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Preface

The advacements of modern industry and engineering stem from the gradual developments of
science and technology in the western world. Teaching of engineering in colleges and universites
has always been based on the western education system, and many terminologies are translated from
English. Therefore, it is of great necessity to train engineering students in academic reading and
writing using the English language, which will enable the students to gain a better understanding of
the subject matter at its root level and later on prepare them for publishing research papers in
international journals. However, due to the limited class hours, relying solely on the attendance of
compulsory courses such as academic English is insufficient to fulfill such a task. A better
approach is to open bilingual courses to undergraduate students. Hence, textbooks written in both
English and Chinese, which fully consider the language and train of thought of Chinese students,
are in urgent need.

To ensure the readability of the textbook for students, it is typeset so that Chinese content is
displayed on the left and the corresponding English content is shown on the right. This book covers
the basic concepts and principles of electrical circuits and electronics, practical applications of
circuits, and the analysis as well as design of circuits. This book will enable readers to understand
basic laws and principles, apply them to solve and design circuits, get to know the historical
development of electrical circuits and electronics. It provides a sound base to enable readers to
develop theoretical and experimental skills in the areas covered. The book consists of two
parts—electrical circuits and electronics, including basic elements and circuits, nonlinear elements,
voltage and current laws, circuit analysis methods, DC steady state and transient analysis, ac steady
state analysis, three-phase circuits; diodes, BJT transistors, MOSFET transistors, operational
amplifiers, logic circuits. The book focuses on basic concepts and definitions, presentation of
theories and analysis methods in the areas mentioned above, where appropriate illustrations are
provided to assist the readers’ understanding of a concept. Discussions are also available in most
chapters, which will help readers with the practical application of theories, as well as providing them
with opportunities to practice their academic presentation skills. Some chapters also include
examples explaining the application of electric circuits and electronics to solving real-world
problems and demonstrate how the circuits are analyzed and designed in engineering. Relevant great
scientists and engineers are introduced with their contributions highlighted.

As an elementary course for engineering students, this textbook is suitable for undergraduate
students majoring in the subject of computer science, software engineering, automation, cybernetics,
as well as other specialist subjects where the course of electrical citruits and electronics is
mandatory and taught bilingual or in English. In addition, this textbook can also serve as an
introduction for readers who are interested in electrical circuits and electronics and in academic
English regarding electricity.

The book is organized into 11 chapters. The contributions made by each of the co-authors are



listed as follows: chapters 1,4,5 and 9 were written by Dr. Tianyao Ji. Chapters 2 and 3 have been
supplied by Limin Fan, while chapters 7 and 8 were written by Xiaoyong He. Chapters 10 and 11
were contributed by Dr. Mengshi Li. Prof. Qing-Hua Wu from South China University of
Technology edited the completed book. Dr. Peter Z Wu from Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences has proofread the English version and made meticulous
corrections to ensure its readability. Dr. Yunhe Hou from Hong Kong University has reviewed the
book and provided useful comments. The authors would like to ackonwledge the help and

encouragement that have been provided to them during the writing of this book.

Readers are welcome to address comments and corrections.

the authors
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Introducﬁon/ @@

/

The ancient Greeks experienced minor shocks of electricity by rubbing together amber; in the
early 1700s, people from Europe regarded static electricity as an astonishing form of magic; in the
mid-1700s, an experiment designed by Franklin revealed that lightning by its nature was the same as
the electricity made by man; in the late 18® century, Volta invented the first battery in the world.
From then on, research on electricity has been rocketing. We use electricity to light our cities, heat
our flats during cold winter nights, communicate across vast lands and oceans, as well as create
modern industries and bring about the digital revolution. Fields such as commutation, computers,
control systems, electromagnetism and power systems can all trace their roots back to the discovery
of electricity. This book will introduce the foundation for all these fields—electrical circuits,
including the fundamental concepts and laws of electrical circuits and electronics, the applications
of electrical circuits, together with how to analyze and design circuits. This book will help you to
understand the construction of electrical circuits and electronics, gain solid background in hardware,
and prepare you for further study in related fields.

Electrical engineering is a branch of engineering that involves the study and application of
electricity, electronics, and electromagnetism, which has now been subdivided into a wide range of
subfields, including electronics, digital computers, power systems, telecommunications, control
systems, signal processing, electromagnetism, microelectronics, etc. Electronics studies the
characteristics of electrons and designs electronic circuits and devices. Computers are one of the
most commonly used electrical devices, where circuits are designed to allow computers to perform
complex computations. Power systems deal with the generation, transmission, distribution and
utilization of electric power. Telecommunication is the transmission of information in electrical form,
such as telegraph, telephone, radio, satellite television, the Internet, etc. Control systems gather
information via sensors and use electrical energy to control a physical process. Signal processing
involves the processing of electrical signals that carry information, and its objective is to extract
useful information from these signals. Electromagnetism is concerned with the study of interaction
between electricity and magnetism, including electromagnetic waves, electromagnetic fields,
physical interaction that occurs between electrically charged particles. Microelectronics relates to
the study and manufacture of very small electronic designs and components, and circuits are
integrated in semiconductor material, which ensures the circuits to have smaller size, lower power
consumption and better performance.

Electrical circuit and electronics is a fundamental course for electrical engineers. The first six
chapters of this book focus on the basic concepts and fundamental knowledge of electrical circuits.
We will start from the fundamental principles and then learn to analyze more complex circuits. In
the second part, from Chapters 7 to 11, we will learn about nonlinear electronic devices and solve

electronic circuits, using the circuit analysis methods we have learnt in the first part.
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Chapter 1 Circuits and its Basic Physical Variables and Elements . %

l Circuits

A simple example of a circuit would be the circuit of an electric torch. It consists of a battery, a lamp, a
switch, and wires connecting these elements into a closed loop, as shown in Fig. 1.1(a). The battery converts
chemical energy into electrical energy: the electrical energy is then delivered to the lamp through the wires,
and the tungsten filament in the lamp convert the electrical energy into heat and light. This happens when
the switch is closed. When the switch is open, the flow of energy is disrupted and the lamp is turned off.

The circuit diagram of the electric torch is presented in Fig. 1.1(b). In this diagram, the battery is
represented by a voltage source, the lamp corres ponds to a resistor, the switch is omitted as in most cases
we care about a closed circuit, and the wires are represented by lines. Voltage sources and resistors are
called circuit elements; other circuit elements include current sources, inductors, and capacitors, which
will be discussed later in this book. The purpose of circuit analysis is to determine for a certain variable
(such as the current flowing through a resistor or the voltage across a capacitor) or an element’s
parameter (such as the resistance of a resistor), when the configuration of a circuit is available.

1.2 Basic Physical Variables

1.2.1 Charge

The concept of electric charge is the most basic quantity in an electrical circuit. Charge is a
fundamental property of atomic particles for which matter is made of; it is denoted by ¢ and measured
in the unit of coulomb (C). The charge on an electron is —1.602x107"" C. The small shock felt by
the ancient Greeks was the effect of electric charge. In the electric torch circuit, electrical charge is
forced by the voltage source to flow through the wires and the resistor. The wires are made of an
excellent electrical conductor, which is usually copper, so that the charge flows easily through them. The
resistor, on the other hand, is not such an excellent conductor. The charge flowing through a resisor is

opposed, causing the electrical energy to on be transformed into heat.
1.2.2 Current
Electrical current is defined as the rate of flow of electrical charge per unit time. Suppose the

charge is expressed as a function of time denoted as ¢(7) and the current is denoted by i(7). The

mathematical relationship between current, charge, and time is

. dq(1)
zm_if- (1.1)

The unit for currents is ampere (A), which is equivalent to coulomb per second (C/s). To find

the charge transferred between time #;, and 7, we can integrate both sides of (1.1) and obtain
g()= [ i(0dr +q(1,) (1.2)
where the charge at time #; is known.

Current flows along a direction. In a circuit diagram an arrow is often used to indicate the direction of a
current. In many cases when we start to analyze a circuit, we may not know the actual direction of the
current flowing through a certain conductor or in a particular circuit element. Therefore, we need to assume
arbitrarily a reference direction for the current of interest. As a common practice, we use different
subscripts to label the currents flowing through different circuit elements. For example in Fig. 1.2
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Chapter 1 Circuits and its Basic Physical Variables and Elements @)

the boxes labeled A, B, and so on represent circuit elements, and the currents flowing through them
are denoted by i, iy, i3... Note that we have assumed a direction for each current. Suppose that after
solving this circuit, we obtain a negative value for /), say—2 A. It means that the current actually
flows in the direction opposite to the reference direction we have assumed. Thus, the actual current
is 2 A flowing downward through element A.

If the direction of a current does not change with time, we call it a direct current, DC for short.
An example of a DC current of 2 A is shown in Fig. 1.3(a). On the other hand, if a current varies
with time and reverses direction periodically, it is called an alternating current, abbreviated as AC.
An AC current may have various waveforms. Fig. 1.3(b) shows an AC current that varies
sinusoidally with time. Other waveforms include triangular and square waveforms, as shown in Fig.
1.4.In this book, if not otherwise indicated, AC currents refer to sinusoidal currents. We normally
use the upper case / to denote a DC current and a lower case i for an AC current.

1.2.3 Voltages

When charge moves through circuit elements, energy can be transferred. For example in the electrical
torch circuit, the chemical energy stored within the battery is transferred to the lamp, which is then absorbed
by the lamp and transformed to light and heat. We use voltage to describe energy transfer. Voltage is defined
as the energy required to move a unit of charge through an element

v=— (1.3)

where w and g represent energy and charge, respectively, and v represents voltage, which is
measured in volts (V). One volt is equivalent to one joule per coulomb (J/C).

As shown in Fig. 1.5(a), points a and b are labeled by the plus and minus signs, respectively. Thus, the
voltage between points a and b is expressed by vy, If the signs are switched so that point a corresponds to a
negative polarity and point b to a positive polarity, as shown in Fig. 1.5(b), the voltage between points b and
a is represented by w,, and the voltage between points a and b corresponds to —vy,. Thus, V4= —w,. When
analyzing a circuit, if the polarities of the voltages are unknown, we may start by assigning reference
polarities for them, as we do for currents. As shown in Fig. 1.6, the voltages across elements A~D are
labeled by v;~vs, and their reference polarities have been assigned before analysis. Suppose after
calculation, we find that the voltage of element A is vi=5 V; therefore, the voltage across element A has a
magnitude of 5 V and its actual polarity is the same as what we have assigned. On the other hand, if we find
that vi=—5V, it implies that the voltage across element A has an opposite polarity to that shown in Fig. 1.6.

%MW{MMW~M?M!8}6}W4
French physicist and mathematician who is generaly regarded as one of the
main foundrs of the saence of classical electromagnetim. The unit a/
measurement of electric curvent; ﬁem,am, zrnama/nﬁrﬁm
daveloped a mathematical and physical hméaﬁw/tﬁméémﬁap
letsveen electricity and magnetism, %m@mﬂ
to e caled Ampire’s v, wénémﬁmﬁemm/mq‘mbyﬁmf
amml-mrgfryuﬁmb/m/)aﬁbm/blﬁdréyfﬁmn/b%mq’
their currents
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Similar to currents, voltages can also be regarded as DC or AC voltages. DC voltages are
constant with time. The battery used in the electric torch can be considered as having a constant
voltage of 1.5V, thus it can be expressed by a DC voltage source in a circuit diagram. Ac voltages,
on the other hand, change in magnitude and alternate in polarity with time periodically. The most
widely used AC voltages are sinusoidal, such as the voltage of a household socket, which can be
expressed as a function given by v=220~/2 cos(100m).

1.2.4 Power and Energy

1. Power

In the first section of this chapter, we saw that in an electric torch circuit, the energy is
transformed from chemical energy to electricity, then to heat and light, which implies that in circuit
analysis, energy is also a variable of great importance. In some practical cases, we may need to
know how ‘bright’ We need a lamp to be. We all know from experience that a 15 W lamp is brighter
than an 8 W one, but it also consumes more energy. Thus, in circuit analysis, we also need to solve
for power and energy. Power is the rate of energy transter, measured in watts (W). This relationship
can be written as

dw
.
dr

To relate power and energy to current and voltage, let's recall the definitions of current and
voltage. Current is the rate of flow of charge, and voltage is the energy transferred per unit of charge;
therefore, the product of current and voltage is the time rate of energy transfer, i.e. the power. In

(1.4)

mathematics, we can write this as
_dw _dw dg

= —i= — vi
P4 " 4q " (1.5

When we calculate the power of a circuit element using (1.5), we need to make sure whether
the power is supplied or absorbed by the clement. As shown in Fig. 1.7(a), the arrow and the +/—
signs indicate the reference direction of the current and the reference polarity of the voltage,
respectively. If the current flows into the positive polarity of the voltage, such an arrangement is
called passive reference configuration. In this case, the power is calculated by

p=vi (1.6)

if a positive result is obtained, the element absorbs power; otherwise, it supplies power to other

parts of the circuit. If the current enters the negative polarity of the voltage, as shown in Fig. 1.7(b),

we say the current and the voltage are against passive reference configuration. Therefore, we compute
the power in the following way

p=—vi (1.7)

Likewise, a positive result implies the power is absorbed by the element, whereas a negative
result shows that the power is supplied by the element.

” Discussion: Why do we need to assign a reference direction/polarity?

Before we start to analyze a circuit, we need to assign a reference direction/polarity for a current/voltage
of interest. By doing so, circuit analysis becomes easier (we will learn how to solve a circuit in Chapter 2). It
also helps us to determine whether a circuit element is absorbing or supplying power. According to the law of
energy conservation, the power absorbed in a circuit should equal to the power supplied at any given instant in
time. This principle can be used to check whether our calculations are correct.

11
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gz Prefix 445 K2 Gl Prefix #H5 g
X tera- T 10" i micro- 15 10°
& giga- G 10° 2 nano- n 107
Ik mega- M 10° 54 pico- P 1077
i kilo- k 10° L femto- f 10"
= milli- m 107
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/

Example 1.1: For the circuit shown in Fig. 1.8, given that v=6V, v,=v,=v,=3V, j =i,=
-2 A . Solving for i, and i, weobtain i, =2Aand i, =4A. Is this answer correct?

Solution:

The problem is solved using the fact that all the circuits should obey the law of energy
conservation. First we calculate the power for each element; then we find out the sum of power
absorbed in the circuit and the sum of the power supplied in the circuit, respectively. If they have the
same absolute value (power absorbed is positive whereas power supplied is negative), the answer is
correct; otherwise, it is wrong. When calculating an element’s power, we should pay attention to
whether its current and voltage are of passive reference configuration. The power of each element is
calculated by

P =—Vi=—6x(-2)=12W
P, =v,L=3x(2)=-6W
Dy =V =3x2=6W
Py =—Vi,==3x4=-12W
The results show that elements A and C absorb power, the sum of which is 18 W; elements B
and D supply a total power of —18 W. We can therefore safely conclude that the answer is correct.
2. Energy

The energy absorbed or supplied by a circuit element between time instants 7y and ¢ can be
obtained by integrating the power

w= j p(t)dt (1.8)

Energy is measured in joules (J).
Example 1.2: For the circuit element shown in Fig. 1.7(a), find the energy transferred in the time
interval from #=0 to #,=<>. The current and voltage are given by functions i(/)=2A and

v(t) =2e"V, respectively.
Solution:
The first step is to calculate the power. As the current enters the positive polarity of the voltage,
they are of the passive reference configuration, and the power can be calculated by
p()=v()i(t)=2e"+2=4e"'W
According to (1.8), the energy transferred is given by
W= ["4etdr=—de |5 =41
As the energy is positive, the element absorbs the energy.
-~ Supplementary reading: Prefixes
In circuit analysis, we encounter a wide range of values for currents, voltages, powers, and
other quantities. In power systems, the voltage of high voltage transmission lines could reach 500
kilovolts (kV), while in microelectronics, the standard range of observed values is in the range of a
few millivolts (mV). Therefore, for the purpose of convenience, the orders of magnitude and their

corresponding prefixes are listed in Table 1.1.
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1‘.3  Circuit Elements

Circuit elements include voltage sources, current sources, resistors, conductors, capacitors,
inductors, diodes, BJT transistors, MOSFETs, etc. In this section, we will focus on the first four
types of elements, and discuss the rest later on in the book.

1.3.1 Voltage sources

Voltage sources supply voltage to the rest of the circuit. We have two types of voltage sources:
independent and controlled voltage sources. The output voltage of an independent voltage source, or
the voltage between the two terminals of an independent voltage source, is constant, which is
independent of the other elements in the circuit and the current flowing through it. The circuit symbol
for an independent voltage source is given in Fig. 1.9(a). The pair of +/— signs indicates the actual
polarities. Sometimes we use the symbol shown in Fig. 1.9(b) to represent DC voltage sources.

Controlled voltage sources are also called dependent voltage sources; their output voltage is
controlled by some other voltage or current in the circuit. In other words, the voltage across a controlled
voltage source is a function of some other voltage or current in the circuit. The circuit symbol for a
controlled voltage source is a diamond, with a pair of +/— signs to indicate its actual polarities, as shown in
Fig. 1.10. In Fig. 1.10(a) we have a voltage controlled voltage source, whose output voltage is expressed by
3v,, with v, being the voltage across another element. If v,=5 V, the voltage-controlled voltage source
outputs a voltage of 15 V; if v=10 V, its output voltage is 30 V. Fig. 1.10(b) presents a current-controlled
voltage source, the voltage across which is the function of a certain current in the circuit.

1.3.2 Current sources

Just like voltage sources, current sources are also categorized into independent and controlled
current sources. An independent current source supplies a specified current to the circuit. The
current of an independent current source is independent of the elements connected to it or the
voltage across it. The circuit symbol for an independent current source is given in Fig. 1.11, which is
also a circle but has an arrow to indicate the actual direction of the current. This symbol is used for
both DC and AC independent current sources.

Controlled (dependent) current sources are represented by a diamond with an arrow indicating the
actual direction of the current. The control variables can be either voltage or current. Fig. 1.12(a) shows a

voltage controlled current source, and Fig. 1.12(b) presents a current controlled current source.

t Allessandro Guiseppe Antonio Anastasio Volla (745—1827) was
an Gtalian physiist knowm for his imvention of the battery in the Boos. The
invention of the batiery plays an important role in Ofm’s and Kirchhoff's
further vescarch work, He is abo credfted as the discoverer of methane.
Volis's invention sparked a great amount of scientifc excitement and lea
others to comductsimilar experiments which eventually led to the development
of the fieldof electrochemistry,
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s

7 Discussion: More about controlled sources

There are four kinds of controlled sources

e Voltage-controlled voltage sources.

e Current-controlled voltage sources.

e \oltage-controlled current sources.

e Current-controlled current sources.

The output of a controlled voltage source is voltage, no matter whether it is controlled by
voltage or current. Take the controlled voltage source in Fig. 1.10(b) for example. Its output is 27V,
and not 2i, A. Therefore, we should keep in mind to identify a controlled source by its circuit
symbol, not by the control variable the source depends on.

Example 1.3: Compute the power absorbed or supplied by each element of the circuit in Fig.
1.13.

Solution:

p, =—5x8=-40W, the element supplies power;

p, =2x8=16W, the element absorb power;

p, =0.61 x3=0.6x5x3=9 W, the element absorbs power;

P, =3x5=15W, the element absorbs power.

1.3.3 Conductors

Circuit elements are connected by conductors to form a closed loop. In circuit diagrams,
conductors are represented by solid lines. For an ideal conductor that allows the charge to flow
freely through it, the voltage between any two points along the conductor is zero, regardless of the
current flowing through it. We normally use copper wires as conductors. In the electric torch circuit,
the copper wires can be considered as ideal conductors. However, in high voltage transmission lines,
the copper wires can no longer be regarded as ideal conductors. We will came back to this when we
discuss resistance.

When two points in a circuit are connected together by an ideal conductor, we say that the
points are shorted together. Such a circuit is called a short circuit. In many practical applications,
short circuits may cause accidents and should be avoided. For example in Fig. 1.14, the two
terminals of a voltage source are shorted. According to the definition of the voltage source, its
output voltage should be v=5 V. On the other hand, the definition of an ideal conductor requires that
v=0 V. Apparently this is a conflict, which should be avoided in circuit analysis. In practice, if we
connect the two terminals of a battery by a piece of copper wire, a very large current flows through
the wire, the chemical energy stored in the battery is converted to heat in the wire at a very high rate,
and the wire will probably melt and the battery will be destroyed.

1.3.4 Resistors

Resistors are also made from conductive materials, but their conductivity is not as good
as ideal conductors. Current flowing through a resistor is hindered, which lowers the rate of
the charge. Resistors often take the form of a long cylinder, as depicted in Fig. 1.15(a). The

resistance of a resistor is influenced by its cross-sectional area and its length, as well as the material
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HEBH AN o] 220, ANRE FRRF SO 0 B AR S 26 .

MNSHPEREM LG, MBI TR B, 4k —Fh. SARM PR, HiR
Wyt o Aag R iR WAER &, LT BRI ek, SR SN TH
), AEASE 0 IRATEE 2 S TR RIS EER 2N U
i AR L B A L 1.2

#1.2 JUFRE DL #3464 BB PR 2R

Table 1.2 Resistivity of common materials

7 (Category) ¥ (Material) HLBL# (Resistivity )

¢ (Silver) 1.63x10™

i (Copper) 1.72x107*

{4 (Conductors) & (Gold) 244x10"
i (Aluminum) 2.73x10°"

3 (Tungsten) 5.44x10"

fi (Carbon) 3.5x107

10°~1, kT4

=31k (Semiconductors) ) ) ) )
(10 ° tol, depending on impurity concentration )

it (Silicon)

# (Germanium) 47x10°

B (Glass) 1x10"

%24k (Insulators) $5 % (Teflon) -
H#iA1 9% (Fused quartz) 510"
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Chapter 1 Circuits and its Basic Physical Variables and Elements 'v %

used to construct the resistor. If the length of the resistor is much greater than the dimension of its
cross section, the resistance is approximately given by
R= oL (1.9)
A

where R is the resistance, measured by the unit of ohm (Q ), L is the length of the cylinder,
A is the cross-sectional area, and p is the resistivity of the material used to construct the
resistor, whose unit is ohm meter (Q = m). The circuit symbol for a resistor is given in Fig.
1.15(b).

Any conductor will have a certain resistivity. For example, in many cases the
resistance of copper wires can be neglected. However, in a high voltage transmission
system, as the transmission lines are of thousands of kilometers long, the resistance of
copper wires should be taken into consideration; thus, we can no longer treat them as ideal
conductors.

Materials can be classified as conductors, semiconductors, and insulators, according
to their resistivity. Conductors have the lowest resistivity and currents flow easily through
them. Insulators have very high resistivity and very little current may flow through them.
Semiconductors fall between conductors and insulators. We will see in the second part of
the book that semiconductors are very useful and have been widely applied in electronics.

Table 1.2 lists the resistivity of some common materials.

o Problems

P1.1 The current flowing through a circuit element is given by
i(1)=2¢e" A

Find the net charge that passes through the element in the time interval from 7 =0 to 7 = .

P1.2 Suppose that a circuit element hasv(r)=35¢" V andi(1)=2A | and the
reference direction and polarity are shown in Fig. P1.1. Calculate the power for the
circuit element and find the energy transferred from /=0 to r=co. Is this element
supplying or absorbing energy?

P1.3 Find the power absorbed or supplied by each of the elements in Fig. P1.2.

j0A  H10V - + 8V -
— [ ] ]
| | [ | S

: +  ha

«r) 30V C) 14A J 20V 12V<>

o—{ F—o R _
o~
Fig. P1.1  Circuit diagram for P1.2 Fig. P1.2  Circuit diagram for P1.3
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Chapter 2 Voltage and Current Laws %

In the previous chapter, we learnt some basic concepts of electrical circuits and some common
circuit elements. Connecting circuit elements to form a circuit, the voltage and current of an element
are related by certain laws. In this chapter, we will first introduce some basic laws used in circuit

analysis. Afterwards, we will find out how to analyze and simplify a circuit based on Ohm’s Law.
'2.'1, Concepts of Branches, Nodes and Loops

It is useful to clarify some terms before we set our hands on the circuit laws.

Branch: A branch refers to a part of a circuit in which a current flows through, which is therefore
called the branch current. There are five branches in the circuit shown in Fig. 2.1, namely b-c, g-d, a-f,
g-h and h-e. Branches b-c, g-d, a-f and h-e include sources, so they are called active branches; branch
g-h contains no source and is thus called passive branch.

Node: In a circuit the point where three or more than three branches are linked together is
called a node. In Fig. 2.1 we have three nodes which are a, d and h.

Loop: In a circuit any closed path that starting at a node, proceeding through circuit elements,
and eventually returning to the starting node can be called a loop. We can find seven loops in Fig. 2.1,
which are a-b-c-d-g-a, a-g-h-f-a, g-d-e-h-g, b-c-e-f-b, a-d-e-h-f-a, b-c-d-e-h-g-a-b and b-c-d-g-h-f-a-b.

2.2 Kirchhoff’s Current and Voltage Laws

2.2.1 Kirchhoff’s Current Law (KCL)

Kirchhoff’s current law (KCL) can be expressed as: At any time instant, the sum of the currents
flowing into a node equals to the sum of the currents flowing out of it. In the circuit shown in Fig.
2.1, for node a or node g, we have: i|+is+is=i,. KCL presents the relationship between the currents of
all the branches connected to the same node.

KCL also shows that the current is continuous. As charges move through the circuit, they will
not disappear or accumulates, according to the law of conservation of matter. Therefore, the above
equation can be rewritten as: i) +iy+is—i>=0.

KCL can also be expressed in this way: At any time instant at any node, the algebraic sum of
the currents flowing into the node is always zero. Mathematically, it can be described as

> i (=0 (2.1)

In the above equation, if the reference direction of a branch current points to the node,
indicating that the current flows into the node, we assign ‘+’ for the current; otherwise, ‘-’ is
assigned for the branch current.

As KCL can be applied to any nodes in a circuit, it can also be applied to any loop of the circuit.
In Fig. 2.1, the circle drawn in dashed line covers the loop of a-g-h-f. Three branches are connected
to this loop and the branch currents are i3, iy and is respectively. According to the law of
conservation of charge, for the loop we have is+ is= i3 or iyt is—is=0.

Therefore, KCL has an extension version of definition: At any time instant in a circuit, the
algebraic sum of the branch currents flowing into a loop equals zero, and it can be expressed as

PIRAGEL

Branch current flowing into the loop
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Chapter 2 Voltage and Current Laws" %

Example 2.1: For the circuit shown in Fig. 2.2, find out the reading of the ammeter.

Solution: The circuit can be solved by applying the extended version of KCL. In this circuit,
nodes a, b, ¢ and d form a closed loop and there is only one branch connected to this loop. Therefore,
the reading of the ammeter is zero.

2.2.2 Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s voltage law (KVL) states that in any circuit at any instant in time, the algebraic

sum of the voltages for any loop is zero. Its mathematical expression is

S (0)=0 (2.2)

Before applying the above equation, we need to set a direction for the loop, either clockwise or
counterclockwise. If the reference polarity of branch voltage is the same as the direction of the loop,
a ‘+’ is assigned for the voltage in (2.2); if the branch voltage has opposite direction of the loop, the
voltage is assigned a negative sign *—’.

Fig. 2.3 shows a fraction of a circuit, which involves a loop, whose direction is clockwise. The

reference polarities of the voltages are also given in the figure. According to (2.2), we have
Vab F Voe T Veg F Ve =Vie = Vor =0
or
vuh + vbc + vcd + vdc = vfc + VM-

KVL regulates the voltages of the branches that form a loop, which is a consequence of the law
of energy conservation.

KVL originally 1s applied to any closed loops, nonetheless it can also be applied to an
open circuit or a segment of a circuit. Taking the circuit shown in Fig. 2.4 for example, in
order to solve for the voltage between node a and node d, we can apply the following equation

respectively
vud :vab +vbc +vcd or vud zval‘ +vfc +‘/‘cd

In any circuit the voltage between any two nodes is irrelevant to the path chosen for
calculation.

KCL represents the relationship of the currents of the branches connected to the same node,
while KVL represents the relationship of the voltages of the branches under certain
configuration of a circuit. When applying Kirchhoff’s laws, the elements of the branches are of
no relevance, which means Kirchhoft’s laws are only related to the configuration of the circuits
and have nothing to do with the elements. Therefore, KCL and KVL can be applied to any
circuits, linear or nonlinear.

" Discussion: Equivalent voltage/current sources

1. Equivalent of series-connected voltage sources

How do we use four 1.5 V batteries to get a 6 V voltage?
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S

This is a practical version of » ideal voltage sources connected in series. As shown
in Fig. 2.5(a), the voltage between the two terminals a and b, vy, can be obtained
according to KVL

=y "’_*_“._‘_\1 =¥y (2.3)

sl s2 sn s

v ‘ab

which means the series combination of the » voltage sources is equivalent to a voltage
source whose voltage takes the value of v, as shown in Fig. 2.5(b).

2. Equivalent of parallel combination of voltage source and other branches

Example 2.2: Consider the circuit shown in Fig. 2.6(a) When current i; changes in
value and direction, will current i change accordingly?

Solution:

As the voltage across resistor R is fixed at v, the current flowing through it is
also fixed and will not be influenced by i,. That is to say, for resistor R, circuits
shown in Fig. 2.6(a) and Fig. 2.6(b) are equivalent.

In conclusion, if any branch that contains no voltage sources is connected in parallel

with a voltage source, the voltage to the external circuit remains the same, and the
two-terminal network is equivalent to the voltage source, as shown in Fig. 2.7.
7 Exercise 2.1: Consider the current of the equivalent voltage source, 7, in Fig. 2.7(b),
and the current of the original voltage source, i, in Fig. 2.7(a). Are they of the same value?
7 Exercise 2.2: In Fig. 2.7(a), if branch N contains only an ideal voltage source that is
different from v,, what would happen consequently?

3. Equivalent of parallel-connected current sources

Suppose we have n current sources connected in parallel, as shown in Fig. 2.8(a).
Based on KCL, we have

sl _,51 +“.+,.\n =I\ (2.4)

Apparently, the parallel combination of current sources is equivalent to a current

source with the value of iy, as shown in Fig. 2.8(b).

L

Gustav Rohert Kirchhoff (12 March 1824 ~ 17 October 1887) was a
German p@)'icij'f who contributed to the fundamental unﬁ/er:fan/inﬂ of electrical
circuits and spectroscopy. Two different sets of concepls (one in circuit Meary and one
in Jf)eclraj'wpy] are named "Kirchhafl's laws" after him. Kirchhaff's laws in circuit
fﬁeary, which were first described in 1845, deal with the conservation of cﬁage and
enerqy in electrical civcuits, and ave wf/e‘/y used in electrical erzgineerin_g. 'Khwcﬁﬁaﬁ".r three
laws in J/)ec{m:co/y state that a solid, ﬁquia( or gas can be excited to emit f{'gﬁf, and will
radiate and thus /)roaﬁwe aspectrum, which ﬁeﬁe/ lead to quantum mechanices.
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Chapter 2 Voltage and Current Laws/ %

4. Equivalent of series combination of current source and other branches

Example 2.3: Consider the circuit shown in Fig. 2.9(a). When voltage v changes in
value and polarity, will voltage v change accordingly?

Solution:

As the current flowing through resistor R is fixed at is, its voltage, v, remains the same and
will not change as v, changes. In other words, for resistor R, circuit shown in Fig. 2.9(a) is
equivalent to the circuit of Fig. 2.9(b).

In conclusion, if a current source is connected in series to a branch that does not
contain any existing current sources, the current to the external circuit is the same as
that of the applied current source. The equivalent circuit is shown in Fig. 2.10 .

7 Exercise 2.3: s the voltage v in the circuit shown in Fig. 2.10(b) the same as the
voltage v, in the circuit shown in Fig. 2.10(a)?
7 Exercise 2.4: What would happen if branch N is an ideal current source whose

current is different from i.?

i

R 1

Ohm’s Law

Consider Fig. 2.11(a). Under a passive reference configuration, at any instance
of time the voltage across the resistor and the current flowing through it is related

by Ohm's law
v=Ri (2.5)

If the voltage and current are against passive reference configuration, as shown in
Fig. 2.11(b), Ohm’s law becomes

v=—Ri (2.6)

For a resistor whose resistance does not change with voltage or current, i.e., R is
a constant, it is called a linear resistor; otherwise, it is called a nonlinear resistor. If its
resistance changes with time, it is called a time-varying resistor; otherwise, we say it
is a time-invariant resistor. In this book we only consider linear time-invariant
resistors, if not otherwise indicated. The volt-ampere characteristic of a linear
time-invariant resistor (Ohm’s law) is plotted in Fig. 2.12, which is called the
volt-ampere characteristic curve.

The reciprocal of resistance is called conductance, denoted by letter G

G= 2.7)

1
R
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I

Conductance describes a circuit element’s ability to allow the flow of current; its unit is siemens
(abbreviated S and S=Q").

