and then click the Delete button to delete the value in the specified index. Click the

specified index.
“TrimToSize button to make the capacity the same as the size.

armay listis empty size = 0 and capacity is 4

=71

Enter a value:

Enter an index: || [N

(a) ArrayList animation. Source: Copyright © 1995-2016 Oracle andor its affliates. All rights reserved. Used with permission,

B - o

[LinkedList Animation by~ X "
© liveexample.pearsoncmg.com/dsanimation/LinkedListeBookhtml Q % O @ @ w O

& c

arch, insert, or delete the value from the list. Enter a

Usage: Enter a value and click the Search, Insert, or Delete button to
value and an index and then click the Insert button to insert the value in the specified index. Enter an index and then click the

Delete button to delete the value in the specified index.
tail

head
H—iTH—)I_H—iLr\

5 Enter an index: || [N

Enter a value:

(b) LinkedList animation

OPS/images/Fig02-01.png
= Command Prompt — =

Compile > ¢:\book>javac Computedr

Run ——> c:\book>java Conputefirea

The area for the circle of radius 20.0 i 1256.636

e:\booko,
< >

OPS/images/AAKNHJC0.png
=lalx|

INSTRUCTION
Add: Left Click
Remove: Right Click.

(a) (b) Crossed polygon

OPS/images/Fig27-10.png
+yHashSet ()

+HyHashMap (capacity: int)

+HyHashMap (capacity: int,
ToadFactorThreshold: float)

Creates an empty set with default capacity 4 and default load-
factor threshold 0. 75f.

Creates a set with a specified capacity and default load-
factor threshold 0. 75f.

Creates a set with a specified capacity and load-factor threshold.

OPS/images/AAKNJRV0.png
java.lang.Thread

/1 Custom thread class
public class CustomThread extends Thread {

/1 Client class
public class Client {

public void someMethod() {

/1 Create a thread

public CustomThread(...) {

}

/1 Override the run method in Runnable

public void run() {
/1 Tell system how to perform this task

/1 Start a thread
thread1.start();

/| Create another thread

/| Start a thread
thread2.start();

CustomThread thread1 = new CustomThread(...

CustomThread thread2 = new CustomThread(...

)i

(b)

OPS/images/altmath_249.png

OPS/images/AAKNIXC0.png
root ——»> 20

/I

10

o0l >

10

16

rightMost

14

27

(a)

(b)

OPS/images/altmath_206.png

OPS/images/altmath_560.png

OPS/images/Fig38-10.png
€) |[[E htpsrocainostsossiangwed 77 <[] [~ coogie £

Select atable department ~

OPS/images/altmath_590.png
T{n)=0lnlog n)

OPS/images/altmath_648.png
k < rootsize,

OPS/images/ASSET41373.png
O xercise16_24

Gri 2 Grz 5 3 10 cr4: [19

]
.]

0581000553 Voume o

(a) (b)

OPS/images/altmath_605.png
h<log(n+1)

OPS/images/Output_Icon.png

OPS/images/altmath_98.png

OPS/images/ASSET41344.png
ObjectProperty<Observable
—orientation: BooleanProperty

-selectionModel:
ObjectProperty<MultipleSelectionModel<T>>

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevi

+ListView()
+ListView(items: ObservableList<T>)

“The items in the list view.

Indicates whether the items are displayed horizontally or vertically
in the list view.

Specifies how items are selected. The SelectionModeT is also used
10 obtain the selected items.

Creates an empty list

iew.
Creates a list view with the specified items.

OPS/images/AAKNJPL0.png
(a) ()

OPS/images/AAKCQGG0.png

OPS/images/AAKMVTF0.png
+handle(event: T)

+setOnXEvent Type(1istener)

(2) Register by invoking
source. setOnXEventType (1istener):

(1) Alistener object is an - s
instance of a listener interface listener: ListenerClass

User Trigger an event
i) >

(2) A generic source object with a generic event T

+handle (event: ActionEvent)

+setOnAction(1istener)

(2) Register by invoking
source. setOnAction(listener);

(1) An action event listener is an instance of fistener: Cus tomListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

OPS/images/altmath_376.png
(16 + 0.75=12)

OPS/images/AAKMKBZ0.png
Define a method

Invoke a method

—>public static int

return value method formal

type

KN M

int result;

if (num > num2)
result = numi;
else
result = num2;

return result; <

. P a
max (1Nt numi, int _num2)
[———

name parameters

{

parameter list method
signature

return value

max(x, y);

1t

actual parameters
(arguments)

OPS/images/Fig31-24.png
[SpitPaneDemo O spitpaneDemo

EEE

(a) Horizontal orientation (b) Vertical orientation

OPS/images/altmath_81.png
sidel+side2+side3)/ 2

OPS/images/altmath_333.png

OPS/images/AAKMDSO0.png
public class Welcome { 1
public static void main(String[] args) { <—— Class block
System.out.printin("Welcone to Javal"); Method block
}

}

OPS/images/altmath_734.png

OPS/xhtml/js/format_lg_obj.js
/*

Responsive table script

Credit to http://css-tricks.com/responsive-data-tables/

*/

!function($) {

 var className = 'lc_responsivetable',

 maxWindowWidth = 700,

 bodyElement = document.body,

 windowWidth = window.innerWidth,

 windowHeight = window.innerHeight,

 largeTables = document.getElementsByTagName('table'),

 largeImages = document.getElementsByClassName('ls_large-image'),

 //svgEquations = document.getElementsByTagName("svg"),

 equations = document.getElementsByTagName('math'),

 // or m:math??

 scalable = 1,

 smallDevice, supportsTouch;

 if (window.innerWidth > maxWindowWidth) {

 smallDevice = false;

 } else {

 smallDevice = true;

 }

 //Check if it's touch device

 function isTouchDevice() {

 supportsTouch = ('ontouchstart' in window) || !! (navigator.msMaxTouchPoints);

 return supportsTouch;

 }

 function zoomIn(event, target) {

 scalable = scalable + 0.2

 var imageId = target.getAttribute('data-target')

 var targetImage = document.getElementById(imageId)

 targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

 targetImage.style.transformOrigin = "0 0"

 targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

 targetImage.style.webkitTransformOrigin = "0 0"

 }

 function zoomOut(event, target) {

 scalable = scalable - 0.2

 if (scalable > 0.2) {

 var imageId = target.getAttribute('data-target')

 var targetImage = document.getElementById(imageId)

 targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

 targetImage.style.transformOrigin = "0 0"

 targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

 targetImage.style.webkitTransformOrigin = "0 0"

 }

 }

 function zoomReset(event, target) {

 scalable = 1

 var imageId = target.getAttribute('data-target')

 var targetImage = document.getElementById(imageId)

 targetImage.style.transform = "scale(" + scalable + "," + scalable + ")"

 targetImage.style.transformOrigin = "0 0"

 targetImage.style.webkitTransform = "scale(" + scalable + "," + scalable + ")"

 targetImage.style.webkitTransformOrigin = "0 0"

 }

 function setupEquations(){

 if (equations.length > 0) {

 var eqs = []

 if (equations.length > 0) {

 for (var key in equations) {

 eqs.push(equations[key])

 }

 }

 /*if (svgEquations.length > 0) {

 for (var i = 0; i < svgEquations.length; i++) {

 // check if it's really an equation or not

 eqs.push(svgEquations[i])

 }

 }*/

 //set up the equations

 for (var i = 0; i < eqs.length; i++) {

 var equation = eqs[i],

 width,

 parentW = equation.parentNode ? equation.parentNode.offsetWidth : equation.offsetWidth

 if (equation.childNodes && equation.childNodes[0].length == 0) {

 width = equation.offsetWidth

 } else {

 width = equation.childNodes ? equation.childNodes[0].offsetWidth : equation.offsetWidth

 }

 if (equation.parentNode && equation.parentNode.className.indexOf("inlineequation") === -1 && equation.style && equation.style.display != "inline") {

 // wrap it in a div for scaling purposes

 var div = document.createElement('div')

 div.wrap(equation)

 div.setAttribute("style", "width: " + parentW + "px; overflow: visible;")

 div.className = "lc_equationwrapper"

 if (width > parentW) {

 // scale if it's bigger

 scaleEquation(div, width, parentW)

 }

 }

 }

 }

 if (window.MathJax != undefined) {

 MathJax.Hub.Queue(function() {

 var Equations = document.getElementsByClassName("MathJax_Display")

 for (var i = 0; i < Equations.length; i++) {

 var equation = Equations[i]

 if (equation.parentNode.className.indexOf("lc_equationwrapper") == -1 && equation.style.display != "inline") {

 // oops, it's not wrapped for some reason... wrap it up, then continue

 var div = document.createElement('div')

 div.setAttribute("style", "width: " + equation.parentNode.offsetWidth + "px; overflow: visible;")

 div.className = "lc_equationwrapper"

 var newHTML = equation.parentNode.innerHTML,

 parent = equation.parentNode

 div.innerHTML = newHTML

 parent.innerHTML = ""

 parent.appendChild(div)

 equation = div.childNodes[2]

 }

		 if (equation.childNodes && equation.childNodes[0]) {

 			var width = equation.childNodes[0].offsetWidth,

 parentW = equation.parentNode.offsetWidth

 			if (width > parentW) {

 scaleEquation(equation.parentNode, width, parentW)

 			}

		 }

 }

 });

 }

 }

 function resizeEquations(){

 // scale the equations here

 var equations = document.getElementsByClassName("lc_equationwrapper")

 if (equations.length > 0) {

 for (var i = 0; i < equations.length; i++) {

 var equation = equations[i],

 width = equation.offsetWidth,

 innerWidth = 0,

 innerHeight = equation.offsetHeight,

 screenWidth = equation.parentNode.offsetWidth

 // get the inner width

 if (equation.childNodes[1] && equation.childNodes[1].className.indexOf("MathJax") != -1) {

 if (equation.childNodes[1].childNodes[0]) {

 innerWidth = equation.childNodes[1].childNodes[0].offsetWidth

 } else {

 innerWidth = equation.childNodes[2].childNodes[0].offsetWidth

 }

 } else {

 innerWidth = equation.childNodes[0].offsetWidth

 }

 if (innerWidth > screenWidth) {

 scaleEquation(equation, innerWidth, screenWidth)

 } else {

 equation.setAttribute("style", "width: " + screenWidth + "px; overflow: visible; margin: 0 auto;")

 //equation.parentNode.setAttribute("style", "height: "+innerHeight+"px")

 }

 }

 }

 }

 function scaleEquation(equation, width, parentW) {

 // if this fires, the equation needs scaling

 var scaleRatio = parentW / width,

 height = equation.offsetHeight * scaleRatio

 equation.style.webkitTransform = "scale(" + scaleRatio + "," + scaleRatio + ")"

 equation.style.webkitTransformOrigin = "0 0"

 equation.style.mozTransform = "scale(" + scaleRatio + "," + scaleRatio + ")"

 equation.style.mozTransformOrigin = "0 0"

 equation.style.transform = "scale(" + scaleRatio + "," + scaleRatio + ")"

 equation.style.transformOrigin = "0 0"

 equation.style.width = width + "px"

 equation.style.maxWidth = width + "px"

 //equation.parentNode.style.height = height + "px"

 }

 function scaleIt(it){

 if(it.id != "highlightPopupContent"){

 // check for nested images, on tables

 var nestedImgs = it.getElementsByTagName('img')

 for (var j = 0; j < nestedImgs.length; j++) {

 var nestImage = nestedImgs[j]

 nestImage.style.maxWidth = "none"

 }

 // set the parent to have a style of "overflow:auto"

 it.parentNode.style.overflowY = "hidden"

 it.parentNode.style.overflowX = "auto"

 it.style.webkitTransformOrigin = "0 0"

 it.style.mozTransformOrigin = "0 0"

 it.style.msTransformOrigin = "0 0"

 it.style.OTransformOrigin = "0 0"

 it.style.transformOrigin = "0 0"

 var parentW = it.parentNode.offsetWidth,

 itW = it.offsetWidth

 if(itW > parentW){

 // it's too big

 var ratio = parentW/itW

 it.style.height = "auto"

 var height = it.offsetHeight,

 parentHeight = it.parentNode.offsetHeight

 it.style.webkitTransform = "scale("+ratio+", "+ratio+")"

 it.style.mozTransform = "scale("+ratio+", "+ratio+")"

 it.style.msTransform = "scale("+ratio+", "+ratio+")"

 it.style.OTransform = "scale("+ratio+", "+ratio+")"

 it.style.transform = "scale("+ratio+", "+ratio+")"

 it.style.height = height*ratio+"px"

 it.parentNode.style.height = height*ratio +"px"

 } else {

 it.style.webkitTransform = ""

 it.style.mozTransform = ""

 it.style.msTransform = ""

 it.style.OTransform = ""

 it.style.transform = ""

 it.style.height = ""

 it.parentNode.style.height = ""

 }

 }

 }

 function init() {

 isTouchDevice()

 // bind the click events for the tables

 document.addEventListener("click", function(e) {

 var targetClasses = e.target.className,

 target

 // if it's fa, then bubble to parent

 if (targetClasses.indexOf("fa") != -1) {

 targetClasses = e.target.parentElement.className

 target = e.target.parentElement

 } else {

 target = e.target

 }

 if (targetClasses.indexOf("zoom") != -1) {

 targetClasses = targetClasses.replace("zoom-btn ", "")

 switch (targetClasses) {

 case "zoom-in":

 zoomIn(e, target)

 break

 case "zoom-out":

 zoomOut(e, target)

 break

 case "zoom-reset":

 zoomReset(e, target)

 break

 }

 }

 }, false)

 var selectedTable, otherEls, scaleRatio

 if (supportsTouch) {

 window.addEventListener("orientationchange", function() {

 if (largeTables.length > 0) {

 for (var i = 0; i < largeTables.length; i++) {

 selectedTable = largeTables[i]

 scaleIt(selectedTable)

 }

 }

 resizeEquations()

 });

 } else {

 /*var css = '.lc_imagewrapper {width:100%; overflow: auto; padding: 0 0 0 32px;} \

 .zoom-buttons { position:absolute; left: 0; width: 25px; z-index:5; } \

 .zoom-btn { -webkit-box-shadow: 0px 1px 3px rgba(0,0,0,0.4); box-shadow: 0px 1px 3px rgba(0,0,0,0.4);} \

 .zoom-in, .zoom-in:hover, .zoom-out, .zoom-out:hover {display:block; font-size:18px; font-weight:bold; background:#fff; border:1px solid #000; color: #000; padding: 2px; line-height: 100%; width: 25px; border-radius: 0; -webkit-border-radius: 0;} \

 .zoom-in, .zoom-in:hover {border-bottom: 0} \

 .zoom-reset, .zoom-reset:hover {border:none; font-size: 12px; background: transparent; padding: 0; box-shadow: none; color: #08c; font-weight: normal; } ',

 head = document.head || document.getElementsByTagName('head')[0],

 style = document.createElement('style');

 style.type = 'text/css';

 if (style.styleSheet) {

 style.styleSheet.cssText = css;

 } else {

 style.appendChild(document.createTextNode(css));

 }

 head.appendChild(style);

 for (var i = 0; i < largeImages.length; i++) {

 var selectedImage = largeImages[i]

 var randomId = Math.random().toString(36).substr(2);

 selectedImage.setAttribute("id", randomId);

 selectedImage.parentElement.setAttribute("style", "position: relative;")

 var div = document.createElement('div')

 div.setAttribute("class", "lc_imagewrapper")

 div.wrap(selectedImage)

 var div_control = ['<div class="zoom-buttons">', '<button data-target="' + randomId + '" class="zoom-btn zoom-in">+</button>', '<button data-target="' + randomId + '" class="zoom-btn zoom-out">-</button>', '<button class="zoom-btn zoom-reset" data-target="' + randomId + '" >Reset</button>', '</div>'].join('\n')

 div.insertAdjacentHTML('afterBegin', div_control)

 }*/

 }

 if (largeTables.length > 0) {

 for (var i = 0; i < largeTables.length; i++) {

 // on initial load, wrap the whole thing in a div

 selectedTable = largeTables[i]

 var newDiv = document.createElement("div")

 newDiv.className = "lc_tablewrapper"

 selectedTable.parentNode.insertBefore(newDiv, selectedTable)

 newDiv.appendChild(selectedTable)

 // fire off the scaling

 scaleIt(selectedTable)

 }

 }

 setupEquations()

 }

 window.addEventListener("resize", resizeThrottler, false);

 var resizeTimeout;

 function resizeThrottler() {

 // ignore resize events as long as an actualResizeHandler execution is in the queue

 if (!resizeTimeout && !supportsTouch) {

 resizeTimeout = setTimeout(function() {

 resizeTimeout = null;

 resizeWatcher();

 // The resize Watcher will execute at a rate of 15fps

 }, 66);

 }

 }

 function resizeWatcher() {

 if (largeTables.length > 0) {

 for (var i = 0; i < largeTables.length; i++) {

 selectedTable = largeTables[i]

 scaleIt(selectedTable)

 }

 }

 resizeEquations()

 }

 //find the closest figure parent

 function findAncestor(el, classname) {

 while ((el = el.parentElement) && !el.classList.contains(classname));

 return el;

 }

 function ancestorTag(node) {

 // walk tree until you reach a section

 var newNode = node,

 isParent = false

 do {

 newNode = newNode.parentNode

 if (newNode.nodeName.toLowerCase() == "figure" || newNode.nodeName.toLowerCase() == "section" || newNode.nodeName.toLowerCase() == "aside" || newNode.nodeName.toLowerCase() == "li") isParent = true

 //console.log(newNode)

 } while (!isParent)

 return newNode

 }

 //find the closest figure parent

 function hasClass(el, selector) {

 var className = " " + selector + " ";

 if ((" " + el.className + " ").replace(/[\n\t]/g, " ").indexOf(className) > -1) {

 return true;

 }

 return false;

 }

 //auto width columns

 function autoCalculateColWidth(tableEl) {

 var $table = $(tableEl);

 var $theadCells = $table.find('thead tr').children(),

 colCount

 // var colCount = $table.find('thead tr').length,

 // colWidth = $table.parent().width() / colCount

 var $tbodyCells = $table.find('tbody tr:first').children();

 // Get the tbody columns width array

 colWidth = $tbodyCells.map(function() {

 return $(this).width();

 });

 // Set the width of thead columns

 $theadCells.each(function(i, v) {

 $(v).width(colWidth[i]);

 });

 }

 // Wrap an HTMLElement around each element in an HTMLElement array.

 HTMLElement.prototype.wrap = function(elms) {

 // Convert `elms` to an array, if necessary.

 if (!elms.length) elms = [elms];

 // Loops backwards to prevent having to clone the wrapper on the

 // first element (see `child` below).

 for (var i = elms.length - 1; i >= 0; i--) {

 var child = (i > 0) ? this.cloneNode(true) : this;

 var el = elms[i];

 // Cache the current parent and sibling.

 var parent = el.parentNode;

 var sibling = el.nextSibling;

 // Wrap the element (is automatically removed from its current

 // parent).

 child.appendChild(el);

 // If the element had a sibling, insert the wrapper before

 // the sibling to maintain the HTML structure; otherwise, just

 // append it to the parent.

 if (sibling) {

 parent.insertBefore(child, sibling);

 } else {

 parent.appendChild(child);

 }

 }

 }

 // check the readyState so it will load even if the the document has already loaded

 if(document.readyState == "loaded" || document.readyState == "complete"){

 init()

 } else {

 // not loaded, bind an event

 document.onreadystatechange = function(){

 if(document.readyState == "loaded" || document.readyState == "complete"){

 init()

 }

 }

 }

}(window.jQuery)

OPS/images/AAKNJSL0.png
Task 1

Task 2

synchronized (anObject) {
try {
/1 Wait for the condition to become true

synchronized (anObject) {
/1 When condition becomes true

while (!condition) Tesume
anObject.wait();
/'l Do something when condition is true

}
catch (InterruptedException ex) {
ex.printStackTrace()

anObject.notify(); or anObject.notifyAll()
,

OPS/images/ASSET41301.png
=lalx| =lalx] =laix|

Programming s fun Programming is fun

OPS/images/AAEOJXQ0.png
Day 6 in a week is Saturday

}

(6+10)% Tis2
~ Day2in a week is Tuesday
Note: Day 0in a week is Sunday

~ A week has 7 days

After 10 days

OPS/images/AAKMNDM0.png
+Randon()
+Randon(seed: long)
+nextInt(): int
+nextInt(n: int): int
+nextLong(): Tong
+nextDouble(): double
+nextFloat(): float
+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.
Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (excluding n).
Returns a random 10ng value.

Returns a random doubTe value between 0.0 and 1.0 (excluding 1.0).
Returns a random 10at value between 0. OF and 1. OF (excluding 1.0F).
Returns a random bool ean value.

OPS/images/altmath_762.png
7[4]2[3] =7 x 10° + 4 X 10> + 2 X 10' + 3 x 10°
10° 10* 10" 10° = 7000 + 400 + 20 + 3 = 7423

OPS/images/Fig39-34.png
[Exercise 338- Guess the S X
€ - € [} localhost8080/chapter39jsfexercise/faces/Exercise39_08xhtml 7| O @ @ @ =

Whatis e cpitof ot immgn

) Exercise 33- Guess the 1 x

€ = € | [localhost:8080/chapter39jsfexercise/faces/Exercise39_ 08.xhtml ¢v O B @ @ =

The capital of Florida is Tallahassee.

OPS/images/ASSET40036.png
Add new vertex
Vertex name:
xcoordrate:
y-coordinate:

s
P
130

Add 3 new edge

Vertex u (index): 0
Vertex v (index): 4
Weght (n): 69

Start Over (Qear Graphs)

Finda shortest path
Strting vertex:
Ending ertex:

OPS/images/Fig37-04.png
@ New Web Application X

Steps Server and Settings
L Choose Project pdd to Enterpris Applcation: [<are

Location Server: (GlassFish Server 4.1 ~ [Add.
3. Server and

Settings Jova EE Version: Java EE 7 Web
4. Frameworks

Context Path: ~/iangweb

< Back Finish | Cancel | Help

OPS/images/C05pg176_002.png
for (initial-action;
Toop-continuation-condition;
action-after-each-iteration) {
/1 Loop body;

initial-action;
while (loop-continuation-condition) {
/1 Loop body
action-after-each-iteration;

)
(a) (b)

}

OPS/images/Fig32-32.png

OPS/images/altmath_706.png

OPS/images/Fig01-20.png
jemo/ Wekcome.java - Ecipse SDK. =lalx|
Be Edt Sowce Refacior Naviate Search Project Run Window Hep

& Java

(37 GO YR viE G vim P viP S0 Wil vl v ey |
Fomcccess | 3 |[@3ava pyoev % Detug |\
18Package B @ = O DSenverjava [SudentClie. () Welcomejwa®m % =0 om =0
ag v / This application program prints Helcone to] | © 4 R %
@ animaton 2 public class Welcone { -
@ book. 5 public static void main(String(] args) { < G, ek
= 4 system.out.println(*Welcone to Javal"); o
5 (defau package) E
5 1) Wekomesava 5y
@8 RESystem Lbrary 7 E
© exercse « > « »
935/ mymvaprograms A
@ pybook Console &1 =0
 pybook ElEl B
 pyexercse % % G GH[E[E| B v 3w

<terminated> Welcome [1ava Applcatin] C:\Program Fles\Java\idk1.8.0\bn javaveexe (Ap 18,
Welcone to Javal

| —) |

| Witabe | Smartinsert | 7:1

Edit pane

{— Output pane

OPS/images/altmath_749.png

OPS/images/altmath_232.png
Jn

OPS/images/altmath_160.png
s=2rsin<,

OPS/images/ASSET37776.png
[0] [1] [2] [3] [4] [5] [6]

X Step 1: Save 4 1o a temporary variable currentElement
Tlist |2 5 9 4

currentElement: [4]

[0] [1] [2] [3] [4] [5] [6]
Tist [2 5 9 Step2:Move 11st[2] to 14st[3]

[01 [1] [2] [3] [4] [5] [6]
Tist [2 5 9 Step3:Move 1ist[1] to Tist[2]

[0] [1] [2] [3] [4] [5] [6]
Tist[2 4 5 9 Step 4: Assign currentElement to 1ist[1]

OPS/images/altmath_533.png

OPS/images/C05pg189_001.png
int sum = 0;
for (int i
if (1% 3
sum += i;

i< 4p i) {
0) continue;

}

Converted

‘Wrong conversion

int i =0, sum = 0;

while (i < 4) {

if (%3

= 0) continue;

OPS/images/altmath_576.png

OPS/images/Fig31-39.png
u) FXMLDocument.fxml - o

File Edit View Insert Modify Amange Preview Window Help

Library. 2] o | No selection Inspector 3z
v Containers v Properties
8 Accordion No Selection
> Controls
- Menu
- Miscellaneous
> Shapes
> Charts
. » Click Me!
Document o
v Hierarchy
© @ AnchorPane
@ Button Click Me
 Label S iy
> Controller > Code

OPS/images/altmath_461.png
m2n,

OPS/images/altmath_835.png

OPS/images/ASSET40421.png
©.0)

loix] e

handLength|

¢ 3|
(centerX, centerY)

2377

(a) (b)

OPS/images/altmath_26.png

OPS/images/altmath_69.png

OPS/images/Fig41-16.png
) hapocabos..iectGadeqvsiop |

€) | nttp//iocalhost8080/QuizWebServiceClientProject/GradeQuizisp.

Out of 5 questions, 3 correct.

OPS/images/ASSET40392.png
error: ReadOnlyBooleanProperty
~height: ReadOnlyDoubleProperty
~width: ReadOnlyDoubleProperty
~progress: ReadOnlyDoubleProperty

‘The get ter methods for property
values are provided in the class, but
omitted in the UML diagram for brevity.

+Image (filenameOrURL: String)

Indicates whether the image is loaded correctly?
The height of the image.
“The width of the image.
‘The approximate percentage of image’s loading that is completed.

Creates an Image with contents loaded from a file or a URL.

OPS/images/altmath_549.png

OPS/images/AAKNJSE0.png
Step Balance Task 1 Task 2

newBalance = balance + 1;
newBalance = balance + 1;
balance = newBalance;

=W IN -
- —co

balance = newBalance;

OPS/images/altmath_862.png

OPS/images/altmath_506.png
<N

OPS/images/AAKMVAN0.png
Interfacel 2 |< }
Interfacel 1 m

object €

OPS/images/altmath_175.png

OPS/images/ASSET37761.png
javafx.scene.shape.Circle | javafx.scene.layout.Pane Jjavafx.application.Application

dx: double —animation: Timeline
dy: double +HultipleBal1Pane ()
+Ball (x: double, y: double +play(): void

radius: double, +pause(): void
colonifiGoTon) +increaseSpeed() : void

+decreaseSpeed() : void
+rateProperty():
DoubleProperty

+moveBall(): void

OPS/images/Fig43-19.png
childOfu is
double black

N

(a)

parent

childOfu

yyleft

(b)

yy.right

OPS/images/altmath_677.png

OPS/images/altmath_132.png

OPS/images/altmath_634.png

OPS/images/AAKNHIT0.png
index 0
ial

= o o

AR
X X %

1234567809

XTTTTTTTT
XTTETETFT
XTTFTFTFF

xMODF@DF@D F F

primes array
1314 15 16 17 18
TTTTTT
TFTEFTF

10 11
TT
FT
F T

@

-

12

T
F
F
F

T F

@ F

FF TF

1920 21 22 23 24 2526
TTT TTTTT
TET FTFTF
TFF FTFETF

F

FFOF@DFF F@MFF

ERC I

OPS/images/altmath_54.png
i dfarbe)+ 2222

OPS/images/altmath_11.png

OPS/images/Fig37-31.png
€8 e srmesran-soe 75+ & |86 2

Loan Amount: 150000.0
Annual Interest Rate: 7.85

Number of Years: 15

Monthly Payment: 1420.5191824522967
Total Payment: 255693.45284141344

(b)

OPS/images/C09-pg359_002.png
private double radius = 1;

Here, radius public void setRadius(double radius) {
is the parameter ——————radius = radius
in the method. }

OPS/images/AAKNJPF0.png
T T H
T T | T T H 7 o
H | H | H H H 1 I

(a)

(b)

(c)

(d)

OPS/images/altmath_707.png
O{logV))

OPS/images/Fig38-15.png
Subtraction Quiz - Mok Fir =lolx]

(& 8 wommmmoarromaes o < c [B-2) & # |

S Clck e browser's Refresh buson o gt anew iz,

®

OPS/images/AAKMVAO0.png
java. lang. Number |<}\

“>Rational
Jjava. lang. Comparable<Rational> K} 1

-numerator
~denominator

Tong
Tong
+Rational ()
+Rational (numerator
denominator: 1ong)
+getNunerator () : long
+getDenominator(): long

+add (secondRational
Rational

+subtract (secondRational :
Rational): Rational

+nultiply(secondRational :
Rational): Rational

+divide(secondRational:
Rational): Rational

+toString(): String

Tong,

—ged(n

Tong, d: long): long

Rational):

W]

Add, Subtract, Multiply, Divide

The numerator of this rational number.
“The denominator of this rational number.

Creates a rational number with numerator 0 and denominator 1.

Creates a rational number with a specified numerator and
denominator.

Returns the numerator of this rational number.

Returns the denominator of this rational number.

Returns the addi

n of this rational number with another.
Returns the subtraction of this rational number with another.
Returns the multiplication of this rational number with another.

Returns the di

ion of this rational number with another.

Returns a string in the form “numerator/denominator.” Returns
the numerator if denominator is 1.
Returns the greatest common divisor of n and d.

OPS/images/AAKMNZN0.png
Composition Aggregation
\ /
\ /

\ ‘1/ 3 1
4 student () Address |

OPS/images/altmath_456.png

OPS/images/altmath_650.png

OPS/images/altmath_99.png

OPS/images/altmath_278.png
— Q10
Appdy ¢ — Ap1Qqp

OPS/images/ASSET40422.png
| excrcse14 02 =
o0Xo
X X
X

(b) (c)

OPS/images/AAKNJGE0.png
New element with

key 26 o be inserted 1

2

3

4

Cs

Quadratic probe 2 <6
es before finding

anempty cell \ 7

8

9

10

key: 44

key:4

key: 16
key: 28

key: 21

For simplicity, only the keys are
shown and not the values. Here
Nis 11 and index = key % N.

OPS/images/altmath_778.png
h,x16"+h,_, x16™ +h_,x16™%+ ... + hyx 16*+ h, x 16!+ hy x 16°

OPS/images/AAKMFKV0.png
305 7 213 6 7
911 13 15| 10 11 14 15
7@ 3 8@ 2 23
25 27 29 31 26 27 30 31

28 29 30 31 28 29 30 31

19

18 @©
23
2 27
30 31

Setl Set2

Sets

OPS/images/altmath_375.png

OPS/images/altmath_786.png
T{n)=(a constant c¢)* n*n=0(n2)

OPS/images/altmath_28.png

OPS/images/altmath_545.png

OPS/images/altmath_197.png
hyx 16"+ h,y x 16" + b,y x 1672 4 -
+h,x16%+h, x 16"+ hy x 16°

OPS/images/altmath_820.png

OPS/images/ASSET40406.png
Node |—_ shape Text |

Line
Rectangle
Circle
Ellipse
Arc
Polygon
Polyline

OPS/images/AAKNDKW0.png
java.io.OutputStrean

=

java.io.FilterOutputStream

+BufferedOutputStrean(out: OutputStream) Creates a BufferedOutputStream from an
OutputStream object

cates a BufferedOutputStrean from an
OutputStream object with specified size.