24 Analysis and Simplification of Resistor Circuits

2.4.1 Resistors in series

When two or more two-terminal elements connected end-to-end and no other path is
connected in the middle, we say that they are connected in series. Apparently, the currents
flowing through the elements are the same. Consider circuit N; where » resistors are
connected in series, as shown in Fig. 2.13(a). As the same current, i, flows through all the

resistors, we can obtain the following equation according to KVL
v=Ri+ Rji+ Rji+--+ Ri=(R + R,+ Ry+--+ R))i (2.8)
If we substitute circuit N by a single resistor, as circuit N> shown in Fig. 2.13(b), the constraint

of v=Ri must be satisfied. Therefore, we have

R=R +R,+R ++R =) R, (2.9)

k=1

In this case, circuits N and N, share the same volt-ampere characteristic to external circuit, i.e.,
circuits Ny and N, are equivalent.

The series connection of » resistors, Ry, Ry, ***» R,, is equivalent to a single resistor, Req, the

resistance of which equals to the sum of the » resistances:

Req=Ri+Ry+*+R,

In a circuit where # resistors are connected in series, each resistor has a voltage of
vi=Ryi (k=1,2,**+, n)

According to KVL, we have
v tvoteety,=v=Ri

Therefore, the voltage of each resistor is a fraction of the total voltage at the terminal

R, R,
YR R +R,+---+R,

v (2.10)

This is known as the voltage division principle. A larger resistance bears larger voltage. In extreme

condition where an open circuit element (equivalent to an infinite resistance) is connected in series,
the voltage is totally applied to this open circuit element.
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B 2,14 800 T as L Bl 215 RIaR s
Fig. 2.14 A voltage divider circuit Fig. 2.15 A circuit diagram for potentiometer

2.4.2 HMERYFHE

PIANER 2 A o O AR — X T R 2 ), PSR RO . BAR, JRIRN R
Aot RAMEI . %18 n DNHBHICHE Ry, Ry, -, R, JFHRTT R LS Ny, W1 2,16 (a)
o, i R B Ok v it AR R A e, T AT 3

i s R R 1
P=0 +i,++1, =F+R—+---+R =V —+—+-+
1 2

1
J=vR = (2.11)

Bl 216  HLFHIKIFIEC
(a) JLipis: (b) SR
Fig. 2.16 Resistors connected in parallel
(a) Original circuit; (b) Equivalent circuit

#HE 2.16 (b) Frosif 8 —HIEH R F R FEEE Ny SRAFRCEAC Ny, T 20 AL

. 1

I=v—

R (2.12)

Hp
I

1 1
R Rz R ~R (2.13)

k
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v

Example 2.4 Fig. 2.14 shows a voltage divider circuit. The input voltage is
vi=50 V, the resistances are R|=1 kQ and R,=9 kQ, respectively. Find the output
voltage v,,.

Solution:

The output voltage v, is the input voltage times the ratio of R, to the total
resistance

v = R v, =50x :

" R +R, 9+1

=5V

Suppose we combine the two resistors in Fig. 2.14 into one resistor R, i.e.
R=R+ R,. Suppose further that we have a contact that can move along resistor R. As
the contact moves, the ratio between R, and R, changes accordingly, while their sum
remains the same, as shown in Fig. 2.15. In this case, the output voltage changes
proportion ally with R,. Therefore, by adjusting the position of the contact, we can
get an output voltage varying continuously from O to v;. Such a resistor with a contact
is known as a potentiometer, which is commonly used to adjust the volume (the
voltage of audio output) of a radio.

2.4.2 Resistors in parallel

We say that two or more circuit elements are connected in parallel if both
the ends of one element are connected directly to the corresponding ends of
another element. Apparently, in this case all the elements have the same voltage.
Consider the circuit shown in Fig. 2.16(a),where » resistors R;, R, ***,R, are
connected in parallel to form a circuit N;. Based on KCL and Ohm’s law, we
have

) ) 1 1 1 -
=0 +i,+-+i :R%+L+---+—v—=v(—+——+---+—j=VZ— (2.11)

To substitute circuit N, by circuit N, that contains only one resistor, the
following constraint must be sufficed

i=v— (2.12)

(2.13)
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R, + R, 12+6
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Under this condition, circuits Ny and N, share the same volt-ampere characteristic to external
circuit, 1.e., circuits N; and N, are equivalent.

The parallel connection of » resistances R, R,,---,R, equals to an equivalent resistance
R, the reciprocal of which equals to the sum of the reciprocal of each resistance

T I
Ll b v
R, R R, R

eq n

It is often more convenient to use conductance rather than resistance when dealing with
resistors in parallel.

For the parallel connection of » conductances G,,G,,:-,G,

n?

its equivalent conductance
G,, equals to the sum of their individual conductance

G, =G +G, +-+G,

In a circuit where » resistors are connected in parallel, the current flowing through each

’

s ‘} . . . . .
resistor is 4 = (k=1,2,---, n). According to KCL, we have i +i, +--+i, ZIZE' Hence,
k

R
the current of each resistor is a fraction of the total current
1
R. R . G,

= =

L

=i (2.14)

DR

m=| Y, m=1

This is known as the current division principle. A smaller resistance bears larger current. In extreme
case where a short circuit element (whose resistance is 0) is connected in parallel with other circuit elements,
the current flows entirely through the short circuit element. This is called a bypass in electrical circuits.

Example 2.5: Solve for the circuit shown in Fig. 2.17, where R)=1 Q, Ry=3 Q, R7=6 Q, R=12 Q,
Rs=6 Q, and v=21 V. Find current /.

Solution:

In this circuit, R, and R;5 are connected in parallel, R, and Rs are connected in parallel, then they
are connected to R, in series. According to the equivalent resistance of series and parallel connected

resistors, we have

b= 3 = = —3A
' R+R/R+RIR |, 3%6 12x6
3+6 12+6
Then, according to (2.14), we get
R
h=—2—i = 6 x3=2A
TR, + R 3+6
R, . 6

3=1A

i, = i = X
R, + R 12+6
Applying KCL at node a, we obtain
i=L,—-i,=2-1=1A
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2.4.3 Resistors in series and parallel

For resistors connected in series, we know that

(1) The current flowing through the resistors is the same;

(2) Each resistor shares a fraction of the total voltage;

(3) The equivalent resistance is larger than any individual resistance.

For resistors connected in parallel, we can conclude that

(1) The voltage across the resistors is the same;

(2) Each resistor shares a fraction of the total current;

(3) The equivalent resistance is smaller than any individual resistance.

Example 2.6: Find the currents and voltages labeled in Fig. 2.18, where R=5 Q, R,=18 Q,
R=6 Q, Ry=4 Q, Rs=12 Q, and v =165 V.

Solution:

R4 and Rs are connected in parallel and the equivalent resistance is
4x12
4+12

R,=R,//R, = 30

The equivalent resistance in branch a-c-b is
R,=R,+R,=6+3=9Q
The equivalent resistance between node a and node b is the parallel connection of R, and R,
18x9
18+9
The total equivalent resistance is the series connection of R, and Ry,
R,=R +R,=5+6=11Q

R,=R,//R, = =6 Q

According to Ohm’s law, the total current, /), can be calculated from

§=tB98 gy
R, 11
According to voltage division principle, we have
v =Ra,_ 8 165-00v
" R, 11
Applying Ohm’s law to R», the current of i, can be obtained
=220 5
© R, 18
Applying Ohm’s law to equivalent resistance R,.,, we have
L ST P
A Racb 9
According to the current division principle, we have
R.
= =—J, = 2 x10=7.5A
R,+R, =~ 4+12
i R, 3 x10=25A

= L, =
R, 4R 4+12
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PN FH B e vl 5 BH Ry F0 R, P FEL S, 43 70l A
v, =Ry, =6x10=60 V
v, =R,i,=4x7.5=30 V

HIBEL Y JERERI A VERAN 8 1

FERAEtE LR, AP AR 7 SR SR BB AEIFIG, W 2.19 Fio. b 2.19 (a) i
ANHERE T AR Y i, B 2.19 (b) B Ao A& . XAEs 7 0F, =
ANHLBLARIEE T AL ay by c Ar IS AN R . 22 4 B BRI — s I, X A
R AT T A B T S A, BIRRRHE Y SRR A ERE A5 R e . RN A O A
PE R 25 A2 TR L AR R], B

Vab =vab’vbc =§bc’vca :vca (2]5)
PLAGRN AT R HALAH [R], B
i =Ld, =dl, =1 (2.16)
XPTY R R, AT AT AR R R LA R A R A R
i +i, +i. =0 217
v, =Ri —Ri, (2.18)
v, = Ryiy — R, (2.19)
Va = Rcic - Raia (220)
X T AVERE L, JRATT AT 25 35 i8R R I E T R
i = .&’__L
a Rah R‘:H (221 )
A Y
Ly R. R, (2.22)
foam (2.23)
Rca Rbc

BoarA (217, A (2.18) ~A (2200 FFEEMA. A 221 ~K (223) 6 41T,
Y LA B i R 2H G T LB A 0 6 R X

( R.R,+R.R +RR,
Rah:
RC
RR +RR +RR
Rbc: a” b b™ ¢ c’a (224)
R'd
_RR +RR +RR,
ca Rh

38



Chapter 2 Voltage and Current Laws B’D

A

Again, using Ohm’s law to find the voltages across R; and Ry, respectively
v, =R, =6x10=60V
v, =R,i,=4x7.5=30V

2.5 Transformations between Wye—connected and Delta—connected Resistors

There are cases when resistors are connected neither in series nor in parallel, as shown in Fig. 2.19,
in which the circuit of Fig. 2.19(a) is called wye connection and the one given in Fig. 2.19(b) is called
delta connection. In both cases, the three resistors are connected to the external circuit through nodes a, b
and c, respectively. If the resistances of the two groups of resistors satisfy certain conditions, the two
circuits are equivalent to the external circuit. This is the equivalent transformation between
wye-connected and delta-connected resistors. The following conditions should be met

The voltage across each pair of nodes should be the same

vbc = ‘hc’vca = i7c.'1 (215)

The current entering each node should be the same as well

i, =10,0 =i, =i (2.16)
If we apply KCL and KVL to the wye-connected circuit, we have
i, +i,+i,=0 (2.17)
v, =Ri —Rj (2.18)
Vi =Ry, — R, (2.19)
v, =Ri —Ri, (2.20)
For the delta-connected circuit, the following KCL equations can be written for each node
K ﬁ::b 9ca
i = R—ab - R_u (2.21)
i ;zi ;é: (2.22)
N T T
i = R—ca - R_m (2.23)

Solving the six equations of (2.17), any two of (2.18)~(2.20), and (2.21) ~ (2.23)
simultaneously, we can write the relationship between the two groups of resistances as follows

_RR,+RR +RR,
B R

RR +RR +RR,
Rbc = R

- RaRh + Rth + RcRa
ca R

b

R

ab

(2.24)
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A (2.24) BIGHRIE Y E B PR & A ER B A8, st (2.25) AWREAEREH
PHAf 2 Y BN AR . H= P EMEN, FRXREN
Rs=3Rv (2.26)
R=R.:/3 (2.27)

(2.25)

b

K219 B Y K AERE
(a) WIFHM Y R (b) WHMAERE
Fig. 2.19 Y-connected resistors and /\-connected resistors

(a) Y-connected vesistors; (b) A-connected resistors
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i

. RabRL'a
* R,+R,+R,
= _ Ry (2.25)
R, +R_+R,
. ch Rbg
o Rab + Rbc + Rca

We can apply (2.24) to determine the resistances of delta-connected resistors according to the
wye-connected resistances, and use (2.25) to calculate the resistances of wye-connected resistors
based on the delta-connected resistors. If the three resistances are of the same value, the two

equations are simplified as

RA=3Ry (2.26)
R=Rx/3 (227)

o Problems

P2.1 For the circuit shown in Fig. P2.1, wherei, =1 A and i; =2 A, find current i.

P2.2  For the circuit shown in Fig. P2.2, wherev, =10 V, i, =—4 Aand i, =1 A, find current is.

P2.3  For the circuit shown in Fig. P2.3, find current /.

P2.4 For the circuit shown in Fig. P2.4, find voltage vap.

P2.5 For the circuit shown in Fig. P2.5,wherei, =5A, R, =1 QandR, =2 Q, find voltage
va. The value of R, is adjustable. Will the value of v, change as we adjust the value of R,?

I Ry I3 is Vs h e 8Q
1 - + m B -
/
) +
Bi e []3(2 12V C) 40 5A
Ry -
“h ‘n
Fig. P2.1 Fig. P2.2 Fig. P2.3
4 g g

P2.6 For the two circuits shown in Fig. P2.6, calculate /| and i, respectively. Explain that the

two circuits are equivalent to i and /.

ae

" R

o

Vab 3A

4Q

Fig. P2.4 Fig. P2.5
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(a)

Fig. P2.6

(b)

P2.7 All the resistances in Fig. P2.7 are of 8 . Calculate the equivalent resistance R, .

P2.8 Find the equivalent resistance R,, of Fig. P2.8.
For the circuit shown in Fig. P29, wherev, =24V, R =20Q, R, =30Q,

P2.9

R,=15Q, R, =100 Q, R, =25Q, R, =8 Q. Solve for the power of R,.

R

R

Ryp=> R R
R
bo —1
Fig. P2.7
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In this chapter, we will introduce a number of circuit analysis methods which are common
practice. We will focus on the circuit analysis skills, which is of great importance to this course and

to solving circuit problems.

Node Voltage Method

e

If we use the voltage across a branch as the variable to analyze a circuit, the branch currents
can be calculated as the corresponding branch voltages are obtained.

As defined in Chapter 1, voltage between two nodes of a circuit is the energy transferred per
unit of charge that flows from one node to the other. If the energy carried by per unit of charge at a
node is defined as potential, the branch voltage is the difference of the potentials between the two
nodes of the branch. Therefore, the branch voltages and branch currents of the branch can be
calculated from node potentials, which are the basic variables used in circuit analysis. This is why
sometimes node voltage method is also referred to as node potential method.

3.1.1 Definition of node voltage

Select a node from the circuit as the reference node, whose potential is zero. In a circuit
diagram, the reference node is labeled by the symbol of =. Therefore, the potentials of the rest
nodes are the voltages between the nodes and the reference node, respectively. As the reference node
has zero potential, the potentials of the rest nodes are defined as node voltages. The reference
polarity of a node voltage is positive at this node and negative at the reference node.

We must pay attention that we can only use node voltage when the reference node is
determined. Therefore, the first step of the node voltage method is to select a proper reference node.

3.1.2 Node voltage equations

We use the circuit shown in Fig. 3.1(a) to illustrate how to set up node voltage equations. In
this circuit there are three nodes. We select the bottom one as the reference node, and consequently,
the two top ones are the independent nodes (non-reference nodes), denoted by node a and node b.
For each independent node, we can write the following KCL equations.

For node a =1 +1

For node b b =1, +is

Denote the potentials at nodes a and b by u, and u;,, respectively. According to KVL and Ohm’s
law, each branch current can be calculated from

. vV, —Uu
l=| a

L, = =
1 R s "2 R, s 3 R; s 4 R4 s 5 RS

1 2

Vv, —U, __ua—ub ; _ub ,:ub+v5

Substitute the above currents into the KCL equations of nodes A and B, respectively, we have

Yo M MUy M Yy .

RI R2 R3 RI R2 ( ' )
u, —u, U, Uy Vs

bt = S (3.2)
R, R, R R

From the above derivation it can be seen that node voltage equations are KCL equations

expressed by node voltages. Therefore, the node voltage method is rooted from KCL.
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Examine the above node voltage equations we can find that if all the voltage sources (the
voltage source connected in series with a resistor) are substituted by current sources, as shown in Fig.
3.1(b), node voltage equations have the following format: the left hand side of the equation is the
sum of the currents of resistor branches leaving the node, while the right hand side of the equation is

the sum of the currents of current sources entering the node. That is

DINEE D I A (3.3)

leaving the node entering the node

3.1.3 Another version of node voltage equations
We can further sort (3.1) and (3.2) by combining the coefficients of each node voltage.

v, oV

1 )
For node a — b —t— |, +| —— |y, =L+
R R, R R, R R,

1 1 1 1 Vs
For node b — U, +| —+—+— |y, =——
R, R, R, R, R.

On the left hand side of the equation of node a, the coefficient of u, is the sum of the

"

conductances of the individual resistor branches connected to node a. This is called the self-
conductance of node a, denoted by G,,.The coefficient of ug is the negative value of the sum of the
conductances corresponding to the resistor branches connected between node a and node b. The
conductance between these nodes is defined as the mutual conductance between node a and node b
and denoted by G,,.If no resistor branch is connected between node a and node b, the mutual
conductance is zero. Apparently, we have G,,=Gy,.

The right hand side of the equation corresponding to node a is a constant, which equals the sum
of the source currents entering node a and is denoted by iss. If no current source is connected to
node a, we have iy, =0.

The node voltage equation for node b bears the same structure. Therefore, from observing the
configuration of the circuit, we can formulate the node voltage equations by applying the principles
stated above, without the need to derive the equations from KCL, KVL and Ohm’s law. The generic
form of a node voltage equation is

G,u, +ZG,(}111 =i, (3.4)

j2k

It should be noted that when applying the node voltage method, the sources in the circuit
should be current sources, and the voltage sources (in connection with a resistor) should be
converted to the equivalent current sources, as shown in Fig. 3.1(b).

Example 3.1: Consider the circuit shown in Fig. 3.2, in which node d is set as the
reference node. List the node voltage equations for the rest nodes.

Solution:

The circuit has three independent nodes, a, b, and c. We can list their node voltage equations

directly from the circuit as follows
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1 1 1 1 | v, v,
For node a: e |, — e, — it = =L,
R, R, R, A R, R R,
For node b: “L“a +[L+L+L]uh—Luc _Ya
Ry R, R, R 4 3
For node ¢: A uu_.l_uh_’_ L+L+L u(:‘)SZ_{__vsi
R3 R4 R’ R4 Rq R: Rg

Example 3.2: List the node voltage equations for circuit shown in Fig. 3.3
Solution:
Select the bottom node as the reference node. For the four independent nodes 1~4, we can

write the following node voltage equations based on the configuration of the circuit.

For node 1: (1+0.1+0.Du, —u, —0.1u, =1

For node 2: —u, +(1+1+0.5)u, —0.5u, =-0.5

For node 3: —0.5u, + (0.5+0.5+0.25)u, — 0.25u, = 0.5
For node 4: —0.1u, —=0.25u, + (0.1+0.25+0.25)u, =0

Suppose a circuit contains only two nodes and all the branches are connected between them, as
shown in Fig. 3.4. In this case,the voltage of node A can be solved by using the node voltage
equation

Vv

sl

V

s2 v\'{ .

. s e et 1 A

2ia _R R R 35)
1 1 1 '

7+_i+_1,_
R R R, R

u =
a
G

aa

In circuit theory, the above formula is called the Meermann theorem.

1
@ Exercise 3.1: Why A does not appear in the denominator of (3.5)?
4

312 Mesh Current Method

Bear in mind that circuit analysis aims to find out voltages and currents of interest. Mesh
current method is a useful way to solve for currents. The method first assumes there are currents
flowing through the meshes, which are called mesh currents. Next, a number of equations involving
mesh currents are listed according to KVL. Finally, after the mesh currents are calculated, branch
currents are solved according to KCL. The mesh current method is considered as the most
straight-forward way of solving complex planar circuits. We take the circuit shown in Fig. 3.5 as an
example to illustrate how to apply the mesh current method.
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Fig. 3.5 An illustration of applying the mesh current method Fig. 3.6  Circuit diagram for Example 3.3

(2) M4 KVL 51 i M fL i 7 X

Rilml +R21m1 —R2ln12 = vsl - st

Rji, +Ri, — Ry, =v,
(3) RNHEESH, BRI B RE, S MFLH R
i, =6A
i,=4A
(4) 5 KCL 5% 32 4% s
=i =6A
=i,=4A
i, =i, —i =-2A
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(1) Assign the mesh currents and their reference directions;

(2) For each mesh, list the KVL equations that involve mesh currents:
For mesh 1 (a-b-d-a): Rl + Ryl + Ryl = Ryliy = Ryl = —vy =V

ml s
For mesh 2 (a-c-b-a):  Ryi, + R, + R , — R, ,—Ri =V,
For mesh 3 (b-c-d-b): Ryi,; + Ryi, s + Ryi s — Ryi, — Rii, = vy — Vs
(3) Solve for the above equation system to obtain the mesh currents;
(4) Calculate the branch currents based on KCL;

i =—i

5L =1,

L =1y =1y

(5) Double check the results, often by applying the law of conservation of energy (the total
power supplied equals to the total power absorbed).

Example 3.3: For the circuit shown in Fig. 3.6, where R =7Q, R, =11Q, R =7Q,
v, =70V, and v, =6V, solve for currents i, i, i3.

Solution:

(1) Assign the mesh currents and their reference directions as labeled in Fig. 3.6;

(2) For each mesh, list the corresponding KVL equations

Ri  +R,i  —Rji

1"m1 2 ml 2"m2

= vsl _VSZ
Ry, +Ri ,—Rji =V,

2"m2 m2

(3) Substitute the parameters of the resistances and the voltage sources into the above equations

and solve them simultaneously to obtain the mesh currents
i, =6A
i,=4A
(4) Solve for the branch currents by applying KCL
=i =6A
L=i,=4A
iy =iy~ iy ==2 A

(5) Check if the results are correct by applying the law of conservation of energy. The algebraic

sum of the powers is
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Fig. 3.7 An illustration to the superposition principle

(513.41 xtnl& 3.8 (a) Prosriith, NHISINRBKHEE ve
f# 12V IR, 3 A HIRIEITEE, anlEl 3.8 (b) FrosHils, St 3 Q diffl b
fHL A

v'i=— 3 x12=-4V
3+6
3 A AR ERIS, 12V BRI, P 3.8 (o) Fraseiik, L3 Q dpH FrH sy
r=3x %3 =6V
3+6
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Ril +Ri; + Rji; —iv, —i,v, =7x6" +11x (=2 +Tx4* —6x 70— (-2 x6=0

)
sl

which suffices the law of conservation of energy.

Superposition Principle

Superposition principle is applicable to linear circuits, which are composed of independent

sources, linear dependent sources, and linear resistors.

Suppose in a circuit there are two or more independent sources. The voltages and currents
appear in response to the combined function of the independent sources. If it is a linear circuit, the
voltages and currents further have a linear relationship (the additive property and homogeneity). In
this case, a circuit driven by a number of sources can be decomposed into a number of circuits

driven by a single source, respectively. This is the superposition principle.

For a linear circuit that contains more than one independent source, in order to solve for a
current or voltage, we can calculate the sum of the currents or voltages in response to each of
the independent sources acting individually. (If one of the independent sources acts individually,
all the other independent sources are zeroed; voltage sources are replaced by short circuits and
current sources become open circuits.) The algebraic sum of the currents or voltages driven by
each of the independent sources acting individually is the current or voltage driven by the
independent sources acting jointly.

By applying the superposition principle, we can decompose a complex circuit into a number of
simple circuits, as illustrated in Fig. 3.7, and then add up the responses of the simple circuits to

obtain the currents or voltages of the original circuit.
=i+ L=bt#i" L=l i

Example 3.4: Use the superposition principle to solve for voltage v in the circuit shown in Fig.
3.8(a).

Solution:

First we analyze the circuit excited by the voltage source only. The current source is
replaced by an open circuit, as shown in Fig. 3.8(b). In this case, the voltage across the 3 Q

resistance is

V= 2 x12=—4V
3+6

Then we consider the circuit with only the current source activated. The voltage source
becomes a short circuit, as shown in Fig. 3.8(c). Hence, the voltage across the 3 Q resistance
is ’
6x3
3+6

6V
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v=y'+v"=2V

|
80 hon "Qi ]
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& 3.8 3.4 mrisE
(a) JRrlig: (o) DURIRHAEN: (o DUt fER]
Fig. 3.8  Circuit diagram for Example 3.4

(a) Original circuit; (b) Voltage source acts alone; (¢) Current source acts alone

ISP 0 5 0 ) A

1) S LT T SRR B 1 LS LA

2) B SR B EE, A ORI SRS R,

3) MM BRI ATI, AR B S HFERO BT Wl A
EO A G BH TR

4) NS HBRAE R R, 1 T MBI U SRR 06 R KR
FRAALYXR, B, B R A TR skt i 50, R as EADR S

S) 32 FH A IS BSR ARt T LU ALK, R/ B A T R A A
U1 3.9 5%, 407 L 43 L P U 15 LR P 4L

1

Ry
i

=
1
| I |

1§ 3.9 &l o sy i g o 4
Fig. 3.9 Independent sources can be grouped when applying superposition principle

SE B s R AR A A BER, AT P 3.10 Bt
Ao TEE | TR AT R R YEE A 3.10 (a) L
WEH Ry AZMEARESL, RUERARGR R, 25—

ta) e T SRR 3.10 (b) AL Ry N
B 3.10 sz HL AR Y 7 RKHIEEARE B, BUEEAR A AR . B AR e TR YRR
(a) SEFFHEJFRFAL, (b)) SEhriAiysF Ay FHAE H S YRLAE S B R A A AE T

Fig. 3.10  Actual Source Model
(a) Current source; (b) Voltage source
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Thus, the total voltage v of in Fig. 3.8(a) is

v=v'+y"=2V

Some notes on applying the superposition principle:

1. Superposition principle can only be used to solve for currents or voltages of linear
circuits.

2. The circuit is decomposed according to the independent sources, and the rest elements
(including controlled sources) and the configuration of the circuit remain unchanged.

3. When analyzing the decomposed circuits, the reference directions of branch currents and
the reference polarities of voltages in these circuits should be the same, so that the currents and
voltages have unified reference directions and polarities when summed up to obtain their total
responses.

4. Superposition principle is based on the linear property of a circuit, therefore it can only be
applied to solve for currents and voltages. As power is the quadratic function of current or voltage,
superposition principle cannot be applied directly to calculate power.

5. The sources can be decomposed into groups when applying superposition principle and a
group may contain more than one source. An illustration is shown in Fig. 3.9, where independent

sources are grouped into voltage sources and current sources.
3.4 Source Transformations

Unlike ideal sources, practical sources have internal resistance. Their circuit models are
shown in Fig. 3.10. The ideal voltage source we introduced in Chapter 1 has zero internal
resistance, i.e. R,;=0 in Fig. 3.10(a); the ideal current source we introduced in Chapter 1 has
zero infinite resistance, i.e. R,;=<in Fig.3.10 (b). It is well known that, ideal sources do not

exist in practice.

=

Cieory Siman Ohm (16 March 1789 - 6 7ufy 1854) is & German
ﬁ@m:m‘ and mathematician. Zs a school teacher, Ohm @an his research
with the new electrochemical cell, invented by Jtalian scienfist Alessandro
Volta. Using equipment of his own creation, Ohm found that there is a direct
frroportionality between the potential difference (voltage) applied across a
conductor and the resultant electric current. This relationship is known as
Ohm's law
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Fig. 3.11  Circuit diagrams for Example 3.5
(a) Original circuit; (b) Source transformation
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3.12 (b) FiuR. FEFHBER IR A IF, HIBH RyFD Ry FFERSERL, HLEE 3.12 (b) ARl &
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If a voltage source and a current source have identical behavior on an external circuit, i.e. they
provide the same voltage v and the same current / to the external circuits, they are considered as
equivalent. This is called source transformation.

The external behavior of circuit shown in Fig. 3.10(a) is

v=v —R i (3.6)

ol

The external behavior of circuit shown in Fig. 3.10(b) is
P 4

i=i ——— or v=R

2

nlis - Ro?.i (37)

In order to make sure their external behavior is identical, we have
R,=R,=R, (3.8)
v, =R i (3.9)

Under this condition, the two sources are equivalent. The voltage source can be transformed
into a current source, and vice versa, and their behavior to external circuits is the same.

Example 3.5: The circuit is given in Fig. 3.11(a), where R)=3 Q, R,=2 Q, R:=12 Q, i&=4 A,
vs=6 V. Solve for vy,

Solution:

As resistance R, is connected in parallel to the ideal voltage source vy, it does not influence the
external behavior of v,. Therefore, R| can be removed for the calculation of v,,. According to source
transformation principles, the practical current source (is is connected in parallel to R3;) can be
transformed to a practical voltage source (Rsig is connected in series with Rs3), as shown in Fig.
3.11(b). According to KVL, we have

-V, +(R, +R)i+Ryi, =0
Solve for i and we get i= —3A. Applying Ohm’s law to R, we have
v, =Ri=—6V

Example 3.6: For the circuit shown in Fig. 3.12(a), where R, =4Q, R, =2Q, R, =4Q,
R,=3Q, R=5Q,i,=4A,i,=3A,v, =8V find current .

Solution:

As resistor R, is connected in series with the ideal current source iy, it does not influence
the external behavior of i5;. Therefore, R, can be removed from the circuit, as shown in Fig.
3.12(b). According to source transformation principles, the practical voltage source (vs connected

; ; ; . v, ; :
in series with R;) can be transformed to a practical current source (—- connected inparallel with
1

R)), as shown in Fig. 3.12(b). Combining the parallel connected current sources and resistors,
respectively, the equivalent circuit is given in Fig. 3.12(c). Next, we transform the current
sources to voltage sources correspondingly and obtain the equivalent circuit as shown in Fig.

3.12(d), where the voltage of voltage source v can be calculated from

v=(%—+i§1)(kl//R3)=12V
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Fig. 3.12  Circuit diagram for Example 3.6
(a) Original circuit; (b) Voltage source v transformed to a current source; (¢) Combination of parallel connected current

sources and resistors; (d) Current sources transformed to voltage sources
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According to KVL and Ohm’s law, we have
—V+i (R /I R)+ iR, +i,R, +isR, =0
Solve the above equation we get i; =0.3 A .
7@ Exercise 3.2: When applying source transformations, how should we determine the direction
of the current source and the polarity of the voltage source?

7 Exercise 3.3: Can an ideal voltage source be transformed to an ideal current source?
3.5 Thévenin Equivalent Circuit

Any two-terminal linear network that includes sources and resistors, as shown in Fig. 3.13(a),
can be replaced by the series combination of an ideal voltage source whose voltage is v,. and an
internal resistor whose resistance is Ry. As shown in Fig. 3.13(b), the two two-terminal networks are
identical to the external circuit. This is the so-called Thévenin equivalent circuit. The voltage of the
ideal voltage source, v, 1s the open source voltage of the original active two-terminal network,
which is the voltage across node a and node b when the load is removed from the circuit, as shown
in Fig. 3.13(c). The value of the internal resistance, Ry, is the equivalent resistance between node a
and node b when all the independent sources in the active two-terminal network are zeroed (ideal
voltage sources are replaced by short circuits and ideal current sources are replaced by open circuits),
as shown in Fig. 3.13(d). This resistance is also called Thévenin resistance.

Example 3.7: Find the value of is when Rs=10 Q for the circuit shown in Fig. 3.14(a), where
Ri=20 Q, Ry=30 Q, R3=30 Q, R4=20 Q, v=10 V.

Solution:

We analyze this circuit using Thévenin equivalent. Resistor Rsis considered as the load and the
rest of the original circuit is considered as the active two-terminal network. First, we need to
determine the value of Thévenin voltage. As shown in Fig. 3.14(b), the open circuit voltage of the

active two-terminal network, v,., can be calculated from

R, R,

=2V
R, +R,

v

v(YC v -
R +R,

Léon Charles Thévenin (50 March 1857 - 21 September 1926 was
a French {e@mpﬁ engineer who extended Ohm's law to the am@:ﬁ af
cam/)ﬂgx electrical circuits. On the basis of Kirchhoff's lmws and Ohm’s law, he
/m;/)arm' the Thévenin eqw‘vaénf formula, which mad it /)a:riﬁ e to caleulate
currents in more com/)/e,\' electrical circuits and a/fowiry /Jco/z/e to reduce
camf)éx circuits info :im/:ér civeuits called Thévenin's eqw'vaénf cireuits.
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Fig. 3.14  Circuit diagram for Example 3.7

(a) Original circuit; (b) Open circuit voltage v,.; (c) Thévenin resistance Ry; (d) Thévenin equivalent circuit
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To find out the internal resistance of Thévenin equivalent circuit, we replace the
voltage source v by a short circuit, as shown in Fig. 3.14(c). The equivalent resistance

between node a and node b is
Ry=R //R,+R,//R,=24Q

Replacing the original active two-terminal network by the Thévenin equivalent
circuit, we obtain the circuit shown in Fig. 3.14(d). From this circuit we can easily find
out is

=Y 2 _0059A
" Ry+R, 24+10

Example 3.8: For the circuit shown in Fig. 3.15(a), when switch S opens, the
reading of the voltmeter is 18 V; when switch S is closed, the reading of the ammeter is
1.8 A. Find the Thévenin equivalent circuit of the active two-terminal network.

Solution:

If we neglect the internal resistance of the voltmeter (the internal resistance of the
voltmeter is infinite), the reading of the voltmeter when the switch is open is taken as the
open circuit voltage of the active two-terminal network, v,.=18 V.

Similarly, we can neglect the internal resistance of the ammeter (the internal
resistance of the ammeter is 0). When the switch is closed, the equivalent circuit is
given in Fig. 3.15(b), where Ry is the internal resistance of the equivalent circuit of the

active two-terminal network. According to KVL, we have

~18+1.8R, +9x1.8=0

Q!
B\

More facts about ammeters and voltmeters

An ammeter is an instrument used to measure the current in a circuit. In a circuit diagram,
an ammeter is represented by a letter A in a circle. An ammeter is designed based on the fact
that a current passing through a coil placed in the magnetic field of a permanent magnet causes
the coil to move. The movement of the coil causes deflection of the pointer, which is linearly
proportional to the current.

A voltmeter is an instrument used for measuring the voltage between two points in a
circuit. The circuit diagram of a voltmeter is a letter V in a circle. The principle of designing a
voltmeter is the same as that of an ammeter, where the deflection of the coil is proportional to
the current, which in turn is proportional to the applied voltage. In order to disturb the circuit as
little as possible, the instrument should draw a minimum of current to operate. This is achieved

by connecting a sensitive ammeter in series with a high resistance.
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(a) Original circuit; (b) Thévenin equivalent circuit
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Solve the above equation, we get Ry=1 Q, which is the Thévenin resistance.
36 Norton Equivalent Circuit

Thévenin equivalent circuit states that any active two-terminal linear network can be
replaced by a practical voltage source model. Norton equivalent circuit, on the other hand,
indicates that any active two-terminal linear network can be replaced by a practical current source
model.

Any active two-terminal linear network, as shown in Fig. 3.16(a), can be replaced by the parallel
combination of an ideal current source i and internal resistor R, as shown in Fig. 3.16(b). The value of
the ideal current source equals to the short circuit current of the active two-terminal network, as shown
in Fig. 3.16(c). The internal resistance of the equivalent current source equals to the equivalent
resistance between node a and node b, when all the independent sources of the active two-terminal
network are zeroed (ideal voltage sources are replaced by short circuits and ideal current sources are
replaced by open circuits), as shown in Fig. 3.16(d).

According to source transformations, the Thévenin equivalent circuit of an active linear
two-terminal network is equivalent to its Norton equivalent circuit. Therefore, as long as we can solve for
two of the three variables—open circuit voltage v, short circuit current iy, and internal resistance R, the

a0 Vo
remaining value can be calculated from R =—=

sc

. Afterwards, Thévenin equivalent circuit is built by the

series connection of a voltage source of v, and a resistor of Ry, and Norton equivalent circuit is the
parallel connection of a current source of iy, and a resistor of Ry.

Example 3.9: Consider the circuit shown in Fig. 3.17(a), where R, =4Q, R, =2Q ,R, =10 Q,
v, =12V ,v, =24V Find the current / of resistor R, by applying Norton equivalent circuit.

Solution:

We can use Norton equivalent circuit, which is an ideal current source connected in parallel to

an internal resistor, to replace the two-terminal network between node a and node b.

t FEdward. £aw':y Norton (28 714@ 1898 - 28 9anum:y 1983) was an
accnm/aﬁ:ﬁe/ Bell Lahoratories engineer and scientist famous for /ev/a/apiry
the concept of the Norfon cquivaﬂenl circuit. ?rimarf@ Norton was
interested in a communications circuit lﬁeor_y and the transmission of data at
ﬁyﬁ ;/mé over fe/c/:ﬁane fines, et he is hest r bered for develo fprment
of the dual of Thévenin's equivalen civcuit, currently referred to as Norfon's

equiva/en{ circuit. In 1926, he pra/)me/ the equiv/a/enf cireuit using a current

source and /mra//e/ resistor to - assist in the aé:yn of recomﬁ»y

instrumentation that was prfmar@ current driven,
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(a) Original circuit; (b) Short circuit current i.; (c) Source transformation; (d) Parallel resistors and source trans formation;
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First, find out the current of the equivalent current source iy. This is achieved by connecting
node a and node b by a short circuit and solve for the short circuit current iy, as shown in Fig.
3.17(b). It should be noted that in this circuit, although ideal voltage source v, and resistor R, are
connected in parallel, R, cannot be removed for circuit analysis, as we did in Example 3.5. In this
case, R, is actually part of the internal circuit.

Based on source transformation, the practical voltage source in Fig. 3.17(b) (v» and R; connected
Vv,
in series) can be transformed to a practical current source (F” and R3 connected in parallel), as shown
3

in Fig. 3.17(c). As R, and R; are connected in parallel, the circuit can be further simplified to the one
shown in Fig. 3.17(d), from which the short circuit current can be calculated

v,+%(R2//R_,) b
g, =— 1 _GAR
‘ R, /IR 1.67

Next, all the independent sources in the active two-terminal network are zeroed, so we have a
network shown in Fig. 3.17(e), from which the internal resistance can be calculated

2x10
=R,//R, =
Ro =Ry IR, 2+10

=1.67Q

Finally, replace the two-terminal network in the original circuit by its Norton equivalent circuit,
as shown in Fig. 3.17(f). From this circuit, it is easy for us to solve for current /

R, . ___ 167
R+R,*  4+167

j=—

x9.58=-2.82 A

/" Discussion: Equivalent circuit of a circuit with dependent sources
The output of a dependent source is controlled by some other current or voltage. Therefore, for
the analysis of a linear circuit with dependent sources, we cannot zero them as we did for
independent sources. Here are some principles to follow:
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Y

1. When performing equivalent transformations for a circuit with dependent sources, the
control variables should always appear in the circuit. Otherwise, there will be a dependent source
without a control variable, which makes it impossible to solve the circuit.

2. For the analysis of a two-terminal network with dependent sources.

(1) A dependent source only behaves as source when it is controlled by a voltage or current
driven by independent sources. Therefore, if no independent source exists in the two-terminal
network, the open circuit voltage must be 0.

(2) To find out the equivalent resistance of the two-terminal network, the independent sources
should be zeroed, while the dependent sources are unchanged. Due to the existence of the dependent
sources, we cannot calculate the equivalent resistance through series and parallel combinations.

We present some examples to illustrate the Thévenin and Norton equivalents of a circuit with
dependent sources.

Example 3.10: For the circuit shown in Fig. 3.18(a), where R =3Q and R,=1 Q. Solve
fori, wheniy, =2 A.

Solution:

After source transformation, the equivalent circuit is given in Fig. 3.18(b). As the dependent current
source is controlled by 7;, we should not combine the two resistors connected in parallel. Based on the
principle that parallel connected resistors share the same voltage and Ohm’s law, we can solve for i

o 35d g
R, 1
According to KCL, we can find out i
=i~ 200 9 6-1=7A

Example 3.11: For the circuit shown in Fig. 3.19(a), where R, =6Q, R, =1Q, R, =4Q,
R, =2Q, v, =9V . Solve for i; using Thévenin equivalent.

Solution:

We use the Thévenin equivalent circuit to replace the original circuit excluding branch 7;, which
is a two-terminal network.

First, we use an open circuit to replace branch i, as shown in Fig. 3.19(b), and find out the
open circuit voltage v,.. As the two-terminal network does not contain independent sources, the open
circuit voltage is zero. In fact, in this network as 7;=0, the current of the dependent current source is

also zero. Therefore, v,.=0.
Next, we find out the Thévenin resistance. We apply an independent current source i, between
node a and node b, as shown in Fig. 3.19(c), list the equation system involving v, and i,, and

. . » V.
calculate the Thévenin resistance R, = —. Note that we need not and cannot find out the values of

X

v, and i,. According to KCL and Ohm’s law, we can list the following equations
iy, =i +i,
i,=0.5i +i,
v, =R,i,

—v.=R,i, + R;i,
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(a) Original circuit; (b) Open circuit voltage v,.; (¢) Thévenin resistance Ry; (d) Thévenin equivalent circuit of the original circuit
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Solving the above equations simultaneously, we get R; =410, Therefore, the Thévenin

X

equivalent circuit of the original two-terminal network is a resistor whose resistance is 1 Q.
Substitute the original two-terminal network by its Thévenin equivalent, we obtain the circuit, as
shown in Fig. 3.19(d), from which i, can be calculated

TR T YT
R + R, 6+1

Example 3.12: For the circuit shown in Fig. 3.20 (a), where R, =6Q R, =4Q, v =20V,
i, =10 A . Solve for i; and v.

Solution:

First, we replace branch i, by an open circuit, as shown in Fig. 3.20(b), and solve for the open

circuit voltage v,.. According to KVL and KCL, we can list the following equations

{—vs +Ri, +v,=0

llz—ls

Solving the above equations simultaneously, we get v, =80 V.
Next, we short nodes a and b, as shown in Fig. 3.20(c), to solve for the short circuit current i.
According to KCL and Ohm’s law, we have
20 40

i, =i +i, =%+is=?+10=?A
1

— . % -
Consequently, the Thévenin resistance can be calculated as R, =—=-=6Q .The original two-
lQC
terminal network is equivalent to an 80V voltage source connected in series with a6 Q resistor.
Substituting the Thévenin equivalent circuit into the original circuit, as shown in Fig. 3.20(d),

we can solve for current i,

v 80

oc

i_,= =—=
© Ry+R, 6+4

8A

Applying KVL, KCL and Ohm’s law on the original circuit, we have the following equations
104, +v—R,i, =0
i ti=i

Solving the above equations simultaneously, we can find out the voltage across the current

source

v=52V
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(a) Original circuit; (b) Open circuit voltage vi.; (¢) Short circuit current iy; (d) Thévenin equivalent circuit of the original circuit
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o Problems

P3.1 For the circuit shown in Fig. P3.1, list the node voltage equations for nodes 1, 2 and 3,
respectively.

P3.2 Circuit diagram is given in Fig. P3.2. Use node voltage method to solve for the voltage
V| across resistance R;.

050 I
| e
—
| o 130
— —1+—
A 050 é{]m 10 [] 1A
=
Fig. P3.1

Fig. P3.2

P3.3 For the circuit shown in Fig. P3.3, list the mesh current equations to solve for
current is.

P3.4 For the circuit shown in Fig. P3.4, list the mesh current equations to solve for
current i.

P3.5 Circuit diagram is shown in Fig. P3.5, where v,=4V i =4 A i,=2 A, R =R, =4Q,
R, =R, =2 Q. Use the superposition principle to solve for iy and i.

R, R,

Fig. P3.3

Fig. P3.4

P3.6 Find out the current / in Fig. P3.6 using source transformations.

P3.7 Find out the current 7 in Fig. P3.7 using Thévenin equivalent.

20 _I’
3V 4V 3
20, B 30
1 [ —1 ()
N\ / 1Q 40
1 4+
N 30 20 i () 10V
ovC) OQ[] + [] 6Q o el
- 24 10v 20 20
Fig. P3.6 Fig. P3.7
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P3.8 For the circuit shown in Fig. P3.8, use Thévenin equivalent circuit to solve for the current

when R =1.2Qand R =5.2Q, respectively.

P3.9 For the circuit shown in Fig. P3.9, use Thévenin equivalent circuit to solve for the power
consumed by the load resistance R .

P3.10 For the circuit shown in Fig. P3.10, use Norton equivalent circuit to solve for the

voltage v across the 1 A current source.
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In previous chapters, we only considered three types of circuit elements—conductors, sources and
resistors. In this chapter, we will study two additional circuit elements—capacitors and inductors.
Unlike resistors that consume energy, capacitors and inductors are energy-storage elements; they store
energy and feed it back to the circuit at a later time. Because of these two elements, the sudden
removal or application of DC sources (or the sudden application of a signal, usually caused by
switching) results in the time-varying voltages and currents. Such a phenomenon is called transient.
Correspondingly, steady state refers to the state when there is no change occuring in the circuit
structure or element parameters. Transient can be described as the transformation of a circuit from
one steady state to another steady state. In this chapter the circuits we will discuss involve both
capacitors and inductors. A circuit may work in transient or steady state,yet the principles of circuit
analysis remain the same, and all the methods and principles we learnt in the previous chapters can

be applied in the same manner.
4,.i Capacitance and Inductance

4.1.1 Capacitance

A capacitor is an ideal circuit element, which represents the ability to store energy in the form
of electrical charge. A practical capacitor may take various forms, among which a simple and
common form is that of a parallel-plate capacitor. It is composed of two sheets of conductor, which
is usually metallic, separated by a thin layer of insulating material. The insulating material is called
dielectric and can be comprised of air, Mylar, mica, electrolyte, or a variety of non-conduct-ing
materials. Suppose the current is flowing downwards to the upper plate, as shown in Fig. 4.1. What
actually happens is electrons flow upward and accumulate on the lower plate, resulting in the lower
plate accumulating a negative charge. Therefore, an electric field is produced in the dielectric.

The charge stored by a capacitor is proportional to the voltage between the plates

qg=Cv (4.1)
where C denotes the capacitance, whose unit is farads (F). A farad is a very large amount of
capacitance. In most cases the capacitances we use have values ranging from picofarads (1 pF=10""* F)
to millifarads (1 mF=10"" F).

The circuit symbol for capacitor is shown in Fig. 4.2, where the voltage and the current are of
passive reference configuration. Since current is defined as the rate of flow of charge per unit time , we have
. d
Substituting (4.1) into (4.2) and noting that capacitance C is not a function of time, the

(4.2)

relationship between current and voltage becomes

dv
dr
Equation (4.3) shows that as the voltage increases, a positive current flows into the positive polarity

. d a
i= d[(Cv)—C (4.3)

of the capacitor; if the voltage remains constant, the current is zero and the capacitance acts as an open
circuit; when the voltage decreases, a negative current will flow into the capacitor.
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W)=+ mmw—q”

2C

4.11)

4.1.2 HBAEMBEFFEK
R 2RI R KB T A N I A R 2 v LB L F] KCL F1 KVL 57580, DL ARk
T, il 4.3 B, =AY FUA P i ) H AR R, U EE FLAE 0 S A
dv dv . dv

| =C,— C— = (4.12
=ty dr & dt :

. Tl
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B 43 =AERAFREILEH R

Fig. 4.3 Three capacitors connected in parallel and the equivalent capacitance
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If the reference polarity of voltage and the reference direction of current are against the passive
reference configuration, the relationship between current and voltage becomes
dv (4.4)
i=-C—
Now that we know how to determine the current given the voltage, next we discuss how to
express voltage in terms of current. First we compute the charge, which is the integration of the

current over a period of time
g(t)= [ i()de +q(1,) (4.5)

The initial charge ¢(7,) at some initial time 7, is known. Substituting the above equation into
(4.1) gives

W(t) = — j i(r)dt + "(C’ ) (4.6)

!
where 9() is the initial voltage across the capacitor. Denoted by v(7,), (4.6) becomes

o
W= j i(1)d + (1) (4.7)

Apparently, the voltage of the capacitor is not only determined by the current from time ¢, to
time 7, but it also depends on the initial voltage.

Under the passive reference configuration, the power absorbed by a capacitor is
d
p(t) = v(D)i(t) = Cvd—‘; (4.8)

Therefore, the the amount of energy delivered to the capacitor from time ¢, to time 7 is

W)= [/ plodi = _[Cv—dt C|[ vt

(4.9)
= Ecvl (1) -ECvz(tn)
If initially we have v(7,) =0, the above equation becomes
w(t) =%Cv2(t) (4.10)
Taking the relationship between the voltage and the stored charge, we have
w(t) = v(t)q(l) = ﬂ (4.11)

2C
4.1.2 Capacitors in series and parallel
The equivalent capacitance of capacitors connected in series or parallel can be calculated by
applying KCL and KVL. Measuring the capacitance of a system in parallel for example. As shown
in Fig. 4.3, the voltage across each capacitor is the same, and their corresponding currents can be

obtained from
dv = C 2 . dv

A 'dr i, = 2 4r lS:C}E (4.12)
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i=§+5 + (4.13)
B (4.12) PR =AEBREMCARX (4.13), 0
i=C,$+C,ﬂ+C}ﬂ+(C,+C1+C1)2 (4.14)
dt dr e T
H—I7, FHR AR EZMERN Ceoqr MR E X

dv
i=C. — (4.15)

“ dt

X (4.14) 53U (4.15), a4
Cu=C+GC +C,

BRI A S5 2 L A S T A 2 A
% TR R 100 A5 200 H A ] LI I AR A 7 A HE S ok DAL 4.4 s () = AN U sR e R 91
HAF R

(4.16)

c. - I

1T 1/C +1/C, +1/C,
LT B JEK v 1) S5 R0 H A A % PR R B R PR B ) AL P ) R IR I 5 BEL L AT e
WA AT EIR A K. SROFEH RS ROR AR A S B A AR R, KR IR A A S A0 R
ATk S I AR [A] o

1 1
c——>|| —

(4.17)

v no= = v Cogm

. PP S
' 2 OOV
- vt
| ]
e 11
3

a4 = PDEFRRKEILEHUHE

Fig. 44 Three capacitors connected in series and the equivalent capacitance
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L ol gy B SRR L, W 45 B, RN

o LEROLEME, A RS, A i

QIR R AT, LT HRAB AL, LR 4y

BRI XTI, R S AR L.

Mas s ARTEAE IR I U 4.6 R, T AUE 5 it
Fig. 45 Atypicalinductor B g, WHUBRHHUE 5 X

di
v(t)=La (4.18)

HA LB R AL L Dz SRR, B 58 (IR, HD. Ukt RUICIE RIE R
SHTiIA, HXARN

wity =g (4.19)
dr
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Applying KCL at the top node of the circuit, we have

=i +i, +i, (4.13)
Substituting the expressions in (4.12) into (4.13), we get
i:C,&JrCﬂﬂJrC}ﬂ:(C,+C,+C3)ﬂ (4.14)
dr S dr dr ) dr

On the other hand, denoting the equivalent capacitance by C., we have the following

expression by definition

dv
i=C,— 4.15
“dr @15
Comparing (4.14) and (4.15), the following equation can be obtained
ch :Cl +C2 +C} (4]6)

That is to say, the equivalent capacitance of parallel-connected capactiors is the sum of the
individual capacitances.

We can apply the same procedure to calculate the equivalent capacitance of capactiors
connected in series. Take the case shown in Fig. 4.4 for example, where three capacitors are
combined in series. The equivalent capacitance is

C = 1
1/C +1/C, +1/C,

That is to say, the equivalent capacitance of series-connected capacitors is the reciprocal of the

(4.17)

sum of the reciprocals of the individual capacitances. Apparently, the rules for series/parallel
combinations of capacitances are the opposite to that for resistances. We leave it to the readers to
derive this equation. To calculate the equivalent capacitance of series/parallel-conncted capacitors,
we follow the same strategy as we calculate the equivalent resistance of parallel/series-connected
resiators.

4.1.3 Inductance

Inductors are manufactured by coiling a wire around some type of material, usually air or iron,
as shown in Fig. 4.5. Such a wire is called a winding. As a time-varying current flows through the
winding, it creates a magnetic field. If the magnetic field also changes with time, a voltage is
induced across the inductor. For an ideal inductor, the induced voltage is proportional to the rate of
the change of the current per unit time.

The circuit symbol of an inductor is given in Fig. 4.6, where the voltage and the current have

the passive reference configuration. The relationship between the voltage and the current is
di
v(t)=L— 4.18
a7 (4.18)
The constant of proportionality L is called inductance, and its unit is Henry, short for H. If the
voltage and the current are against the passive reference configuration, their relationship is
defined as

di
=-L— (4.19)
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PA_b R ik r e i R R T 1 v, T T 8 2 © RN D R B AL (o) AN LB HRL TR, SR HL K
AP X (4.18) BmskM ¢ &t IR, &

. 1 .
i) =— j w(e)de +i(t,) (4.20)
M 2o B ¢ 15 %) EL IR AL 1) i B A
' o di i
w(t) = J-{O p(t)de =I'0 Lzadt = l““)lel (4.21)
VIR AN i(0)=0, WA
Mo:%u%n (4.22)

4.1.4 MRS
SR 3 I 56 e JBR A 2 e AR 1) S8 L SR s T IBE L B S L I VAR ], B KCL A KVL.
PLIE 4.7 Fros AN HUEER IO 1), N KVL /{53

v=y +v, +v, (4.23)
R T T
o — YY"\
+ Ly +
. L,Rvw = Leg=L+LatLs
+ (1) — = M * .
i) o Y'Y Y\
== YN\ o
K46 HIETIFRIHEETTS K47 =R B R LA AR s
CHR 5 RIBOCER S 7 1) Fig. 4.7 Three inductors connected in series and
Fig. 4.6 The circuit symbol of an inductor the equivalent inductance

P -A ok RN (4.23), i T & r g s AR I|], Wl A5

di di di di di
=L —+L—+L—=(L+L,+L)—=L_— (4.24)
e PR PRl (b + 1L, 3)dt “ds
AR, HC R A R R
Lo=L+L+L, (4.25)
R 5 B L J6 PR A 0 L U Ay % HLURR 2
P 4.8 firon, F=ASIFEEHEN ) KCL, A5 H 534 &l
1
L P —1
ST UL+1UL+1/L (4.6
1
no I l" = L™ it

Bl 4.8 =AU IFIBE S H AR R

Fig. 4.8 Three inductors connected in parallel and the equivalent inductance
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We have just demonstrated how to calculate voltage from current. Next, let's consider how to
find the current when the initial current i(f)) and voltage of the inductor are given. Perform

integration for (4.18) from 7, to ¢, we have
. 1 .
i(t) = - I v(t)d +i(t,) (4.20)

The energy absorbed by the inductore from #,to 7 is

] ¢ di ‘ (O —
w(t) = j p(1)dt :j Lzalm = |, Lidi (4.21)
Suppose initially i(7))=0, we have
w(t) =%Li3(1) (4.22)

4.1.4 Inductors in series and parallel
To calculate the equivalent inductance of series/parallel combinations, we use the same strategy as
we did for determining the equivalent resistance and capacitance of a circuit, which is to apply KCL and
KVL. For the three inductors connected in series, as shown in Fig. 4.7, applying KVL gives us
V= 4v, 4y, (4.23)
Replace the voltages by the voltage-current relationship. As the current for each inductor is the

same, it results in

. di . . .
v=r Y Y ey Eo (4.24)
d “dr T dr 7 dr Ydr
Consequently, the equivalent inductance of series-connected inductors is
Lo=L+L,+L, (4.25)

That is to say, the equivalent inductance of series-connected inductors is the sum of the
individual inductances.
As shown in Fig. 4.8, applying KCL to the three inductors connected in parallel, we find the
equivalent inductance is
L,= :
/L +1/L, +1/L,

(4.26)

t Michael Faraday (22 Septermber (791 ~ 25 August 1867) was

an T.ry/i:ﬁ scientist who contributed to the fields of e/ecfmmajnehhn and
electrochemistry. He was one of the most influential scientists in history.
Faraday established the basis for the concept of the electromagnetic field
and  discovered  the [)rinci/;ﬂzr o e/eclromajneﬁc induction and
nﬁ'amajneﬁ;m and  the laws of eécfmfysﬁ His  inventions  of
electromagnetic rotary devices formed the. foundation of electric mator
tochnology, and it was largely due to his efforts that electricity hecame
fractical for use in technology, Faraday was abo a chemist.
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Fig. 4.10 Circuit diagram for Example 4.1

(a) Original circuit; (b) Equivalent circuit for the steady state

B U EHAIRANG, A TRRA, Ser e M, A JF R, Bt
HAEZ R M 4.10 (b) Frows, W Ry. Ry K, HHLEN
RR, . _6x3

=2 x9=18V
R+R, ° 6+3
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.

According to the above equation, the equivalent inductance of parallel-connected
inductors is the reciprocal of the sum of the reciprocals of the individual inductances.
Apparently, the series/parallel combination rules for determining inductances are the same as
those for resistances.

' Discussion: Practical capacitors and inductors

In circuit analysis, we usually model a capacitor by its capacitance. However, in
practice, a real capacitor cannot be represented simply by its capacitance alone. A more
accurate circuit model for a real capacitor is given in Fig. 4.9(a). Here, in addition to the
capacitor,C, we include a resistor R connected in series with it, which is due to the
resistance of the capacitor’s plates;we also include an inductor L, connected in series with
the capacitor, which appears because the current flowing through the capacitor creates a
magnetic field. Finally we add a resistor R, connected in parallel with the capacitor,

which describes the resistance through the dielectric.

Likewise, a real inductor cannot simply be represented by its inductance. As shown in Fig.

4.9(b), a more realistic model also involves a series resistor Ry, which is caused by the
resistance of the winding material; a parallel capacitor C,, which reflects the capacitance

between the layers of the winding; and a parallel resistor R,,, which describes the core loss.
4.2 DC Steady State Analysis

From the voltage-current relationships of capacitors and inductors, it can be seen that
capacitor behaves as an open circuit for DC sources, while inductor acts as a short circuit.
Equation (4.3) implies that when the voltage of a capacitor is constant, its current is zero;
thus, it appears as an open circuit. From (4.18) we can tell that when the current of an
inductor is constant, its voltage is zero; hence, it appears as a short circuit. Circuit analysis
under such conditions with DC sources is called DC steady state analysis. We analyze
such a circuit by executing the following steps: First, replace all the capacitors by open
circuits and replace all the inductors by short circuits. The remaining circuit contains
resistors and sources only. Then applying any suitable circuit analysis method,which we
have learnt in the previous chapters we can solve the remaining circuit.

Example 4.1: Consider the circuit shown in Fig. 4.10(a), where i =9 mA,
R =6kQ, R, =3kQ ,C=2pF L=1mH,. Find the voltage of R, fors >>0 .

Solution:

After the switch has been closed for a long time, the circuit works in steady state.
Therefore, the inductor can be replaced by a short circuit and the capacitor by an open
circuit. The equivalent circuit is shown in Fig. 4.10(b), where resistances R, and R, are
connected in parallel. Thus, we have

_ RR, . 6x3

v= i x9=18V
R +R,  6+3
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Fig.4.11 A first-order RC circuit with a capacitor being discharged

(a) Circuit diagram; (b) Voltage versus time for capacitance voltage ve(7)

cde®  ve® _, (4.27)
dr R
FOPTS 3|
(4.28)
rePe® @ _,
dr R
WARIX DT ve(OFI— i ke, BES4AAK 0, WIHALR AR FiEEEA
ve(t) = Ke" (4.29)
HHEEME R KM s BInT, ¥ (4.29) fAAKX (4.28) A1
RCKse® + Ke" =0 (4.30)
M (4.30) ha] LLKAEH R % s
|
s==25 (4.31)
s fAAKL (4.29) th, FH
ve(t) = Ke #¢ (4.32)

T HIARER R R K S i B BRI AR & A ve (0) =V, BTSRRI 40, R L 1
KRR, VRPRET, . FIAIIRFMARAAK (432) th, WRK=V,. $FEHE K 5
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First—Order RC Circuits

Because of the existence of energy storage elements, sudden application or
removal of a DC source, usually controlled by a switch, will result in the generation of
time-varying currents or voltages in the circuit. Such a phenomenon is called a
transient. In the following two sections, we will introduce two types of transient
circuits: one circuit consists of a resistor and a capacitor, called the first-order RC
circuit; and the other one comprises a resistor and an inductor, called the first-order RL
circuit. As we did for resistive circuits, we also apply KCL and KVL to solve for RC
and RL circuits. The only difference lies in that applying KCL and KVL to resistive
circuits results in algebraic equations, whereas applying them to RC and RL circuits
yields differential equations.

For the circuit shown in Fig. 4.11(a), it is in the steady state with the switch open for a
long time. The capacitor is charged to an initial voltage V. The switch closes at time
instant =0, so current flows through the resistor and the capacitor is discharged. Denote
the voltage across the capacitor by ve(7). Applying KCL to the circuit with switch closed,

we have
cde® 3@ _,, 4.27)
dr R
Rearranging the above equation, we get
re L) v @ (4.28)

dr R

This is a first-order differential equation about vc(7) whose right-hand side is zero.

Therefore, its solution must have the form of
v (1) = Ke" (4.29)

And we only need to determine coefficients K and s. Substituting (4.29) into (4.28), we

have

RCKse" + Ke" =0 (4.30)
from which we can easily solve for s
s = . (4.31)
RC
Replacing s into (4.29) yields
ve(t) = Ke 7€ (4.32)

Next, we solve for coefficient K. This time we use the initial condition of
v.(0,) =V, . When the switch just closes, the voltage of the capacitor does not change yet,

so it remains at ¥, . Substituting this initial condition into (4.32) gives us K =V, . Substituting
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Fig. 4.12 A first-order RC circuit with a capacitor being charged

(a) Circuit diagram; (b) Voltage versus time for capacitance voltage vc(r)
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—EAANX (435), A/ K, =V, . F=DREOIRAKX (4.35), HGREERELEXAD
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coefficient K and s into (4.29), the solution for the time-varying voltage is

!

ve(t)=V,e ¢ (4.33)

A plot of the voltage against time is shown in Fig. 4.11(b). Usually 7= RC is defined as the
time constant of the first-order RC circuit. In one time constant, the voltage drops to e”' ~0.368 of
its original value.

Now let’s consider what happens when a capacitor is being charged. As shown in Fig. 4.12(a),
the switch is open before =0, the circuit is in steady state, and the voltage across the capacitor
isv.(0_)0. At time instant =0, the switch suddenly closes, introducing the DC voltage source F; into the
circuit, which charges the capacitor. Yet the voltage of the capacitor does not change instantly; that is
to say v.(0,)=0. Applying KVL to the charging circuit, we have
dv.(7)

dr

V. =i()R+v.(t)= RC +v (1) (4.34)

For such a differential equation whose left-hand side is a non-zero constant, its solution must

follow the pattern of

V()= K, + Koe" (4.35)

Substituting (4.35) into (4.34) gives s = —% and K, =V, . Using coefficients s and K, and the

initial condition v.(0,)=0to solve (4.35), we obtain K, = -V, . Substituting the three coefficients

into (4.35), the time-varying voltage of the capacitor is solved as

ve(t)=V, —V.e ¥ (4.36)

in which the first term on the right-hand side is the steady-state response and the second term
corresponds to the transient response. The time constant is also defined as 7 =RC. A plot of voltage
ve(r) is illustrated in Fig. 4.12(b). After the switch is closed, instead of jumping to V, the voltage of

the capacitor increases exponentially to source voltage V.

In this section, we consider first-order RL circuits, which consist of DC sources, resistors, and

First—Order RL Circuits

inductors. In order to solve such a circuit, we apply a very similar method as we used in the previous
section to solve for RC circuits. Consider the first-order RL circuit shown in Fig. 4.13(a). The switch
is open for 7<<0 and the circuit is in steady state. At f=0the switch closes, resulting a current
flowing through the inductor. Denote the current by i(f) and we can obtain the KVL equation as

follows

V.=Ri(t)+v, (t)=Ri(t) + L? (4.37)
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For such a first-order differential equation, it must have a solution in the form of
(=K, +K,e" (4.38)

Substituting (4.38) into (4.37), we getK, =V, /R ands =—R/ L . Replacing the two coefficients
into (4.37) and engaging the initial current (0, ) =0, we obtain

0=K, +K, =K, =—-K,=-V./R (4.39)

Thus, after the switch is closed the current can be expressed by

. V. V. Rt/ L
f)=—t_ s RiL 4.40
i(1) 2R (4.40)

Define the time constant as 7 = L/ R and the above equation becomes

ity=Ye Ve gure (4.41)

R R )
A plot of the current against time is demonstrated in Fig. 4.13(b), where the current increases
exponentially from 0 to Vy/R, which is the current value of the second steady state when the

inductance acts as a short circuit.

The Three—element Analysis Method

As it can be concluded from Sections 4.3 and 4.4, the analysis of a first-order differential
circuit takes the following steps:

(1) Apply KCL and KVL to write the circuit equation;

(2) Assume the solution to the equation has the form of K, +Ke";

(3) Substitute the solution to the circuit equation to find out coefficients K and s;

(4) Use the initial conditions to determine the value of coefficient K»;

(5) Write the final solution.

From the way we solve for K| and K it can be found that K, is the steady-state solution when
the circuit reaches the second steady state, while K is the difference between the initial condition

and the steady-state solution, i.e.
V(1) = v(*) +[¥(0,) — v(=2)]e " (4.42)

where v(0;)represents the voltage immediately after the switch opens or closes, which equals to
the voltage of the first steady state; v(=°) represents the voltage of the second steady state, and 7

is the time constant. We can write a similar expression in terms of current. That is to say, as long
as we know the variables of initial condition, steady-state solution, and time constant, we can
easily write the expression of current or voltage with DC excitation. This is basically the

three-element analysis method.
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Chapter 4 DC Steady State and Transient Analysis' %

e

/ Discussion: Steady state and transient of non-linear circuits; zero state response and zero
input response
From the voltage-current relationships of the three circuit elements, it can be found that the
difference between capacitor/inductor and resistor is that the voltage-current relationship of resistor
di

L . . . . . . dv
is linear: v=Ri, whereas that of capacitor and inductor is non-linear: 1=Cd—, v=Ld—.
1 !

Because of the differential relationship, capacitor voltage and inductor current have to be continuous
functions; thus, they cannot change abruptly. As a matter of fact, they change exponentially. Such a
process is called transient.