+BufferedOutputStream(out: OutputStream, bufferSize: int)

OPS/images/altmath_626.png

OPS/images/ASSET41304.png
javafx.scene.layout .Pane

Jjavafx.application.Application

—x: double
-y: double

~dx: double

~dy: double
—radius: double
-circle: Circle
—animation: Timeline

+BallPane()
+play(): void

+pause(): void
+increaseSpeed(): void
+decreaseSpeed() : void
+rateProperty(): DoubleProperty
#noveBall(): void

OPS/images/Fig43-26.png
childOfu is
double black

(a)

childOfu is
double black

OPS/images/AAKMMMV0.png
0

6

wow U oo

PEEN

29
91
07
07

0

© o -

IS

01
29
91
07
07

0

1

EN

E

03

29
91
07
07

0

96

w w e

w e o

s —w oo =

29
91
07
07

OPS/images/Fig33-05.png
[Clent [o] x|
Soie s s T Ao 16 L3402 DT 2003

Enter a radus: 55
Radius received from dient: =
Py Radus s 4.5
Radius received from dient: 5.5 Area receivd from the server s 63.61725123519331
Im- 51 95.03317777109125 Radius is 5.5

frea received from the server s 95.03317777109125

%]

| ZT——

OPS/images/altmath_391.png
n(n 1)

1+2+43+...+(n-1)+n= =0(n?)

OPS/images/altmath_804.png

OPS/images/altmath_135.png

OPS/images/Fig37-37.png
Exercise37_13 - Mozilla Firefox =IOl x|

cl@-«rl & &
3

(€)9 | @ locahost:8080/chapter37servietexercie/Exercise37_13.htm) <~

Staff Information
1D: [45665

Last Name: [Ford First Name: [Smith M o

Address: [123 Abercom

City: [Savannah State: [GA

Telephone: 9123445545
View | _Insert | | Update | _Clear -

OPS/images/altmath_402.png
T(n)=10 « ¢+20 « ¢ + n=0(n)

OPS/images/AAIJMCF0.png
Java Quick Reference

Console Input

Scanner input =
int intValue = input.nextInt();

Tong TongValue = input.nextlong();
double doubleValue
float floatValue =
String string = input.next();

String line input.nextline():

Console Output

System.out .printin(anyValue);

new Scanner (System. in) ;

input.nextDouble();
input.nextFloat();

expression2
y= (x>0

21

Systen.out.printin(nunber % 2
“number is even"

Conditional Expression

boolean-expression ? expressiont

-1

02
"number is odd");

Primitive Data Types Arithmetic Operators
byte 8 bits + addition
short 16 bits - subtraction
int 32 bits M multiplication
Tong 64 bits / division
float 32 bits % remainder
double 64 bits ++var preincrement
char 16 bits --var predecrement
boolean true/false var++ postincrement
var postdecrement

Assignment Operators

assignment

addition assignment
subtraction assignment
multiplication assignment
division assignment
remainder assignment

Relational Operators

Tess than
Tess than or equal to
greater than

greater than or equal to
equal to

not equal

Logical Operators

& short circuit AND
| short circuit OR
NOT
exclusive OR

>-—g

if Statements
if (condition) {
statements;

}

if (condition) {

statements;
i

else {

switch Statements

switch (intExpression) {
case valuel:
statements;
break;

case valuen:
statements;
break;

default
statements;

loop Statements

while (condition) {
statements;
}

do {
statements;
} while (condition);

for (init; condition;
adjustment) {
statements;

}

statements;

}

if (conditiont) {
statements;

}

else if (condition2)
statements;
}

else {
statements;
}

{

Companion Website: www.pearsonhighered.con/1iang

OPS/images/pg456.png
import java.util.Scanner;

1

2
3 public class QuotientWithException {
quotient method 4 public static int quotient(int number1, int number2) {
5 if (number2 == 0)
6
7
8

throw exception throw new ArithmeticException("Divisor cannot be zero");

return number1 / number2;

9 }
10
1 public static void main(String[] args) {
12 Scanner input = new Scanner(System.in);
13
14 /1 Prompt the user to enter two integers
15 System.out.print("Enter two integers: ");
read (o integers 16 int numbert = input.nextInt();
17 int number2 = input.nextInt();
18
try block 19 try {
invoke method 20 int result = quotient(number1, number2);
21 [[fan System.out.printin(number1 + " / " + number2 + " is "
Arithnetic
22(eyception + result);
23 [occurs
catch block 24— »catch (ArithmeticException ex) {
25 System.out.printin("Exception: an integer " +
26 "cannot be divided by zero "
27 }
28
29 System.out.printin("Execution continues ..
30 }

OPS/images/altmath_119.png

OPS/images/Fig37-28.png
@ boposomamea e b2 75+ ¢ (8- o

[aliplcation Table
o o
o o i -
o o
b5 s B B s B e |

(b)

OPS/images/ASSET41375.png
_lolx] _olx| Y

‘A consecutive four found ‘A consecutive four found

2 6 03385 260355
287 9790 2 8 7 9 0
L):])z]e o 7 13 1907
9 7 419 43 941943
4 6 59 7 12 46 59712
416 2251 416 2 2 51

3
A
&

(a) (b) (©)

OPS/images/ASSET41294.png
[evEventDeaR =T

OPS/images/altmath_150.png
beb bbb ..

OPS/images/AAKNJSI0.png
«interface»
java.util.concurrent.Condition

+await(): void Causes the current thread to wait until the condition is signaled.|
+signal(): void Wakes up one waiting thread.
+signalA11(): Condition Wakes up all waiting threads.

OPS/images/ASSET37760.png
. » “ - ID| AET

=lolx|

"y]
Q@“ o &

OPS/images/AAKNKVI0.png
61 <— Quotient

T =<— Remainder

OPS/images/AAKMFLM0.png
0: monkey

year % 12-

11: sheep

OPS/images/AAKNJHK0.png
) Seven bridges sketch (b) Graph model

OPS/images/altmath_36.png

OPS/images/AAKNFKY0.png
List

Collection

+sort(list: List): void
+sort(1ist: List, c: Comparator):
+binarySearch(list: List, key: Object): int

+binarySearch(list: List, key: Object, c:
Comparator) : int

+reverse(list: List): void
+reverseOrder () : Comparator

+shuffle(1ist: List): void

+shuffle(1ist: List, rnd: Random): void
+copy(des: List, src: List): void
+nCopies(n: int, o: Object): List
+il1(Tist: List, o: Object): void

+max(c: Collection): Object

+max(c: Collection, c: Comparator): Object
+min(c: Collection): Object

+min(c: Collection, c: Comparator): Object

+disjoint(c1: Collection, c2: Collection):
boolean

L +frequency(c: Collection, o: Object): int

Sorts the specified list with the comparator.
Searches the key in the sorted list using bina

ry search.

Searches the key in the sorted list using binary search
with the comparator

Reverses the specified list.

Returns a comparator with the reverse ordering.

Shuffles the specified list randomly.

Shuffles the specified list with a random object.

Copies from the source list to the destination list.

Returns a list consisting of 1 copies of the object.

il the lst with the object

Returns the max object in the collection.

Returns the max object using the comparator.

Returns the min objeet in the collection.

Returns the mi n object using the comparator.

Returns true if ¢1 and ¢2 have no elements in common.

Returns the number of occurrences of the specified
clement in the collection.

OPS/images/AAKMKCF0.png
Ttis fine to declare 1 in two
nonnested blocks.

public static void methodi() (
int x = 1;
inty=1;

for (int i
X 4= 1;

i< 105 i) {

¥

for (int i
y += i

i< 105 i)

}
i

Itis wrong to declare i in two
nested blocks.

public static void method2() {

int i = 15
L b int sum=

| for (int i =15 i < 107 +4) {

OPS/images/Fig01-10.png
= Command Prompt - B “

> c:\book>javac ShowSyntaxErrors. java n
ShowSyntaxErrors. jaa:2: error: invalid method declaration; return type required

public static main(String[] args) (

Compile

ShowSyntaxErrors. java:3: error: unclosed string litera
System.out.println(“Helcone to Java)

ShouSyntaxErrors. jaa:3: error: ';* expected
System.out .printin(“elcone to Java)

ShouSyntaxErrors. jaua:S: error: reached end of File while parsing
)

4 errors

©:\book>,
< >

OPS/images/Fig42-01.png
€ € €

(a) 2-node
(b) 3-node
(¢) 4-node

OPS/images/altmath_53.png

OPS/images/altmath_697.png
0 n2)

OPS/images/AAKNJIB0.png
0

0
0

s11

0

OPS/images/Fig41-06.png
steps

WSDL and Client Location

1. Choose Fie Type
2. WSDL and Client
Location

‘Specify the WSDL file of the Web Service.

s e | Rews
|

EWSDLURL: [ost:a00/WebServceProjecScoreWebService WSDL | _Set Broxy...
€ IDE Registered: o

Specify a package name where the client java artfacts wil be generated:
Prgject: ‘ScoreWebserviceClientProject

Fackag

I™ Generate Dispatch code

[mywebsenvice |

g vise5 [pikn] [cemce| i

OPS/images/AAKMUFQ0_a.png
1 public class WriteData {

2 public static void main(String[] args) throws java.io.IOException {
3 java.io.File file = new java.io.File("scores.txt");

4 if (file.exists()) {

5 System.out.printin("File already exists");

6 System.exit(1);

7 }

8

OPS/images/altmath_537.png

OPS/images/Fig14-05.png
(100,100)

(100,100)

(a)

(b)

OPS/images/altmath_599.png

OPS/images/Fig44-13.png
© New Java Class

Java Class (€]}

Create a new Java class.

Source folder: | chapterdd/src

Package: [mytest]
[enclosing type:
Name: [Loan|
Modifiers: @pudlic Opackage O private O protected
Oabstract (Ifinal [static
Superclass: [java.lang.Object | Browse..
Interfaces: T = |

Which method stubs would you like to create?
[public static void main(String[) args)
[Constructors from superclass

herited abstract methods

Do you want to add comments? (Configure templates and default value here)
[Generate comments

°

OPS/images/altmath_304.png
atbi+tc+adi=(a+c)+(b+a)
a+bi-(c+d)=(a-d+(b- di
(a+ bi)* (c + di) = (ac - bd) + (b + ad)i
(a+ bi)/(c + di) = (ac + bd)/(c? + d) + (bc - ad)i/(c2 + d)

OPS/images/altmath_635.png

OPS/images/altmath_793.png

OPS/images/altmath_619.png

OPS/images/AAKNJHY0.png
3

0

(a)

4

(b)

4

3

(c)

4

OPS/images/altmath_643.png

OPS/images/ASSET40395.png
Directory

ShowInage.class
inage |

us.gif

OPS/images/ch37_pg30.png
javax.serviet.http.Cookie

+Cookie(name: String, value: String)
+getName(): String

+getValue(): String
+setValue(newValue: String): void
+getMaxAge(): int
+setMaxAge (expiratio

:int): void

+getSecure(): boolean
+setSecure(flag: boolean): void

+getComment () String

+setComment (purpose: String): void

Creates a cookie with the specified name-value pair.

Returns the name of the cookie.

Returns the value of the cookie.
Assigns a new value to a cookie after the cookie is created.

Returns the maximum age of the cooki

specified in seconds.

‘Specifies the maximun age of the cookie. By default, ths value is ~1,
which implies that the cookie persists until the browser exits. If you
set this value t0 0, the cookie is deleted.

Returns true if the browser i sending cookies only over a secure protocol.

Indicates to the browser whether the cookie should only be sent using a
secure protocol, such as HTTPS or SSL.

Returns the comment describing the purpose of this cookie, or null if the
cookie has no comment
Sets the comment for this cookie.

OPS/images/Fig38-08.png
Efacosaenn

) Pite/flocalhost 084 langwebFactoralBensp 77 | C |8 - Google

Compute Factorial Using a Bean

Enter new value: 10

Compute Factorial

Factorial of 10 is 3,628,800

OPS/images/ch40_pg4a.png
java.rmi.registry.LocateRegistry

+getRegistry(): Registry
+getRegistry(port: int): Registry

+getRegistry(host: String): Registry

+getRegistry (hos int): Registry

Returns a reference to the remote object Regi stry for the local
host on the default registry port of 1099.

Returns a reference to the remote object Reg i stry for the local
host on the specified port.

Returns a reference to the remote object Reg i stry on the specified
host on the default registry port of 1099.

Returns a reference to the remote object Reg i stry on the specified
host and port.

OPS/images/altmath_473.png

OPS/images/AAKNIGV0.png
current1 current2 current1 current2 current1 current2
\ \ \ \
Y A A R} 3
2[4[5]9 1/6]|7|8 2(4|5]9] 1]6]|7|8 204[5]9 116|7|8
. N\

P \\ X
x

OITTITIT] Dllds[el[s[] [l Ts[s[7]s]]

curr‘ents curre{ts current3

(a) After moving 1 to temp (b) After moving all the (c) After moving 9 to

elements in 115t2 to temp temp

OPS/images/altmath_295.png

OPS/images/altmath_858.png

OPS/images/altmath_384.png
O(n) = 0(n/ 2) = 0(100n)

OPS/images/altmath_769.png
1x2 40 x 2°

OPS/images/altmath_447.png
3.35x107

OPS/images/altmath_722.png

OPS/images/Fig41-14.png
=) AddressWebServiceClientProject
=[5 WebPages
)} WEB-INF
) index.jsp
[l Source Packages
[<default package>

‘Address.java
Addressservice.java
Address\ebService java
GetAddress.java
GetAddressResponse.java
Initialize Jdbc.java
Initialize JdbcResponse java
ObjectFactory.java
StoreAddress.java
StoreAddressResponse java
package-info.java
@[Libraries
E-[[3 Web Service References

=] Address\WebService

= @ AddresswebService
@ AddressServicePort

@ [jg Configuration Files

EREREEEEEEE

OPS/images/altmath_552.png

OPS/images/AAKNKUJ0.png
distinct subjectld, title from Course;

title i

{ Intro to Java I
Intro to Java IT
Database Systems
Rapid Java Application
Calculus I
Calculus 1T
Reading
Database Administration

<08.88 sec)

OPS/images/ASSET41321.png
The getter and setter methods for property
values and a getter for property itself are provided
~in the class, but omitted in the UML diagram for brevity.

-alignment: ObjectProperty<Pos> Specifies the alignment of the text and node in the labeled.

-contentDisplay: Specifies the position of the node relative to the text using the constants
ObjectProperty<ContentDisplay> TOP,BOTTOM, LEFT, and RIGHT defined in ContentDisplay.

~graphic: ObjectProperty<Node> A graphic for the label.

~graphicTextGap: DoubleProperty ‘The gap between the graphic and the text

~textFil1: ObjectProperty<Paint> ‘The paint used to fill the text

~text: StringProperty Atext for the label.

—underline: BooleanProperty Whether text should be underlined.

—wrapText: BooleanProperty Whether text should be wrapped if the text exceeds the width.

OPS/images/Fig44-04.png
:\book>java org.junit.runner.JUnitCore nytest.frrayListTest
init version 4.1

ine: 0.816

here was 1 failure:

1> testDeletion(mytest.ArrayListTest)

ava.lang.AssertionError: expected:<3> but wasi<2>
at org.junit.Assert.fail(Assert.java
org_junit Assert.failNotEqualsCAssert . javaz64?>
org.junit.Assert.assertEqualsCAssert 128)
org.junit Assert assertEqualscAsser
org_junit _Assert assertEquals(Assert java:dSe)
nytest.ArrayListiest.testDeletion(ArrayListTest. java:32)

OPS/images/Fig42-10.png
parentOfu

(a) uis now empty (b) Move p; to u (c) Move e; to replace py

OPS/images/ASSET43199.png
® jsf2demo - NetBeans IDE 7.3.1 -|O 1]

File Edit View Navigat Sourc Refactc Run Debug Profile Tean Tools Windor ﬂe];& Search (Ctrl+I)]

[F17 S [D ST E DB ®

Pro.. x| Files [senv.. | @

2@ jsfademo
&G Web Pages
(O weB-INF
[index.xhtml
=3 Source Packages
=3 jsfademo
€| TimeBaean.jeva
(8 Libraries
(33 Configuration Files

TimeBean - Navigator X

Members <e

B TimeBean
<> TimeBean()

®[0[1 (85|

indexxhtml x| || TimeBean.java x| nEE]
Source History | [uﬁ-mﬂq%&l@ bl?@%‘ﬁ‘ﬁﬂ
4 package jsf2demo; NE
2

3 l? import javax.inject.Named;

4 import javax.enterprise.context.RequestScoped; -
H

6 @Named(value = "ti: n") [~
7 @RequestScoped I
8 public class TimeBean {

9

10 I? public TimeBean() {

1 }

12 }

13

4 o

[913 |ms

OPS/images/altmath_313.png
flx)=x2

OPS/images/altmath_45.png
334

" B digits

OPS/images/altmath_609.png
oln+t)

OPS/images/ASSET41357.png
-~autoPlay: BooleanProperty #
—currentCount: ReadOnlyIntegerProperty
—cycleCount: IntegerProperty

~nute: BooleanProperty

—~volume: DoubleProperty

—~totalDuration:
Read0n1yObjectProperty<Duration>

The getter and setter methods for property values \
and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+MediaPlayer (media: Media)
+play(): void
+pause(): void
+seek(): void

Specifies whether the playing should start automatically.
‘The number of completed playback cycles.