Consider the three-element analysis in (4.42). v(7) on the left-hand side of the equation is called
the total response of the first-order circuit when 7=0. The first term on the right-hand side is the
steady-state response, and the second term on the right is the transient response, which decreases to
zero exponentially as time passes.

We can rewrite (4.42) into the following form
v(£)=w(0,)e""" +v(o)(1—e"'") (4.43)

and view the problem from another prospective. The first term on the right-hand side is the
response of the circuit when source voltage is zero (¥.=0), which is called the zero input response.
The second term is the response of the circuit when the initial voltage is zero [v(0+)=0], and it is
called the zero state response. The sum of the zero input response and the zero state response
correspond to the total response. It can be explained by the superposition principle. As an
energy-storage element, the capacitor can be considered as a source. As such, the zero input
response is the response when we zero the DC source, and the zero state response is the response

when we set the initial voltage to zero. And the total response is the superposition of the two.

o Problems

P4.1 Calculate the charge stored on a 5 pF capacitor with 10 V voltage across it. Calculate the
energy stored in this capacitor.

P4.2 Suppose the voltage across a 100 pF capacitor has the waveform as shown in Fig. P4.1.
Determine the current through it.

P4.3 Find the equivalent capacitance for each of the circuits shown in Fig. P4.2.

ouF
I |
V) 2uF 1T 1
SpF = = 4pF
10 ZpF—‘r -lrluF
R AT e L I I
4k 6pF 2uF
-10

(a) (b)

12uF

I 4uF

oL
T

Fig. P4.1 Fig. P4.2
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P4.4 The current through a 0.1 H inductor is

{0 <0
i(t) =

e t=0

Find the voltage across it.
P4.5 Find the equivalent inductance for each of the circuits shown in Fig. P4.3.

1H 2H
° Y Y

§IZH 3 6H 4H

(a) (b)

20mH 30mH

4mH §

40mH

60mH

Fig. P4.3

P4.6 Suppose the circuit in Fig. P44, withi =5A, R =2Q, C=160pF, L=4mH,
operates in DC steady state. Find the value of R so that the energy stored in the capacitor is the same
as the energy stored in the inductor.

P4.7 The circuit shown in Fig. P4.5 is operating in DC steady state with the switch closed
prior to = 0. Find the expression for v¢(7) when <0 and r=0. Calculate the current ic when r=1s.
P4.8 For the circuit shown in Fig. P4.6, assuming that i(0)=10 A, calculate i(7) and (7).

¢
11
LA

1000 10 500
—
R
Iy R, L 50Q 10mF =
H] o
Fig. P4 4 Fig. P4.5
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v(t) =V cos(wt+0) (5.1)

Xy Vi AHURIRIE: o MR, BOINE/AD (rad/s)s 0 AN, #6790 (rad)
B (), INEER MO RN =180°0/ s JAMIME S LEM ] T A (R B S M R i, )

i) 7 ARG S IR, e e SO W IR A, F=1/T, k2% (Hz),
W) MR R R 0 =20

V§‘7\ 0ot ) T 35 P 1 2k A TR
i(t)=1_ cos(wt + ) (5.2)
RSB AT — BRI A E LRI,
\/ \/ \/' Y, AR AT A B . 2B LLIE
AL MR, JUSOR SR O R
IS0 ALY sinfax +d)=cos(ar +0-905  (5.3)

Fig. 5.1 The waveform of a sinusoidal voltage AE 220 HL B 73 B e A 225 P 0 e B LA it
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V. = /FL V3 (£)dt
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XFFIESL R R AL, 8 = A ek O ST
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(5.5)
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Chapter 5 Steady-state Sinusoidal Analysis, %

In the previous chapter, we learnt about the behaviors of circuits powered by DC sources whose
loads are composed of capacitors, inductors, and resistors, and how to analyze them. In this chapter,
we will discuss how to analyze circuits powered by AC sources. Generally, AC sources can be
triangle waves, square waves, etc; yet in most cases, AC sources refer to sinusoidal sources as they
have vast application in our everyday life.

51 Sinusoidal Currents and Voltages

A typical sinusoidal voltage is shown in Fig. 5.1, whose magnitude varies with time
periodically and can be either positive or negative. It can be expressed by the following function
v(1) =V, cos(wt +0) (5.1)
where V,, is the amplitude of the voltage;w is the angular frequency whose unit is radian per second
(rad/s); O represents the phase angle measured in the unit of radian or degree, the conversion of one to the
other follows ¢=180°0/x ; a periodic signal repeats a certain pattern in a time interval of 7, which is
called the period of the signal; frequency f is defined as the number of periods appear with in an interval
of one second, / =1/T, and its unit is Hertz (Hz); the relationship between frequency and angular
frequency is @ =2nf .
A sinusoidal current is usually expressed as
i(t)=1_ cos(wt +6) (5.2)
We do not distinguish between sine and cosine in sinusoidal circuit analysis. For brevity, in this
book we use cosine functions to describe sinusoidal voltages and currents. If a sinusoid is expressed
by a sine function, it is converted to the corresponding cosine function as
sin(wt + 0) = cos(wt + 8 —90°) (5.3)
In AC circuit analysis we often use the term effective value, or the root-mean-square value, to

describe voltage and current. They are defined as

I
Vs =if [ v(@ar

1 (7,
I = /?Lz (1)d:

For sinusoidal voltages and currents, trigonometric calculation yields

(5.4)
(5.5)

) Phasor

5.2.1 Complex numbers
In order to simplify the analysis of a sinusoidal circuit, we use phasors, which is a much
simpler expression, instead of complex cosine functions to describe sinusoidal voltages and currents.

Before introducing phasors, a review of complex numbers is necessary. Suppose there is a complex
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FlERIRARbRR R z=r260, XWMERIEERZBHXEREND
{x:rc?sﬁ { =Ny (5.6
y=rsiné 6 = arctan(y/ x)
EX PN EH 2, =x, + jy, =nL6 Mz, =x, + jy, =, 26, T s E i, RAREUEA
WHE, A

z 2z, = (x5 £x,)+ i, £ y,) (5.7)
AT RS S, R e, 4
2,2, =1 Z(6,+6,) (5.8)
=5 46-0)
Z h (5.9)
ST =R AOBR . R (5.6) ONSTH 2 = x+ iy MMM, 1951
z=rcos@+ jrsin@ =r(cosd + jsin ) (5.10)
AR WAz 22 3K
¢’ =cos@+ jsin@ (5.11)
Rz W RIR A
z=re' (5.12)
B4 ST RO AR |
522 #tHEX
IESZHUE A
v () =V, cos(wt + 6))
HoM L E LR

V, =148
X, v HREIRE: 6, A IKRAH .

] BRMA T RO E . TEESXREE T, R o YRR e AR SR A A R A
IESZ A, 2% 2 IR v I A0 L AR F) — AR ) IE 5% &, R EEA B vE P A % o .
A7 HUE BLIESZ R B e A B, B

v, (1) =V, sin(wt + 6,)
B2 AE R AR B 2 A SR A b RoX ek HoE, |
v, (1) =V, cos(wt + 8, —90°)
HAHE A
V,=V,Z(6, —90°)
T 5% UL A A B R 7 R TR A R S . LA
i\(t) =1, cos(wt + @)
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Chapter 5 Steady-state Sinusoidal Analysis, %

/

number z = x + jy , where x is the real part, y denotes the imaginary part, and j = /-1 is the imaginary
unit (in mathematics, the imaginary unit is denoted by i; however, in circuit analysis, it is denoted by
jasiis used to indicate current). z=x+ jy is the algebraic form of the complex number. If we draw
z in a complex plane, as shown in Fig. 5.2, we can obtain its polar form z =r2Z6 . The relationship
between the two forms of expression is

{xzrc?sb’ { r:m (5.6)

y=rsinf 6 = arctan(y/ x)
For the addition and subtraction of two complex numbers z =x, +jy, =46, andz, =x, +

v, =rZ0,, we prefer to use their algebraic form

zytz, =(x x,)+ iyt y,) (5.7)
To compute their multiplication and division, a wiser choice is to use their polar form
2,2z, =rn (6, +6,) (5.8)
Z [ ¢4
—=—4(6,-6,) (5.9)
Z, W

A complex number can also be expressed in exponential form. For a complex number
z=x+ jy, substituting its real and imaginary parts by (5.6), we have

z=rcos@+ jrsinf =r(cosf + jsin ) (5.10)
According to Euler’s identity
e’ =cosf+ jsin@ (5.11)
complex number z can be written as
z=re" (5.12)

which is the so-called exponential form.
5.2.2 Phasors
The phasor of a sinusoidal voltage
v,(t) =V, cos(at +6,)
is defined as
V.=V,£6,
where V, represents the amplitude of the voltage and &, represents its phase angle. Usually we use
boldface letters for phasors. In a sinusoidal circuit, if all the sources supply voltages or currents of the
same frequency, the voltages and currents of the branches also share the same frequency. There fore,
angular frequency w does not appear in phasors. If a voltage is expressed by a sine function
v, (1) =V, sin(ewt + 6,)
it should be transformed into the corresponding cosine function before finding its phasor
v, (1) =V, cos(awt + 6, —90°)
and its phasor is
V,=V,Z(6, —90°)
Phasors for sinusoidal currents follow the same principles. For currents
i,(t) =1, cos(wt + ¢,)
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i,(1) =1, sin(wt + @,)
RIAH 5535 A
1.=1,Z¢,
A

I,=1,2(p, —90°)
" AU, 5% N R R AR TR A ORI AR AR bR
AR, X A I E L T . ki
K 5.3 B 9 = A RIS R 5 R G, AR KVL, Mo I H
A
v(t) = 5cos(wt)+10sin(wt + 30°) — 5 cos(wt +90°) (V)

|

\'|(l)=5cos(w()VC
va(f)=10sin(ewt | 30“)VC

vi(1)=5cos(wr | ‘)0"’)\/9

& 5.3 = ANRISIUE 5% v A 5 R Ik
Fig. 5.3 Three AC voltage sources of the

V(1)

+U( |U+ |U+

(5.13)

ll

=5cos(wr)t10cos(wt —60°) — Scos(wt +90°)(V)
AR RS A AT, c0sO S5 ¥ e’ s,
cos@ =Re(e"") (5.14)
W (5.13) A5 N
V(1) = 5Re(e’”)+10Re[e" ") ]~ 5Re[e" ™" ]
=Re(5¢')+Re[10e "] - Re[ 5"+ ]
=Re(5e¢'” +10e'”e ™" —5¢1”e™")
=Re[(5+10e ™ —5¢™)e ]V
R B B R HOE XU AR bR I AR, 7331
v(t) = Re[(5+10£ —60°—5290°)e 1V (5.15)
b U 0 S B0 20 e A A ARBOE SRt AT U 5
5+10£—-60°—-5290°=5+10cos(—60°) + j10sin(—60°) — 5cos 90° — j5sin 90°
=5+5-38.66-j5=10-j13.66

same frequency connected in series

- i53.79°

=16.93/~53.79°=16.93¢ \%
W= (5.15) 48
v(t) = Re[16.93¢ 77! ] = Re[16.93¢’ ¥ 1V
KR AT, EURTS R K4 sk sk EoE C
v(t) =16.93cos(awt —53.79°) V
A b T3~ T LA R R A Syt R8I 5% S AT v S R O -
(1) i & IEZREMARE: V,=5£20°V, V,=10£-60°V, V,=5/90°V ;
(2) HIXEHBHEELSE, HAHEHMREOE AT HHH
V=V+V, —V,=5+5-j8.66— j5 =10 jl3.66(V)
(3) ¥ _Eriivt g R aAREOE U o B Ak bR T 20k
V=10 j13.66=16.932 - 53.79° (V)
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Chapter 5 Steady-state Sinusoidal Analysis/ %

and
i,(t)=1,sin(wt + ¢,)
the phasors are
I=I,Z¢,
and
1,=1,Z(p, —90°)

Apparently, phasors for sinusoidal voltages and currents have the same format as the polar form of a
complex number, which makes the calculation of sinusoids more convenient. Suppose we have three
sinusoidal voltage sources connected in series, as shown in Fig. 5.3, and they have the same frequency.
According to KVL, the output voltage is

v(t) = 5cos(wt)+10sin(wt + 30°) — 5 cos(wt + 90°)

(5.13)
= 5cos(wt)+10cos(wr —60°) — Scos(wr +90°)(V)
Euler’s identity (5.11) indicates thatcos @ is the real part of the complex numbere*'? :
cosf =Re(e"’) (5.14)

Therefore, (5.13) can be written as
v(t) = 5Re(e’”)+10Re[e" "]~ 5Re[e ]
= Re(5e'™ )+ Re[10e" "] - Re[5¢" "]
= Re(5e'” +10e'”e " —5e!”e")
=Re[(5+10e* —5¢"")e |V
Using the polar form instead of the exponential form to represent the complex numbers, we have
v(t) =Re[(5+10£ —60°—5290°)e' |V (5.15)
To combine the complex numbers, we can use their algebraic form
5+10£—-60°—5290°=5+10cos(—60°) + j10sin(—60°) — 5cos 90° — jSsin 90°
=5+5-j8.66—-j5=10-j13.66
=16.93/-5379°=1693¢ = V
And (5.15) can be written as

v(r) = Re[16.93¢ 77 ¢/ | = Re[16.93¢’ © 7V
Again we apply Euler’s identity, the voltage can be written as an expression of time
V(1) =16.93cos(wt —53.79°) V

From the above example, we can find a way for calculating sinusoids with the same frequency, which is
(1) Determine the phasor for each sinusoid: V,=5Z0°V ,V,=10£-60°V ,V,=5290°V ;
(2) View these phasors as complex numbers and perform calculation using their algebraic form
V=V,+V, -V,=5+5-j8.66—j5=10—jl3.66(V)
(3) Transform the result into the polar form
V=10-j13.66=16.934—-53.79°(V)
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w(t) =16.93cos(at — 53.79°) V
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. A MUMHERRSHBEEMEBERZ LR, HATRBEME. Ri&ABRtie)=
I cos(wt + 0) Pk FLPH R, AR RR AR e 14, 12 b BH P g o 1

v(t) = Ri(t)=RI cos(wt + O)

RS HEAAHES M N T=1260 M1V =RIZ6, SRFA
V =RI (5.16)

AT T HIBELT 25, oL 5 ML I o
BB HLURE i(6) = 1 cos(a + 0) Wt HUE L, WA (4-18), FLB P HLLE Jy

v(t) = L% = —Llwsin(wt + 6) = LI wcos(wt + 6 + 90°)
S N
V =LlwZ(60+90°) =V £(6+90°) (5.17)

] UL e R s AR R T H R ARAT. 90°, tnld 5.4 TR
Xt (5.17) it FAs#e

. V = LIo/(0+90°) = wL/90% [ £6 = jwLl
Fase AT v R ML S ML R
[ 5.4 HLEH H R HL AL A V =joLl (5.18)

Ff“ ?”miﬁffm R, joL J UG, A%, AR, A

voltage and current of an inductor )ﬁ%ﬂ?yﬂ{ﬁo

XA C, BATME L P B () =V cos(wt +0) , TUARPE X (4.3), Viid L2 |
i(t) = C% =—-CVwsin(wt + 0)=CV wcos(wt + 6 +90°)

71 53 P WL RT3
V=r.s0 (5.19)
I=CV (0 +90°) = 1.£(6 +90°) (5.20)

T L 2 R A AR AL T H R 90°, G 5.5 B
Xt (5.20) fifan Fks
I=Cw/90°+V 20 = joCV (5.21)
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~ /

(4) The complex number in its polar form is considered as the phasor of the result, based on
which we can rewrite above as a function of time
v(t) =16.93cos(wt —53.79°) V

' Impedance and Admittance

5.3.1 Voltage-current relationship in phasor for resistors, inductors and capacitors

After describing voltages and currents in phasors, we continue to discuss the voltage-current
relationship, in phasors, of passive circuit elements (resistors, capacitors and inductors) for
steady-state sinusoidal circuits. Let's start from resistors. Suppose current i(¢)=/cos
(ot + @) flows through resistor R. According to Ohm’s law, its voltage should be

v(t) = Ri(t)=RI cos(wt + O)

The phasors of the current and the voltage are I=/7/60andV = RIZ@, respectively, which

gives
V =RI (5.16)

For a resistor, its voltage and current are of the same phase.

Suppose current i(7) = I cos(wt + @) flows through an inductor L. Referring to (4.18), the
voltage across the inductor is

v(t) = L% =—Llwsin(wt + 0) = LIwcos(wt + 8 +90°)
1

and its phasor is
V =LIlwZ(0+90°) =V Z(0+90°) (5.17)
For an inductor, the phase of its voltage leads the phase of its current by 90°, as illustrated in
Fig. 5.4.
Equation (5.17) can be written in the following way
V =LlwZ(0+90°) = wL£90° «[ £60 = jwLs1
From the above equation we can draw the voltage-current relationship in phasors of an inductor as
V =joLI (5.18)
where jowL is called the impedance of the inductor; its real part is zero and its imaginary part is positive.

For a capacitor C, we assume a voltage v(¢) =V cos(wt + @) is applied across it. According to
(4.3), the current flowing through it is

i(t)= C% =—CVasin(at + 0) = CVwcos(wt + 6 +90°)
!

Expressing the voltage and the current in phasors, we have
V=r./6 (5.19)
I=CV /(6 +90°) =146 +90°) (5.20)

It can be seen that for a capacitor, the phase of its current leads the phase of its voltage by 90°, as
shown in Fig. 5.5.

Writing (5.20) in the following manner
I=Cw/90°+V L0 = joCV (5.21)
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joC
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A, FEMBLGT, HSEHOoN %, & AR,
0
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.IE 5.5 HUAHL S IR R AT IR 532 M
Fig. 5.5 The phasor diagram for voltage A e R AT T FR L R R 7 £ Hh R — e 3
and current of a capacitor 24050
V=RI V=jolLI V=#=—LI
joC wC
AT IUAEART A () P Fs— W 0% 2R 48 vl o A o 7 S i s Ak 19
V=21 (5.23)

L, Z MiZoeE BT, AR (Q ).
LB SO R EA TR AL A, LT E A W R
Z=REP (5.24)
AT, S5 R B R X AT, HBHR — A R=0, M R=0K, FRNE halig
ALY P X O IESL OB E, X > 0 U AR PR, X < 0 Ul AR AT
[, X=0 D i 57 48k 4l HL B
FHAT AR A 7= A AR AR b IR 2K
=|z|z6

(5.25)
2, [ZI:\/R2 + X7 Ky BHpTA, H:arctan%' S T e R S EL A AR A 22, HﬁRz(Z‘cosﬂ ,
=|Z|sin6’o
533 B4
S Y &R, Hoe SCHRPTE g, |
T
Zv (5.26)
SFHEA A S (WETTT). SR EE, Hitka£RHh
Y=G+jB (5.27)
A, S GRS EE B BN HLAN.
isEi
Fm G4 B e ol
Z R+jX R+X
CIES
G:_;LT
R +X
- X
R+ X?
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we can find that their phasors are related as

1
V=—=1"
joC phid
where .Lis the impedance of the capacitor, which also has a zero real part but a negative

joC
imaginary part.
5.3.2 Impedance
The voltage-current relationship of resistors, inductors and capacitors,respectively,are listed below
V=Rl V=ijollf W= _=_Jf
joC wC
Examining these equations we can conclude that for any passive element, its voltage-current
relationship can be expressed by the Ohm’s law in phasors
V=ZI (5.23)
where Z is the impedance of this element with the unit of ohms (€2). If the load of a circuit is the
combination of resistors, inductors and capacitors, its impedance has the following expression
Z=R+jX (5.24)
where the real part, R, represents the resistance and the imaginary part, X, stands for the reactance.

The value of the resistance must satisfy R = 0; when R =0, the load is pure inductance or
pure capacitance. The reactance can have any value, positive, zero or negative; X > 0 indicates the
load is inductive, X < 0 indicates it is capacitive, and X=0 means the load is pure resistance.

The impedance can also be expressed in the polar form

Z=z|£6 (5.25)

where |Z | =R’ + X7 is the magnitude, 6= arctan% gives the phase difference between voltage

and current, R =|Z|cos@,and X =|Z|sin@ .
5.3.3 Admittance
Admittance, denoted by Y, is defined as the reciprocal of the impedance

1 1
Y=—=— 5.26
7"y (5.26)
It has the unit of siemens (S). The admittance is also a complex number, which can be expressed by
Y=G+jB (5.27)

where the real part G is the conductance and the imaginary part B is the susceptance. According to
the following equation

Y=G+iB=t=_t _ RZJX
Z R+jJX R +X°
we have
_ R
R+ X?
B X
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It should be noted that the relationship G=1/R only holds for pure resistors.

The methods we use to solve for steady-state sinusoidal circuits are basically the same as the ones
we used for DC circuits. The laws, principals and circuit analysis methods we have learnt in the first
three chapters can also be applied in solving steady-state sinusoidal circuits. The only difference lies in
that we use phasors to describe voltages and currents and impedances to describe loads.

Example 5.1: Consider the circuit shown in Fig. 5.6, in which the source voltage is
v(t) = 2cos(2¢) and the values of the loadsare L =1H,C=0.5F and R =2 Q, respectively. Find the
phasors fori.(¢), i (¢)andi(?).

Solution:

The phasor for the source voltage is V =2V, the angular frequency is@=2 rad, and the
impedances of the inductor, capacitor and resistor, respectively, are

Z, =jol=j2=2290°Q
B =;=—j=14—90°§2
joC
Z; =20

In order to find out the equivalent impedance of the inductance and the capacitance connected in

parallel, we apply the same method as we calculate the equivalent resistance of parallel connected resistors

Az 20D _pnoas epq
Z +Z. j2-]

According to the voltage division principle, the voltage across the capacitor (inductor) is
= Z; v -—_)2 $2./0°= 2/-90
Z+Z, —j2+2 2\22-45°
Therefore, according to Ohm’s law, the phasor currents of the capacitor and the inductor,
respectively, are

«220°=+22—45°V

; W _2z-a5
© Zo 1£-90°

I, =£=@—_“5=£4—135°A

Z; 2./90° 2

Consequently, the phasor current of the resistor can be obtained by applying KCL

V2

I=I.+1, =ﬁ445°+74—135°

5

:l+j—0.5—0.5j=O.5+j0.5:72445°A

=J2./45°A

We can also calculate the current by applying Ohm’s law

__ Ve 220 2,
Z+Z, -j2+2 2J2£-45 2

We achieve the same result using the two methods.
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- A

Example 5.2: Thévenin and Norton equivalent circuits are useful ways for circuit
analysis. They are applied in the same manner in steady-state sinusoidal circuits as in
DC circuits. Find the Thévenin and Norton equivalents for the circuit shown in Fig.
5.7(a).

Solution:

We zero all the independent sources to find out the Thévenin impedance. As shown in
Fig. 5.7(b), the Thévenin impedance Z, is the parallel combination of the capacitor and the

resistor

_ZyZo 100+ (=j100) 100 —90°
Y Zy+Zo  100-j100 2/ -45°

=502/ -45 =50-j50Q

Next, we connect the two terminals by a short ciruit to solve for the short circuit
current I, , as depicted in Fig. 5.7(c). As the capacitor is shorted, its voltage is zero; thus

s¢

I.=0 . According to KCL, the following equation can be written

Jop, g Ya_y 10020
CZ, 100

R

—1290°=1-jl=+2/-45°A

This short circuit current is the source current 7, in the Norton equivalent. We can
therefore obtain the Thévenin voltage by

Z =2/ -45°«50\22 —45°=100£-90° V

scTt

V=l

We can also solve for the open circuit voltage V__from the circuit shown in Fig. 5.7(e)

oc

and check whether V, equals to V,. We leave this to the readers to finish.

Charles Proteus Steinmetz (g ?l/m’/ 1865 - 26 October
1923) was a German-born American mathematician and
electrical engineer. He fostered the /eue/o/)menf of a/femaﬁry
current that made the expansion of the electric frower in/m'fr:y in
the United States possible, and formulated mathematical
theories for engineers, He also founded  the /Jﬁa:ar method,
which is a ﬁraaﬁca/ method for ca/cu/aﬁnj the AC circuit
Before Steinmetz’s jroun/éreaéiry work, engineers had been
using com/;ﬁ'mfe%, time~consuming caleulus-hased methods,

Steinmetz {yrfemnﬁzea/ the use of com/z/e,\' number /Jﬁm'or
re/;rmnfaﬁon, which revolutionized AC circuit fﬁemy and

analysis,
o
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~

Power in AC Circuits

5.5.1 Instantaneous power

Power analysis is of great importance in sinusoidal circuit analysis. As defined in
Chapter 1, power absorbed by a circuit element at a time instant (instantaneous power)
equals to the product of the voltage across it and the current flows through it at that very
instant in time. When the voltage and the current have passive reference configuration,
the instantaneous power can be calculated from

p(t) =v(0)i(1) (5.28)
Suppose the instantaneous voltage and current are given as
w(t)=V_cos(wt+06,)
i(t)=1_ cos(ewt +86,)
Substituting them into (5.28), we have
p(t) =v(@)i(t)=V_I _ cos(wt +6,)cos(wt + b))

Applying the trigonometric identity to the right-hand side of the above equation, we
obtain

p(t) = %lem cos(6, —6)+ % V.1 cosQot+6,+6,) (5.29)

The first term on the right-hand side of (5.29) is constant, showing an upward offset
in the waveform plotted in Fig. 5.8. The second term on the right-hand side of (5.29) is a
sinusoidal function whose angular frequency is 2, which is twice of the angular frequency of
voltage and current. Apparently, the period of instantaneous power is half that of voltage and
current.

For a resistor, we have 8 =6, ; thuscos(6, — 6, )=1. Therefore, its instantaneous
power always satisfies p(z) = 0, as shown in Fig. 5.9. On the other hand, for a capacitor
and an inductor, the phase difference between voltage and current is 6, —6,=F90°; thus
cos(d, —6)=0. As plotted in Fig. 5.10, the instantaneous power is positive for the first

half-cycle and negative for the next half-cycle.
5.5.2 Average power

The average power is defined as the average of the instantaneous power over one
period. Here it can either be the period of voltage/current 7 or the period of instantaneous
power7; =T /2. Thus, the average power is given by

P= % jOT p(t)de (5.30)
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Substituting p(¢) in (5.29) into the above equation yields

P——j —V_I_cos(6, - ¢9)dr+—_[ —V. I cosRat+6, +6,)dt

m-m

m-m m m

2V [ cos(6, 0)—'[ dt+ : LTcos(Za)t+0‘,+9)dt

In the first term on the right-hand side of the above equation, we have7 dt 1. In the second

term, the cosine function integrated over one cycle results in 0. Thus, the average power becomes
1
P:EVm]rn cos(0,—6) (5.31)

If we use the effective value (5.4) and (5.5) to describe voltage and current, the average power
can be written as
P=V_I_. cos(8, —-6) (5.32)

ms= rms
As we know the voltage and current of a resistor are in phase, i.e. 6, = 6,. Hence, the average

power absorbed by a resistor is p = 1 v I . On the other hand, for a capacitor or an inductor, there is
2 m m

a 90° difference between its voltage and current, i.e. 6 —6=7F90°. Therefore, the average power
absorbed by capacitor and inductor is P =0 .

5.5.3 Power factor, reactive power and apparent power

Define the phase difference in (5.32) by #=6, — 6, then (5.32) becomes

P=V_I_ cosf (5.33)
where —90° < @ < 90°and 0 =< cos# = 1. The term cos @ is called the power factor
PF=cos#& (5.34)

Power factor is usually expressed in percentage and it is common to state whether the current
leads the voltage (capacitive load) or the current lags the voltage (inductive load).

As previously explained, capacitors and inductors are energy-storage elements. In an AC circuit,
they absorb energy from the circuit in the first half-cycle and return the energy to the circuit in the
second half- cycle as shown in Fig. 5.10. Instantaneous power(5.9) can be rewritten as

p(l)— V_I_cos(f — 0)[1+cos(2(ut+20)]+ V. I, sin(@, —6,)sinat + 26)

m~-m

In this equatlon, the first term on the right-hand 51de is alwayg positive or zero,whereas the
second term takes either positive or negative value,which illustrates the exchange of power in the circuit.
The peak instantaneous power associated with the energy storage elements (i.e. the peak value of the second
term on the right-hand side of the equation above) is called the reactive power, which is expressed by

o=V, I sin@ (5.35)

Reactive power has the unit of Volt-ampere reactive (var).

Apparent power is defined as the product of the effective values of voltage and current

S =¥ il (5.36)
and its unit is volt-ampere (VA).

From (5.33), (5.35) and (5.36), it can be seen that average power, reactive power and apparent
power satisfy the following equation

P+ 0*=§? (5.37)
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and they also form the power triangle as illustrated in Fig. 5.11.

The average power and reactive power of a circuit refer to the power absorbed by resistors and
the power exchanged in the circuit by energy-storage elements (capacitors and inductors),
respectively. Hence, the power triangle can be related to the impedance triangle. An impedance
Z= |Z|£6’ = R+ jX is illustrated in the complex plane as shown in Fig. 5.12, where & is the phase

difference between the voltage and the current, i.e. 8=6, —6,. According to this figure, we have

R
cosf=— 5.38
1Z| (5.38)
X
sin 0=— 5.39
From
Vv V.Z0 V
[=—=-2_=-_m /(g -0
Z TZz0 I (6, -90) (5.40)
we have
V
In=11 (5.41)
1|

If expressed using rms values, we have

VI’mS
L= |7’ (5.42)

Substituting (5.38) and (5.42) into (5.33), we can write

R 2 R |
P=V I =17 |Z|;==1I.R 5.43)
Z| Z] (
R ., R
p=y ] N_p2 K
ol 1=V T (5.44)

Similarly, substituting (5.39) and (5.42) into (5.35), we obtain

X X
=V I =7 |z|==1> X
0=Vl 777~ Fs 21777 = o (5.45)
X X
0=V 1=V o7 (5.46)

zZl ™R+X?

Example 5.3: For the circuit shown in Fig. 5.13, find the average power provided by the
voltage source.

Solution:

First we calculate the total load of the circuit
ZpsZ s =0‘8+4><(—‘j2)
re +Zc 4-j

Z=Z, + =1.6\2£-45°Q
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Then we solve for the source current

V o
K 4 1.25v2.245°A
Z 1.6J22£-45°

According to (5.31), the average power provided by the source is

P=%V I_cos(6, —9,)=%x4x1.25\/§cos(0—45°)=2.5W

m ™ m

We may also consider this problem from another aspect. The average power provided by the
source equals to the sum of the average power absorbed by the resistors. Let’s first calculate the
current flowing through R». Based on the current division principle, we have

= fe g T o5 fasase= 2D sason
P ZAZy,  —j2+4 J10

According to (5.43), the average power absorbed by R, and R,, respectively, is
P=1I R =125x08=125W

pop g =25

2rms 2 [ \/%

Thus, we have P = F, + P, =2.5 W , which is consistent with the result we obtained previously.

] x4=125W

" Discussion: Application of power triangles—power factor correction

Reactive power is not absorbed by loads, but it does exchange within the circuit. A high
reactive power also results in large current flowing in the circuit, which will increase the loss along
the transmission line. Meanwhile, the lines must have higher ratings than what is necessary for
average power, which is also a waste. A common practice to enhance power factor is reactive power
compensation. Most appliances we use in our everyday life are inductive. Thus, to enhance power
factor, we connect a group of capacitors in parallel with the inductive load, so that the reactive
power is exchanged between the capacitors and the load, rather than in the whole electric network.

Example 5.4: A 50 kW inductive load operates in a circuit whose rated frequency is 50 Hz and
rated voltage (effective value) is 10 kV. Its power factor is 0.6. Compute the capacitance that must
be placed in parallel with the load in order to increase the power factor to 0.9.

Solution:

The power triangle of the inductive load is illustrated in Fig. 5.14(a), where B =50kW is
given and 6, can be calculated from the power factor

6, =arccos(0.6)=53.13°
Thus its reactive power is
O, =P tang, =50 x tan(53.13°) = 66.67 kvar
After a capacitor is connected in parallel, the power factor is raised to 0.9. Therefore, we have
6,=arccos(0.9)=+ 25.84°

When 6,=25.84°, the total load is still inductive, hence we only need to connect a small
capacitor. Whereas if €, =—-25.84°, a rather large capacitor is required, yet it does not help with the

power factor. Therefore, we choose #,=25.84° . After adding the capacitor, the power triangle of the total
load is shown in Fig. 5.14(b).
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f\ BoE EREBEEA

Fuk, HAERITIIhES.
0. =0, -0, =24.22-66.67 = —42.45 kvar

T aiE IR A REN 10 kV, BIEHAEMIEBEER 10 kV, NHRHERX (5.46) 4, HE

FOEEEE IV

Ve __(10x10°)?

= =-2356Q
0. —4245x10°

X, =
HEfn kG AN
1 1

Cls—— = =1.35pF
wX.  2mx50x(-2356)
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N

As adding a capacitor does not affect the average power, we have A, = P,. And the reactive
power of the total load can be calculated from
O, = P, tan @, = 50tan(25.84°) = 24.22 kvar
Thus the reactive power of the capacitor must be
0. =0, -0, =2422-66.67 =42 45kvar
As the power line has a rated rms voltage of 10 kV, the voltage across the capacitor is 10 kV.
According to (5.46), the reactance of the capacitor is

2 332
Vo _ A0X10) _ 53560

X.=
© Q. -4245x10°

and the required capacitance is
C=-— ! - : =1.35pF

wX.  21mx50x(-2356)

o Problems

P5.1 For the circuit shown in Fig. P5.1, where v, =100cos(2007) V, R=100Q, L=50mH,

C =0.2 pF, find the phasorsV, ,V, ,V.,V, and I .
P5.2  Find the node voltages ¥, and V, in phasors in the circuit shown in Fig. P5.2.

-i5Q

_l- + Vg — V' ll I
s e
5 . 100
"5<> ¢ == V¢ 1/0°A @ 5Q [j -110Q |SQ 3 [] 10 @0.51_()00/\
T ]

o b o o IS
- V¥ _L_
Fig. P5.1 Fig. P5.2

P53  Solve for current I in the circuit shown in Fig. P5.3, where V, =100£0° V,

I,=2/90°A, R=50Q, X, =50Q, X.=100Q.
P5.4 Consider the circuit shown in Fig. P5.4, where [, =1, =10A, V' =100V, VandI have

the same phase angle. Suppose that the phase of ¥V, is0°. Calculate / , R, X| and X ..

Vi YL
— ~Y e
+ )
We /Ll IRl
R

Fig. P5.3 Fig. P5.4
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P5.5 Find the Thévenin and Norton equivalent circuits for the circuit shown in Fig. P5.5.
P5.6 For the circuit shown in Fig. P5.6, where v = 40042 sin(1000¢) V, the branch of R has
power P, =2.5kW, i, and v have the same phase, R, =40Q,and C, =25pF.Findout R, v, i,

2,
Z /\ Zy
= e
N N —
} I, Z>
Fig. P5.5

iyand i.
P5.7

source generates a voltage of 1 kV in rms value with the

In the power system shown in Fig. P5.7, the voltage

frequency of 50 Hz. Two loads are connected in parallel to the
source. Load A consumes 10 kW with a 90% lagging power
factor. Load B has an apparent power of 15 kVA with an 80%

lagging power factor. Find the power, reactive power, and

apparent power delivered by the source. What is the power factor seen by the source?
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AL A A &

Z ATV A S A R, R — A A AR T2 e R AR R R RE . (HAESERR
ARG, AT R 2 AR . ERXA R, =HACEN™ E=A EsL ik,
EATHIE AR A [F], AHAZAHZE 1200, @il 6.1 From. X =AM IESL RPN A Al B
FHAT C A, ENIRERIE 5 N

v, (1) =V cos(wt) (6.1)
v, (1) =V cos(at —120°) (6.2)
Vo, () =V cos(awt —240°) =V cos(wt +120°) (6.3)

w(1)
an

6.1 —ARHUEBIEREE, SAHREARAIAT 2 120°
Fig. 6.1 Anillustration of three-phase voltages which are 120° apart from each other

BTN B R A B 24 A

V, =V, /0° (6.4)
V, =V,/—120° (6.5)
v, =V,/120° (6.6)

R Ay By C FH =40 AN IE P =40, B A AHHEAI%E B A1 & 120°, B
AHER B AT C AHHLE 120°. # =AHH3Z A, C. BIBFFHEY], B A A45E C 4 1200, C M8
A B AH 1200, IR A9 7 = .

AR S TR R = S T ek

6.2.1 Y-Y &
EE 6.2 H, =AHHIRA AN BRI T kR, RO Y-Y . il aA. bB. cC
FROMuek, e nN FOAR L. = ASrRER 20 6.1) ~3 (6.3) H=AHgBHHiAHH],
IXFE B RR R = A . ISR, AR XS RR, 1Mo 72T A — 2 A 1A,
IXFE SRR A AR AR = A LB o FEA PP FRATT I FE R FR = AH L

Kk SRR R ERRCAAR R, 78 Y-Y SEBAS A T AR R R s, Rk
XX 6.1) ~RK 6.3) HA (6.4) ~K (6.6). PipismLk (A EFR L HIE, 250
AV Vi MV, RHE KVL

V, =V, -V, =V,20°-V,Z—120°=3V,£30° =V, + [3£30° (6.7)

Vi =Vyy =V =3V, £=90° =V, +[3230° (6.8)
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Chapter 6 Three-phase Circuits/ %

Basic Concepts

In the previous chapters, we dealt with single-phase circuits consisting of a generator for providing
electricity to the loads via a pair of wires. In practical power systems, what people normally use are
three-phase circuits. In such a circuit, a generator generates three source voltages, which have the same
amplitude and frequency but are out of phase with each other by 120°. As shown in Fig. 6.1, the
expressions for the three voltages are

v, (1) =V cos(wr) (6.1)
W, (1) =V cos(art —120°) (6.2)
v, (1) =V cos(wt —240°) =V cos(wr +120°) (6.3)
To express them in terms of phasors, we have
V. =V, Z0° (6.4)
V,, =V, £—-120° (6.5)
V., =V,Z120° (6.6)

Such an arrangement of the voltages is called a positive phase sequence, as the voltage of phase
A leads that of phase B by 120° and the voltage of phase B leads that of phase C by 120°. If the
voltages come in the order of a-b-c, i.e. the voltage of phase A leads that of phase C by 120°, and the
voltage of phase C leads that of phase B by 120°, we say they have a negative phase sequence.

The Wye-Wye Connection and Delta—Delta Connection

L2

6.2.1 Wye-wye connection

Consider the three-phase circuit shown in Fig. 6.2, where both the sources and loads are
connected forming the shape of letter “Y’. Such a configuration is called wye-wye connection. The
wires of a-A, b-B and c¢-C are called lines, and the wire of n-N is called the neutral. The three
voltage sources satisfy (6.1)~(6.3), and the three loads are of the same impedance. Such a circuit is
called a balanced three-phase circuit. In most practical cases, the three-phase sources are usually
balanced, whereas the loads may not be. Thus, we have unbalanced three-phase circuits. In this book,
we consider only the balanced ones.

The voltage between each line and the neutral is called line-to-neutral voltage or phase
voltage, which is also the source voltage in a wye-wye connected circuit; so we can use (6.1)~
(6.3) or (6.4)~(6.6) to express them. The voltage between each pair of lines, i.e. the voltage
between node a and node b, node b and node ¢, or node ¢ and node a, is called line-to-line voltage,

or simply line voltage. Denote the voltages by V, , V,.andV,,, respectively. According to KVL,
we have

V,, =V, =V, =V, 20° =V, 2 -120° =3V, £30° =V, « \[3.£30° (6.7)

V. =V, =V, =V, +3230° (6.8)
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[1]

6= I

N

o=

Vbu

K62 =AH MRS o R TR
Fig. 6.2 Wye-wye connection

V., =V, -V, =3V,2150°=V_«/3/30° (6.9)
ALk ERE LV, . WAV, =3V, .
o B R R AL R HL AR A R, S b I R N ER . 7E Y-Y JERE LR,
122 SRS s 7132 P o T B = W

V V,£0°
=2 = =1,/-6

aA Z, |ZY|49 L (6.10)
Vbn [e]

I, = =1, Z(-120° - 6) (6.11)
Zy
Vo .

Ic(.=Z =1,2£(120°-0) (6.12)

Xy, 1 =V /1 Z, WERIIRME . 75 P U N KCL o] LTG5
Ly, =L, +I;+I.=0 (6.13)
HSEAT L, e b A B, R AT DO L 2. A R R Y - Y BB O — A
Pgdil 72N, HAbZER T S50 = A0 =2kl s bk =AU YRR = AN i o e ek —
APESZ A ERAH R, WIFF NS M. TR AR, W TG = ek DU 4 kit . 76 SEBRH
NEGH, FEEEEE AL LA B2 ETAE, RAH AR ] DU 2 A .
6.2.2 =HHEERHYINE
e WA 6.2 BT R It = AH HL S I % B T
p)=v, (i, @)+ v, (i) +v., ()i (1)
=V, cos(wt)l, cos(awt — )+ V, cos(wt —120°)], cos(wt —120°—6)
+V, cos(awt +120°)/, cos(wt +120° - 0) (6.14)

=3Mcos6’
2

AR, ABER TR, X = A H O T A s 1 ) — AR AR T
B DR T H B D2 KA A2 s i i A AUEAR A (6.14), T

P=p(t)=3V, 1 .cos0 (6.15)
AR B E DI DR O E S S TR, A
Q:3VYrmsILxmsSin9 (616)
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Vo =V =V, =V, 3230° (6.9)

If we use V) to indicate the amplitude of line voltages, we have V| = \/§VY .
Currents flowing out of the sources are called phase currents, while currents flowing
through the lines are called line currents. In a wye-wye connected circuit, phase currents are

the same as the corresponding line currents, which can be calculated from the following

equations
V V,£0°
I,=—2=—"—=]./-6
“=7Z |Zy|49 L (6.10)
Vv (6.11)
I,=—""=12/(-120°-0)
Y
(6.12)

V
I,.= Z"‘" =1, 2(120°-8)

cC

Y
where 1, =V, /Z, denotes the amplitude of line currents. Applying KCL at the neutral point n or N,
we have

Iy, =1, +1;+1.=0 (612

The above equation implies that no current flows through the neutral, which can thus be
removed. A wye-wye connection with the neutral is called a three-phase four-line system, while
other connections are three-phase three-line systems. If we connect the voltage sources and the loads
in three independent single-phase circuits, we will need six wires; whereas if three-phase circuits are
applied, only three or four wires are required. In real power systems, electricity is transmitted for
tens, hundreds, or thousands of kilometers. In this case, using three-phase circuits is a much more
economical choice.

6.2.2 Power in three-phase circuits

We start from calculating the instantaneous power of the three-phase circuit shown in Fig. 6.2

P(1) = vy, (1), (1) + vy, (1)igg (1) + v, (1) (1)
=V, cos(wt)!, cos(wt — )+ V,cos(wt — 120°)/, cos(wt — 120°— 0)
+V, cos(wt +120°), cos(at +120°— 0) (6.14)

Vil
=3—"Lcos@
2

Apparently, the instantaneous power is a constant that does not change with time. This is another
advantage of three-phase circuits over single-phase ones. In this case, the expression of power is exactly
the same as that of the instantaneous power. If we use the rms values in (6.14), it becomes

P=p(t)=3V,,.1,,,.cos0 (6.15)

Yrms© Lrms

For the calculation of reactive power, we apply the same strategy as used in Chapter 5

0=3V, I

Yrms” Lrms

siné (6.16)
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623 A-NEHE

ZAH S R S A R A A - A RS, Wl 6.3 FTn, —ANHUREEA =AM A (BH
PR Z, =|Z0|260) S EBER =S . X BHBERIEY, . V, MV, 0% T SgdE. %
K 6.3 frns % 51 6.2 ol Nk, £

V, =V, £30° (6.17)
V. =V /-90° (6.18)
V., =V, Z150° (6.19)
a ’:IA A
= +
’AB
y A ) Vi / 7 2 \'CA
i, W bt B Za
N - N —
Vo C Ic C Tnc

K 6.3 —AH RIS T8O = A TRk
Fig. 6.3 A-/\ connection

A BTA HIN
AB=£%¢ng§§:JAAGW—0) (6.20)

e =5~ = g = AC90°0) 621>

I, = ZA = ng‘ljog =1,/(150°-6) (6.22)

R, T, =V /|Z,| Ryt B lmieif . 2 9I7E35 5 Ay By C &S KCL, alf4k B 5 1%
H 2 I RE 2

I, =1, -1, =1,+\32£-30° (6.23)
Iy =Ty — 1, =1, o34 -30° (6.24)
Io=1., —I.=1I.,+\32-30° (6.25)

£ IR M 5 S IR I C RN 1, =31,

S SEBR E P RERRRAL I SL , DIUERTLORESS 5 sRvh Rz Ra A
BRI M TN B AN AT . A, A R R FR A A SR AR T A .

(6611 TEnlEl 6.4 FrosifixdFr =40 =£e il b, Oy s kG 24k 220 v, 4
50 Hz, &AR7ER 0.2 H RS 50 Q AR, RIX 2 —AIEF A HEH A g
FAHRE A 000 SRR R, 2Rl SRS AERI F TR R LI %
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6.2.3 Delta-delta connection

Delta-delta connection is also commonly used in three-phase circuits. As shown in Fig. 6.3, the
three voltage sources and the three loads are connected into a triangular configuration, respectively.

The loads have the same impedance of Z, =|ZA|46’. Under such configuration, the source
voltagesV,, ,V,.andV,, are actually line voltages. Suppose Fig. 6.2 and Fig. 6.3 share the same line

voltages, we have

V, =V, £30° (6.17)
V,. =V, £-90° (6.18)
V., =V, Z150° (6.19)
The load currents are calculated from
v, V,Z30°
=2 = =1,/30°-0

w7, 20 ( ) (6.20)

V. V. £ —90°

I, =-="t=_"" -] /(-90°-¢@

w7, lzze e ( ) (6.21)

V o
_Va _N2150° 1, £(150°-6) (6.22)

Nz, |z.|ze

where I, =V, /|Z,| represents the amplitude of load currents. Applying KCL at nodes A, B and C,
respectively, we obtain the following relationships between line currents and load currents

I,=1,—-1. =1,,\32-30° (6.23)
Iy =1y 1, =I+32-30° (6.24)
Io=1o, — Ty =1+ \32-30° (6.25)

For the amplitude of line currents and that of load currents, we have /| = \/51A .

Analysis of Balanced Three—phase Circuits

Three-phase circuits are actually a special type of sinusoidal circuits. Therefore, we can apply
the steady-state sinusoidal analysis techniques to three-phase circuit analysis. Besides, it is
convenient to solve the circuits as they are balanced.

Example 6.1: Consider the balanced three-phase circuit shown in Fig. 6.4, which is a
three-phase three-line system. The sources provide sinusoidal voltages of 220 V amplitude (rms
value) and 50 Hz frequency. For each phase the load is a 0.2 H inductor connected in series with a
50 Q resistor. Suppose the source voltages have a positive phase sequence and the phase angle
corresponding to the voltage of phase A is 0°. Solve for the line voltages, line currents, average
power and reactive power delivered to the loads.

Solution:

According to the given information, we can write the phase voltages

V,, =220:/2£0°V
V,, =22072£-120°V
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6.4 6.1 (1K E
Fig. 6.4 Circuit diagram for Example 6.1
fE MRS SRR, T SR AT R A
V, =2208220°V
V,, =220J2£-120°V
V, =22082£120°V
FH T I — NP A, T DM a n AT NOEAE ) . ARPEC (6.7) ~2L (6.9),
AR A 4 2 HUTE
V, =V, +3£30°=381/2430° V
V,, =V, +\3/30°=381/2/-90° V
V. =V, +\3£30°=381422150°V
FH %0 2 At mT
Zy =R+ jowL =50+ j21x50%0.2 =50+ j62.8 =80.27./51.47°Q
R WA s AR (6,100 ~3X (6.12), HLEHIf N
vV,  2202£0°
“ Tz, 802725147°
I, =1,£-120°-51.47°=388/—171.47° A
I.=1,2120°—51.47°=3.88./68.53° A
TEGHFER DRI e 3l X (6.15) FIEL (6.16) Kifh:

=3.884-51.47°A

P=3V, I cosf=3x220x 00 cos(51.47°) = 1128.14 W

V2

O=3, I, sinf=3x220x >0 sin(51.47°) =1001.63 var

2

7N AR SRR ]

AR BRI — AN Y R O R, ) A RS, 48 Ak s e
EER AR . TR REE R KR SR, ek L BREAS e 2B AN
BIZEEAT HL % 23 AT I 75 2225 RE AL S e 1 B e

[616.2] FHEWE 6.5 (a) Pl Xt —PNA-AERLMAFR =A%, bl
V, =14.14/3230°kV , FLMHT Z, =03+j0.4Q, I Z, =30+j6Q . RKLkifi. &
WAL HE . AR o R UG R -1 %
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V, =220722120°V
As it is a balanced three-phase circuit, we can assume that node n and node N are connected.

Hence, according to (6.7)~~(6.9), the line voltages can be obtained from
V, =V, *\330°=381J2/30° V

V,. =V, *\/3£30°=38142£-90° V
V. =V, «J3230°=38112/150°V

The impedance of each phase of the loads is computed as
Z, =R+ joL=50+j2ntx 50x0.2=50+ j62.8=80.27251.47°Q
Thus, according to Ohm’s Law and (6.10)~(6.12), the line currents are calculated as follows
V., 22042.0°
Z, 80.27/5147°
I, =1, 24(-120°-51.47°)=3.88£4—-171.47° A
I.=1 2(120°-51.47°)=3.88£68.53° A

The power and reactive power delivered to the loads are given by (6.15) and (6.16)

P=3V, I _cosf=3x 220><3'88

Yrms*® Lrms
V2

Q=3V, [ ..sinf=3x220x 'Ssin(51.47°)21001.63var

ms” Lrms [ 2

” Discussion: Application of three-phase circuits in practice

=388£-5147°A

aA

cos(51.47°)=1128.14 W

Three-phase circuits are widely used in our power systems. Three-phase electricity is generated
in power plants, transmitted through transmission lines to users, and consumed by loads. As
electricity is usually transmitted through a long distance, the impedance of transmission lines should

not be neglected. Therefore, we need to consider the line impedance in our analysis.
Example 6.2: Consider the circuit shown in Fig. 6.5 (a), which shows a balanced three-phase circuit in

delta-delta connection. The line voltage is V, = 14.144/3.230°kV , each line has an impedance of
Z, .=03+j0.4Q and the load impedance of each phase isZ, =30+ j6 Q. Find the line current,
line-to-line voltage at the load, the power consumed by the loads, and the power dissipated in the wires.

) 3

line

Nikola Tesla (0 9u_/y 1856 - 7 %mumy 1943) was a
Serbian American inventor, electrical ngineer, hanical engineer,

and futurist. He is best known for his contributions to the /exgn of

the modern aﬂ‘emaﬁnﬂ current (ac) e/ecln’c@ ruﬂp@ system. The
unit of magnetic flux a/emig was named the tesla in his honor.
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N+ 4
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Vbc C Zlmc {94
o 1 o
O 1 I O
(a)
'nA a lenc
— e\ 1
- | ===}
Ve
“ z hs b Ziine
— —
e | ===
Ic Ziine
o r 1
| S |
(b)

K 6.5 6.2 frHiEEE
(a) JFUERA-ABEREIIX AR =ATHLER: (b) S0 Y-YIER M R0
Fig. 6.5 Circuit diagram for Example 6.2
(a) Original balanced three-phase circuit in delta-delta connection;

(b) Equivalent circuit in wye-wye connection

i MR, SEREMMZERE Ve NS T REMPALHEIE Vag. XL 4%
SR A=A ERE A HU A TSR A T AR R IR S DRI RAT T A - A I P 35 A 4
B Y-Y R, Wi 6.5 (b) iR, XK, ZERMHPIAAE, WiidE g (6.7) ki3

Kn=:E%%6;=14J440°kV

HRHE S 2 3 A B B ASE e A 3X (2.27) AT4NL, AJERRI Rl Y &G, A%

RBHPTAE Ky
Z,=27,/3=10+2=102211.31°Q

16 Y-Y M RR = AR h, AT LM P2k N A77E, WIFE A AR TR0 b o) A 40 1t

SERF W T

I, = Vo _ 14}'14400 —=1.34/-13.12°kA
Z +Z, 03+j0.4+10+ ;2
G AR L A
Vi =1 42, =1.342-13.12°x10.2/11.31°=13.67£-1.81° kV
BN R £ L R A

V. =V, V3£30° =23.68£28.19° kV
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Solution:

As the impedance of the wires cannot be neglected, the line voltage at the source, Vb, no
longer equals the line voltage at the load, Vag. Under such a delta-delta configuration, it takes a
great deal of computation to solve the circuit. Therefore, we propose to transform the
delta-delta connection into the equivalent wye-wye connection, as shown in Fig. 6.5(b). In this

case, line impedance remains the same; phase voltage of the source can be calculated from

Vay =14.1420°kV

V =
® - J3/30°

In Chapter 2 we learnt how to transform delta-connected resistances into its equivalent

wye-connected resistances. In the same manner, we convert the delta-connected loads into wye

connection, and the equivalent impedance is
Z,=2,/3=10+j2=10.2£11.31°Q

In a balanced three-phase circuit of wye-wye connection, we may assume the neutral points n

and N are linked together. Hence, applying Ohm’s Law in the loop of phase A, we get

v, 1420°
[o=—tm 120" 5 130204
Z, +7Z, 03+j04+10+]2

The phase voltage at the load is

Vi =1 42, =1.342-13.12°%10.2211.31°=13.67 £ —1.81°kV
And the line voltage at the load is

V.o =V V3230° = 23.68.228.19° kV

=

Thomas Allua Edison (1 February, 847 ~ 18 October, 1951) was
an American inventor and businessman, %eryéw‘cex(ﬁat
greatly influenced e around the world including the phonogeaph, the
mofion picture camers, Mn@@ﬁypmcﬁm/cém@ﬁ{%
Edlson imentzd an entire electrical system of sockebs, cables, meters to go with
it, and a ground-breaking new way of distriluding electricity, However, he
ummnwhw(@ﬁﬁébwva@eyrﬁzm,ﬁae@/maéaﬁ%ﬁmkﬁm
éan/m/x;w;yfmv, between Edlson and Testa
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mf\%sﬁ = 8 o8 B

I T LR O R T R Bk B BT AE — 800, /el i X C6.14) tHEE A,
Fa EACA T AR B R L ifE, B

v.|lI
P=3%cosé’= 3x%ﬂ|cos(11.31°) =26.94 kW
A MRS FHFEI TN

= 2

aArms~ “line

P

Aline

2
= [ﬁ) x0.3=0.28kW

V2
AP L L ROBUREATI, DR A4 O B AR
Rinc = 3PAline = 0-85 kW
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v

It should be noted that the power supplied by the source is partly absorbed by the line. As a
result, when we apply (6.14) to calculate the power delivered to the load, we need to use the phase
voltage and line current at the load

VI Vsl
P= 3%0059 =3x Wcos(l 1.31°) = 26.94 kW

The power lost in line a-A can be found by

2
PAlinc = [;AnnsRlinc = (ﬂ) X 03 = 028 kW

V2

The power dissipated in the other two lines is the same; thus, the total loss is

lee = 3IJAhne = 085 kw

o Problems

P6.1 A balanced positive-sequence wye-connected three-phase source has line-to-line
voltages of 380 V rms. This source is connected to a balanced wye-connected load, as shown in

Fig. P6.1. Each phase of the load isZ =3—j4 Q. Find the instantaneous current of i,, &y, ic,
iy, , the apparent power, average power and the reactive power delivered to the load. Assume that
the phase of V, is zero.

P6.2 In the balanced three-phase system with a line-to-line voltage of 380 V in Fig. P6.2,
each load has an impedance of Z=24+j18 Q. Find the line current of [, I,;, I. and plot

phasor diagram. Assume that the phasor of V,, =3802£0°.

l'nA

,Nu
-

o=

Fig. P6.1
'.'l/\
Iy I\p
e — —
' ~ b B ;7_I "
> Y z  z
x IB& /ICA
C IcC C
Fig. P6.2
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Diodes introduced in this chapter, are a type of widely used semiconductor devices. A diode
allows a high current to flow from the anode to cathode but a very low current in the reverse
direction, aka unilateral conductivity. Taking advantage of this feature, diodes find themselves in
switches, rectifiers, clippers and so on. Diodes can also be used for demodulation, voltage regulation,
glowing, etc, due to other features.

This chapter begins with some general concepts of the diode such as the structure of
semiconductor materials and the characteristics of a PN junction. Afterwards some models of the
diode are introduced for circuit analysis. Finally, some practical circuits including rectifier, clipper,
clamping circuit and buck converter are discussed.

7.1 General Concepts

7.1.1 Intrinsic Semiconductor and Doped Semiconductor

A semiconductor is a material whose conductivity is between that of a conductor and that of
an insulator. The common semiconductor materials are made up of Group [V elements such as
silicon and germanium. The pure crystal aka crystalline of these elements is intrinsic
semiconductor, in which each of the four valence electrons of an atom forms a covalent bond
with one valence electron of its four neighboring atoms, attaining a stable structure shown in
Fig. 7.1 (a). Few excited electrons lead to the poor conductivity of the intrinsic semiconductor at
room temperature.

Doped semiconductors are formed by adding a tiny amount of dopants to intrinsic
semiconductors. For example, after adding a tiny amount of Group V phosphorus to the
intrinsic silicon semiconductor, only four of the five valence electrons of a phosphorus atoms
can form covalent bonds with its four neighboring silicon atoms, resulting in one valence
electron free and easy to excite at room temperature, shown in Fig. 7.1(b). As a result, the
conductivity of the material is improved. The current is mainly contributed by the moving
electrons in this kind of pentavalent impurity doped semiconductor, thus electrons are called
major carriers and phosphorus donating electrons are called donor. The semiconductor doped
with Group V elements is called N-type semiconductor. Similarly, after adding a tiny amount
of Group [II boron atoms to the intrinsic silicon semiconductor, all the three valence
electrons of a boron atom form covalent bonds with three of its four neighboring silicon atom,
resulting in one silicon atom and its broken bond, that is, a hole, to attract unbound electrons,
shown in Fig. 7.1(c). The current is mainly contributed by the moving holes in this kind of
trivalent impurity doped semiconductor, thus the holes are major carriers and the electrons
turn to be minor carriers. Boron donating holes is called acceptor. The semiconductor doped
with Group Il elements is called P-type semiconductor. The more the dopants, the better the
conductivity. So controlling the dopant concentration can alter the conductivity of the
semiconductor. It should be noticed that, doped semiconductors are uncharged because the
quantity of the positive charge and the negative charge are equal, and the electrical neutrality

i1s maintained.
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7.1.2 PN junction

PN junction is the interface between N-type and P-type semiconductors formed
by doping a substrate. Just like that the molecules of cube sugar dropped in water
diffuse due to the sugar concentration gradient till they form a homogeneous solution,
the free electrons from the N-type and holes from the P-type diffuse into the opposite
region across the interface and recombine due to the concentration gradient. But the
diffusion won’t last to the uniform concentration of the electrons and holes. As the
electrons diffuse, they leave fixed positively charged ions in the N region near the
PN interface; similarly, the holes leave fixed negatively charged ions in the P region.
These two regions become charged, and form the space charge region where there is
an electric field, forcing the electrons and holes drift in the opposite direction of the
diffusion, shown in Fig. 7.2. When the drift and diffusion process reach an
equilibrium, the net current flowing through the PN junction is zero. The space
charge region is also called depletion layer because of few free electrons and holes
there.

The PN junction is unilaterally conductive. When the P side is connected to the
anode of a battery and N side to the cathode, the external electrical field opposes the
build-in electrical field and alleviates the latter, breaking the equilibrium of the drift
and diffusion motion. The diffusion then dominates, causing a current to flow from
the P side to the N side, as shown in Fig. 7.3 (a), and the PN junction is on. On the
contrary, when the P side is connected to the cathode of a battery while N side to the
anode, the external electrical field reinforces the build-in electrical field and the
space charge region is widened. The drift then dominates, causing a current to flow
from the N side to the P side, as shown in Fig. 7.3(b). But the amount of the minor
carriers that take part in this process is very tiny, leading to an also tiny reverse
current. Thus the PN junction is considered as off-state. However, once the
reverse-biased voltage goes beyond a certain level, the reverse current increases
suddenly and the PN junction breaks down. The I-V characteristic of a PN junction is
shown in Fig. 7.4.

The relationship between the current / flowing through and voltage V across a PN
junction is

I=1,"" -1) (7.1)
where /g is the saturation current, and V; is the thermal voltage. The thermal voltage is
defined by

Vi=kT/q (7.2)

where £ is the Boltzmann’s constant; 7 is the absolute temperature and ¢ is the

magnitude of the electronic charge. V't is approximately 26mV at the room temperature
(7=300K).
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Equation (7.1) shows that, when the PN junction is forward biased and V>0 ,
approximately equals to /;e’ ' and the current changes with the voltage exponentially; when the PN
junction is reverse-biased and Vg, <V <0, &' is nearly 0 and / approximately equals to—/,

showing that the reverse current remains unchanged. When V' <V, , the diode breaks down and the
reverse current increases dramatically.
The PN junction can also be regarded as a capacitor. This capacitor is made up of two

components, depletion capacitance and diffusion capacitance, respectively. When the voltage across
the PN junction varies, the width of the depletion layer as well as the charge stored in the space
charge region also varies, acting like a capacitor, named as depletion capacitance. When the voltage
of the forward bias changes, the amount of the minor carriers sweeping through the depletion layer
to the opposite region due to the diffusion also changes, acting like a capacitor as well, named as
diffusion capacitance.

7.1.3 Diode

The PN junction after packing becomes a diode, whose symbol is shown in Fig. 7.5. The actual
[-V characteristic of a diode is shown in Fig. 7.6. It shows that the current does not increase until the
forward bias voltage goes beyond a certain value. The voltage needed to turn on the diode is called
threshold voltage, and it varies among diodes of different materials. The threshold voltage of the
silicon diode is about 0.7V, while that of the germanium diode is about 0.2V.

7.2 I-V Characteristics and Model of Ideal Diode

The threshold voltage and reverse current of an ideal diode are both zero, with I-V
characteristic shown in Fig. 7.7. The ideal diode acts like a short circuit with zero resistance when
forward biased and an open circuit with infinite resistance when cut off. The ideal diode is
symbolized by an empty triangle as shown in Fig. 7.8. It is convenient to analyze the circuit with the

ideal diode model when the precision does not really matter.

L‘@‘
More facts about diodes

The most common function of a diode is to allow an electric current to pass in one
direction (called the diode's forward direction), while blocking current in the opposite direction
(the reverse direction). However, diodes can have more complicated behavior than this simple
on-off action, because of their nonlinear current-voltage characteristics. Semiconductor diodes
begin conducting electricity only if a certain threshold voltage is present in the forward
direction. The voltage drop across a forward-biased diode varies only a little with the current,
and is a function of temperature; this effect can be used as a temperature sensor or as a voltage
reference.
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Example 7.1: Try to find out the output voltage V, of the circuit shown in Fig. 7.9 with the
model of ideal diode when

a) Va=0V, Vg=0V;

b) Va=0V, Vg=5V;

c) Va=5V, Vg=0V;

d) Va=5V, Vg=5V.

Solution:

a) When both V4 and Vg are 0V, VD4 and VDg are on, just like short circuits as shown in Fig.
7.10(a). Thus V, is OV;

b) When ¥V, is 0V andV,is SV, VD, is short and VDg is open, as shown in Fig. 7.10(b). Thus
V. is0V;

¢) Similarly, when V, is 5V and V; is OV, VD, is cut off and VDg is on, as shown in Fig.
7.10(c). Thus V, is0V;

d) When both V, and Vare 5V, both VD4 and VDg are on, as shown in Fig. 7.10(d). Thus V,
is 5V.
The results are summarized in Fig. 7.10(e).

O

More facts about diodes

Thermionic (vacuum tube) diodes and solid state (semiconductor) diodes were developed
separately, at approximately the same time, in the early 1900s. They were used as radio receiver
detectors, and until the 1950s, vacuum tube diodes were used more frequently because the early
point-contact type semiconductor diodes were less stable.

In 1873, Frederick Guthrie discovered the basic principle of operation of vacuum tube
diodes. Guthrie discovered that a positively charged electroscope could be discharged by
bringing a grounded piece of white-hot metal close to it (but not actually touching it). The same
did not apply to a negatively charged electroscope, indicating that the current flow was only
possible in one direction. Thomas Edison independently rediscovered the principle in 1880, and
devised a circuit which produced one-way current, the phenomenon of which was later on
referred Edison effect by a British scientist. About 20 years later, John Ambrose Fleming
realized that the Edison effect could be used as a precision radio detector.

In 1874 German scientist Karl Ferdinand Braun discovered the unilateral conduction of
crystals, and crystal was used for detecting radio waves later on. The crystal detector was
developed into a practical device for wireless telegraphy. Early crystal detectors suffered from
some drawbacks and were superseded by vacuum tube diodes by the 1920s. But in the 1950s,
after high purity semiconductor materials became available, the crystal detector returned to
dominant use with the advent of inexpensive fixed-germanium diodes.