Specifies the number of time the media will be played.
Specifies whether the audio is muted.

“The volume for the audio.

The amount of time 10 play the media from start to finish

Creates a player for a specified media.
Plays the me
Pauses the media

Seeks the player to a new playback time.

OPS/images/altmath_207.png

OPS/images/Fig33-20.png
Street 100 Main Street

Gty | Savannah stte Ga 7P| 31412

OPS/images/AAKNJOV0.png

OPS/images/Fig31-47.png
) FXMLDocumentfxml - Il

Fle Edt View Inset Modify Amange Preview Window Help

Library 2o |3 Borderpane) @ HBox) @ Button : Add Inspector B
v Containers - Propertes - Button
B Accordion - Layout - Button |
 Accordion (empty) v Code: Button
®Anchorpane
Main
- controls fll Number 1 Number 2 Result
On Adtion |
B Menu #/addbuttonaction oIl
- Miscellaneous
- shapes.
. On Drag Detected divideButtonction
" Charts {Add - subtract | Multiply | Divide #
¢ multphyButtonAction
- » On Drag Done
Document o B sublractButionAction

OPS/images/Fig43-17.png
N
parent (7}

- childOfu is -
%doublehlack > :)/

parent

childOfu

OPS/images/AAKNHHW0.png
(TS|
O ErrEET
Be Edt Fomat Vew Hep This application displays Welcome
TS sppTication ax{sphys WeTcone to Javal]| pabtie ciacs Heroome £
BhaS SISO L cringt aros) ¢ peblic siatio void s Gexizgl] asge)
System.out.printin("welcome to Javal™);) v N cpEatis - .
1 ! ’

(a)

(b)

OPS/images/ASSET41285.png
Command Prompt - Javal
\book> java HandleEvent
Ok button clicked

ancel button clicked

0K button clicked

ancel button clicked -

(a) (b)

OPS/images/AAKMNUN0.png
+append(data: char([]): StringBuilder

+append(data: char[], offset: int, len: int):
StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):
StringBuilder

+deleteCharAt (index: int): StringBuilder

+insert(index: int, data: char[], offset: int,
Tlen: int): StringBuilder

+insert (offset: int, data: char[]):
StringBuilder

+insert (offset: int, b: aPrimitiveType):
StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:
String): StringBuilder

+reverse(): StringBuilder
+setCharAt (index: int, ch:

char): void

Appends a char array into this string builder.
Appends a subarray in data into this string builder.

Appends a primitive-type value as a string to this
builder.

Appends a string to this string builder.
Deletes characters from startIndex to endIndex-1

Deletes a character at the specified index.
Inserts a subarray of the data in the array into the builder
atthe specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex
to endIndex — 1 with the specified string

Reverses the characters in the builder.

Sets a new character at the specified index in this
builder.

OPS/images/altmath_320.png
(199=12x16+7)

OPS/images/Fig31-11.png
ahawhrESe

0123456 7891011121314
I L L L L L

original size

~— new size after applying
scaling factor (x =2,y =2)

OPS/images/altmath_128.png
W, -y X -y =, - y)x - (% - Xy,
(-ya - J’)X - (x5 x)y = (.Ya - J’)Xa - (x5 - X4)J’3

OPS/images/VideoNote_Icon.png
VideoNote

OPS/images/AAKMKCE0.png
public static void method1() {

for (int i = 1; 1 < 10; i+4) {

‘The scope of 1 .
int §;

‘The scope of § |

OPS/images/AAKMNDC0.png
Class Name: Circle | <———— A class template

Data Fields:
radius is

Methods:
getArea
getPerimeter
setRadius

Circle Object 1 Circle Object 2 Circle Object 3 | < Three objects of
the Circle class
Data Fields: Data Fields: Data Fields:
radiusis 1_ radius s 25 radius s 125

OPS/images/AAKNJSH0.png
«interface»
Jjava.util.concurrent. locks.Lock

+lock(): void Acquires the lock.
+unlock(): void Releases the lock.
+newCondition(): Condition Returns a new Condi tion instance that is bound to this
Lock instance.
T
java.util.concurrent.locks.ReentrantLock’
+ReentrantLock () Same as ReentrantLock (false).
+ReentrantLock(fair: boolean) Creates a lock with the given fairness policy. When the

faimess is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

OPS/images/altmath_480.png
J2 +\3 +\4 + ..+ \(n

OPS/images/altmath_230.png

OPS/images/altmath_463.png

OPS/images/ASSET40413.png
—centerX: DoubleProperty
—~centerY: DoubleProperty
—radius: DoubleProperty

+Circle()
+Circle(x: double, y: double)

+Circle(x: double, y: double,
radius: double)

The getter and setter methods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity

‘The x-coordinate of the center of the circle (default 0)
‘The y-coordinate of the center of the circle (default 0).
‘The radius of the circle (default: 0)

Creates an empty Circle.
Creates a Circle with the speci
Creates a Circle with the specified center and radius.

center.

OPS/images/Fig31-58.png
" Exercise31.21 -

Integer Operations» | Rational Operations

Integer Calculation

Number1: 3 Number2 5 Result: 150

Add Subtract | Multiply | Divide

(B Exercise31_21 -2

Integer Operations | Rational Operations

Integer Calculation

Number1: 3 Number2: 5 Result: 150

Add Subtract | Multiply | Divide

OPS/images/altmath_188.png

OPS/images/altmath_811.png

OPS/images/ASSET40430.png
=lalx| =lolx|

e I O rcse14_20

“The point i inside the polygon

(a) (b) (©)

OPS/images/AAKMUFK0.png
+getMessage () : String
+toString(): String

+printStackTrace() : void

+getStackTrace() :
StackTraceElement[]

Returns the message that describes this exception object.

Returns the concatenation of three strings: (1) the full name of the exception
class; (2) "+ " (a colon and a space); and (3) the getMessage () method.

Prints the Throwab]e object and its call stack trace information on the
console.

Returns a
perta

rray of stack trace elements representing the stack trace
2 to this exception object.

OPS/images/AAKNHIW0.png
queens(0]

queens(1]

queens|2]

queens(3]

queens[4]

queens(3]

queens|[6]

queens(7]

1S 15N 1 Y Y P Y

(a)

(b)

OPS/images/Fig36-10.png
-lolx|

haisir 1a localte | rench (Canada) -
inscrire le taux diinteret, les annees, et le montant du pret

e taux dinteret 6.75 653 %
annees 15 15
Le montant d... 107000 107 000,00
paiement

\ersement mensuel 933,98

reglement total 168 117,01 §

Galculer I'hypotheque

ResourceBundleDemo

EEEF | Chinese

WAFIE IR EREE

#E 675

e 15

EHIE 107000

1%

At =933.98
7 =168,117.01

HESTAIE

6.53%
15
= 107,000.00

OPS/images/altmath_241.png

OPS/images/AAKNJHS0.png
+getSize(): int
+getVertices(): List<V>
+getVertex (index: int): V
+getIndex(v: V): int

+getNeighbors (index: int): List<Integer>
+getDegree(index: int): int
+printEdges(): void

+clear(): void

+addVertex(v: V): boolean

+addEdge (u: int, v: int): boolean

+addEdge (e: Edge): boolean
+remove(v: V): boolean

+remove(u: int, v: int): boolean

+dfs(v: int): UnWeightedGraph<V>.SearchTree
+bfs(v: int): UnWeightedGraph<V>.SearchTree

__ The generic type V is the type for vertices. \

Returns the number of ve

s in the graph.

Returns the vertices in the graph.

Returns the vertex object for the specified vertex index.
Returns the index for the specified vertex and return ~1 if v is
not in the graph.

Returns the neighbors of vertex with the specified index.
Returns the degree for a specified vertex index.
Prints the edges.

Clears the graph.

Returns true if v is added to the graph. Returns false if v
is already in the graph.

Adds an edge from u 10 v to the graph. Throws
T11egalArgumentException if u or v s invalid. Returns
true if the edge is added and false if («,v) i already in the
graph.

Adds an edge into the adjacency edge list

Removes a vertex from the graph.

Removes an edge from the graph.

Obtains a depth-first search tree starting from v.
Obtains a breadth-first search tree starting from v.

=

#vertices: List<V>
#neighbors: List<List<Edge>>

+UnweightedGraph ()

+UnweightedGraph(vertices: V[], edges:
int[101)

+UnweightedGraph (vertices: List<V>,
edges: List<Edge>)

+UnweightedGraph (edges: int[][],
numberOfVertices: int)

+UnweightedGraph (edges: List<Edge>,
number0fVertices: int)

Constructs a graph with the spey

Constructs a graph with the specified edges

Vertices in the graph.
Neighbors for each vertex in the graph.

Constructs an empty graph.
Constructs a graph with the specified edges and vertices

stored in arrays.

d edges and verti

stored in lists.

an array
and the integer vertices 1,2,

Constructs a graph with the specified edges in a list and

the integer vertices 1,2, ..

OPS/images/altmath_732.png

OPS/images/AAKNFLH0.png
Prompt =1o]x|
lc: \book>java EvaluateExpression "(1 + 3 x 3 - 2) x (12 / 6 x 5)" 4]
80

=
le:\book>java EvaluateExpression "(1 + 3 x 3 = 2) x (12 / 6 x 5) +"
lrong expression: (1 +3 x 3 - 2) x (12 /6 x 5) +

lc:\book>java EvaluateExpression "(1 + 2) x 4 = 3"
3

lc: \book> v
< | »

OPS/images/ASSET41368.png
[cxercisets14 -lolx| B=[E)
Font Name | Bodk Antiqu. =) Fontsize (48l ontenDispiay: (LEFTLLT) gRphcTedsap: (40

Programming is fun F

J Bold) ltalic

(@ (b)

OPS/images/altmath_224.png

OPS/images/altmath_715.png

OPS/images/altmath_652.png
(..[(su * b+s]J * b+sz] * b*---”,,z] * b+s

OPS/images/altmath_38.png

OPS/images/altmath_458.png

OPS/images/AAKMNUF0.png
Indicesms 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
message

Wlell]clolm|e tlo Jlalv|a
T T

message.charAt(0) message.length() is 15 message.charAt(14)

OPS/images/ASSET40424.png
3
n

01

10001
o

1

o

00000

1

cooo0 i(B1s

000

00

1

000001001

1
000

1000
1000

11
01
(a)

000

1

(c)

(b)

OPS/images/altmath_695.png

OPS/images/altmath_822.png

OPS/images/altmath_865.png

OPS/images/altmath_539.png

OPS/images/altmath_288.png
(1.79769313486231570e+ 308d)

OPS/images/altmath_571.png
o n2)

OPS/images/C05pg173_001.png
for (i = initialValue; i < endValue; i++) { i = initialvalue;
/1 Loop body while (i < endValue) {
A
} /1 Loop body
i
}

(a) (b)

OPS/images/altmath_199.png
16

OPS/images/AAKNIHG0.png
~list: java.util.Arraylist<e>

+Heap()
+Heap (objects: E[])

+add(newobject: E): void
+remove(): E
+getSize():
+isEmpty():

int
boolean

Creates a default empty Heap.
Creates a Heap with the specified objects.
Adds anew object to the heap.

Removes the root from the heap and returns it
Returns the size of the heap.

Returns true if the heap is empty.

OPS/images/Fig28-04.png
[Graph Algorithm Animat X
< C @ liveexample.pearsoncmg.com/dsanimation/GraphLearningTooleBookhtml @ % O @ @ o ©O
This tool is for demonstrating graph algorithms. You can
« Adda vertex by clicking the primary button in an open arca and
« Remove a vertex by clicking at the vertex using the secondary button.

« Add an edge between two vertices by dragging from one vertex to the other vertex.
« Move a vertex by dragging the vertex while pressing the CTRL button pressed.

d a Shortest Path

Display DFS/BES- -
Irs:an Vertex: |(Start Vertex: | End Vertex:

d tonian Path/Cycle-
miltonian Path | Hamiltonian Cycle

Find Connected Components— —Find a Cycle- Find Bipartite Sets
(Find Gonnected Components —| |7 F\ndaCyc\e (—|

OPS/images/altmath_717.png

OPS/images/Fig43-28.png
(2) Delete 3
i &
© ® ®
@
(j) Delete 25 (k) Delete 16 (1) Case 2

%@ @ root: null

(m) Delete 34 (n) Delete 27 (o) Empty tree

(h) Case 3

OPS/images/altmath_709.png

OPS/images/AAKMDSI0.png
Assembly Source File

add 2, 3, result

1101101010011010

OPS/images/altmath_393.png
+28+ 224 2%

OPS/images/ASSET41310.png
Exc

e s TR i _lelx]
[]

1

7

Add: Left Click °
Remove: Right Clck Time spent is 22673 milliseconds,

o

o o
o
© q
P o5 o
a

(a) (b) (c)

OPS/images/Fig37-35.png
xercise37_11 - Mozilla Firefox _ ol x|

Fle Edt Vew Hitory Bookmarks Tools Felp

& @ localhost:8080/chapter37servietexercise/Exercise37_1 » =~ G

B-:° 3 #

Here are the cookies from your browser

color's value is red
radius's value is 5.5

count's value is 2
JSESSIONID's value is 4a8b5ecc8063¢2a8a9edbf19f007

OPS/images/altmath_141.png

OPS/images/altmath_802.png
na

OPS/images/Fig14-14.png

OPS/images/AAKNKUD0.png
-
->
-
-
-

jsq1>

3
Query OK. © rous affected (0.11 sec)

ysql> create table Course(
->

courseld char(5)

subjectId char(4) not null,
courseNunber integer

title varchar(50) not null,
nuROfCredite integer
prinory key (courseld)

Command Prompt - mysql -uscott -piger) =1olx|
ysqL> use jauabook :
Database changed

usql> drop table Course;
Query OK, © rous affected (0.08 sec)

o

OPS/images/altmath_117.png

OPS/images/ASSET41381.png
~— DataInputStrean |«— FileInputStream |«— External File

int, double, string ... 01000110011 ...

—> DataOutputStrean|— FileOutputStream}— Extemal File

int, double, string .. 01000110011 ..

OPS/images/altmath_373.png

OPS/images/altmath_330.png

OPS/images/AAKNIHE0.png
2N ANE AN
AAATAAA

W3 30 1 WoB» 0 1
(a) After moving 9 to the root (b) After swapping 9 with 59

PN PN
N AN AN
AANA A A /\

2 29 1 3 30 17 2 29 14 B 9
(c) After swapping 9 with 44 (d) After swapping 9 with 30

OPS/images/ASSET40030.png
[eJofs w]~Tw]s]
01 2 3 4 5 6

parent

BEINNEDD
001 2 3 4 5 6

(b)

OPS/css/images/iconmonstr-info-8-icon-20x20.png

OPS/images/altmath_400.png
T(n)=c+2c+3c+4c+ ...+ nc
=an(nt1) _e—— 2
(0 e D) 124(C e)
—0(m2)

OPS/css/images/iconmonstr-window-new-icon-20x20.png
D

OPS/css/images/iconmonstr-info-8-icon.png

OPS/images/altmath_51.png
10(y - 5\a+b+
Sedx 4 %a C)+9(%+9}x)

OPS/images/Fig39-38.png
[24-Point Game.
€ - € | [localhost8080/chapter39sfexercise/faces/Exercise39_12xhtml ¢/ O @ @ @ =

Enter four card values and click the button to determine whether the four values has a 24-point solution.
a2 s
No solution

[) 2¢-Point Game

€ 9 C |1 localhost8080/chapter39jsfexercise/faces/Exercise39_12xhtml 7| O @ @ @ =

Enter four card values and click the button to determine whether the four values has a 24-point solution.