141



3 RN RS L R

MR KA (AR 2245 i nT BB, 4NN e i) o T T2 (N B 1) HLEHG 28R 14 K
X A R A, G 701 e B ri i g I B S [ HIAT AR AR AR K, &MM&Lnibﬁ
mm&w,hﬁﬁEhﬁ FeON W A TAREIXFRAS N R AR PR A, oAt

» AP S 7.2 fos. 1ER EF R EA TR, 9SS &a%# J [m) ki
?m,ﬁwgm R T AN R — AN B R I, BN 7.13 s, B vz 5598
B I S ) o 2 e A AR IR, FROMRSE HLHR s v M IR )i 57 (1 P B

TG R T A AR 8 1 HL I E
; W, HLL I N AR R AN, AL LA

pich|EIUES MY S URETITE (187 NN £ e & AN U LR W
v, B ZANY YT RS [P P -7 N /N1 2 Y
S " v IIRIREE I, 111, F05. FFEDHE
- BB AL o
'S
__________________ Flh FA##% (anode) M PH#H (cathode)
B 700 B —BAE  ro ob 5F RAR ek Bl 702 SR BT
Fig. 7.11 The I-V characteristics of Fig. 7.12  The symbol of the Zener diode

the diode in the breakdown region

(] 7.2] WilEl 7.14 fros, ERUEHET, MARLEY, =8V, RIKENERELLY, =4V,
B/ IRE L i =10 mA,  J5 KBS SE HUIL £ =20 mA, T HIBH R, =400 Q, SKFRUFTHLFL R
AIHR AR VE .

VDI
% R
N o 1 0+
+
i, R Rvs .
N Iy —
1% Ik — a
VD2 "z e i
Kl 713 SR AR Kl 7.14 1 7.2 Wk
Fig. 7.13 The model of the Zener diode Fig. 7.14 Circuit diagram for Example 7.2

R LR AT AR AR WL L, AR B AL £ 2 i

1, =V, /R, =(4/400)A=10 mA
1,=10~20 mA
Jit A
I, =20~30 mA
ESS|
Ve =V, —V,=(8—4)V=4V

142



—

Chapter 7 Diodes @

/

~_—~

Model of Zener Diode

The I-V characteristic of the diode in the previous section shows that the reverse current
increases suddenly and the diode breaks down when the reverse-bias voltage goes beyond a certain
level, as shown in Fig. 7.11. In the breakdown region, the reverse-bias voltage remains nearly
unchanged though the reverse current changes a lot. The Zener diode is such a type of diode that
works in the breakdown region, and is usually used as a voltage regulator. Its symbol is shown in
Fig. 7.12. When it is forward biased or unbroken down, the Zener diode behaves like a normal diode.
But when it breaks down, the Zener diode acts like a voltage source and a resistor connected in
series, whose model is shown in Fig. 7.13, where V7, called Zener voltage, denotes the voltage
beyond which the Zener diode starts to work steadily and r, denotes the resistance in the
breakdown region.

The Zener diode only works as expected within a certain current range. It does not work
properly when the current is too small; otherwise, it would be damaged due to high temperature
when the current was too large. The lower limit of the current range is denoted by /zmin, While the
upper limit is denoted by /zma.. Therefore, we usually put a current-limiting resistor in series with
the Zener diode.

Example 7.2: Determine the resistance range of the current-limiting resistor R in the voltage
regulation circuit as shown in Fig. 7.14, where the input voltage V=8 V, the Zener voltage Vz=4 V,
the minimum allowable current /7,,i,=10 mA, the maximum allowable current /7,:,x=20 mA and the
load resistor R =400 Q.

Solution:

The current flowing through R is the sum of /7 through the Zener diode and /;. through the load. Since

I, =V, /R,_=4/400=10 mA

1,=10~20 mA

we have

I, =20~30 mA

Since

Vo=V, ~V,=8-4=4V
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we can get
Rmax = VR /[R min =(4/002) 92200 Q

R. =V /1

min R Rmax

=(4/0.03) Q=133 Q

Thus the current-limiting resistor is in a range of 133 Q to 200 Q.
/" Discussion: Analysis of rectifier, clipper, clamping circuit and buck converter
1. Rectifier
A single-phase full-wave rectifier is shown in Fig. 7.15, and the input is a sine wave with peak
amplitude of 50V. Please

(1) Explain the operation of the rectifier;

(2) Determine the mean value of the output voltage and current;

(3) Assume the input voltage fluctuates 10%, please select the optimum diode which can
sustain the maximum reverse-bias voltage in the circuit.

Analysis:

When V; goes positive, VD1, VD3 are on, and VD2, VD4 are off. Thus the current
through R flows from top to bottom, as shown by solid line in Fig. 7.15. When V; goes negative,
VD1, VD3 are off, and VD2, VD4 are on. Thus the current through R also flows from top to bottom,
as shown by dashed line in Fig. 7.15. The waveforms of the output voltage and current are shown in
Fig. 7.16 . Thus the rectification is realized.

Within one cycle, there is

1 ey, 2
Ve =EL v, smwt]d(a)t)=;V,

I,..=V. . /R

oavg oavg

If the input voltage varies in the range of 10%, the maximum reverse-bias voltage of the diode
in the circuit is 1.1x50=55 V. The breakdown voltage of selected diode is Vigr) >55 V.

2. Clipper Circuit

Clipper circuit is usually used to limit the amplitude of signal at some node. When the
amplitude is within the specified range, the clipper is inactive; while the signal amplitude is over
the specified range, the clipper starts to prevent it from further increasing or decreasing. The
characteristics of diode including the unilateral conduction and nearly fixed turn-on voltage are
explored to design the clipper. As shown in Fig. 7.17, Vi=10sin @t V, with the assumption of Vp
=0.7 V, please determine and plot the relationships of V; and V..

Analysis:

(1) when -5.7 V=V;<5.7V, both VDI and VD2 are turned off, and V, = V;;

(2) when V;<-5.7V, VDI is off while VD2 is on, and V,=-5.7 V;

(3) when V;= 5.7V, VDI is on while VD2 is off, and V,=5.7 V;
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(a) The equivalent circuit when the input goes up: (b) The equivalent circuit when the input goes down: (¢) The waveforms
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The waveforms of V,, and V; are plotted in Fig. 7.18.

3. Clamping circuit

A clamping circuit, aka DC voltage restorer, can fix either the positive or the negative peak at a DC
value. A clamping circuit is shown in Fig. 7.19, where the input is a square wave with a period 7 and peak
amplitude V; Rp, is the on-resistance of the diode VD, and the time constants R,C <7 < RC V.. <V .
Please analyze the output voltage.

Analysis:

When ¥, goes positive, the diode VD is on and its on-resistance R, is much less than R.
The branch R becomes an open circuit and the circuit should look like Fig. 7.20 (a). Because the
time constant R,C < T, the capacitor completes charging quickly and the output obtains Vp; .

The capacitor voltage Ve is V =V . When Vj goes negative, the diode VD is off and the branch of
VD becomes an open circuit as shown in Fig. 7.20(b). But the time constant RC >T , the
capacitor discharges slowly and its voltage remains nearly unchanged. Then the output V,

keeps 0=V, =0—(V —Vppr) =Vier =V . The waveform of the output is shown in Fig. 7.20(c),

where the positive peak of the square wave is moved to V.

More facts about diodes

A semiconductor diode’s current-voltage characteristic can be tailored by selecting the
semiconductor materials and the doping impurities introduced into the materials during
manufacture. These techniques are used to create special-purpose diodes that perform many
different functions. For example, diodes are used to regulate voltage (Zener diodes), to protect
circuits from high voltage surges (avalanche diodes), to electronically tune radio and TV
receivers (varactor diodes), to generate radio-frequency oscillations (tunnel diodes, Gunn
diodes, IMPATT diodes), and to produce light (light-emitting diodes). Tunnel, Gunn and
IMPATT diodes exhibit negative resistance, which is useful in microwave and switching

circuits.
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4. Buck converter

The simplest way to reduce the voltage of a DC supply is to use a linear regulator such as
7805, but it is less energy efficient. Buck converters, on the other hand, can be an efficient
solution. The basic circuit diagram of a voltage step down buck converter is shown in Fig.
7.21, where the capacitor C is assumed big enough. Please

(1) Find out the current direction when switch S is on and off;

(2) If S is controlled by a square wave whose period is 7 and duty is D, please explain how the
voltage step-down is realized and the relationship between the output voltage ¥, and the input
voltage V.

Analysis:

(1) When S is closed, diode VD is cut off as an open circuit, and the current flows from the
positive polarity of the voltage source through inductor , load resistor R and filter capacitor C, then
backs to the negative polarity of the voltage source as shown in Fig. 7.22 (a). When S is open, the
inductor releases its energy. The diode is on and the current flows from the inductor, then through
the resistor and the capacitor, through the diode, and finally backs to the inductor as shown in Fig.
7.22(b).

(2) Firstly, we do the qualitative analysis. If we assume that the circuit operates in a steady state,
the state of the circuit at the beginning of one cycle is the same as the one at the end of the same
cycle. When S is on, the source V; supplies the circuit and current /i increases linearly, resulting in a
constant voltage drop across the inductor. The constant part of this current, /g, flows through the
resistor, and the variable part /¢ flows through the capacitor (the capacitor is assumed so big that the
capacitor voltage V, remains nearly the same as the current flows through the capacitor). The output
voltage V, is a constant. When S is open, the inductor, used as a temporarily source, releases the
energy it stores and maintains the current through the diode, and current /; decreases linearly (we
assume that the current does not fall to zero at the end of the cycle), producing a voltage drop V.
=—V, that is as large as the output voltage but in the reverse polarity. At the same time, the capacitor
provides part of the current to keep /g constant (the capacitor is big enough and the voltage across it
remains unchanged). The output voltage, V,, still maintains as a constant. The waveforms of the
control signal, the diode voltage Vp, the inductor voltage V1, the current /i, and the output voltage V,
are shown in Fig. 7.23.

(3) Now we do the quantitative analysis. The voltage across a inductor is defined by

V, =Ldl/dt
When S is on,
Vo=V.-V,
and when S is off,
V.=V,
we can get
dI,, = jnm%dzz 4 2V° DT
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and

T V) -V,
Al = urfdt_ ~

Since the circuit operate S in a steady state, the current of the inductor remains unchanged after one
cycle, thatis d/ +d/; =0, and we get

(1-D)T

v, =DV, ="y,
T

We assume that the current does not fall to zero at the end of a cycle in the analysis above. It
becomes more complicated if that current falls to zero, or in other words, the currents of the
inductor are zero both at the beginning and at the end of a cycle. Under this condition, output
voltage V, is related to the inductance of the inductor, L, and load current /,, and V,, is written by
1
V=V ——-——
o 1 2L10
i
DVT

o Problems

P7.1 Find the values of ¥, in the circuits shown in Fig. P7.1 and explain the bias condition of
the diodes, reverse-bias or forward-bias?

P7.2  As shown in Fig. P7.2, Vpp=3 V, R=4.7 kQ, please determine the V,. VDI and VD2 are
assumed to be ideal diodes.

() =0V, =0V,

) N=0V, =3V,

(3) =3V, V=3 V.

P7.3 As shown in Fig. P7.3, Vi= 10sin @t V, if the turn-on voltage is ignored, please plot the
V.and V, .

P7.4 As shown in Fig. P7.4, V,=10V, Zener voltage V,=6V, [

power consumption the Zener diode can sustain is P, =150 mW. Determine the resistance limits
of R.
P7.5 As shown in Fig. P7.5, in the clipper circuit, the input is ¥/i=10sin @t V. Plot the V;, and the

=5 mA, the maximum

Zmin

transform characteristics of the circuit. VD1, VD2 are assumed to be ideal diodes.

&
+
N " 3kQ 3KQ
svT 2kQ 1, sV .[ 2kQ Vs Vo Vo
5V 2V SV= 2V
o- &~ LT - .
(a) (b) (¢) (d)
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3ka ooakef] ke
y o
I, M)[J v, 3kQ g K 1,
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Fig. P7.1
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Bipolar junction transistors are a type of current-controlled devices, consisting of two
back-to-back PN junctions. The name ‘bipolar’ comes from the fact that both electrons and
holes are carriers. Generally, the term transistor refers to bipolar junction transistor, abbreviated
as BIT.

This chapter begins with some general concepts such as the principle and I-V characteristics of
the transistor. Then we do the large-signal and small-signal analysis of transistor amplifiers. Finally,

a few types of practical amplifiers are discussed.
8.1 General Concepts and I-V Characteristics

8.1.1 General concepts of transistors

A transistor is formed by two back-to-back PN junctions doped on the same substrate and its structure
is shown in Fig. 8.1. It has three terminals, labeled with emitter (), base (b), and collector (c) respectively.
The structure of NPN transistor is shown in Fig. 8.1(a). The N-type substrate serves as the collector. Then
the P-doped layer formed by ion diffusion on the substrate servers as the base, and the emitter is the heavily
doped N region formed by ion implantation on the base. Similarly, for a PNP transistor whose structure is
shown in Fig. 8.1(b), the P-type substrate serves as the collector. Then the N-doped layer formed by ion
diffusion on the substrate servers as the base, and the emitter is the heavily doped P region formed by ion
implantation on the base. Among the three regions of a transistor, the emitter is doped so heavily that it can
contribute a large number of carriers when the junction is forward-biased. The base is a very thin layer
doped several orders of magnitude smaller than the emitter, leading to few carriers diffused from the emitter
recombining here. For the collector, its area is comparably large and easy to collect the carriers that manage
to escape the recombination in the base. The symbols of transistors are shown in Fig. 8.2, where the
arrowhead points the directions of the emitter currents. The symbol of NPN transistor is shown in Fig. 8.2(a)
with an outgoing arrowhead denoting the current flows from base to emitter. The symbol of PNP transistor
is shown in Fig. 8.2(b) with an ingoing arrowhead denoting the current flows from emitter to base. In this
chapter, the basic operation of NPN transistors is discussed, while the analysis of PMOS transistors is
handed over to readers.

8.1.2 Operation in active region

Consider the transistor in the configuration shown in Fig 8.3, where the emitter-base junction is
forward-biased and the collector-base junction is reverse-biased. The transistor then operates in the
active region. A small current change in the base can cause a big change current in the collector and,
namely, the transistor amplifies the current variation. We are going to talk about the carriers in detail
taking the NPN transistor as example.

1. Emitter current: the diffusion of the major carriers

Due to the forward-biased emitter-base junction, the major carriers from the emitter, namely
electrons, diffuse to the base, and the major carriers from the base, namely holes, diffuse to the
emitter simultaneously , forming the emitter current. That is, the emitter current is the diffusion
current of a forward-biased PN junction. But generally the emitter is heavily doped and provides

tons of electrons, while the base is doped several orders of magnitude smaller than the emitter, thus
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the current due to the diffusion of the holes can be omitted. Approximately, the emitter
current is regarded as the diffusion current of electrons.

2. Base current: the recombination of the electrons and holes

The base is thin and doped so lightly that the major carriers, namely the holes, are
several orders of magnitude smaller than the electrons diffused from the emitter. Thus only
a fraction of the electrons from the emitter are recombined by the holes in the base,
forming the base current.

3. Collector current: the drift of the electrons in the base

With the collector-base junction reverse-biased, the electrons in the base
including those from the emitter without recombination and the intrinsic minor carriers
of the base itself drift to the collector. At the same time the minor carriers, the holes,
from the collector drift to the base as well, both leading to the collector current. That is,
the collector current is drift current of a reverse-biased PN junction. But comparing to
a single reverse-biased PN junction, because that the electrons diffused from the
emitter greatly increase the number of the minor carriers of the base, the collector
current is comparably large even though the base-collector junction is reverse-biased.
In addition, generally the number of intrinsic minor carriers of the base itself is so
small that it can be ignored, thus the collector current is the drift current of the
electrons in the base.

The /-V characteristic of the transistor operating in the active region is shown in Fig.
8.4, marked with active region. When the base current /p is fixed, the collector current /¢
does not increase significantly though the collector-emitter voltage Vg increases, the
collector appearing large resistance. This is because, according to the above analysis, the
collector current is essentially the reverse-biased junction current and the number of the
minor carriers contributing to the current is determined by the electrons diffusing from the
emitter instead of the intrinsic ones provided by the collector itself, which is too small to
be noticed. When Vg is fixed, the change in the base current /g causes the change in the
collector current /c. As we can see in active mode, the collector current /¢ is mainly
controlled by the base current /g. That is, the transistor amplifies the current variation.
Now the relationship between the collector current /c and the base-emitter voltage Vgg is
defined by

I, =g’ (8.1)
where /s is the saturation current and V7 is the thermal voltage.

It is also obvious that there are some certain relationships among the emitter current,
the base current and the collector current. We assume that the base current /g and the
collector current /¢ flow in the transistor while the emitter current /¢ flows out as shown in
Fig. 8.3. Because the current flowing in the transistor must flows out, approximately, we
have

L=+l (8.2)
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The ratio of the collector current /¢ and the base current /g is defined by
B= fe (8.3)
[B
where £ is called the common-emitter current gain. Transistors for different purposes have
different f values. Generally, A is in the range of 50 to 200, but it can be as high as 1000 or as low
as 30 to 40 for special transistors. One of the two main factors affecting / is the base width, and the
other is the dope densities of the emitter and the base.
If we substitute (8.2) into (8.1), we have the relationship between the emitter current /g and the

collector current /¢, defined by

1
1.5[;“]& (8.4)
that is 5
I(':@[F. :a]E (8.5)
where
_B
a 1B (8.6)

is called the common-base current gain. Generally, B is large, thus « is less than but very close to
unity. For instance, if # =100, thena =0.99.

8.1.3 Operation in saturation region

When the emitter-base junction is forward-biased, and the collector-base junction is also
forward-biased or reverse-biased so lightly that the minor carriers in the base does not drift to the
collector entirely, the transistor then operates in the saturation region as shown in Fig 8.4, marked
with saturation region. Now the collector current depends on both the base current /g and the
collector-emitter voltage V.

8.1.4 Operation in cut-off region

When both the emitter-base junction and the collector-base junction are reverse-biased, only a
tiny current flows through the transistor, and the transistor then operates in the cut-off region as
shown in Fig 8.4, marked with cut-off region accordingly. Transistors working in the cut-off region
can represent the low level in digital circuits.

8.1.5 Operation in reverse region

When the emitter-base junction is reverse-biased, and the collector-base junction is forward-biased, the
transistor then operates in the reverse region. In contrast to the active region, now the collector and the
emitter are used conversely. As the emitter and collector are very different both in shape and in dopant
density, the common-emitter current gain /3 is lowered greatly due to less major carriers diffusing from the
collector to the base. Only in some specific digital circuits, transistors work in the reverse region.

8.1.6 Summary of transistors

Transistors are formed by two back-to-back PN junctions. Unlike a single PN junction, the two
PN junctions do have special features in various bias conditions due to the very thin base region.
Different operation modes and their related bias conditions of transistors are summarized in Table

8.1. When the emitter-base junction is forward-biased while the collector-base junction is reverse
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biased, taking NPN for example, the electrons of emitter diffuse to the base, leading to the emitter
current. Except that a fraction of the electrons recombine the holes in the base leading to the base
current, the majority of the electrons drift to collector with the collector-base junction
reverse-biased, resulting in the collector current. PNP counterparts work similarly. Then the
collector current /- is a few times of the base current /g but not controlled by the collector-emitter
voltage Vg, and the transistor amplifies the current. We usually put transistors in the active region

in analog designs.

Large—signal Models of Transistors

The large-signal model of a transistor in active mode is shown in Fig. 8.5 (a). The large-signal
behavior of the transistor in the active mode can be analyzed with the help of the large-signal model,
which is suitable to determine the bias condition. A diode is modeled between the base and the
emitter, denoting that the emitter-base junction is on when forward-biased, and the base current 7/ is
defined by
BB

A controlled current source is modeled between the collector and the emitter denoting that the

(8.7)

collector-emitter voltage Vg ideally has no influence on the collector current and the collector acts
as a high-impedance resistor. The collector current /¢ is defined by
Y. (8.8)
Similarly, the large-signal model of PNP transistor is shown in Fig. 8.5(b).

8.3 Large—signal DC Analysis of Transistor Amplifiers

As stated in the previous sections, transistors with different bias conditions operate in different
regions. Usually we want to put the transistor in the active region, thus the large-signal dc analysis
of the transistor is required. The large-signal analysis is to see how the output changes when the
input signal varies from 0 to V¢ and to plot the transfer characteristic curve. From the transfer
characteristic graph, we can see the region in which the transistor operates and the variation of
operation region with various input conditions. Then we can figure out the proper bias conditions to
put the transistor in active region.

Consider the NPN transistor configuration shown in Fig. 8.6, which is called common-emitter
configuration, because the emitter serves as a common terminal between the input and output ports.
We are going to see how the collector voltage Vg changes when Vgg rises from 0 to Vee. When Vg
is below 0.7V, the emitter-base junction is off and the transistor operates in the cut-off region. The
collector current /¢ is approximately equal to zero. Thus, there is no voltage drop on R¢, and output
voltage Vg is roughly equal to Vee. When Vgg rises to beyond 0.7V, the emitter-base junction
gradually turns on, and the base current /g and the collector current /- increase gradually. Now a
voltage of Rc I drops across R¢ and the output voltage is Veg=Vcc— Rclc. The transistor enters the active
region and as /¢ increases, Vg decreases steeply. When Vg is high enough, the voltage drop across Rc will
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be so large that the collector voltage Ver decreases to below 0.3 V. In this case, the transistor enters
the saturation region due to the low collector-base junction reverse voltage. The transfer
characteristic curve is shown in Fig. 8.7 It is obvious that as the input rises from 0 toVcc, the
transistor enters the cut-oft region first, then enters the active region, and finally enters the saturation
region. It is also obvious that under the common-emitter configuration, the input voltage increases
whereas the output voltage decreases; in other words, there is a 180° phase difference between the
input and output signals. The point at whichV¢ is determined by a certainVpg is called the quiescent
point, or Q point for short. Normally the Q point is set in the active region.

The quiescent point can be figured out quantitatively by the large-signal model. The equivalent
circuit of Fig. 8.6 is shown in Fig. 8.8. According to the knowledge of diode and KVL, in the input
and the output loop we can obtain

Vi —0.7
l. = BB
TR (8.9)
Io=pI, (8.10)
Ver=Vee —IcRe (8.11)

1 : : : ; : ;
Usually, we set V. =5Vc(- to bias the transistor in the active region. By the equations above the

proper resistors can be determined. Besides, the quiescent point can also be figured out graphically. Since
Vir =V — s Ry (8.12)
Vee=Vee = 1cRe (8.13)
we can draw lines with the slope of -1/Ry and -1/R¢ on the /-V characteristic curves of the input and
the output, crossing the horizontal axes at the points (Vgg,0)and(Vcc,0), respectively, as shown in
Fig. 8.9. The crossing points are the solutions of the equations above and are also the quiescent
points.

L8

William Sﬁacé/ey (5 February, 1910 - 12 August, 1989) was
an American /)@:im}'f and inventor. He was the manager of a research
group that included John Rardeen and Walter Brattain. The three
seientists invented the painf—canfacf transistor in 1947 and were J‘m‘n@
awarded the 1956 Nobel Prize in 'P@rics. \S’ﬁocé@ also invented a
different sort of transistor based on 1 junctions instead of foint contacts.
His attempts to commercialize the ¢ junction transistor t/en'gn in the 19505
and 1960s led to California’s "Silicon Valley" hecoming a hothed of

electronics innovation.
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Small-Signal Equivalent Circuits of Transistors

8.4.1 Principle of small-signal amplification

When the transistor is biased in the active region with the common-emitter configuration, as
shown in Fig. 8.10 (a), we can superpose at the input node a small signal v, to amplify. The
principle of small signal amplification is that, in the active region, even slight fluctuations in vgg can
change vcg significantly, as we can see from the transfer characteristic graph shown in Fig. 8.10 (b).

Suppose the Q point is set too high, i.e., the value of Vggq is too small. When the input signal
goes negative, the transistor may enter the cut-off region and the top of the output waveform of v, is
trimmed, as shown in Fig. 8.11 (a). On the other hand, suppose the Q point is set too low, i.e., the
value of Vg is too large. When the input signal goes positive, the transistor may enter the
saturation region and the bottom of the output waveform of v, is cut, as shown in Fig. 8.11 (b). In
both cases distortion occurs. Thus, the quiescent point should be set carefully to avoid distortion.

Usually we do not want to connect the signal source to the DC biasing source directly in series
and we are merely interested in the AC component of the output. So capacitors can be used to couple
the signal at the input terminal of the transistor and to filter out the DC component at the output as
shown in Fig. 8.12.

8.4.2 Large-signal DC circuit and small-signal AC circuit

As stated in the previous section, the output of the transistor is the summation of the responses
due to the DC bias source and the ac signal source. Therefore, the original circuit can be seen as the
superposition of such two separate circuits: one is the DC bias circuit used to analyze the Q point,
and the other is the small-signal ac circuit, used to analyze the response of the ac input signal. Due
to the different responses of capacitors and inductors to DC and ac signals, here are the guidelines of

how to separate the original circuit into large-signal DC bias circuit and small-signal ac circuits:

O

More facts about biasing

Biasing in electronics means establishing predetermined voltages or currents at various
points of an electronic circuit for the purpose of establishing proper operating conditions in
electronic components. Many electronic devices such as transistors and vacuum tubes, whose
function is processing AC signals, also require a DC current or voltage to operate correctly. To
achieve this, a bias circuit is built. The AC signal applied to the device is superposed on this
DC bias current or voltage. The operating point of a device, also known as quiescent point, or
Q-point, is the DC voltage or current at a specified terminal of the device with no input signal
applied.
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(1) The large-signal DC bias equivalent circuit can be constructed by replacing capacitors with
open circuits, inductors with short circuits, AC current sources with open circuits and, AC voltage
sources with short circuits and their internal resistances;

(2) The small-signal AC equivalent circuit or small-signal equivalent circuit can be constructed
by replacing capacitors with short circuits, inductors with open circuits, DC current sources with
open circuits and, DC voltage sources with short circuits and their internal resistances.

By the guidelines mentioned above, the large-signal DC bias circuit and the small-signal AC
circuit of the amplifier in Fig. 8.12 are shown in Fig. 8.13(a) and Fig. 8.13(b), respectively, where
the internal resistance of the AC source vy, is denoted by 7, and the internal resistance of the dc
source is ignored.

x

John Bardeen (25 May, 1908 ~ 30 January, 1991) was an
American /)@:ici:l and electrical engineer, the on@ ferson to have won
the Nobel Prize in Physics buice: first in 1956 with William Shockley
and  Walter Brattain for the invention of the transistor; and again in
1972 with Leon Cooper and John Robert Schrieffer for a fundamental
ng af conventional :uperMchy known as the BCS Memy

Wor(iry in Bell Laboratories, Bardeen and his co”eajum‘
succeeded  in creating 4 point-contact transistor that achieved
ampﬁﬁ'caﬁon. The transistor revolutionized the electronics in/u:by,
aﬂowi;y the 9nfarma£ion F!ge to occur, and made fmm’éﬁz the
a’mé/:menl of almast every modern electronic device, from lek/)ﬁam: to
computers fo missils.

Bardeen's Mpmmb n :u,)mom/ucﬁvi_bj, which won him his
second Nobel, are used in Nuclear WM Ag fic Res Spwfrm'w/y
(NMR) or its medical sub-~tool magnetic resonance imaging (MRI).
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8.4.3 Small-signal equivalent circuits of transistors

If we are interested merely in the ac input and output, ignore the dc bias component, and assume
that the input signal is weak enough that the output nonlinear distortion is negligible, we can replace
the dashed box in Fig. 8.13(b) with a linear circuit. The linear circuit is implemented with the
small-signal model of transistors. The small-signal model of transistors at low frequencies is shown in
Fig. 8.14, in which only linear elements are included. The behaviors of the transistor at the quiescent
point are linearized, eliminating the difficulties of analysis considerably.

The small-signal model of transistors at low frequencies includes three elements, the input
resistance r; in the input loop, the controlled current source, and output resistance 7, in the
output loop. We are going into the details of these parameters.

(1) Input resistance r;. As shown in the input transfer characteristics in Fig. 8.15 (a)
(The input transfer characteristics), around the quiescent point, if the variation of the base
current /g due to the change of the emitter-base voltage Vgg, is approximate to be linear, a
tangent line with a slope of 1/ r, which is the reciprocal of the input resistance r,, can be

drawn across the Q point. From (8.7) we have

6(1_5 VBF./VTJ
1_oy _ \p L e, 1 _1c (8.14)
r, OV Ve B o
that is
V.
rn=,B—T (8.15)
1.

where V7 is the thermal voltage, and approximates to be 26mV at room temperature.
It shows that the input resistance is related to the quiescent collector current, /c. The

higher the /, the lower the input resistance 7;.
(2) Controlled current source. From the transfer characteristics curve, it shows that the
collector current i, is mainly controlled by the base current iy, and i, = fi, . Thus the collector

current is modeled by a controlled current source of /i, .

(3) Output resistancer,. Though in the active region the collector current ic changes along
with the variation of the collector-emitter voltage Vcg insignificantly, there is still a slope for
the ic curve in the transfer characteristics graph. Similarly, a tangent line across the Q point
with a slope of 1/r,, which is the reciprocal of the output resistance r,, can be drawn. The
output resistance 7, is resulted from the Early effect, which can generally be as large as tens of
kilo ohms.

The small-signal equivalent circuit of Fig. 8.13(b) after replacing the transistor with its

small-signal model is shown in Fig. 8.16.
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/' Discussion: Practical applications of transistor amplifier circuits

1. Common-emitter amplifier

The circuit of a common-emitter amplifier is shown in Fig. 8.17.

(1) Please find out both the dc bias circuit and ac circuit, and analyze the function of the
capacitors;

(2) Please analyze the dc bias circuit and determine the Q point;

(3) Please draw the small-signal equivalent circuit and calculate its gain, input impedance and
output impedance.

Analysis:

(1) When constructing the dc bias circuit, the capacitors are replaced by open circuits and the
AC voltage source is replaced by short circuits (its internal resistance is kept). Thus the dc bias

circuit is shown in Fig. 8.18(a).

3

Walter Brattain (10 'Feéruary, 1902 ~ 13 October, 1987) was
an American p@;icﬁvl at Bell Labs who, a@ry with fellow scientists
Yohn Rardeen and William é’ﬁacé@, invented the /)ainf-con[acl
transistor in 1947. They shared the 1956 Nobel Prize in Physics for
their invention. Bardeen was a quantum /I@.ricin‘, Brattain was a jzﬂed
experimenter in materials science, and Shackley, the leader of their team,
was an expert in solid-state /)@:ia:. Brattain devoted much of his life to

research on surface states,
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(2) X TFRHME ST E, BAMY TR B E RS T A0E 5 S A

VBB - VBE
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{Ig = Pl (8.16)
VCEQ = Vcc - ICQRC
(4) 0 H/ME 5 5F R0 E W 8.19 Frars.
(5) KBOKHHEMZHASH.
1) HESE. HEAZBOCEE R RN E R R S MA BRI E. 2
8.19F
g, et
b Ry +r,
i, = i, (8.17)
vo = _icRC
Jv LA H H 3 23 A
v, —i. R BR.
A —1 9 — —
"y i (Ry+r) Ry+r, “BilB
2) HANHFH.
r;=‘_i=RB+r" (8.19)
k,
3) Hith HBH.
v =R, (8.20)
2. EHEAKEHR
(1) M 8.20 H 4k H B It % A AT JALE %
Ry iy Ie
— = Re
C) Vi " lﬁ T Re Ry [] Vo + e Re []
B _ ’ Vs Vee
T T
Kl 8.19 /MESHR R e 8.20 FLAEEMOK HLEE
Fig. 8.19 Small-signal equivalent circuit Fig. 820 Common-base amplifier

(2) ST RE S, HEis TR,
(3) EH/MESHFH A, THEBOCEE. BTN BT
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(2) For an ac signal, both the capacitors and the dc bias voltage sources response as
short circuits. Therefore, the upper terminals of resistances Rg and R are both grounded.
The small-signal ac circuit is shown in Fig. 8.18(b).

(3) According to the dc bias circuit, the Q point is defined by

VBB - VBEQ
[BQ S T
Ry
I = ﬂIBQ (8.16)
VCEQ =Vee — ICQRC

(4) Replacing the transistor with its small-signal model, the small-signal equivalent
circuit is shown in Fig. 8.19.
(5) The parameters of voltage gain, input resistance, and output resistance are

calculated as follows.
1) Voltage gain. The voltage gain is the ratio of the output voltage and the input voltage.

Referring to Fig 8.19, we have

§, =

° Ry +r,

i, = Biy (8.17)
vo = —icR('

That is, the voltage gain

“ov i (Ry+r) Ry (8.13)
2) Input resistance
r.=i=RB+rn (8.19)
3) Output resistance
r. =R, (8.20)

2. Common-base amplifier

(1) Find out the dc bias circuit and the small-signal ac circuit from Fig. 8.20;

(2) Perform the large-signal dc analysis and determine the Q point;

(3) Draw the small-signal equivalent circuit and calculate the voltage gain, the input

resistance and the output resistance.
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Fig. 8.21 The large-signal DC circuit and the small-signal AC circuit of the common-base amplifier
(a) The large-signal DC circuit; (b) The small-signal AC circuit
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2) FAHEH
v. IR, +ir »
=1l € = DT ":R o S X
n i ; E+1+ﬂ (8.23)
3) #i HEPH
r,=Rc (8.24)
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(1) Similarly, for ac signal, both the capacitors and the dc voltage sources response as short

circuits. The dc bias circuit and the small-signal ac circuit of the common-base amplifier are shown
in Fig. 8.21(a) and Fig. 8.21(b) respectively.
(2) According to the dc bias circuit, the O point is defined by

)i _VBB_VBEQ
EQ = R
E
)]
I, =——1I
=Ty (8:21)
VCEQ =Vee _[CQRC + VBEQ

(3) Replacing the transistor with its small-signal model, the small-signal equivalent circuit is

shown in Fig. 8.22.