B JF]
[[Find a Solution | (11+1)*(10-8) is 24

OPS/images/altmath_217.png
nxs?

Area= (@)

OPS/css/images/iconmonstr-window-new-icon.png

OPS/images/Fig44-15.png
© New JUnit Test Case

JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify.
the class under test and on the next page, to select methods to be tested.

O New JUnit 3 test @ New JUnit 4 test

Source folder: | chapterd4/src

Package: [mytest | | Browse.
Name:]
Superclass: | javalang Object | Browse.
Which method stubs would you like to create?

[setUpBeforeClass() [] tearDownafterClass()

Dsetupo [Dteardown)

constructor

Do you want to add comments? (Configure templates and default value here)

[Generate comments
Class under test: mytestLoan | Browse.

° [REa met> ([Emsh][concel

OPS/images/AAKNJHQ0.png

OPS/images/altmath_624.png
Se, O

OPS/images/altmath_795.png

OPS/images/altmath_302.png

OPS/images/AAKMKDC0.png
Before the assignment

Tist2 = Tisti;
Tist1 >
e Contents
of Tist1
Tist2 -
‘5 Contents
of Tist2

After the assignment

1ist2 = Tist1;
Tist1
Contents
of list1
Tist2
Contents

of Tist2

OPS/images/altmath_315.png

OPS/images/ASSET40002.png
ile
30

30
90
30
90

130

OB ON=ONT

30

90
90
150
150
90

~wn-oo-
arwnwon

EYEFNY

IS

OPS/images/altmath_439.png

OPS/images/altmath_500.png

OPS/images/altmath_543.png
Py Py

OPS/images/Fig38-17.png
Ki. @ babon soncmpteeppereetreaess_ 170w 77 + C |8 6)

 rowox oo e i75o 75+ ¢ 8-)

Whsti e caial of Michigan ot orang [

e "

No. The capital of Michigan i Laming.
e |

OPS/images/AAKNELR0.png
#add(element1: E, element2: E): E

#nultiply(element1: E, element2: E): E

#zero(): E

+addMatrix(matrixi: E[][], matrix2: E[](]): E[][]
+multiplyMatrix(matrix1: E[][], matrix2: E[][]): E[][]
+printResult (n1: Number(][], m2: Number([][],

m3: Number op: char): vo

IntegerMatrix

RationalMatrix

-

OPS/images/Fig23-10.png
B - o x

D) Hesp Anmationty V.0 x

€ C O lveexample pearsoncmg.com/dsanimation/HeapeBookhm Q % O © O w O

Usage: Enter an intger key and click the Insetbuton 0 insrt the key int the hesp.Click the Remore the roo buton
10 remore the rot from the hap.

TN e] oo e o}

OPS/images/Fig36-05.png
javafx.scene.layout.BorderPane |

[

javafx.scene.layout BorderPane |

| Jjavafx.application. Application

AF

AF

WorldClock

WorldClockControl

Y

-timeZone: TimeZone
-locale: Locale

-clock: ClockPane
-IbIDigitTime: Label

+WorldClock()
+setTimeZonetimeZone
TimeZone): void
+setLocale(locale: Locale): void
etCurrentTime(): void

clock: WorldClock

cboLocales: ComboBox<String>
cboTimeZones: ComboBox<String>
availableLocales: Locale]]
availableTimeZones: String[]

+WorldClockControl()
-setAvailableLocales(): void
setAvailable TimeZones(): void

WorldClockApp

+start(primaryStage: Stage) : void|
+main(args: String[]): void

OPS/images/altmath_724.png

OPS/images/AAKNDKO0.png
Jjava.io. InputStream

+FileInputStrean(file: File) Creates a FileInputStrean from a Fi le object
+FileInputStrean(filename: String) ates a Fi1eInputStrean from a file name.

OPS/images/AAKNIJJ0.png
head current tail
o | _a - 6 r e | e
next| next - Tnext next | null
T
Delete this node
(a) Before the node is deleted.
head tail
a |~_a e J—> o
next next J Tnext null

This node is deleted

(b) After the node is deleted.

OPS/images/AAKNKUI0.png
in set <B.09 sec)

in set @.08 soc>

OPS/images/Fig41-12.png
1) Addres nformation

€) | [D) htpi/localnost 5080/ AddressWebServiceClentProject/TestAddressWebService jsp_ 7

Last Name * Pam First Name * Peter
Email

Street

City State Georgia-GA ~ Zip

=)

* required fields

Peter Pam is not in the database

OPS/images/page1076.png
For example:
node: THHHHHHTT
Output:

THH
HHH
HTT

OPS/images/p386_002.png
int i = 1; |==========|int i = new Integer(1);
(@ and (b) are
@ Equivalent ®)

OPS/images/Fig42-12.png
(a)eisinu (b) Replace € with v,

OPS/images/Fig41-04.png
) Mehodinvocationtrace

€) [). htplocalhost8080/WebSenviceProject/ScoreWebSenviceTester

findScore Method invocation

Method parameter(s)

Method returned

double : "100.0"

OPS/images/page55.png
int 1 =1 Same effect as
int newNum = 10 * i++; ————> | int newNum = 10 * i;
System.out.print("i is " + i i=d+ 1

+ " newNum is " + newNum):

OPS/images/AAKMORW0.png
Fruit

Apple Orange

GoldenDelicious McIntosh

OPS/images/altmath_688.png
(4 x 4 16 tails anal ysi:

OPS/images/altmath_465.png
2Wz>1 > a5 1ognzk/z > k<2logn

OPS/images/AAKNDNC0.png
Pl Draw the Sierpinski triangle.
displayTriangles(order, p1, p2, p3)

p2 03
(a)
Recursively draw the small Sierpinski triangle.

displayTriangles(
order - 1, pi, pi2, p31)

p1

Recursively draw the small P12 p31
Sierpinski triangle.
displayTriangles(

order - 1, pi12, p2, p23)

Recursively draw the
small Sicrpinski triangle.
displayTriangles(
order - 1, p31, p23, p3)

p2 p3

p23
(b)

OPS/images/altmath_645.png

OPS/images/Fig44-02.png
wa org.junit.runner.JUnitCore
Unit version 4.1

ime: 0.803

OPS/images/Fig33-16.png
| B icracroeClentii[=] E] [W vicracroccientiiM =[]

Player 1 with token X' Flayer 2 vith token

> XXX
() OO

Twonl () Payer 1 (X) has won!

OPS/images/Fig42-20.png
parentOfu | ...i... parentOfu |

w71 [k]u w T k]

(a) Before a fusion is performed (b) After a fusion i

performed

OPS/images/altmath_730.png

OPS/images/altmath_137.png
n/Z

OPS/images/Fig31-49.png
% Exercise31.06 — = HESN

B Exercise31.04 — 2 "' Exercise31.05 = = | x|

~
(c)

vanp

(b)

(a)

OPS/images/Fig33-22.png
MultiThreadServer started at Fri Mar 11 20:02:52 EST 2016 oo s |
Connection from So(ke&[addr:/l27.0.0.1,port=59807,lecalr{] Enter text’ Hi John, This is Susan. nter text Hi Susan, This is John.
2003:04 EST 2016

Connection from Socket[addr=/127.0.0.1,port=59831,localf
200405 £57 2016

John, This is Susan. Susans HiJohn, This is Susan.

i Susan Thi s o]

5

OPS/images/ASSET37850.png
~lolx| =lolx| =lolx|
i E i bosatn G

1 4 5 8 3 4 S 8 10 9 5 8

OPS/images/ch03_pg84a.png
Logic error

if (radius >= 0);
{
area = radius * radius * PI;
System.out.printn("The area
+ s "+ area);

Empty block

(a)

if (radius >= 0) (V.
{

area = radius * radius * PI
System.out.printin(“The area
+ " is "+ area);

b

OPS/images/altmath_293.png
Visibility increases

_
private, default (no modifier), protected, public

OPS/images/altmath_471.png
Jn.

OPS/images/altmath_386.png

OPS/images/altmath_215.png

OPS/images/ASSET37771.png
00 0

10011000

1

0

1

1
0

0000000

00 0

00 1

1

1000

0

10010
0

0

1

°
°
°

11
Find Largest Block

)

Refresh

=lolx|

Exex

0011000
00000001
0

1
00 0

1
1

1

00 1

1

1000

0

100100
0000010

0

1
0

1
)

11
Find Largest Block

00

Refresh

(b)

()

OPS/images/altmath_767.png
bpb

) o e

bbby,

OPS/images/AAKNJHC0.png

OPS/images/Fig43-09.png
20 30 40

Y2 x V3 N 2
(c)

OPS/images/altmath_250.png
ayy @ a3\ (buy Dz Dys) (@ +byy @ptbi; @3+hyg
@1 @3 Q3|+ |byy byy bys| = @y by ayatby; aysthy;

a3y d3p a3 by; by, bs s +bs; a3+ bs, az3+bs

OPS/images/altmath_550.png
Py Py Py

OPS/images/AAKNJIC0.png
51

@ |e
o
o
5o
o
o
0

= /0|0

BES

- HEE
e
o
2[-
o

408

56

OPS/images/PearsonLogo_Horizontal_Blk.png

OPS/images/ASSET41349.png
=lolx|
[H
Text — > JavaFX Programming _f— Vertical scroll
L bar
e >y Horizontal scroll

bar

OPS/images/ASSET41306.png
-lolx|

Investment Amount: 10000
Number of Years: 4

p— x| At e e 325
Number 1: 4.5 Number2: 3.4 Result: 7.9 ULEEVale: $113%6.28
Calaulate

Subtract | Multiply | Divide

(a) (b)

OPS/images/ASSET40411.png
-x: DoubleProperty

-y: DoubleProperty
-width: DoubleProperty
~height: DoubleProperty
—arcWidth: DoubleProperty

-arcHeight: DoubleProperty

+Rectangle()

+Rectangle(x: double, y:
double, width: double,
height: double)

The getter and setter me thods for property values
and a getter for property itself are provided in the class,
but omitted in the UML diagram for brevity.

‘The x-coordinate of the upper-left corner of the rectangle (default 0).
The y-coordinate of the upper-left corner of the rectangle (default 0).
‘The width of the rectangle (default: 0).
The height of the rectangle (default: 0).

The archidth of the rectangle (default: 0). arcWidth is the horizontal
diameter of the arcs at the corner (see Figure 14.31a).

The archidth of the rectangle (default: 0). arcHeight is the vertical
diameter of the arcs at the corner (sce Figure 14.31a).

Creates an empty Rectange.

es a Rectang]e with the specified upper-left corner point, width, and
height.

OPS/images/ASSET43209.png
=lolx|
Fle Edt View History Bookmarks Tools Help
' Display Student
€ @ locahost:8080/jsf2demo/faces/Display Student.xhtm (8- Googe £l w
Choose a Course: [Iniro 1o Java ~] _Display Students

Intro to Java Il

Database Systems
444111110 Jacob Fé:md:‘]’“"i’"c"’“"" 1985-04-09 BIOL
444111111 Jobn | Cajoulus 11 129210434 BIOL
444111112 Georgd Reading 120213454 1974-10-10 CS
444111113 Frank D3t8base Administralion 55919434 1970-00-09 BIOL
444111116 Josh R Smith 9120219434 1973-02-09 BIOL
444111117 Joy P Kemedy 9120220434 1974-03-19 CS
444111118 Toni R Peferson 9120220434 1964-04-20 MATH

OPS/images/altmath_143.png
[\/;] forx > = 0.

OPS/images/altmath_186.png

OPS/images/ASSET40404.png
~alignment: ObjectProperty<Pos>
~fil1Width: BooleanProperty
~spacing: DoubleProperty

+VBox ()
+VBox (spacing: double)
#+setMargin(node: Node, value:

Insets): void

The getter and setter methods for properties
values and a getter for property itself are provided in
the class, but omitted in the UML diagram for brevity.

‘The overall alignment of the children in the box (default: Pos TOP_LEFT),
Is resizable children fill the full width of the box (default: true).
‘The vertical gap between two nodes (default: 0).

Creates a default VBox.
Creates a VBox with the specified horizontal gap between nodes.
Sets the margin for the node in the pane.

OPS/images/Fig31-56.png
Numberf: 3 Number2: 4 Result: 120 |
Operation - [FVINEEEPSUIN

Multiply Ctrl+M
Divide ~ Ctrl+D

OPS/images/Fig43-15.png
parentOfu parentOfu

childofu child0ofu

(a) Before deleting i (b) After deleting i

OPS/images/altmath_43.png
231 ~1(2147483647)

OPS/images/Fig36-12.png
138 Welcome oy 22 Welcome 772

(a) Using GB18030 encoding (b) Using default enco

OPS/images/ASSET41383.png
L =lolx| =loix|
eyt i e pc
e e e e

£ e17.
IFyou spit il named temp.xt o 3 smaller les,
the three smalle files are temp.ot.1, temp it 2, and temp .3

Entr a e et Enterafie: tempot
Specty the number ofsmater fes: | 3 Specty the pumberof sale les: | 1
st sat

(a) (b)

OPS/images/altmath_222.png

OPS/images/altmath_209.png

OPS/images/Fig29-25.png
0 Exercise29_13 -2

Starting City: Seattle Ending City: Miami Display Shortest Path

OPS/images/AAKNKTZ0.png
Enroliment Table

Course Table

ssn courseld dateRegistered grade
444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C

l—f

Each value in courseld in the
Enrollment table must match a value
in courseld in the Course table

courseld subjectId courseNumber title numOfCredits
11111 CsCI 1301 Introduction to Java I 4
11112 CsCI 1302 Introduction to Java IT 3
11113 CsC1 3720 Database Systems 3

1

Each row must have a

value for courseId, and
the value must be unique

1

Each value in the
numOfCredits column must be
greater than 0 and less than 5

OPS/images/altmath_286.png

OPS/images/page16c.png
Which da; Which hour Temperature or humidity
y P

! Vg '

data [i]1[3]1[k]

OPS/images/altmath_243.png

OPS/images/altmath_867.png

OPS/images/altmath_115.png
ry

fb+\lbzf4ac

andr; =

-b - \b* - 4ac

OPS/images/ASSET43215.png
Adds Stored:
Fle Edt View Hstory Bookmarks Tools Help
Address Stored?

lozilla Firefox

@ locahost:8080/jsf2demo/faces/ConfrmAddress.xhtin

¢|[B- cooge

John Smith is now registered in the database

OPS/images/altmath_322.png

OPS/images/altmath_617.png

OPS/images/altmath_788.png
futurelnvestmentValue =

investmentAmount x (1 + monthlyIntrestRate) ™ mberofyears*12

OPS/images/altmath_71.png

OPS/images/AAKNJSW0.png
Fork , Subproblem —>= |\ Join
Subproblem —> |
Problem Solution

Subproblem —> |
Subproblem —>]

OPS/images/ASSET41355.png
Cell

Jjavafx.application.Application |

—whoseTurn: char
—cell: Cell(][]
~IblStatus: Label

+TicTacToe()
+isFul1(): boolean
+isWon (token: char): boolean

Indicates which player has the turn, initially X.
A3 3, two-dimensional array for cells.
A label to display game status.

Constructs the TicTacToe user interface.
Returns true if all cells are filled.
Returns true if a player with the specified token has won.

OPS/images/altmath_109.png
(171, 550- 82, 250)

OPS/images/altmath_830.png
[d/2] - 1and d - 1

OPS/images/AAKMFLU0.png
(x2,32) (x2,y2) (2,y2) (x3,y3)

(3.33)
\
N\ (43, y3)
(x4, y4) \

(xl,y1) (xl.yl) (v, pd) (xly1) (x4 yd)
(a) (b) ()

OPS/images/ASSET41312.png
=lalx| =lalx| =lalx|

| e |~

OPS/images/AAKNIJP0.png
~list: java.util.LinkedList<E>

+enqueue(e: E): void Adds an element to this queue.
+dequeue(): E Removes an element from this queue.
+getSize(): int Returns the number of elements in this queue.