(4) The parameters of voltage gain, input resistance, and output resistance are calculated as follows.

1) Voltage gain

2) Input resistance

3) Output resistance

iR iR BR.
=—<C = ¢ = (8.22)
iR +iyr, (1+pB)iy+r, (1+B)R, +r,
— vi — lcRE :Flb’;t — RF + r1l (8.23)
i i S 1+ p
r, =R, (8.24)

Common-collector amplifier (emitter follower):

(1) Find out the dc bias circuit and the small-signal ac circuit from Fig. 8.23.

(2) Perform the large-signal dc analysis and determine the Q point.

(3) Draw the small-signal equivalent circuit and calculate the voltage gain, the input resistance

and the output resistance.
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Fig. 8.22 Small-signal equivalent circuit Fig. 8.23 Common-collector amplifier (emitter follower)

M (1) [ERTT T80, SREBCCHE B ERUER K 8.24 (a), MACHLIEM A K
8.24 (b) FT/R.

(2) pHrEGER, FILHETHERN

Vi =V

1 = BB BEQ
"R, +(1+ )R, )
IE=U+ﬂﬂ '
Vero =Vee — IeoRe
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)
Ry
Veg -
g
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Re l ko B
| o -l- )
(a) (b)

[l 8.24  JLARJROCHLER CHARERBERS ) (1) B AT % AN 2 i
(a) KfG5HAEM: (b) MsSAHIE
Fig. 8.24 The large-signal DC circuit and the small-signal AC circuit of a common-collector amplifier (emitter follower)
(a) The large-signal DC circuit; (b) The small-signal AC circuit
(3) mih/ME S FR B 8.25 Fras.
(4) KBNS ESH.

+ +
‘!l IeE ] ‘.0
R

Bl 8.25 /Mia'TFR

Fig. 8.25 Small-signal equivalent circuit
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Analysis:

(1) The dc bias circuit and the small-signal ac circuit of the common-collector amplifier are shown
in Fig. 8.24(a) and Fig. 8.24(b), respectively.

(2) According to the dc bias circuit, the Q point is defined by
VBB B VBEO

L =t B0
"Ry +(1+B)R,

o =(1+ B) Iy (8.25)

Verg =Vee = IEQRE
(3) Replacing the transistor with its small-signal model, the small-signal equivalent circuit is
shown in Fig. 8.25 (Small-signal equivalent circuit).

(4) The parameters of voltage gain, input resistance, and output resistance are calculated as
follows.

1) Voltage gain is

L iR, - (1+ B)i,R _ (+BR. (8.26)
v iR +i(r,+Ry) (+PNiR. +i(r,+R,) (+PR. +r,+R, '
2) Input resistance
i R. +i (R
n:?:'* LH"'( B+r"):RB+1~H+(1+,B)RE (8.27)

i iy

€

O

More facts about transistors

The most commonly used FET is the MOSFET. The main advantage of a MOSFET over a
regular transistor is that it requires very little current to turn on (less than 1 mA), while
delivering a much higher current to a load (10 to 50 A or more).

MOSFETs are widely applied in digital integrated circuits, such as microprocessors and
memory devices, which contain thousands to millions of integrated MOSFETs on each device.
MOSFETs provide the basic switching functions required to implement logic gates and data
storage. Discrete devices are widely used in applications such as switch mode power supplies,
variable-frequency drives and other power electronics applications where each device may be
switching hundreds or thousands of watts.
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Fig. 8.26 Circuit diagram used to calculate the output resistance
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3) The calculation of the output resistance needs more efforts. As illustrated in Fig. 8.26
(Circuit diagram used to calculate the output resistance), we short the input, inject a test signal v, at
the output node, and obtain the test output current i,. Then the output resistance is calculated as

r.=v_/i_. Letus solve forv, /i

R
’ R, +r,
i, =1+ p)i, (8.28)
.
i ===
R,
we can get
v, v, 1
"ETTY v 1 1 (8.29)
i v
x ~—(1+ : — 41+ )
R, ( 'B)R3+rn R ( 'B)Rﬂ+r,r
that is
Ry +r,
r,=R. /-2 7 (8.30)

% 1+
TSummary: Comparison among the three configurations of transistor amplifiers

(1) The common-emitter amplifiers characterize high voltage and current gain, moderate input
resistance, high output resistant but comparably narrow bandwidth. They often appear as input
stages, intermediate stages and output stages in low frequency amplifiers. Besides, what to be
noticed is that the output voltage is phase-shifted 180° with respect to the input signal.

(2) The common-base amplifiers can only amplify voltages. They characterize voltage gains as
high as those of common-emitter amplifiers and the widest bandwidth among the three
configurations. Thus they are often used in high frequency designs.

(3) The common-collector amplifiers, aka emitter followers, whose voltage gains are less than but
very close to unity, can only amplify currents. Thus they are often used in power amplifiers. The
common-collector amplifiers characterize the highest input resistance and lowest output resistance. Thus
they are often used as input stages or output stages to do the impedance transformation. Besides, its

output and input are in the same phase, leading to a positive voltage gain.

o Problems

—_—

P8.1 As shown in Table P8.1, the voltages at base, emitter and  'O**

collector of four NPN transistors are given. Suppose for each transistor, we
have V. =0.5 V. Determine the operation regions of the transistors.
Fig. P8.1 Diagram for P8.3

Table P8.1 The voltages at base emitter and collector
Transistor Unit VTI VT2 VT3 VT4
Base Voltage Vv 0.7 1 =1.2 0
Emitter Voltage Vv 0 0.3 -1.9 0
Collector Voltage \% 33 0.7 0 12
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P8.2 Two transistors are available for designing a single transistor amplifier with supply

voltage of 30V. The parameters of the two candidate transistors are listed in Table P8.2. If the

moderate gain is required, determine which transistor or none of them is suitable.

Table P8.2 The parameters of the two candidate transistors
Parameters VTI VT2
Icsg (HA) 0.02 0.05
Verg (V) 50 20
B 15 100

P8.3 In a specific circuit, the currents are measured and their directions are marked at two

terminals of a transistor, as shown in Fig. P8.1. Determine the current of the third terminal and mark

its direction. Draw the transistor in the circle and calculate its current gain .

Vee=12V

Vee=12V

Fig. P8.2 Circuit diagram for P8.4 Fig. P8.3 Circuit diagram for P8.5

Vec=12V
Re | | 1kQ
———0
+
Ry
o L__F
+ 10kQ Zg v,
P
_L 0

Fig. P8.4 Circuit diagram for P8.6

which region each transistor operates i

P84 As shown Fig. P8.2, when the transistor is on,
Vee=0.7V and f=50. Analyze the operation region of the

transistor and calculate the output voltage ¥, when Vi 0, 1V,
and 3V, respectively.
P8.5 As shown in Fig. P8.3, the power supply Vgg is

variable. When the transistor is on, Vpg=0.7V and S =50.
Determine the voltage of Vg when the transistor enters into
saturation region.

P8.6 In the circuit shown in Fig. P8.4, the transistor
has # =50, VBE|=0.2V, anleCES|=0-1 V. As for the Zener
diode, the Zener voltage isV,=5V, and its forward biased
voltage isV,=0.5V. Find the output voltageV, whenV,=0V

and V;=5V, respectively.
P8.7 For the circuits shown in Fig. P8.5, determine

n.

P8.8 For the circuit shown in Fig. P8.6, if the bottom of the output waveform is distorted,
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determine the operation region of the transistor.

-8V 8V
8V
R Re
Ry Ry
-15V =
Ry || Ry |
-8V
(@) (b) - h =
Fig. P8.5 Circuit diagram for P8.7
0 Ve
R|[
]——0—
G

| i

[*]
~_| 4
|

0

Fig. P8.6 Circuit diagram for P8.8 Fig. P8.7 Circuit diagram for P8.10

P8.9 As for the single transistor amplifier, among the three configurations, please select the

optimal configuration for voltage amplification, current amplification, and voltage follower,

respectively.

P8.10  An amplifier circuit is shown in Fig. P8.7, in which the capacitor acts as a short circuit

for ac signal.

(1) Determine the Q point (derive the expressions for /g , 1o , Verg );
(2) Derive the voltage gain 4, , the input impedance 7, , and the output impedance 7, ;

(3) If C;5 is replaced by an open circuit, find the voltage gain 4, , the input impedance 7, , and the

output impedance7, .
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Field-effect transistors (FETs) are an important type of semiconductor devices. In
physics, ‘field effect’ refers to the modulation of the electrical conductivity of some
material by the application of an external electric field. Using this feature, an FET controls
the field effect of the input circuit and thus controls the current of the output circuit, so
that it can function as an amplifier, current source, etc. FETs are widely used in amplifiers
and logic gates.

There are various types of FETs. In this chapter, we discuss the most commonly
used metal oxide-semiconductor field-effect transistor (MOSFET). We start from an
overview of MOSFETs to understand their operation in three operation regions.
Afterwards, we analyze the large-signal DC circuits that bias the device into a proper
operation region and use small-signal equivalent circuits to analyze the amplifier.
Consequently, some practical applications of FET amplifiers will be discussed. Finally,
we use MOSFETs to build basic logic gates such as inverter, NAND gate and NOR gate.

@ Overview of MOSFET Operation

9.1.1 MOSFET transistors

In previous chapters, we have learnt that there are two types of semiconducting
material, the N-type and the P-type. By adding impurities to different regions of a chip
of silicon crystal, we can produce a transistor that has both N-type and P-type material.
An illustration of an MOSFET is given in Fig. 9.1. The MOSFET has four terminals,
the drain (D), gate (G), source (S), and body (B), where the gate is made from metal
and insulated from the body. This is an example of N-channel enhancement-mode
MOSFET (shortened as NMOS), where the source and the drain are made of N-type
material and the body is made of P-type material. The circuit symbol for an NMOS
transistor is shown in Fig. 9.2(a). A MOSFET whose source and drain are made of
P-type material whereas whose body is made of N-type material is called a PMOS
transistor and its circuit symbol is given in Fig. 9.2(b). In this chapter, we discuss the
basic operation of NMOS transistors in three operation regions, while the analysis of
PMOS transistors is handed over to readers.

1. Operation in the cutoff region

Consider the situation shown in Fig. 9.3. Note that in this case, the body is connected
to the source to form a three-terminal device, which is quite common in practice. Suppose
a positive voltage vps is applied between the drain and the source, and the voltage between
the gate and the source is zero, i.e. vgs=0. Therefore, PN junctions appear at the
drain/body and at the source/body interfaces. As we know, if positive voltage is added on
the P-side, electrons flow easily across a PN junction; whereas if positive voltage is added
on the N-side, virtually no current flows. In this case, as shown in Fig. 9.3, positive
voltage vps is added on the N-side of the drain/body junction. Thus, no current flows into

the drain terminal. This is called the cutoff region of operation.
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1T

+

= W

- "ps Gl
- "GsT

K94 TARELMKRER K195 wvpg 4RI, Al AL A IE AR
Fig. 9.4 Operation in the triode region Fig. 9.5 As vpg increases, the channel pinches
down at the drain end
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As vgs is increased, the NMOS remains in cutoff until vgs reaches a particular value called the

threshold voltage V1. Thus in the cutoff region, we have
i, =0, Vas = Vi 9.1)
where ip is the current flowing into the drain terminal.

2. Operation in the triode region

Keeping increasing the gate voltage vgs until v, = ¥, and making sure vy < v — V; , the device
operates in the triode region. (The triode region is also called the linear region of operation.) In this
case, as shown in Fig. 9.4, the electric field resulted from vgs produces holes between the gate and
the insulator, and electrons between the insulator and the body. The electrons flow towards the
source, which results in an N-type channel between the drain and the source. Then, when vpg is
increased, current flows into the drain, through the channel, and out of the source.

For small values of vpg, when gate voltage vgs is fixed, drain current ip is proportional to vps.
In the triode region, the NMOS behaves as a resistor connected between the drain and the source,
and its resistance decreases as vgs increases.

When vps is small, the channel is rectangle. If vps is increased, the voltage between the gate
and the drain decreases, resulting in tapering of the channel thickness towards the drain end, as
illustrated in Fig. 9.5. During this procedure, the drain current ip increases as vpg increases. However,
it increases more slowly and the relationship between ip and vps is no longer linear.

In the triode region, the drain current is given by

i =K [ 2(vgs = ¥y Vs = Vi | 9.2)
where K is obtained from
W KP
K=—— (9.3)
L 2

in which W is the width of the channel and L is the length, as illustrated in Fig. 9.1, and KP is a
device parameter that depends on the thickness of the oxide layer and certain properties of the channel

material. A typical value of KP for N-channel enhancement devices is SO puA / V> .

It should be noted that as v, = Vs — Vpys » the condition vy < v =V, is equivalent tovg, =V, .

&3@

More facts about transistors

Bipolar junction transistors (BJTs) are widely used in electronic equipment, including
computers, televisions, mobile phones, audio amplifiers, industrial control, and radio
transmitters. They are available as individual components, or fabricated in integrated circuits,
often in large numbers. BJTs use both electron and hole charge carriers. Field-effect transistors
(FETs), on the other hand, only use one type of charge carrier in a semiconductor material, and are
also known as unipolar transistors. A FET typically produces less noise than a BJT, and typically has
better thermal stability than a BJT. However, it has a relatively low gain-bandwidth product
compared to a BJT.
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3. Operation in the saturation region

As mentioned before, the thickness of the channel at the drain end becomes thinner as v
increases. When v is increased to vy =Vss — V5, the channel thickness at the drain end becomes zero,
while that at the source end remains at its original value. Hence, the channel becomes wedge. In this
case, we havev,,=V; and the device works at the boundary. Further increasing vy, i, remains
constant, as illustrated in Fig. 9.6. This is called the saturation region, in which we have v, =V,

and Vv, = Vs — ¥y, and the drain current is given by
in=K(vgs = V1)’ (9.4)

4. Summary of NMOS transistors

The characteristic curves for an NMOS transistor are illustrated in Fig. 9.7 As can be seen from
the figure, in the cutoff region, vgs is smaller than the threshold. In the triode and saturation regions,
vgs 1s greater than the threshold; for various vgs, the curves are different. At the boundary between
the triode region and the saturation region, i.e. when v,s=vss —V;, we have iy =Kv]. The boundary
between the triode region and the saturation region is a parabola. Apparently, MOSFETs are a kind

of device whose current is controlled by voltage.

For an NMOS transistor, when a sufficiently large (positive) voltage is applied between
the gate and the source, electrons are attracted to the region under the gate, between the
insulator and the body. Hence, a channel of N-type material is induced between the drain and
the source. Then, if positive voltage is applied to the drain relative to the source, current flows
into the drain through the channel and out of the source. Drain current is controlled by the
voltage applied to the gate.

9.1.2 PMOS transistors

Interchanging the N and P regions of N-channel devices, we have P-channel devices. PMOS
transistors have P-type material for the drain and source terminals and N-type material for the body.
The characteristics of a PMOS transistor are very similar to those of an NMOS transistor, except that
voltage polarities are inverted. For a PMOS transistor, the positive direction of the drain current is
referenced as flowing out of the drain. When the voltage between the gate and the source, vgs, is
negative and is greater than a threshold (the threshold value is also negative), the PMOS transistor
works in the cutoff region. Continuing to decrease vgs, electrons are attracted to the gate, forming a
P-type material channel under the gate and between the source and the drain. Then, if negative
voltage is applied to the drain relative to the source, current flows into the source, through the
channel, and out of the drain. A summary of the characteristics of NMOS and PMOS transistors is
given in Table 9.1.
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Large-signal DC Analysis of NMOS Transistors

To design an MOSFET circuit for a certain purpose, the first task would be to determine which
region it should work in, so that the desired functions can be achieved. In this chapter, we discuss

the most common application amplifier circuits. First, we analyze the large-signal DC circuit to
determine which region the MOSFET operates in, i.e. to determine the QO point. Then, we use a
small-signal equivalent circuit to determine the input resistance, voltage gain, etc. In this section, we
discuss the first step.

A common bias circuit used for establishing the O point is shown in Fig. 9.8(a), where Vpp is
the DC voltage source used to bias the MOSFET. It is called the ‘large’ signal because Vpp usually
has a value of several volts, compared with the ‘small’ signal of several milli-volts that is to be
amplified. According to the previous section, in order to determine the transistor’s operation

region, we need to calculate the drain current ip and the voltage between the gate and the source

VGs-

O

More facts about transistors

A point-contact transistor was the first type of solid-state electronic transistor ever
constructed. It was developed by research scientists John Bardeen and Walter Brattain at Bell
Laboratories in 1947. They worked in a group led by physicist William Shockley. The group
had been working together on experiments and theories of electric field effects in solid state
materials, with the aim of replacing vacuum tubes with a smaller, less power-consuming
device.

The critical experiment consisted of a block of germanium, a semiconductor, with two
very closely spaced gold contacts held against it by a spring. Brattain attached a small strip of
gold foil over the point of a plastic triangle -- a configuration which is essentially a
point-contact diode. He then carefully sliced through the gold at the tip of the triangle, which
produced two electrically isolated gold contacts very close to each other. This resulted in that a
small positive current applied to one of the two contacts had an influence on the current which
flowed between the other contact and the base upon which the block of germanium was
mounted.

The point-contact transistor was commercialized and sold by Western Electric and others
but was soon superseded by the bipolar junction transistor, which was easier to manufacture
and more rugged. Germanium was employed extensively for two decades in the manufacture of
transistors, but was then almost totally replaced by silicon and other alloyed materials.
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For the convenience of analysis, the original circuit is redrawn as shown in Fig. 9.8(b).

Replacing the gate circuit with its Thévenin equivalent, we have a simplified circuit as shown in Fig.

R,
9.8 (c), in which the Thévenin voltage is Vg :Voom and the Thévenin resistance is
1 2

R; = ﬁ . As the current flows into the drain and out of the source and almost no current flows
1 2

through the gate, the voltage drop across R is considered to be zero. Therefore, applying KVL to
the gate loop, we have

Vo = Vas + Ry ©-5)

In order to obtain an amplifier, the transistor should be biased to the saturation region, so we
have

iy =K (Ve — V)’ (9.6)

We can get the operating point by solving for (9.5) and (9.6) simultaneously. The plots of
the two equations are given in Fig. 9.9. The straight line of (9.5) is called the bias line. As can
be seen from the figure, the two plots have two intersection points, i.e. the system of equations
has two groups of roots, among which the smaller root found for vgs does not satisfy the
condition of v, >V;, and thus should be discarded. The larger root found for v, and the
smaller root found for ip are the true operating point. In this case, denote them by V¢, and /,,
respectively.

Finally, applying KVL to the drain loop, as shown in Fig. 9.8(c), we have

Voso =Vop = (Rp + R) g (9.7)

. Small-signal Equivalent Circuits of NMOS Transistors

Since the NMOS transistor is biased into the saturation region, we use small-signal equivalent
circuits to analyze its amplification function. The small signal is the signal to be amplified; as it has
very low amplitude, it only results small changes from the Q point. Thus, the MOSFET still operates

in the saturation region. The drain current thereby consists of two parts
i (1) = Ing +iy (1) (9.8)

where /pis the DC large signal at the Q point and i,()is resulted from the small signal input
into the MOSFET. Similarly, the voltage between the gate and the source also consists of two parts

Vas (1) = Visg + Ve (1) (9.9)
Substituting (9.8) and (9.9) into i, =K (v — ¥; ), we have
Ing +iy(t) = K[ Vgq + v () -V, T (9.10)
The right-hand side of (9.10) can be expanded to obtain

IDQ +id(t)= K(VGsQ _VT)2 +2K(VGSQ —VT)Vgs(I)+KVéS(I) (911)
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As

2 (9.12)

Ing=K(Vosq = V1)

the first term on each side of the above equation can be canceled. Thus, (9.11) becomes
iy (1) =2K(Vgsq — V1)V (1) (9.13)
Defining
8n =2K(Vgso — V1) (9.14)
as the transconductance of the MOSFET, (9.13) can be written as
iy (1) = 8,V (1) (9.15)

The gate current is negligible, so we have iy(f) =0. Therefore, the small-signal
equivalent circuit can be illustrated by Fig. 9.10, where the MOSFET is modeled by a
voltage-controlled current source, and has an open circuit between the gate and the source.

The transconductance g, is an important parameter. In general, higher values of g,

result in better performance of MOSFET. The value of g, is determined by the O point
and device parameters. From (9.12) and (9.14) we have

g = 2Kl (9.16)

If we use (9.3) to substitute for K in the above equation, we obtain
8n =2NKPVW /L [I, (9.17)

In the equivalent circuit mentioned above we have assumed that in the
saturation region, the curve of ip is a horizontal line. However, in practice ip
increases slowly as vps increases. If we want to involve this characteristic in
small-signal equivalent circuit, a resistor r4 must be added between the drain and the
source, as shown in Fig. 9.11. Such a resistor is called the drain resistor. In this case,
(9.15) becomes

(1) =gV, (D) + vy, (D) /1y (9.18)

” Discussion: Practical applications of MOSFET amplifier circuits
1. Common-source amplifiers
The circuit of a common-source amplifier is given in Fig. 9.12. Please:
(1) Find out the bias circuit from the figure, and have a discussion on what is the
function of the capacitors;
(2) Analyze the large-signal DC circuit and determine the Q point;
(3) Draw the small-signal equivalent circuit and calculate its gain, input impedance

and output impedance.
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Analysis:

(1) The capacitors behave as open circuits for DC cases, whereas with large capacitance
they are considered as short circuits for AC signals. Therefore, the capacitors make sure that the
bias voltage Vpp is only added to the NMOS transistor and the four resistors connected to it.
Therefore, the bias circuit is the same as the one shown in Fig. 9.8(a), the determination of the
O point is the same as we did in Section 9.2.

(2) For the AC signal, capacitors behave as short circuits; thus, the source is grounded.
This is why it is called common-source amplifier. The DC supply voltage source is also
considered as a short circuit for the AC signal; hence, the top sides of resistors R; and Rp are
grounded. Substituting the MOSFET by its small-signal equivalent circuit (as shown in Fig.
9.10 or Fig. 9.11), the small-signal equivalent circuit for the common-source amplifier is
shown in Fig. 9.13.

(3) To find the voltage gain of the amplifier circuit, we need to calculate the ratio of output
voltage against input voltage. From the circuit on the righthand side we can find that the output
voltage is the product of the current from the controlled current source and the equivalent resistance
of the three resistors connected in parallel

Vou = (& Ves )RI
1

where R'= , and the input voltage is V, . Consequently, the voltage gain is
““1r+1/R,+1/R, P . ’ ety &

calculated from

v
—_out __ ’
Av_ 3 - ngL

(4) The input impedance of the amplifier circuit is the parallel combination of R, and R,
v, RR,

n

" T R+R,

mn

More facts about amplifiers

The input impedance and output impedance are important parameters in the design of a
transistor amplifier. An amplifier’s impedance values are particularly important for analysis
especially when cascading individual amplifier stages together one after another to minimize
distortion of the signal. Amplifiers are supposed to have high input impedance, low output
impedance, and virtually any arbitrary gain. If an amplifier’s input impedance is too low, it can
have an adverse loading effect on the previous stage and possibly affecting the frequency
response and output signal level of that stage. Some types of amplifier designs, such as the
common collector amplifier, automatically have high input impedance and low output
impedance by the very nature of their design.
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The calculation of output impedance is more complex. First we need to zero the independent
source and keep the controlled source, as shown in Fig. 9.14 As vg=0, the current of the controlled
source is also zero and hence acts as an open circuit. Therefore, the output impedance is the
parallel combination of 7;and R,

raRy

2. Source follower

Source follower is another commonly used MOSFET amplifier, as shown in Fig. 9.15. Please find
out its bias circuit, small-signal equivalent circuit, voltage gain, input impedance and output impedance.

The analysis of the small-signal equivalent circuit of source follower is the same as that of the
common-source amplifier. We replace the capacitors and the DC supply voltage source by short
circuits and substitute the MOSFET by its small-signal equivalent circuit. Consequently, the
small-signal equivalent circuit of source follower is given in Fig. 9.16.

The output voltage can be calculated from the product of the current of the controlled current

source and the equivalent resistance of the three resistors connected in parallel

v = gmvgs =g v R!
“ U +1/R+1/R ™"

O

“More facts about amplifier circuits

Circuit analysis of amplifier circuits can be explained using the following illustration. The
BJT or MOSFET transistor is the core element of an amplifier circuit, which is analogous to a
TV set. To watch a TV program, one must ensure two things happen: the TV set is turned on
and there is TV program on air, so that the TV set is able to receive program and display it. To
bias a transistor to the proper operational region (for a BJT it is the active region and for a
MOSFET it is the saturation region) is analogous to turn on the TV set, which means the
transistor is ready to perform as an amplifier. This is achieved by large-signal DC analysis,
where we check based on the configuration of the circuit (including the value of the supply
voltage, the resistances of the resistors, the parameters of the transistor, etc.), whether the
transistor has been biased into the proper operational region. The TV set receiving program
corresponds to the transistor amplifying a small signal, which is achieved by small-signal AC
analysis. Based on the small-signal equivalent circuit, we calculate the voltage gain, current
gain, input resistance, output resistance, etc., to evaluate the amplifying behavior of the
amplifier circuit.

199



W o 2ox 5w n %
N~

M FRIAHI, 7 Vie=Ves + Vou o B HLR BT ECH

Vou __&ul
vin 1 + ngII‘
N BHAT A
_Va _ RR,
; iin Rl + RZ

o Y LY SR AR 5 VA S AEA A, RIS R S P B IR B2 P R, SR AR ANA i
BRI VERLI v # 0, skl i BT, wIAER R I — R v, R
HHRC R, Wil 9.17 Fras, Wl B4

ROI.H = ‘.)_\
lx
M 9.17 itz v i ] 75
I+ 8mVes
YU r +1/ R
vx = —vgs

NIUEE]

B 9.17  SRARITAR R bt 45 i BT A Fi e 1)

Fig.9.17 Circuit used for calculating the output impedance of source follower

MSBOMAE B A 2 R e

YN () — AN N R G S S R R . AT A ] F S RN AR M S A
[RZ 4 LK

9.4.1 FEI7]

e T E WA 9.18 () fiw, HfaE&—4 PMOS fil—4~ NMOS, HIFEHIE Vpp HI7E
PMOS I . AN R Via K (Vie=Vpp), PMOS 4 F#REX, 24T 7 ;i NMOS
(IR S YRR A I S e TE, A T —BRE RN BE, AT RS AL, P 9.18 (a)
HISERL LR QI ] 9.18 (b) Fian, HERIHIHHE Vou=0. MR Vi, BN, PMOS I
77 LS HYAIE T NMOS & F#ubX, itk PMOS Sl 11 NMOS BT, H258 %4 e i
K1 9.18 (¢) B, Hith K VousVopeo

T ROV R FF RN, A R A, i R R IR IR e A
ST AR TR ShRE

200



Chapter 9 Field-effect Transistors/ %

For input voltage, we have V,, =V, + V,,, . Therefore, the voltage gain is expressed as

g =Y _ EuR

v

vin 1 + gm Rli
The input resistance is
R = VYin _ RR,
in ” R R
lin 1 TG

We follow the same manner as we did in the previous case to calculate the output resistance:
zero the independent source and keep the controlled source, then find out the equivalent resistance
between the output terminals. It should be noted thatV,, #0; therefore, to determine the output
resistance, we may apply a test voltage source v, across the output terminals, as shown in Fig. 9.17.

Assume the output current of the voltage source isi, , and the output resistance can be calculated
from

R,=—*

out .
l.r

Solving for the circuit shown in Fig. 9.17, we have
i+ iV
v‘.__.—__.
C U +1/Rg

V, ==V

Consequently, the output resistance is given by
R o=— 1
1/r,+1/ R+ g,

MOSFET Logic Gates

A most important application of MOSFETs is in logic circuits. In this section, we introduce
how to build basic logic gates with MOSFETs.

9.4.1 Inverter

The circuit diagram of an inverter is shown in Fig. 9.18(a). It involves a PMOS and an
NMOS, and the DC supply voltage Vpp is applied at the drain terminal of the PMOS. When
the input voltage is high (Vi,=Vpp), PMOS operates in the cutoff region and behaves as an
open switch; a conducting channel is induced between the drain and the source of the NMOS,
thus it performs as a low resistance and can be modeled by a closed switch. In this case, Fig.
9.18(a) can be replaced by its equivalent circuit, as shown in Fig. 9.18(b), and the output
voltage of the circuit is V,,=0. When V;, is low, a conducting channel is induced under the
gate of the PMOS, while the NMOS works in the cutoff region. Hence, the PMOS is on,
whereas the NMOS is off. The equivalent circuit is illustrated in Fig. 9.18(c), where the output
voltage Vou= Vpp.

Because of the switching action of the transistors, the output voltage is low when the input is
high, and vice versa. This is exactly how a logic inverter is supposed to behave.
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(a) Circuit diagram of an inverter; (b) Equivalent circuit when ¥V, is high; (¢) Equivalent circuit when Vi, is low
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(c) Equivalent circuit when both Vi, and Vi, are low; (d) Equivalent circuit when V.4 is high while V.5 is low
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Y,

9.4.2 NAND gate

By adding one more pair of PMOS and NMOS transistors to the inverter circuit, we can build a
two-input NAND gate, as shown in Fig. 9.19(a). In this circuit, two PMOS transistors are connected
in parallel and two NMOS transistors are in series. When the input voltages Vi,a and Vi,p are high,
both NMOS transistors are on and both PMOS transistors are off. The equivalent circuit is shown in
Fig. 9.19(b), where we have the output voltage ¥, =0. On the contrary, when both input
voltages are low, the NMOS transistors are off while the PMOS transistors are on. The equivalent
circuit is shown in Fig. 9.19(c), and the output voltage V_ =V, .

out

The equivalent circuit with V, , high and V| ;low is given in Fig. 9.19(d), and the output

voltage V,, =V, . Similarly, when V, ,is low and V, ;is high, we also have V, , =V,,. The

out

readers are invited to draw the equivalent circuit under this condition.
From the above analysis, it can be found that the output voltage is zero only when both input

voltages are high. Apparently this is exactly what we expect from an NAND gate. By adding more
transistors, we could build three-input, four-input NAND gates.

9.4.3 NOR Gate

Building a two-input NOR gate is quite similar to building an NAND gate. As shown in Fig.
9.20(a), the two PMOS transistors are connected in series while the NMOS transistors are in parallel.
The analysis of their operation is the same as discussed previously. The equivalent circuits under the
conditions of both input voltages being high, both being low, and V4 high while Vi,z low are shown
in Fig. 9.20(b)~(d), respectively. The output voltage under these conditions is left for the readers to

analyze.

o Problems

P9.1 Determine the region of operation for each of the MOSFETs shown in Fig. P9.1.
Suppose| V;[=2 V.

\V

‘“ﬁ J% .H:T

()V
(b) (c)

Fig. P9.1

P9.2 For a common-source amplifier shown in Fig. P9.2, where KP=50pA/V?, V=2V,
L=10um, W= 200um, r,=<. Determine whether the NMOS works in the saturation
region. If it does, find out its voltage gain, input resistance, and output resistance.

P9.3 Fig. P9.2 shows a common-gate amplifier. Suppose the NMOS has KP =50 nA/V?,

Vi=1V, L=10um,W =600 pm , andr=<. Use large signal analysis to determine the Q
point and the voltage of g . Use small signal analysis to determine the input resistance and

voltage gain.
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Fig. 9.20 An NOR gate

(a) Circuit diagram of an NOR gate; (b) Equivalent circuit when both ¥, and ¥, are high
Via is high while ¥, islow

Vs are low; (d) Equivalent circuit when

(c) Equivalent circuit when both ¥, and
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In this chapter, we introduce an important device known as the operational amplifier, which
finds application in a wide range of engineering instrumentation. An operational amplifier is a
circuit composed of perhaps 30 BJTs or FETs, 10 resistors, and several capacitors. These
components are manufactured concurrently on a single piece of silicon crystal (called a chip) by a
sequence of processing steps. Circuits manufactured in this way are called integrated circuits (ICs).

Currently, the term operational amplifier, or less formally op amp, refers to the integrated
circuits that are employed in a wide variety of general-purpose applications. However, this type of
amplifier originated in analog-computer circuits in which it was used to perform such operations as
integration or addition of signals; hence, the name operational amplifier.

We will see that inexpensive integrated-circuit op amps can be combined with resistors (and
sometimes capacitors) to form many useful circuits. Furthermore, the characteristics of these circuits
can be made to depend on the circuits configuration and the resistor values but only weakly on the
op amp, which can have large unit-to-unit variations in some of its parameters.

Ideal Operational Amplifier

The circuit symbol for the operational amplifier is shown in Fig. 10.1. The operational amplifier
is a differential having both inverting and non-inverting input terminals. The input signals are denoted
as v(7) and vy(7). (As usual, we use lowercase letters to represent general time-varying voltages. Often,
we will omit the time dependence and refer to the voltages simply as vy, v,, and so on.)

Recall that the average of the input voltages is called the common-mode signal and is given by

Vi = %(vl +v,)
Also, the difference between the input voltages is called the differential signal, given by
VId = VI ~-= V2

An ideal operational amplifier has the following characteristics.

(1) Infinite input impedance.

(2) Infinite gain for the differential input signal.

(3) Zero gain for the common-mode input signal.

(4) Zero output impedance.

(5) Infinite bandwidth.

An equivalent circuit for the ideal operational amplifier consists simply of a controlled source
as shown in Fig. 10.2. The open-loop gain 4p; is very large in magnitude-ideally, infinite.

As we will shortly see, op amps are generally used with feedback networks that return part of
the output signal to the input. Thus, a loop is created in which signals flow through the amplifier to
the output and back through the feedback network to the input. Aoy is the gain of the op amp without
a feedback network. That is why we call it the open-loop gain.

For now, we assume that the open-loop gain 4oy is constant. Thus, there is no distortion, either
linear or nonlinear, and the output voltage vo has a wave-shape identical to that of the differential

input vig=(v,—vy).
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10.2 Inverting Amplifiers

Operational amplifiers are almost always used with negative feedback, in which part of the output
signal is returned to the input in opposition to the source signal. (It is also possible to have positive
feedback, in which the signal returned to the input aids the original source signal. However, negative
feedback turns out to be more useful in amplifier circuits.) Frequently, we analyze op-amp circuits
by assuming an ideal op amp and employing a concept that we call the summing-point constraint.

For an ideal op amp, the open-loop differential gain is assumed to approach infinity, and even a very
tiny input voltage results in a very large output voltage. In a negative-feedback circuit, a fraction of the
outputs is returned to the inverting input terminal. This forces the differential input voltage toward zero. If
we assume infinite gain, the differential input voltage is driven to zero exactly. Since the differential input
voltage of the op amp is zero, the input current is also zero. The fact that the differential input voltage and
the input voltage and the input current are forced to zero is called the summing-point constraint.

Ideal op-amp circuits are analyzed by the following steps:

(1) Verify that negative feedback is present.

(2) Assume that the differential input voltage and the input current of the op amp are forced to
zero (This is the summing-point constraint).

(3) Apply standard circuit-analysis principles, such as Kirchhoff’s laws and Ohm’s law, to solve
for the quantities of interest.

Next, we illustrate this type of analysis for some important circuits that are commonly used in
engineering instrumentation.

10.2.1 The basic inverter

An op-amp circuit known as the inverting amplifier is shown in Fig. 10.3. We will determine
the voltage gain 4,=v,/v;, by assuming an ideal op amp and employing the summing-point constraint.
However, before starting analysis of an op-amp circuit, we should always check to make sure that
negative feedback is present rather than positive feedback.

In Fig. 10.3, the feedback is negative, as we shall demonstrate. For example, suppose that due
to the input source v;,, a positive voltage v, appears at the inverting input. Then a negative output voltage
of large (theoretically infinite) magnitude results at the output. Part of this output voltage is returned to
the inverting input by the feedback path through R,. Thus, the initially positive voltage at the inverting
input is driven toward zero by the feedback action. A similar chain of events occurs for the appearance of
a negative voltage of the op amp takes precisely the value needed to oppose the source and produce
(nearly) zero voltage at the op-amp input. Since we assume that the gain of the op amp is infinite, a
negligible (theoretically zero) input voltage v, is needed to produce the required output.

Fig.10.4 shows the inverting amplifier, including the conditions of the summing-point constraint at the
input of the op amp. Notice that the input voltage vi, appears across R). Thus, the current through R, is

I =— (10.1)
Because the current flowing into the op-ampinput terminals is zero, the current flowing through R, is

(10.2)
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Thus, from (10.1) and (10.2),we have
(10.3)

M vlﬂ
L =—2
"R
Writing a voltage equation around the loop by including the output terminals, the resistor R,

and the op-amp input, we obtain

v, + Ryi, =0 (10.4)
Using (10.3) to substitute for #, in (10.4) and solving for the circuit voltage gain, we have
v R,
A‘ =0 —__< ,
"% R (10.5)

n

We refer to A, as the closed-loop gain because it is the gain of the circuit with the feedback
network in place.

Under the ideal-op-amp assumption, the closed-loop voltage gain is determined solely by ratio
of the resistances. This is a very desirable situation because resistors are available with precise and
stable values. Notice that the voltage gain is negative, indicating that the amplifier is inverting (i.e.
the output voltage is out of phase with the input voltage).

The input impedance of the inverting amplifier is
\%

z, =%: R, (10.6)
1
Thus, we can easily control the input impedance of the circuit by our choice of R;.
Rearranging (10.5), we have
R,
Vo =3 Vin (10.7)

Consequently, we see that the output voltage is independent of the load resistance R.. We
conclude that the output acts as an ideal voltage source (as far as Ry is concerned). In other words,
the output impedance of the inverting amplifier is zero.

10.2.2 Virtual-short-circuit concept

Sometimes, the condition at the op-amp input terminals of Fig. 10.4 is called a virtual short
circuit. This terminology is used because even though the differential input voltage of the op amp is
forced to zero (as if by a short circuit to ground), the op-amp input current is also zero.

This terminology can be confusing unless it is realized that it is the action at the output of the
op amp acting through the feedback network that enforces zero differential input voltage. (Possibly,
it would be just as valid to call the condition at the op-amp input terminals a “virtual open circuit”
because no current flows.)

10.2.3 Variations of the inverter circuit

Several useful versions of the inverter circuit exist. Analysis of these circuits follows the same
pattern that we have used for the basic inverter: Verify that negative feedback is present, assume the
summing-point constraint, and then apply basic circuit laws.

Example 10.1 Analysis an inverting amplifier

Fig. 10.5 shows a version of the inverting amplifier that can have high gain magnitude without
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s

restoring to as wide a range of resistor values as are needed in the standard invert configuration. Derive an
expression for the voltage gain under the ideal-op-amp assumption. Also, find the input impedance and
output impedance. Evaluate the results for Rj=R;=1 kQ and R,=R,=10 kQ. Then, consider the standard
inverter configuration of Fig. 10.4 with R,=1 k€, and find the value of R, required to achieve the same gain.

Solution:

First, we verify that negative feedback is present. Assume a positive value for v;, which results
in a negative output voltage of very large magnitude. Part of this negative voltage is returned
through the resistor network and opposes the original input voltage. Thus, we conclude that negative
feedback is present.

Next, we assume the condition of the summing-point constraints
vi=0 and ii=0
Then, we apply KCL, KVL, and Ohm’s law to analyze the circuit. To begin, we notice that v;,
appears across R (because v;=0). Hence, we can write

i =2
TR (10.8)
Next, we apply KCL to the node at the right-hand end of R;. Using the fact,we obtain
i, =1, (10.9)

Hence, we have used the fact i;=0.
Writing a voltage equation around the loop through v;, R, and R3, we obtain

R,i, = Ry, (10.10)
(In writing this equation, we have used the fact that v=0.) Applying KCL at the top end of R; yields
iy=i,+1 (10.11)
Writing a voltage equation for the loop containing R, ,R, and R, gives
v, =—R,i, — Ryi, (10.12)

Next, we use substitution to eliminate the current variables (i), i,, i3 and i4) and obtain an

equation relating the output voltage to the input voltage. First, from (10.8) and (10.9),we obtain

i ==
TR (10.13)
Then, we use (10.13) to substitute for i, in (10.10) and rearrange terms to obtain
. R,
L. =V =
3 in RIRJ (1014)
Using (10.13) and (10.14) to substitute for /; and /5 in (10.11),we find that
= | L+ R (10.15)
4 n R| R1R3 .
Finally, using (10.14) and (10.15) to substitute into (10.12), we obtain
Vo = Vi L B ) (10.16)
Rl Rl RIRE
Therefore, the voltage gain of the circuit is
g=Yeo[B R RR (10.17)
vm Rl Rl Rl R}
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The input impedance is obtained from (10.8)
V.
R, =—=4§ (10.18)

Inspection of (10.16) shows that the output voltage is independent of the load
resistance. Thus, the output appears as an ideal voltage source to the load. In other words,
the output impedance of the amplifier is zero.

Evaluating the voltage gain for the resistor values given (R;=R;=1kQ and
Ry=R,=10 kQ) yields

4, =120

In the basic inverter circuit of Fig. 10.4, the voltage gain is given by (10.5), which
states that

Therefore, to achieve a voltage gain of —120 with R=1 kQ, we need R,=120 kQ.
Notice that a resistance ratio of 120: 1 is required for the basic inverter, whereas the circuit
of Fig. 10.5 has a ratio of only 10: 1. Sometimes, there are significant practical advantages
in keeping the ratio of resistances in circuit as close to unity as possible. Then, the circuit
of Fig. 10.5 is preferable to the basic inverter shown in Fig. 10.4.

10.2.4 Positive feedback

It is interesting to consider the inverting amplifier configuration with the input
terminals of the op amp interchanged as shown in Fig. 10.6. In this case, the feedback
is positive in other words, the feedback signal aids the original input signal. For
example, if the input voltage v; is positive, a very large positive output voltage results.
Part of the output voltage is returned to the op-amp input by the feedback network.
Thus, the input voltage becomes larger, causing an even larger output voltage. The
output quickly becomes saturated at the maximum possible voltage that the op amp
can produce.

If an initial negative input voltage is present, the output saturates at its negative
extreme. Hence, the circuit does not function as an amplifier-the output voltage is stuck at
one extreme or the other and does not respond to the input voltage viy,.

If we were to ignore the fact that the circuit of Fig. 10.6 has positive rather than
negative feedback and to apply the summing-point constraint erroneously, we could
obtain v,=—(Ry/R|)vin, just as we did for the circuit with negative feedback. This
illustrates the importance of verifying that negative feedback is present before using the

summing-point constraint.
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Non-inverting Amplifiers

The circuit configuration for a non-inverting amplifier is shown in Fig. 10.7. We assume an
ideal op amp to analyze the circuit. First, we check to see whether the feedback is negative or
positive. In the case, it is negative. To see this, assume that v; becomes positive and notice that it
produces a large positive output voltage. Part of the output voltage appears across R). Since vi=vi,—
vi, the voltage v; becomes smaller as v, and v, become larger. Thus, the amplifier and feedback
network act to drive vy, toward zero. This is negative feedback because the feedback signal opposes
the original input.

Having verified that negative feedback is present, we utilize the summing-point constraint: v;=0
and ;=0. Applying KVL and the fact that v=0, we can write

vm =vl (1019)
Since i is zero, the voltage across R, is given by the voltage-division principle
A 10.20
| Rl + Rz 0 ( . )
Using (10.20) to substitute into (10.19) and rearranging, we find that the closed-loop voltage
gain is
Vv
A= (10.21)
vlﬂ
R"
A =1+— }
: R (10.22)

Notice that the circuit is a non-inverting amplifier (4, is positive), and the gain is set by the
ratio of the feedback resistors.

The input impedance of the circuit is theoretically infinite because the input current i is zero.
Since the voltage gain is independent of the load resistance. Thus, the output impedance is zero.
Therefore, under the ideal-op-amp assumption, the non-inverting amplifier is an ideal voltage
amplifier.

Notice from (10.21) that minimum gain magnitude is unity, which is obtained with R,=0.
Usually, we choose R; to be an open circuit for unity gain. The resulting circuit, called a voltage
follower, is shown in Fig. 10.8.

Integrators and Differentiators

e £

10.4.1 Integrator circuit

Fig. 10.9 shows the diagram of an integrator, which is a circuit that produces an output voltage
proportional to the running-time integral of the input voltage. (By the term running time integral, we
mean that the upper limit of integration is z.)

The integrator circuit is often useful in instrumentation applications. For example, consider a
signal from an accelerometer that is proportional to acceleration. By integrating the acceleration signal,
we obtain a signal proportional to velocity. Another integration yields a signal proportional to position.
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Fig. 10.9 Integrator Fig. 10.10 Differentiator
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In Fig. 10.9, negative feedback occurs through the capacitor. Thus, assuming an ideal op amp,

the voltage at the inverting op-amp input is zero. The input current is given by

. v,
j =t/ 10.23
mn R ( )
The current flowing into the input terminal of the (ideal) op amp is zero. Therefore, the input
current i, flows through the capacitor. We assume that the reset switch is opened at /=0. Therefore,

the capacitor voltage is zero at +=0. The voltage across the capacitor is given by
L 10.24
v(.(t)—ELtm(t) (10.24)

Writing a voltage equation from the output terminal through the capacitor and then to ground

through the op-amp input terminals, we obtain
v, (1) =—v.(7) (10.25)

Using (10.23) to substitute into (10.24) and the result into (10.25), we obtain
v (t)=——— [ v (0dr (10.26)
o RC 0 in *

Thus, the output voltage is —1/RC times the running integral of the input voltage. If an
integrator having positive gain is desired, we can cascade the integrator with an inverting
amplifier.

The magnitude of the gain can be adjusted by the choice of R and C. Of course, in selecting a

capacitor, we usually want to use as small a value as possible to minimize cost, volume, and mass.

However, for a given gain constant (—RLC ), smaller C leads to larger R and smaller values of i,

Therefore, the bias current of the op amp becomes more significant as the capacitance becomes
smaller. As usual, we try to design for the best compromise.

10.4.2 Differentiator circuit

Fig. 10.10 shows a differentiator that produces an output voltage proportional to the time
derivative of the input voltage. By an analysis similar to that used for the integrator, we can show

that the circuit produces an output voltage given by

v, (1) = —RCM (10.27)
dr

o Problems

P10.1 A circuit known as a summator is shown in Fig. P10.1. Use the ideal-op-amp
assumption to solve for the output voltage in terms of the input voltages and resistor values.

P10.2 Assume an ideal op amp and use the summing-point constraint to find an expression for
the output current 7, in the circuit of Fig. P10.2. Also find the input and output resistance of the circuit.
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Fig. P10.1 Fig. P10.2

P10.3 Design a circuit with op-amp to implement the following equation:

: d(v, - v,)
(1) v, =3 -v)+5[ Ve 7=

(2) v, =4(v, +v,)— 7_‘.0’("1 +v,)dt
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So far, we have considered circuits, such as filters, that process analog signals. For an analogy
signal, each amplitude in a continue range has a unique significance. For example, a position sensor
may produce an analogy signal that is proportional to displacement. Each amplitude represents a
different position. In this chapter, we introduce circuits that process digital signals. For a digital
signal, only a few restricted ranges of amplitude are allowed, and each amplitude in a given range
has the same significance. Most common are binary signals that take on amplitudes in only two
ranges, and the information associated with ranges is represented by the logic values 1 or 0.
Computers are examples of digital circuits. We will see that approaches have some important

advantages over analog approaches.
flﬁ Basic Logic Circuit Concepts

We often encounter analogy signals in instrumentation of physical system. For example, a
pressure transducer can yield a voltage that is proportional to pressure versus time in the
cylinder of an internal combustion engine. The analog signals can be converted to equivalent
digital signals that contain virtually the same information. Then, computers or other digital
signals that contain virtually the same information. Then, computers or other digital circuits can
be used to process this information. In many applications, we have a choice between digital and
analog approaches.

11.1.1 Advantages of the digital approach

Digital signals have several important advantages over analogy signals. After noise is added to
an analog signal, it is usually impossible to determine the precise amplitude of the original signal.
On the other hand, after noise is added to a digital signal, we can still determine the logic
values-provided that the noise amplitude is not too large. This is illustrated in Fig. 11.1.

For a given type of logic circuit, one large of voltages represents logic 1, and another range of
voltages represents logic 0. For proper operation, a logic circuit only needs to produce a voltage
somewhere in the correct range. Thus, component values in digital circuits do not need to be as

precise as in analog circuits.

More facts about ADC

Signals acquired by sensors, such as a sound picked up by a microphone or light entering a
digital camera, are analog signals. They can be converted into digital signals through an
analog-to-digital converter (ADC). Typically, the digital output is a two's complement binary
number that is proportional to the input. The resolution of the ADC refers to the number of
discrete values it can produce over the range of analog values. A higher resolution indicates a

more precise representation of the analog signal.
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It turns out that with modern integrated-circuit (IC) manufacturing technology, very complex
digital logic circuits (containing of components) can be produced economically. Analog circuits
often call for large capacitances and precise component values that are impossible to manufacture as
large-scale integrated circuits. Thus, digital systems have become increasingly important in the past
few decades, a trend that will continue.

11.1.2 Logic ranges and noise margins

Logic circuits are typically designed so that a range of input voltages is accepted as logic 1 and
another non-overlapping range of voltages is accepted as logic 0. The largest input voltage accepted
as logic 0, or low, is denoted as Vi ; and the smallest input voltage accepted as logic 1, or high, is
denoted as V. This is illustrated in Fig. 11.2. No meaning is assigned to voltages between Vi and
Vi, which normally occurs only during transitions.

Furthermore, the circuits are designed so that the output voltages fall into narrower ranges than
the inputs (provided that the inputs are in the acceptable ranges). This is also illustrated in Fig. 11.2.
Vo is the highest logic-0 output voltage, and oy is the lowest logic-1 output voltage.

Because noise can be added to a logic signal in the interconnections between outputs and inputs,
it is important that the outputs have narrower ranges than the acceptable inputs. The differences are

called noise margins. Ideally, noise margins are required to be as large as possible.

Combinatorial Logic Circuits

In this section, we consider circuits called logic gates that combine several logic-variable
inputs to produce a logic-variable output. We focus on the external behavior of logic gates. The
circuits that we are about to discuss are said to be memory-less because their output values at a

given instant depend only on the input values at that instant.
11.2.1 Logic gates
1. AND gate

An important logic function is called the AND operation. The AND operation on two logic variables,
A and B, is represented as AB, read as “A4 and B”. The AND operation is also called logical multiplication.

One way to specify a combinatorial logic system is to list all the possible combinations of the
input variables and the corresponding output values. Such a listing is called a truth table. The truth
table for the AND operation of two variables is shown in Fig. 11.3 (a). Notice that 4B is 1 if and
only if 4 and B are both 1; otherwise, 4B is 0.

For the AND operation, we can write the following relations:

Ad = A (11.1)
Al=4 (11.2)
A0=A (11.3)
AB = BA (11.4)
A(BC)=(A4B)C = ABC (11.5)

The circuit symbol for a two-input AND gate is shown in Fig. 11.3(b). It is possible to have
AND gates with more than two inputs. For example, the truth table and circuit symbol for a
three-input AND gate are shown in Fig. 11.4, respectively.
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A+0=4 (11.8)
A+1=1 (11.9)
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(A+B)+C=A4A+(B+C)=A+B+C (11.12)
A(B+C)=AB+ AC (11.13)
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2. Logic inverter

The NOT operation on a logic variable is represented by placing a bar over the symbol for the
logic variable. The symbol 4 is read as “not 4 ” or as “ 4 inverse”. If 4is 0, 4 is 1; and vice versa.

Circuits that perform the NOT operation are called inverters. The truth table and circuit symbol
for an inverter are shown in Fig. 11.5 (Logic inverters). The bubble placed at the output of the
inverter symbol is used to indicate inversion.

We can readily establish the following operations for the NOT operation

AA=0 (11.6)

A=4 (11.7)
3. OR gate
The OR operation of logic variables is written as A+B , which is read as “4 or B”. The truth
table and the circuit symbol for a two-input OR gate are shown in Fig. 11.6. Notice that A+B is 1, if
either 4 or B is 1, or both 4 and B are 1; A+B is 0 if both 4 and B are 0. The OR operation is also
called logical addition.

For the OR operation, we can write the following relations

A+0=4 (11.8)

A+1=1 (11.9)

A+ A=1 (11.10)

A+A4=A4 (11.11)
(A+B)+C=A4A+(B+C)=4+B+C (11.12)
A(B+C)=AB+ AC (11.13)

George Baole (2 November (815 ~ & December 1864) was
an Byﬂ':ﬁ mathematician, /Jﬁiﬂzxa{)ﬂcr and @ician. He worked in
the fields of differential equations and a@cﬁm’c @ic, and kW
establish modern {yméa/ic @ic. His a@eém of @ic, now called
Boolean n@eﬂm, is basic to the ér@n of /yifa/ computer circuit.
Boole is now best known as the author of ‘An %vab:gab'onoffﬁc
Laws of 'fﬁmgﬁ{ on Which are Founded the Mathematical
Theories of Logic and Probabifties”
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11.2.2 Boolean algebra
The mathematical theory of logic variables is called Boolean algebra, named for mathematician
George Boole. One way to prove a Boolean algebra identity is to produce a truth table that lists all possible
combinations of the variables and to show that both sides of the expression yield the same results.
1. Implantation of Boolean expressions
Boolean algebra expressions can be implemented by interconnection of AND gates, OR gates,
and inverters. For example, the logic expression
F=ABC+ ABC+(C+D)D+E) (11.14)
can be implemented by the logic circuit shown in Fig. 11.7
Sometimes, we can manipulate a logic expression to find an equivalent expression that is simpler.
For example, the last term on the right-hand side of equation (11.14) can be expanded, resulting in
F = ABC + ABC + CD + CE + DD + DE (11.15)
Since the term pp always has the logic value 0, it can be dropped from the expression.

Factoring the first two terms on the right-hand side of (11.15) results in

F = AC(B + B)+CD+CE + DE (11.16)
However, the quantity B + B always equals to 1, so we can write
F=AC+CD+CE +DE (11.17)
Factoring C from the first three terms on the right-hand side, we have
F=C(A+D+E)+DE (11.18)

This can be implemented as shown in Fig. 11.8.

Thus, we can often find alternative implementations for a given logic function. Later, we
consider methods for finding the implementation using the fewest gates of given type.

2. De Morgan’s laws

Two important results in Boolean algebra are De Morgan’s laws, which are given by

ABC=A4+B+C (11.19)

and

LS

A+B+C=ABC (11.20)

Augustus Te Morgan (27 June, 1506 ~ 18 March,(87t) is a
British mathematician and logician. He formulated De Morgan's
(aws and introduced the term mathematical induction, maév‘ry its idea

n']omuf.
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Fig. 11.9 Additional Logic-gate symbols:
(a) NAND gate; (b) NOR gate; (c) XOR gate; (d) Buffer; (¢) Equivalance gate (XNOR)
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Another way to state these laws is as follows: If the variables in a logic expression are replaced by
their inverses, the AND operation is replace by OR, the OR operation is replaced by AND, and the entire
expression is inverted, the resulting logic expression yields the same values as before the changes.

Example 11.1: Apply De Morgan’s laws to the right-hand side of the logic expression

D=AC+BC + A(B + BC)

Solution:
First, we replace each variable by its inverse, resulting in the expression

AC +BC + A(B+ BC)
Then, we replace the AND operation by OR, and vice versa:
(A+C)B+C)[4+B(B+C)]
Finally, inverting the expression, we can write
D=(A+C)B+C)A+B(B+0C)]

Therefore, De Morgan’s laws given us an alternative way to write logic expressions.

An important implication of De Morgan’s laws is that we can implement any logic function by
using AND gates and inverters. This is true because (11.20) can be employed to replace the OR
operation by the AND operation (and logical inversions). Similarly, any logic function can be
implemented with OR gates and inverters, because (11.19) can be used to replace AND operation
with the OR operation (and logical inversions). Consequently, to implement a logic function, we
need inverters and either AND gates or OR gates, rather than both.

11.2.3 NAND, NOR, and XOR gates

Some additional logic gates are shown in Fig. 11.9. The NAND gate is equivalent to an AND
gate followed by an inverter. Notice that the symbol is the same as for an AND gate, with a bubble
at the output terminal to indicate that the output has been inverted after the AND operation.
Similarly, the NOR gate is equivalent to an OR gate followed by an inverter.

The exclusive-OR (XOR) operation for two logic variables 4 and B is represented by
A® B and is defined by

020=0
1®0=1
0@1=1
1®1=0

Notice that the XOR operation yields 1 if 4 is 1 or B is 1, but yields 0 if both 4 and B are 1.The
XOR operation is also known as modulo-two addition.

A buffer has a single input and produces an output with the same value as the input. Buffers are
commonly used to produce large currents when a logic signal must be applied to a low-impedance load.

The equivalence gate produces a high output only if both inputs have the same value. In effect, it is

an XOR followed by an inverter as the symbol of Fig. 11.9(e) ( Equivalence gate (XNOR)) implies.
11.2.4 Logical sufficiency of NAND gates and of NOR gates
As we have seen, several combinations of gates often can be found that perform the same function.

For example, if the inputs to a NAND are tied together, an inverter results. This is true because
(A4)= A4
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Fig. 11.10 Basic Boolean operations can be implemented with NAND gates:
(a) Inverter; (b) AND gate; (¢) OR gate
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Table 11.1 Truth table used to illustrate SOP and POS logical expressions

J#5 (Row) A B C D
0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

N TR AR AR R D R, Tkl D BEEREX. Mk EEdEs
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D= ABC + ABC + ABC + ABC (11.21)
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which is illustrated in Fig. 11.10 (a).

Furthermore, as shown by De Morgan’s laws, the AND operation can be realized by the
cascade connection of two NAND gates, as shown in Fig. 11.10(b). The OR operation can be
realized by inverting the input variables and combining the results in a NAND gate. This is
shown in Fig. 11.10(c), in which the inverters are formed from NAND gates. Finally, a NAND
gate followed by an inverter results in an AND gate. Since the basic logic functions (AND, OR,
and NOT) can be realized by using only NAND gates, we conclude that NAND gates are
sufficient to realize any combinatorial logic function. Therefore, any Boolean function can be

implemented by the use of NAND gates alone.

o

Synthesis of Logic Circuits

In this section, we consider methods to implement logic circuits given the specification for the
output in terms of the inputs. Often, the initial specification for a logic circuit is given in natural
language. This is translated into a truth table or a Boolean logic expression that can be manipulated
to find a practical implementation.

11.3.1 Sum-of-products implementation

Consider the truth table shown in Table 11.1, where 4, B and C are input logic variables,
and D is the desired output. Notice that we have numbered the rows of the truth table with the
decimal number corresponding to the binary number formed by ABC.

Suppose that we want to find a logic circuit that produces the output variable D. One way to
write a logic expression for D is to concentrate on the rows of the truth table for which D is 1. In
Table 11.1, these are the rows numbered 0, 2, 6, and 7. Then, we write a logical product of the
input logic variables or their inverses that equals 1 for each of these rows. Each input variable or
its inverse is included in each product. In writing the product for each row, we invert the logic
variables that are 0 in that row. For example, the logical product ABC equals logic 1 only for
row 0, and ABC equals 1 only for row 7. Product terms that include all of the input variables (or
their inverses) are called minterms.

Finally, we write an expression of the output variable as a logical sum of minterms. For Table
11.1, it yields

D= ABC + ABC + ABC + ABC (11.21)

O

Maurice Karnaugh (born in 4 October 4 1924) is an American physicist and
mathematician known for the Karnaugh map used in Boolean algebra. Obtaining a Ph.D.
degree in physics from Yale University, Karnaugh worked at Bell Laboratories, developing the
Karnaugh map as well as patents for Pulse-code modulation (PCM) encoding and magnetic
logic circuits and coding.
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Fig. 11.11  Sum-of-product logic circuit for Fig. 11.12  Product-of-sums logic circuit for Table 11.1

Table 11.1
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F = ABD + ABD + BCD + ABC (11.25)
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This type of expression is called a sum of products (SOP). Following this procedure,
we can always find an SOP expression for a logic output given the truth table. A logic
circuit that implements (11.21) directly is shown in Fig. 11.11.

A shorthand way to write an SOP is simply to list the row numbers of the truth table
for which the output is logic 1. Thus, we can write

D=3"m(0,2,6,7) (11.22)

in which m indicate that we are summing the minterms corresponding to the rows
enumerated.

11.3.2 Product-of-sums implementation

Another way to write a logic expression for D is to concentrate on the rows of the
truth table for which D is 0. For example, in Table 11.1, these are the rows numbered 1, 3,
4, and 5. Then, we write a logical sum that equals 0 for each of these rows. Each input
variable or its inverse in included in each sum. In writing the sum for each row, we invert
the logic variables that are 1 in that row. For example, the logical sum (4 + B+ C) equals
logic 0 only for row 1. Similarly, (4+ B +C)equals logic 0 only for row 3. The sum
terms that include all of the input variables (or their inverses) are called maxterms.

Finally, we write an expression for the output variable as the logical product of
maxterms. For Table 11.1,it yields

D=(A+B+C)A+B+C)A+B+C)A+B+C) (11.23)

This type of expression is called a product of sum (POS). We can always find a POS
expression for a logic output given the truth table. A circuit that implements equation
(11.23) is shown in Fig. 11.12.

A shorthand way to write a POS is simply to list the row numbers of the truth table
for which the output is logic 1. Thus, we write

D=[]M@1,3,4,5) (11.24)
in which M indicates the maxterms corresponding to the rows enumerated.

Minimization of Logic Circuits

We have seen that logic functions can be readily expressed either as a logical sum of
minterms or as a logical product of maxterms. However, direct implementation of either of
these expressions may not yield the best circuit in terms of minimizing the number of

gates required. For example, consider the logical expression

F = ABD + ABD + BCD + ABC (11.25)
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Implemented directly, this expression would require two inverters, four AND gates, and one
OR gate. Therefore, we need to simplify the above expression. Factoring the first pair of terms, we

have

F = AD+ BCD + ABC
However, B+ B =1, s0 we obtain
F = AD(B + B)+ BCD + ABC

Of course, BCD=1 holds only if B=1, C =land D =1. In this case, either 4p =1 ordBC =1,
because we must have either 4 = or 4 =1. Thus, the term BCD is redundant and can be dropped

from expression. Then, we get
F = 4D+ ABC (11.26)

Only one inverter, two AND gates, and one OR gate are required to implement this expression.

11.4.1 Karnaugh maps

As we have demonstrated, logic expressions can sometimes be simplified dramatically.
However, the algebraic manipulations needed to simplify a given expression are often not readily
apparent. By using a graphical approach known as the Karnaugh map, we will find it much easier
to minimize the number of terms in a logic expression.

A Karnaugh map is an array of squares. Each square corresponds to one of the minterms of the
logic variables or, equivalently, to one of the rows of the truth table. Karnaugh maps for two, three,
and variables are shown in Fig. 11.13. The two-variable map consists of four squares, one
corresponding to each of the minterms. Similarly, the three-variable map has eight squares, and the
four-variable map has 16 squares.

The minterms corresponding to some of the squares are shown in Fig. 11.13. For example, for
the three-variable map, the minterm 4BC corresponds to the upper right-hand square. Also, the bit
combinations corresponding to the rows of the truth table are shown down the left-hand side and
across the top of the map. For example, on the four-variable map, the row of the truth table for
which the four-bit word ABCD is 1101 corresponds to the square in the third row (i.e. the row
labeled 11) and second column (i.e. the column labeled 01). Thus, we can readily find the square
corresponding to any minterm or to any row of the truth table.

In case you are wondering about the order of the bit patterns along the side or top of the
four-variable Karnaugh map (i.e. 00 01 11 10), notice that this is a two-bit Gray code. Thus, the
patterns for squares with a common side differ in only one bit, so that similar minterms are grouped
together. For example, the minterms containing 4 (ranther than 4 ) fall in the bottom half of each
map. In the four-variable map, the minterms containing B are in the middle two rows, the minterms
containing AB are in the third row, and so forth. This grouping of similar min terms is the key to

simplifying logic circuits.
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We call two squares that have a common edge a 2-cube. Similarly, four squares with common
edges are called a 4-cube. In locating cubes, the maps should be considered to fold around from top
to bottom and from left to right. Therefore, the squares on the right-hand side are considered to be
adjacent to those on the left-hand side, and the top of the map is adjacent to the bottom.
Consequently, the four squares in the map corners form a 4-cube. Some cubes are illustrated in Fig.
11.14.

To map a logic function, we place 1 in the squares for which the logic function takes a value of
1. Product terms that are labeled 1 are mapped into cubes. Fig. 11.15 gives some examples where
product terms are mapped into cubes.

In a four-variable map consisting of 16 squares, a single logic variable or its inverse covers
(maps into) an 8-cube. A product of two variables (such as 4B or 4B ) covers a 4-cube. A product of
three variables maps into a 2-cube.

The Karnaugh map of the logic function

F = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD (11.27)

is shown in Fig. 11.16. The squares containing 1 form a 4-cube corresponding to the product
term 4D, plus a 2-cube corresponding to ABC . These are the largest cubes that cover the squares
that are labeled 1 in the map. Thus, the minimum SOP expression for F is

F=AD+ ABC (11.28)

Because it is relatively easy to spot the sets of largest cubes that cover the 1s in a Karnaugh
map, we can quickly minimize a logic function.
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