OPS/images/ASSET37780.png
[100] 500] 200] 310] 813[215] 221] 527] 931] 131] 44 [759] 663[372] 973] 383[883[687] 589[294]

44

100
131

200
215
221

310

500
527

759

813

931

bucket[0]bucket[1]bucket[2]bucket[3]bucket[4]bucket(5]bucket[6] bucket(7)bucket[8]bucket(9)

Step | Reset |

OPS/images/ASSET40000.png
=lalx| E ~lolx]

HHH HHH|TT
TT MHT|TTT

HTH TTT|TTT

OPS/images/AAKMFKX0.png
|

true boolean lse

~_expression |

statement(s) for the true case statement(s) for the false case.

OPS/images/Fig14-16.png
=lalx| =lalx|
W | | orame

Last Name: Last Name

First Name:

(a) (b)

OPS/images/ASSET41290.png
LoanCalculator =|olx(
- GridPane
Annual Interest Rate: 45
Number of Years: 4
Loan Amount: 5000 <| s right aligned
Monthly Payment: $114.02
Total Payment: $5472.84
Calalate Button is right aligned

OPS/images/altmath_324.png

OPS/images/altmath_499.png
22 23 A4 25 e T 28 2

Tog 2 log 3 log4— Tog 5t Tog 6 log 7 log gt logn

OPS/images/altmath_64.png

OPS/images/altmath_871.png

OPS/images/altmath_782.png
R Ny gy Ny oy e, N, Yy,

OPS/images/altmath_743.png

OPS/images/altmath_154.png

OPS/images/AAKNHHR0.png
Hap

- Sortedhiap |t~ Navigab1ettap |-+

Interfaces

TreeMap
Hashiap K}—— LinkedHashttap|

Concrete Classes

OPS/images/Fig14-01.png
ok

OPS/images/ASSET40384.png
[

< Stage

Scene

Parent
(Pane, Group, Control)

Nodes

(a)

Shapes such as Line, Circle,
Shape Ellipse, Rectangle, Arc,

Polygon, Polyline, and Text are

subelasses of Shape.

ImageView | For displaying an image.

@) Ul controls such as Labe,
-_Control_| 7o,¢Fierd, Button, Checksox,
Rad1oButton, and TextArea are
subelasses of Control.
FlowPane
Group
| WParenE GridPane

BorderPane

Pane HBox

VBox

[EbED

StackPane

(b)

OPS/images/unfig05-01.png
Tow high

string s|a|blc|dle|f|g|n|hfg|[f|e|d|c|b

OPS/images/AAKNJGY0.png
T2's height is /s o

h+1

OPS/images/altmath_484.png

OPS/images/altmath_5.png

OPS/images/Fig42-05.png

OPS/images/AAKNKTU0.png
Application Users

Application Programs |
/ System Users

Database Management System (DBMS) |

OPS/images/altmath_339.png
- (insertion point +1)

OPS/images/altmath_428.png
Tin)=2T{n/2)+0(1)

OPS/images/AAKNIGX0.png
pivot

[O3[S2[0]1Te[7] (a) The original array
ot

p pivot
[0[5[8]9]6]7] (b) The original array is partitioned
pivot

(c) The subarray (4213 0) is
OBNEE partitoned

pivot

(d) The subarray (0213) is

O[] pariioned

(¢) The subarray (21 3) is
partitioned

OPS/images/altmath_797.png

OPS/images/altmath_17.png

OPS/images/AAKNJSC0.png
«interface»
Jjava.lang.Runnable

+run(): void -account: Account -balance: int
+main(args: String[]): void +getBalance(): int
——— +deposit (amount: int): void

OPS/images/AAKNKUL0.png
Student Table Enrollment Table

ssn lastName mi firstName .. ssn courseld ..

Atuple —> O = o o

Equal

OPS/images/altmath_541.png

OPS/images/AAKNJOQ0.png
S
ok
)

OPS/images/altmath_526.png

OPS/images/ASSET43197.png
® jsf2demo - NetBeans IDE 1

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Q-

1 S

I %% b B &

x [[sen. | @ [[s] indexxhtml | [s] TimeBean.java x|
e JSF Manag
543 Wel
&-C) WEE Build EiiST:L -+
8 inde " @ean and Build =
@(@ Source g 1] serviet....
(@ Librarie Verify [#] Java Class...
® (4 Configi B
Generate Javadoc ADGEEY
&) Entity Class..
Run &l Entity Classes from Database...
Deploy (] JSF Pages from Entity Classes...
Debug (5] web service...
Profile [web Service from WSDL...
RESTful Web Services @ Web Service Client....
| MiimoFeaniavall ByeSr At+F6 & RESTful Web Services from Entity Classes...
Members
e e (S} RESTFul Web Services from Patterns... _
B TimeBean Gl &) Session Bean...
& TimeBe
r— Other.
Vove...
copY: imeBean()
Delete Delete |
Fnd... ctri+F X
Inspect and Transform... =]
Versioning » [a DB Database Process x |GlassFish Server4.0 x |
L Hstory » B
5] LIJ
% /7 /T ﬁ Properties
111 INS

OPS/images/AAKMVAF0.png
#Calendar ()
+get(field: int): int
+set(field: int, value: int): void

+set(year: int, month: int,
dayOffionth: int): void

+getActualMaximum(field: int): int
+add(field: int, amount: int): void
+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.
Returns the value of the given calendar field.
Sets the given calendar to the specified value.

Sets the calendar with the specified year, month, and date. The month
parameter s 0-based: that i 0 is for January.

Returns the maximum value that the specified calendar field could have.

Adds or subtracts the specified amount of time 10 the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

[

+GregorianCalendar ()
+GregorianCalendar (year: int,

month: int, dayOfMonth: int)
+GregorianCalendar (year: int,

month: int, dayOfMonth: int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCal endar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date.
hour, minute, and second. The month parameter is 0-based, that
is.0 is for January.

OPS/images/Fig39-29.png
[Compute Tax
€ - € [localhost:8080/chapter39jsfexercise/faces/Exercise39_03.xhtml v¢| O @ @ @

Compute Tax

Tt come:
Filing Status:
Compute Tax

[Compute Tax

€ < € [localhost:8080/chapter39jsfexercise/faces/Exercise39_03.xhtml v%| O @ @ @

Compute Tax

TotleTome: 100000
Filing Status:
Taxable Income: 10000.0

Filing Status: 0
Tax: 1200.0

OPS/images/AAKMUFS0_b.png
// Read data from a file scores. txt

while (input.hasNext()) {
String firstName = input.next(): — 0L

String mi = input.next() i< — -

String lastName = input.next () i<
int score = input.nextInt();<
System.out.printin(

firstName + * * + mi + ' * + lastName + * " + score);

/ Close the file
input.close();

OPS/images/altmath_79.png

OPS/images/Fig43-22.png
childOfu is parent

double black [———>

childOfu

OPS/images/AAKNFKS0.png
+iterator(): Iterator<t>
+forEach(action: Consumer<? super E>):
default void

Returns an iterator for the elements in this collection.
Performs an action for each element in this iterator.

FaN

+add(e: E): boolean
+addA11(c: Collection<? extends E>): boolean
+clear(): void

+contains(o: Object): boolean
+containsAll(c: Collection<?>,
+equals(o: Object): boolean
+isEmpty(): boolean
+remove(o: Object): boolean
+removeAll(c: Collection<?>): boolean
+retainAll(c: Collection<?>): boolean

boolean

+size(): int
+toArray(): Object[]
+toArray(a: T[]): T[]

Adds a new element e to this collection,

Adds all the elements in the collection ¢ to this collection.
Removes all the clements from this collection.

Returns true if this collection contains the element 0.
Returns true if this collection contains all the elements in ¢.

Returns true if this collection contains no elements.
Removes the element o from this collection.

Removes all the clements in ¢ from this collection.

Retains the elements that are both in ¢ and in this collection,

Returns the number of elements in this collection.
Returns an array of 0bject for the elements in this collection.
Returns an array of the T[] type.

+hasNext () : boolean
+next(): E
+remove(): void

Returns true if this iterator has more elements to traverse.
Returns the next element from thi
Removes the last element obtained using the next method.

erator.

OPS/images/AAKNIWV0.png

OPS/images/altmath_654.png

OPS/images/altmath_193.png
d,d-d-d ,d-dg

dyod, d,d; 3

OPS/images/altmath_413.png

OPS/images/Fig38-04.png
URL Example

http:/fwww.server.com:8080/serviet/ISPFile.jsp

Send a request URL

Web Server Host

‘Web Browser

Host Machine File System

‘Web Server /servlet/JSPFile.jsp
HTML Page returned Process Generate GetJSP Generated
Servlet Response file Servlet
Servlet Get Servlet ISP
Engine Translator

OPS/images/Fig37-09.png
€)3 | (B htpi/iocalnost 064 langwebFirstseniet e)[(8-cose P)(#) B

Hello, Java Servlets

OPS/images/Fig33-09.png
[MultiThreadServer

MuliThreadServer started at Tue Apr 16 21:18:30 EDT 2013
Starting thread for et 1 at Tue Apr 16 21:18:33 EDT 2013
Cllent 1's host name is 127.0.0.1
Gllent 1's 1P Address i 127.0.0.1

Siating Bread (o et 2 T or 16 2118:45 E0T 2013
Gilent 2' host name is 127.0.

radius received from dlent: 1.5

] X|

Radius is 3.4

Enter a radius:

Area received from the server is 36.316811075498

Radiusis 1.5

Area received from the server is 7.0685834705770345 ||

| ET T — e T |

OPS/images/AAKMNDE0.png
radius: double <~ Datafields
Circle() <~} Constructors and
methods

Circle(newRadius: double)
getArea(): double

getPerimeter(): double

setRadius (newRadius: double): void

~—— UML notation
for objects

radius = 1 radius = 25 radius = 125

OPS/images/Fig27-03.png
D) Hashing Linear Probing / X

<« C | ® liveexample.pearsoncmg.com/dsanimation/LinearProbingeBookhtml Q % QO @ @ o ©

Usage: Enter the table size and press the Enter key to set the hash table size. Enter the load factor threshold factor and press the
Enter key to set a new load factor threshold. Enter an integer key and click the Search button to search the key in the hash set.
Click the Insert button to insert the key into the hash set. Click the Remove button to remove the key from the hash set. Click the
Remove All button to remove all entries in the hash set. For the best display, use integers between 0 and 99.

Current table size: 11. Number of keys: 5. Current load: 0.45. Load factor threshold: 0.75.

[0 [a4
1
2
[}
[“ |4
B [16
61 [28
m
8
Q]
o [21

Enter Initial Table Size: 11 Enter a Load Factor Threshold: 0.75

S EY QM Search | insert | Remove |

OPS/images/altmath_686.png
(4 x 4 16 tails problem)

OPS/images/Fig01-12.png
3 e
o
920 sampls

pescrpon
reates e 3evaSE spphcation s sancard e et voucn 2]

OPS/images/AAKMEDL0.png
[Elapsed _1
time | Time

UNIX epoch Current time
01011970

System.currentTimeMillis()

OPS/images/ASSET40417.png
CE=T _lx)
arc2 wey arct: round

radiusX radiusY length

L 0 degree

Contors R
" “centerY)

(a) Arc(centerX, centerY, radiusX, (b) Multiple ellipses are displayed.
radiusY, startAngle, length)

OPS/images/altmath_580.png
0 n2)

OPS/images/pg86.png
if (i >0) if if (i >0) { if (i >0) if (i >0)

(3 >0) if (J>0) if (3 > 0) if (]>0)

x = 0; else x x =05

if (k>0)y=0; else_ 1f (k > 0) else if (k> 0)
else z = 0; ; =05

else
z

OPS/images/ASSET37684.png
| cxercise18 200N =T}
08 cvccveioto SISTEY

(a) (b)

OPS/images/altmath_726.png

OPS/images/altmath_252.png

OPS/images/altmath_341.png

OPS/images/altmath_73.png

OPS/images/altmath_124.png

OPS/images/altmath_815.png
Criq

OPS/images/Fig35-06.png
First || Next || prior || tast || tnsert || pelete || update
LastName | sy First Name | jopn, M|

c
Sreet| 100 Main Street

aty| atanta State| Ga |ZP| 34313
Telephone | 3549989

Email | smith@gmail.com
Qurrent row number: 1

OPS/images/altmath_558.png

OPS/images/ASSET41296.png
-autoReverse: BooleanProperty
~cycleCount: IntegerProperty
—rate: DoubleProperty

—status: ReadOnlyObjectProperty
<Animation.Status>

+pause(): void
+play(): void
+stop(): void

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Defines whether the animation reverses direction on alternating cycles.
Defines the number of cycles in this animation.

Defines the speed and direction for this animation

Read-only property to indicate the status of the animation.

Pauses the animation.
Plays the animation from the current position.
Stops the animation and resets the animation.

OPS/images/AAKNKFF0.png
Server

student object

in.readobject() |

Client

student object

out .writebject (Object) |

A ¥

in: ObjectInputStrean | out: ObjectOutputStrean |
¥

socket . getInputStrean() | socket . getOutputStrean () |
A Y

socket | socket |

OPS/images/altmath_595.png
10(2x4+2),

OPS/images/AAKMOSA0.png
package p1;

public class C1 {
public int x;
protected int y;
int z;
private int u;

protected void m() {
}

public class C2 {
C1 0 = new C1();
can access 0.X;
can access 0.y;
can access 0.z;
cannot access 0.u;

can invoke o.m();:

package p2;

public class C3
extends C1 {
can access x;
can access y;
can access z:
cannot access u;

can invoke m();

public class C4
extends C1 {
can access x;
can access y;
cannot access z;
cannot access u;

can invoke m();

public class C5 {
C1 o = new C1();
can access 0.x;
cannot access o
cannot access o.
cannot access o

cannot invoke o

¥
L

m();

OPS/images/ASSET41364.png
U Left @ Center

Rght Column Size

Hour

4 Minute

=lolx|

2 second[5]

(a)

OPS/images/image4.png
B o 343 453
'7’1; 45 454

2 3 E
o 45 o

bucket[0] bucket[1] bucket[2] bucket{3] bucket[4] bucket[S] bucket[6] bucket[7] bucket[8] bucket[9]

OPS/images/Fig34-26.png
=1olx|

:\book>java -cp .;1ib/mysql-connector-java-5.1.26-bin. jar TestResultSetHetaDatas

river loaded
atabase connected

sn courseld dateRegistered grade
44111110 1 2013-04-18 A =
44111110 11112 2013-04-18 B =l

OPS/images/AAKMNZW0.png
-value: int
+MAX_VALUE: int
+MIN_VALUE: int

-value: double
+MAX_VALUE: double
+MIN_VALUE: double

+Integer (value: int)
+Integer (s: String)
+bytevValue(): byte
+shortValue(): short
+intvalue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double
+compareTo(o: Integer): int
+toString(): String
+valueOf (s: String): Integer

+valueOf(s: String, radix: int): Integer

+Double(value: double)
+Double(s: String)
+bytevValue(): byte
+shortValue(): short
+intvalue(): int
+longValue(): long
+floatValue(): float
+doublevalue(): double
+compareTo(o: Double): int
+toString(): String
+valueOf (s: String): Double

+valueOf(s: String, radix: int): Double

+parselnt(s: String): int

+parselnt(s: String, radix: int): int

+parseDouble(s: String): double
+parseDouble(s: String, radi

int): double

OPS/images/altmath_467.png

OPS/images/AAKMMMM0.png
int[][] triangleArray_
{1, 2, 3, 4, 5},
{2, 3, 4, 5},
{3, 4, 5},
{4, 5},
{5}
I

OPS/images/ASSET40399.png
-alignment: ObjectProperty<Pos>

~gridLinesVisible:
BooleanProperty

~hgap: DoubleProperty
~vgap: DoubleProperty

+GridPane ()
+add(child: Node, columnIndex:
int, rowIndex: int): void
+addColumn (columnIndex: int,
children: Node...): void
+addRow(rowIndex: int,
children: Node...): void
+getColumnIndex(child: Node):
int
+setColumnIndex(child: N
columnlndex: int): void
+getRowln hild:Node): in:
+setRowIndex (child: Node
rowlndex: int): void
+setHalighnment (child: Node
value: HPos): voi

P
value: VPos): void

The getter and setter methods for property values
and a getter for property itself are provided in the class,
_ butomitted in the UML diagram for brevity.

‘The overall alignment of the content in
Is the grid line visible? (default: falsc)

pane (default: Pos.LEFT).

‘The horizontal gap between the nodes (default: 0).
‘The vertical gap between the nodes (default: 0)

Creates a GridPane.
Adds a node to the specified column and row.

Adds multiple nodes to the specified column.

Adds multiple nodes to the specified row.

Returns the column index for the specified node.
Sets a node to a new column. This method repositions the node.

Returns the row index for the specified node.
Sets a node to a new row. This method repositions the node.

Sets the horizontal alignment for the child in the cell

Sets the vertical alignment for the child in the cell.

OPS/images/altmath_228.png

OPS/images/altmath_600.png

OPS/images/altmath_88.png

OPS/images/Fig36-14.png
DBte: | venerd, 9. agosto 2013 | TIMe: | 15,58 h EAT
Locale: | rtalian (Switzerland) it_CH.

Date Style: | Ful

~ | Time Zone: Africa/addis_Ababa

Time Style: | Full -

OPS/images/Fig33-18.png
Exerisa33 O1Sarver strtd st Fi Mar 1192249 65T 2016

Connecteto. client atFr Mar 11 192312 65T 2016
Al Interest Rate: 35
Number of Years 3

Loan Amount: 50000
monthlyPayment: 146 5103986345515
totaPayment: 5274374350843855

Exercise33 O1Serverstrted ot Fri Mor 11 192249 EST2016

Connected o a cent atFri Mor 11 192312 E5T 2016

monthyPayment: 146.5103986345515.
totaPayment: 5274 374350843855

(b)

OPS/images/altmath_711.png

OPS/images/altmath_267.png

OPS/images/altmath_869.png

OPS/images/Fig42-15b.png
() After deleting 16

(g) After deleting 3

(h) After deleting 15

OPS/images/altmath_284.png

OPS/images/altmath_800.png
na

OPS/images/altmath_452.png
mxK

OPS/images/Fig44-08.png
©Create Tests x

Class to Test: chapterdd.Loan
Closs Nome: chapterd LoanTest

Location: Test Packages g
Eramework: JUnit |
0] Integration Tests

Code Generetion
Method Acces Levels Generated Code

Bublc Test Inilzer

[Protected [Test Finalizer

2 Paciage Privte (2] Test Clss Iniler
D Tes o ialer
Defout Methad Bodies
Geneated Comments
) dovdoc Comments
] Source Code Hints

[0k] Concel B

OPS/images/altmath_615.png

OPS/images/AAKMKCK0.png
getStartDay | getTotalNumberOfDays |

getNumber0fDaysIntonth

getTotalNunber0fdays | isLeapYear
(a) (b)

OPS/images/AAKNIXB0.png
parent >

parent >

current may be a left ora
right child of parent.
current points to the node
1o be deleted

v
! /
1

1 /

|

rightMost

|
|
;
/
/

l<—— leftChildofRightMost

current — >

The content of the current

node is replaced by the content of
the rightMost node. The rightHost
node is deleted.

Right subtree |

\
1
'
i
\

|<—— Content copied to
current and the node

isdeleted

|<—— 1eftChild0fRightMost

OPS/images/ASSET39946.png
~=lolx|

33 s delted from the ree

Enterakey 3 | dnsert [Delete

OPS/images/altmath_213.png

OPS/images/ASSET41308.png
=12l =lolx| =lolx|
pr—
g point is outside the polygon

(a) (b) (c)

OPS/images/altmath_854.png

OPS/images/altmath_299.png

OPS/images/Fig31-15.png
(a) BUTT (b) ROUND (¢) SOUARE

OPS/images/AAKNJSN0.png
Task for adding an int Task for deleting an int
' 1

Y Y
while (count == CAPACITY) while (count == 0)
notFull.await(); notEmpty. await () ;

Addan int to the buffer | [Detete an int from the buffer

notEmpty.signal(); —————1 | notFull.signal(); |

OPS/images/AAKNFLB0.png
Jjava.util.AbstractList<E>
+Vector () Creates a default empty vector with initial capacity 10.
+Vector(c: Collection<? extends E>) Creates a vector from an existing collection.

+Vector (initialCapacity: int) Creates a vector with the specified initial capacity.

+Vector (initCapacity: int, capacityIncr: int) Creates a vector with the specified initial capacity and increment.
+addElement (o: E): void Appends the element o the end of this vector.

+capacity(): int Returns the current capacity of this vector.
+copyInto(anArray: Object(]): void Copies the elements in this vector to the array.

+elementAt (index: int): E Returns the object at the specified indesx.

+elements(): Enumeration<E> Returns an enumeration of this vector.

+ensureCapacity(): void Increases the capacity of this vector.

+firstElement (): E Returns the first element in this vector.
+insertElementAt(o: E, index: int): void Inserts 0 into this vector at the specified index.
+lastElement(): E Returns the last element in this vector.
+removeAl1Elements(): void Removes all the elements in this vector.

+removeElement (0: Object): boolean Removes the first matehing element in this vector.
+removeElementAt (index: int): void Removes the element at the specified index
+setElementAt(o: E, index: int): void Sets a new element at the specified index.
+setSize(newSize: int): void Sets a new size in this vector.

+trimToSize(): void Trims the capacity of this vector to its size.

OPS/images/altmath_395.png
T(n) = (a constant c¢) * n=0(n).

OPS/images/C05pg177_003.png
int i =0;

do {
System.out.printin("i is " + i);
i+t

} while (i < 10)jw_

Correct

OPS/images/AAKNIJB0.png
head
tail

new Node<>("Chicago"); After the first node is inserted
head;

head —» "Chicago"
tail “hext: null

OPS/images/altmath_139.png

OPS/images/ASSET41325.png
=) R OB ouctonpemo N] .

JavaFX Programming JavaFX Programming

[[<ieit] > mge W et | > Rgne |

OPS/images/Fig24-20.png
nimation by

& = C | @ liveeramplepearsoncmg.com/dsanimation/Stackegookhtml @ % | O @ O w ©

Usage: Enter a value and click the Push button to push the value into the stack. Click the Pop button to remove the top
clement from the stack.

(a) Stack animation
. . B - o«
/DO Stack Animation by .0 x \ WL

& C | @ liveexample.pearsoncmg.com/dsanimation/QueuesBookhtml Q % | O @ O w ©

Usage: Entera value and elick the Enqueue button to append the value into the tail of the queue. Click the Dequeue
button to remove the clement from the head of the queue. Click the Start Over button to start over.

Entera value: [[Degueue |

(b) Queue animation

OPS/images/altmath_369.png

OPS/images/Fig42-03.png
/D 24 Tree nimation by x \ WL

€ 5 C | O liveexample pearsoncmg.com/dsanimation/24Treehtml Q % | O © @ w

24 Tree Animation by Y. Daniel Liang

Enteran integer key and elick the Search button (o scarch the key in the tree. Click the Insert uton (o insert the.
key into the tre. Click the Remove button (o remove the key from the tre. For the best display, use integers

between 0 and 99.

Enterakey: 6| Search | [Insert

OPS/images/altmath_784.png
=h,x16"+h_,x16™ +h_,x 16"+ ... + h, x16°+h, x16' + hy x 16°

OPS/images/altmath_326.png

OPS/images/AAKNKUO0.png
Driver
Connection | Connection

Statement | Statement | Statement | Statement |

ResultSet | ResultSet | ResultSet | ResultSet |

OPS/images/AAKMKCN0.png
4388576018402626

222
2:2
4+2

122
6+2=12 (1+2=3)
552210 (1+0=1)

8+2
428

6 (1+6=7)

OPS/images/AAKNJON0.png
UnweightedGraph<V>

Defined in Figure 28.9.

+WeightedGraph ()
+WeightedGraph(vertices: V[], edges: int[][])

+WeightedGraph (vertices: List<V>, edges:
List<WeightedEdge>)

+WeightedGraph (edges: int[][],
numberOfVertices: int)

+WeightedGraph (edges: List<WeightedEdge>,
numberOfVertices: int)

+printWeightedEdges () : void
+getWeight(int u, int v): double

+addEdges (u: int, v: int, weight: double): void
+getHinimumSpanningTree () : MST

+getMinimumSpanningTree (index: int): MST
+getShortestPath(index: int): ShortestPathTree

Constructs an empty graph.
Constructs a weighted graph with the specified edges and the
vertices in arra

Constructs a weighted graph with the specified edges and the
number of vertices.

Constructs a weighted graph with the specified edges in an
array and the number of vertices

Constructs a weighted graph with the specified edges in a list
and the number of vertices.

Displays all edges and weights.

Returns the weight on the edge from u to v. Throw an
exception if the edge does not exist.

Adds a weighted edge to the graph and throws an
I11egalArgumentExceptionif u, v, or wis invalid. If
(u, v) isalready in the graph, the new weight is set.

Returns a minimum spanning tree starting from vertex .

Returns a minimum spanning tree starting from vertex v.

Returns all single-source shortest paths

OPS/images/altmath_3.png

OPS/images/Fig31-43.png
FXMLDocument fm! - o .
Fo Bt View et Modty Amege Prevew Window Mep
Loy o = atouenioe) oo i [ra——
. Contes [
5 = v e
B spes Nombert Number2 Rt
Dosument - ergh 0
. ey
nset RGHT :

OPS/images/altmath_180.png
1+%+%+...+%

OPS/images/altmath_628.png

OPS/images/altmath_482.png

OPS/images/AAKNIXE0.png
weight: 3 weight:4 | wei
ks

weight: 1| weight:2
i o

weight: 1
i

(a) (b)

weight: 11

weight:2
5

(c) (d)

OPS/images/altmath_90.png
& &,

OPS/images/AAKMORO0.png
~color: String
~filled: boolean
~dateCreated: java.util.Date

+GeometricObject ()
+GeometricObject (color: String,
filled: boolean)

+getColor () : String

+setColor (color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date

‘The color of the object (default: whi te).
Indicates whether the object is filled with a color (default: false).
‘The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.
Returns the color

Sets a new color.

Returns the £111ed property.
Sets a new Fi11ed property.
Returns the dateCreated.

+toString(): String Returns a siring representation of this object.
—-radius: double -width: double

—height: double
+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)
+getWidth(): double
+setWidth(width: double)
+getHeight (): double
+setHeight (height: double): void
+getArea(): double
+getPerimeter () : double

void

OPS/images/Fig31-19.png
butteap round cap

dash line
D N
==
T e

miter join beveljoin round join square cap

[H StrokeDemo

OPS/images/Fig25-02.png
et - o x

[Binary Search Tree Anim X

<« C ® liveexample.pearsoncmg.com/dsanimation/BSTeBook @ % O @ M o O

Usage: Enter an integer key and click the Search button to search the key in the tree. Click the Insert button to
insert the key into the tree. Click the Remove bution to remove the key from the tree. For the best display, use
integers between 0 and 9. You can also display the elements in inorder, preorder, and postorder.

SRV Searcn | inser | Remove [norder] Preorcer] Postorer]

OPS/images/ASSET39944.png
8 st nimaton (=T

Treeis empty

i

Insert Delete

=Iajx]

2is inserted i the tree

Enerakey: 2 (Insert)| Delete

[BSTAnimation (=3

45 deleted rom the tree

Enerakey, 4 | Insert [Delete

OPS/images/altmath_411.png

OPS/images/altmath_454.png

OPS/images/altmath_62.png
- bhlbzf 4ac

OPS/images/altmath_699.png
0 n3)

OPS/images/cover.jpg
Introduction to

JAVA

PROGRAMMING AND
DATA STRUCTURES

MPREHENSIVE VERSION

Y. DANIEL LTIANG

. Pearson 11th Edition

OPS/images/altmath_656.png
(k+1) % N,

OPS/images/altmath_613.png

OPS/images/altmath_497.png

OPS/images/Fig42-18.png
parentOfu parentOfu [.. Ky ...

u [kiks.. ks | u [ki .o ko] [kovt ...ks | new node

OPS/images/altmath_741.png

OPS/images/Fig37-11.png
Invokes destroy() after

IVM loads Creates the a timeout pes a

the servlet servlet using Invokes the Invokes the Sassed ot e er™®

class its constructor init method service method server is being stopped

. { Loaded } { Created } {initialized} [served } [Destroyed]
Servlet is The same servlet is invoked again, bypassing Invokes the
invoked for the Loaded, Created, and Initialized states, as service method

the first time long as it has not been destroyed

OPS/images/AAKNDMZ0.png
Clo B recursively

Step 2: Move disk 7 from A to B
Step 3: Move 7 - 1 disks from

4
g
o
e
=

Original position

g
2
5

:
L

4]
H
Z

OPS/images/AAKNIJM0.png
Datal —— Data2 - Data3 —

N
Al Al Al
Data3
Data2 Data2
Datal Data1l Data1l
Data3 Data3
Data2
> Datat > Data2 > Data3

OPS/images/altmath_152.png

OPS/images/AAKMVTD0.png
button |————> event |——————> handler |

Clicking a button An event is The event handler
fires an action event an object processes the event

(Event source object) (Event object) (Event handler object)

OPS/images/altmath_195.png
10-(d,+3d,+d;+3d,+d.+3d;+d;+3dg+dgt3d,+d,,+3d,,), 1

o)

OPS/images/Fig41-08.png
e £t Yew tosipe Sorce Rector Bun Do rfie Toum Toos Wodow Holp

Q- sewn o)

BEESDE [cow

“THPB G-

Proects @ 8 :fden. [Servees.
" Q wo

OPS/images/AAKMVAL0.png
Notation:
The interface name and the

method names are italicized.

The dashed line and hollow
triangle are used to point o
the interface.

GeometricObject

e

Rectangle

=

+compareTo(o: ComparableRectangle): int

ComparableRectangle

PAS

OPS/images/ASSET37769.png
-Iolx]

“The key is found in the array at index 6

-[olx|

Exer

‘The key s not in the array

2
18 19

20 o

Key (in double) & Step | Reset

Key (in double) 4.5 Step | Reset

OPS/images/altmath_34.png

OPS/images/altmath_77.png
yo.16

OPS/images/Fig43-24.png
(b)

OPS/images/altmath_49.png
1.23456 x 102

OPS/images/altmath_19.png
— 97

OPS/images/AAKNKEZ0.png
port number

Server

0
1

8000~

e

Client

OPS/images/ASSET40028.png
cost
[efofs wl[-T-]o]
01 2 3 4 5 6
parent

Glal e[T T4
001 2 3 4 5 6

(b)

OPS/images/AAKNKEW0.png
compute area radius

Server | > Client

area

OPS/images/altmath_641.png
oheight 4

OPS/images/altmath_426.png
Tin)= T{n- 1)+ 0(1)

OPS/images/altmath_469.png

OPS/images/altmath_684.png

OPS/images/AAKNFKV0.png
Jjava.util.AbstractList<E>

+ArrayList()
+ArrayList(c: Collection<? extends E>)

+ArrayList (initialCapacity: int)
+trinToSize(): void

Creates an empty list with the default initial capacity.
Creates an array list from an existing collection.
Creates an empty list with the specified initial capacity.

‘Trims the capacity of this ArrayList instance to be
the list's current size.

OPS/images/Fig38-06.png
el G |
[Fcomputeom

[Comptetonn

€3 (B ropirocomoroiingetiCompisiompers e Ol E e [i) 8 B
Compute Loan Payment y g
Loan Amouat 100000

Annual Interest Rate 65

Loan Amount: 100000.0

Annual Interest Rate: 6.5

Number of Years: 15.0

Gomputa Lown Payment] (Resst Monthly Payment: 871.1073652973655
B Total Payment: 156799.3257535258

Number of Years 15

OPS/images/ASSET41292.png
| HouscEventDORN =]]

&rogrammmg s fun

OPS/images/AAKMNDH0.png
Created using new Circle()

Primitive type int i=1 i

1
Objecttype ~ Circle ¢ c xefemnce'-

OPS/images/ASSET43195.png
® jsf2demo - NetBeans IDE

Fle Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Cirl+1)

=lolx|

[HEE%® | T E D B-G-

12|t </nem>
[T]

Pro. X| Files | Sev. | @ [[]index.xhtml x| LDl =
agé;fz\;e:: source History @ [0-01-[QA @ FREHN|[FE B (@ulen =
feb Pages 3
-1 WEB-INF 9 < sresons encoding='UTF-8' 2> Als &
9] indexxhtmi 2 ES
(@ Source Packages e HES
(38 Ubraries o 0
Configuration Files 2 @
6 <h:head> 73
7 <title>Facelet Title</title> =
8 </h:head> “

3] title 9 <h:body>

10 Hello from Facelets
11 </h:body>

(& html

512 |INS

OPS/images/Fig39-27.png
€ > € [localhost:8080/chapter39jsfexercise/faces/Exercise39 01xhtml 75| O @ @ @ =

Display Factorials

|Number|[Factorial|

10 13628800

OPS/images/ASSET37254.png
Take P Teach 4
5.60 » course 123
urse

Faculty

1
Student
— Teacher

OPS/images/Fig36-16.png
Exerdse36_04

Spanish (Puerto Rico) es_PR
Spanish (Chile) es_CL

Finnish fi

German (Austria) de_AT

Danish da

English (United Kingdom) en_GB
Spanish (Panama) es_PA
Serbian sr

All Locales || All Time Zones

=lolx]

—lolx|

America/Phoenix ~

America/Port-au-Prince

America/Port_of_Spain

America/Porto_Acre

America/Porto_Velho

America/Puerto_Rico

America/Rainy_River

America/Rankin_Inlet

America/Recife

America/Reqina M
All Locales | All Time Zones

OPS/images/altmath_813.png

OPS/images/Fig35-08.png
ec onver dbcimysali/flocalhost/javabook -
[oatabase ... | com.mysql.jdbcDriver -

Wsername | scott

password

‘Connected to jdbcmysal://localhost/javabook. Connect to Database
QL Execution Result

ssn courseld dateRegistered grade
A0 11 20130418 A
441110 1112 20130418 [
A0 1113 20130418 c
s mn 2030418 o
a2 20130418 F

A

s 113 2030418
| Gear Resut |

=lolx|
Enter an SQL Command
select * from Envollment |

< B
Gear || Execute SQL Command

OPS/images/altmath_856.png

OPS/images/altmath_297.png

OPS/images/altmath_511.png
=

- 241435 -341+5-5+1+47 - 7T+1+77 - 11+1..

=0(F+5+E+5+77+..)<0(nn(n)

=0(n %) r\ The number of items in the series is 7(n).

OPS/images/altmath_554.png

OPS/images/altmath_597.png

OPS/images/AAKMNZT0.png
~elements: int[]
int

-siz

+Stack0fIntegers ()
+StackOfIntegers (capacity: int)
+empty(): boolean

+peek(): int

+push (value: int): void

+pop(): int
+getSize(): int

An array to store integers in the stack.
The number of integers in the stack.

Constructs an empty stack with a default capacity of 16
Constructs an emply stack with a specified capacity.
Returns true if the stack is empty.

Returns the integer at the top of the stack without
removing it from the stack.
Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack

OPS/images/altmath_556.png

OPS/images/altmath_513.png

OPS/images/ASSET40415.png
(centerX, centerY) ~=lolx|

radiusX radiusy

(2) E1lipse(centerX, centerY, (b) Multiple ellipses are displayed.
radiusX, radiusY)

OPS/images/altmath_47.png
1.23456 x 102

OPS/images/altmath_528.png

OPS/images/Fig44-06.png
© chapterds - NetBeans IDE 802 - o
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help. & Search (GrisT) -
SRAN D U0 T B0
Projects - Fles Servicss | = =
= chapertd le B
5 Sorce Pocages
= haptert al 5
o IREEN. 2 * To change this license header, choose Licens
3 | * To change this template file, choose Tools |
4 | * and open the template in the editor.
5 */
6 package chapterdd;
7
8] /**
9 | «
10 | * eauthor Y. Daniel Liang
1 b o/
12 public class Chapterdd (
13
14 ok
15 T * gparam args the command line arguments
| e m—— S
T ™S

OPS/images/altmath_582.png

OPS/images/Fig34-28.png
No connection

OPS/images/Fig01-14.png
demo - NetBieans IDE Dev 201304132301 =lolx]|

Fle Edt View Navgate Source Refactor Run Debug profle Team Tools Window Help G-
=1~ [detout coie> =] G D - Ep- @~ Tkt ® &

a

= @ Source Packages
[<defautt paciage>
(d Ubraries

@ Q3ava Call Hierarchy
0] s

OPS/images/AAKNIHM0.png
Program Original file
Unsorted
Array d
— Temporary file
™\ Soried | Sorted Sorted
segment | segment segment
5, 5 Sy

OPS/images/Fig39-40.png
) DisplayCount

€ - € [liangarmstrong.edu8080/chapter33jsfexercise/faces/Exercise33_14html @ | @
Total count is 13
IP Address Count

0:0:0:0:0:0:0:1 3
130.254.77.131 4
130.254.204.35 6

OPS/images/altmath_75.png

OPS/images/AAKMMMP0.png
{0, 0,0,0,8,0,0,7,9)

H

0

1

s

0

0

0
0

0lefo

0

0

7

9(s

0o

0
1

0

6lofo

ofo]s]o

slofofo[efofo]o]3

4lofofs[o[3]o]0

7 ofofo[2]o]o]0]6

ofefofofofofo]o]0

ofofofo[sfofo]7]0

(b)

(a)

OPS/images/altmath_32.png

OPS/images/altmath_126.png

OPS/images/1075_001.png
column

Flip X
row —> [] —> NNX
X

OPS/images/page16.png
‘Which student ‘Which exam Multiple-choice or essay score

Vvt

scores [i] [i] [k]

OPS/images/altmath_169.png

OPS/images/image2.png
Elements Elements Elements Elements
with key 0 with key 1 with key 2 with key t
bucket[0] bucke([1] bucket[2] buckel[1]

OPS/images/Fig31-30.png
=lolx|
Population (million)

280.0

Canada Ottawa 320 true
United Kingdom London 60.0 true
Germany. Berlin 83.0 true

France Paris 60.0 true

OPS/images/altmath_282.png
ry

- bhlbzf 4ac

and ry

- b-\b*- 4ac

OPS/images/altmath_311.png

OPS/images/AAKNKFI0.png
JFrame m— TicTacToeServerlQ— Hand1eASession }---

TicTacToeConstants |< l‘

JApplet |4— TicTacToeCl ientK}— Cell
Runnable q

TicTacToeServer

HandleASession

Similar to
4 Listing 18.10

TicTacToeClient

+main(args: String[]):void

«interface»
TicTacToeConstants

+PLAYER1 = 1: i
+PLAYER2
+PLAYER1_WON
+PLAYER2_WON
+DRAW int
+CONTINUE = 4: int

-player1: Socket
-player2: Socket

-cell: char[][]
-continueToPlay: boolean

+run(): void

-isWon(): boolean

-isFull(): boolean

-sendMove (out :
DataOutputStream, row: int,
column: int): void

-myTurn: boolean
-myToken: char

-otherToken: char

-cell: Cell[][]
-continueToPlay: boolean
-rowSelected: int
-columnSelected: int
-fromServer: DatalnputStream
-toServer: DataOutputStream
-waiting: boolean

+run(): void
-connectToServer(): void
-receiveMove(): void
-sendMove(): void
-receiveInfoFromServer(): void
-waitForPlayerAction(): void

OPS/images/Fig12-13.png
lc:\exercise>java Exercisel2_13 Loan.java
File Loan.java has
1919 characters

lc: \exercise>

OPS/images/AAKNHJA0.png
o

(a)Step 1

ors p, 3

7y

(b) Step2

xeaxis

P x-axi

(©) pyinto H

Py x-axis

(d) p, off H

OPS/images/AAKNKUA0.png
Command Prompt - mysql -uroot -p.

\>mysql -uroot -p
nter password: xxxxxooo

jelcome to the MySQL monitor. Commands end with : or \g

our HySaL connection id is 29

Iserver version: 5.0.37-community-nt MySQL Community Edition (GPL)

ype "help:' or "\h" for help. Type "\c' to clear the buffer.

nysql> use mysql:

Database changed

ysql> create user “scott'@ localhost’ identified by "tiger:
Query OK, © rows affected (0.62 sec)

nysql> grant select, insert, update, delete, create, drop,
-> execute, references on x.x to ‘scott @' localhost
Query OK, 0 rows affected (0.00 sec)
jsql> exit:

; —

OPS/images/altmath_828.png

OPS/images/altmath_799.png
na

OPS/images/altmath_841.png

OPS/images/ASSET41323.png
W LabelWithGraphic - o X

- Apara s s

Elipse

OPS/images/altmath_60.png

OPS/images/altmath_713.png

OPS/images/altmath_226.png

OPS/images/ASSET41366.png
=loix|

1/ This application program prints Welcome to Javal
public dass Welcome {
HH

public static void main(String(] args) {
‘System.out.printin("Weicome to Javal")
) 0.
i <| ABCOEFGHIJKLMNOPQRSTUVWXYZ
View]| [Flename’c\pookiwelcome java)

[Flename ¢\ pook\Welcome. java.
(b)

(a)

OPS/images/ASSET41338.png
The getter and setter methods for property
alues and a getter for property itself are provided
the class, but omitted in the UML diagram for brevity.

~text: StringProperty The text content of this control.
—editable: BooleanProperty /| | tndicates whether the text can be edited by the user.

—prefColumnCount : IntegerProperty | | Specifies the preferred number of text columns.

~prefRowCount : IntegerProperty Specifies the preferred number of text rows.
~wrapText: BooleanProperty Specifies whether the text is wrapped to the next line.
+TextArea() Creates an emply text area.

+TextArea(text: String) Creates a text area with the specified text.

OPS/images/altmath_269.png

OPS/images/Fig27-05.png
[) Hashing Quadratic Prob: X

<« C @ liveexample.pearsoncmg.com/dsanimation/QuadraticProbingeBookhtm @ % | O @ @ o ©

Usage: Enter the table size and press the Enter key to set the hash table size. Enter the load factor threshold factor and press the Enter
key to set a new load factor threshold. Enter an integer key and click the Search button to search the key in the hash set. Click the
Insert button to insert the key into the hash set. Click the Remove button to remove the key from the hash set. Click the Remove All
button to remove all entries in the hash set. For the best display. use integers between 0 and 99.

Current table size: 11. Number of keys: 5. Current load: 0.45. Load factor threshold: 0.75.

[0 [a
m
2
S}
“ 14
) [16
6 |28
m
(8
(1
o [21

Enter Initial Table Size:| 11 Enter a Load Factor Threshold: (075

Enterakey: || [N I I

OPS/images/AAKNJSQ0.png
«interface»
Jjava.util.concurrent.BlockingQueue<E>

ArrayBlockingQueue<E>

v o Nl

LinkedBlockingQueue<E>

PriorityBlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue (capacity: int,
fair: boolean)

+LinkedB1ockingQueue ()
+LinkedBlockingQueue (capacity: int)

+PriorityBlockingQueue ()
+PriorityBlockingQueue (capacity: int)

OPS/images/ch15_pg606-01.png
btEnlarge.setOnAction(

e —> {

code for processing event €%

(2) The compiler recognizes that e is a parameter
of the ActionEvent type, since the
EventHandler<ActionEvent>

interface defines the handle method with a parameter
of the ActionEvent type.

(1) The compiler recognizes that the lambda.
expression is an object of the
EventHandler<ActionEvent> type,
because the expression is an argument in the
setOnAction method.

(3) The compiler recognizes that the code for
processing event e are the statements in the handle
method.

OPS/images/Fig31-45.png
FXMLDocument fum! -

Flo Edt Vew et Modty Arange e Widow Hep

Loy = Bouarioe) oo oD DT —
e " Popees-outen
cmasor oo [
et Number2 ara mrcx_ v
aconbater w

Document - o [ugs5 3
v = 2dd | subact | mitply | Divce

OPS/images/Fig28-13.png
Seattle (0)

Boston (6)

Chicago (5) '

OPS/images/ASSET37469.png
id =1

area = 1750.50 —> 1750.50

whenBuilt

house2
house1.clone ()

_ toussitouns |
—_— 1

id =1

P> reference

date object
contents

Memory

area = 1750.50 — > 1750.50

whenBuilt

P reference

s
—_—

id =1

Memory

area = 1750.50 — > 175050

whenBuilt

house2
house1.clone ()

id =1

e
area = 1750.50 —>_nsoso | MHSHBUAIEDGG)

whenBuilt

|

———> reference. l—» contents

e e - S|

date object
contents

Memory

date object

(b)

OPS/images/Fig31-02.png
(controlX, controlY) (controlX1, control Y1)
L) L]

(endX, endY)

(startX, startY) (startX, startY) (endX. endY)

@ (controlX2, controlY2)

(a) (b)

OPS/images/altmath_1.png
10.5+2x3
235

OPS/images/AAKMUFN0.png
+File(pathnane: String) Creates a FiTe objec for thespecified path name. The path name may be &
directory ora il

+File(parent: String, child: String) | | Createsa File object for the child under th directory parent. The child may be
afile name or asubdircctory:

+Filo(parent: File, child: String) | | Createsa Fi1e object for the chid under the diectory parent.The parent is a
Fi16 abject. In the preceding constructor the paren is string.

+exists(): boolean Returns true if the fl or the directory represented by the Fi1e object esiss.

+canRead () : boolean Retumns true if th file represented by the F11e object exists and can be read.

+cankrite(): boolean Returnstrue i the file represented by the Fi1@ object exists and can be writin.

+isDirectory(): boolean Retumns true if the Fi e object represents dirctory:

+isFile(): boolean Retums true if the F11e object represens a il

+isAbsolute(): boolean Returns true if the File object s created using a

+isHidden(): boolean Returms true i the fle represented in the F116 object is hidden. Th
defimition of idden s ystem dependent, On Windows, vou can

absolute path name.

hidden in the File Propertis dialog box. On Unix systems,a fileis idden if
it name begins with aperiod () character.

+getAbsolutePath(): String Returns the complete absolute fil or directory name represenied by the File
object.

+getCanonicalPath(): String Returns the same as getAbsoutePath () except that it removes redundant

names,such as " and °..", from the path name, resolves symbolic links (on
Unix). and converts drive leters to standard uppercase (on Windows).

+getName(): String Returns the last name of the complete dircctory and file name represented by
the File object. For example,new File("c: | \book\ | test. dat") .getName() returns
test.dat

+getPath(): String Returns the complete directory and file name represented by the F1e object,
For example, new File("c:\1book\ \ test .dat ") .getPath () retums c: \book\ test .dat.

+getParent (): String Returns the complete parent directory of the current directory or the il
represented by the F1 16 object. For example. new
File("c:\\book\\test.dat") .getParent () retuns c:\book.

+1asthodified): long Returns the time that the file was last modified.

+length(): long Returns the size of the file or 0if it does not existor if it is a directory.

+listFile(): File[] Returns the files under the directory for a directory F1e object.

+delete(): boolean Deletes the il or directory represented by this Fi 1¢ object. The method returns,
rue i the deletion succeeds.

+renaneTo(dest: File): boolean Renames the file or dircctory represented by this F1 object o the specified name

represented in dest. The method returns rue if the operation suceeeds.

+mkdir(): boolean Creates a directory represented in this F1Te object. Returns true i the the directory is

ereated successully.
Same as mkdi () except that it creates directory along with its parent directories if
the parent diréctories do not exist.

+nkdirs(): boolean

OPS/images/AAKNFLE0.png
«interface»
Jjava.util.Collection<E>

/ N

«interface»
Jjava.util.Queue<E>

e

«interface»
Jjava.util.Deque<E>

«interface»
Jjava.util.List<e>

H
i
i
i
i
1
1
i

java.util.LinkedList<E>

OPS/images/altmath_254.png

OPS/images/ASSET37682.png
=lolx]

enermoer [)

Eneranorder: [1)

() Order 0

~lolx]

(b) Order |

-lolx]

Enteranorder: [3]

(c) Order 2

(d) Order 3

OPS/images/altmath_211.png

OPS/images/altmath_382.png

OPS/images/altmath_728.png

